Sample records for lake champlain tributaries

  1. A Relationship Between Microbial Activity in Soils and Phosphate Levels in Tributaries to Lake Champlain

    NASA Astrophysics Data System (ADS)

    Larose, R.; Lee, S.; Lane, T.

    2015-12-01

    Lake Champlain is a large natural freshwater lake. It forms the western boundary of Vermont and drains over half of the state. It is bordered by the state of New York on its western side and drains to the north into Quebec, Canada. Lake Champlain is the source of fresh drinking water for over quarter of a million people and provides for the livelihoods and recreational opportunities of many well beyond its borders. The health of this lake is important. During the summer month's algae blooms plague the lake. These unsightly growths, which affect other aquatic organisms, are the result of excess phosphate flowing into the lake from many sources. Examining whether there is a relationship between microbial activity in the soils bordering tributaries to Lake Champlain and phosphate levels in those tributaries sheds insight into the origins and paths by which phosphate moves into Lake Champlain. Understanding the how phosphate moves into the water system may assist in mitigation efforts.Total Phosphate levels and Total Suspended Solids were measured in second and third order streams in the Lake Champlain Basin over a three-year period. In addition microbial activity was measured within the toe, bank and upland riparian zone areas of these streams during the summer months. In general in areas showing greater microbial activity in the soil(s) there were increased levels of phosphate in the streams.

  2. A View of Water Quality Characteristics Pertinent to Phosphorus Movement in a Third Level Tributary to Lake Champlain

    NASA Astrophysics Data System (ADS)

    Witt, M.

    2017-12-01

    Lake Champlain is a large natural freshwater lake located in the northeastern United States. The lake provides fresh drinking water for over a quarter of a million people and affords for the livelihoods and recreational opportunities of many well beyond its borders. The health of Lake Champlain is important to the people of Vermont and beyond. During the summer months it is plagued by algal blooms. These unsightly and harmful growths affect other aquatic organisms and are the result of excess phosphate flowing into the lake. Missisquoi Bay in the far northern part of the lake is an area of concern. (Algal bloom Missisquoi Bay. Photo by Robert Galbraith) Measuring in-stream characteristics pertinent to phosphorus movement from the headwaters to the outflow of a third level tributary concurrently will provide important information regarding the movement of phosphorus into tributaries then on into Lake Champlain. Phosphorus, Total Suspended Solids, Temperature and Flow Rate were measured at the mouth, mid-point and headwaters of Black Creek. Black Creek is the last major contributor to the Missisquoi River before it flows into Missisquoi Bay, a bay in Lake Champlain. These measurements were made concurrently at low, normal and high water levels. Significant differences were found between temperature, total suspended solids and phosphate from the headwaters of Black Creek through to its outflow into the Missisquoi River. These characteristics pertinent to phosphorus movement indicated various rates of increase from headwaters to outflow.

  3. Use of flow-normalization to evaluate nutrient concentration and flux changes in Lake Champlain tributaries, 1990-2009

    USGS Publications Warehouse

    Medalie, Laura; Hirsch, Robert M.; Archfield, Stacey A.

    2012-01-01

    The U.S. Geological Survey evaluated 20 years of total phosphorus (P) and total nitrogen (N) concentration data for 18 Lake Champlain tributaries using a new statistical method based on weighted regressions to estimate daily concentration and flux histories based on discharge, season, and trend as explanatory variables. The use of all the streamflow discharge values for a given date in the record, in a process called "flow-normalization," removed the year-to-year variation due to streamflow and generated a smooth time series from which trends were calculated. This approach to data analysis can be of great value to evaluations of the success of restoration efforts because it filters out the large random fluctuations in the flux that are due to the temporal variability in streamflow. Results for the full 20 years of record showed a mixture of upward and downward trends for concentrations and yields of P and N. When the record was broken into two 10-year periods, for many tributaries, the more recent period showed a reversal in N from upward to downward trends and a similar reversal or reduction in magnitude of upward trends for P. Some measures of P and N concentrations and yields appear to be related to intensity of agricultural activities, point-source loads of P, or population density. Total flow-normalized P flux aggregated from the monitored tributaries showed a decrease of 30 metric tons per year from 1991 to 2009, which is about 15% of the targeted reduction established by the operational management plan for the Lake Champlain Basin.

  4. Concentration, flux, and the analysis of trends of total and dissolved phosphorus, total nitrogen, and chloride in 18 tributaries to Lake Champlain, Vermont and New York, 1990–2011

    USGS Publications Warehouse

    Medalie, Laura

    2013-01-01

    Annual concentration, flux, and yield for total phosphorus, dissolved phosphorus, total nitrogen, and chloride for 18 tributaries to Lake Champlain were estimated for 1990 through 2011 using a weighted regression method based on time, tributary streamflows (discharges), and seasonal factors. The weighted regression method generated two series of daily estimates of flux and concentration during the period of record: one based on observed discharges and a second based on a flow-normalization procedure that removes random variation due to year-to-year climate-driven effects. The flownormalized estimate for a given date is similar to an average estimate of concentration or flux that would be made if all of the observed discharges for that date were equally likely to have occurred. The flux bias statistic showed that 68 of the 72 flux regression models were minimally biased. Temporal trends in the concentrations and fluxes were determined by calculating percent changes in flow-normalized annual fluxes for the full period of analysis (1990 through 2010) and for the decades 1990–2000 and 2000–2010. Basinwide, flow-normalized total phosphorus flux decreased by 42 metric tons per year (t/yr) between 1990 and 2010. This net result reflects a basinwide decrease in flux of 21 metric tons (t) between 1990 and 2000, followed by a decrease of 20 t between 2000 and 2010; both results were largely influenced by flux patterns in the large tributaries on the eastern side of the basin. A comparison of results for total phosphorus for the two separate decades of analysis found that more tributaries had decreasing concentrations and flux rates in the second decade than the first. An overall reduction in dissolved phosphorus flux of 0.7 t/yr was seen in the Lake Champlain Basin during the full period of analysis. That very small net change in flux reflects substantial reductions between 1990 and 2000 from eastern tributaries, especially in Otter Creek and the LaPlatte and Winooski

  5. Concentration, flux, and trend estimates with uncertainty for nutrients, chloride, and total suspended solids in tributaries of Lake Champlain, 1990–2014

    USGS Publications Warehouse

    Medalie, Laura

    2016-12-20

    The U.S. Geological Survey, in cooperation with the New England Interstate Water Pollution Control Commission and the Vermont Department of Environmental Conservation, estimated daily and 9-month concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids from 1990 (or first available date) through 2014 for 18 tributaries of Lake Champlain. Estimates of concentration and flux, provided separately in Medalie (2016), were made by using the Weighted Regressions on Time, Discharge, and Season (WRTDS) regression model and update previously published WRTDS model results with recent data. Assessment of progress towards meeting phosphorus-reduction goals outlined in the Lake Champlain management plan relies on annual estimates of phosphorus flux. The percent change in annual concentration and flux is provided for two time periods. The R package EGRETci was used to estimate the uncertainty of the trend estimate. Differences in model specification and function between this study and previous studies that used WRTDS to estimate concentration and flux using data from Lake Champlain tributaries are described. Winter data were too sparse and nonrepresentative to use for estimates of concentration and flux but were sufficient for estimating the percentage of total annual flux over the period of record. Median winter-to-annual fractions ranged between 21 percent for total suspended solids and 27 percent for dissolved phosphorus. The winter contribution was largest for all constituents from the Mettawee River and smallest from the Ausable River. For the full record (1991 through 2014 for total and dissolved phosphorus and chloride and 1993 through 2014 for nitrogen and total suspended solids), 6 tributaries had decreasing trends in concentrations of total phosphorus, and 12 had increasing trends; concentrations of dissolved phosphorus decreased in 6 and increased in 8 tributaries; fluxes of total phosphorus decreased in 5 and

  6. In-lake Modeling Recommendation Report for Lake Champlain TMDL

    EPA Pesticide Factsheets

    This report describes the recommended modeling approach for the in-lake modeling component of the Lake Champlain TMDL project. The report was prepared by Tetra Tech, with input from the Lake Champlain modeling workgroup. (TetraTech, 2012b)

  7. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    USGS Publications Warehouse

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  8. 33 CFR 117.797 - Lake Champlain.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Champlain. 117.797 Section 117.797 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.797 Lake Champlain. (a) The drawspan...

  9. Quantifying sediment loadings from streambank erosion in selected agricultural watersheds draining to Lake Champlain

    USDA-ARS?s Scientific Manuscript database

    At its mouth on Lake Champlain the Missisquoi River has a history of exceedance of phosphorus concentration target levels endorsed by the governments of Vermont, Québec, and New York. Observations along the study reach of the Missisquoi River and several of its tributaries have indicated that the r...

  10. The origin and distribution of subbottom sediments in southern Lake Champlain.

    USGS Publications Warehouse

    Freeman-Lynde, R. P.; Hutchinson, D.R.; Folger, D.W.; Wiley, B.H.; Hewett, M.J.

    1980-01-01

    3 units, correlatable with recent Lake Champlain, late-glacial marine Champlain Sea, and proglacial Lake Vermont sediments, have been identified from seismic reflection profiles and 8 piston cores. Lake Vermont deposits are nonfossiliferous and range from thin to absent nearshore and on bedrock highs to more than 126 m thick near Split Rock Point. Champlain Sea sediments contain marine foraminifers and ostracodes and are fairly uniform in thickness (20-30 m). Recent Lake Champlain sediments range in thickness from 0 to 25 m. Average sedimentation rates for Lake Vermont are considerably higher (4-8 cm/yr) than those for the Champlain Sea (0.8-1.2 cm/yr) and Lake Champlain (0.14-0.15 cm/yr). Bedrock, till, and deltaic and alluvial deposits were also identified.- from Authors

  11. Watershed Modeling Recommendation Report for Lake Champlain TMDL

    EPA Pesticide Factsheets

    This report describes the recommended modeling approach for watershed modeling component of the Lake Champlain TMDL project. The report was prepared by Tetra Tech, with input from the Lake Champlain watershed analysis workgroup. (TetraTech, 2012a)

  12. Assessing Climate Change Within Lake Champlain

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Pierce, W.; Mihuc, T.; Myers, L.

    2016-12-01

    Lake Champlain is experiencing environmental stresses that have caused statistically significant biological, chemical, and physical trends. Such trends have already impacted management strategies within the Lake Champlain basin, which lies within the states of New York and Vermont and province of Quebec. A long-term monitoring program initiated in 1992 has revealed warming of upwards of 0.7°C per decade within certain regions of the lake; much faster than observed local atmospheric warming. Here we analyze the observed lake warming in the context of atmospheric variability and assess its uncertainty given monitoring frequency (biweekly to monthly), variable seasonal and hourly observation timing, and synoptic variability of lake dynamics. To address these issues, we use observations from a June-October 2016 deployment of a data buoy on Lake Champlain containing a 1-meter spaced thermistor chain and surface weather station. These new observations, and reanalysis of intensive monitoring during a campaign in 1993, indicate that synoptic variability of lake thermal structure lowers confidence in trends derived from infrequent observations. However, principal component analysis of lake thermal structure reveals two primary modes of variability that are predictable from atmospheric conditions, presenting an opportunity to improve interpretation of existing and future observations.

  13. Valuing wetland attributes in the Lake Champlain Basin

    Treesearch

    Donald F. Dennis; Walter F. Kuentzel

    1998-01-01

    This research explores the use of conjoint analysis to assess and understand wetland values. A conjoint rating survey was designed and mailed to landowners in the Laplatte River Basin (Lake Champlain) in Vermont. Landowners rated options to protect wetlands that varied by the wetland's ability to decrease pollutants entering Lake Champlain, value in providing food...

  14. Seismic Triggers of Lacustrine Subaqueous Landslides in Lake Champlain, USA

    NASA Astrophysics Data System (ADS)

    Manley, P.; Manley, T.; Ghosh, S. J.; Rosales-Underbrink, P.; Silverhart, P.

    2017-12-01

    Lacustrine slumps and debris flows (landslides) have been identified in Lake Champlain via Multibeam and CHIRP (compressed high intensity radar pulse) seismic profile data. Numerous large landslides studied by Ghosh (2012), Rosales-Underbrink (2015), and Silverhart (2016) have shown that many of these landslides are coeval. All landslides failed on a specific interface between marine Champlain Sea and modern lacustrine Lake Champlain sediments. Utilizing radionuclide dating on sediment from the unfailed slopes or undisturbed sediment above failed deposits, sedimentation rates were determined and used to calculate the approximate failure ages for each of the landslides studied. The northernmost failure, south of the Bouquet River, occurred about 950-1200 cal yr BP and is the first mass wasting event of this age to be recorded on Lake Champlain. The remaining landslides failed about 4500-5200 cal yr BP and agree with nearby Western Quebec Seismic Zone (WQSZ) with clusters of terrestrial landslides occurring at 1000 and 5000 cal yr BP triggered by large earthquakes (Brooks, 2015) along the same interface. The 5000 cal yr BP event has been attributed to a M 6.4 or greater earthquake within the WQSZ. The coeval landslides observed in Lake Champlain were likely triggered by this same earthquake. Lake tsunami models show that these simultaneous landslide failures can generate surface waves wave that can impact the Lake Champlain shoreline within 3-10 minutes after the earthquake.

  15. Mass balance assessment for mercury in Lake Champlain

    USGS Publications Warehouse

    Gao, N.; Armatas, N.G.; Shanley, J.B.; Kamman, N.C.; Miller, E.K.; Keeler, G.J.; Scherbatskoy, T.; Holsen, T.M.; Young, T.; McIlroy, L.; Drake, S.; Olsen, Bill; Cady, C.

    2006-01-01

    A mass balance model for mercury in Lake Champlain was developed in an effort to understand the sources, inventories, concentrations, and effects of mercury (Hg) contamination in the lake ecosystem. To construct the mass balance model, air, water, and sediment were sampled as a part of this project and other research/monitoring projects in the Lake Champlain Basin. This project produced a STELLA-based computer model and quantitative apportionments of the principal input and output pathways of Hg for each of 13 segments in the lake. The model Hg concentrations in the lake were consistent with measured concentrations. Specifically, the modeling identified surface water inflows as the largest direct contributor of Hg into the lake. Direct wet deposition to the lake was the second largest source of Hg followed by direct dry deposition. Volatilization and sedimentation losses were identified as the two major removal mechanisms. This study significantly improves previous estimates of the relative importance of Hg input pathways and of wet and dry deposition fluxes of Hg into Lake Champlain. It also provides new estimates of volatilization fluxes across different lake segments and sedimentation loss in the lake. ?? 2006 American Chemical Society.

  16. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    USGS Publications Warehouse

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  17. 75 FR 82061 - Lake Champlain Sea Lamprey Control Alternatives Workgroup

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ...] Lake Champlain Sea Lamprey Control Alternatives Workgroup AGENCY: Fish and Wildlife Service, Interior... of the Lake Champlain Sea Lamprey Control Alternatives Workgroup (Workgroup). The Workgroup's purpose... sea lamprey control techniques alternative to lampricide that are technically feasible, cost effective...

  18. 76 FR 43698 - Lake Champlain Sea Lamprey Control Alternatives Workgroup

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ...] Lake Champlain Sea Lamprey Control Alternatives Workgroup AGENCY: Fish and Wildlife Service, Interior... of the Lake Champlain Sea Lamprey Control Alternatives Workgroup (Workgroup). The Workgroup's purpose... implementation of sea lamprey control techniques alternative to lampricide that are technically feasible, cost...

  19. 75 FR 22228 - Regulated Navigation Area; Lake Champlain Bridge Construction Zone, NY and VT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-AA11 Regulated Navigation Area; Lake Champlain Bridge Construction Zone, NY and VT AGENCY: Coast Guard... establishing a regulated navigation area around the construction zone of the Lake Champlain Bridge between... on all vessels transiting the navigable waters of Lake Champlain in the vicinity of the bridge...

  20. 33 CFR 110.8 - Lake Champlain, N.Y. and Vt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Champlain, N.Y. and Vt. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.8 Lake Champlain, N.Y. and Vt. (a) Ticonderoga, N.Y. An area shoreward of a line bearing 312° from Ticonderoga Light to the southeast corner of the...

  1. Lake Champlain TMDL Modeling Quality Assurance Project Plan

    EPA Pesticide Factsheets

    This document presents the quality assurance project plan for providing support to US EPA Region 1 in revising the Lake Champlain Total Maximum Daily Load, under Contract Number EP-C-08-004, Task Order 80.

  2. Mercury in the pelagic food web of Lake Champlain.

    PubMed

    Miller, Eric K; Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2012-04-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.

  3. Mercury in the Pelagic Food Web of Lake Champlain

    PubMed Central

    Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2013-01-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25 to 75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 µg g−1 in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury. PMID:22193540

  4. Flood-inundation maps for Lake Champlain in Vermont and in northern Clinton County, New York

    USGS Publications Warehouse

    Flynn, Robert H.; Hayes, Laura

    2016-06-30

    Digital flood-inundation maps for an approximately100-mile length of Lake Champlain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York were created by the U.S. Geological Survey (USGS) in cooperation with the International Joint Commission (IJC). The flood-inundationmaps, which can be accessed through the International Joint Commission (IJC) Web site at http://www.ijc.org/en_/, depict estimates of the areal extent flooding correspondingto selected water levels (stages) at the USGS lake gage on the Richelieu River (Lake Champlain) at Rouses Point, N.Y. (station number 04295000). In this study, wind and seiche effects (standing oscillating wave with a long wavelength) were not taken into account and the flood-inundation mapsreflect 11 stages (elevations) for Lake Champlain that are static for the study length of the lake. Near-real-time stages at this lake gage, and others on Lake Champlain, may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the Richelieu River (Lake Champlain) at Rouses Point.Static flood boundary extents were determined for LakeChamplain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York using recently acquired (2013–2014) lidar (light detection and ranging) and may be referenced to any of the five USGS lake gages on Lake Champlain. Of these five lakgages, USGS lake gage 04295000, Richelieu River (Lake Champlain) at Rouses Point, N.Y., is the only USGS lake gage that is also a National Weather Service prediction location. Flood boundary extents for the Lake Champlain static flood-inundation map corresponding to the May 201 flood(103.2 feet [ft], National Geodetic Vertical Datum [NGVD] 29) were evaluated by comparing these boundary

  5. ERTS-1 imagery of the Lake Champlain region: A first look

    NASA Technical Reports Server (NTRS)

    Lind, A. O. (Principal Investigator); Henson, E. B.; Olson, J.; Wagner, W. P.

    1972-01-01

    The author has identified the following significant results. First-look analysis of RBV imagery of Lake Champlain and adjacent areas provided the following information on land and water resources: (1) location and shape of islands over 200 meters at narrowest part; (2) location of manmade structures at least 10 meters across; (3) location of shoreline; (4) identification of algal blooms and major turbidity boundary; (5) identification of lake bottom features in sandy, shallow areas; (6) identification of major lake shore wetland and floodplain wetlands; (7) location of major streams; (8) identification of ice marginal deposits of major proportions and former shorelines of Champlain Sea; (9) identification of wooded areas, open land, and built-up areas.

  6. 33 CFR 165.T01-0176 - Regulated Navigation Area; Lake Champlain Bridge Construction, Crown Point, New York and Chimney...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Champlain Bridge Construction, Crown Point, New York and Chimney Point, Vermont. 165.T01-0176 Section 165...; Lake Champlain Bridge Construction, Crown Point, New York and Chimney Point, Vermont. (a) Description... and south of the Lake Champlain Bridge construction zone at Crown Point, New York and Chimney Point...

  7. Environmental study of ERTS-1 imagery: Lake Champlain and Vermont

    NASA Technical Reports Server (NTRS)

    Lind, A. O.; Henson, E. B.; Pelton, J. O.

    1973-01-01

    Environmental concerns of the State of Vermont currently being stressed include water quality in Lake Champlain and a state-wide land use and capability plan. Significant results obtained from ERTS-1 relate directly to the above concerns. Industrial water pollution and turbidity in Lake Champlain have been identified and mapped and the ERTS pollution data will be used in the developing court suit which Vermont has initiated against the polluters. ERTS imagery has also provided a foundation for updating and revising land use inventories. Major classes of land use have been identified and mapped, and substantial progress has been made toward the mapping of such land use divisions as crop and forest type, and wetlands.

  8. Outdoor recreation opportunities and land use change in Vermont's Lake Champlain Basin

    Treesearch

    John J. Lindsay

    1995-01-01

    Outdoor recreation resources are eroding in Vermont's Lake Champlain Basin due to urban expansion. This study measured urban growth in the Basin and identified critical areas for open space protection. The study's hypothesis, that there was no difference between the Champlain Basin and other parts of urbanizing New England that have lost outdoor recreation...

  9. 75 FR 21990 - Safety Zone; Extended Debris Removal in the Lake Champlain Bridge Construction Zone (Between...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ...-AA00 Safety Zone; Extended Debris Removal in the Lake Champlain Bridge Construction Zone (Between... surrounding the Lake Champlain Bridge construction zone between Chimney Point, VT and Crown Point, NY. This... of debris from the old Crown Point bridge demolition. The debris must be cleared from the navigable...

  10. SWAT Model Configuration, Calibration and Validation for Lake Champlain Basin

    EPA Pesticide Factsheets

    The Soil and Water Assessment Tool (SWAT) model was used to develop phosphorus loading estimates for sources in the Lake Champlain Basin. This document describes the model setup and parameterization, and presents calibration results.

  11. Environmental study of ERTS-1 imagery Lake Champlain Basin and Vermont

    NASA Technical Reports Server (NTRS)

    Lind, A. O. (Principal Investigator)

    1972-01-01

    The author has idenfified the following significant results. A first approximation land-type map using three categories of classification was generated for the Burlington area. The identification and mapping of a major turbidity front separating turbid waters of the southern arm of Lake Champlain from the clearer main water mass was reported on RBV 1 and 2 imagery and on subsequent MSS bands 4 and 5. Significant industrial pollution of Lake Champlain has degraded environmental quality in certain sections of the lake. Wetlands were detected and recognized using a combination of RBV bands 2 and 3. Using first-look RBV band 2 imagery, major ice marginal features were identified by using tonal patterns associated with vegetative cover. Major rivers were detected and recognized through the use of RBV band 3 imagery and MSS bands 6 and 7.

  12. 33 CFR 110.8 - Lake Champlain, N.Y. and Vt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.8 Lake Champlain, N.Y. and Vt. (a) Ticonderoga...°14′05″ W. Note: The anchoring of vessels and placement of temporary moorings in the anchorage area...

  13. 33 CFR 110.8 - Lake Champlain, N.Y. and Vt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.8 Lake Champlain, N.Y. and Vt. (a) Ticonderoga...°14′05″ W. Note: The anchoring of vessels and placement of temporary moorings in the anchorage area...

  14. 33 CFR 110.8 - Lake Champlain, N.Y. and Vt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.8 Lake Champlain, N.Y. and Vt. (a) Ticonderoga...°14′05″ W. Note: The anchoring of vessels and placement of temporary moorings in the anchorage area...

  15. 33 CFR 110.8 - Lake Champlain, N.Y. and Vt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.8 Lake Champlain, N.Y. and Vt. (a) Ticonderoga...°14′05″ W. Note: The anchoring of vessels and placement of temporary moorings in the anchorage area...

  16. Groundwater quality in the Lake Champlain and Susquehanna River basins, New York, 2014

    USGS Publications Warehouse

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2016-11-04

    In a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, groundwater samples were collected from 6 production wells and 7 domestic wells in the Lake Champlain Basin and from 11 production wells and 9 domestic wells in the Susquehanna River Basin in New York. All samples were collected from June through December 2014 to characterize groundwater quality in these basins. The samples were collected and processed using standard procedures of the U.S. Geological Survey and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds, radionuclides, and indicator bacteria.The Lake Champlain Basin study area covers the 3,050 square miles of the basin in northeastern New York; the remaining part of the basin is in Vermont and Canada. Of the 13 wells sampled in the Lake Champlain Basin, 6 are completed in sand and gravel, and 7 are completed in bedrock. Groundwater in the Lake Champlain Basin was generally of good quality, although properties and concentrations of some constituents— fluoride, iron, manganese, dissolved solids, sodium, radon-222, total coliform bacteria, fecal coliform bacteria, and Escherichia coli bacteria—sometimes equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (5 of 13 samples) was radon-222.The Susquehanna River Basin study area covers the entire 4,522 square miles of the basin in south-central New York; the remaining part of the basin is in Pennsylvania. Of the 20 wells sampled in the Susquehanna River Basin, 11 are completed in sand and gravel, and 9 are completed in bedrock. Groundwater in the Susquehanna River Basin was generally of good quality, although properties and concentrations of some constituents—pH, chloride, sodium, dissolved

  17. Impacts of post-glacial lake drainage events and revised chronology of the Champlain Sea episode 13-9 ka

    USGS Publications Warehouse

    Cronin, T. M.; Manley, P.L.; Brachfeld, S.; Manley, T.O.; Willard, D.A.; Guilbault, J.-P.; Rayburn, J.A.; Thunell, R.; Berke, M.

    2008-01-01

    Lithologic, CHIRP (Compressed High Intensity Radar Pulse) sonar, paleomagnetic, stable isotopic and micropaleontological analyses of sediment cores from Lake Champlain (New York, Vermont) were used to determine the age of the post-glacial Champlain Sea marine episode, the timing of salinity changes and their relationship to freshwater discharge from mid-continent glacial lakes. Calibrated radiocarbon ages on plant material provide an improved post-glacial chronology overcoming problems from shell ages caused by carbon reservoir effects up to 1500 yr. The final drainage of glacial Lake Vermont and the inception of marine conditions occurred ∼ 13.1–12.8 ka (kiloannum, calendar years) and a sharp decrease in Champlain Sea salinity from ∼ 25 to 7–8 psu (practical salinity units) occurred approximately 11.4–11.2 ka. Reduced salinity was most likely caused by rapid freshwater inflow eastward from glacial Lake Algonquin into the Champlain Basin. The timing of inferred freshwater event coincides with the widespread climatic cooling called the Preboreal Oscillation.

  18. Genetic models reveal historical patterns of sea lamprey population fluctuations within Lake Champlain

    PubMed Central

    Azodi, Christina B.; Sheldon, Sallie P.; Trombulak, Stephen C.; Ardren, William R.

    2015-01-01

    The origin of sea lamprey (Petromyzon marinus) in Lake Champlain has been heavily debated over the past decade. Given the lack of historical documentation, two competing hypotheses have emerged in the literature. First, it has been argued that the relatively recent population size increase and concomitant rise in wounding rates on prey populations are indicative of an invasive population that entered the lake through the Champlain Canal. Second, recent genetic evidence suggests a post-glacial colonization at the end of the Pleistocene, approximately 11,000 years ago. One limitation to resolving the origin of sea lamprey in Lake Champlain is a lack of historical and current measures of population size. In this study, the issue of population size was explicitly addressed using nuclear (nDNA) and mitochondrial DNA (mtDNA) markers to estimate historical demography with genetic models. Haplotype network analysis, mismatch analysis, and summary statistics based on mtDNA noncoding sequences for NCI (479 bp) and NCII (173 bp) all indicate a recent population expansion. Coalescent models based on mtDNA and nDNA identified two potential demographic events: a population decline followed by a very recent population expansion. The decline in effective population size may correlate with land-use and fishing pressure changes post-European settlement, while the recent expansion may be associated with the implementation of the salmonid stocking program in the 1970s. These results are most consistent with the hypothesis that sea lamprey are native to Lake Champlain; however, the credibility intervals around parameter estimates demonstrate that there is uncertainty regarding the magnitude and timing of past demographic events. PMID:26539334

  19. An historical assessment of trace metal accumulation in Lake Champlain, Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mecray, E.L.; King, J.W.

    1993-03-01

    The Lake Champlain watershed, with its increased land use, shoreline development, and population, is being threatened by pollutants in the water column and bottom sediments. A comprehensive study is currently being conducted to characterize the bottom sediments of the lake for toxicity and to reconstruct the history of pollutant inputs. Surface sediment samples were collected from 30 stations and analyzed for metal (Cu, Zn, Cr, Pb, Ni, Mn, Fe, Cd, Al, and Ag) concentrations to determine the contaminated regions of the lake. Once the contaminated regions were determined, a Nemesis corer was used to retrieve sediments cores averaging 1 metermore » in length from 10 sites within Lake Champlain. Grain size and metal analyses were conducted at one and two cm intervals down the cores. Grain size data, in combination with metal and radiometric stratigraphy, can serve as an indicator of changing land use in the watershed. The grain size in some cores has a fining upward trend indicating increased land use and soil erosion. Downcore variations in metal concentrations reveal two different regimes. The concentration at depth remain consistently low and are inferred to correspond with the natural background levels. In contrast, the upper section of the cores show abrupt increases in metal concentrations which are attributed to increased anthropogenic inputs. Radiometric ([sup 210] and [sup 137]Cs) and pollen chronostratigraphy of these cores indicates that the increased metal concentrations and the changes in grain size recorded in the upper most sediments is related to increased human disturbance beginning in the late 18th and early 19th centuries. This study demonstrates that the historical record of pollution inputs to Lake Champlain can be reconstructed from the sediment sequences.« less

  20. Astronauts Conrad and Cooper slice cake on U.S.S. Lake Champlain

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts Charles Conrad Jr. (left) and L. Gordon Cooper Jr. prepate to slice into the huge cake prepared for them by the cooks onboard the aircraft carrier U.S.S. Lake Champlain. They are using ornamental Navy swords for knives.

  1. The age, growth, and feeding habits of the whitefish Coregonus clupeaformis (Mitchell), of Lake Champlain

    USGS Publications Warehouse

    Van Oosten, John; Deason, Hilary J.

    1939-01-01

    This study is based on 120 whitefish collected in northern Lake Champlain (Missisquoi Bay) in 1930 and on 175 whitefish taken in southern Lake Champlain in 1931. Since the whitefish population had not been exploited commercially after 1912 in United States waters and after 1915 in Canadian waters, its study should be of interest in showing the characteristics of a population practically untouched by man. Data have been presented on length frequencies, age composition, growth, coefficient of condition, sex ratio, standard length-total length relationship, and feeding habits. The data indicated that the Missisquoi Bay population was disturbed (probably by the early fall seining of 1930) before our samples were taken so that the original length distributions no longer existed. The southern Lake Champlain material, however, showed a consistency which indicated that the population had not been exploited to any extensive degree, if at all. When the northern population was compared with the southern the former was found to differ from the latter in the following respects, which differences pointed to some disturbance of the northern stock in the lake 1. By possession of lower modes and smaller grand averages of length. 2. By absence of very old individuals. 3. By absence of a series of equally abundant age groups or, in other words, by the presence of a decided dominance of one or two age groups. 4. By a radical disagreement between the sexes in their age-frequency distribution. 5. By a disagreement between the sexes with respect to maximum lengths attained. All of the differences between the two collections could, however, not be attributed to exploitation. The following characteristics indicated the presence of two distinct populations in the lake 1. Presence of a spawning ground at each end of the lake. 2. Differences in calculated lengths and increments of length (growth rates). 3. Differences in the actual lengths and weights of corresponding age groups at capture. 4

  2. Network global navigation satellite system surveys to harmonize American and Canadian datum for the Lake Champlain Basin

    USGS Publications Warehouse

    Flynn, Robert H.; Rydlund, Jr., Paul H.; Martin, Daniel J.

    2016-03-08

    Lake-gage water-surface elevations determined during the 3 days of surveys were converted to water-surface elevations referenced to the North American Vertical Datum of 1988 by using calculated offsets and historical water-surface elevations. In this report, an “offset” refers to the adjustment that needs to be applied to published data from a particular gage to produce elevation data referenced to the North American Vertical Datum of 1988. Offsets presented in this report can be used in the evaluation of water-surface elevations in a common datum for Lake Champlain and the Richelieu River. In addition, the water-level data referenced to the common datum (as determined from the offsets) may be used to calibrate flow models and support future modeling studies developed for Lake Champlain and the Richelieu River.

  3. August 2015 Proposed Total Maximum Daily Load Document and Appendices for Vermont Segments of Lake Champlain

    EPA Pesticide Factsheets

    These documents provide allocations of phosphorus loads to Lake Champlain to meet water quality criteria, describe basis for allocation for future growth, & describe how implementation measures were simulated to determine that allocations can be achieved

  4. Evidence of sound production by spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain

    USGS Publications Warehouse

    Johnson, Nicholas S.; Higgs, Dennis; Binder, Thomas R.; Marsden, J. Ellen; Buchinger, Tyler John; Brege, Linnea; Bruning, Tyler; Farha, Steve A.; Krueger, Charles C.

    2018-01-01

    Two sounds associated with spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain were characterized by comparing sound recordings to behavioral data collected using acoustic telemetry and video. These sounds were named growls and snaps, and were heard on lake trout spawning reefs, but not on a non-spawning reef, and were more common at night than during the day. Growls also occurred more often during the spawning period than the pre-spawning period, while the trend for snaps was reversed. In a laboratory flume, sounds occurred when male lake trout were displaying spawning behaviors; growls when males were quivering and parallel swimming, and snaps when males moved their jaw. Combining our results with the observation of possible sound production by spawning splake (Salvelinus fontinalis × Salvelinus namaycush hybrid), provides rare evidence for spawning-related sound production by a salmonid, or any other fish in the superorder Protacanthopterygii. Further characterization of these sounds could be useful for lake trout assessment, restoration, and control.

  5. Pollution monitoring in Lake Champlain using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Lind, A. O. (Principal Investigator); Henson, E. B.

    1973-01-01

    The author has identified the following significant results. Band 4 imagery of April 7 and 25 show contrasting pollution effects due to seasonal and discharge variations. The pollution plume emanating from the International Paper Co. mill just north of Fort Ticonderoga was first detected on October 10 ERTS-1 imagery and now has been documented during spring high lake level conditions. The plume was observed extending further to the north and east than under low water conditions of October 10. This northward extension reflects a stronger northward current flow expected in the turbid southern leg of Lake Champlain. The extensive plume of April 25 represents full plant operation while the April 5 scene shows some plume traces directly over the submerged diffuser, discharge pipe representing minimal discharge during weekend plant operation. The ERTS-1 documentation will be used in developing a model of plume behavior under varying environmental conditions and will hopefully serve to assist in a major resource decision pending at U.S. Supreme Court level.

  6. Native rainbow smelt and nonnative alewife distribution related to temperature and light gradients in Lake Champlain

    USGS Publications Warehouse

    Parrish, Donna; Simonin, Paul W.; Rudstam, Lars G.; Sullivan, Patrick J.; Pientka, Bernard

    2012-01-01

    Alewife (Alosa pseudoharengus) recently became established in Lake Champlain and may compete with native rainbow smelt (Osmerus mordax) for food or consume larval rainbow smelt. The strength of this effect depends partly on the spatial and temporal overlap of different age groups of the two species; therefore, we need a better understanding of factors affecting alewife and rainbow smelt distributions in Lake Champlain. We used hydroacoustics, trawls, and gill nets to document vertical fish distribution, and recorded environmental data during 16 day–night surveys over two years. Temperature, temperature change, and light were all predictors of adult and age-0 rainbow smelt distribution, and temperature and light were predictors of age-0 alewives' distribution (based on GAMM models evaluated with AIC). Adult alewives were 5–30 m shallower and age-0 alewives were 2–15 m shallower than their rainbow smelt counterparts. Adult rainbow smelt distribution overlapped with age-0 rainbow smelt and age-0 alewives near the thermocline (10–25 m), whereas adult alewives were shallower (0–6 m) and overlapped with age-0 alewives and rainbow smelt in the epilimnion. Adult rainbow smelt were in water < 10–12 °C, whereas age-0 rainbow smelt were in 10–20 °C, and adult and age-0 alewives were in 15–22 °C water. Predicting these species distributions is necessary for quantifying the strength of predatory and competitive interactions between alewife and rainbow smelt, as well as between alewife and other fish species in Lake Champlain.

  7. Water quality of streams tributary to Lakes Superior and Michigan

    USGS Publications Warehouse

    Zimmerman, Jerome W.

    1968-01-01

    Water quality of streams tributary to Lakes Superior and Michigan was analyzed for 142 stations on 99 streams tributary to Lake Superior and 83 stations on 56 streams tributary to Lake Michigan during 1962-65. Concentrations of aluminum, copper, and iron were not affected greatly by flow or season. Magnesium, calcium, chlorides, total alkalinity, total hardness, and conductivity varied with the flow, temperature, and season; the lowest values were during the spring runoff and heavy rains, and the highest were during low water in late summer and the colder periods of winter. Concentrations of nitrate, silica, and sulfates were lowest in the spring and summer. Concentrations of tanninlike and ligninlike compounds were highest during the spring runoff and other high-water periods, and were lowest during freezeup when surface runoff was minimal. The pH values were highest from June to September and lowest during the spring runoff. Phenolphthalein alkalinity was detected primarily in the summer and coincided occasionally with low flows just before the spring thaw. Total hardness usually was lower in streams tributary to Lake Superior than in streams tributary to Lake Michigan. The total hardness was higher in the streams in Wisconsin than in the streams in Michigan along the west shore of Lake Michigan. It was lowest in the northernmost streams. The water quality of the streams in an area was related to the geological characteristics of the land.

  8. Total Phosphorus Loads for Selected Tributaries to Sebago Lake, Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2001-01-01

    The streamflow and water-quality datacollection networks of the Portland Water District (PWD) and the U.S. Geological Survey (USGS) as of February 2000 were analyzed in terms of their applicability for estimating total phosphorus loads for selected tributaries to Sebago Lake in southern Maine. The long-term unit-area mean annual flows for the Songo River and for small, ungaged tributaries are similar to the long-term unit-area mean annual flows for the Crooked River and other gaged tributaries to Sebago Lake, based on a regression equation that estimates mean annual streamflows in Maine. Unit-area peak streamflows of Sebago Lake tributaries can be quite different, based on a regression equation that estimates peak streamflows for Maine. Crooked River had a statistically significant positive relation (Kendall's Tau test, p=0.0004) between streamflow and total phosphorus concentration. Panther Run had a statistically significant negative relation (p=0.0015). Significant positive relations may indicate contributions from nonpoint sources or sediment resuspension, whereas significant negative relations may indicate dilution of point sources. Total phosphorus concentrations were significantly larger in the Crooked River than in the Songo River (Wilcoxon rank-sum test, p<0.0001). Evidence was insufficient, however, to indicate that phosphorus concentrations from medium-sized drainage basins, at a significance level of 0.05, were different from each other or that concentrations in small-sized drainage basins were different from each other (Kruskal-Wallis test, p= 0.0980, 0.1265). All large- and medium-sized drainage basins were sampled for total phosphorus approximately monthly. Although not all small drainage basins were sampled, they may be well represented by the small drainage basins that were sampled. If the tributaries gaged by PWD had adequate streamflow data, the current PWD tributary monitoring program would probably produce total phosphorus loading data that

  9. Application of ERTS-1 imagery in the Vermont-New York dispute over pollution of Lake Champlain

    NASA Technical Reports Server (NTRS)

    Lind, A. O. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery and a composite map derived from ERTS-1 imagery were presented as evidence in a U.S. Supreme Court case involving the pollution of an interstate water body (Lake Champlain). A pollution problem generated by a large paper mill forms the basis of the suit (Vermont vs. International Paper Co. and State of New York) and ERTS-1 imagery shows the effluent pattern on the lake surface as extending into Vermont during three different times.

  10. Interspecific competition in tributaries: Prospectus for restoring Atlantic salmon in Lake Ontario

    USGS Publications Warehouse

    Johnson, James H.; Wedge, Leslie R.

    1999-01-01

    Historically, Lake Ontario may have supported the world's largest freshwater population of Atlantic salmon (Salmo salar). However, by the late 1800's, salmon were virtually extinct in the lake due to the damming of tributaries, overharvest, deforestation, and pollution. Of these factors, the building of dams on tributaries, which precluded access by the salmon to natal spawning streams, was probably the most detrimental. Since the extirpation of Atlantic salmon in the Lake Ontario watershed over a century ago, considerable change has occurred throughout the lake and tributary ecosystem. The changes within the ecosystem that may have the most profound effect on Atlantic salmon restoration include the presence of exotic species, including other salmonines, and reduced habitat quality, especially in tributaries. These changes must be taken into account when considering Atlantic salmon restoration.

  11. The R/V Folger a Floating Laboratory: Teaching Marine Science Skills on Lake Champlain (Invited)

    NASA Astrophysics Data System (ADS)

    Manley, P.; Manley, T.

    2013-12-01

    Undergraduate senior work has been required at Middlebury College as far back as 1960's and hands-on experiential learning was and still is the mode for our geology courses. The history of Middlebury College having a research vessel started in the 1970's when Dave Folger started the marine component of our curriculum and obtained the first Middlebury College's research vessel - a coast guard rescue surf boat (Bruno Schmidt). The second Middlebury College research vessel, the R/V Baldwin was purchased in 1985 and was used exclusively in a river-like setting due to its open cockpit and minimal research equipment. In 1990, Middlebury College received a grant from NSF-MRI to upgrade the vessel, to a then state-of the-art small oceanographic vessel including new equipment (CTD, side-scan sonar, ROV, met station, coring devices, computers and navigation). Middlebury College contributed monies to enclose the wheelhouse, install safer diesel engines, as well as a winch and an A-frame to haul in equipment. Over 600+ students used the Baldwin in a variety of geology courses; mainly Oceanography and Marine Geology. In 2010, Middlebury College received an NSF -ARRA grant (American Recovery and Reinvestment Act) to replace the ailing R/V Baldwin with a floating state-of-the art laboratory with the specific goals of increasing 1) access to lake research for Middlebury faculty and students in the biological, chemical, and environmental sciences, 2) the scope of lake research by reducing transit times over this 100km long lake, 3) stability for broad-lake research, 4) improve and expand research capabilities on Lake Champlain, 5) the carrying capacity (both equipment and people), and 6) instructional capability and overnight capabilities. The newly built R/V Folger is a sophisticated research vessel with advanced capabilities that provides a greater capacity to the research infrastructure on Lake Champlain, enhancing interdisciplinary inquiry not only for Middlebury College, but

  12. Constraints on Lake Agassiz discharge through the late-glacial Champlain Sea (St. Lawrence Lowlands, Canada) using salinity proxies and an estuarine circulation model

    USGS Publications Warehouse

    Katz, B.; Najjar, R.G.; Cronin, T.; Rayburn, J.; Mann, M.E.

    2011-01-01

    During the last deglaciation, abrupt freshwater discharge events from proglacial lakes in North America, such as glacial Lake Agassiz, are believed to have drained into the North Atlantic Ocean, causing large shifts in climate by weakening the formation of North Atlantic Deep Water and decreasing ocean heat transport to high northern latitudes. These discharges were caused by changes in lake drainage outlets, but the duration, magnitude and routing of discharge events, factors which govern the climatic response to freshwater forcing, are poorly known. Abrupt discharges, called floods, are typically assumed to last months to a year, whereas more gradual discharges, called routing events, occur over centuries. Here we use estuarine modeling to evaluate freshwater discharge from Lake Agassiz and other North American proglacial lakes into the North Atlantic Ocean through the St. Lawrence estuary around 11.5 ka BP, the onset of the Preboreal oscillation (PBO). Faunal and isotopic proxy data from the Champlain Sea, a semi-isolated, marine-brackish water body that occupied the St. Lawrence and Champlain Valleys from 13 to 9 ka, indicate salinity fell about 7-8 (range of 4-11) around 11.5 ka. Model results suggest that minimum (1600 km3) and maximum (9500 km3) estimates of plausible flood volumes determined from Lake Agassiz paleoshorelines would produce the proxy-reconstructed salinity decrease if the floods lasted <1 day to 5 months and 1 month to 2 years, respectively. In addition, Champlain Sea salinity responds very quickly to the initiation (within days) and cessation (within weeks) of flooding events. These results support the hypothesis that a glacial lake flood, rather than a sustained routing event, discharged through the St. Lawrence Estuary during the PBO. ?? 2011 Elsevier Ltd.

  13. 33 CFR 165.T01-0176 - Regulated Navigation Area; Lake Champlain Bridge Construction, Crown Point, New York and Chimney...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the regulated navigation area (RNA). All navigable waters on Lake Champlain 300 yards to the north... conditions apply within this RNA: (1) No vessel may operate at a speed in excess of five knots. (2) All vessels must proceed through the area with caution and operate in such a manner as to produce no wake. (3...

  14. Lake Ontario Tributaries: 2009-2010 Field Data Report

    EPA Pesticide Factsheets

    In 2002, EPA began a program to regularly monitor U.S. tributaries to Lake Ontario for the critical pollutants. This report provides program results from 2009-2010, and identifies changes in the monitoring program from prior years.

  15. Growth rates of rainbow smelt in Lake Champlain: Effects of density and diet

    USGS Publications Warehouse

    Stritzel, Thomson J.L.; Parrish, D.L.; Parker-Stetter, S. L.; Rudstam, L. G.; Sullivan, P.J.

    2011-01-01

    Stritzel Thomson JL, Parrish DL, Parker-Stetter SL, Rudstam LG, Sullivan PJ. Growth rates of rainbow smelt in Lake Champlain: effects of density and diet. Ecology of Freshwater Fish 2010. ?? 2010 John Wiley & Sons A/S Abstract- We estimated the densities of rainbow smelt (Osmerus mordax) using hydroacoustics and obtained specimens for diet analysis and groundtruthed acoustics data from mid-water trawl sampling in four areas of Lake Champlain, USA-Canada. Densities of rainbow smelt cohorts alternated during the 2-year study; age-0 rainbow smelt were very abundant in 2001 (up to 6fish per m2) and age-1 and older were abundant (up to 1.2fish per m2) in 2002. Growth rates and densities varied among areas and years. We used model selection on eight area-year-specific variables to investigate biologically plausible predictors of rainbow smelt growth rates. The best supported model of growth rates of age-0 smelt indicated a negative relationship with age-0 density, likely associated with intraspecific competition for zooplankton. The next best-fit model had age-1 density as a predictor of age-0 growth. The best supported models (N=4) of growth rates of age-1 fish indicated a positive relationship with availability of age-0 smelt and resulting levels of cannibalism. Other plausible models were contained variants of these parameters. Cannibalistic rainbow smelt consumed younger conspecifics that were up to 53% of their length. Prediction of population dynamics for rainbow smelt requires an understanding of the relationship between density and growth as age-0 fish outgrow their main predators (adult smelt) by autumn in years with fast growth rates, but not in years with slow growth rates. ?? 2011 John Wiley & Sons A/S.

  16. A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms

    PubMed Central

    Torbick, Nathan; Corbiere, Megan

    2015-01-01

    Lake Champlain has bays undergoing chronic cyanobacterial harmful algal blooms that pose a public health threat. Monitoring and assessment tools need to be developed to support risk decision making and to gain a thorough understanding of bloom scales and intensities. In this research application, Landsat 8 Operational Land Imager (OLI), Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS) images were obtained while a corresponding field campaign collected in situ measurements of water quality. Models including empirical band ratio regressions were applied to map chlorophyll-a and phycocyanin concentrations; all sensors performed well with R2 and root-mean-square error (RMSE) ranging from 0.76 to 0.88 and 0.42 to 1.51, respectively. The outcomes showed spatial patterns across the lake with problematic bays having phycocyanin concentrations >25 µg/L. An alert status metric tuned to the current monitoring protocol was generated using modeled water quality to illustrate how the remote sensing tools can inform a public health monitoring system. Among the sensors utilized in this study, Landsat 8 OLI holds the most promise for providing exposure information across a wide area given the resolutions, systematic observation strategy and free cost. PMID:26389930

  17. Mercury Accumulation in Biota of Tributaries of the Finger Lakes, New York

    NASA Astrophysics Data System (ADS)

    Cleckner, L.; Razavi, R.; Cushman, S. F.; Massey, T.

    2016-12-01

    Mercury (Hg) is an aquatic pollutant whose availability to a given waterbody is closely tied to watershed characteristics. Transport of Hg from watersheds to waterbodies is controlled primarily by dissolved organic carbon (DOC) and suspended particulate matter. This study was conducted to assess accumulation of Hg in biota of tributaries of five Finger Lakes watersheds in New York, USA. Very little is known regarding Hg dynamics within Finger Lakes stream food webs or how tributaries contribute to Hg transport to the lakes themselves. Sources of Hg in the region include atmospheric pollution from an active coal-fired power plant. Between May and October 2015, two species of stream fish (Blacknose Dace, Rhinichthys atratulus, and Creek Chub, Semotilus atromaculatus) were collected by backpack electrofishing. At the same time, benthic macroinvertebrates representing various feeding groups and periphyton were collected for methylmercury determination. Samples for suspended particulate matter, DOC, and specific ultraviolet absorbance were also collected. The study objectives were to determine 1) whether differences existed in fish biota Hg concentrations among lake watersheds, and 2) the influence of DOC and land use on observed biota Hg accumulation patterns. Preliminary analyses of fish Hg results indicate a difference in accumulation between the two indicator species selected. Mercury concentrations were found to increase with fish size. Across all lake watersheds, Creek Chub were found to be significantly larger than Blacknose Dace. However, there was no significant difference in Hg concentrations between the two species. A within watershed analysis of five Seneca Lake tributaries showed that average Hg concentrations were significantly higher in Blacknose Dace than Creek Chub. This suggests this species is more vulnerable to Hg accumulation and a better indicator of Hg availability. No significant differences were found in Creek Chub Hg concentrations among

  18. Small-scale lacustrine drifts in Lake Champlain, Vermont

    USGS Publications Warehouse

    Manley, Patricia L.; Manley, T.O.; Hayo, Kathryn; Cronin, Thomas

    2012-01-01

    High resolution CHIRP (Compressed High Intensity Radar Pulse) seismic profiles reveal the presence of two lacustrine sediment drifts located in Lake Champlain's Juniper Deep. Both drifts are positive features composed of highly laminated sediments. Drift B sits on a basement high while Drift A is built on a trough-filling acoustically-transparent sediment unit inferred to be a mass-transport event. These drifts are oriented approximately north–south and are parallel to a steep ridge along the eastern shore of the basin. Drift A, located at the bottom of a structural trough, is classified as a confined, elongate drift that transitions northward to become a system of upslope asymmetric mudwaves. Drift B is perched atop a structural high to the west of Drift A and is classified as a detached elongate drift. Bottom current depositional control was investigated using Acoustic Doppler Current Profilers (ADCPs) located across Drift A. Sediment cores were taken at the crest and at the edges of the Drift A and were dated. Drift source, deposition, and evolution show that these drifts are formed by a water column shear with the highest deposition occurring along its crest and western flank and began developing circa 8700–8800 year BP.

  19. A field analysis of lampricide photodegradation in Great Lakes tributaries.

    PubMed

    McConville, Megan B; Cohen, Natan M; Nowicki, Shawn M; Lantz, Stephen R; Hixson, Jase L; Ward, Adam S; Remucal, Christina K

    2017-07-19

    The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2',5-dichloro-4'-nitrosalicylanilide (niclosamide) are added to Great Lakes tributaries to target the sea lamprey, an invasive parasitic fish. This study examines the photochemical behavior of the lampricides in Carpenter Creek, Sullivan Creek, and the Manistique River. The observed loss of TFM in Carpenter and Sullivan Creeks (i.e., 34 and 19%) was similar to the loss of bromide in parallel time of passage studies (i.e., 30 and 29%), demonstrating that TFM photodegradation was minimal in both tributaries during the lampricide application. Furthermore, the absence of inorganic and organic photoproducts in the Manistique River demonstrates that TFM and niclosamide photodegradation was minimal in this large tributary, despite its long residence time (i.e., 3.3 days). Kinetic modeling was used to identify environmental variables primarily responsible for the limited photodegradation of TFM in the field compared to estimates from laboratory data. This analysis demonstrates that the lack of TFM photodegradation was attributable to the short residence times in Carpenter and Sullivan Creeks, while depth, time of year, time of day, and cloud cover influenced photochemical fate in the Manistique River. The modeling approach was extended to assess how many of the 140 United States tributaries treated with lampricides in 2015 and 2016 were amenable to TFM photolysis. While >50% removal of TFM due to photolysis could occur in 13 long and shallow tributaries, in most systems lampricides will reach the Great Lakes untransformed.

  20. Effect of agriculture on water quality of Lake Biwa tributaries, Japan.

    PubMed

    Nakano, Takanori; Tayasu, Ichiro; Yamada, Yoshihiro; Hosono, Takahiro; Igeta, Akitake; Hyodo, Fujio; Ando, Atsushi; Saitoh, Yu; Tanaka, Takuya; Wada, Eitaro; Yachi, Shigeo

    2008-01-15

    We investigated the effects of natural environments and human activity on Lake Biwa, central Japan. We determined the concentrations of 19 elements and the compositions of stable S and Sr isotopes in the main tributaries of the lake and compared them with the corresponding values obtained from the lake water during the circulation period. Results of a principal component analysis indicated that the components dissolved in the lower reaches of the tributaries can be divided into group 1 (HCO(3), SO(4), NO(3), Ca, Mg, Sr) and group 2 components (Cl, Br, Na, K, Ba, Rb, Cs). The concentrations of group 1 components were high in the rivers of the southern area, which is urbanized and densely populated, and the eastern area, which consists of plains where agriculture predominates, compared with the rivers of the northern and western areas, which are mostly mountainous and sparsely populated. The concentrations of group 2 components tended to be high in the river water of industrial areas. The delta(34)S values of SO(4) in the river water converged to 0+/-2 per thousand as the SO(4) concentration increased and, excluding the areas where limestone is extensively distributed, as the HCO(3) concentration increased. In particular, both the delta(34)S values (0+/-2 per thousand) and the (87)Sr/(86)Sr ratios (0.7117+/-0.0005) fell within narrow ranges in the small and medium rivers of the eastern plain area, where rice is widely grown. These values agreed respectively with the delta(34)S values of the fertilizers used in the Lake Biwa basin and the soil-exchangeable (87)Sr/(86)Sr in the eastern plain. The characteristics of water quality in the small and medium rivers of the eastern area can be explained by a model in which sulfuric, nitric, and bicarbonic acids generated by the decomposition of agricultural fertilizer and paddy rice selectively leached out alkaline-earth elements adsorbed on the soil and sediments of the plain or dissolved calcium carbonate enriched with Mg

  1. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA

    EPA Science Inventory

    To better understand the transport of neonicotinoid insecticides to a sensitive freshwater ecosystem, monthly samples (October 2015-September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in...

  2. Streamflow and Water-Quality Data for Three Major Tributaries to Reelfoot Lake, West Tennessee, October 1987-March 1988

    DTIC Science & Technology

    1988-01-01

    STREMFLOW AND WATER-QUALITY DATA FOR. THREE MAJOR TRIBUTARIES TO REELFOOT LAKE , WEST TENNESSEE, OCTOBER 19874&4JXCH 1988 Prepared ill...Water-Quality Data for Three Major Tributaries to Reelfoot Lake , West Tennessee, October 1987-March 1988 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 STREAMFLOW AND WATER-QUALITY DATA FOR THREE MAJOR TRIBUTARIES TO REELFOOT LAKE , WEST

  3. Interactions between hatch dates, growth rates, and mortality of Age-0 native Rainbow Smelt and nonnative Alewife in Lake Champlain

    USGS Publications Warehouse

    Parrish, Donna; Simonin, Paul W.; Rudstam, Lars G.; Pientka, Bernard; Sullivan, Patrick J.

    2016-01-01

    Timing of hatch in fish populations can be critical for first-year survival and, therefore, year-class strength and subsequent species interactions. We compared hatch timing, growth rates, and subsequent mortality of age-0 Rainbow Smelt Osmerus mordax and Alewife Alosa pseudoharengus, two common open-water fish species of northern North America. In our study site, Lake Champlain, Rainbow Smelt hatched (beginning May 26) almost a month earlier than Alewives (June 20). Abundance in the sampling area was highest in July for age-0 Rainbow Smelt and August for age-0 Alewives. Late-hatching individuals of both species grew faster than those hatching earlier (0.6 mm/d versus 0.4 for Rainbow Smelt; 0.7 mm/d versus 0.6 for Alewives). Mean mortality rate during the first 45 d of life was 3.4%/d for age-0 Rainbow Smelt and was 5.5%/d for age-0 Alewives. Alewife mortality rates did not differ with hatch timing but daily mortality rates of Rainbow Smelt were highest for early-hatching fish. Cannibalism is probably the primary mortality source for age-0 Rainbow Smelt in this lake. Therefore, hatching earlier may not be advantageous because the overlap of adult and age-0 Rainbow Smelt is highest earlier in the season. However, Alewives, first documented in Lake Champlain in 2003, may increase the mortality of age-0 Rainbow Smelt in the summer, which should favor selection for earlier hatching.

  4. Building Adaptive Capacity with the Delphi Method and Mediated Modeling for Water Quality and Climate Change Adaptation in Lake Champlain Basin

    NASA Astrophysics Data System (ADS)

    Coleman, S.; Hurley, S.; Koliba, C.; Zia, A.; Exler, S.

    2014-12-01

    Eutrophication and nutrient pollution of surface waters occur within complex governance, social, hydrologic and biophysical basin contexts. The pervasive and perennial nutrient pollution in Lake Champlain Basin, despite decades of efforts, exemplifies problems found across the world's surface waters. Stakeholders with diverse values, interests, and forms of explicit and tacit knowledge determine water quality impacts through land use, agricultural and water resource decisions. Uncertainty, ambiguity and dynamic feedback further complicate the ability to promote the continual provision of water quality and ecosystem services. Adaptive management of water resources and land use requires mechanisms to allow for learning and integration of new information over time. The transdisciplinary Research on Adaptation to Climate Change (RACC) team is working to build regional adaptive capacity in Lake Champlain Basin while studying and integrating governance, land use, hydrological, and biophysical systems to evaluate implications for adaptive management. The RACC team has engaged stakeholders through mediated modeling workshops, online forums, surveys, focus groups and interviews. In March 2014, CSS2CC.org, an interactive online forum to source and identify adaptive interventions from a group of stakeholders across sectors was launched. The forum, based on the Delphi Method, brings forward the collective wisdom of stakeholders and experts to identify potential interventions and governance designs in response to scientific uncertainty and ambiguity surrounding the effectiveness of any strategy, climate change impacts, and the social and natural systems governing water quality and eutrophication. A Mediated Modeling Workshop followed the forum in May 2014, where participants refined and identified plausible interventions under different governance, policy and resource scenarios. Results from the online forum and workshop can identify emerging consensus across scales and sectors

  5. High-water marks from flooding in Lake Champlain from April through June 2011 and Tropical Storm Irene in August 2011 in Vermont

    USGS Publications Warehouse

    Medalie, Laura; Olson, S.A.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, identified high-water marks after two floods in Vermont during 2011. Following a snowy winter, new monthly precipitation records were set in Burlington, Vermont, in April and May 2011, causing extensive flooding from April through June. The spring 2011 flooding resulted in a new record for stage (103.27 feet, referenced to the National Geodetic Vertical Datum of 1929) at the Lake Champlain at Burlington, Vt., gaging station (04294500). During August 28 and 29, 2011, tropical storm Irene delivered rainfall totals of 3 to more than 7 inches throughout Vermont, which resulted in extensive flooding and new streamflow records at nine streamgaging stations. Four presidential declarations of disaster were made following the 2011 flood events in Vermont. Thirty-nine high-water marks were identified and flagged to mark the highest levels of Lake Champlain from the May 2011 flooding, and 1,138 high-water marks were identified and flagged along Vermont rivers after flooding from tropical storm Irene in August 2011. Seventy-four percent of the high-water marks that were flagged were later found and surveyed to the North American Vertical Datum of 1988.

  6. Divergent life histories of invasive round gobies (Neogobius melanostomus) in Lake Michigan and its tributaries

    USGS Publications Warehouse

    Kornis, Matthew; Weidel, Brian C.; Vander Zanden, M. Jake

    2017-01-01

    Round gobies (Neogobius melanostomus) have invaded benthic habitats of the Laurentian Great Lakes and connected tributary streams. Although connected, these two systems generally differ in temperature (Great Lakes are typically colder), food availability (Dreissenid mussels are more prevalent in Great Lakes), and system size and openness. Here, we compare round goby life histories from inshore Lake Michigan and adjacent tributary systems—an uncommon case study of life-history differences between connected systems. Tributary round gobies grew much faster (average length-at-age of 122.3 vs. 65.7 mm for Age 2 +  round gobies), appeared to have shorter life spans (maximum observed age of 2 vs. 5) and had lower age-at-50% maturity (1.6 vs. 2.4 years; females only) compared to gobies from Lake Michigan. In addition, tributary gobies had greater fecundity at Ages 1–2 than lake gobies, but had fewer eggs for a given body size prior to the first spawning event of the summer. We were not able to determine the cause of the observed life-history differences. Nonetheless, the observed differences in growth, maturation and longevity were consistent with known effects of water temperature, as well as predictions of life-history theory for animals at invasion fronts exposed to novel environmental conditions. The high degree of phenotypic plasticity in connected populations of this invasive species has implications for our understanding of invasive species impacts in different habitats.

  7. Historical trace metal accumulation in the sediments of an urbanized region of the Lake Champlain watershed, Burlington, Vermont

    USGS Publications Warehouse

    Mecray, E.L.; King, J.W.; Appleby, P.G.; Hunt, A.S.

    2001-01-01

    This study documents the history of pollution inputs in the Burlington region of Lake Champlain, Vermont using measurements of anthropogenic metals (Cu, Zn, Cr, Pb, Cd, and Ag) in four age-dated sediment cores. Sediments record a history of contamination in a region and can be used to assess the changing threat to biota over time and to evaluate the effectiveness of discharge regulations on anthropogenic inputs. Grain size, magnetic susceptibility, radiometric dating and pollen stratigraphy were combined with trace metal data to provide an assessment of the history of contamination over the last 350 yr in the Burlington region of Lake Champlain. Magnetic susceptibility was initially used to identify land-use history for each site because it is a proxy indicator of soil erosion. Historical trends in metal inputs in the Burlington region from the seventeenth through the twentieth centuries are reflected in downcore variations in metal concentrations and accumulation rates. Metal concentrations increase above background values in the early to mid nineteenth century. The metal input rate to the sediments increases around 1920 and maximum concentrations and accumulation rates are observed in the late 1960s. Decreases in concentration and accumulation rate between 1970 and the present are observed, for most metals. The observed trends are primarily a function of variations in anthropogenic inputs and not variations in sediment grain size. Grain size data were used to remove texture variations from the metal profiles and results show trends in the anthropogenic metal signals remain. Radiometric dating and pollen stratigraphy provide well-constrained dates for the sediments thereby allowing the metal profiles to be interpreted in terms of land-use history.This study documents the history of pollution inputs in the Burlington region of Lake Champlain, Vermont using measurements of anthropogenic metals (Cu, Zn, Cr, Pb, Cd, and Ag) in four age-dated sediment cores. Sediments

  8. First direct confirmation of grass carp spawning in a Great Lakes tributary

    USGS Publications Warehouse

    Embke, Holly S.; Kocovsky, Patrick M.; Richter, Catherine A.; Pritt, Jeremy J.; Christine M. Mayer,; Qian, Song

    2016-01-01

    Grass carp (Ctenopharyngodon idella), an invasive species of Asian carp, has been stocked for many decades in the United States for vegetation control. Adult individuals have been found in all of the Great Lakes except Lake Superior, but no self-sustaining populations have yet been identified in Great Lakes tributaries. In 2012, a commercial fisherman caught four juvenile diploid grass carp in the Sandusky River, a major tributary to Lake Erie. Otolith microchemistry and the capture location of these fish permitted the conclusion that they were most likely produced in the Sandusky River. Due to this finding, we sampled ichthyoplankton using paired bongo net tows and larval light traps during June–August of 2014 and 2015 to determine if grass carp are spawning in the Sandusky River. From the samples collected in 2015, we identified and staged eight eggs that were morphologically consistent with grass carp. Five eggs were confirmed as grass carp using quantitative Polymerase Chain Reaction for a grass carp-specific marker, while the remaining three were retained for future analysis. Our finding confirms that grass carp are naturally spawning in this Great Lakes tributary. All eggs were collected during high-flow events, either on the day of peak flow or 1–2 days following peak flow, supporting an earlier suggestion that high flow conditions favor grass carp spawning. The next principal goal is to identify the spawning and hatch location(s) for the Sandusky River. Predicting locations and conditions where grass carp spawning is most probable may aid targeted management efforts.

  9. Comparative diets of subyearling Atlantic salmon and subyearling coho salmon in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.; Ringler, Neil H.

    2016-01-01

    Restoration of Atlantic salmon (Salmo salar) in Lake Ontario could potentially be negatively affected by the presence of non-native salmonids that are naturalized in the basin. Coho salmon (Oncorhynchus kisutch) have been spawning successfully in Lake Ontario tributaries for over 40 years and their juveniles will reside in streams with juvenile Atlantic salmon for one year. This study sought to examine interspecific diet associations between these species, and to compare diets to the composition of the benthos and drift in three Lake Ontario tributaries. Aquatic insects, mainly ephemeropterans and chironomids were the major prey consumed by subyearling Atlantic salmon whereas terrestrial invertebrates made up only 3.7% of the diet. Ephemeropterans and chironomids were the primary aquatic taxa consumed by subyearling coho salmon but, as a group, terrestrial invertebrates (41.8%) were the major prey. In sympatry, Atlantic salmon fed more actively from the benthos whereas the diet of coho salmon was more similar to the drift. The different feeding pattern of each species resulted in low interspecific diet similarity. There is likely little competition between these species for food in Lake Ontario tributaries as juveniles.

  10. Seasonal habitat use of brook trout and juvenile steelhead in a Lake Ontario tributary

    USGS Publications Warehouse

    Johnson, James H.; Abbett, Ross; Chalupnicki, Marc A.; Verdoliva, Francis

    2016-01-01

    Brook trout (Salvelinus fontinalis) are generally restricted to headwaters in New York tributaries of Lake Ontario. In only a few streams are brook trout abundant in lower stream reaches that are accessible to adult Pacific salmonids migrating from the lake. Consequently, because of the rarity of native brook trout populations in these lower stream reaches it is important to understand how they use stream habitat in sympatry with juvenile Pacific salmonids which are now naturalized in several Lake Ontario tributaries. In this study, we examined the seasonal (spring, summer, and fall) habitat use of brook trout and juvenile steelhead (Oncorhynchus mykiss) in Hart Brook, a tributary of eastern Lake Ontario. We found interspecific, intraspecific, and seasonal variation in habitat use. Subyearling steelhead were associated with faster water velocities than subyearling brook trout and, overall, had the least habitat similarity to the other salmonid groups examined. Overyearling brook trout and yearling steelhead exhibited the greatest degree of habitat selection and habitat selection by all four salmonid groups was greatest in summer. The availability of pool habitat for overyearling salmonids may pose the largest impediment to these species in Hart Brook.

  11. Hydrologic, land cover and seasonal patterns of waterborne pathogens in great lakes tributaries

    USDA-ARS?s Scientific Manuscript database

    Great Lakes tributaries deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal variability of waterborne pathogens, protozoa (2), pathogenic bacteria (4) and human (8) and bovine (8) viruses from eight rivers were monitored in the Great Lakes watersh...

  12. Impacts of Tributaries on Optical Properties and Singlet Oxygen Concentrations in the Great Lakes

    EPA Science Inventory

    The Great Lakes have over 100 tributaries that contribute natural organic matter and othernatural photosensitizers to nearshore sites on the lakes. Absorption of sunlight by thesesensitizers results in indirect (sensitized) photoreactions of the widespread chemical andbiological ...

  13. Biological structure and dynamics of fish assemblages in tributaries of eastern Lake Ontario

    USGS Publications Warehouse

    McKenna, James E.; Munawar, M.

    2003-01-01

    Interest in effective management of Great Lakes natural resources and restoration of native populations has stimulated interest in the conditions and ecological role of tributaries in the Great Lakes ecosystem. Rivers of Lake Ontario's eastern basin provide an excellent opportunity to examine important tributaries and their relationship to Lake Ontario. This paper reports on the results of an investigation of fish assemblage structure in lower reaches of the Salmon and Oswego Rivers and at their interfaces with Lake Ontario. These two systems represent conditions near the end points on a continuum from highly disturbed to pristine. They are also of great interest to resource managers for their important fisheries and other economic values. The objective was to identify distinct fish assemblages within these systems and relate their characteristics to biotic and abiotic conditions in an attempt to determine factors responsible for structuring and maintaining those species assemblages. This information is intended to provide baseline information for monitoring the status of these rivers and coastal systems and to aid in the development of models of ecological health.

  14. Current-use flame retardants in the water of Lake Michigan tributaries

    USGS Publications Warehouse

    Guo, Jiehong; Romanak, Kevin; Westenbroek, Stephen M.; Hites, Ronald A.; Venier, Marta

    2017-01-01

    In this study, we measured the concentrations of 65 flame retardants in water samples from five Lake Michigan tributaries. These flame retardants included organophosphate esters (OPEs), brominated flame retardants (BFRs), and Dechlorane-related compounds. A total of 59 samples, including both the particulate and the dissolved phases, were collected from the Grand, Kalamazoo, Saint Joseph, and Lower Fox rivers and from the Indiana Harbor and Ship Canal (IHSC) in 2015. OPEs were the most abundant among the targeted compounds with geometric mean concentrations ranging from 20 to 54 ng/L; OPE concentrations were comparable among the five tributaries. BFR concentrations were about 1 ng/L, and the most-abundant compounds were bis(2-ethylhexyl) tetrabromophthalate, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate, and decabromodiphenyl ether. The highest BFR concentrations were measured in either the IHSC or the Saint Joseph River. The dechlorane-related compounds were detected at low concentrations (<1 pg/L). The fraction of target compounds in the particulate phase relative to the dissolved phase varied by chemical and tended to increase with their octanol–water partition coefficient. The chemical loading from all the five tributaries into Lake Michigan were <10 kg/year for the BFRs and about 500 kg/year for the OPEs.

  15. 33 CFR 117.664 - Rainy River, Rainy Lake and their tributaries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rainy River, Rainy Lake and their tributaries. 117.664 Section 117.664 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.664 Rainy River...

  16. 33 CFR 117.664 - Rainy River, Rainy Lake and their tributaries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rainy River, Rainy Lake and their tributaries. 117.664 Section 117.664 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.664 Rainy River...

  17. 33 CFR 117.664 - Rainy River, Rainy Lake and their tributaries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rainy River, Rainy Lake and their tributaries. 117.664 Section 117.664 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.664 Rainy River...

  18. 33 CFR 117.664 - Rainy River, Rainy Lake and their tributaries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rainy River, Rainy Lake and their tributaries. 117.664 Section 117.664 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Minnesota § 117.664 Rainy River...

  19. Movement and feeding ecology of recently emerged steelhead in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.; McKenna, James E.; Douglass, Kevin A.

    2012-01-01

    Steelhead (Oncorhynchus mykiss) ascend several Lake Ontario tributaries to spawn and juveniles are often the most abundant salmonid where spawning is successful. Movement and diet of recently emerged subyearling steelhead were examined in three New York tributaries of Lake Ontario. Downstream movement occurred mainly at night and consisted of significantly smaller fry that were feeding at lower levels than resident fry. Fry fed at the highest rate during the day and chironomids and baetids were the main components of their diet. The diet composition of steelhead fry was closely associated with the composition of the benthos in Trout Brook but more similar to the composition of the drift in the other streams. Daily ration was similar among streams, ranging from 10.2 to 14.3%. These findings are consistent with previous findings on the ecology of steelhead fry, as well as fry of other salmonid species

  20. New England from Boston to Lake Champlain and up to southern Main from STS-58

    NASA Image and Video Library

    1993-10-30

    STS058-105-016 (18 Oct-1 Nov 1993) --- This photograph includes much of the heart of New England, stretching from Boston and Boston Harbor (lower left) across New Hampshire and Vermont to Lake Champlain (upper left), and up to southern Maine (Portland is just off the photo at right center). The colors in this photograph are less vivid than those in STS-58-81-038, because the color changes on the deciduous trees in central and northern New England were past their peak when this photograph was taken. North of Boston flows the Merrimack River (which forms part of the state boundary between Massachusetts and New Hampshire). It is delineated by the small industrial towns (Concord, Manchester, Nashua, Lowell) which grew up on its banks. The White Mountains of New Hampshire are seen near the center, and Mt. Washington (6,288 feet) is capped with snow.

  1. Distribution of pollutants from a new paper plant in southern Lake Champlain, Vermont and New York

    USGS Publications Warehouse

    Mason, D.L.; Folger, D.W.; Haupt, R.S.; McGirr, R.R.; Hoyt, W.H.

    1977-01-01

    From November of 1973 to May of 1974, 15 arrays of sediment traps were placed along 33 km of southern Lake Champlain to sample the distribution of effluent from a large paper plant located on the western shore which had commenced operation in 1971. In the arrays located near the effluent diffuser pipeline as much as 2.3 cm of sediment accumulated, whereas elsewhere in the lake less than 1 cm accumulated. In the area of accelerated accumulation, sediments contained high concentrations of several components used in or derived from paper manufacturing. Values for kaolinite, expressed as the ratio of kaolinite to chlorite, for example, were as high as 1.4, anatase (TiO2) concentrations were as high as 0.8%, organic carbon 8.7%, and phosphorus 254 ??g/g; all were more abundant than in sediments collected in traps to the south or north. In surficial bottom sediments collected near each array organic carbon and phosphorus were also higher (4.2% and 127 ??g/g respectively) near the diffuser than elsewhere. Thus, the new plant after three years of production measurably affected the composition of suspended sediment and surficial bottom sediment despite the construction and use of extensive facilities to reduce the flow of pollutants to the lake. ?? 1977 Springer-Verlag New York Inc.

  2. Water quality of the Fox River and four tributaries in Green Lake County, Wisconsin, 2001-2002

    USGS Publications Warehouse

    Graczyk, David J.; Garn, Herbert S.

    2003-01-01

    The purpose of this report is to summarize the water-quality data collected on the Fox River and its tributaries in Green Lake County, Wisconsin, from November 2001 through August 2002. The goals of the project were to (1) determine the current water quality of the Fox River and selected main tributaries in Green Lake County, (2) assess the spacial variation of the water-quality conditions of the main Fox River reach, and (3) build on the quantitative data base so that future monitoring can help detect and evaluate improving or declining water-quality conditions objectively.

  3. Environmentally relevant chemical mixtures of concern in waters of United States tributaries to the Great Lakes

    USGS Publications Warehouse

    Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.

    2018-01-01

    The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments. 

  4. Water quality of Lake Tuscaloosa and streamflow and water quality of selected tributaries to Lake Tuscaloosa, Alabama, 1982-86

    USGS Publications Warehouse

    Slack, L.J.

    1987-01-01

    Lake Tuscaloosa, created in 1969 by the impoundment of North River, provides the primary water supply for Tuscaloosa, Alabama , and surrounding areas. This report describes the percent contribution of major tributaries to the mean inflow to the lake; water quality; and changes in water quality in the lake and selected tributaries. During base flow, about 60% of the total flow into Lake Tuscaloosa is contributed by Binion and Carroll Creeks, which drain only 22% of the Lake Tuscaloosa basin. Binion and Carroll Creek basins are underlain primarily by sand and gravel deposits of the Coker Formation. Mean inflow to the lake was 1,150 cu ft/sec during 1983, a wet year, and 450 cu ft/sec during 1985, a relatively dry year. More than 80% of the total inflow during both years was contributed by North River and Binion, Cripple, and Carroll Creeks. About 59% was contributed by North River during those years. Except for pH, sulfate, and dissolved and total recoverable iron and manganese, the water quality of the tributaries is generally within drinking water limits and acceptable for most uses. The water quality of Lake Tuscaloosa is generally within drinking water limits and acceptable for most uses. The maximum and median concentrations of sulfate increased every year at the dam from 1979 to 1985 (7.2 to 18 mg/L and 6.2 to 14 mg/L, respectively). The dissolved solids concentrations for water at the dam have varied (1979-86) from 27 to 43 mg/L; the sulfate, 5.2 to 18 mg/L; and the dissolved iron, 10 to 250 micrograms/L--all within the recommended drinking water limits. However, concentrations of dissolved manganese and total recoverable iron and manganese at the dam commonly exceeded the recommended drinking water limits. In November 1985, after the summer warmup and increase in biological activity, the water quality at five depth profiles sites on Lake Tuscaloosa was acceptable for most uses, generally. However, a dissolved oxygen concentration of 1 mg/L or less was

  5. Tributaries affect the thermal response of lakes to climate change

    NASA Astrophysics Data System (ADS)

    Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien

    2018-01-01

    Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  6. Organic contaminants in Great Lakes tributaries: Identification of watersheds and chemicals of greatest concern

    EPA Science Inventory

    Trace organic contaminant concentrations in some Great Lakes tributaries indicate potential for adverse effects on aquatic organisms. Chemicals used in agriculture, industry, and households enter surface waters via variety of sources, including urban and agricultural runoff, sewa...

  7. Use of dissolved chloride concentrations in tributary streams to support geospatial estimates of Cl contamination potential near Skiatook Lake, northeastern Oklahoma

    USGS Publications Warehouse

    Rice, C.A.; Abbott, M.M.; Zielinski, R.A.

    2007-01-01

    Releases of NaCl-rich (>100 000 mg/L) water that is co-produced from petroleum wells can adversely affect the quality of ground and surface waters. To evaluate produced water impacts on lakes, rivers and streams, an assessment of the contamination potential must be attainable using reliable and cost-effective methods. This study examines the feasibility of using geographic information system (GIS) analysis to assess the contamination potential of Cl to Skiatook Lake in the Hominy Creek drainage basin in northeastern Oklahoma. GIS-based predictions of affects of Cl within individual subdrainages are supported by measurements of Cl concentration and discharge in 19 tributaries to Skiatook Lake. Dissolved Cl concentrations measured in October, 2004 provide a snapshot of conditions assumed to be reasonably representative of typical inputs to the lake. Chloride concentrations ranged from 5.8 to 2300 mg/L and compare to a value of 34 mg/L in the lake. At the time of sampling, Hominy Creek provided 63% of the surface water entering the lake and 80% of the Cl load. The Cl load from the other tributaries is relatively small (150 mg/L) were generally in subdrainages with greater well density (>15 wells/km2), relatively large numbers of petroleum wells in close proximity (>2 proximity wells/stream km), and relatively small discharge (<0.005 m3/s). GIS calculations of subdrainage areas can be used to estimate the expected discharge of the tributary for each subdrainage. GIS-based assessment of Cl contamination potential at Skiatook Lake and at other lakes surrounded by oil fields can proceed even when direct measurements of Cl or discharge in tributary streams may be limited or absent.

  8. BILIARY PAH METABOLITES AS A BIOLOGICAL INDICATOR OF FISH EXPOSURE IN TRIBUTARIES OF LAKE ERIE

    EPA Science Inventory

    Biliary polynuclear aromatic hydrocarbons (PAH) metabolites have been studied as a biological indicator of fish exposure to PAHs since the mid 1980's. Brown bullheads were collected from the following Lake Erie tributaries: Buffalo River (BUF), Niagara River at Love Canal (NIA)...

  9. Watershed and discharge influences on the phase distribution and tributary loading of total mercury and methylmercury into Lake Superior.

    PubMed

    Babiarz, Christopher; Hoffmann, Stephen; Wieben, Ann; Hurley, James; Andren, Anders; Shafer, Martin; Armstrong, David

    2012-02-01

    Knowledge of the partitioning and sources of mercury are important to understanding the human impact on mercury levels in Lake Superior wildlife. Fluvial fluxes of total mercury (Hg(T)) and methylmercury (MeHg) were compared to discharge and partitioning trends in 20 sub-basins having contrasting land uses and geological substrates. The annual tributary yield was correlated with watershed characteristics and scaled up to estimate the basin-wide loading. Tributaries with clay sediments and agricultural land use had the largest daily yields with maxima observed near the peak in water discharge. Roughly 42% of Hg(T) and 57% of MeHg was delivered in the colloidal phase. Tributary inputs, which are confined to near-shore zones of the lake, may be more important to the food-web than atmospheric sources. The annual basin-wide loading from tributaries was estimated to be 277 kg yr(-1) Hg(T) and 3.4 kg yr(-1) MeHg (5.5 and 0.07 mg km(-2) d(-1), respectively). Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Discrete Organic Phosphorus Signatures are Evident in Pollutant Sources within a Lake Erie Tributary.

    PubMed

    Brooker, M R; Longnecker, K; Kujawinski, E B; Evert, M H; Mouser, P J

    2018-06-19

    Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary. We detected between 23 and 313 organic phosphorus formulas across our samples, with manure samples having greater abundance of phosphorus- and nitrogen containing compounds compared to other samples. Manures also were enriched in lipids and protein-like compounds. The greatest similarities were observed between the Sandusky River and wastewater treatment plant effluent (WWTP), or the Sandusky River and agricultural edge of field samples. These sample pairs shared 84% of organic compounds and 59-73% of P-containing organic compounds, respectively. This similarity suggests that agricultural and/or WWTP sources dominate the supply of organic phosphorus compounds to the river. We identify formulas shared between the river and pollutant sources that could serve as possible markers of source contamination in the tributary.

  11. Hydrologic Data for Deep Creek Lake and Selected Tributaries, Garrett County, Maryland, 2007-08

    USGS Publications Warehouse

    Banks, William S.L.; Davies, William J.; Gellis, Allen C.; LaMotte, Andrew E.; McPherson, Wendy S.; Soeder, Daniel J.

    2010-01-01

    Introduction Recent and ongoing efforts to develop the land in the area around Deep Creek Lake, Garrett County, Maryland, are expected to change the volume of sediment moving toward and into the lake, as well as impact the water quality of the lake and its many tributaries. With increased development, there is an associated increased demand for groundwater and surface-water withdrawals, as well as boat access. Proposed dredging of the lake bottom to improve boat access has raised concerns about the adverse environmental effects such activities would have on the lake. The Maryland Department of Natural Resources (MDDNR) and the U.S. Geological Survey (USGS) entered into a cooperative study during 2007 and 2008 to address these issues. This study was designed to address several objectives to support MDDNR?s management strategy for Deep Creek Lake. The objectives of this study were to: Determine the current physical shape of the lake through bathymetric surveys; Initiate flow and sediment monitoring of selected tributaries to characterize the stream discharge and sediment load of lake inflows; Determine sedimentation rates using isotope analysis of sediment cores; Characterize the degree of hydraulic connection between the lake and adjacent aquifer systems; and Develop an estimate of water use around Deep Creek Lake. Summary of Activities Data were collected in Deep Creek Lake and in selected tributaries from September 2007 through September 2008. The methods of investigation are presented here and all data have been archived according to USGS policy for future use. The material presented in this report is intended to provide resource managers and policy makers with a broad understanding of the bathymetry, surface water, sedimentation rates, groundwater, and water use in the study area. The report is structured so that the reader can access each topic separately using any hypertext markup (HTML) language reader. In order to establish a base-line water-depth map of

  12. Sediment quality in Burlington Harbor, Lake Champlain, U.S.A.

    USGS Publications Warehouse

    Lacey, E.M.; King, J.W.; Quinn, J.G.; Mecray, E.L.; Appleby, P.G.; Hunt, A.S.

    2001-01-01

    Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2 > 0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ???PAHs and ???PCBs are potentially toxic and/or bioavailable. These predictions were supported by studies of biota in the Burlington Harbor watershed. There

  13. Hydrologic and Geomorphic Impacts of Glacial Lake Outburst Floods From Low-Order Tributaries

    NASA Astrophysics Data System (ADS)

    McCoy, S. W.; Jacquet, J.; McGrath, D.; George, D. L.; Koschitzki, R.; Nimick, D.; Fahey, M. J.; Okuinghttons, J.

    2017-12-01

    Lakes dammed by glacial ice or moraines are common features in the headwaters of both glaciated and recently deglaciated catchments. These dams can fail releasing water in a glacial lake outburst flood (GLOF), which raises the question: do GLOFs from low-order tributaries significantly alter the hydrology and sediment transport regimes of the large mainstem rivers to which they drain? Here we use repeat satellite imagery, in situ measurements, and 2D hydrodynamic modeling to quantify the hydrologic and geomorphic changes that resulted from 22 GLOFs that occurred between 2008 and 2016 from Lago Cachet Dos, Patagonia, Chile. We find that the complicated flood path that includes two lakes and a broad floodplain can dampen peak discharges from over 15,000 m³/s at the source lake to generally less than 2,000 m³/s where the floods enter the mainstem Rio Baker, 40 km downstream. Despite this dampening of GLOF peak discharge, peak discharges still exceeded the peak annual discharge of the Rio Baker, the largest river in Chile by volume, by 1 to 2 times, which in turn increased the frequency and magnitude of flood events. We also document the sediment dynamics in the source lake, where we find that over 25,000,000 m³ of stored sediment was removed during the GLOF cycle that began in 2008. Further downstream, repeat satellite imagery reveals that the large discharges associated with GLOFs produced a nonsteady channel configuration in which old stable channels were abandoned, many new channels were formed, and conveyance capacity changed, best illustrated by the 200 m of delta progradation from the GLOF-affected tributary into the Rio Baker that locally narrowed the Rio Baker channel width from 300 m to 60 m. In total, this analysis demonstrates that GLOFs from distant source lakes can have an outsized impact, both in terms of changing flood characteristics as well as sediment transport, even on the largest river systems.

  14. Organic contaminants in Great Lakes tributaries: Prevalence and potential aquatic toxicity

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; De Cicco, Laura A.; Lenaker, Peter L.; Lutz, Michelle A; Sullivan, Daniel J.; Richards, Kevin D.

    2016-01-01

    Organic compounds used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewer overflows, among other sources. Concentrations of these organic waste compounds (OWCs) in some Great Lakes tributaries indicate a high potential for adverse impacts on aquatic organisms. During 2010–13, 709 water samples were collected at 57 tributaries, together representing approximately 41% of the total inflow to the lakes. Samples were collected during runoff and low-flow conditions and analyzed for 69 OWCs, including herbicides, insecticides, polycyclic aromatic hydrocarbons, plasticizers, antioxidants, detergent metabolites, fire retardants, non-prescription human drugs, flavors/fragrances, and dyes. Urban-related land cover characteristics were the most important explanatory variables of concentrations of many OWCs. Compared to samples from nonurban watersheds (< 15% urban land cover) samples from urban watersheds (> 15% urban land cover) had nearly four times the number of detected compounds and four times the total sample concentration, on average. Concentration differences between runoff and low-flow conditions were not observed, but seasonal differences were observed in atrazine, metolachlor, DEET, and HHCB concentrations. Water quality benchmarks for individual OWCs were exceeded at 20 sites, and at 7 sites benchmarks were exceeded by a factor of 10 or more. The compounds with the most frequent water quality benchmark exceedances were the PAHs benzo[a]pyrene, pyrene, fluoranthene, and anthracene, the detergent metabolite 4-nonylphenol, and the herbicide atrazine. Computed estradiol equivalency quotients (EEQs) using only nonsteroidal endocrine-active compounds indicated medium to high risk of estrogenic effects (intersex or vitellogenin induction) at 10 sites. EEQs at 3 sites were comparable to values reported in effluent. This multifaceted study

  15. Ecological comparisons of Lake Erie tributaries with elevated incidence of fish tumors

    USGS Publications Warehouse

    Smith, Stephen B.; Blouin, Marc A.; Mac, Michael J.

    1994-01-01

    Ecological comparisons were made between two Lake Erie tributaries (Black and Cuyahoga rivers) with contaminated sediments and elevated rates of tumors in fish populations and a third, relatively unpolluted, reference tributary, the Huron River. Fish populations, benthic invertebrates, and sediments were evaluated in all three Ohio rivers. Community structure analyses indicated similar total densities but lower species diversity for fish and benthic invertebrates in the contaminated rivers when compared with the reference river. Growth rates in fish from the contaminated areas were either similar to or higher than those offish from the reference site. Brown bullhead (Ameiurus nebulosus) from the two contaminated tributaries exhibited 51% (Black River) and 45% (Cuyahoga River) incidence of liver lesions (neoplastic and preneoplastic) as compared with a 4% incidence of liver lesions in brown bullhead from the reference river (Huron River). Incidence of external abnormalities on brown bullhead was 54% (Black River) and 73% (Cuyahoga River) as compared with a 14% incidence on fish from the Huron River. On a regional basis, incidence of external abnormalities on particular benthic fish species may be an effective method to quickly indicate areas for more intensive contaminant studies.

  16. Thermal and hydrologic suitability of Lake Erie and its major tributaries for spawning of Asian carps

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Chapman, Duane C.; McKenna, James E.

    2012-01-01

    Bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella (hereafter Asian carps) have expanded throughout the Mississippi River basin and threaten to invade Lakes Michigan and Erie. Adult bighead carp and grass carp have been captured in Lake Erie, but self-sustaining populations probably do not exist. We examined thermal conditions within Lake Erie to determine if Asian carps would mature, and to estimate time of year when fish would reach spawning condition. We also examined whether thermal and hydrologic conditions in the largest tributaries to western and central Lake Erie were suitable for spawning of Asian carps. We used length of undammed river, predicted summer temperatures, and predicted water velocity during flood events to determine whether sufficient lengths of river are available for spawning of Asian carps. Most rivers we examined have at least 100 km of passable river and summer temperatures suitable (> 21 C) for rapid incubation of eggs of Asian carps. Predicted water velocity and temperature were sufficient to ensure that incubating eggs, which drift in the water column, would hatch before reaching Lake Erie for most flood events in most rivers if spawned far enough upstream. The Maumee, Sandusky, and Grand Rivers were predicted to be the most likely to support spawning of Asian carps. The Black, Huron, Portage, and Vermilion Rivers were predicted to be less suitable. The weight of the evidence suggests that the largest western and central Lake Erie tributaries are thermally and hydrologically suitable to support spawning of Asian carps.

  17. Ground-water quality in the Lake Champlain basin, New York, 2004

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2006-01-01

    Water samples were collected from 11 public-supply wells and 11 private domestic wells in the Lake Champlain basin in New York during the fall of 2004 to characterize the chemical quality of ground water. Wells were selected for sampling based on location and focused on areas of greatest ground-water use. Samples were analyzed for 219 physical properties and constituents, including inorganic compounds, nutrients, metals, radionuclides, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Sixty-eight constituents were detected at concentrations above laboratory reporting levels. The cation and anion with the highest median concentration were calcium (34.8 mg/L) bicarbonate (134 mg/L), respectively. The predominant nutrient was nitrate, which was detected in 14 (64 percent) of the 22 samples. The two metals with the highest median concentrations were iron (175 ?g/L) and strontium (124 ?g/L); concentrations of iron, manganese, aluminum, and zinc exceeded U.S. Environmental Protection Agency secondary drinking-water standards in one or more samples. Radon concentrations were less than 1,000 picocuries per liter (pCi/L) in most samples, but concentrations as high as 6,900 pCi/L were detected and, in eight samples, exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level (300 pCi/L) for radon. The most frequently detected pesticides were degradates of the broadleaf herbicides metolachlor, alachlor, and atrazine. Volatile organic compounds were detected in only three samples; those that were detected typically were fuel oxygenates, such as methyl tert-butyl ether. Coliform bacteria were detected in four samples, two of which also tested positive for E. coli.

  18. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  19. Evidence that sea lampreys (Petromyzon marinus) complete their life cycle within a tributary of the Laurentian Great Lakes by parasitizing fishes in inland lakes

    USGS Publications Warehouse

    Johnson, Nicholas; Twohey, Michael B.; Miehls, Scott M.; Cwalinski, Tim A; Godby, Neal A; Lochet, Aude; Slade, Jeffrey W.; Jubar, Aaron K.; Siefkes, Michael J.

    2016-01-01

    The sea lamprey (Petromyzon marinus) invaded the upper Laurentian Great Lakes and feeds on valued fish. The Cheboygan River, Michigan, USA, is a large sea lamprey producing tributary to Lake Huron and despite having a renovated dam 2 km from the river mouth that presumably blocks sea lamprey spawning migrations, the watershed upstream of the dam remains infested with larval sea lamprey. A navigational lock near the dam has been hypothesized as the means of escapement of adult sea lampreys from Lake Huron and source of the upper river population (H1). However, an alternative hypothesis (H2) is that some sea lampreys complete their life cycle upstream of the dam, without entering Lake Huron. To evaluate the alternative hypothesis, we gathered angler reports of lamprey wounds on game fishes upstream of the dam, and captured adult sea lampreys downstream and upstream of the dam to contrast abundance, run timing, size, and statolith microchemistry. Results indicate that a small population of adult sea lampreys (n < 200) completed their life cycle upstream of the dam during 2013 and 2014. This is the most comprehensive evidence that sea lampreys complete their life history within a tributary of the upper Great Lakes, and indicates that similar landlocked populations could occur in other watersheds. Because the adult sea lamprey population upstream of the dam is small, complete elimination of the already low adult escapement from Lake Huron might allow multiple control tactics such as lampricides, trapping, and sterile male release to eradicate the population.

  20. Tributary loading of mercury to Lake Michigan: Importance of seasonal events and phase partitioning

    USGS Publications Warehouse

    Hurley, J.P.; Cowell, S.E.; Shafer, M.M.; Hughes, P.E.

    1998-01-01

    As a component of a lakewide mass balance study for Lake Michigan, we measured total mercury (Hg(T)) concentrations and fluxes in 11 selected tributaries. Unfiltered Hg(T) concentrations ranged from 0.56 ng l-61 at the Pete Marquette River to 182 ng l-1 at the Fox River. Highest mean Hg(T) concentrations were observed in the Fox R., Indiana Harbor Ship Canal, Grand R. and the Kalamazoo R. Mean particulate matter Hg(T) content ranged from about 0.1 to 1.5 ??g g-1, with highest levels from the industrialized basins of the Indiana Harbor and Fox River. Highest tributary loading rates (g day-1) were observed from the Fox, Grand, Kalamazoo and St. Joseph Rivers. Increased loading rates during spring melt and summer/fall storm events in these tributaries were generally associated with particulate loading from either sediment resuspension or erosional processes. In contrast, filtered Hg(T) represented 80% of the Hg(T) flux in the Manistique R., whose watershed is comprised almost entirely of wetlands and forest.

  1. Mercury and Methylmercury Related to Historical Mercury Mining in Three Major Tributaries to Lake Berryessa, Upper Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.

    2016-12-01

    The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream

  2. New estimates of lethality of sea lamprey (Petromyzon marinus) attacks on lake trout (Salvelinus namaycush): Implications for fisheries management

    USGS Publications Warehouse

    Madenjian, C.P.; Chipman, B.D.; Marsden, J.E.

    2008-01-01

    Sea lamprey (Petromyzon marinus) control in North America costs millions of dollars each year, and control measures are guided by assessment of lamprey-induced damage to fisheries. The favored prey of sea lamprey in freshwater ecosystems has been lake trout (Salvelinus namaycush). A key parameter in assessing sea lamprey damage, as well as managing lake trout fisheries, is the probability of an adult lake trout surviving a lamprey attack. The conventional value for this parameter has been 0.55, based on laboratory experiments. In contrast, based on catch curve analysis, mark-recapture techniques, and observed wounding rates, we estimated that adult lake trout in Lake Champlain have a 0.74 probability of surviving a lamprey attack. Although sea lamprey growth in Lake Champlain was lower than that observed in Lake Huron, application of an individual-based model to both lakes indicated that the probability of surviving an attack in Lake Champlain was only 1.1 times higher than that in Lake Huron. Thus, we estimated that lake trout survive a lamprey attack in Lake Huron with a probability of 0.66. Therefore, our results suggested that lethality of a sea lamprey attack on lake trout has been overestimated in previous model applications used in fisheries management. ?? 2008 NRC.

  3. Occurrence of bacteria in Blue Marsh Lake and selected tributaries, Berks County, Pennsylvania; September-October 2001

    USGS Publications Warehouse

    Zimmerman, Michele L.

    2002-01-01

    The Commonwealth of Pennsylvania has water-quality standards that limit the number of specific bacteria in water that is considered safe for recreational use. Bacteria such as fecal streptococci, fecal coliforms, and Escherichia coli (E. coli) are used to assess recreational water quality because they usually live in the intestines of warm-blooded animals. Fecal indicator bacteria commonly are associated with waterborne disease-causing organisms (pathogens). These indicator bacteria are used routinely as a measure of the quality of water for recreational activities such as swimming, boating, and water skiing. If the indicator bacteria are present, effective measures could be taken to prevent the transmission or epidemic outbreak of waterborne diseases as a result of contamination of these waters from human or animal waste.Blue Marsh Lake is on Tulpehocken Creek in Berks County, Pa., and drains a largely agricultural basin. Land use in the basin is approximately 60 percent cropland, and 85 percent of the farms are livestock and poultry farms.The potential sources of fecal bacteria are:geese that inhabit the recreational areas of the lake,humans that visit the Dry Brooks Day Use Area (swimming area), andfarm animals, wastewater facilities, and household septic systems in the basin (bacteria from these sources could enter the lake through tributaries).To meet the recreational water-quality standard, lake water may not have more than 200 colony-forming units (CFU) of fecal coliforms per 100 milliliters (mL). During the week of July 23, 2001, data collected by the U.S. Army Corps of Engineers (USACE) at the swimming area at Blue Marsh Lake showed concentrations of fecal coliforms in the water exceeding the standard. To determine the extent of elevated concentrations of fecal indicator bacteria, further study of the lake and selected tributaries was needed.

  4. Paper plant effluent revisited-southern Lake Champlain, Vermont and New York

    USGS Publications Warehouse

    Haupt, R.S.; Folger, D.W.

    1993-01-01

    We used geologic and geochemical techniques to document the change with time of the distribution and concentration of contaminated bottom sediments in southern Lake Champlain near an International Paper Company plant. Our work, initiated in 1972, was expanded on behalf of Vermont citizens in a class-action suit against the International Paper Company. To update our 1972-1973 results, we collected nine cores in 1988 upstream and downstream from the paper plant effluent diffuser. Water content, volatile solids, organic carbon, and three ratios, Al/Si, Cl/Si, and S/Si, in addition to megascopic and microscopic observations, were evaluated to identify and trace the distribution of effluent and to measure the thickness of sediment affected by or containing components of effluent. Analyses were carried out on samples from the cores as well as from effluent collected directly from the plant's waste treatment facility. In 1973, two years after the plant opened, we cored near the diffuser; sediment contaminated with effluent was 4.5 cm thick. In 1988, in the same area, sediment contaminated with effluent was 17 cm thick. In 15 years, water content increased from 72 to 85 percent, volatile solids from 7 to 20 percent, and organic carbon from 2 to 12 percent. Cl/Si and S/Si were high only near the diffuser and were zero elsewhere. In the area of the diffuser, contaminated sediment appears to be accumulating at a rate of about 1 cm/yr. At a control location 22 km upstream (south) from the plant, the top, poorly consoli-dated layer was only 1 cm or less thick both in 1973 and in 1988. The class-action suit was settled in favor of the plaintiffs for $5 million. ?? 1993 Springer-Verlag.

  5. Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven; Mason, Sherri A.

    2016-01-01

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m3 and a median of 1.9 particles/m3. Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  6. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology.

    PubMed

    Baldwin, Austin K; Corsi, Steven R; Mason, Sherri A

    2016-10-04

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m 3 and a median of 1.9 particles/m 3 . Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  7. Diet, feeding patterns, and prey selection of subyearling Atlantic salmon (Salmo salar) and subyearling chinook salmon (Oncorhynchus tshawytscha) in a tributary of Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.; Nash, K. J.; Chiavelli, R. A.; DiRado, J. A.; Mackey, G. E.; Knight, J. R.; Diaz, A. R.

    2017-01-01

    Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi-national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.

  8. Concentrations and estimated loads of nutrients, mercury, and polychlorinated biphenyls in selected tributaries to Lake Michigan, 2005-6

    USGS Publications Warehouse

    Westenbroek, Stephen M.

    2010-01-01

    The Lake Michigan Mass Balance Project (LMMBP) measured and modeled the concentrations of environmentally persistent contaminants in air, river and lake water, sediment, and fish and bird tissues in and around Lake Michigan for an 18-month period spanning 1994-95. Tributary loads were calculated as part of the LMMBP. The work described in this report was designed to provide updated concentration data and load estimates for 5 nutrients, total mercury, and total polychlorinated biphenyl (PCB) at 5 of the original 11 LMMBP sampling sites. Samples were collected at five Lake Michigan tributary monitoring sites during 2005 and 2006. Annual loads calculated for the 2005-6 sampling period are as much as 50 percent lower relative to the 1994-95 time period. Differences between the loads calculated for the two time periods are likely related to a combination of (1) biases introduced by a reduced level of sampling effort, (2) differences in hydrological characteristics, and (3) actual environmental change. Estimated annual total mercury loads during 2005-6 ranged from 51 kilograms per year (kg/yr) in the Fox River to 2.2 kg/yr in the Indiana Harbor and Ship Canal. Estimated annual total PCB loads during 2005-6 ranged from 132 kg/yr in the Fox River to 6.2 kg/yr in the Grand River.

  9. May 1984-April 1985 water budget of Reelfoot Lake with estimates of sediment inflow and concentrations of pesticides in bottom material in tributary streams; basic data report

    USGS Publications Warehouse

    Robbins, C.H.; Garrett, J.W.; Mulderink, D.M.

    1985-01-01

    This report contains hydrologic data collected at Reelfoot Lake, Tennessee from May 1, 1984, through April 30, 1985. Continuous streamflow data were collected at four sites on the three major tributaries to Reelfoot Lake and at one site on the lake outflow channel. Daily rainfall and lake-stage were each collected at two sites on the lake shore. Additionally, suspended-sediment samples were collected by automatic samplers and also manually during equipment maintenance visits at three of the four tributary inflow sites. At these three inflow sites, samples of stream-bottom material were collected at low flow once during the study period and were analyzed to determine the concentration of various pesticides. Periodic observations of ground-water levels were made at 30 wells in the Reelfoot Lake basin. Monitoring sites and types of data collected at each site are listed. (USGS)

  10. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments.

    PubMed

    Ballent, Anika; Corcoran, Patricia L; Madden, Odile; Helm, Paul A; Longstaffe, Fred J

    2016-09-15

    Microplastics contamination of Lake Ontario sediments is investigated with the aim of identifying distribution patterns and hotspots in nearshore, tributary and beach depositional environments. Microplastics are concentrated in nearshore sediments in the vicinity of urban and industrial regions. In Humber Bay and Toronto Harbour microplastic concentrations were consistently >500 particles per kg dry sediment. Maximum concentrations of ~28,000 particles per kg dry sediment were determined in Etobicoke Creek. The microplastic particles were primarily fibres and fragments <2mm in size. Both low- and high-density plastics were identified using Raman spectroscopy. We provide a baseline for future monitoring and discuss potential sources of microplastics in terms of how and where to implement preventative measures to reduce the contaminant influx. Although the impacts of microplastics contamination on ecosystem health and functioning is uncertain, understanding, monitoring and preventing further microplastics contamination in Lake Ontario and the other Great Lakes is crucial. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain

    USGS Publications Warehouse

    Phillips, P.; Chalmers, A.

    2009-01-01

    Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate

  12. Lateral and vertical distribution of downstream migrating juvenile sea lamprey

    USGS Publications Warehouse

    Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen

    2018-01-01

    Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.

  13. LAKE-WETLAND LINKAGE AND PERIPHYTON DYNAMICS IN A LAKE SUPERIOR COASTAL WETLAND

    EPA Science Inventory

    Tributaries feeding coastal wetlands along the Wisconsin shore of Lake Superior are generally depleted in inorganic nitrogen (TIN) relative to phosphorus (SRP), while Lake Superior is phosphorous depleted and relatively rich in TIN. Within wetlands, mixing of tributary and lake w...

  14. Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.

    PubMed

    Forster, D Lynn; Rausch, Jonathan N

    2002-01-01

    During the past three decades, numerous government programs have encouraged Lake Erie basin farmers to adopt practices that reduce water pollution. The first section of this paper summarizes these state and federal government agricultural pollution abatement programs in watersheds of two prominent Lake Erie tributaries, the Maumee River and Sandusky River. Expenditures are summarized for each program, total expenditures in each county are estimated, and cost effectiveness of program expenditures (i.e., cost per metric ton of soil saved) are analyzed. Farmers received nearly $143 million as incentive payments to implement agricultural nonpoint source pollution abatement programs in the Maumee and Sandusky River watersheds from 1987 to 1997. About 95% of these funds was from federal sources. On average, these payments totaled about $7000 per farm or about $30 per farm acre (annualized equivalent of $2 per acre) within the watersheds. Our analysis raises questions about how efficiently these incentive payments were allocated. The majority of Agricultural Conservation Program (ACP) funds appear to have been spent on less cost-effective practices. Also, geographic areas with relatively low (high) soil erosion rates received relatively large (small) funding.

  15. Potential Relationships Between Urban Development and the Trophic Status of Tampa Bay Tributaries and Lake Thonotosassa, Further the Potential Effect on Public Health

    NASA Technical Reports Server (NTRS)

    MorenoMadrinan, Max J.; Allhamdan, Mohammad; Rickman, Douglas L.; Estes, Maury

    2010-01-01

    This slide presentation reviews the use of remote sensing to monitor the relationships between the urban development and water quality in Tampa Bay and the tributaries. It examines the changes in land cover/land use (LU/LC) and the affects that this change has on the water quality of Tampa Bay, Lake Thonotosassa and the tributaries, and that shows the ways that these changes can be estimated with remote sensing.

  16. Astronaut Alan Shepard - U.S.S. Champlain - Post-Recovery Mercury Capsule

    NASA Image and Video Library

    1961-05-05

    S61-02727 (5 May 1961) --- Astronaut Alan B. Shepard is seen on the deck of the USS Lake Champlain after the recovery of his Mercury capsule in the western Atlantic Ocean. Shepard and the Mercury spacecraft designated the ?Freedom 7? were flown to the deck of the recovery ship within 11 minutes of splashdown. MR-3 was the United States? first manned space mission. The spacecraft attained a maximum speed of 5,180 miles per hour, reached an altitude of 116 1/2 statute miles, and landed 302 statute miles downrange from Cape Canaveral, Florida. The suborbital mission lasted 15 minutes and 22 seconds. Photo credit: NASA or National Aeronautics and Space Administration

  17. Concentrations and loads of nutrients in the tributaries of the Lake Okeechobee watershed, south-central Florida, water years 2004-2008

    USGS Publications Warehouse

    Byrne, Michael J.; Wood, Molly S.

    2011-01-01

    Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic

  18. Land use and flow regime effects on phosphorus chemical dynamics in the fluvial sediment of the Winooski River, Vermont

    USGS Publications Warehouse

    McDowell, R.W.; Sharpley, A.N.; Chalmers, A.T.

    2002-01-01

    In the last century, fourfold increase in phosphorus (P) loadings to Lake Champlain, Vermont (VT), USA, have led to nuisance levels of algal growth occurring more often. To better understand the transport, storage, and cycling of P within the lake's catchment, we examined the chemistry, bioavailability and processes controlling sediment P release to waters of the Winooski River, VT, the largest tributary to Lake Champlain. Iron-oxide strip P (algal-bioavailable P) of the river sediments adjacent to agricultural land (3.6 mg kg-1) was greater (P < 0.05) than adjacent to forested land (2.4 mg kg-1). When compared among flow regimes, impoundment (731 mg kg-1) and reservoir sediments (803 mg kg-1) had greater total P concentrations than river sediment (462 mg kg-1). This was attributed to more fines (< 63 ??m) in impoundments and reservoirs (64%) than in river sediments (33%), which also decreased the ability of impoundment sediments to release P to solution and thereby be a sink for P. Although land use and flow regime influenced whether Winooski River sediments acted as a sink or source of P to Lake Champlain, long-term remedial strategies for the catchment should continue to focus on decreasing P losses in agricultural and urban runoff. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of the...

  20. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of the...

  1. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of the...

  2. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of the...

  3. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of the...

  4. Nonpoint-source pollutant discharges of the three major tributaries to Reelfoot Lake, west Tennessee, October 1987-September 1989

    USGS Publications Warehouse

    Lewis, Michael E.; Garrett, Jerry W.; Hoos, Anne B.

    1992-01-01

    An investigation of the concentration and loads of nitrogen, phosphorus, and suspended sediment in storm runoff to Reelfoot Lake, in western Tennessee, was conducted from October 1987 through September 1989. Concentrations of selected herbicides also were defined. Reelfoot Lake, with a sur$ace area of about 15,500 acres, is the largest natural lake in Tennessee and an important recreation and fisheries resource. Previous studies showed that the lake is hypereutrophic, a condition caused by high concentrations of nutrients in water and sediments discharged from the three principal tributaries (South Reelfoot Creek, North Reelfoot Creek, and Running Slough) to the lake. Pesticides, including herbicides, have been detected in the lake?s bottom sediments. Storm runoff contributed about 87percent of the total water discharge of the three main tributaries to Reelfoot Lake. South Reelfoot Creek contributed about 4.7 tons per acre per year of suspended sediment, while North Reelfoot Creek contributed about 1.9 tons per acre per year. Running Slough contributed only about 0.31 ton per acre per year of suspended sediment. Most of the suspended sediment was transported by storm runoff between October and March. About 80 percent of the annual streamflow of the three tributaries occurs during these months. The North Reelfoot Creek basin contributed 8.2 pounds per acre per year of total nitrogen and 2.4 pounds per acre per year of total phosphorus. South Reelfoot Creek basin contributed about 6.5 and 1.3 pounds per acre per year of total nitrogen and phosphorus, respectively, while Running Slough basin contributions were 3.4 and 0.86 pounds per acre per year, respectively. The differences in nutrient yields appear to result from more row-crop agriculture and the relatively steeply sloping agricultural land in the North Reelfoot Creek basin. Ninety-one percent of the total nitrogen load and 95 percent of the total phosphorus load in the three streams was transported by storm

  5. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure

    PubMed Central

    Brigham, Mark E.; Choy, Steven J.; Moore, Jeremy N.; Banda, Jo A.; Gefell, Daniel J.; Minarik, Thomas A.

    2017-01-01

    The Laurentian Great Lakes contain one fifth of the world’s surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a variety of morphological and physiological endpoints and related these results to CEC occurrence. CEC were ubiquitous across studies sites and their presence and concentrations in water and sediment were highest in effluent dominated rivers and downstream of municipal wastewater treatment plant discharges. However, even putative upstream reference sites were not free of CEC presence and fish at these sites exhibited biological effects consistent with CEC exposure. Only the Fox River exhibited consistent adverse biological effects, including increased relative liver size, greater prominence of hepatocyte vacuoles and increased plasma glucose concentrations. Canonical Redundancy Analysis revealed consistent patterns of biological consequences of CEC exposure across all six tributaries. Increasing plasma glucose concentrations, likely as a result of pollutant-induced metabolic stress, were associated with increased relative liver size and greater prominence of hepatocyte vacuoles. These indicators of pollutant exposure were inversely correlated with indicators of reproductive potential including smaller gonad size and less mature gametes. The current study highlights the need for greater integration of chemical and biological studies and suggests that CECs in the Laurentian Great Lakes Basin may adversely affect the reproductive potential of exposed fish populations. PMID:28953953

  6. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure.

    PubMed

    Thomas, Linnea M; Jorgenson, Zachary G; Brigham, Mark E; Choy, Steven J; Moore, Jeremy N; Banda, Jo A; Gefell, Daniel J; Minarik, Thomas A; Schoenfuss, Heiko L

    2017-01-01

    The Laurentian Great Lakes contain one fifth of the world's surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a variety of morphological and physiological endpoints and related these results to CEC occurrence. CEC were ubiquitous across studies sites and their presence and concentrations in water and sediment were highest in effluent dominated rivers and downstream of municipal wastewater treatment plant discharges. However, even putative upstream reference sites were not free of CEC presence and fish at these sites exhibited biological effects consistent with CEC exposure. Only the Fox River exhibited consistent adverse biological effects, including increased relative liver size, greater prominence of hepatocyte vacuoles and increased plasma glucose concentrations. Canonical Redundancy Analysis revealed consistent patterns of biological consequences of CEC exposure across all six tributaries. Increasing plasma glucose concentrations, likely as a result of pollutant-induced metabolic stress, were associated with increased relative liver size and greater prominence of hepatocyte vacuoles. These indicators of pollutant exposure were inversely correlated with indicators of reproductive potential including smaller gonad size and less mature gametes. The current study highlights the need for greater integration of chemical and biological studies and suggests that CECs in the Laurentian Great Lakes Basin may adversely affect the reproductive potential of exposed fish populations.

  7. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure

    USGS Publications Warehouse

    Thomas, Linnea M.; Jorgenson, Zachary G.; Brigham, Mark E.; Choy, Steven J.; Moore, Jeremy N.; Banda, Jo A.; Gefell, D.J.; Minarik, Thomas A.; Schoenfuss, Heiko L.

    2017-01-01

    The Laurentian Great Lakes contain one fifth of the world’s surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a variety of morphological and physiological endpoints and related these results to CEC occurrence. CEC were ubiquitous across studies sites and their presence and concentrations in water and sediment were highest in effluent dominated rivers and downstream of municipal wastewater treatment plant discharges. However, even putative upstream reference sites were not free of CEC presence and fish at these sites exhibited biological effects consistent with CEC exposure. Only the Fox River exhibited consistent adverse biological effects, including increased relative liver size, greater prominence of hepatocyte vacuoles and increased plasma glucose concentrations. Canonical Redundancy Analysis revealed consistent patterns of biological consequences of CEC exposure across all six tributaries. Increasing plasma glucose concentrations, likely as a result of pollutant-induced metabolic stress, were associated with increased relative liver size and greater prominence of hepatocyte vacuoles. These indicators of pollutant exposure were inversely correlated with indicators of reproductive potential including smaller gonad size and less mature gametes. The current study highlights the need for greater integration of chemical and biological studies and suggests that CECs in the Laurentian Great Lakes Basin may adversely affect the reproductive potential of exposed fish populations.

  8. Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland) - analysis and comparison with Lago di Lugano and other lakes.

    PubMed

    Putyrskaya, Victoria; Klemt, Eckehard; Röllin, Stefan

    2009-01-01

    This paper describes the behaviour of 137Cs in Lago Maggiore and other pre-alpine lakes as a consequence of atmospheric nuclear weapons testing fallout and the fallout from the nuclear accident in Chernobyl. It presents data on the 137Cs distribution in tributaries, lake water, bottom sediments and reveals the role of (137)Cs as a marker of the sedimentation processes. The run-off of 137Cs from the watershed to the lake is described with a simple compartment model. Measurements of the activity concentration of (137)Cs in sediments are compared with the output of a model (diffusion-convection type) which describes the input of 137Cs into and its vertical distribution within the sediment. Varying sedimentation rates (0.05-0.90g(cm2y)(-1)) in Lago Maggiore are compared with data of other authors. Sedimentation rates and total distribution coefficients (of about 10(5) Lkg(-1)) in Lago Maggiore are discussed and compared with those of Lago di Lugano, Lake Constance, and Lake Vorsee.

  9. Assessment of the spatial extent and height of flooding in Lake Champlain during May 2011, using satellite remote sensing and ground-based information

    USGS Publications Warehouse

    Bjerklie, David M.; Trombley, Thomas J.; Olson, Scott A.

    2014-01-01

    Landsat 5 and moderate resolution imaging spectro-radiometer satellite imagery were used to map the area of inundation of Lake Champlain, which forms part of the border between New York and Vermont, during May 2011. During this month, the lake’s water levels were record high values not observed in the previous 150 years. Lake inundation area determined from the satellite imagery is correlated with lake stage measured at three U.S. Geological Survey lake level gages to provide estimates of lake area at different lake levels (stage/area rating) and also compared with the levels of the high-water marks (HWMs) located on the Vermont side of the lake. The rating developed from the imagery shows a somewhat different relation than a similar stage/area rating developed from a medium-resolution digital elevation model (DEM) of the region. According to the rating derived from the imagery, the lake surface area during the peak lake level increased by about 17 percent above the average or “normal” lake level. By using a comparable rating developed from the DEM, the increase above average is estimated to be about 12 percent. The northern part of the lake (north of Burlington) showed the largest amount of flooding. Based on intersecting the inundation maps with the medium-resolution DEM, lake levels were not uniform around the lake. This is also evident from the lake level gage measurements and HWMs. The gage data indicate differences up to 0.5 feet between the northern and southern end of the lake. Additionally, the gage data show day-to-day and intradaily variation of the same range (0.5 foot). The high-water mark observations show differences up to 2 feet around the lake, with the highest level generally along the south- and west-facing shorelines. The data suggest that during most of May 2011, water levels were slightly higher and less variable in the northern part of the lake. These phenomena may be caused by wind effects as well as proximity to major river inputs to

  10. Development of the Champlain primary care cardiovascular disease prevention and management guideline

    PubMed Central

    Montoya, Lorraine; Liddy, Clare; Hogg, William; Papadakis, Sophia; Dojeiji, Laurie; Russell, Grant; Akbari, Ayub; Pipe, Andrew; Higginson, Lyall

    2011-01-01

    Abstract Problem addressed A well documented gap remains between evidence and practice for clinical practice guidelines in cardiovascular disease (CVD) care. Objective of program As part of the Champlain CVD Prevention Strategy, practitioners in the Champlain District of Ontario launched a large quality-improvement initiative that focused on increasing the uptake in primary care practice settings of clinical guidelines for heart disease, stroke, diabetes, and CVD risk factors. Program description The Champlain Primary Care CVD Prevention and Management Guideline is a desktop resource for primary care clinicians working in the Champlain District. The guideline was developed by more than 45 local experts to summarize the latest evidence-based strategies for CVD prevention and management, as well as to increase awareness of local community-based programs and services. Conclusion Evidence suggests that tailored strategies are important when implementing specific practice guidelines. This article describes the process of creating an integrated clinical guideline for improvement in the delivery of cardiovascular care. PMID:21673196

  11. Effects of repeated TFM applications on riffle macroinvertebrate communities in four Great Lakes tributaries

    USGS Publications Warehouse

    Weisser, John W.; Adams, Jean V.; Schuldt, Richard J.; Baldwin, Gregg A.; Lavis, Dennis S.; Slade, Jeffrey W.; Heinrich, John W.

    2003-01-01

    As part of the sea lamprey control program in the Great Lakes, a suite of about 150 sea lamprey producing streams have been regularly treated with the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) every 3 to 5 years since 1958. State, provincial, and tribal agencies in the basin supported the use of TFM and urged that the risk to nontarget organisms be minimized. To determine the response of riffle macroinvertebrate communities to repeated TFM treatments over several years, paired samples were taken at control and treatment sites during 1986 to 1995 on four Great Lakes tributaries: the Bois Brule, West Branch Whitefish, Boardman, and Sturgeon (tributary to Cheboygan River system) rivers. Macroinvertebrates were collected in spring and fall by a standard traveling kick method. The communities were described with several metrics, and general linear models were used to test for different patterns of response in the paired control and treatment sites. Relative abundance of the class Oligochaeta, relative abundance of the genus Ephemerella, the Bray-Curtis similarity index (at the taxonomic level of order), EPT genus richness (the number of genera in the orders Ephemeroptera, Plecoptera, and Trichoptera), and total genus richness all increased more at the treatment sites than at the control sites after TFM application. The greater increase in abundance, similarity, and richness at the treatment sites was an indication of recovery in the treatment sites, where a short-term response to TFM was followed by a several-year rebound. TFM treatments in this study during the 1980s and 1990s had no long-lasting effects on riffle macroinvertebrate communities.

  12. Diel periodicity of drift of larval fishes in tributaries of Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.; McKenna, J.E.

    2007-01-01

    Diel patterns of downstream drift were examined during mid-June in three tributaries of Lake Ontario. Larval fishes were collected in drift nets that were set in each stream for 72 consecutive hours and emptied at 4-h intervals. Fantail darter (Ethostoma flabellare) and blacknose dace (Rhinichthys atractulus) were the two most abundant native stream fishes and were two of the three species collected in the ichthyoplankton drift. Fantail darter larvae comprised 100%, 98.9%, and 70.2% of the ichthyoplankton in the three streams. Most larval fishes (96%) drifted at night with peak catches occurring at 2400h in Orwell Brook and Trout Brook and 0400h in Little Sandy Creek. Based on stream temperatures, peak spawning and larval drift of blacknose dace probably occurred later in the season.

  13. Pesticide presence in Great Lakes tributaries and comparison to ToxCast and other water quality benchmarks to screen for potential biological effects

    EPA Science Inventory

    Product Description:Pesticides are a broad category of current use chemicals that pose potential threats to aquatic organisms in and around the Great Lakes basin. In this study, we monitored for over 200 pesticides or their break down products in 16 major tributaries to the Great...

  14. May 1984-Aril 1985 Water Budget of Reelfoot Lake With Estimates of Sediment Inflow and Concentrations of Pesticides in Bottom Material in Tributary Streams--Basic Data Report

    DTIC Science & Technology

    1985-01-01

    Open-File Report 85-498 MAY 1984-APRIL 1985 WATER BUDGET OF REELFOOT LAKE WITH ESTIMATES OF SEDIMENT INFLOW AND CONCENTRATIONS OF PESTICIDES IN...AND SUBTITLE May 1984-Apr 1985 Water Budget of Reelfoot Lake With Estimates of Sediment Inflow and Concentrations of Pesticides in Bottom Material in...1984-APRIL 1985 WATER BUDGET OF REELFOOT LAKE WITH ESTIMATES OF SEDIMENT INFLOW AND CONCENTRATIONS OF PESTICIDES IN BOTTOM MATERIAL IN TRIBUTARY

  15. Measuring historic water levels of Lake Balaton and tributary wetlands using georeferenced maps

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.

    2009-04-01

    that the topography of the lake floor has not changed measurably in the last hundred years. The bathymetric contours of Lake Balaton depicted on the georeferenced Krieger-map were digitized and overlain on the present-day DEM of the lake floor. The elevation profile of these lines was used to calculate the original elevation of the water level of the lake with the accuracy of one meter. The height of the water table around the lake depends closely on the water level of the lake, but wetlands can retain water and thus sustain a higher water table in the tributary valleys than in the lake itself. In order to measure the elevation of the water table around the lake, the borders of the water-logged areas on the southern shore of the lake were also digitized from the sheets of the First Military Survey and traced on a DEM of the hills on the southern side of the lake. The elevation of the water level in these wetlands was calculated based on these profiles. The water level in some valleys adjoining the lake is significantly higher than the water level of the lake itself, which shows that the water balance of these wetlands was mostly independent of the fluctuation of the lake. Some other large wetlands have borders that are in the same elevation as the shores of the lake itself, which shows that these wetlands are in close connection with the lake. The mapping of these historic wetland properties provides a valuable guide for future habitat restoration efforts.

  16. Water quality of the St. Clair River, Lake St. Clair, and their U.S. tributaries, 1946-2005

    USGS Publications Warehouse

    Healy, Denis F.; Chambers, Douglas B.; Rachol, Cynthia M.; Jodoin, Richard S.

    2007-01-01

    The St. Clair River/Lake St. Clair waterway forms an international boundary between the United States and Canada. The waters of the area are an important part of the cultural heritage of the area and serves as an important water-supply and power-generating resource; the waterway also supports an economy based largely on recreation, agriculture, and manufacturing. This report was undertaken as part of the Lake St. Clair Regional Monitoring Project for the purpose of providing a comprehensive assessment of the hydrological, chemical, and physical state of the surface water of Lake St. Clair and its tributaries. The data varied in focus and density over the period of compilation which in many cases this variation prevented the completion of statistical analyses because data did not meet minimum comparability or quality requirements for those tests. Comparison of water quality of the Belle, Black, Clinton, and Pine River Basins, as well as basins of minor rivers in the study area, showed that water quality in many of the tributaries, particularly the Clinton River and some of the minor rivers, was degraded compared to the water quality of the St. Clair River/Lake St. Clair waterway. Data analyses included comparison of nutrients, chloride, specific conductance, turbidity, biochemical oxygen demand (BOD), and pesticides among the basins and the St. Clair River. Median concentrations of total nitrate were well below the recommended USEPA total nitrogen ambient water-quality criterion of 0.54 mg/L as N for nutrient ecoregion VII for all study-area streams except the Clinton River. More than 93 percent of the phosphorus concentrations for the Belle, Black, Pine and minor river basins and 84 percent of the phosphorus concentrations for the Clinton River Basin are greater than the USEPA recommended ambient total phosphorus criterion of 0.033 mg/L for rivers and streams. Nine chloride concentrations exceeded the USEPA criterion maximum concentration (CMC) for chloride set at

  17. Changing numbers of spawning cutthroat trout in tributary streams of Yellowstone Lake and estimates of grizzly bears visiting streams from DNA

    USGS Publications Warehouse

    Haroldson, M.A.; Gunther, K.A.; Reinhart, Daniel P.; Podruzny, S.R.; Cegelski, C.; Waits, L.; Wyman, T.C.; Smith, J.

    2005-01-01

    Spawning Yellowstone cutthroat trout (Oncorhynchus clarki) provide a source of highly digestible energy for grizzly bears (Ursus arctos) that visit tributary streams to Yellowstone Lake during the spring and early summer. During 1985–87, research documented grizzly bears fishing on 61% of the 124 tributary streams to the lake. Using track measurements, it was estimated that a minimum of 44 grizzly bears fished those streams annually. During 1994, non-native lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake. Lake trout are efficient predators and have the potential to reduce the native cutthroat population and negatively impact terrestrial predators that use cutthroat trout as a food resource. In 1997, we began sampling a subset of streams (n = 25) from areas of Yellowstone Lake surveyed during the previous study to determine if changes in spawner numbers or bear use had occurred. Comparisons of peak numbers and duration suggested a considerable decline between study periods in streams in the West Thumb area of the lake. The apparent decline may be due to predation by lake trout. Indices of bear use also declined on West Thumb area streams. We used DNA from hair collected near spawning streams to estimate the minimum number of bears visiting the vicinity of spawning streams. Seventy-four individual bears were identified from 429 hair samples. The annual number of individuals detected ranged from 15 in 1997 to 33 in 2000. Seventy percent of genotypes identified were represented by more than 1 sample, but only 31% of bears were documented more than 1 year of the study. Sixty-two (84%) bears were only documented in 1 segment of the lake, whereas 12 (16%) were found in 2–3 lake segments. Twenty-seven bears were identified from hair collected at multiple streams. One bear was identified on 6 streams in 2 segments of the lake and during 3 years of the study. We used encounter histories derived from DNA and the Jolly-Seber procedure in Program MARK

  18. Groundwater quality in the Lake Champlain Basin, New York, 2009

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2011-01-01

    Water was sampled from 20 production and domestic wells from August through November 2009 to characterize groundwater quality in the Lake Champlain Basin in New York. Of the 20 wells sampled, 8 were completed in sand and gravel, and 12 were completed in bedrock. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were color (1 sample), pH (3 samples), sodium (3 samples), total dissolved solids (4 samples), iron (4 samples), manganese (3 samples), gross alpha radioactivity (1 sample), radon-222 (10 samples), and bacteria (5 samples). The pH of all samples was typically neutral or slightly basic (median 7.1); the median water temperature was 9.7°C. The ions with the highest median concentrations were bicarbonate [median 158 milligrams per liter (mg/L)] and calcium (median 45.5 mg/L). Groundwater in the study area is soft to very hard, but more samples were hard or very hard (121 mg/L or more as CaCO3) than were moderately hard or soft (120 mg/L or less as CaCO3); the median hardness was 180 mg/L as CaCO3. The maximum concentration of nitrate plus nitrite was 3.79 mg/L as nitrogen, which did not exceed established drinking-water standards for nitrate plus nitrite (10 mg/L as nitrogen). The trace elements with the highest median concentrations were strontium (median 202 micrograms per liter [μg/L]), and iron (median 55 μg/L in unfiltered water). Six pesticides and pesticide degradates, including atrazine, fipronil, disulfoton, prometon, and two pesticide degradates, CIAT and desulfinylfipronil, were detected among five samples at concentrations

  19. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA

    USGS Publications Warehouse

    Hladik, Michelle; Corsi, Steven; Kolpin, Dana W.; Baldwin, Austin K.; Blackwell, Brett R.; Cavallin, Jenna E.

    2018-01-01

    To better characterize the transport of neonicotinoid insecticides to the world's largest freshwater ecosystem, monthly samples (October 2015–September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in every month sampled and five of the six target neonicotinoids were detected. At least one neonicotinoid was detected in 74% of the monthly samples with up to three neonicotinoids detected in an individual sample (10% of all samples). The most frequently detected neonicotinoid was imidacloprid (53%), followed by clothianidin (44%), thiamethoxam (22%), acetamiprid (2%), and dinotefuran (1%). Thiacloprid was not detected in any samples. The maximum concentration for an individual neonicotinoid was 230 ng L−1 and the maximum total neonicotinoids in an individual sample was 400 ng L−1. The median detected individual neonicotinoid concentrations ranged from non-detect to 10 ng L−1. The detections of clothianidin and thiamethoxam significantly increased as the percent of cultivated crops in the basins increased (ρ = 0.73, P = .01; ρ = 0.66, P = .04, respectively). In contrast, imidacloprid detections significantly increased as the percent of the urbanization in the basins increased (ρ = 0.66, P = .03). Neonicotinoid concentrations generally increased in spring through summer coinciding with the planting of neonicotinoid-treated seeds and broadcast applications of neonicotinoids. More spatially intensive samples were collected in an agriculturally dominated basin (8 sites along the Maumee River, Ohio) twice during the spring, 2016 planting season to provide further information on neonicotinoid inputs to the Great Lakes. Three neonicotinoids were ubiquitously detected (clothianidin, imidacloprid, thiamethoxam) in all water samples collected within this basin. Maximum individual neonicotinoid concentrations was 330 ng L−1

  20. Sediment-source data for four basins tributary to Lake Tahoe, California and Nevada; August 1983-June 1988

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1990-01-01

    Data were collected during a 5-year study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood Creek, General Creek, Edgewood Creek, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel inventories; analyses of bank and bed material samples; tabulations of bed-material pebble counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  1. Impacts of Precipitation on Pathogens and a Fecal Indicator in a Tributary and Near-Coastal Area of Lake Michigan

    NASA Astrophysics Data System (ADS)

    Zepp, R. G.; Molina, M.; Cyterski, M.; Whelan, G.; Parmar, R.; Wolfe, K.; Villegas, E. N.; Corsi, S. R.; Borchardt, M.

    2013-12-01

    The Great Lakes have over 100 tributaries contributing a variety of pollutants, including pathogens. This loading results in contamination of near coastal sites on the lakes by pathogens and fecal indicator bacteria, such as enterococci. Here, we present data, relationships and modeling tools for evaluating exposure to microorganisms in Lake Michigan near Manitowoc, WI and in the Manitowoc River, a tributary that flows into Lake Michigan at Manitowoc. Increased precipitation and subsequent runoff during a basin-wide storm in June 2011 caused an order of magnitude increase in riverine discharge, a 100-fold increase in enterococci densities and a doubling of colored dissolved organic matter (CDOM) in the river. CDOM is a UV-protective substance that decreases UV inactivation of enterococci and most pathogens. Water samples were collected at four riverine sites including at a USGS gage station with large-volume pathogen sampling equipment, one beach site at Lake Michigan and at a nearby stormwater outflow. Potential sources of microbial contamination include agricultural activities such as manure application and wastewater treatment effluent; therefore, additional samples were collected from the effluent stream of the Manitowoc Wastewater Treatment Facility and manure from spreading trucks. Pathogens measured included Campylobacter jejuni, E. coli O157:H7, Enterovirus - 5' UTR , Adenovirus Groups A , B, C, D, and F, Cryptosporidium spp. and Giardia duodenalis. Meteorological data were also collected at nearby weather stations and water-quality data such as turbidity, temperature, conductivity, and chlorophyll were also measured. Three acoustic doppler current profilers were located between the river mouth and the beach to measure current movements. The data were analyzed using modeling infrastructure technologies (FRAMES, D4EM and SuperMUSE) coupled with hydrodynamic and water quality models (HSPF, WASP, HEC-RAS, FVCOM and MRA-IT) and the Virtual Beach 3.0 statistical

  2. Sampling little fish in big rivers: Larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices

    USGS Publications Warehouse

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.

    2014-01-01

    Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.

  3. Application of ERTS imagery to environmental studies of Lake Champlain

    NASA Technical Reports Server (NTRS)

    Lind, A. O.

    1974-01-01

    ERTS Imagery has provided data relating to a number of environmental and limnological concerns such as water quality, lake flooding and lake ice formation. Pollution plume data provided by ERTS was recently used in the Supreme Court case involving the States of Vermont and New York and a paper company. Flooding of lowland tracts has been a major concern due to a repetitive pattern of high lake levels over the past three years, and ERTS imagery is being used to construct the first series of flood maps of the affected areas. Lake ice development and turbidity patterns have also been studied from ERTS, since these have significance for shore erosion studies.

  4. Areal distribution and concentration of contaminants of concern in surficial streambed and lakebed sediments, Lake St. Clair and tributaries, Michigan, 1990-2003

    USGS Publications Warehouse

    Rachol, Cynthia M.; Button, Daniel T.

    2006-01-01

    As part of the Lake St. Clair Regional Monitoring Project, the U.S. Geological Survey evaluated data collected from surficial streambed and lakebed sediments in the Lake Erie-Lake St. Clair drainages. This study incorporates data collected from 1990 through 2003 and focuses primarily on the U.S. part of the Lake St. Clair Basin, including Lake St. Clair, the St. Clair River, and tributaries to Lake St. Clair. Comparable data from the Canadian part of the study area are included where available. The data are compiled into 4 chemical classes and consist of 21 compounds. The data are compared to effects-based sediment-quality guidelines, where the Threshold Effect Level and Lowest Effect Level represent concentrations below which adverse effects on biota are not expected and the Probable Effect Level and Severe Effect Level represent concentrations above which adverse effects on biota are expected to be frequent.Maps in the report show the spatial distribution of the sampling locations and illustrate the concentrations relative to the selected sediment-quality guidelines. These maps indicate that sediment samples from certain areas routinely had contaminant concentrations greater than the Threshold Effect Concentration or Lowest Effect Level. These locations are the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Big Beaver Creek, Red Run, and Paint Creek. Maps also indicated areas that routinely contained sediment contaminant concentrations that were greater than the Probable Effect Concentration or Severe Effect Level. These locations include the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Red Run, within direct tributaries along Lake St. Clair and in marinas within the lake, and within the Clinton River headwaters in Oakland County.Although most samples collected within Lake St. Clair were from sites adjacent to the mouths of its tributaries, samples analyzed for trace-element concentrations

  5. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence

    PubMed Central

    Lee, Kathy E.; Banda, Jo A.; Choy, Steven J.; Gefell, Daniel J.; Minarik, Thomas A.; Moore, Jeremy N.; Jorgenson, Zachary G.

    2017-01-01

    Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) μg/L in water and 1.75 (diphenhydramine) to 20,800 μg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin. PMID:28953889

  6. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence

    USGS Publications Warehouse

    Elliott, Sarah M.; Brigham, Mark E.; Lee, Kathy E.; Banda, Jo A.; Choy, Steven J.; Gefell, Daniel J.; Minarik, Thomas A.; Moore, Jeremy N.; Jorgenson, Zachary G.

    2017-01-01

    Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) μg/L in water and 1.75 (diphenhydramine) to 20,800 μg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin.

  7. The effect of contaminated sediments on fecundity of the brown bullhead in three Lake Erie tributaries

    USGS Publications Warehouse

    Lesko, Lynn T.; Smith, Stephen B.; Blouin, Marc A.

    1996-01-01

    Female brown bullhead (Ameiurus nebulosus) were collected from three Lake Erie tributaries (Ohio) from 8 to 25 May 1989, to determine the effects of contaminated sediments on reproductive potentials. Fish obtained from the Black and Cuyahoga rivers, which contain sediments with elevated concentrations of metals, PCBs, and PAHs, were compared with fish collected in Mud Brook, a tributary of the Huron River, which was selected as our reference site. Fecundity, egg diameter, fish length and weight, and the presence of external abnormalities were recorded for each fish. Brown bullhead from the contaminated sites were larger then those from the reference site and fecundity was significantly (P < 0.05) different in all three river systems. Those from the most polluted river (Cuyahoga River) had the greatest number of eggs per individual female. The high frequency of external abnormalities observed on brown bullhead from the contaminated sites did not appear to have a detrimental influence on fecundity. These results suggest that fecundity of the brown bullhead was not adversely affected in ecosystems altered by the presence of contaminated sediments. Increased fecundity of the brown bullhead from impacted rivers may be the result of reduced competition for an abundant invertebrate food source and limited predation by other fish species whose numbers are largely depleted in these degraded systems.

  8. Paleovalley fills: Trunk vs. tributary

    USGS Publications Warehouse

    Kvale, E.P.; Archer, A.W.

    2007-01-01

    A late Mississippian-early Pennsylvanian eustatic sea level drop resulted in a complex lowstand drainage network being eroded across the Illinois Basin in the eastern United States. This drainage system was filled during the early part of the Pennsylvanian. Distinct differences can be recognized between the trunk and tributary paleovalley fills. Fills preserved within the trunk systems tend to be fluvially dominated and consist of bed-load deposits of coarse- to medium-grained sandstone and conglomerate. Conversely, the incised valleys of tributary systems tend to be filled with dark mudstone, thinly interbedded sandstones, and mudstones and siltstones. These finer grained facies exhibit marine influences manifested by tidal rhythmites, certain traces fossils, and macro- and microfauna. Examples of tributary and trunk systems, separated by no more than 7 km (4.3 mi) along strike, exhibit these styles of highly contrasting fills. Useful analogs for understanding this Pennsylvanian system include the Quaternary glacial sluiceways present in the lower Ohio, White, and Wabash river valleys of Indiana (United States) and the modern Amazon River (Brazil). Both the Amazon River and the Quaternary rivers of Indiana have (or had) trunk rivers that are (were) dominated by large quantities of bed load relative to their tributaries. The trunk valley systems of these analogs aggraded much more rapidly than their tributary valleys, which evolved into lakes because depositional rates along the trunk are (were) so high that the mouths of the tributaries have been dammed by bed-load deposits. These Holocene systems illustrate that sediment yields can significantly influence the nature of fill successions within incised valleys independent of rates of sea level changes or proximity to highstand coastlines. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  9. Prevention of delayed referrals through the Champlain BASE eConsult service.

    PubMed

    Liddy, Clare; Drosinis, Paul; Fogel, Adam; Keely, Erin

    2017-08-01

    To identify the proportion and evaluate the content of eConsults (electronic consultations) in which the Champlain BASE (Building Access to Specialists through eConsultation) eConsult process prompted a referral to a specialist that was not originally contemplated by the primary care provider (PCP). Cross-sectional study of all eConsults submitted between April 15, 2011, and January 31, 2015. Champlain Local Health Integration Network, a large health region in eastern Ontario. Primary care providers registered to use the Champlain BASE eConsult service. Answers from a close-out survey-completed by PCPs at the conclusion of each eConsult-stating that specialist referral was not originally contemplated but that the eConsult process had prompted referral. The logs containing the communication exchanged between the PCPs and the specialists were reviewed, and each prompted referral case was categorized by the type of question asked, if pharmaceutical advice was given, if the referral was redirected to a different specialty group, and if the referral was urgent. A total of 188 (3.4%) of 5601 eConsults completed during the study period were cases in which PCPs stated that they had originally not contemplated referring the patient to a specialist but that the Champlain BASE eConsult process had prompted referral. Prompted referrals were most often directed to cardiologists (10.6%), dermatologists (10.6%), infectious disease specialists (9.0%), hematologists (9.0%), and urologists (8.5%). The most common questions were about diagnosis (34.0%), drug treatment (18.0%), and management (15.0%). Pharmaceutical advice was given in 28.0% of prompted referral cases, and in 26.0% of cases, the face-to-face referral was redirected to another specialty group. In 5.0% of cases, the specialist stated the referral was urgent. The median specialist response time was 0.96 days (interquartile range 0.17 to 3.80 days). By providing PCPs with increased access to specialists, the Champlain

  10. Mercury and methylmercury related to historical mercury mining in three tributaries to Lake Berryessa, Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Horner, T.; Cornwell, K.; Izzo, V.; Alpers, C. N.

    2014-12-01

    This study examined the relative contribution of total mercury (THg) and mono-methylmercury (MMHg) from upstream historical mercury-mining districts to Lake Berryessa, a reservoir with impaired water quality because of mercury. The third and fourth largest historical mercury-producing mining districts in California are within Lake Berryessa's three largest tributary watersheds: Pope, (Upper) Putah, and Knoxville-Eticuera Creeks. Downstream of the reservoir, Putah Creek drains into the Yolo Bypass, a major source of THg and MMHg to the Sacramento-San Joaquin Delta. Water samples were collected from October 2012 to May 2014 during 37 non-storm and 8 storm events along Pope, (Upper) Putah, and Knoxville-Eticuera Creeks and analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and turbidity). Additionally, water samples collected during five of the non-storm and storm events were analyzed for unfiltered THg and MMHg and total suspended solids (TSS). Discharge was measured during sampling to calculate instantaneous loads. More than 120 streambed sediment samples were collected to determine the spatial variation of THg and organic carbon content (loss on ignition). Across the watersheds, unfiltered THg (in water) samples ranged from 2.3 to 125 ng/L and unfiltered MMHg (in water) samples from 0.12 to 1.0 ng/L. Concentrations of THg ranged from less than 0.0001 to 122 mg/kg in streambed sediment. Tributary reaches with elevated mercury concentrations ("hot spots") are near or downstream of historical mercury mines and have: (1) strong positive correlations between THg (in water) or MMHg (in water) and TSS (R2> 0.88, n=5); (2) higher instantaneous loads of suspended sediment, THg and MMHg than reaches with low THg and MMHg concentrations; and (3) elevated sediment organic carbon content. Tributary reaches with weaker correlations among THg, MMHg, and TSS in unfiltered water may reflect non-mining sources of dissolved THg and MMHg, such as

  11. Habitat selection and spawning success of walleye in a tributary to Owasco Lake, New York

    USGS Publications Warehouse

    Chalupnicki, Marc A.; Johnson, James H.; McKenna, James E.; Dittman, Dawn E.

    2010-01-01

    Walleyes Sander vitreus are stocked into Owasco Lake, New York, to provide a sport fishery, but the population must be sustained by annual hatchery supplementation despite the presence of appropriate habitat. Therefore, we evaluated walleye spawning success in Dutch Hollow Brook, a tributary of Owasco Lake, to determine whether early survival limited recruitment. Spawning success during spring 2006 and 2007 was evaluated by estimating egg densities from samples collected in the lower 725 m of the stream. Environmental variables were also recorded to characterize the selected spawning habitat. Drift nets were set downstream of the spawning section to assess egg survival and larval drift. We estimated that 162,596 larvae hatched in 2006. For 2007, we estimated that 360,026 eggs were deposited, with a hatch of 127,500 larvae and hatching success of 35.4%. Egg density was significantly correlated to percent cover, substrate type, and depth : velocity ratio. Two sections had significantly higher egg deposition than other areas. Adult spawning walleyes selected shallow, slow habitats with some cover and gravel substrate in the accessible reaches of Dutch Hollow Brook. Our results show that walleyes found suitable spawning habitat in Dutch Hollow Brook and that egg and larval development does not appear to limit natural reproduction.

  12. NPDES Draft Permit for Spirit Lake Water Treatment Facility in North Dakota

    EPA Pesticide Factsheets

    Under NPDES draft permit ND-0031101, Spirit Lake Water Resource Management is authorized to discharge to an unnamed intermittent tributary to Devils Lake which is tributary to Sheyenne River in North Dakota.

  13. Lake trout rehabilitation in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Eckert, Thomas H.; Schaner, Ted; Bowlby, James N.; Schleen, Larry P.

    1995-01-01

    Attempts to maintain the native lake trout (Salvelinus namaycush) population in Lake Ontario by stocking fry failed and the species was extirpated by the 1950s. Hatchery fish stocked in the 1960s did not live to maturity because of sea lamprey (Petromyzon marinus) predation and incidental commercial harvest. Suppression of sea lampreys began with larvicide treatments of Lake Ontario tributaries in 1971 and was enhanced when the tributaries of Oneida Lake and Lake Erie were treated in the 1980s. Annual stocking of hatchery fish was resumed with the 1972 year class and peaked at about 1.8 million yearlings and 0.3 million fingerlings from the 1985–1990 year classes. Survival of stocked yearlings declined over 50% in the 1980 s and was negatively correlated with the abundance of lake trout > 550 mm long (r = −0.91, P < 0.01, n = 12). A slot length limit imposed by the State of New York for the 1988 fishing season reduced angler harvest. Angler harvest in Canadian waters was 3 times higher in eastern Lake Ontario than in western Lake Ontario. For the 1977–1984 year classes, mean annual survival rate of lake trout age 6 and older was 0.45 (range: 0.35–0.56). In U.S. waters during 1985–1992, the total number of lake trout harvested by anglers was about 2.4 times greater than that killed by sea lampreys. The number of unmarked lake trout < 250 mm long in trawl catches in 1978–1992 was not different from that expected due to loss of marks and failure to apply marks at the hatchery, and suggested that recruitment of naturally-produced fish was nil. However, many of the obstacles which may have impeded lake trout rehabilitation in Lake Ontario during the 1980s are slowly being removed, and there are signs of a general ecosystem recovery. Significant recruitment of naturally produced lake trout by the year 2000, one interim objective of the rehabilitation plan for the Lake, may be achieved.

  14. Bathymetric survey of Carroll Creek Tributary to Lake Tuscaloosa, Tuscaloosa County, Alabama, 2010

    USGS Publications Warehouse

    Lee, K.G.; Kimbrow, D.R.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the City of Tuscaloosa, conducted a bathymetric survey of Carroll Creek, on May 12-13, 2010. Carroll Creek is one of the major tributaries to Lake Tuscaloosa and contributes about 6 percent of the surface drainage area. A 3.5-mile reach of Carroll Creek was surveyed to prepare a current bathymetric map, determine storage capacities at specified water-surface elevations, and compare current conditions to historical cross sections. Bathymetric data were collected using a high-resolution interferometric mapping system consisting of a phase-differencing bathymetric sonar, navigation and motion-sensing system, and a data acquisition computer. To assess the accuracy of the interferometric mapping system and document depths in shallow areas of the study reach, an electronic total station was used to survey 22 cross sections spaced 50 feet apart. The data were combined and processed and a Triangulated Irregular Network (TIN) and contour map were generated. Cross sections were extracted from the TIN and compared with historical cross sections. Between 2004 and 2010, the area (cross section 1) at the confluence of Carroll Creek and the main run of LakeTuscaloosa showed little to no change in capacity area. Another area (cross section 2) showed a maximum change in elevation of 4 feet and an average change of 3 feet. At the water-surface elevation of 224 feet (National Geodetic Vertical Datum of 1929), the cross-sectional area has changed by 260 square feet for a total loss of 28 percent of cross-sectional storage area. The loss of area may be attributed to sedimentation in Carroll Creek and (or) the difference in accuracy between the two surveys.

  15. Working with Farmers to Reduce Phosphorus in Lake Champlain

    EPA Pesticide Factsheets

    EPA researchers are working with Vermont small dairy farmers to explore whether pasture-based rotational grazing can be a viable, cost-effective, option for small farms to help to reduce phosphorus loadings to the lake.

  16. Early onset of a microcystin-producing cyanobacterial bloom in an agriculturally-influenced Great Lakes tributary

    NASA Astrophysics Data System (ADS)

    McKay, Robert Michael L.; Tuttle, Taylor; Reitz, Laura A.; Bullerjahn, George S.; Cody, William R.; McDowell, Adam J.; Davis, Timothy W.

    2018-05-01

    In late May 2016, a cyanobacterial harmful algal bloom (cHAB) was detected in the Maumee River, the largest tributary to Lake Erie, the southernmost lake of the Laurentian Great Lakes system. Testing on 31 May identified Planktothrix agardhii as the dominant cyanobacterium with cell abundance exceeding 1.7×10 9 cells/L and total microcystins (MC) reaching 19 μg/L MC-LR equivalents, a level over 10-fold higher than the 2015 revised U.S. Environmental Protection Agency (EPA) national health advisory levels for drinking water exposure to adults. Low river discharge coincident with negligible precipitation through the latter half of May coincided with an 80% decline in river turbidity that likely favored bloom formation by a low-light adapted P. agardhii population. Also contributing to the cHAB were high initial nutrient loads and an increase of the river temperature from 13°C to 26°C over this same period. The bloom persisted through 5 June with microcystins exceeding 22 μg/L MC-LR equivalents at the bloom peak. By 6 June, the river had returned to its muddy character following a rain event and sampling on 7 June detected only low levels of toxin (<0.6 μg/L) at public water systems located near the bloom origin. The elevated toxin production associated with this early onset bloom was without precedent for the Maumee River and an unique attribute of the cHAB was the high proportion of potentially-toxic genotypes. Whereas Planktothrix spp. is common in lotic environments, and has been previously detected in the Maumee, blooms are not commonly reported. This early onset, microcystin-producing cHAB provided a rare opportunity to glean insights into environmental factors that promote bloom development and dominance by Planktothrix in lotic environments.

  17. Streamflow and water-quality data for three major tributaries to Reelfoot Lake, west Tennessee, October 1987-March 1988

    USGS Publications Warehouse

    Yurewicz, M.C.; Carey, W.P.; Garrett, J.W.

    1988-01-01

    Streamflow and water quality data were collected for three major tributaries to Reelfoot Lake, in West Tennessee, for the period October 1987 through March 1988. The data are presented in graphs and tables. Mean daily discharge data were collected at one site each in the drainage basins of North Reelfoot Creek, South Reelfoot Creek, and Running Slough. Daily mean suspended-sediment concentration data were collected at a site in the North Reelfoot Creek basin. Water quality samples were collected during storm events at the same locations that daily mean streamflow data were collected. Water quality samples were analyzed for concentrations of nutrients and triazine herbicides. Water temperature and specific conductance were measured at the time that samples were collected. (USGS)

  18. Watershed influences and in-lake processes - A regional-scale approach to monitoring a water-supply reservoir, Lake Houston near Houston, Texas

    USGS Publications Warehouse

    Oden, Timothy D.; Graham, Jennifer L.

    2008-01-01

    Created in 1954 by an impoundment on the San Jacinto River, Lake Houston currently (2008) supplies about 20 percent of the total source water for the city of Houston. Houston historically has relied on ground water as the major source of supply. As a result of regulations to limit ground-water withdrawals because of associated land subsidence (effective in 2010), the lake will become the primary source of water supply for the city in the future. Since 1983 the U.S. Geological Survey (USGS), in cooperation with the City of Houston, has collected water-quality and lake-level data at Lake Houston, as well as discharge and intermittent water-quality data at its major inflowing tributaries. Previous studies indicate that Lake Houston is shallow, eutrophic, light limited and has a variable hydrologic regime with water residence times ranging from 12 hours to 400 days. Spring Creek, a tributary that drains the western, more urban, part of the Lake Houston watershed, contributes more sediment and nutrients than East Fork San Jacinto River, a tributary that drains the more rural, eastern part of the watershed. This fact sheet explains the importance of monitoring for management of the resource and describes ongoing research in the Lake Houston watershed by the USGS and the City.

  19. Trematode fauna of prosobranch snails of the genus Semisulcospira in Lake Biwa and the connected drainage system.

    PubMed

    Urabe, Misako

    2003-03-01

    The parasite fauna of prosobranch snails of the genus Semisulcospira was surveyed in Lake Biwa and the adjacent water system. One aspidogastrean and 28 digenetic trematode taxa were detected in 19209 snails consisting of 10 morphological species. There was no trematode species peculiar to members of the subgenus Biwamelania that is endemic to the Lake Biwa water system. However, one species, Notocotylus magniovatus, was found only in the non-endemic subgenus Semisulcospira. Of 23 digenean taxa detected in more than one host, 13 were distributed in both the lake and the tributaries. Seven of these had host taxa, more than 1% of which were infected with the parasite in both the lake and the tributaries, four had such hosts only in the tributaries, and two had no such hosts. Three species detected only in Lake Biwa were previously reported from other rivers in Japan. In the seven species detected only in the tributaries, two species had life cycles that could be maintained only in rivers. These results indicate that the core areas for the distribution of parasites of Semisulcospira are tributaries, and the lake is a sink for these species. These results contradict the expectation that the parasite fauna should be richer in the lake than in tributaries because the lake is a stable habitat over a geological time scale and has more divergent freshwater animals than the adjacent water system. Copyright 2002 Elsevier Science Ireland Ltd.

  20. Updated polychlorinated biphenyl mass budget for Lake Michigan

    USGS Publications Warehouse

    Guo, Jiehong; Romanak, Kevin; Westenbroek, Stephen M.; Li, An; Kreis, Russell; Hites, Ronald A.; Venier, Marta

    2017-01-01

    This study revisits and updates the Lake Michigan Mass Balance Project (LMMBP) for polychlorinated biphenyls (PCBs) that was conducted in 1994–1995. This work uses recent concentrations of PCBs in tributary and open lake water, air, and sediment to calculate an updated mass budget. Five of the 11 LMMBP tributaries were revisited in 2015. In these five tributaries, the geometric mean concentrations of ∑PCBs (sum of 85 congeners) ranged from 1.52 to 22.4 ng L–1. The highest concentrations of PCBs were generally found in the Lower Fox River and in the Indiana Harbor and Ship Canal. The input flows of ∑PCBs from wet deposition, dry deposition, tributary loading, and air to water exchange, and the output flows due to sediment burial, volatilization from water to air, and transport to Lake Huron and through the Chicago Diversion were calculated, as well as flows related to the internal processes of settling, resuspension, and sediment–water diffusion. The net transfer of ∑PCBs is 1240 ± 531 kg yr–1 out of the lake. This net transfer is 46% lower than that estimated in 1994–1995. PCB concentrations in most matrices in the lake are decreasing, which drove the decline of all the individual input and output flows. Atmospheric deposition has become negligible, while volatilization from the water surface is still a major route of loss, releasing PCBs from the lake into the air. Large masses of PCBs remain in the water column and surface sediments and are likely to contribute to the future efflux of PCBs from the lake to the air.

  1. Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000

    USGS Publications Warehouse

    Sando, Steven Kent; Neitzert, Kathleen M.

    2003-01-01

    The Bureau of Reclamation has proposed construction of the Lake Andes/Wagner Irrigation Demonstration Project to investigate environmental effects of irrigation of glacial till soils substantially derived from marine shales. During 1983-2000, the U.S. Geological Survey collected hydrologic, water-quality, and sediment data in the Lake Andes and Choteau Creek Basins, and on the Missouri River upstream and downstream from Choteau Creek, to provide baseline information in support of the proposed demonstration project. Lake Andes has a drainage area of about 230 mi2 (square miles). Tributaries to Lake Andes are ephemeral. Water-level fluctuations in Lake Andes can be large, and the lake has been completely dry on several occasions. The outlet aqueduct from Lake Andes feeds into Garden Creek, which enters Lake Francis Case just upstream from Fort Randall Dam on the Missouri River. For Lake Andes tributary stations, calcium, magnesium, and sodium are approximately codominant among the cations, and sulfate is the dominant anion. Dissolved-solids concentrations typically range from about 1,000 mg/L (milligrams per liter) to about 1,700 mg/L. Major-ion concentrations for Lake Andes tend to be higher than the tributaries and generally increase downstream in Lake Andes. Proportions of major ions are similar among the different lake units (with the exception of Owens Bay), with calcium, magnesium, and sodium being approximately codominant among cations, and sulfate being the dominant anion. Owens Bay is characterized by a calcium sulfate water type. Dissolved-solids concentrations for Lake Andes typically range from about 1,400 to 2,000 mg/L. Whole-water nitrogen and phosphorus concentrations are similar among the Lake Andes tributaries, with median whole-water nitrogen concentrations ranging from about 1.6 to 2.4 mg/L, and median whole-water phosphorus concentrations ranging from about 0.5 to 0.7 mg/L. Whole-water nitrogen concentrations in Lake Andes are similar among the

  2. Suspended-sediment loads from major tributaries to the Missouri River between Garrison Dam and Lake Oahe, North Dakota, 1954-98

    USGS Publications Warehouse

    Macek-Rowland, Kathleen M.

    2000-01-01

    Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak.  The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek.  Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin.  Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998.  Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98.  Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River.  Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River.  Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River.  The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries.  The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile.  The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area. 

  3. Effects of Jackson Lake dam and Tributaries on the Hydrology and Geomorphology of the Snake River, Grand Teton National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, N. C.; Schmidt, J. C.

    2006-05-01

    Geomorphic and hydrologic analyses of the Snake River in Grand Teton National Park (GTNP) indicate that flow contributions of tributaries mitigate impacts of regulation. Since a flow regime change in 1958, regulation resulted in a 43 and 35% decrease in estimated unregulated flows immediately downstream of Jackson Lake Dam (JLD) and at Moose (43 km and 5 tributaries downstream of JLD), respectively. Geomorphic evidence indicates that some channel characteristics are more sensitive than others to this decreasing influence of flow regulation. First, entrainment of tracer rocks suggests that the ability of the Snake River to mobilize its bed increases downstream. A greater proportion of the bed became active, and the mobilized clasts moved further, in the two study reaches furthest downstream. Second, repeat mapping from aerial photographs suggest that some changes in channel form are the result of flow regulation and some are the result of climatically driven changes in runoff determined by tributaries. Initial decreases in flows due to regulation may have caused the observed channel narrowing between 1945 and 1969, and greater precipitation causing greater natural flows may have resulted in the subsequent channel widening between 1969 and 1990. Third, flow models were used to obtain the magnitudes of flows necessary to inundate two floodplain surfaces in 4 reaches from JLD to Moose. Recurrence intervals and inundation periods were similar for a narrow, inset floodplain in all 4 reaches, suggesting that this surface developed due to regulation. Recurrence intervals for a much broader and higher floodplain decreased downstream from 9 to 3.2 years and inundation periods increased downstream from 1.1 to 3 days immediately below JLD and at Moose, respectively. This suggests the upper floodplain was formed prior to regulation of the Snake River. Thus, the effects of flow regulation on bed mobility and connectivity between the channel and the upper floodplain decrease

  4. Complex postglacial recolonization inferred from population genetic structure of mottled sculpin Cottus bairdii in tributaries of eastern Lake Michigan, U.S.A.

    PubMed

    Homola, J J; Ruetz, C R; Kohler, S L; Thum, R A

    2016-11-01

    This study used analyses of the genetic structure of a non-game fish species, the mottled sculpin Cottus bairdii to hypothesize probable recolonization routes used by cottids and possibly other Laurentian Great Lakes fishes following glacial recession. Based on samples from 16 small streams in five major Lake Michigan, U.S.A., tributary basins, significant interpopulation differentiation was documented (overall F ST = 0·235). Differentiation was complex, however, with unexpectedly high genetic similarity among basins as well as occasionally strong differentiation within basins, despite relatively close geographic proximity of populations. Genetic dissimilarities were identified between eastern and western populations within river basins, with similarities existing between eastern and western populations across basins. Given such patterns, recolonization is hypothesized to have occurred on three occasions from more than one glacial refugium, with a secondary vicariant event resulting from reduction in the water level of ancestral Lake Michigan. By studying the phylogeography of a small, non-game fish species, this study provides insight into recolonization dynamics of the region that could be difficult to infer from game species that are often broadly dispersed by humans. © 2016 The Fisheries Society of the British Isles.

  5. Diel feeding ecology of Slimy Sculpin in a tributary to Skaneateles Lake, New York

    USGS Publications Warehouse

    Chalupnicki, Marc A.; Johnson, James H.

    2016-01-01

    Interactions among the benthic community are typically overlooked but play an important role in fish community dynamics. We examined the diel feeding ecology of Slimy Sculpin (Cottus cognatus) from Grout Brook, a tributary to Skaneateles Lake. Of the six time periods examined, Slimy Sculpin consumed the least during the nighttime (2400 h and 0400 h). Chironomids were the major prey consumed during all time periods except for 2400 h when ephemeropterans were the major prey consumed. There was a moderate preference by Slimy Sculpin for food from the benthos (0.59 ± 0.06) with Diptera (Chironomids), Ephemeroptera (Baetidae), and Trichoptera (Brachycentridae) representing the major taxa. Slimy Sculpin appear to be opportunistic feeders selecting what is most available in the brook. Index of fullness was variable and averaged 1.15% across the diel cycle. Daily ration was measured as a function of fish dry body weight and ranged from 0.12 to 0.22. Estimates of daily consumption ranged from 0.007% to 4.0% of body weight, which corresponds to reports for other species. These findings have application in gauging the relative importance of Slimy Sculpin in streams where highly valued salmonid species also occur.

  6. Habitat use by juvenile salmonids in Lake Ontario tributaries-species, age, diel and seasonal effects

    USGS Publications Warehouse

    Johnson, James H.; McKenna, James E.

    2017-01-01

    Understanding the habitat needs of fish and how these requirements may change seasonally over a 24-h period is important, especially for highly managed sport species. Consequently, we examined the diel and seasonal habitat use of four juvenile salmonid species in streams in the Lake Ontario watershed. For juvenile Atlantic salmon Salmo salarand juvenile rainbow trout Oncorhynchus mykiss, differences in day versus night habitat use were more profound than seasonal differences. Observed differences in day versus night habitat for all species and age classes were mainly due to the use of less object oriented cover at night and to a lesser extent to the use of slower velocities and smaller substrate at night. Seasonal differences in habitat use were also observed, likely due to increased fish size, and included movement to deeper and faster water and the use of larger substrate and more cover from summer to winter. Different habitat variables were important to individual species. Juvenile Atlantic salmon were associated with higher water velocities, juvenile rainbow trout with larger substrate and more cover, and subyearling Chinook salmon O. tshawytscha and subyearling coho salmon O. kisutch with small substrate and less cover. Our observations demonstrate that habitat partitioning occurs and likely reduces intraspecific and interspecific competition which may increase the potential production of all four species in sympatry. Consequently, these findings provide important information for resource managers charged with managing, protecting, and enhancing Great Lakes tributaries where all or some of these species occur.

  7. Concentrations and distribution of manmade organic compounds in the Lake Tahoe Basin, Nevada and California, 1997-99

    USGS Publications Warehouse

    Lico, Michael S.; Pennington, Nyle

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency and the Lahontan Regional Water-Quality Control Board, sampled Lake Tahoe, major tributary streams to Lake Tahoe, and several other lakes in the Lake Tahoe Basin for manmade organic compounds during 1997-99. Gasoline components were found in all samples collected from Lake Tahoe during the summer boating season. Methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (BTEX) were the commonly detected compounds in these samples. Most samples from tributary streams and lakes with no motorized boating had no detectable concentrations of gasoline components. Motorized boating activity appears to be directly linked in space and time to the occurrence of these gasoline components. Other sources of gasoline components to Lake Tahoe, such as the atmosphere, surface runoff, and subsurface flow, are minor compared to the input by motorized boating. Water sampled from Lake Tahoe during mid-winter, when motorized boating activity is low, had no MTBE and only one sample had any detectable BTEX compounds. Soluble pesticides rarely were detected in water samples from the Lake Tahoe Basin. The only detectable concentrations of these compounds were in samples from Blackwood and Taylor Creeks collected during spring runoff. Concentrations found in these samples were low, in the 1 to 4 nanograms per liter range. Organochlorine compounds were detected in samples collected from semipermeable membrane devices (SPMD's) collected from Lake Tahoe, tributary streams, and Upper Angora Lake. In Lake Tahoe, SPMD samples collected offshore from urbanized areas contained the largest number and highest concentrations of organochlorine compounds. The most commonly detected organochlorine compounds were cis- and trans-chlordane, p, p'-DDE, and hexachlorobenzene. In tributary streams, SPMD samples collected during spring runoff generally had higher combined concentrations of organochlorine

  8. Hydrologic and suspended-sediment data for Reelfoot Lake, Obion and Lake Counties, northwestern Tennessee, May 1985-September 1986

    USGS Publications Warehouse

    Garrett, J.W.

    1988-01-01

    Hydrologic data for Reelfoot Lake in Obion and Lake Counties, Tennessee, were collected at 4 surface water inflow stations, 1 outflow station, 2 rainfall stations, 2 lake elevation stations, and 29 wells for the period May 1, 1985 through September 30, 1986. Additionally, suspended-sediment data were collected at three stations on two of the major tributaries to the lake. (USGS)

  9. Pattern of shoreline spawning by sockeye salmon in a glacially turbid lake: evidence for subpopulation differentiation

    USGS Publications Warehouse

    Burger, C.V.; Finn, J.E.; Holland-Bartels, L.

    1995-01-01

    Alaskan sockeye salmon typically spawn in lake tributaries during summer (early run) and along clear-water lake shorelines and outlet rivers during fall (late run). Production at the glacially turbid Tustumena Lake and its outlet, the Kasilof River (south-central Alaska), was thought to be limited to a single run of sockeye salmon that spawned in the lake's clear-water tributaries. However, up to 40% of the returning sockeye salmon enumerated by sonar as they entered the lake could not be accounted for during lake tributary surveys, which suggested either substantial counting errors or that a large number of fish spawned in the lake itself. Lake shoreline spawning had not been documented in a glacially turbid system. We determined the distribution and pattern of sockeye salmon spawning in the Tustumena Lake system from 1989 to 1991 based on fish collected and radiotagged in the Kasilof River. Spawning areas and time were determined for 324 of 413 sockeye salmon tracked upstream into the lake after release. Of these, 224 fish spawned in tributaries by mid-August and 100 spawned along shoreline areas of the lake during late August. In an additional effort, a distinct late run was discovered that spawned in the Kasilof River at the end of September. Between tributary and shoreline spawners, run and spawning time distributions were significantly different. The number of shoreline spawners was relatively stable and independent of annual escapement levels during the study, which suggests that the shoreline spawning component is distinct and not surplus production from an undifferentiated run. Since Tustumena Lake has been fully deglaciated for only about 2,000 years and is still significantly influenced by glacier meltwater, this diversification of spawning populations is probably a relatively recent and ongoing event.

  10. Measurement of Hydrologic Streamflow Metrics and Estimation of Streamflow with Lumped Parameter Models in a Managed Lake System, Sebago Lake, Maine

    NASA Astrophysics Data System (ADS)

    Reeve, A. S.; Martin, D.; Smith, S. M.

    2013-12-01

    Surface waters within the Sebago Lake watershed (southern Maine, USA) provide a variety of economically and intrinsically valuable recreational, commercial and environmental services. Different stakeholder groups for the 118 km2 Sebago Lake and surrounding watershed advocate for different lake and watershed management strategies, focusing on the operation of a dam at the outflow from Sebago Lake. While lake level in Sebago Lake has been monitored for over a century, limited data is available on the hydrologic processes that drive lake level and therefore impact how dam operation (and other changes to the region) will influence the hydroperiod of the lake. To fill this information gap several tasks were undertaken including: 1) deploying data logging pressure transducers to continuously monitor stream stage in nine tributaries, 2) measuring stream discharge at these sites to create rating curves for the nine tributaries, and using the resulting continuous discharge records to 3) calibrate lumped parameter computer models based on the GR4J model, modified to include a degree-day snowmelt routine. These lumped parameter models have been integrated with a simple lake water-balance model to estimate lake level and its response to different scenarios including dam management strategies. To date, about three years of stream stage data have been used to estimate stream discharge in all monitored tributaries (data collection is ongoing). Baseflow separation indices (BFI) for 2010 and 2011 using the USGS software PART and the Eckhart digital filter in WHAT range from 0.80-0.86 in the Crooked River and Richmill Outlet,followed by Northwest (0.75) and Muddy (0.53-0.56) Rivers, with the lowest BFI measured in Sticky River (0.41-0.56). The BFI values indicate most streams have significant groundwater (or other storage) inputs. The lumped parameter watershed model has been calibrated for four streams (Nash-Sutcliffe = 0.4 to 0.9), with the other major tributaries containing

  11. Assessment of water-quality conditions in the J.B. Converse Lake watershed, Mobile County, Alabama, 1990-98

    USGS Publications Warehouse

    Journey, Celeste A.; Gill, Amy C.

    2001-01-01

    J.B. Converse (Converse) Lake is a 3,600-acre, tributary-storage reservoir in Mobile County, southwestern Alabama. The lake serves as the primary drinking-water supply for the city of Mobile. The Converse Lake watershed lies within the Coastal Plain Physiographic Province. Semiconsolidated to unconsolidated sediments of sand, silt, gravel, and clay underlie the watershed, and are covered by acidic soils. Land use in the watershed is mainly forest (64 percent) and agriculture (31 percent). Residential and commercial development account for only 1 percent of the total land use in the watershed. Converse Lake receives inflow from seven major tributaries. The greatest inflows are from Big Creek, Crooked Creek, and Hamilton Creek that had mean annual streamflows of 72.2, 19.4, and 25.0 cubic feet per second, respectively, for the period 1990 to 1998, which represents about 72 percent of the total annual streamflow to the lake. The total mean annual inflow to the lake is estimated to be about 163 cubic feet per second. In general, water quality in Converse Lake and its tributaries meets the criteria established by the Alabama Department of Environmental Management (ADEM) for drinking-water supplies, whole-body contact, and aquatic life. The exceptions include acidic pH levels, iron and manganese levels above secondary or aesthetic criteria, and fecal bacterial levels in some tributaries above whole-body contact (swimmable) criteria. The pH levels throughout the watershed were commonly below the criteria level of 6.0, but this appears to have been a naturally occurring phenomenon caused by poorly buffered soil types, resistant sediments, and forested land use. Median iron and manganese levels were above aesthetic criteria levels of 300 and 50 micrograms per liter, respectively, in some tributaries. All tributary sites in the Converse Lake watershed had median and minimum dissolved-oxygen concentrations above the ADEM criteria level of 5 milligrams per liter except for

  12. Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003

    USGS Publications Warehouse

    Sullivan, Annette B.; Rounds, Stewart A.

    2004-01-01

    The two-dimensional model CE-QUAL-W2 was used to simulate hydrodynamics, temperature, and water quality in Henry Hagg Lake, Oregon, for the years 2000 through 2003. Input data included lake bathymetry, meteorologic conditions, tributary inflows, tributary temperature and water quality, and lake outflows. Calibrated constituents included lake hydrodynamics, water temperature, orthophosphate, total phosphorus, ammonia, algae, chlorophyll a, zooplankton, and dissolved oxygen. Other simulated constituents included nitrate, dissolved and particulate organic matter, dissolved solids, and suspended sediment. Two algal groups (blue-green algae, and all other algae) were included in the model to simulate the lakes algal communities. Measured lake stage data were used to calibrate the lakes water balance; calibration of water temperature and water quality relied upon vertical profile data taken in the deepest part of the lake near the dam. The model initially was calibrated with data from 200001 and tested with data from 200203. Sensitivity tests were performed to examine the response of the model to specific parameters and coefficients, including the light-extinction coefficient, wind speed, tributary inflows of phosphorus, nitrogen and organic matter, sediment oxygen demand, algal growth rates, and zooplankton feeding preference factors.

  13. 75 FR 10229 - Application for Presidential Permit; Champlain Hudson Power Express, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    .... electric power supply system under normal and contingency conditions, and any other factors that DOE may... Power Express, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Champlain Hudson Power Express, Inc. (CHPEI) has applied for a Presidential...

  14. Water- and Bed-Sediment Quality of Seguchie Creek and Selected Wetlands Tributary to Mille Lacs Lake in Crow Wing County, Minnesota, October 2003 to October 2006

    USGS Publications Warehouse

    Fallon, James D.; Yaeger, Christine S.

    2009-01-01

    Mille Lacs Lake and its tributaries, located in east-central Minnesota, are important resources to the public. In addition, many wetlands and lakes that feed Mille Lacs Lake are of high resource quality and vulnerable to degradation. Construction of a new four-lane expansion of U.S. Highway 169 has been planned along the western part of the drainage area of Mille Lacs Lake in Crow Wing County. Concerns exist that the proposed highway could affect the resource quality of surface waters tributary to Mille Lacs Lake. Baseline water- and bed-sediment quality characteristics of surface waters tributary to Mille Lacs Lake were needed prior to the proposed highway construction. The U.S. Geological Survey, in cooperation with the Minnesota Department of Transportation, characterized the water- and bed-sediment quality at selected locations that the proposed route intersects from October 2003 to October 2006. Locations included Seguchie Creek upstream and downstream from the proposed route and three wetlands draining to Mille Lacs Lake. The mean streamflow of Seguchie Creek increased between the two sites: flow at the downstream streamflow-gaging station of 0.22 cubic meter per second was 5.6 percent greater than the mean streamflow at the upstream streamflow-gaging station of 0.21 cubic meter per second. Because of the large amount of storage immediately upstream from both gaging stations, increases in flow were gradual even during intense precipitation. The ranges of most constituent concentrations in water were nearly identical between the two sampling sites on Seguchie Creek. No concentrations exceeded applicable water-quality standards set by the State of Minnesota. Dissolved-oxygen concentrations at the downstream gaging station were less than the daily minimum standard of 4.0 milligrams per liter for 6 of 26 measurements. Constituent loads in Seguchie Creek were greater at the downstream site than the upstream site for all measured, including dissolved chloride (1

  15. Hydrologic, land cover, and seasonal patterns of waterborne pathogens in Great Lakes tributaries

    USGS Publications Warehouse

    Lenaker, Peter L.; Corsi, Steven; Borchardt, Mark A.; Spencer, Susan K.; Baldwin, Austin K.; Lutz, Michelle A.

    2017-01-01

    Great Lakes tributaries are known to deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal patterns of waterborne pathogens (i.e. protozoa (2), pathogenic bacteria (4) human viruses, (8) and bovine viruses (8)) eight rivers were monitored in the Great Lakes Basin over 29 months from February 2011 to June 2013. Sampling locations represented a wide variety of land cover classes from urban to agriculture to forest. A custom automated pathogen sampler was deployed at eight sampling locations which provided unattended, flow-weighted, large-volume (120–1630 L) sampling. Human and bovine viruses and pathogenic bacteria were detected by real-time qPCR in 16%, 14%, and 1.4% of 290 samples collected while protozoa were never detected. The most frequently detected pathogens were: bovine polyomavirus (11%), and human adenovirus C, D, F (9%). Human and bovine viruses were present in 16.9% and 14.8% of runoff-event samples (n = 189) resulting from precipitation and snowmelt, and 13.9% and 12.9% of low-flow samples (n = 101), respectively, indicating multiple delivery mechanisms could be influential. Data indicated human and bovine virus prevalence was different depending on land cover within the watershed. Occurrence, concentration, and flux of human viruses were greatest in samples from the three sampling locations with greater than 25% urban influence than those with less than 25% urban influence. Similarly, occurrence, concentration, and flux of bovine viruses were greatest in samples from the two sampling locations with greater than 50 cattle/km2 than those with less than 50 cattle/km2. In seasonal analysis, human and bovine viruses occurred more frequently in spring and winter seasons than during the fall and summer. Concentration, occurrence, and flux in the context of hydrologic condition, seasonality, and land use must be considered for each watershed individually to develop effective watershed management

  16. Modeling salinization and recovery of road salt-impacted lakes in temperate regions based on long-term monitoring of Lake George, New York (USA) and its drainage basin.

    PubMed

    Sutherland, J W; Norton, S A; Short, J W; Navitsky, C

    2018-05-08

    Road salt mitigates winter highway icing but accumulates in watershed soils and receiving waters, affecting soil chemistry and physical, biological, and ecological processes. Despite efforts to reduce salt loading in watersheds, accumulated cations and Cl - continue to impact tributaries and lakes, and the recovery process is not well understood. Lake George, New York (USA) is typical of many temperate lakes at risk for elevated Cl - concentrations from winter deicing; the lake salt concentration increased by ~3.4% year -1 since 1980. Here, we evaluated the ionic composition in Finkle Brook, a major watershed draining to Lake George, studied intermittently since 1970 and typical of other salt-impacted Lake George tributaries. Salt loading in the Lake George basin since the 1940s displaced cations from exchange sites in basin soils; these desorbed cations follow a simple ion-exchange model, with lower sodium and higher calcium, magnesium and potassium fluxes in runoff. Reduced salt application in the Finkle Brook watershed during the low-snow winter of 2015-2016 led to a 30-40% decline of Cl - and base cations in the tributary, implying a Cl - soil half-life of 1-2 years. We developed a conceptual model that describes cation behavior in runoff from a watershed that received road salt loading over a long period of time, and then recovery following reduced salt loading. Next, we developed a dynamic model estimating time to steady-state for Cl - in Lake George with road salt loading starting in 1940, calibrating the model with tributary runoff and lake chemistry data from 1970 and 1980, respectively, and forecasting Cl - concentrations in Lake George based on various scenarios of salt loading and soil retention of Cl - . Our Lake George models are readily adaptable to other temperate lakes with drainage basins where road salt is applied during freezing conditions and paved roads cover a portion of the watershed. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries.

    PubMed

    Yao, Xin; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Feng, Longqing; Cai, Linlin; Gao, Guang

    2011-01-01

    Taihu Basin is the most developed area in China, which economic development has resulted in pollutants being produced and discharged into rivers and the lake. Lake Taihu is located in the center of the basin, which is characterized by a complex network of rivers and channels. To assess the sources and fate of dissolved organic matter (DOM) in surface waters, we determined the components and abundance of chromophoric dissolved organic matter (CDOM) within Lake Taihu and 66 of its tributaries, and 22 sites along transects from two main rivers. In Lake Taihu, there was a relative less spatial variation in CDOM absorption a(CDOM)(355) with a mean of 2.46 ± 0.69 m⁻¹ compared to the mean of 3.36 ± 1.77 m⁻¹ in the rivers. Two autochthonous tryptophan-like components (C1 and C5), two humic-like components (C2 and C3), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. The C2 and C3 had a direct relationship with a(CDOM)(355), dissolved organic carbon (DOC), and chemical oxygen demand (COD). The separation of lake samples from river samples, on both axes of the Principal Component Analysis (PCA), showed the difference in DOM fluorophores between these various environments. Components C1 and C5 concurrently showed positive factor 1 loadings, while C4 was close to the negative factor 1 axis. Components C2 and C3 showed positive second factor loadings. The major contribution of autochthonous tryptophan-like components to lake samples is due to the autochthonous production of CDOM in the lake ecosystems. The results also showed that the differences in geology and associated land use control CDOM dynamics, such as the high levels of CDOM with terrestrial characteristics in the northwestern upstream rivers and low levels of CDOM with increased microbial characteristics in the southwestern upstream rivers. Most of river samples from the downstream regions in the eastern and southeastern plains had a

  18. Genetic differentiation of sockeye salmon subpopulations from a geologically young Alaskan lake system

    USGS Publications Warehouse

    Burger, C.V.; Spearman, William J.; Cronin, M.A.

    1997-01-01

    The Tustumena lake drainage in southcentral Alaska is glacially turbid and geologically young (<2,000 years old). Previous field studies identified at least three subpopulations of sockeye salmon Oncorhynchus nerka at Tustumena Lake, based on the distribution and timing of spawners. The subpopulations included early-run salmon that spawned in six clearwater tributaries of the lake (mid August), lake shoreline spawners (late August), and late-run fish that spawned in the lake's outlet, the Kasilof River (late September). Our objective was to determine the degree of genetic differentiation among these subpopulations based on restriction enzyme analyses of the cytochrome b gene of mitochondrial DNA and analyses of four polymorphic allozyme loci. Mitochondrial DNA haplotype frequencies for outlet-spawning sockeye salmon differed significantly from those of all other subpopulations. The most common (36%) haplotype in the outlet subpopulation did not occur elsewhere, thus suggesting little or no gene flow between outlet spawners and other spatially close subpopulations at Tustumena Lake. Allele frequencies at two allozyme loci also indicated a degree of differentiation of the outlet subpopulation from the shoreline and tributary subpopulations. Allele frequencies for three tributary subpopulations were temporally stable over approximately 20 years (based on a comparison to previously published results) despite initiation of a hatchery program in two of the tributaries during the intervening period. Collectively, our results are consistent with the hypothesis that significant genetic differentiation has occurred within the Tustumena Lake drainage since deglaciation approximately 2,000 years ago.

  19. LAKE MICHIGAN MASS BALANCE STUDY UPDATE

    EPA Science Inventory

    A 2005 field design of tributary and open Lake Michigan sampling will be discussed for the first time at this Council meeting. The sample design is expected to aid in determining whether or not contaminant loads and open lake concentrations have decreased over the past 10 years s...

  20. Concentrations and Loads of Nutrients and Suspended Sediments in Englesby Brook and Little Otter Creek, Lake Champlain Basin, Vermont, 2000-2005

    USGS Publications Warehouse

    Medalie, Laura

    2007-01-01

    The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek

  1. Hydraulic and water-quality data collection for the investigation of Great Lakes tributaries for Asian carp spawning and egg-transport suitability

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Jackson, P. Ryan

    2013-01-01

    While hydraulic data from all four rivers indicated settling of eggs is possible in some locations, all four rivers also exhibited sufficient temperatures, water-quality characteristics, turbulence, and transport times outside of settling zones for successful suspension and development of Asian carp eggs to the hatching stage before the threat of settlement. These observed data indicate that these four Great Lakes tributaries have sufficient hydraulic and water-quality characteristics to support successful spawning and recruitment of Asian carps. The data indicate that with the right temperature and flow conditions, river reaches as short as 25 km may allow Asian carp eggs sufficient time to develop to hatching. Additionally, examining the relation between critical shear velocity and mean velocity, egg settling appears to take place at mean velocities in the range of 15–25 centimeters per second, a much lower value than is generally cited in the literature. A first-order estimate of the minimum transport velocity for Asian carp eggs in a river can be obtained by using mean flow depth and river substrate data, and curves were constructed to show this relation. These findings would expand the number of possible tributaries suitable for Asian carp spawning and contribute to the understanding of how hydraulic and water-quality information can be used to screen additional rivers in the future.

  2. Seasonal variation in habitat use of juvenile Steelhead in a tributary of Lake Ontario

    USGS Publications Warehouse

    Studdert, Emily W.; Johnson, James H.

    2015-01-01

    We examined seasonal-habitat use by subyearling and yearling Oncorhynchus mykiss (Rainbow Trout or Steelhead) in Trout Brook, a tributary of the Salmon River, NY. We determined daytime fish-habitat use and available habitat during August and October of the same year and observed differences in habitat selection among year classes. Water depth and cover played the greatest role in Steelhead habitat use. During summer and autumn, we found yearling Steelhead in areas with deeper water and more cover than where we observed subyearling Steelhead. Both year classes sought out areas with abundant cover during both seasons; this habitat was limited within the stream reach. Subyearling Steelhead were associated with more cover during autumn, even though available cover within the stream reach was greater during summer. Principal component analysis showed that variation in seasonal-habitat use was most pronounced for subyearling Steelhead and that yearling Steelhead were more selective in their habitat use than subyearling Steelhead. The results of this study contribute to a greater understanding of how this popular sportfish is adapting to a new environment and the factors that may limit juvenile Steelhead survival. Our findings provide valuable new insights into the seasonal-habitat requirements of subyearling and yearling Steelhead that can be used by fisheries managers to enhance and protect the species throughout the Great Lakes region.

  3. Updated polychlorinated biphenyl mass budget for Lake Michigan

    EPA Science Inventory

    This study revisits and updates the Lake Michigan Mass Balance Project (LMMBP) for polychlorinated biphenyls (PCBs) that was conducted in 1994-1995. This work uses recent concentrations of PCBs in tributary and open lake water, air, and sediment to calculate an updated mass budg...

  4. Bathymetric mapping, sediment quality, and water quality of Lake Delhi, Iowa, 2001-02

    USGS Publications Warehouse

    Schnoebelen, Douglas J.; McVay, Jason C.; Barnes, Kimberlee K.; Becher, Kent D.

    2003-01-01

    Water-quality sampling results indicate areas affected by elevated nutrient and bacteria concentrations in the lake and tributary streams. The tributary streams had the highest median nitrate concentrations (12.1 milligrams per liter) when compared to median nitrate concentrations in the lake (8.7 milligrams per liter) or the Maquoketa River (10.5 milligrams per liter). The maximum nitrate concentrations detected for Maquoketa River, lake, and tributary sites were 13.5, 13.5, and 18.6 milligrams per liter, respectively. Nitrate concentrations in the late summer decreased from 2 Bathymetric Mapping, Sediment Quality, and Water Quality of Lake Delhi, Iowa, 2001–02 the upstream (7.8 milligrams per liter) to the downstream (5.0 milligrams per liter) one-third of Lake Delhi and most likely were the result of uptake of nitrate by algae and aquatic biota in the lake. Median concentrations of total coliform and E. coli bacteria for the lake sites were 450 and 17 colonies per 100 milliliters of sample, respectively. The U.S. Environmental Protection Agency criteria for full body contact (swimming or bathing) are 200 colonies per 100 milliliters for fecal bacteria and 126 colonies per 100 milliliters for E. coli bacteria. The highest bacteria concentrations in the lake occurred after a rain and were 25,000 colonies per 100 milliliters total coliform and 1,900 colonies per 100 milliliters E. coli.

  5. Hydraulic connectivity and evaporation control the water quality and sources of chromophoric dissolved organic matter in Lake Bosten in arid northwest China.

    PubMed

    Zhou, Lei; Zhou, Yongqiang; Hu, Yang; Cai, Jian; Bai, Chengrong; Shao, Keqiang; Gao, Guang; Zhang, Yunlin; Jeppesen, Erik; Tang, Xiangming

    2017-12-01

    Lake Bosten is the largest oligosaline lake in arid northwestern China, and water from its tributaries and evaporation control the water balance of the lake. In this study, water quality and chromophoric dissolved organic matter (CDOM) absorption and fluorescence were investigated in different seasons to elucidate how hydraulic connectivity and evaporation may affect the water quality and variability of CDOM in the lake. Mean suspended solids and turbidity were significantly higher in the upstream tributaries than in the lake, the difference being notably more pronounced in the wet than in the dry season. A markedly higher mean first principal component (PC1) score, which was significantly positively related to protein-like components, and a considerably lower fluorescence peak integration ratio - I C :I T , indicative of the terrestrial humic-like CDOM contribution percentage, were observed in the lake than in the upstream tributaries. Correspondingly, notably higher contribution percentages of terrestrial humic-like components were observed in the river mouth areas than in the remaining lake regions. Furthermore, significantly higher mean turbidity, and notably lower mean conductivity and salinity, were recorded in the southwestern Kaidu river mouth than in the remaining lake regions in the wet season. Notably higher mean salinity is recorded in Lake Bosten than in upstream tributaries. Autochthonous protein-like associated amino-acids and also PC1 scores increased significantly with increasing salinity. We conclude that the dynamics of water quality and CDOM composition in remote arid Lake Bosten are strongly driven by evaporation and also the hydraulic connectivity between the upstream tributaries and the downstream lake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. NPDES Permit for Phoenix Production Company – Rolff Lake Unit in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-002494, Phoenix Production Company is authorized to discharge from its Rolff Lake Unit wastewater treatment facility in Fremont County, Wyoming, to an unnamed ephemeral tributary of Dry Creek, which is tributary to the Wind River.

  7. Water-quality and lake-stage data for Wisconsin lakes, water year 1996

    USGS Publications Warehouse

    ,

    1997-01-01

    The purpose of this report is to provide information about the physical and chemical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected includes measurements of lake stage and in-lake water quality. Graphs of Secchi depths, surface totalphosphorus and chlorophyll-a concentrations versus time are included for lakes with two or more years of data. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, drainage area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: "Water Resources Data-Wisconsin, 1996."

  8. Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries.

    PubMed

    Liu, Dan; Liu, Jining; Guo, Min; Xu, Huaizhou; Zhang, Shenghu; Shi, Lili; Yao, Cheng

    2016-11-15

    The occurrence and distribution of nine selected compounds were investigated in surface water, suspended particulate matter (SPM), and sediment in Taihu Lake and its tributaries. With the exception of 4-Butylphenol, all compounds were detected in at least two phases, and nonylphenol (NP) and 4-tert-Octylphenol (4-OP) were the predominant alkylphenols (APs) in the lake. A significant correlation was observed between NP and 4-OP, indicating that they may share the same source. Moreover, surface water phase was the dominant sink of Bisphenol A (BPA) in the aquatic environment. The concentrations of BPA between the surface water and SPM phases were closely related to each other. In addition, Tetrabromobisphenol A (TBBPA) exhibited relatively higher concentrations and detection frequencies in the SPM. Risk assessment revealed greater risk associated with the surface water than the sediment, indicating that the discharge of industrial wastewater and domestic sewage poses a serious threat to aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries.

    PubMed

    Balasingham, Katherine D; Walter, Ryan P; Mandrak, Nicholas E; Heath, Daniel D

    2018-01-01

    The extraction and characterization of DNA from aquatic environmental samples offers an alternative, noninvasive approach for the detection of rare species. Environmental DNA, coupled with PCR and next-generation sequencing ("metabarcoding"), has proven to be very sensitive for the detection of rare aquatic species. Our study used a custom-designed group-specific primer set and next-generation sequencing for the detection of three species at risk (Eastern Sand Darter, Ammocrypta pellucida; Northern Madtom, Noturus stigmosus; and Silver Shiner, Notropis photogenis), one invasive species (Round Goby, Neogobius melanostomus) and an additional 78 native species from two large Great Lakes tributary rivers in southern Ontario, Canada: the Grand River and the Sydenham River. Of 82 fish species detected in both rivers using capture-based and eDNA methods, our eDNA method detected 86.2% and 72.0% of the fish species in the Grand River and the Sydenham River, respectively, which included our four target species. Our analyses also identified significant positive and negative species co-occurrence patterns between our target species and other identified species. Our results demonstrate that eDNA metabarcoding that targets the fish community as well as individual species of interest provides a better understanding of factors affecting the target species spatial distribution in an ecosystem than possible with only target species data. Additionally, eDNA is easily implemented as an initial survey tool, or alongside capture-based methods, for improved mapping of species distribution patterns. © 2017 John Wiley & Sons Ltd.

  10. Biliary PAH metabolites and the hepatosomatic index of brown bullheads from Lake Erie tributaries

    USGS Publications Warehouse

    Yang, X.; Baumann, P.C.

    2006-01-01

    In studies designed to investigate the environmental exposure of fish in Lake Erie tributaries, a benthic fish, the brown bullhead (Ameiurus nebulosus), was collected from the industrially contaminated Detroit River, Ottawa River, Black River, Cuyahoga River-harbor and -upstream, Ashtabula River, Buffalo River, and Niagara River, and the non-industrialized Old Woman Creek during 1997-2000. Biliary benzo[a]pyrene (B[a]P)- and naphthalene (NAPH)-type metabolites and the hepatosomatic index (HSI) were measured in fish and compared between different sites. Fish from all of the contaminated sites except Niagara River had significantly higher concentrations of both types of polycyclic aromatic hydrocarbon (PAH) metabolites than fish from the Old Woman Creek. Concentrations of PAH metabolites in bile of fish were positively associated with concentrations of PAHs in sediments, supporting the use of bile metabolites as a measure of PAH exposure. Relatively low concentrations of PAHs detected in fish bile and sediments of the Niagara River, which had undergone extensive remediation, suggested a lowered PAH exposure for fish at this site. No apparent trend was observed in HSI between the industrialized and non-industrialized sites. This study demonstrates that biliary PAH metabolites are an effective indicator of exposure of fish to PAHs. However, because factors other than contamination could also affect the liver size of wild fish, HSI alone may be not a reliable biomarker for assessing contaminant stress. ?? 2005 Elsevier Ltd. All rights reserved.

  11. Predation on Pacific salmonid eggs and carcass's by subyearling Atlantic salmon in a tributary of Lake Ontario

    USGS Publications Warehouse

    Johnson, James H.; Chalupnicki, Marc A.; Abbett, Ross; Verdoliva, Francis

    2016-01-01

    A binational effort to reintroduce Atlantic salmon (Salmo salar) that were extirpated in the Lake Ontario ecosystem for over a century is currently being undertaken by the New York State Department of Environmental Conservation and the Ontario Ministry of Natural Resources. Reintroduction actions include the release of several life stages including fry, fall fingerlings, and yearling smolts. In this study we describe the diet of recently released fall fingerling Atlantic salmon in a tributary of the Salmon River, New York. A specific objective of the study was to determine if juvenile Atlantic salmon would utilize the high caloric food source provided by introduced Pacific salmonids (Oncorhynchus spp.) that includes eggs and carcass flesh. Salmon eggs and carcass flesh comprised 20.5% of the October to January diet in 2013–14 and 23.9% in 2014–15. The consumption of steelhead (O. mykiss) eggs was a major part of the diet in April in both 2014 (54.1%) and 2015 (33.2%). This study documented that recently released Atlantic salmon will consume the high caloric food material provided by Pacific salmonids and that the consumption of this material extends for several months.

  12. [Sources of dissolved organic carbon and the bioavailability of dissolved carbohydrates in the tributaries of Lake Taihu].

    PubMed

    Ye, Lin-Lin; Wu, Xiao-Dong; Kong, Fan-Xiang; Liu, Bo; Yan, De-Zhi

    2015-03-01

    Surface water samples of Yincungang and Chendonggang Rivers were collected from September 2012 to August 2013 in Lake Taihu. Water temperature, Chlorophyll a and bacterial abundance were analyzed, as well as dissolved organic carbon (DOC) concentrations, stable carbon isotope of DOC (Δ13C(DOC)), specific UV absorbance (SUVA254 ) and dissolved carbohydrates concentrations. Δ13C(DOC) ranged from -27.03% per thousand ± 0.30% per thousand to -23.38%per thousand ± 0.20% per thousand, indicating a terrestrial source. Both the autochthonous and allochthonous sources contributed to the carbohydrates pool in the tributaries. Significant differences in PCHO (polysaccharides) and MCHO (monosaccharides) concentrations were observed between spring-summer and autumn-winter (P < 0.01, n = 12; P < 0.01, n = 12), which might be caused by the variation in the sources and bioavailability of carbohydrates. PCHO contributed a major fraction to TCHO (total dissolved carbohydrates) in autumn and winter, which could be explained by the accumulation of undegradable PCHO limited by the low water temperature; MCHO contributed a major fraction to TCHO in spring and summer, which might be caused by the transformation from PCHO by microbes at high water temperature.

  13. Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan

    USGS Publications Warehouse

    Liu, L.; Phanikumar, M.S.; Molloy, S.L.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.; Schwab, D.J.; Rose, J.B.

    2006-01-01

    To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risks associated with swimming, the near-shore waters of Lake Michigan and two tributaries discharging into it were examined for bacterial indicators of human fecal pollution. The enterococcus human fecal pollution marker, which targets a putative virulence factorthe enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) in the tributaries draining into Lake Michigan and in 6/30 samples (20%) in Lake Michigan beaches. This was indicative of human fecal pollution being transported in the tributaries and occurrence at Lake Michigan beaches. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, E. coli and enterococci) was used. Enterococci appear to survive longer than E. coli, which was described using an overall first-order inactivation coefficient in the range 0.5−2.0 per day. Our analysis suggests that the majority of fecal indicator bacteria variation can be explained based on loadings from the tributaries. Sunlight is a major contributor to inactivation in the surf-zone and the formulation based on sunlight, temperature and sedimentation is preferred over the first-order inactivation formulation.

  14. Sediments as tracers for transport and deposition processes in peri-alpine lakes: A case study

    NASA Astrophysics Data System (ADS)

    Righetti, Maurizio; Toffolon, Marco; Lucarelli, Corrado; Serafini, Michele

    2011-12-01

    SummaryThe benthic sediment fingerprint is analysed in the small peri-alpine lake Levico (Trentino, Italy) to identify the causes of recurrent phenomena of turbidity peaks, particularly evident in a littoral region of the water body. In order to study the sediment transport processes, we exploit the fact that the sediment supply from the major tributary has a specific chemical composition, which differs from that of the nearby lake basin. Three elements (Fe, Al, K) have been used as tracers to identify the source and the deposition patterns of tributary sediments, and another typical element, Si, has been critically analysed because of its dual (allochthonous and autochthonous) origin. Several samples of the benthic material have been analysed using SEM-EDS, and the results of the sedimentological characterisation have been compared with the patterns of sediment accumulation at the bed of the lake obtained using a three-dimensional numerical model, in response to the tributary supply under different external forcing and stratification conditions. The coupled use of field measurements and numerical results suggests that the turbidity phenomena are strongly related to the deposition of the sediments supplied by the tributary stream, and shows that it is possible to reconstruct the process of local transport when the tributary inflow is chemically specific.

  15. Impacts of Changing Precipitation on Natural Organic Matter and Microorganisms in Lakes and Reservoirs

    EPA Science Inventory

    Changes in watershed hydrology affect runoff of natural organic matter and contaminants that can in turn have important effects on water quality in lakes. We analyzed data obtain at lakes, reservoirs, and nearby riverine tributaries in Wisconsin (Lake Michigan), the Poconos, and ...

  16. Lake Superior Coastal Wetland Fish Assemblages and ...

    EPA Pesticide Factsheets

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators of the lake-basin connection. We explored wetland-watershed connections and their relationship to wetland function and condition using data collected from 37 Lake Superior wetlands spanning a substantial geographic and geomorphic gradient. While none of these wetlands are particularly disturbed, there were nevertheless clear relationships between watershed landuse and wetland habitat and biota, and these varied consistently across wetland type categories that reflected the strength of connection to the watershed. For example, water clarity and vegetation structure complexity declined with decreasing percent natural land cover, and these effects were strongest in riverine wetlands (having generally large watersheds and tributary-dominated hydrology) and weakest in lagoon wetlands (having generally small watersheds and lake-dominate hydrology). Fish abundance and species richness both increased with decreasing percent natural land cover while species diversity decreased, and again the effect was strongest in riverine wetlands. Lagoonal wetlands, which lack any substantial tributary, consistently harbored the fewest species of fish and a composition different from the more watershed-lin

  17. Temporal and spatial changes in nutrients and chlorophyll-a in a shallow lake, Lake Chaohu, China: an 11-year investigation.

    PubMed

    Yang, Libiao; Lei, Kun; Meng, Wei; Fu, Guo; Yan, Weijin

    2013-06-01

    Temporal and spatial changes of total nitrogen (TN), total phosphorus (TP) and chlorophyll-a (Chl-a) in a shallow lake, Lake Chaohu, China, were investigated using monthly monitoring data from 2001 through 2011. The results showed that the annual mean concentration ranges of TN, TP, and Chl-a were 0.08-14.60 mg/L, 0.02-1.08 mg/L, and 0.10-465.90 microg/L, respectively. Our data showed that Lake Chaohu was highly eutrophic and that water quality showed no substantial improvement during 2001 through 2011. The mean concentrations of TP, TN and Chl-a in the western lake were significantly higher than in the eastern lake, which indicates a spatial distribution of the three water parameters. The annual mean ratio of TN:TP by weight ranged from 10 to 20, indicating that phosphorus was the limiting nutrient in this lake. A similar seasonality variation for TP and Chl-a was observed. Riverine TP and NH4+ loading from eight major tributaries were in the range of 1.56 x 10(4)-5.47 x 10(4) and 0.19 x 10(4)-0.51 x 10(4) tons/yr over 2002-2011, respectively, and exceeded the water environmental capability of the two nutrients in the lake by a factor of 3-6. Thus reduction of nutrient loading in the sub-watershed and tributaries would be essential for the restoration of Lake Chaohu.

  18. Trends in phosphorus loading to the western basin of Lake ...

    EPA Pesticide Factsheets

    Dave Dolan spent much of his career computing and compiling phosphorus loads to the Great Lakes. None of his work in this area has been more valuable than his continued load estimates to Lake Erie, which has allowed us to unambiguously interpret the cyanobacteria blooms and hypoxia development in the lake. To help understand the re-occurrence of cyanobacteria blooms in the Western Basin of Lake Erie, we have examined the phosphorus loading to the Western Basin over the past 15 years. Furthermore, we have examined the relative contributions from various tributaries and the Detroit River. On an annual basis the total phosphorus load has not exhibited a trend, other than being well correlated with flow from major tributaries. However, the dissolved reactive phosphorus (DRP) load has trended upward, returning to levels observed in the mid-1970s. This increase has largely been attributed to the increase in flow-weighted DRP concentration in the Maumee River. Over the period, about half of the phosphorus load comes from the Maumee River with the other half coming from the Detroit River; other tributaries contribute much small amounts to the load. Seasonal analysis shows the highest percentage of the load occurs in the spring during high flow events. We are very grateful to our friend Dave for making this type of analysis possible not applicable

  19. Who messed up my lake?

    EPA Science Inventory

    Initial results from a lake-wide agent based simulation releasing virtual drifters from multiple tributaries over time. We examine the use of agent based modeling to break down the sources contributing to the composition of nearshore waters. Knowing that flow is highly biased in ...

  20. 78 FR 76140 - Extension of Public Comment Period for the Champlain Hudson Power Express Transmission Line...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... Transmission Line Project Draft Environmental Impact Statement AGENCY: Department of Energy. ACTION: Extension... comment period for the Champlain Hudson Power Express Transmission Line Project Draft Environmental Impact Statement (DOE/EIS-0447). The Draft EIS evaluates the environmental impacts of DOE's proposed Federal action...

  1. Lake levels, streamflow, and surface-water quality in the Devils Lake area, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.

    1996-01-01

    The Devils Lake Basin is a 3,810-square-mile (mi2) closed basin (fig. 1) in the Red River of the North Basin. About 3,320 mi2 of the total 3,810 mi2 is tributary to Devils Lake; the remainder is tributary to Stump Lake.Since glaciation, the lake level of Devils Lake has fluctuated from about 1,457 feet (ft) above sea level (asl), the natural spill elevation of the lake to the Sheyenne River, to 1,400 ft asl (Aronow, 1957). Although no documented records of lake levels are available before 1867, Upham (1895, p. 595), on the basis of tree-ring chronology, indicated that the lake level was 1,441 ft asl in 1830. Lake levels were recorded sporadically from 1867 to 1901 when the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 to the present (1996), the lake level has fluctuated between a maximum of 1,438.4 ft asl in 1867 and a minimum of 1,400.9 ft asl in 1940 (fig. 2). On July 31, 1996, the lake level was 1,437.8 ft asl, about 15.2 ft higher than the level recorded in February 1993 and the highest level in about 120 years.Since 1993, the lake level of Devils Lake (fig. 2) has risen rapidly in response to above-normal precipitation from the summer of 1993 to the present, and 30,000 acres of land around the lake have been flooded. The above-normal precipitation also has caused flooding elsewhere in the Devils Lake Basin. State highways near Devils Lake are being raised, and some local roads have been closed because of flooding.In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) solutions to reduce the effects of high lake levels. In addition to various planning studies being conducted by Federal agencies, the North Dakota State Water Commission has implemented a project to store water on small tracts of land and in the chain of lakes (Sweetwater Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake

  2. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  3. Dynamic in-lake spawning migrations by female sockeye salmon

    USGS Publications Warehouse

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    Precise homing by salmon to natal habitats is considered the primary mechanism in the evolution of population-specific traits, yet few studies have focused on this final phase of their spawning migration. We radio tagged 157 female sockeye salmon (Oncorhynchus nerka) as they entered Lake Clark, Alaska, and tracked them every 1-10 days to their spawning locations. Contrary to past research, no specific shoreline migration pattern was observed (e.g., clockwise) nor did fish enter a tributary unless they spawned in that tributary. Tributary spawning fish migrated faster (mean = 4.7 km??day-1, SD = 2.7, vs. 1.6 km??day-1, SD = 2.1) and more directly (mean linearity = 0.8, SD = 0.2, vs. 0.4, SD = 0.2) than Lake Clark beach spawning fish. Although radio-tagged salmon migrated to within 5 km of their final spawning location in an average of 21.2 days (SD = 13.2), some fish migrated five times the distance necessary and over 50 days to reach their spawning destination. These results demonstrate the dynamic nature of this final phase of migration and support studies indicating a higher degree of homing precision by tributary spawning fish. ?? Journal compilation 2007 Blackwell Munksgaard No claim to original US government works.

  4. Limnological study of Shasta Lake, Shasta County, California, with emphasis on the effects of the 1977 drought

    USGS Publications Warehouse

    Rettig, S.A.; Bortleson, Gilbert C.

    1983-01-01

    An intensive limnological study of Shasta Lake was made in conjunction with the California Department of Water Resources during the 1977 drought. Water-quality data were collected from March 1977 through September 1978 at six lake stations and four lake tributary stations. Data collected during and after the drought were compared. Lake water quality is described as a function of lake morphometry, climate, hydrology, and reservoir hydraulics. Results indicate Shasta Lake is a warm monomictic lake. Tributary inflow to the lake and outflow through the dam generate density currents which promote mixing at depth and the development of an extensive metalimnion. During the drought, record low lake levels resulted in the exposure of an extensive nearshore sediment zone. Resuspended sediments caused a deterioration of water quality. The most notable effects, in comparison with post-drought conditions, were decreased light penetration, increased dissolved-solids concentration and specific conductance, decreased dissolved-oxygen concentrations, and elevated nutrient levels. A hypolimnetic anoxic condition was observed at the upstream stations of the lake. (USGS)

  5. Hydrologic Analyses of Acidic and Alkaline Lakes

    NASA Astrophysics Data System (ADS)

    Chen, C. W.; Gherini, S. A.; Peters, N. E.; Murdoch, P. S.; Newton, R. M.; Goldstein, R. A.

    1984-12-01

    Woods and Panther lakes in the Adirondack Mountains of New York respond differently to the same acidic deposition. A mathematical model study has shown that lake water becomes acidic when hydrologic conditions force precipitation to flow to the lakes as surface flow or as lateral flow through the shallow organic soil horizon. Hydrographic data, capacity of flow through inorganic soil horizons, runoff recession curves, and groundwater level fluctuations of Woods and Panther lake basins provide independent evidence to support the thesis that the acidic state of a lake depends on the paths the tributary water takes as it passes thorough the terrestrial system. It is concluded thot Panther Lake is more alkaline than Woods Lake, because a larger proportion of the precipitation falling on the basin passes through deeper mineral soil horizons.

  6. Quantification of a male sea lamprey pheromone in tributaries of Laurentian Great Lakes by liquid chromatography-tandem mass spectrometry

    USGS Publications Warehouse

    Xi, X.; Johnson, N.S.; Brant, C.O.; Yun, S.-S.; Chambers, K.L.; Jones, A.D.; Li, W.

    2011-01-01

    We developed an assay for measuring 7α,12α,24-trihydroxy-5a-cholan-3-one-24-sulfate (3kPZS), a mating pheromone released by male sea lampreys (Petromyzon marinus), at low picomolar concentrations in natural waters to assess the presence of invasive populations. 3kPZS was extracted from streamwater at a rate of recovery up to 90% using a single cation-exchange and reversed-phase mixed-mode cartridge, along with [2H5]3kPZS as an internal standard, and quantified using ultrahigh performance liquid chromatography-tandem mass spectrometry. The limit of detection was below 0.1 ng L–1 (210 fM), which was the lowest concentration tested. Intra- and interday coefficients of variation were between 0.3–11.6% and 4.8–9.8%, respectively, at 1 ng 3kPZS L–1 and 5 ng 3kPZS L–1. This assay was validated by repeat measurements of water samples from a stream spiked with synthesized 3kPZS to reach 4.74 ng L–1 or 0.24 ng L–1. We further verified the utility of this assay to detect spawning populations of lampreys; in the seven tributaries to the Laurentian Great Lakes sampled, 3kPZS concentrations were found to range between 0.15 and 2.85 ng L–1 during the spawning season in known sea lamprey infested segments and were not detectable in uninfested segments. The 3kPZS assay may be useful for the integrated management of sea lamprey, an invasive species in the Great Lakes where pheromone-based control and assessment techniques are desired.

  7. An investigation of size-fractionated organic matter from Lake Superior and a tributary stream using radiocarbon, stable isotopes and NMR

    NASA Astrophysics Data System (ADS)

    Zigah, Prosper K.; Minor, Elizabeth C.; Abdulla, Hussain A. N.; Werne, Josef P.; Hatcher, Patrick G.

    2014-02-01

    This study investigated the concentration and isotopic composition of different size fractions of organic matter (OM) in Lake Superior and in one of its many tributary streams and rivers (Amity Creek, Duluth, Minnesota, USA). Structural compositional drivers of the Δ14C of high molecular weight (HMW, >1 kDa) dissolved organic carbon (DOC) in the lake were also evaluated. Low molecular weight (LMW, <1 kDa) DOC was the fraction containing the largest proportion (68-88%) of organic carbon (OC) in the lake. Particulate organic carbon (POC, >0.7 μm) was generally 13C-depleted (-29 ± 1.2‰) relative to “bulk” (<0.7 μm) DOC (-26.4 ± 0.7‰), “init” (<0.2 μm) DOC (-26.6 ± 0.8‰), HMW DOC (-26.9 ± 0.3‰) and LMW DOC (-26.5 ± 0.9‰), and had more variable 14C content (Δ14C of -94‰ to 53‰; 735 years BP to modern) than the other size fractions. Init DOC (Δ14C of 17-59‰), HMW DOC (Δ14C of 23-64‰) and LMW DOC (Δ14C of 16-62‰) all reflected contemporary (modern) radiocarbon signatures. Bulk DOC (Δ14C of -19‰ to 57‰; 90 years BP to modern) had modern radiocarbon values in the offshore sites (Δ14C of 2-57‰) with pre-aged samples (Δ14C of -8‰ to -19‰) seen at the nearshore site. HMW DOM was relatively N-poor (C:N of 12-19) compared to particulate organic matter (POM, C:N of 8-10) revealing either a more diagenetically altered state or contrasting sources. 13C NMR data showed that biochemical composition of HMW DOC in Lake Superior was dominated by carbohydrates (53-65%) with only trace aromatic components (2-4%). Structurally complex components such as heteropolysaccharides (HPS), amide/peptides and amino sugars (AMS) constitute 75-84% of HMW DOC whereas carboxylic-rich alicyclic molecules (CRAM) made up 16-25% of HMW DOC in the lake. Combined HPS and AMS, O-alkyl carbohydrate carbon, and total carbohydrate carbon contents were significantly positively correlated to the Δ14C of HMW DOC suggesting they contribute a contemporary 14C

  8. Eutrophication monitoring for Lake Superior’s Chequamegon Bay before and after large summer storms

    EPA Science Inventory

    A priority for the Lake Superior CSMI was to identify susceptible nearshore eutrophication areas. We developed an integrated sampling design to collect baseline data for Lake Superior’s Chequamegon Bay to understand how nearshore physical processes and tributary loading rel...

  9. Fluorescence characterization of fractionated dissolved organic matter in the five tributaries of Poyang Lake, China.

    PubMed

    Yan, Caixia; Liu, Huihui; Sheng, Yanru; Huang, Xian; Nie, Minghua; Huang, Qi; Baalousha, Mohammed

    2018-10-01

    Characterization of natural colloids is the key to understand pollutant fate and transport in the environment. The present study investigates the relationship between size and fluorescence properties of colloidal organic matter (COM) from five tributaries of Poyang Lake. Colloids were size-fractionated using cross-flow ultrafiltration and their fluorescence properties were measured by three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM). Parallel factor analysis (PARAFAC) and/or Self-organizing map (SOM) were applied to assess fluorescence properties as proxy indicators for the different size of colloids. PARAFAC analysis identified four fluorescence components including three humic-like components (C1-C3) and a protein-like component (C4). These four fluorescence components, and in particular the protein-like component, are primarily present in <1 kDa phase. For the colloidal fractions (1-10 kDa, 10-100 kDa, and 100 kDa-0.7 μm), the majority of fluorophores are associated with the smallest size fraction. SOM analysis demonstrated that relatively high fluorescence intensity and aromaticity occur primarily in <1 kDa phase, followed by 1-10 kDa colloids. Coupling PARAFAC and SOM facilitate the visualization and interpretation of the relationship between colloidal size and fluorescence properties with fewer input variables, shorter running time, higher reliability, and nondestructive results. Fluorescence indices analysis reveals that the smallest colloidal fraction (1-10 kDa) was dominated by higher humified and less autochthonous COM. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Isotopic Survey of Lake Davis and the Local Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, M N; Moran, J E; Singleton, M J

    2007-08-21

    In September 2007, California Fish and Game (CAFG) plans to eradicate the northern pike from Lake Davis. As a result of the eradication treatment, local residents have concerns that the treatment might impact the local groundwater quality. To address the concerns of the residents, Lawrence Livermore National Laboratory (LLNL) recommended measuring the naturally occurring stable oxygen isotopes in local groundwater wells, Lake Davis, and the Lake Davis tributaries. The purpose of these measurements is to determine if the source of the local groundwater is either rain/snowmelt, Lake Davis/Big Grizzly Creek water or a mixture of Lake Davis/Big Grizzly Creek andmore » rain/snowmelt. As a result of natural evaporation, Lake Davis and the water flowing into Big Grizzly Creek are naturally enriched in {sup 18}oxygen ({sup 18}O), and if a source of a well's water is Lake Davis or Big Grizzly Creek, the well water will contain a much higher concentration of {sup 18}O. This survey will allow for the identification of groundwater wells whose water source is Lake Davis or Big Grizzly Creek. The results of this survey will be useful in the development of a water-quality monitoring program for the upcoming Lake Davis treatment. LLNL analyzed 167 groundwater wells (Table 1), 12 monthly samples from Lake Davis (Table 2), 3 samples from Lake Davis tributaries (Table 2), and 8 Big Grizzly Creek samples (Table 2). Of the 167 groundwater wells sampled and analyzed, only 2 wells contained a significant component of evaporated water, with an isotope composition similar to Lake Davis water. The other 163 groundwater wells have isotope compositions which indicate that their water source is rain/snowmelt.« less

  11. Lake trout (Salvelinus namaycush) suppression for bull trout (Salvelinus confluentus) recovery in Flathead Lake, Montana, North America

    USGS Publications Warehouse

    Hansen, Michael J.; Hansen, Barry S; Beauchamp, David A.

    2016-01-01

    Non-native lake trout Salvelinus namaycush displaced native bull trout Salvelinus confluentus in Flathead Lake, Montana, USA, after 1984, when Mysis diluviana became abundant following its introduction in upstream lakes in 1968–1976. We developed a simulation model to determine the fishing mortality rate on lake trout that would enable bull trout recovery. Model simulations indicated that suppression of adult lake trout by 75% from current abundance would reduce predation on bull trout by 90%. Current removals of lake trout through incentivized fishing contests has not been sufficient to suppress lake trout abundance estimated by mark-recapture or indexed by stratified-random gill netting. In contrast, size structure, body condition, mortality, and maturity are changing consistent with a density-dependent reduction in lake trout abundance. Population modeling indicated total fishing effort would need to increase 3-fold to reduce adult lake trout population density by 75%. We conclude that increased fishing effort would suppress lake trout population density and predation on juvenile bull trout, and thereby enable higher abundance of adult bull trout in Flathead Lake and its tributaries.

  12. Regression models to estimate real-time concentrations of selected constituents in two tributaries to Lake Houston near Houston, Texas, 2005-07

    USGS Publications Warehouse

    Oden, Timothy D.; Asquith, William H.; Milburn, Matthew S.

    2009-01-01

    estimated concentration by the corresponding streamflow and applying the appropriate conversion factor. By computing loads from estimated constituent concentrations, a continuous record of estimated loads can be available for comparison to total maximum daily loads. The regression equations presented in this report are site specific to the Spring Creek and East Fork San Jacinto River streamflow-gaging stations; however, the methods that were developed and documented could be applied to other tributaries to Lake Houston for estimating real-time water-quality data for streams entering Lake Houston.

  13. Across Hydrological Interfaces from Coastal Watersheds to the Open Lake: Finding Landscape Signals in the Great Lakes Coastal Zone

    EPA Science Inventory

    Over the past decade, our group has been working to bring coastal ecosystems into integrated basin-lakewide monitoring and assessment strategies for the Great Lakes. We have conducted a wide range of research on coastal tributaries, coastal wetlands, semi-enclosed embayments an...

  14. Artificial reefs and reef restoration in the Laurentian Great Lakes

    USGS Publications Warehouse

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  15. FIELD TESTS OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED WATERSHED CLASSIFICATION SCHEMES IN THE GREAT LAKES BASIN

    EPA Science Inventory

    We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands...

  16. FIELD TESTS OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED WATERSHED CLASSIFICATION SCHEMED IN THE GREAT LAKES BASIN

    EPA Science Inventory

    We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1)Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...

  17. Hydroclimatic and landscape controls on phosphorus loads to hypereutrophic Upper Klamath Lake, Oregon, United States

    NASA Astrophysics Data System (ADS)

    Records, R.; Fassnacht, S. R.; Arabi, M.; Duffy, W. G.

    2014-12-01

    Elevated total phosphorus (P) loading into Upper Klamath Lake, southern Oregon, United States has caused hypereutrophic conditions impacting endangered lake fish species. Increases in P loading have been attributed to land use changes, such as timber harvest and wetland drainage. The contribution of P to Upper Klamath Lake has been estimated from each major tributary, yet little research has explored what land use or other variables have most influence on P loading within the tributaries. In addition, previous work has shown a range of potential hydroclimatic shifts by the 2040s, with potential to alter P loading mechanisms. In this study, we use statistical methods including principle component analysis and multiple linear regression to determine what hydroclimatic and landscape variables best explain flow-weighted P concentration in the Sprague River, one of three main tributaries to Upper Klamath Lake. Identification of key variables affecting P loading has direct implications for management decisions in the Upper Klamath River Basin. Increases in P loading related to sediment loading are due to bank and upslope erosion. The former is more prevalent in areas of historic channel alteration and cattle grazing, while the latter is more dominant in areas of heavy timber harvesting and more precipitation as rain.

  18. Mirror Lake: Past, present and future: Chapter 6

    USGS Publications Warehouse

    Likens, Gene E.; LaBaugh, James W.; Winter, Thomas C.; Likens, Gene E.

    2009-01-01

    This chapter discusses the hydrological and biogeochemical characteristics of Mirror Lake and the changes that resulted from air-land-water interactions and human activities. Since the formation of Mirror Lake, both the watershed and the lake have undergone many changes, such as vegetation development and basin filling. These changes are ongoing, and Mirror Lake is continuing along an aging pathway and ultimately, it will fill with sediment and no longer be a lake. The chapter also identifies major factors that affected the hydrology and biogeochemistry of Mirror Lake: acid rain, atmospheric deposition of lead and other heavy metals, increased human settlement around the lake, the construction of an interstate highway through the watershed of the Northeast Tributary, the construction of an access road through the West and Northeast watersheds to the lake, and climate change. The chapter also offers future recommendations for management and protection of Mirror Lake.

  19. Lake trout rehabilitation in Lake Huron

    USGS Publications Warehouse

    Eshenroder, Randy L.; Payne, N. Robert; Johnson, James E.; Bowen, Charles; Ebener, Mark P.

    1995-01-01

    Efforts to restore lake trout (Salvelinus namaycush) in Lake Huron after their collapse in the 1940s were underway in the early 1970s with completion of the first round of lampricide applications in tributary streams and the stocking of several genotypes. We assess results of rehabilitation and establish a historical basis for comparison by quantifying the catch of spawning lake trout from Michigan waters in 1929-1932. Sixty-eight percent of this catch occurred in northern waters (MH-1) and most of the rest (15%) was from remote reefs in the middle of the main basin. Sea lampreys (Petromyzon marinus) increased in the early 1980s in the main basin and depressed spawning populations of lake trout. This increase was especially severe in northern waters and appeared to be associated with untreated populations in the St. Marys River. Excessive commercial fishing stemming from unresolved treaty rights also contributed to loss of spawning fish in northern Michigan waters. Seneca-strain lake trout did not appear to be attacked by sea lampreys until they reached a size > 532 mm. At sizes > 632 mm, Seneca trout were 40-fold more abundant than the Marquette strain in matched-planting experiments. Natural reproduction past the fry stage has occurred in Thunder Bay and South Bay, but prospects for self-sustaining populations of lake trout in the main basin are poor because sea lampreys are too abundant, only one side of the basin is stocked, and stocking is deferred to allow commercial gillnetting in areas where most of the spawning occurred historically. Backcross lake trout, a lake trout x splake (s. Fontinalis x s. Namaycush) hybrid, did not reproduce in Georgian Bay, but this genotype is being replaced with pure-strain lake trout, whose early performance appears promising.

  20. Incision of Licus Vallis, Mars, From Multiple Lake Overflow Floods

    NASA Astrophysics Data System (ADS)

    Goudge, Timothy A.; Fassett, Caleb I.

    2018-02-01

    Licus Vallis is a large valley (>350 km long, >2 km wide, and >150 m deep) that heads at the outlet breach of an 30 km diameter impact crater. We present observations of the geomorphology and topography of this paleolake outlet valley and associated tributary valleys to constrain the history of incision of the Licus Vallis system. Licus Vallis has an abrupt increase in gradient by a factor of approximately 4 along its longitudinal profile, and a knickpoint that drops 200 m over a reach of 2 km approximately 12 km downstream from the valley head. We also describe a set of paired terraces within Licus Vallis, which are continuous for tens of kilometers and define an interior valley >2 km in width. We interpret the geomorphology of Licus Vallis as recording at least two discrete, major episodes of valley incision, both driven by lake overflow floods. The main portion of Licus Vallis formed by overflow flooding from a large ( 103-104 km2) lake contained in an intercrater basin. Subsequently, overflow flooding from a lake within the 30 km diameter impact crater reactivated Licus Vallis, forming a major knickpoint at the valley head and establishing the upstream section of the valley at a lower slope. Farther down the valley, this flood event incised an interior valley bounded by paired terraces. Regional tributary valleys that feed Licus Vallis also have prominent knickpoints, which have retreated farthest for downstream valleys. We conclude that these knickpoints record successive waves of incision that swept up Licus Vallis during lake overflow flooding, with erosion in the main trunk of the valley (from overflow floods) significantly outpacing erosion in the tributary valleys (from regional surface runoff). These observations of Licus Vallis illustrate how lake overflow floods may have provided an important control on the pace of landscape evolution on Mars.

  1. Review of fish diversity in the Lake Huron basin

    USGS Publications Warehouse

    Roseman, E.F.; Schaeffer, J.S.; Steen, P.J.

    2009-01-01

    Lake Huron has a rich aquatic habitat diversity that includes shallow embayments, numerous tributaries, shallow mid-lake reef complexes, archipelagos, and profundal regions. These habitats provide support for warm, cool, and cold water fish communities. Diversity of fishes in Lake Huron reflects post-glaciation colonization events, current climate conditions, accidental and intentional introductions of non-indigenous species, and extinctions. Most extinction events have been largely associated with habitat alterations, exploitation of fisheries, and interactions with non-indigenous species. The most recent historical survey of extirpated and imperiled species conducted in the late 1970s identified 79 fish species in Lake Huron proper and about 50 additional species in tributaries. Of those 129 species, 20 are now considered extirpated or imperiled. Extirpated species include Arctic grayling, paddlefish, weed shiner, deepwater cisco, blackfin cisco, shortnose cisco, and kiyi. Six species have declined appreciably due to loss of clear-water stream habitat: the river redhorse, river darter, black redhorse, pugnose shiner, lake chubsucker, redside dace, eastern sand darter, and channel darter. While numerous agencies, universities, and other organizations routinely monitor nearshore and offshore fish distribution and abundance, there is a need for more rigorous examination of the distribution and abundance of less-common species to better understand their ecology. This information is critical to the development of management plans aimed at ecosystem remediation and restoration.

  2. The Archaeology of Coralville Lake, Iowa. Volume 2. Evolution of Holocene Landscapes.

    DTIC Science & Technology

    1986-01-01

    Distribution Unlimited *I THE ARCHAEOLOGY OF CORALVILLE LAKE, IOWA VOLUME II: -bhN9f EVOLUTION OA 1,4o04CE AM7-SCOPKS ,?96 DTIC Prepared By: Jeffrey D...report detailing the archaeological resources of Coralville Lake, Iowa and the planning process for managing those resources. The narrative and data...adjacent to Coralville Lake) of the Iowa River valley and its adjoining tributary valleys. Results of the investigation were to incorporate: (1) a

  3. CONNECTING WATERSHED CHARACTERISTICS TO NUTRIENT REGIME FROM HEADWATERS TO RECEIVING WATERS IN THE LAURENTIAL GREAT LAKES

    EPA Science Inventory

    We are evaluating the influence of position along the tributary-coastal wetland-lake continuum on the expression of watershed characteristics in the water quality of Great Lakes (GL) coastal ecosystems as part of an EPA study focused on determining stressor-response relationships...

  4. Mercury in the central European lake district - case study Plešné lake

    NASA Astrophysics Data System (ADS)

    Navratil, Tomas; Rohovec, Jan; Novakova, Tereza; Matouskova, Sarka; Kopacek, Jiri; Kana, Jiri

    2017-04-01

    means of Hg concentration in mineral soil remained relatively similar at 145 and 121 µg/kg. Increased Hg concentrations in A horizons were concurrent with increased organic C concentrations from 24.5% in 1999 to 39.9% in 2015. Ratio Hg/C in the A horizon remained rather comparable (1.27 and 1.47). In O horizons Hg/C ratio decreased from 0.9 to 0.5 comparing 1999 and 2015 due to changes in litterfall composition and total deposition due to canopy absence since 2005. Tributaries and lake water Hg concentrations were assessed to estimate the fluxes of Hg within lake catchment. PL lake water contained on average 4.4 ng/L of Hg and 8.2 mg/L of DOC. Mean annual Hg concentration in four lake tributaries ranged from 2.0 to 16.5 ng/L. The differences in Hg concentrations among individual streams were driven by DOC concentrations ranging from 2.1 to 21.2 mg/L. The differences between the Hg and DOC concentrations tributaries result from differences in hydrology of the individual sub-catchments. The financial support was provided by the Czech Science Foundation project No. GA16-14762S.

  5. Lake Roosevelt Fisheries Evaluation Program : Lake Whatcom Kokanee Salmon (Oncorhynchus nerka kennerlyi) : Investigations in Lake Roosevelt Annual Report 1999-2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLellan, Holly J.; Scholz, Allan T.; McLellan, Jason G.

    2001-07-01

    Lake Whatcom stock kokanee have been planted in Lake Roosevelt since 1988 with the primary goal of establishing a self-sustaining fishery. Returns of hatchery kokanee to egg collection facilities and recruitment to the creel have been minimal. Therefore, four experiments were conducted to determine the most appropriate release strategy that would increase kokanee returns. The first experiment compared morpholine and non-morpholine imprinted kokanee return rates, the second experiment compared early and middle run Whatcom kokanee, the third experiment compared early and late release dates, and the fourth experiment compared three net pen release strategies: Sherman Creek hatchery vs. Sherman Creekmore » net pens, Colville River net pens vs. Sherman Creek net pens, and upper vs. lower reservoir net pen releases. Each experiment was tested in three ways: (1) returns to Sherman Creek, (2) returns to other tributaries throughout the reservoir, and (3) returns to the creel. Chi-square analysis of hatchery and tributary returns indicated no significant difference between morpholine imprinted and non-imprinted fish, early run fish outperformed middle run fish, early release date outperformed late release fish, and the hatchery outperformed all net pen releases. Hatchery kokanee harvest was estimated at 3,323 fish, which was 33% of the total harvest. Return rates (1998 = 0.52%) of Whatcom kokanee were low indicating an overall low performance that could be caused by high entrainment, predation, and precocity. A kokanee stock native to the upper Columbia, as opposed to the coastal Whatcom stock, may perform better in Lake Roosevelt.« less

  6. Production of sea lamprey larvae from nests in two Lake Superior streams

    USGS Publications Warehouse

    Manion, Patrick J.

    1968-01-01

    The life history of the landlocked sea lamprey, Petromyzon marinus, has been described by several authors, the two most recent of which are Applegate and Wigley. The only information on the production of larvae from nests of the sea lamprey was reported by Applegate, who counted the larvae from three nests in the Ocqueoc River, a tributary of Lake Huron. The present report presents data on the hatching success of sea lamprey larvae from 19 nests in two small tributaries of southern Lake Superior and indicates greater production per nest than that recorded by Applegate. Studies were conducted by personnel of the U.S. Bureau of Commercial Fisheries on the Little Garlic River, Marquette County, Michigan, and on the Traverse River, Keweenaw County, Michigan.

  7. Evaluating the growth potential of sea lampreys (Petromyzon marinus) feeding on siscowet lake trout (Salvelinus namaycush) in Lake Superior

    USGS Publications Warehouse

    Moody, E.K.; Weidel, B.C.; Ahrenstorff, T.D.; Mattes, W.P.; Kitchell, J.F.

    2011-01-01

    Differences in the preferred thermal habitat of Lake Superior lake trout morphotypes create alternative growth scenarios for parasitic sea lamprey (Petromyzon marinus) attached to lake trout hosts. Siscowet lake trout (Salvelinus namaycush) inhabit deep, consistently cold water (4–6 °C) and are more abundant than lean lake trout (Salvelinus namaycush) which occupy temperatures between 8 and 12 °C during summer thermal stratification. Using bioenergetics models we contrasted the growth potential of sea lampreys attached to siscowet and lean lake trout to determine how host temperature influences the growth and ultimate size of adult sea lamprey. Sea lampreys simulated under the thermal regime of siscowets are capable of reaching sizes within the range of adult sea lamprey sizes observed in Lake Superior tributaries. High lamprey wounding rates on siscowets suggest siscowets are important lamprey hosts. In addition, siscowets have higher survival rates from lamprey attacks than those observed for lean lake trout which raises the prospect that siscowets serve as a buffer to predation on more commercially desirable hosts such as lean lake trout, and could serve to subsidize lamprey growth.

  8. Snow accumulations and melt under certain forest conditions in the Adirondacks

    Treesearch

    Howard W. Lull; Francis M. Rushmore

    1960-01-01

    The Adirondack region of New York is a land of many lakes and streams. It feeds water into Lake Champlain, Lake Ontario, the St. Lawrence River, and the Hudson River. Much of this streamflow comes from the melting of the spring snowpack in the Adirondacks.

  9. Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil).

    PubMed

    Gonçalves, Monica A; Garcia, Fábio C; Barroso, Gilberto F

    2016-09-01

    Lake Nova (15.5 km2) is the second largest lake in the Lower Doce River Valley (Southeastern Brazil). A better understanding of ecosystem structure and functioning requires knowledge about lake morphometry, given that lake basin form influences water column stratification. The present study aims to contribute to the understanding of relationship between morphometry and mixing patterns of deep tropical lakes in Brazil. Water column profiles of temperature and dissolved oxygen were taken on four sampling sites along the lake major axis during 2011, 2012 and 2013. The bathymetric survey was carried out in July 2011, along 131.7 km of hydrographic tracks yield 51,692 depth points. Morphometric features of lake size and form factors describe the relative deep subrectangular elongated basin with maximum length of 15.7 km, shoreline development index 5.0, volume of 0.23 km3, volume development of 1.3, and maximum, mean and relative depths of 33.9 m, 14.7 m and 0.7 %, respectively. The deep basin induces a monomictic pattern, with thermal stratification during the wet/warm season associated with anoxic bottom waters (1/3 of lake volume), and mixing during dry and cool season. Based on in situ measurements of tributary river discharges, theoretical retention time (RT) has been estimated in 13.4 years. The morphometry of Lake Nova promote long water RT and the warm monomictic mixing pattern, which is in accordance to the deep tropical lakes in Brazil.

  10. Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia

    NASA Astrophysics Data System (ADS)

    Burnett, William C.; Wattayakorn, Gullaya; Supcharoen, Ratsirin; Sioudom, Khamfeuane; Kum, Veasna; Chanyotha, Supitcha; Kritsananuwat, Rawiwan

    2017-06-01

    Tonle Sap Lake (Cambodia), a classic example of a "flood pulse" system, is the largest freshwater lake in SE Asia, and is reported to have one of the highest freshwater fish productions anywhere. During the dry season (November-April) the lake drains through a tributary to the Mekong River. The flow in the connecting tributary completely reverses during the wet monsoon (May-October), adding huge volumes of water back to the lake, increasing its area about six fold. The lake is likely phosphorus limited and we hypothesized that groundwater discharge, including recirculated lake water, may represent an important source of P and other nutrients. To address this question, we surveyed hundreds of kilometers of the lake for natural 222Rn (radon), temperature, conductivity, GPS coordinates and water depth. All major inorganic nutrients and phosphorus species were evaluated by systematic sampling throughout the lake. Results showed that there were radon hotspots, all at the boundaries between the permanent lake and the floodplain, indicating likely groundwater inputs. A radon mass balance model indicates that the groundwater flow to Tonle Sap Lake is approximately 10 km3/yr, about 25% as large as the floodwaters entering from the Mekong River during the wet monsoon. Our results suggest that the groundwater-derived dissolved inorganic phosphorus (DIP) contribution to Tonle Sap is more than 30% of the average inflows from all natural sources. Since the productivity of the lake appears to be phosphorus limited, this finding suggests that the role of groundwater is significant for Tonle Sap Lake and perhaps for other flood pulse systems worldwide.

  11. 33 CFR 162.75 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and... WATERWAYS NAVIGATION REGULATIONS § 162.75 All waterways tributary to the Gulf of Mexico (except the... waters of the U.S. tributary to or connected by other waterways with the Gulf of Mexico between St. Marks...

  12. 33 CFR 162.75 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and... WATERWAYS NAVIGATION REGULATIONS § 162.75 All waterways tributary to the Gulf of Mexico (except the... waters of the U.S. tributary to or connected by other waterways with the Gulf of Mexico between St. Marks...

  13. 33 CFR 162.75 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and... WATERWAYS NAVIGATION REGULATIONS § 162.75 All waterways tributary to the Gulf of Mexico (except the... waters of the U.S. tributary to or connected by other waterways with the Gulf of Mexico between St. Marks...

  14. Stable isotope differences among the Lake Michigan 2015 CSMI transects

    EPA Science Inventory

    During the Lake Michigan 2015 Cooperative Science and Monitoring Initiative (CSMI), eight transects situated near tributaries that present a gradient of phosphorus loads were sampled from nearshore to offshore during May, July, and September. Our objective was to evaluate associa...

  15. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2007

    USGS Publications Warehouse

    Wisconsin Water Science Center Lake-Studies Team: Rose, W. J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2008-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2007 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2007 is called 'water year 2007.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake?s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2007.'

  16. Progress toward lake trout restoration in Lake Michigan

    USGS Publications Warehouse

    Holey, Mark E.; Rybicki, Ronald W.; Eck, Gary W.; Brown, Edward H.; Marsden, J. Ellen; Lavis, Dennis S.; Toneys, Michael L.; Trudeau, Tom N.; Horrall, Ross M.

    1995-01-01

    hatchery. A recent increase in lamprey wounding rates in northern Lake Michigan appears to be related to the uncontrolled build-up of lampreys in the St. Marys River a tributary of Lake Huron. If left uncontrolled, further progress toward restoration in the Northern Refuge may be limited.

  17. Hydrology of Lake Butler, Orange County, Florida

    USGS Publications Warehouse

    Smoot, James L.; Schiffer, Donna M.

    1984-01-01

    Lake Butler is one of the lakes that collectively make up the Butler chain of lakes in the headwaters of the Kissimmee River, Florida. The bottom configuration of the lake is typical of relict karst features formed during lower stages in sea level. The top of the Floridan aquifer is 50 to 100 feet below the land surface. The drainage area of Lake Butler is approximately 14.5 sq mi and is comprised of sub-basins of other lakes in the vicinity. Surface outflow from Lake Butler is generally southward to Cypress Creek, a tributary of the Kissimmee River. The extremes in lake stage for the period 1933-81 are 94.67 ft on June 23, 1981 and 101.78 ft on September 13, 1960. The median lake stage for this period was 99.28 ft above sea level. The quality of water in Lake Butler is excellent, based on studies of physical, chemical, and biological conditions by the Orange County Pollution Control Department. The lake water is slightly acidic and soft (48 mg/L hardness as calcium carbonate). Pesticides in water were below detection levels at two sites sampled in the lake, but were detected in the bottom sediments. (USGS)

  18. The Great Lakes Hydrography Dataset: Consistent, binational ...

    EPA Pesticide Factsheets

    Ecosystem-based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods we developed spatially equivalent watershed boundaries for the binational extent of the Basin to create the Great Lakes Hydrography Dataset (GLHD). The GLHD consists of 5,589 watersheds for the entire Basin, covering a total area of approximately 547,967 km2, or about twice the 247,003 km2 surface water area of the Great Lakes. The GLHD improves upon existing watershed efforts by delineating watersheds for the entire Basin using consistent methods; enhancing the precision of watershed delineation by using recently developed flow direction grids that have been hydrologically enforced and vetted by provincial and federal water resource agencies; and increasing the accuracy of watershed boundaries by enforcing embayments, delineating watersheds on islands, and delineating watersheds for all tributaries draining to connecting channels. In addition, the GLHD is packaged in a publically available geodatabase that includes synthetic stream networks, reach catchments, watershed boundaries, a broad set of attribute data for each tributary, and metadata documenting methodology. The GLHD provides a common set of watersheds and associated hydrography data for the Basin that will enhance binational efforts to protect and restore the Great

  19. Hydrologic data from the integrated lake-watershed acidification study in the west-central Adirondack Mountains, New York : October 1977 through January 1982

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.; Dalton, F.N.

    1987-01-01

    Hydrologic data were collected from three forested headwater lake watersheds in Herkimer and Hamilton Counties from October 1977 through early January 1982 as part of the Integrated Lake-Watersheds Acidification Study (ILWAS). ILWAS was established in 1977 to determine why these lakes differ in pH when all receive equal amounts of acidic atmospheric deposition. Woods Lake is acidic (pH ranges from 4 to 5), Panther Lake is neutral (pH ranges from 5 to 7.5), and Sagamore Lake is intermediate (pH ranges from 5 to 6). The data tabulated herein include discharge at the three lake outlets and in a tributary to each lake; lake-water stage at each lake; chemical quality of lake water, including total concentrations of zinc, iron, manganese, and lead, at each lake outlet and at Lost Brook (a tributary to Sagamore Lake); groundwater stage from 29 wells; major ion concentrations of groundwater from 22 of these wells; temperature of soil from three depths at one site in each watershed; soil-moisture tension at three depths at eight sites - four in the neutral-lake basin, three in the acidic-lake basin , and one in the intermediate-lake basin; and average snowpack depths and water equivalents at approximately 20 snow-course sites in each basin for three sampling periods during the 1979-80 winter. (USGS)

  20. OVERVIEW AND STATUS OF LAKE MICHIGAN MASS BALANCE MODELLING PROJECT

    EPA Science Inventory

    With most of the data available from the Lake Michigan Mass Balance Project field program, the modeling efforts have begun in earnest. The tributary and atmospheric load estimates are or will be completed soon, so realistic simulations for calibration are beginning. A Quality Ass...

  1. Binational ecological risk assessment of bigheaded carps (Hypophthalmichthys spp.) for the Great Lakes Basin.

    USGS Publications Warehouse

    Cudmore, Becky; Mandrak, Nicholas E.; Dettmers, John M.; Chapman, Duane C.; Kolar, Cynthia S.

    2012-01-01

    Bigheaded carps (Bighead and Silver carps) are considered a potential threat to the Great Lakes basin. A binational ecological risk assessment was conducted to provide scientifically defensible advice for managers and decision-makers in Canada and the United States. This risk assessment looked at the likelihood of arrival, survival, establishment, and spread of bigheaded carps to obtain an overall probability of introduction. Arrival routes assessed were physical connections and human-mediated releases. The risk assessment ranked physical connections (specifically the Chicago Area Waterway System) as the most likely route for arrival into the Great Lakes basin. Results of the risk assessment show that there is enough food and habitat for bigheaded carp survival in the Great Lakes, especially in Lake Erie and productive embayments in the other lakes. Analyses of tributaries around the Canadian Great Lakes and the American waters of Lake Erie indicate that there are many suitable tributaries for bigheaded carp spawning. Should bigheaded carps establish in the Great Lakes, their spread would not likely be limited and several ecological consequences can be expected to occur. These consequences include competition for planktonic food leading to reduced growth rates, recruitment and abundance of planktivores. Subsequently this would lead to reduced stocks of piscivores and abundance of fishes with pelagic, early life stages. Overall risk is highest for lakes Michigan, Huron, and Erie, followed by Lake Ontario then Lake Superior. To avoid the trajectory of the invasion process and prevent or minimize anticipated consequences, it is important to continue to focus efforts on reducing the probability of introduction of these species at either the arrival, survival, establishment, or spread stage (depending on location).

  2. Biogeochemistry of silica in Devils Lake: Implications for diatom preservation

    USGS Publications Warehouse

    Lent, R.M.; Lyons, B.

    2001-01-01

    Diatom-salinity records from sediment cores have been used to construct climate records of saline-lake basins. In many cases, this has been done without thorough understanding of the preservation potential of the diatoms in the sediments through time. The purpose of this study was to determine the biogeochemistry of silica in Devils Lake and evaluate the potential effects of silica cycling on diatom preservation. During the period of record, 1867-1999, lake levels have fluctuated from 427 m above sea level in 1940 to 441.1 m above sea level in 1999. The biogeochemistry of silica in Devils Lake is dominated by internal cycling. During the early 1990s when lake levels were relatively high, about 94% of the biogenic silica (BSi) produced in Devils Lake was recycled in the water column before burial. About 42% of the BSi that was incorporated in bottom sediments was dissolved and diffused back into the lake, and the remaining 58% was buried. Therefore, the BSi accumulation rate was about 3% of the BSi assimilation rate. Generally, the results obtained from this study are similar to those obtained from studies of the biogeochemistry of silica in large oligotrophic lakes and the open ocean where most of the BSi produced is recycled in surface water. During the mid 1960s when lake levels were relatively low, BSi assimilation and water-column dissolution rates were much higher than when lake levels were high. The BSi assimilation rate was as much as three times higher during low lake levels. Even with the much higher BSi assimilation rate, the BSi accumulation rate was about three times lower because the BSi water-column dissolution rate was more than 99% of the BSi assimilation rate compared to 94% during high lake levels. Variations in the biogeochemistry of silica with lake level have important implications for paleolimnologic studies. Increased BSi water-column dissolution during decreasing lake levels may alter the diatom-salinity record by selectively removing the

  3. Spawning site fidelity and apparent annual survival of walleye (Sander vitreus) differ between a Lake Huron and Lake Erie tributary

    USGS Publications Warehouse

    Hayden, Todd A.; Binder, Thomas; Holbrook, Christopher; Vandergoot, Christopher; Fielder, David G.; Cooke, Steven J.; Dettmers, John M.; Krueger, Charles C.

    2018-01-01

    Fidelity to spawning habitats can maximise reproductive success of fish by synchronising movements to sites of previous recruitment. To determine the role of reproductive fidelity in structuring walleye Sander vitreus populations in the Laurentian Great Lakes, we used acoustic telemetry combined with Cormack–Jolly–Seber capture–recapture models to estimate spawning site fidelity and apparent annual survival for the Tittabawassee River in Lake Huron and Maumee River in Lake Erie. Walleye in spawning condition were tagged from the Tittabawassee River in Lake Huron and Maumee River in Lake Erie in 2011–2012. Site fidelity and apparent annual survival were estimated from return of individuals to the stream where tagged. Site fidelity estimates were higher in the Tittabawassee River (95%) than the Maumee River (70%) and were not related to sex or fish length at tagging. Apparent annual survival of walleye tagged in the Tittabawassee did not differ among spawning seasons but was higher for female than male walleye and decreased linearly as fish length increased. Apparent annual survival of walleye tagged in the Maumee River did not differ among spawning seasons but was higher for female walleye than male walleye and increased linearly as fish length increased. Greater fidelity of walleye tagged in the Tittabawassee River than walleye tagged in the Maumee River may be related to the close proximity to the Maumee River of other spawning aggregations and multiple spawning sites in Lake Erie. As spawning site fidelity increases, management actions to conserve population structure require an increasing focus on individual stocks.

  4. The presence and near-shore transport of human fecal pollution in Lake Michigan beaches

    USGS Publications Warehouse

    Molloy, S.L.; Liu, L.B.; Phanikumar, M.S.; Jenkins, T.M.; Wong, M.V.; Rose, J.B.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.

    2005-01-01

    The Great Lakes are a source of water for municipal, agricultural and industrial use, and support significant recreation, commercial and sport fishing industries. Every year millions of people visit the 500 plus recreational beaches in the Great Lakes. An increasing public health risk has been suggested with increased evidence of fecal contamination at the shoreline. To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risk associated with swimming at these beaches, the near-shore waters of Mt Baldy Beach, Lake Michigan and Trail Creek, a tributary discharging into the lake were examined for fecal pollution indicators. A model of surf zone hydrodynamics coupled with a transport model with first-order inactivation of pollutant was used to understand the relative importance of different processes operating in the surf zone (e.g. physical versus biological processes). The Enterococcus human fecal pollution marker, which targets a putative virulence factor, the enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) from the tributaries draining into Lake Michigan and in 6/30 samples (20%) from Lake Michigan beaches. Preliminary analysis suggests that the majority of fecal indicator bactateria variation and water quality changes at the beaches can be explained by inputs from the influential stream and hydrometeorological conditions. Using modeling methods to predict impaired water quality may help reduce potential health threats to recreational visitors.

  5. Surficial deposits in the Bear Lake Basin

    USGS Publications Warehouse

    Reheis, Marith C.; Laabs, Benjamin J.C.; Forester, Richard M.; McGeehin, John P.; Kaufman, Darrell S.; Bright, Jordon

    2005-01-01

    Mapping and dating of surficial deposits in the Bear Lake drainage basin were undertaken to provide a geologic context for interpretation of cores taken from deposits beneath Bear Lake, which sometimes receives water and sediment from the glaciated Bear River and sometimes only from the small drainage basin of Bear Lake itself. Analyses of core sediments by others are directed at (1) constructing a high-resolution climate record for the Bear Lake area during the late Pleistocene and Holocene, and (2) investigating the sources and weathering history of sediments in the drainage basin. Surficial deposits in the upper Bear River and Bear Lake drainage basins are different in their overall compositions, although they do overlap. In the upper Bear River drainage, Quaternary deposits derived from glaciation of the Uinta Range contain abundant detritus weathered from Precambrian quartzite, whereas unglaciated tributaries downstream mainly contribute finer sediment weathered from much younger, more friable sedimentary rocks. In contrast, carbonate rocks capped by a carapace of Tertiary sediments dominate the Bear Lake drainage basin.

  6. Introduction and spread of the threespine stickleback (Gasterosteus aculeatus) in Lakes Huron and Michigan

    USGS Publications Warehouse

    Stedman, Ralph M.; Bowen, Charles A.

    1985-01-01

    The threespine stickleback (Gasterosteus aculeatus) was not known to occur in the Great Lakes above Niagara Falls until 1980, when it was collected in South Bay, Manitoulin Island, in the Lake Huron basin. By 1984 this species had been found in tributaries of Lakes Huron and Michigan, and in the open waters of both lakes. All specimens identified were the completely plated morph that is most prevalent in fresh water along the east coast of North America. The status of this species in Lakes Huron and Michigan appears to be “Possibly Established.” If threespine stickleback increase in abundance they may eventually provide additional forage for large salmonids.

  7. The Morphometry of Lake Palmas, a Deep Natural Lake in Brazil

    PubMed Central

    Barroso, Gilberto F.; Gonçalves, Monica A.; Garcia, Fábio da C.

    2014-01-01

    Lake Palmas (A = 10.3km2) is located in the Lower Doce River Valley (LDRV), on the southeastern coast of Brazil. The Lake District of the LDRV includes 90 lakes, whose basic geomorphology is associated with the alluvial valleys of the Barreiras Formation (Cenozoic, Neogene) and with the Holocene coastal plain. This study aimed to investigate the relationship of morphometry and thermal pattern of a LDRV deep lake, Lake Palmas. A bathymetric survey carried out in 2011 and the analysis of hydrographic and wind data with a geographic information system allowed the calculation of several metrics of lake morphometry. The vertical profiling of physical and chemical variables in the water column during the wet/warm and dry/mild cold seasons of 2011 to 2013 has furnished a better understanding of the influence of the lake morphometry on its structure and function. The overdeepened basin has a subrectangular elongated shape and is aligned in a NW-SE direction in an alluvial valley with a maximum depth (Zmax) of 50.7m, a volume of 2.2×108 m3 (0.22km3) and a mean depth (Zmv) of 21.4m. These metrics suggest Lake Palmas as the deepest natural lake in Brazil. Water column profiling has indicated strong physical and chemical stratification during the wet/warm season, with a hypoxic/anoxic layer occupying one-half of the lake volume. The warm monomictic pattern of Lake Palmas, which is in an accordance to deep tropical lakes, is determined by water column mixing during the dry and mild cold season, especially under the influence of a high effective fetch associated with the incidence of cold fronts. Lake Palmas has a very long theoretical retention time, with a mean of 19.4 years. The changes observed in the hydrological flows of the tributary rivers may disturb the ecological resilience of Lake Palmas. PMID:25406062

  8. Expedition_55_Education_In-flight_Interview_with Champlain_Valley_School_District_2018_122_1620_648025

    NASA Image and Video Library

    2018-05-03

    SPACE STATION CREW MEMBERS DISCUSS LIFE IN SPACE WITH VERMONT STUDENTS------Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Scott Tingle of NASA discussed life and research on the orbital laboratory during an in-flight educational event May 2 with students from the Champlain Valley School District in Hinesburg, Vermont. Tingle is in the final month of a six-month mission on the station while Feustel is in the midst of a six and a half month journey on the complex.

  9. Great Lakes rivermouths: a primer for managers

    USGS Publications Warehouse

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  10. Movement of parasitic-phase sea lampreys in Lakes Huron and Michigan

    USGS Publications Warehouse

    Smith, Bernard R.; Elliott, Oliver R.

    1953-01-01

    A program of tagging was carrie dout in the waters of northern Lake Huron during the fall and winter of 1951-52 in order to supplement the small amount of information available on movement of sea lampreys during their parasitic phase. A total of 219 parasitic-phase sea lampreys were tagged and released at three localities. Of this number 38 or 17.2 percent were recovered. One tag was recovered near North Manitou Island, Lake Michigan. The remaining 37 were take in Lake Huron or in streams tributary to that lake. The dispersal of tagged lampreys throughout Lake Huron was wide. Five marked individuals were taken in the southern part of the lake over 150 miles from the point of tagging; 4 of these 5 were captured in Canadian waters. The marked lampreys exhibited no distinct pattern of migration other than a tendency toward a general southeasterly movement in Lake Huron.

  11. Levels of Plant Available Phosphorus in Agricultural Soils in the Lake Erie Drainage Basin.

    DTIC Science & Technology

    1977-12-01

    total P tributary load to Lake Erie is in the form of Tsediment-P and most of the sediment -P is of surficial soil origin. Total P load can be related...extremely high ranges can be attributed to 1) and 2) above. Lake Erie counties in Ontario were identified (Figure 3 ) and published reports of the...M-I -28- -tq 𔃾 way.’ .*..... . .. .. ... oi 111 1111; l -29- Table 8 Available-P in Ontario soils in Lake Erie Basin counties Available*-P (ug/g

  12. Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.

    NASA Astrophysics Data System (ADS)

    O'Steen, Lance B.

    2000-11-01

    Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.

  13. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2006

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2006 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2006 is called 'water year 2006.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2006.' Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available through the World Wide Web on the Internet. The Wisconsin Water Science Center's home page is at http://wi.water.usgs.gov/. Information on the

  14. Eutrophication of the Strzeszyńskie Lake: Sources, Consequences and Remedies

    NASA Astrophysics Data System (ADS)

    Zawadzki, Paweł; Murat-Błażejewska, Sadżide; Błażejewski, Ryszard

    2016-06-01

    The paper presents history and recent review of investigations on ecological status of the Strzeszyńskie Lake, located within borders of town Poznań. The lake is a popular rest place, also for bathing and angling, therefore its state concerns many institutions and inhabitants. Recently, a deterioration of its ecological state has been observed due to pollution from a tributary catchment (Row Złotnicki), lake's direct catchment, precipitation and fallen leaves. Phosphorus balance for an average year was estimated. A review of applied remedies was provided but an assessment of their effectiveness was unfeasible due to simultaneity and relatively short duration of their application.

  15. Fish community response to dam removal in a Maine coastal river tributary

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Hogg, Robert S.; Coghlan, Stephen M.; Gardner, Cory

    2016-01-01

    Sedgeunkedunk Stream, a third-order tributary to the Penobscot River in Maine, historically has supported several anadromous fishes including Atlantic Salmon Salmo salar, Alewife Alosa pseudoharengus, and Sea Lamprey Petromyzon marinus. Two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated in removal of the lowermost dam (Mill Dam) providing access to 4.7 km of lotic habitat and unimpeded passage into the lentic habitat of Fields Pond. In anticipation of these barrier removals, we initiated a modified before-after-control-impact study, and monitored stream fish assemblages in fixed treatment and reference sites. Electrofishing surveys were conducted twice yearly since 2007. Results indicated that density, biomass, and diversity of the fish assemblage increased at all treatment sites upstream of the 2009 dam removal. No distinct changes in these metrics occurred at reference sites. We documented recolonization and successful reproduction of Atlantic Salmon, Alewife, and Sea Lamprey in previously inaccessible upstream reaches. These results clearly demonstrate that dam removal has enhanced the fish assemblage by providing an undisrupted stream gradient linking a small headwater lake and tributary with a large coastal river, its estuary, and the Atlantic Ocean.

  16. Application of a Two-Dimensional Reservoir Water-Quality Model of Beaver Lake, Arkansas, for the Evaluation of Simulated Changes in Input Water Quality, 2001-2003

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2007-01-01

    Beaver Lake is considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the system. A previously calibrated two-dimensional, laterally averaged model of hydrodynamics and water quality was used for the evaluation of changes in input nutrient and sediment concentrations on the water quality of the reservoir for the period of April 2001 to April 2003. Nitrogen and phosphorus concentrations were increased and decreased and tested independently and simultaneously to examine the nutrient concentrations and algal response in the reservoir. Suspended-solids concentrations were increased and decreased to identify how solids are distributed in the reservoir, which can contribute to decreased water clarity. The Beaver Lake model also was evaluated using a conservative tracer. A conservative tracer was applied at various locations in the reservoir model to observe the fate and transport and how the reservoir might react to the introduction of a conservative substance, or a worst-case spill scenario. In particular, tracer concentrations were evaluated at the locations of the four public water-supply intakes in Beaver Lake. Nutrient concentrations in Beaver Lake increased proportionally with increases in loads from the three main tributaries. An increase of 10 times the calibrated daily input nitrogen and phosphorus in the three main tributaries resulted in daily mean total nitrogen concentrations in the epilimnion that were nearly 4 times greater than the calibration concentrations at site L2 and more than 2 times greater than the calibrated concentrations at site L5. Increases in daily input nitrogen in the three main tributaries independently did not correspond in substantial increases in concentrations of nitrogen in Beaver Lake. The greatest proportional increase in phosphorus occurred in the epilimnion at sites

  17. Distribution of fishes in U. S. streams tributary to Lake Superior

    USGS Publications Warehouse

    Moore, Harry H.; Braem, Robert A.

    1965-01-01

    Experimental sea lamprey control by the Bureau of Commercial Fisheries on Lake Superior streams provided many new distributional records of the fish fauna. Seventy-one species were recorded from 175 streams. Specimens were collected at the electromechanical barriers, with electric shockers, with fyke nets, and during chemical treatment of streams. Maps showing stream records of each species are presented.

  18. Water-quality and lake-stage data for Wisconsin lakes, water years 2008−2011

    USGS Publications Warehouse

    Manteufel, S. Bridgett; Olson, Daniel L.; Robertson, Dale M.; Goddard, Gerald L.

    2016-09-30

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series.The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes during water years 2008–2011. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2007 through September 30, 2008 is called "water year 2008." Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are presented in this report for water years from 2008–2011. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are available via the "USGS Annual Water Data Report" Web site: http://wdr.water.usgs.gov/.

  19. Asynchronous ice lobe retreat and glacial Lake Bascom: Deglaciation of the Hoosic and Vermont valleys, southwestern Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, E.; Desimone, D.

    Deglaciation of the Hoosic River drainage basin in southwestern Vermont was more complex than previously described. Detailed surficial mapping, stratigraphic relationships, and terrace levels/delta elevations reveal new details in the chronology of glacial Lake Bascom: (1) a pre-Wisconsinan proglacial lake was present in a similar position to Lake Bascom as ice advanced: (2) the northern margin of 275m (900 ft) glacial Lake Bascom extended 10 km up the Vermont Valley; (3) the 215m (705 ft) Bascom level was stable and long lived; (4) intermediate water planes existed between 215m and 190m (625 ft) levels; and (5) a separate ice tonguemore » existed in Shaftsbury Hollow damming a small glacial lake, here named glacial Lake Emmons. This information is used to correlate ice margins to different lake levels. Distance of ice margin retreat during a lake level can be measured. Lake levels are then used as control points on a Lake Bascom relative time line to compare rate of retreat of different ice tongues. Correlation of ice margins to Bascom levels indicates ice retreat was asynchronous between nearby tongues in southwestern Vermont. The Vermont Valley ice tongue retreated between two and four times faster than the Hoosic Valley tongue during the Bascom 275m level. Rate of retreat of the Vermont Valley tongue slowed to one-half of the Hoosic tongue during the 215m--190m lake levels. Factors responsible for varying rates of retreat are subglacial bedrock gradient, proximity to the Hudson-Champlain lobe, and the presence of absence of a calving margins. Asynchronous retreat produced splayed ice margins in southwestern Vermont. Findings from this study do not support the model of parallel, synchronous retreat proposed by many workers for this region.« less

  20. Water budget and water quality of Ward Lake, flow and water-quality characteristics of the Braden River estuary, and the effects of Ward Lake on the hydrologic system, west-central Florida

    USGS Publications Warehouse

    Trommer, J.T.; DelCharco, M.J.; Lewelling, B.R.

    1999-01-01

    The Braden River is the largest tributary to the Manatee River. The river was dammed in 1936 to provide the city of Bradenton a source of freshwater supply. The resulting impoundment was called Ward Lake and had a storage capacity of about 585 million gallons. Reconstruction in 1985 increased the size of the reservoir to about 1,400 million gallons. The lake has been renamed the Bill Evers Reservoir and drains about 59 square miles. The Braden River watershed can be subdivided into three hydrologic reaches. The upper reach consists of a naturally incised free-flowing channel. The middle reach consists of a meandering channel affected by backwater as a result of the dam. The lower reach is a tidal estuary. Water budgets were calculated for the 1993 through 1997 water years. Mean surface-water inflow to Ward Lake for the 5-year period was 1,645 inches per year (equivalent depth over the surface of the lake), or about 81.8 percent of total inflow. Mean ground-water inflow was 311 inches per year, or about 15.5 percent. A mean of 55 inches of rain fell directly on the lake and accounted for only 2.7 percent. Mean surface-water outflow was 1,736 inches, or about 86.4 percent of total water leaving the lake. There was no net ground-water outflow from the lake. Mean surface-water withdrawal for public supply was 229 inches per year, or about 11.4 percent. Mean evaporation was 45 inches and accounted for only 2.2 percent of the mean outflow. Change in lake storage on the budget was negligible. Most chemical constituents contained in water flowing to Ward Lake meet the standards specified by the Florida Department of Environmental Protection and the U.S. Environmental Protection Agency. Phosphorus is the exception, exceeding the U.S. Environmental Protection Agency limits of 0.10 milligram per liter in most samples. However, the source of the phosphorus is naturally occurring phosphate deposits underlying the watershed. Organic nitrogen and orthophosphate are the dominant

  1. 33 CFR 207.180 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and the... DEFENSE NAVIGATION REGULATIONS § 207.180 All waterways tributary to the Gulf of Mexico (except the... with the Gulf of Mexico between St. Marks, Fla., and the Rio Grande, Tex. (both inclusive), and the...

  2. 33 CFR 207.180 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and the... DEFENSE NAVIGATION REGULATIONS § 207.180 All waterways tributary to the Gulf of Mexico (except the... with the Gulf of Mexico between St. Marks, Fla., and the Rio Grande, Tex. (both inclusive), and the...

  3. 33 CFR 207.180 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Gulf of Mexico (except the Mississippi River, its tributaries, South and Southwest Passes and the... DEFENSE NAVIGATION REGULATIONS § 207.180 All waterways tributary to the Gulf of Mexico (except the... with the Gulf of Mexico between St. Marks, Fla., and the Rio Grande, Tex. (both inclusive), and the...

  4. Interactions between invasive round gobies (Neogobius melanostomous) and fantail darters (Etheostoma flabellare) in a tributary of the St. Lawrence River, New York, USA

    USGS Publications Warehouse

    Abbett, Ross; Waldt, Emily M.; Johnson, James H.; McKenna, James E.; Dittman, Dawn E.

    2013-01-01

    The initial, rapid expansion of the invasive round goby (Neogobius melanostomus) throughout the Great Lakes drainage was largely confined to lentic systems. We recently observed round gobies ascending two tributaries of the St. Lawrence River. The expansion of gobies into small lotic environments may place ecologically similar species at risk. Fantail darter (Etheostoma flabellare) is one of the several benthic species of the New York Great Lakes drainages that are threatened by round goby invasion. We examined the habitat use and diet composition of fantail darters and round gobies in Mullet Creek, a third-order tributary of the St. Lawrence River, NY, USA. The objectives of this study were to determine the degree of habitat and diet overlap between fantail darters and round gobies in a tributary of the St. Lawrence River. Gobies and darters co-occurred at 22% of capture sites. Of the four habitat variables examined (cover, depth, substrate and velocity), only depth use was significantly different with gobies using deeper habitats than darters. Among the two species and size classes sampled (large vs. small), large darters had the most restricted habitat use requirements. There was variation in round goby and darter diet composition, but only moderate diet overlap occurred between fantail darters and round gobies (Cλ = 0.43). Conditions in Mullet Creek were appropriate for the evaluation of possible spatial and dietary competition between round goby and native darters. Early detection and management of round goby invasions is critical to maintaining ecological integrity of lotic ecosystems in the St. Lawrence Valley.

  5. Hydrologic and biogeochemical controls on phosphorus export from western Lake Erie tributaries

    USDA-ARS?s Scientific Manuscript database

    Understanding the processes controlling phosphorus (P) export from agricultural watersheds is essential for predicting and mitigating adverse environmental impacts. In this study, discharge, dissolved reactive phosphorus load, and total phosphorus load time series data (1975-2014) from two Lake Erie...

  6. Eutrophication of Lake Tasaul, Romania-proposals for rehabilitation.

    PubMed

    Alexandrov, Mihaela Laurenta; Bloesch, Jürg

    2009-08-01

    Lake Tasaul on the Black Sea coast is highly eutrophic, but not strongly contaminated (heavy metals, PAHs, and organochlorine pesticides). Cyanophytes dominate phytoplankton by 67-94% and form frequent algal blooms. High primary production (up to 270 mg C(ass)/m(2).h) and algal biomass (maximum chlorophyll a concentration 417 microg/l) may be controlled by light, as Secchi depth is often below 1 m. The main tributary, Casimcea River, provides high quantities of suspended matter and about 3 tons TP/year and 660 tons TN/year. Based on chemical and biological analysis as well as fishery investigations, we provide recommendations for Lake Tasaul rehabilitation.

  7. Zooplankton Linkages between Rivers and Great Lakes: Case Study from the St. Louis River

    EPA Science Inventory

    In this case study, we characterized the spatial and seasonal distribution and abundance of zooplankton within the hydrologically complex drowned river mouth of the St. Louis River, the second largest tributary to Lake Superior and an important fish nursery. We hypothesize that z...

  8. Retention time and flow patterns in Lake Marion, South Carolina, 1984

    USGS Publications Warehouse

    Patterson, G.G.; Harvey, R.M.

    1995-01-01

    In 1984, six dye tracer tests were made on Lake Marion to determine flow patterns and retention times under conditions of high and low flow. During the high-flow tests, with an average inflow of about 29,000 cubic feet per second, the approximate travel time through the lake for the peak tracer concentration was 14 days. The retention time was about 20 days. During the low-flow tests, with an average inflow of about 9,000 cubic feet per second, the approximate travel time was 41 days, and the retention time was about 60 days. The primary factors controlling movement of water in the lake are lake inflow and outflow. The tracer cloud moved consistently downstream, slowing as the lake widened. Flow patterns in most of the coves, and in some areas along the northeastern shore, are influenced more by tributary inflow than by factors attributable to water from the main body of the lake.

  9. Predicting minimum habitat characteristics for the Indiana bat in the Champlain Valley

    USGS Publications Warehouse

    Watrous, K.S.; Donovan, T.M.; Mickey, R.M.; Darling, S.R.; Hicks, A.C.; Von Oettingen, S. L.

    2006-01-01

    Predicting potential habitat across a landscape for rare species is extremely challenging. However, partitioned Mahalanobis D2 methods avoid pitfalls commonly encountered when surveying rare species by using data collected only at known species locations. Minimum habitat requirements are then determined by examining a principal components analysis to find consistent habitat characteristics across known locations. We used partitioned D 2 methods to examine minimum habitat requirements of Indiana bats (Myotis sodalis) in the Champlain Valley of Vermont and New York, USA, across 7 spatial scales and map potential habitat for the species throughout the same area. We radiotracked 24 female Indiana bats to their roost trees and across their nighttime foraging areas to collect habitat characteristics at 7 spatial scales: 1) roost trees, 2) 0.1-ha circular plots surrounding the roost trees, 3) home ranges, and 4-7) 0.5-km, 1-km, 2-km, and 3-km buffers surrounding the roost tree. Roost trees (n = 50) typically were tall, dead, large-diameter trees with exfoliating bark, located at low elevations and close to water. Trees surrounding roosts typically were smaller in diameter and shorter in height, but they had greater soundness than the roost trees. We documented 14 home ranges in areas of diverse, patchy land cover types that were close to water with east-facing aspects. Across all landscape extents, area of forest within roost-tree buffers and the aspect across those buffers were the most consistent features. Predictive maps indicated that suitable habitat ranged from 4.7-8.1% of the area examined within the Champlain Valley. These habitat models further understanding of Indiana bat summer habitat by indicating minimum habitat characteristics at multiple scales and can be used to aid management decisions by highlighting potential habitat. Nonetheless, information on juvenile production and recruitment is lacking; therefore, assessments of Indiana bat habitat quality in the

  10. Bacteria and Turbidity Survey for Blue Mountain Lake, Arkansas, Spring and Summer, 1994

    USGS Publications Warehouse

    Lasker, A. Dwight

    1995-01-01

    Introduction Blue Mountain Lake darn is located at river mile 74.4 on the Petit Jean River in Logan and Yell Counties in west-central Arkansas (fig. 1). Drainage area above the darn is 488 square miles. Blue Mountain Lake is located between two national forests-the Ozark National Forest and the Ouachita National Forest. The primary purpose for Blue Mountain Lake is flood control, but the lake is used for a variety of recreational purposes. The U.S. Geological Survey (USGS) in cooperation with the U.s. Army Corps of Engineers, Little Rock District, conducted a bacterial and turbidity study of the Blue Mountain Lake Basin during the spring and suri1mer 1994. Samples were collected weekly at 11 locations within the lake basin from May through September 1994. Eight sampling sites were located on tributaries to the lake and three sampling sites were located on the lake with one of the sites located at a swim beach (fig. 2; table 1).

  11. Two episodes of meltwater influx from glacial Lake Agassiz into the Lake Michigan basin and their climatic contrasts

    USGS Publications Warehouse

    Colman, Steven M.; Keigwin, L.D.; Forester, R.M.

    1994-01-01

    Two episodes of meltwater influx from glacial Lake Agassiz are recorded as prominent sedimentologic, isotopic, magnetic, and faunal signatures in southern Lake Michigan profundal sediments. As a tributary to the main path of eastward Lake Agassiz flow, southern Lake Michigan recorded only the largest, catastrophic discharges. The distinctive Wilmette Bed, a massive gray mud that interrrupts laminated red glaciolacustrine clays, marks the first episode, which occurred near the beginning of the Younger Dryas cooling events. The associated discharge may have played a role in the inception or severity of the Younger Dryas event. An oxygen isotope excursion in biogenic carbonate and changes in ostracode assemblages mark the second episode, which appears to have had at least two pulses, dated by accelerator mass spectrometer 14C ages on biogenic carbonate at about 8.9 and 8.6 ka. The second episode occurred during the early Holocene peak in global meltwater discharge and apparently had little widespread climatic or oceanographic effect. The contrast between the effects associated with these two episodes of meltwater discharge emphasizes the complexity of the ice sheet-ocean-climate system. -Authors

  12. Water budget and estimated suspended-sediment inflow for Reelfoot Lake, Obion and Lake Counties, Northwestern Tennessee, May 1984-April 1985

    USGS Publications Warehouse

    Robbins, Clarence H.

    1985-01-01

    Reelfoot Lake in northwestern Tennessee, with a surface area of 15,500 acres at normal pool elevation, is the largest natural lake in Tennessee. Over the years, the lake has become an important economic, environmental, and recreational resource to the people in the area, and to the State of Tennessee. The natural eutrophic succession rate of the lake has apparently been accelerated by land use practices within the Reelfoot Lake drainage basin during the past several decades. The potential loss of Reelfoot Lake has prompted the State to make management and restoration of the lake and its resources a priority objective. The U.S. Geological Survey entered into a cooperative study in May 1984 with the Tennessee Wildlife Resources Agency and the Tennessee Department of Health and Environment, Division of Water Management, to collect and analyze hydrologic data and prepare an annual water budget for Reelfoot Lake. The purpose of the water budget is to provide an analysis of the surface-groundwater-lake-atmospheric water relation at Reelfoot Lake. Results of the analysis can be used by lake managers to evaluate the potential effects of proposed lake management strategies upon the lake and surrounding hydrologic system. The water budget for the 12-month study period (May 1, 1984 through April 30, 1985) is presented in this report. In addition, estimates of suspended-sediment discharge from tributary streams in the Reelfoot Lake basin and an analysis of concentrations of constituents in stream-bottom material at three inflow sites are also presented. (Lantz-PTT)

  13. Biogeochemical phosphorus mass balance for Lake Baikal, southeastern Siberia, Russia

    USGS Publications Warehouse

    Callender, E.; Granina, L.

    1997-01-01

    Extensive data for Lake Baikal have been synthesized into a geochemical mass balance for phosphorus (P). Some of the P budget and internal cycling terms for Baikal have been compared to similar terms for oligotrophic Lake Superior, mesotrophic Lake Michigan and the Baltic Sea, and the Ocean. Lake Baikal has a large external source of fluvial P compared to the Laurentian upper Great Lakes and the Ocean. The major tributary to Lake Baikal has experienced substantial increases in organic P loading during the past 25 years. This, coupled with potential P inputs from possible phosphorite mining, may threaten Baikal's oligotrophic status in the future. Water-column remineralization of particulate organic P is substantially greater in Lake Baikal than in the Laurentian Great Lakes. This is probably due to the great water depths of Lake Baikal. There is a gradient in P burial efficiency, with very high values (80%) for Lake Baikal and Lake Superior, lower values (50%) for Lake Michigan and the Baltic Sea, and a low value (13%) for the Ocean. The accumulation rate of P in Lake Baikal sediments is somewhat greater than that in the Laurentian upper Great Lakes and the Baltic Sea, and much greater than in the Ocean. Benthic regeneration rates are surprisingly similar for large lacustrine and marine environments and supply less than 10% of the P utilized for primary production in these aquatic environments.

  14. Assessing dam development, land use conversion, and climate change pressures on tributary river flows and water quality of the Mekong's Tonle Sap basin.

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; Arias, M. E.; Oeurng, C.; Arnaiz, M.; Piman, T.

    2016-12-01

    The Tonle Sap Lake is Southeast Asia's most productive freshwater fishery, but the productivity of this valuable ecosystem is under threat from extensive development in the lower Mekong. With dams potentially blocking all major tributaries along the lower Mekong River, the role of local Tonle Sap basin tributaries for maintaining environmental flows, sediment loads, and fish recruitment is becoming increasingly critical. Development within the Tonle Sap basin, however, is not stagnant. Developers are proposing extensive dam development in key Tonle Sap tributaries (see Figure). Some dams will provide hydroelectricity and others will provide opportunities for large-scale irrigation resulting in agro-industrial expansion. There is thus an immediate need to assess the current situation and understand future effects of dam development and land use conversion under climate change on local riverine ecosystems. A combination of remote sensing, field visits, and hydro-meteorological data analyses enabled an assessment of water infrastructure and agricultural development in the basin. The application of SWAT for modelling flows and water quality combined with HEC-RESSIM for reservoir operations enabled for a holistic modelling approach. Initial results show that dams and land use change dominate flow and water quality responses, when compared to climate change. Large ongoing dam and irrigation development in the Pursat and Battambang subbasins will critically alter the natural river flows to the Tonle Sap Lake. Some of the observed dams did not have provisions for sediment flushing, clearing of flooded areas, fish passages, or other environmental protection measures. Poor planning and operation of this infrastructure could have dire consequences on the fragile riverine ecosystem of Tonle Sap tributaries, resulting in fish migration barriers, losses in aquatic habitats, and ecological degradation. The seemingly chaotic development in the Tonle Sap basin induces a great level

  15. A pollutant load hierarchical allocation method integrated in an environmental capacity management system for Zhushan Bay, Taihu Lake.

    PubMed

    Liang, Shidong; Jia, Haifeng; Yang, Cong; Melching, Charles; Yuan, Yongping

    2015-11-15

    An environmental capacity management (ECM) system was developed to help practically implement a Total Maximum Daily Load (TMDL) for a key bay in a highly eutrophic lake in China. The ECM system consists of a simulation platform for pollutant load calculation and a pollutant load hierarchical allocation (PLHA) system. The simulation platform was developed by linking the Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP). In the PLHA, pollutant loads were allocated top-down in several levels based on characteristics of the pollutant sources. Different allocation methods could be used for the different levels with the advantages of each method combined over the entire allocation. Zhushan Bay of Taihu Lake, one of the most eutrophic lakes in China, was selected as a case study. The allowable loads of total nitrogen, total phosphorus, ammonia, and chemical oxygen demand were found to be 2122.2, 94.9, 1230.4, and 5260.0 t·yr(-1), respectively. The PLHA for the case study consists of 5 levels. At level 0, loads are allocated to those from the lakeshore direct drainage, atmospheric deposition, internal release, and tributary inflows. At level 1 the loads allocated to tributary inflows are allocated to the 3 tributaries. At level 2, the loads allocated to one inflow tributary are allocated to upstream areas and local sources along the tributary. At level 3, the loads allocated to local sources are allocated to the point and non-point sources from different towns. At level 4, the loads allocated to non-point sources in each town are allocated to different villages. Compared with traditional forms of pollutant load allocation methods, PLHA can combine the advantages of different methods which put different priority weights on equity and efficiency, and the PLHA is easy to understand for stakeholders and more flexible to adjust when applied in practical cases. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Water-quality and lake-stage data for Wisconsin lakes, water year 2014

    USGS Publications Warehouse

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a database for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2014 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the periodOctober 1, 2013, through September 30, 2014, is called “water year 2014.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus, and chlorophyll a concentrations collected during nonfrozen periods are included for many lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes the location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information

  17. Chesapeake Bay Tributary Strategies

    EPA Pesticide Factsheets

    Chesapeake Bay Tributary Strategies were developed by the seven watershed jurisdictions and outlined the river basin-specific implementation activities to reduce nutrient and sediment pollutant loads from point and nonpoint sources.

  18. Is the water level during dry season in Poyang Lake really lower than before?

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolong; Yu, Meixiu; Shi, Yong; Luan, Zhenyu; Fu, Dafang

    2017-04-01

    The Poyang Lake, the largest freshwater lake in China, has attracted world widely attentions in recent years due to it being dammed or not at the Lake's outlet. It was reported that the Poyang Lake water levels have been declining significantly in dry seasons, which resulted in severe water supply, irrigation and ecological flow requirement problems. The purpose of the study was to answer the question that the water level of the Poyang Lake during dry season is really lower than before or not. Based on topographical data, and long-term hydrological and meteorological data from 1950 to 2016, the relationship between the Poyang Lake and the Yangtze River before and after the completion of the Three Gorges Dam, the relationship between the Poyang Lake and its Five major tributaries (Ganjiang River, Fuhe River, Xinjiang River, Raohe River and Xiushui River), and as well as sand mining contributions to the water level in dry seasons of the Poyang Lake were investigated respectively.

  19. Preimpoundment water quality of Raystown Branch Juniata River and six tributary streams, south-central Pennsylvania

    USGS Publications Warehouse

    Williams, Donald R.

    1976-01-01

    The Raystown Branch Juniata River watershed, which is the main water source for Raystown Lake, is a 960-square-mile (2,490 square kilometres) drainage basin in south-central Pennsylvania. Preimpoundment water-quality data were collected on the Raystown Branch and six tributary st.reams in the basin. Specific conductance values varied inversely with water discharge. The pH values were extremely low only at the Shoup Run site. Dissolved oxygen concentrations observed at all sites indicated a relatively high oxygen saturation level throughout the year. Seasonal variations in nitrate-N and orthophosphate-P levels were measured at the main inflow station at Saxton, Pa. The highest concentrations of nitrate-N and orthophosphate-P occurred in the winter and spring months and the lowest concentrations were measured dur:l.ng the swnmer and fall. Bacteriological data indicated no excessive -amounts of fecal matter present at the inflows. Soil samples collected at four sites in the impoundment area were predominantly of the Barbour, Philo, and Basher series, which are considered to be highly fertile soils with silt-loam and sandy~loam textures. Morphological features of the lake basin and low nutrient levels at the inflows should prevent excessive weed growth around the lake perimeter.

  20. The nest predator assemblage for songbirds in Mono Lake basin riparian habitats

    Treesearch

    Quresh S. Latif; Sacha K. Heath; Grant Ballard

    2012-01-01

    Because nest predation strongly limits avian fitness, ornithologists identify nest predators to inform ecological research and conservation. During 2002–2008, we used both video-monitoring of natural nests and direct observations of predation to identify nest predators of open-cup nesting riparian songbirds along tributaries of Mono Lake, California. Video cameras at...

  1. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah--feeding tributary of the Rawal Lake Reservoir, Pakistan.

    PubMed

    Zahra, Azmat; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem; Ahmed, Zulkifl

    2014-02-01

    Heavy metal concentrations in sediments of the Kurang stream: a principal feeding tributary of the Rawal Lake Reservoir were investigated using enrichment factor (EF), geoaccumulation index (Igeo) and metal pollution index (MPI) to determine metal accumulation, distribution and its pollution status. Sediment samples were collected from twenty one sites during two year monitoring in pre- and post-monsoon seasons (2007-2008). Heavy metal toxicity risk was assessed using Sediment Quality Guidelines (SQGs), effect range low/effect range median values (ERL/ERM), and threshold effect level/probable effect level (TEL/PEL). Greater mean concentrations of Ni, Mn and Pb were recorded in post-monsoon season whereas metal accumulation pattern in pre-monsoon season followed the order: Zn>Mn>Ni>Cr>Co>Cd>Pb>Cu>Li. Enrichment factor (EF) and geoaccumulation (Igeo) values showed that sediments were loaded with Cd, Zn, Ni and Mn. Comparison with uncontaminated background values showed higher concentrations of Cd, Zn and Ni than respective average shale values. Concentrations of Ni and Zn were above ERL values; however, Ni concentration exceeded the ERM values. Sediment contamination was attributed to anthropogenic and natural processes. The results can be used for effective management of fresh water hilly streams of Pakistan. © 2013.

  2. 33 CFR 207.160 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... tributary to the Gulf of Mexico east and south of St. Marks, Fla.; use, administration, and navigation. (a... Atlantic Ocean south of Chesapeake Bay or with the Gulf of Mexico east and south of St. Marks, Florida. (2...

  3. 33 CFR 207.160 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... tributary to the Gulf of Mexico east and south of St. Marks, Fla.; use, administration, and navigation. (a... Atlantic Ocean south of Chesapeake Bay or with the Gulf of Mexico east and south of St. Marks, Florida. (2...

  4. 33 CFR 207.160 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... tributary to the Gulf of Mexico east and south of St. Marks, Fla.; use, administration, and navigation. (a... Atlantic Ocean south of Chesapeake Bay or with the Gulf of Mexico east and south of St. Marks, Florida. (2...

  5. Glacier, Glacial Lake, and Ecological Response Dynamics of the Imja Glacier-Lake-Moraine System, Nepal

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Shugar, D. H.; Leonard, G. J.; Haritashya, U. K.; Harrison, S.; Shrestha, A. B.; Mool, P. K.; Karki, A.; Regmi, D.

    2016-12-01

    Glacier response dynamics—involving a host of processes—produce a sequence of short- to long-term delayed responses to any step-wise, oscillating, or continuous trending climatic perturbation. We present analysis of Imja Lake, Nepal and examine its thinning and retreat and a sequence of the detachment of tributaries; the inception and growth of Imja Lake and concomitant glacier retreat, thinning, and stagnation, and relationships to lake dynamics; the response dynamics of the ice-cored moraine; the development of the local ecosystem; prediction of short-term dynamical responses to lake lowering (glacier lake outburst flood—GLOF—mitigation); and prospects for coming decades. The evolution of this glacier system provides a case study by which the global record of GLOFs can be assessed in terms of climate change attribution. We define three response times: glacier dynamical response time (for glacier retreat, thinning, and slowing of ice flow), limnological response time (lake growth), and GLOF trigger time (for a variety of hazardous trigger events). Lake lowering (to be completed in August 2016; see AGU abstract by D. Regmi et al.) will reduce hazards, but we expect that the elongation of the lake and retreat of the glacier will continue for decades after a pause in 2016-2017. The narrowing of the moraine dam due to thaw degradation of the ice-cored end moraine means that the hazard due to Imja Lake will soon again increase. We examine both long-term response dynamics, and two aspects of Himalayan glaciers that have very rapid responses: the area of Imja Lake fluctuates seasonally and even with subseasonal weather variations in response to changes in lake temperature and glacier meltback; and as known from other studies, glacier flow speed can vary between years and even on shorter timescales. The long-term development and stabilization of glacial moraines and small lacustrine plains in drained lake basins impacts the development of local ecosystems

  6. Sources of mercury in sediments, water, and fish of the lakes of Whatcom County, Washington

    USGS Publications Warehouse

    Paulson, Anthony J.

    2004-01-01

    Concerns about mercury (Hg) contamination in Lake Whatcom, Washington, were raised in the late 1990s after a watershed protection survey reported elevated concentrations of Hg in smallmouth bass. The U.S. Geological Survey, the Whatcom County Health Department, and the Washington State Department of Ecology (Ecology) cooperated to develop a study to review existing data and collect new data that would lead to a better understanding of Hg deposition to Lake Whatcom and other lakes in Whatcom County, Washington. A simple atmospheric deposition model was developed that allowed comparisons of the deposition of Hg to the surfaces of each lake. Estimates of Hg deposition derived from the model indicated that the most significant deposition of Hg would have occurred to the lakes north of the City of Bellingham. These lakes were in the primary wind pattern of two municipal waste incinerators. Of all the lakes examined, basin 1 of Lake Whatcom would have been most affected by the Hg emissions from the chlor-alkali plant and the municipal sewage-sludge incinerator in the City of Bellingham. The length-adjusted concentrations of Hg in largemouth and smallmouth bass were not related to estimated deposition rates of Hg to the lakes from local atmospheric sources. Total Hg concentrations in the surface sediments of Lake Whatcom are affected by the sedimentation of fine-grained particles, whereas organic carbon regulates the concentration of methyl-Hg in the surface sediments of the lake. Hg concentrations in dated sediment core samples indicate that increases in Hg sedimentation were largest during the first half of the 20th century. Increases in Hg sedimentation were smaller after the chlor-alkali plant and the incinerators began operating between 1964 and 1984. Analysis of sediments recently deposited in basin 1 of Lake Whatcom, Lake Terrell, and Lake Samish indicates a decrease in Hg sedimentation. Concentrations of Hg in Seattle precipitation and in tributary waters were

  7. Temporal and spatial distribution of endangered juvenile Lost River and shortnose suckers in relation to environmental variables in Upper Klamath Lake, Oregon: 2009 annual data summary

    USGS Publications Warehouse

    Bottcher, Jared L.; Burdick, Summer M.

    2010-01-01

    Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year. Similar declines of age-1 suckers between spring and late summer also occur annually. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. Summer age-0 sucker habitat use and distribution have been studied extensively, but many uncertainties remain about age-1 and older juvenile habitat use, distribution, and movement patterns within Upper Klamath Lake. This study was designed to examine seasonal changes in distribution of age-1 suckers in Upper Klamath Lake as they relate to depth and water quality. The results of our third annual spring and summer sampling effort are presented in this report. Catch data collected in 2009 indicate seasonal changes in age-1 and older juvenile sucker habitat use coincident with changes in water quality. Although age-1 sucker catch rates were again concentrated along the western shore in June and early July, as they were in 2007 and 2008, very few age-1 suckers were captured in Eagle Ridge Trench in 2009 - a deepwater area along the western shore extending from Howard Bay to Eagle Ridge Point. Instead, suckers in 2009 were concentrated in the relatively shallow bays along the western shore. Nevertheless, as dissolved-oxygen concentrations decreased in mid-July below sublethal thresholds around the Eagle Ridge Trench, age-1 suckers apparently moved away from the western shore, and subsequently were captured

  8. Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake

    PubMed Central

    Craft, James A.; Stanford, Jack A.

    2015-01-01

    We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass. PMID:25802810

  9. Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake.

    PubMed

    Ellis, Bonnie K; Craft, James A; Stanford, Jack A

    2015-01-01

    We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass.

  10. Sources and sinks of nitrogen and phosphorus to a deep, oligotrophic lake, Lake Crescent, Olympic National Park, Washington

    USGS Publications Warehouse

    Moran, P.W.; Cox, S.E.; Embrey, S.S.; Huffman, R.L.; Olsen, T.D.; Fradkin, S.C.

    2012-01-01

    Lake Crescent, in Olympic National Park in the northwest corner of Washington State is a deep-water lake renowned for its pristine water quality and oligotrophic nature. To examine the major sources and sinks of nutrients (as total nitrogen, total phosphorus, and dissolved nitrate), a study was conducted in the Lake Crescent watershed. The study involved measuring five major inflow streams, the Lyre River as the major outflow, recording weather and climatic data, coring lake bed sediment, and analyzing nutrient chemistry in several relevant media over 14 months. Water samples for total nitrogen, total phosphorous, and dissolved nitrate from the five inflow streams, the outlet Lyre River, and two stations in the lake were collected monthly from May 2006 through May 2007. Periodic samples of shallow water from temporary sampling wells were collected at numerous locations around the lake. Concentrations of nutrients detected in Lake Crescent and tributaries were then applied to the water budget estimates to arrive at monthly and annual loads from various environmental components within the watershed. Other sources, such as leaf litter, pollen, or automobile exhaust were estimated from annual values obtained from various literature sources. This information then was used to construct a nutrient budget for total nitrogen and total phosphorus. The nitrogen budget generally highlights vehicle traffic-diesel trucks in particular-along U.S. Highway 101 as a potential major anthropogenic source of nitrogen compounds in the lake. In contrast, contribution of nitrogen compounds from onsite septic systems appears to be relatively minor related to the other sources identified.

  11. Water-quality and lake-stage data for Wisconsin lakes, water years 2012–2013

    USGS Publications Warehouse

    Manteufel, S. Bridgett; Robertson, Dale M.

    2017-05-25

    IntroductionThe U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2012 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2011 through September 30, 2012, is called “water year 2012.”The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at http://nwis.waterdata.usgs.gov/wi/nwis.Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at https://www.usgs.gov/centers/wisconsin-water-science-center. Information on

  12. Diel diet of fantail darter in a tributary to Lake Ontario, New York, USA

    USGS Publications Warehouse

    Chalupnicki, Marc A.; Johnson, James H.

    2016-01-01

    The foraging behavior of benthic fishes in streams is seldom examined but is vital to the health of the aquatic community. We examined the feeding ecology of the fantail darter (Etheostoma flaballere) in Trout Brook, a tributary of the Salmon River in central New York, USA. Of the six time periods examined, fantail darters fed most intensely from 1600–2000 h, with ephemeropterans the major prey consumed during all time periods except for 2000 where chironomid larvae were consumed the most. Fantail darter diet composition was similar across all time periods except during the night which appeared to be uniquely different. According to the prey selection analysis, fantail darters appear to prefer dipterans and ephemeropterans but also demonstrated an opportunistic behavior feeding on what was available in the brook.

  13. Application of the FluEgg model to predict transport of Asian carp eggs in the Saint Joseph River (Great Lakes tributary)

    USGS Publications Warehouse

    Garcia, Tatiana; Murphy, Elizabeth A.; Jackson, P. Ryan; Garcia, Marcelo H.

    2015-01-01

    The Fluvial Egg Drift Simulator (FluEgg) is a three-dimensional Lagrangian model that simulates the movement and development of Asian carp eggs until hatching based on the physical characteristics of the flow field and the physical and biological characteristics of the eggs. This tool provides information concerning egg development and spawning habitat suitability including: egg plume location, egg vertical and travel time distribution, and egg-hatching risk. A case study of the simulation of Asian carp eggs in the Lower Saint Joseph River, a tributary of Lake Michigan, is presented. The river hydrodynamic input for FluEgg was generated in two ways — using hydroacoustic data and using HEC-RAS model data. The HEC-RAS model hydrodynamic input data were used to simulate 52 scenarios covering a broad range of flows and water temperatures with the eggs at risk of hatching ranging from 0 to 93% depending on river conditions. FluEgg simulations depict the highest percentage of eggs at risk of hatching occurs at the lowest discharge and at peak water temperatures. Analysis of these scenarios illustrates how the interactive relation among river length, hydrodynamics, and water temperature influence egg transport and hatching risk. An improved version of FluEgg, which more realistically simulates dispersion and egg development, is presented. Also presented is a graphical user interface that facilitates the use of FluEgg and provides a set of post-processing analysis tools to support management decision-making regarding the prevention and control of Asian carp reproduction in rivers with or without Asian carp populations.

  14. Eutrophication monitoring for Lake Superior's Chequamegon ...

    EPA Pesticide Factsheets

    A priority for the Lake Superior CSMI was to identify susceptible nearshore eutrophication areas. We developed an integrated sampling design to collect baseline data for Lake Superior’s Chequamegon Bay to understand how nearshore physical processes and tributary loading relate to observed chlorophyll concentrations. Sampling included ship-based water samples combined with vertical CTD casts, continuous in situ towing and data collected from an autonomous underwater glider. Sampling was conducted during June, July and September. The glider collected regional data as part of three extended missions in Lake Superior over the same periods. During the study, two significant storm events impacted the western end of Lake Superior; the first occurred during July 11-12, with 8-10 inches of rain in 24hrs, and the second on July 21 with winds in excess of 161 km/h. Using GIS software, we organized these diverse temporal data sets along a continuous time line with temporally coincident Modis Satellite data to visualize surface sediment plumes in relation to water quality measurements. Preliminary results suggest that both events impacted regional water quality, and that nearshore physical forces (upwelling and currents) influenced the spatial variability. Results comparing in situ measures with remotely sensed images will be discussed. not applicable

  15. Ambient conditions and fate and transport simulations of dissolved solids, chloride, and sulfate in Beaver Lake, Arkansas, 2006--10

    USGS Publications Warehouse

    Green, W. Reed

    2013-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas, and was completed in 1963 for the purposes of flood control, hydroelectric power, and water supply. Beaver Lake is affected by point and nonpoint sources of minerals, nutrients, and sediments. The City of Fayetteville discharges about half of its sewage effluent into the White River immediately upstream from the backwater of the reservoir. The City of West Fork discharges its sewage effluent into the West Fork of the White River, and the City of Huntsville discharges its sewage effluent into a tributary of War Eagle Creek. A study was conducted to describe the ambient conditions and fate and transport of dissolved solids, chloride, and sulfate concentrations in Beaver Lake. Dissolved solids, chloride, and sulfate are components of wastewater discharged into Beaver Lake and a major concern of the drinking water utilities that use Beaver Lake as their source. A two-dimensional model of hydrodynamics and water quality was calibrated to include simulations of dissolved solids, chloride, and sulfate for the period January 2006 through December 2010. Estimated daily dissolved solids, chloride, and sulfate loads were increased in the White River and War Eagle Creek tributaries, individually and the two tributaries together, by 1.2, 1.5, 2.0, 5.0, and 10.0 times the baseline conditions to examine fate and transport of these constituents through time at seven locations (segments) in the reservoir, from upstream to downstream in Beaver Lake. Fifteen dissolved solids, chloride, and sulfate fate and transport scenarios were compared to the baseline simulation at each of the seven downstream locations in the reservoir, both 2 meters (m) below the surface and 2 m above the bottom. Concentrations were greater in the reservoir at model segments closer to where the tributaries entered the reservoir. Concentrations resulting from the increase in loading became more diluted

  16. Estimation of stream conditions in tributaries of the Klamath River, northern California

    USGS Publications Warehouse

    Manhard, Christopher V.; Som, Nicholas A.; Jones, Edward C.; Perry, Russell W.

    2018-01-01

    Because of their critical ecological role, stream temperature and discharge are requisite inputs for models of salmonid population dynamics. Coho Salmon inhabiting the Klamath Basin spend much of their freshwater life cycle inhabiting tributaries, but environmental data are often absent or only seasonally available at these locations. To address this information gap, we constructed daily averaged water temperature models that used simulated meteorological data to estimate daily tributary temperatures, and we used flow differentials recorded on the mainstem Klamath River to estimate daily tributary discharge. Observed temperature data were available for fourteen of the major salmon bearing tributaries, which enabled estimation of tributary-specific model parameters at those locations. Water temperature data from six mid-Klamath Basin tributaries were used to estimate a global set of parameters for predicting water temperatures in the remaining tributaries. The resulting parameter sets were used to simulate water temperatures for each of 75 tributaries from 1980-2015. Goodness-of-fit statistics computed from a cross-validation analysis demonstrated a high precision of the tributary-specific models in predicting temperature in unobserved years and of the global model in predicting temperatures in unobserved streams. Klamath River discharge has been monitored by four gages that broadly intersperse the 292 kilometers from the Iron Gate Dam to the Klamath River mouth. These gages defined the upstream and downstream margins of three reaches. Daily discharge of tributaries within a reach was estimated from 1980-2015 based on drainage-area proportionate allocations of the discharge differential between the upstream and downstream margin. Comparisons with measured discharge on Indian Creek, a moderate-sized tributary with naturally regulated flows, revealed that the estimates effectively approximated both the variability and magnitude of discharge.

  17. Surficial Geology of the Floor of Lake Mead (Arizona and Nevada) as Defined by Sidescan-Sonar Imagery, Lake-Floor Topography, and Post-Impoundment Sediment Thickness

    USGS Publications Warehouse

    Twichell, D.C.; Cross, V.A.

    2009-01-01

    Sidescan-sonar imagery collected in Lake Mead during 1999-2001, a period of high lake level, has been used to map the surficial geology of the floor of this large reservoir that formed upon completion of the Hoover Dam in 1935. Four surficial geologic units were identified and mapped: rock exposures and alluvial deposits that existed prior to the formation of the lake and thin post-impoundment sediments ( 1 m) deposited since the lake formed. Exposures of rock are most extensive in the narrow, steep-sided sections of the lake, while alluvial deposits are most extensive on the gentle flanks of the broader basin sections of the lake. Post-impoundment sediment is restricted to the floors of the original river valleys that now lie below lake level. These sediments are thickest in the deltas that form at the mouths of the Colorado River and its tributaries, but cover the entire length of the valley floors of the lake. This sediment distribution is consistent with deposition from turbidity currents. Lake level has dropped more than 30 m between collection of the sidescan imagery and publication of this report. During this time, thick delta deposits have been eroded and redistributed to deeper parts of the lake by turbidity currents. While present-day post-impoundment sediment distribution should be similar to what it was in 2001, the thickness may be greater in some of the deeper parts of the lake now.

  18. Arrow Lakes Reservoir Fertilization Experiment, Technical Report 1999-2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, E.

    2007-02-01

    The Arrow Lakes food web has been influenced by several anthropogenic stressors during the past 45 years. These include the introduction of mysid shrimp (Mysis relicta) in 1968 and 1974 and the construction of large hydroelectric impoundments in 1969, 1973 and 1983. The construction of the impoundments affected the fish stocks in Upper and Lower Arrow lakes in several ways. The construction of Hugh Keenleyside Dam (1969) resulted in flooding that eliminated an estimated 30% of the available kokanee spawning habitat in Lower Arrow tributaries and at least 20% of spawning habitat in Upper Arrow tributaries. The Mica Dam (1973)more » contributed to water level fluctuations and blocked upstream migration of all fish species including kokanee. The Revelstoke Dam (1983) flooded 150 km of the mainstem Columbia River and 80 km of tributary streams which were used by kokanee, bull trout, rainbow trout and other species. The construction of upstream dams also resulted in nutrient retention which ultimately reduced reservoir productivity. In Arrow Lakes Reservoir (ALR), nutrients settled out in the Revelstoke and Mica reservoirs, resulting in decreased productivity, a process known as oligotrophication. Kokanee are typically the first species to respond to oligotrophication resulting from aging impoundments. To address the ultra-oligotrophic status of ALR, a bottom-up approach was taken with the addition of nutrients (nitrogen and phosphorus in the form of liquid fertilizer from 1999 to 2004). Two of the main objectives of the experiment were to replace lost nutrients as a result of upstream impoundments and restore productivity in Upper Arrow and to restore kokanee and other sport fish abundance in the reservoir. The bottom-up approach to restoring kokanee in ALR has been successful by replacing nutrients lost as a result of upstream impoundments and has successfully restored the productivity of Upper Arrow. Primary production rates increased, the phytoplankton community

  19. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    USGS Publications Warehouse

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  20. Diversions from Red River to Lake Dallas, Texas; and related channel losses, February and March 1954

    USGS Publications Warehouse

    Holland, Pat H.

    1954-01-01

    During the period Feb. 10 to Mar. 3, 19541 the City of Dallas pumped 1,363 acre-feet of water from its Red River plant into Pecan Creek (a tributary of Elm Fork Trinity River) 3.5 miles above Gainesville; 1,272 acre-feet of this diversion reached the head of Lake Dallas. Discharge records were obtained at four points along the channels. This water was transported down the channels of Pecan Creek and Elm Fork Trinity River to Lake Dallas, a distance of about 31 miles.

  1. ROSGREN STREAM TYPES AS A TOOL FOR PREDICTING BEDLOAD AND SUSPENDED SEDIMENT EXPORT IN LOW-ORDER LAKE SUPERIOR WATERSHEDS

    EPA Science Inventory

    Bedload samples were collected from 48 second and third order Lake Superior tributaries during snowmelt in 1998 and 1999. Suspended sediment samples were collected over a three-year period during baseflow, rain events, and snowmelt. This work was part of a comparative watershed...

  2. Missisquoi Bay Phosphorus Model Addendum

    EPA Pesticide Factsheets

    This technical memorandum provides results of an extended load reduction simulation. The memorandum serves as an addendum to the main Missisquoi Bay Phosphorus Mass Balance Model report prepared for the Lake Champlain Basin Program by LimnoTech in 2012

  3. Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries.

    PubMed

    Rosario-Ortiz, Fernando L; Snyder, Shane A; Suffet, I H

    2007-10-01

    The characterization of dissolved organic matter (DOM) in drinking water sources is important as this material contributes to the formation of disinfection by-products (DBPs) and affects how water treatment unit operations are optimized. Drinking water utilities often draw water from sources impacted by multiple tributaries, with possible shifts in DOM concentrations and reactivity over time, depending on specific environmental conditions. In this study, results are presented on the characterization of DOM under varying ambient conditions from the four main tributaries of Lake Mead, a large reservoir in the southwest United States. The tributaries include the Las Vegas Wash (LVW), Muddy River (MR), Virgin River (VR) and the upper Colorado River (UCR). One additional sample was collected at the outflow of the reservoir (lower Colorado River (LCR)). The DOM was characterized by both bulk parameters (specific ultraviolet absorbance (SUVA)) and specific physicochemical properties, i.e. size, polarity and fluorescence. The analyses were performed emphasizing limited changes in its natural configuration by eliminating analytical preparation steps, excluding sample filtration (0.45 microm filter). Results indicate that each tributary had a different molecular weight distribution, as well as fluorescence properties, which helped in the identification of the relative source of DOM (allochthonous versus autochthonous). The largest apparent molecular weight distribution was observed for DOM samples collected at the MR site, which is fed mostly by groundwater seepage. The smallest apparent molecular weight was observed for DOM collected at the LCR site, suggesting that retention in the reservoir resulted in a decrease in molecular weight as a probable result of photo oxidation and microbial processes. Fluorescence analysis aided the differentiation of DOM by clearly identifying waters that were affected by microbial activity (LVW, UCR, and LCR), either by wastewater influence

  4. Annual variation in habitat-specific recruitment success: Implications from an individual-based model of Lake Michigan alewife (Alosa pseudoharengus)

    USGS Publications Warehouse

    Hook, T.O.; Rutherford, E.S.; Croley, T.E.; Mason, D.M.; Madenjian, C.P.

    2008-01-01

    The identification of important spawning and nursery habitats for fish stocks can aid fisheries management, but is complicated by various factors, including annual variation in recruitment success. The alewife (Alosa pseudoharengus) is an ecologically important species in Lake Michigan that utilizes a variety of habitats for spawning and early life growth. While productive, warm tributary mouths (connected to Lake Michigan) may contribute disproportionately more recruits (relative to their habitat volume) to the adult alewife population than cooler, less productive nearshore habitats, the extent of interannual variation in the relative contributions of recruits from these two habitat types remains unknown. We used an individual-based bioenergetics simulation model and input data on daily temperatures to estimate alewife recruitment to the adult population by these different habitat types. Simulations suggest that nearshore lake habitats typically produce the vast majority of young alewife recruits. However, tributary habitats may contribute the majority of alewife recruits during years of low recruitment. We suggest that high interannual variation in the relative importance of habitats for recruitment is a common phenomenon, which should be considered when developing habitat management plans for fish populations. ?? 2008 NRC.

  5. A mass balance mercury budget for a mine-dominated lake: Clear Lake, California

    USGS Publications Warehouse

    Suchanek, T.H.; Cooke, J.; Keller, K.; Jorgensen, S.; Richerson, P.J.; Eagles-Smith, Collin A.; Harner, E.J.; Adam, D.P.

    2009-01-01

    The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.

  6. Pulsed flows, tributary inputs, and food web structure in a highly regulated river

    USGS Publications Warehouse

    Sabo, John; Caron, Melanie; Doucett, Richard R.; Dibble, Kimberly L.; Ruhi, Albert; Marks, Jane; Hungate, Bruce; Kennedy, Theodore A.

    2018-01-01

    1.Dams disrupt the river continuum, altering hydrology, biodiversity, and energy flow. Although research indicates that tributary inputs have the potential to dilute these effects, knowledge at the food web level is still scarce.2.Here we examined the riverine food web structure of the Colorado River below Glen Canyon Dam, focusing on organic matter sources, trophic diversity, and food chain length. We asked how these components respond to pulsed flows from tributaries following monsoon thunderstorms that seasonally increase streamflow in the American Southwest.3.Tributaries increased the relative importance of terrestrial organic matter, particularly during the wet season below junctures of key tributaries. This contrasted with the algal-based food web present immediately below Glen Canyon Dam.4.Tributary inputs during the monsoon also increased trophic diversity and food chain length: food chain length peaked below the confluence with the largest tributary (by discharge) in Grand Canyon, increasing by >1 trophic level over a 4-5 kilometre reach possibly due to aquatic prey being flushed into the mainstem during heavy rain events.5.Our results illustrate that large tributaries can create seasonal discontinuities, influencing riverine food web structure in terms of allochthony, food web diversity, and food chain length.6.Synthesis and applications. Pulsed flows from unregulated tributaries following seasonal monsoon rains increase the importance of terrestrially-derived organic matter in large, regulated river food webs, increasing food chain length and trophic diversity downstream of tributary inputs. Protecting unregulated tributaries within hydropower cascades may be important if we are to mitigate food web structure alteration due to flow regulation by large dams. This is critical in the light of global hydropower development, especially in megadiverse, developing countries where dam placement (including completed and planned structures) is in tributaries.

  7. The fishermen were right: experimental evidence for tributary refuge hypothesis during floods.

    PubMed

    Koizumi, Itsuro; Kanazawa, Yukiyo; Tanaka, Yuuki

    2013-05-01

    Fishermen often anecdotally report an unexpected increase of fish caught in small tributary streams during floods, presumably due to refuge-seeking behavior from the main stem. From a population perspective, this implies the significance of refuge habitats and connectivity for population viability against natural disturbances. Despite the plausibility, however, surprisingly few studies have examined the tributary refuge hypothesis, mainly due to the difficulty in field survey during floods. Here, we made use of a large-scale controlled flood to assess whether fishes move into tributaries during flooding in the main stem. A planned water release from the Satsunai River Dam located on Hokkaido Island in Japan rapidly increased the main stem discharge by more than 20-fold. Before, during, and after flooding censuses in four tributaries provided evidence of the refuge-seeking behavior of fishes from the main stem. For example, more than 10 Dolly Varden char, a salmonid fish, were caught in a tributary during the flood, even though almost no individuals were captured before or after the flood. The fish responded immediately to the flooding, suggesting the need for studies during disturbances. In addition, the likelihood of refuge movements varied among tributaries, suggesting the importance of local environmental differences between tributary and the main stem habitats. This is the first study to experimentally confirm the tributary refuge hypothesis, and underscores the roles of habitat diversity and connectivity during disturbances, even though some habitats are not used during normal conditions.

  8. Aqueous Geochemistry of Lake Tuscaloosa, West-Central Alabama, USA: Drought Response

    NASA Astrophysics Data System (ADS)

    Creech, L., Jr.; Donahoe, R. J.

    2008-12-01

    Lake Tuscaloosa was created in 1969 by the impoundment of the North River near Northport and Tuscaloosa, AL. The reservoir is 25 miles long with a capacity of 123,000 acre-feet, a surface area of 5,885 acres, and an estimated safe yield of 200 M gal/d. It is the receiving water body of a 432 square mile watershed. This project studies the aqueous geochemistry of surface waters using samples representative of different seasonal conditions and land cover. Of the 21 sample locations in this study, three are located on tributaries, four transect the axis of the lake, and the rest are divided among semi-restricted coves representing forested and residential land cover. Sample chemistry is quantified for major, minor, and trace cations, anions, and nutrients, total dissolved nitrogen, DOC, and ALK. The current study presents data collected from the lake and its tributaries during recent severe drought conditions impacting much of the southeastern United States. These data are compared with data from an identical study conducted five years ago during a more normal water year. For each sampling year, four seasonal sampling events were conducted. Both intra- and inter-annual results are reported. Historical USGS data for seven locations sampled since 1986 on a semi-annual basis illustrate a general increase in TDS and nutrients since the lake's creation. Some USGS sample locations coincide with those of the current study. Recently collected data agrees well with recent USGS data for the same locations. It is likely that trends observed in this study are related to anthropogenic effects along the lake shore, as evidenced by the geochemical differences between residential and forested coves. Long-term trends observed in historical data are likely the result of land use in the watershed related to mining, agriculture, and residential development. It is also observed that lower flow conditions are associated with increased solute concentrations, indicating that dilution by

  9. Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99

    USGS Publications Warehouse

    Schrader, David L.; Holmes, Robert R.

    2000-01-01

    tributaries to the Fox Chain of Lakes. With the exception of Grass Lake Outlet at Lotus Woods, most of the bed sediments are sand size or larger. The bed material at the streamflow-gaging station at Grass Lake Outlet at Lotus Woods contains 31.5 percent silt- and clay-sized particles. The bed material at Nippersink Creek near Spring Grove also has higher silt content (10.7 percent) than the bed material found in the Fox River at Wilmot (2.1 percent) and Johnsburg (1.3 percent). Additionally, water velocities at 80 cross sections in the Fox Chain of Lakes were collected to provide sample circulation patterns during two separate 1-week periods, and discharge was measured at 18 locations in the lakes. These data were collected to be available for use in hydrodynamic models.

  10. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    USGS Publications Warehouse

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  11. Proposed Great Salt Lake Basin Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Tarboton, D. G.

    2004-12-01

    corresponding range in precipitation from about 15 cm/yr to 150 cm/yr, range in evapotranspiration regimes from semi-arid to alpine, range in groundwater residence times from 10 to 10,000 years, and ranges in biome type from semi-arid shrubland to alpine tundra, all within a 30 km distance. Atmospheric and surface fluxes and stores (precipitation, evapotranspiration, snow, soil moisture) will be quantified using an array of in-situ surface stations and remote sensing platforms. Deep (greater than 300 m) multilevel sampling wells will be used to measure ground water levels, fluxes, and for sampling of age dating and environmental tracers. Another proposed focus effort will involve lake sediment core analyses complemented by monitoring of dissolved and suspended constituents in surrounding tributaries, to provide a basis for examination of closed basin lakes as integrators and recorders of biogeochemical signals that would otherwise not be discerned based on discreet measurements made in individual tributary watersheds. Core-derived climate and contaminant-nutrient trends through time will be investigated at locations distributed from the top to the bottom of the hydrologic system.

  12. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  13. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR

    USGS Publications Warehouse

    Boss, E.S.; Collier, R.; Larson, G.; Fennel, K.; Pegau, W.S.

    2007-01-01

    Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake's rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum. ?? 2007 Springer Science+Business Media B.V.

  14. Ares Vallis Tributary - False Color

    NASA Image and Video Library

    2014-12-17

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of a tributary channel that empties into Ares Vallis.

  15. Effects of the human activities on the water level process of the Poyang Lake

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-kai; Chen, Li; Yang, Yun-xian

    2017-12-01

    The hydrological cycles in basin is profoundly affected by human activities. Yangtze River is a world class river with complex river-lake relations in the middle reaches. As the Three Gorges Reservoir (TGR) and other controlled reservoirs in the main stream and tributaries have been put into operation, the water regimes of the main stream in the middle reaches and Poyang Lake have been changed by water impounding and sediments trapping, clean water discharged from reservoirs, accelerating the evolution of the relationship of river and lake. After entering the 21st century, autumn droughts become more serious in Poyang Lake basin; the relationship between river and lake becomes tense. In light of the hydrological data in Poyang Lake since 2000s, this article made quantitative analyses of the influences of the human activities on the variation of the Poyang Lake level by authors. The results indicate that the main stream of Yangtze River, particularly the regulation of Three Gorges Reservoir, exerts a profound influence on the variation process of the Poyang Lake level. The regulation influence of the Upper Reach of the Yangtze River’s Reservoir Group (URYRRG) could spread to Tangyin area in the middle of the lake in October.

  16. GT-5 Recovery Slice Cake

    NASA Image and Video Library

    1965-08-29

    S65-51660 (29 Aug. 1965) --- Astronauts Charles Conrad Jr. (left) and L. Gordon Cooper Jr. prepare to slice into the huge cake prepared for them by the cooks onboard the aircraft carrier USS Lake Champlain. They are using ornamental Navy swords for knives.

  17. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams.

    PubMed

    Bell, Robin E; Studinger, Michael; Shuman, Christopher A; Fahnestock, Mark A; Joughin, Ian

    2007-02-22

    Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments.

  18. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements apply to all bridges across Newtown Creek, Dutch Kills, English Kills, and their tributaries: (1) The...

  19. Pleistocene glaciers, lakes, and floods in north-central Washington State

    USGS Publications Warehouse

    Waitt, Richard B.; Haugerud, Ralph A.; Kelsey, Harvey M.

    2017-01-01

    The Methow, Chelan, Wenatchee, and other terrane blocks accreted in late Mesozoic to Eocene times. Methow valley is excavated in an exotic terrane of folded Mesozoic sedimentary and volcanic rocks faulted between crystalline blocks. Repeated floods of Columbia River Basalt about 16 Ma drowned a backarc basin to the southeast. Cirques, aretes, and U-shaped hanging troughs brand the Methow, Skagit, and Chelan headwaters. The Late Wisconsin Cordilleran icesheet beveled the alpine topography and deposited drift. Cordilleran ice flowed into the heads of Methow tributaries and overflowed from Skagit tributaries to greatly augment Chelan trough's glacier. Joined Okanogan and Methow ice flowed down Columbia valley and up lower Chelan trough. This tongue met the icesheet tongue flowing southeast down Chelan valley. Successively lower ice-marginal channels and kame terraces show that the icesheet withered away largely by downwasting. Immense late Wisconsin floods from glacial Lake Missoula occasionally swept the Chelan-Vantage reach of Columbia valley by different routes. The earliest debacles, nearly 19,000 cal yr BP (by radiocarbon methods), raged 335 m deep down the Columbia and built high Pangborn bar at Wenatchee. As Cordilleran ice blocked the northwest of Columbia valley, several giant floods descended Moses Coulee and backflooded up the Columbia. As advancing ice then blocked Moses Coulee, Grand Coulee to Quincy basin became the westmost floodway. From Quincy basin many Missoula floods backflowed 50 km upvalley past Wenatchee 18,000 to 15,500 years ago. Receding ice dammed glacial Lake Columbia centuries more--till it burst about 15,000 years ago. After Glacier Peak ashfall about 13,600 years ago, smaller great flood(s) swept down the Columbia from glacial Lake Kootenay in British Columbia. A cache of huge fluted Clovis points had been laid atop Pangborn bar (East Wenatchee) after the Glacier Peak ashfall. Clovis people came two and a half millennia after the last

  20. Archaeological Survey of the Proposed Johnston Trails Project in the Downstream Corridor, Saylorville Lake, Polk County, Iowa. Phase 1

    DTIC Science & Technology

    1993-01-01

    located in the region. The Des Moines River and its immediate tributaries deeply incise the till plain, expos- ing the underlying bedrock in many...and Leah D. Rogers 1985 Interlertive Overview of Cultura Resouwves in Say/orvil/e Lake, Iowa, VoL I. Project CAR-627, Cen- ter for Archaeological

  1. Climatology, hydrology, and simulation of an emergency outlet, Devils Lake basin, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, A.V.; Osborne, Leon; Wood, Carrie M.; Fay, James T.

    2000-01-01

    Devils Lake is a natural lake in northeastern North Dakota that is the terminus of a nearly 4,000-square-mile subbasin in the Red River of the North Basin. The lake has not reached its natural spill elevation to the Sheyenne River (a tributary of the Red River of the North) in recorded history. However, geologic evidence indicates a spill occurred sometime within the last 1,800 years. From 1993 to 1999, Devils Lake rose 24.5 feet and, at the present (August 2000), is about 13 feet below the natural spill elevation. The recent lake-level rise has caused flood damages exceeding $300 million and triggered development of future flood-control options to prevent further infrastructure damage and reduce the risk of a potentially catastrophic uncontrolled spill. Construction of an emergency outlet from the west end of Devils Lake to the Sheyenne River is one flood-control option being considered. This report describes the climatologic and hydrologic causes of the recent lake level rise, provides information on the potential for continued lake-level rises during the next 15 years, and describes the potential effectiveness of an emergency outlet in reducing future lake levels and in reducing the risk of an uncontrolled spill. The potential effects of an outlet on downstream water quantity and quality in the upper Sheyenne River also are described.

  2. Sulfur isotope dynamics in a high-elevation catchment, West Glacier Lake, Wyoming

    Treesearch

    J. B. Finley; J. I. Drever; J. T. Turk

    1995-01-01

    Stable isotopes of S are used in conjunction with dissolved SO2-|4 concentrations to evaluate the utility of ä34S ratios in tracing contributions of bedrock-derived S to SO2-|4 in runoff. Water samples were collected over the annual hydrograph from two tributaries in the West Glacier Lake, Wyoming, catchment. Concentrations of SO2-|4 ranged from 12.6 to 43.0 Ìeq L-1;...

  3. Pollution of the River Niger and its main tributaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nwokedi, G.I.C.; Obodo, G.A.

    1993-08-01

    The River Niger system, with a length of about 4200 kilometers, and a discharge volume of 190 cubic kilometers, per year is the third largest river in Africa, and the largest in West Africa. It serves as an important waterway for the transportation of goods and provides rich agricultural flood basins for the cultivation of food and vegetables. Also it is a major source of animal proteins in form of fishes, snails and other aquatics. Above all the River and its tributaries represent the main source of domestic water supply for the rural communities, and water for irrigation. Therefore theremore » is a need to establish the nature and present levels of pollutants in the river, and the contribution made by the tributaries to the gross pollution level. A number of studies have been reported. Martins reported on the geochemistry of the River Niger while Nriagu; Livingstone; and Imevbore provided some chemical data on the upper reaches around and above its confluence with River Benue at Lokoja. Ajayi and Osibanjo reported on the chemical properties of some tributaries above the confluence of the Niger and the Benue. So far no work has been reported on the lower reaches of the Niger where contributions of the Benue and other major tributaries are significant, and where there are large settlements on its banks and the banks of the tributaries. This work aims at establishing base-line levels of the various pollutants and their sources. 12 refs., 1 fig., 2 tabs.« less

  4. Chemical quality of surface waters in Devils Lake basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  5. Tumor frequencies in walleye (Stizostedion vitreum) and brown bullhead (Ictalurus nebulosus) and sediment contaminants in tributaries of the Laurentian Great Lakes

    USGS Publications Warehouse

    Baumann, Paul C.; Mac, Michael J.; Smith, Stephen B.; Harshbarger, John C.

    1991-01-01

    To better characterize neoplasm epizootics in the Great Lakes basin and their association with families of contaminants, we sampled five locations: the Fox and Menominee rivers, Lake Michigan; Munuscong Lake, St. Mary's River; and the Black and Cuyahoga rivers, Lake Erie. Frequencies of external and liver tumors were determined for brown bullhead (Ictalurus nebulosus) from all locations except the Black River and for walleye (Stizostedion vitreum) from the Lake Michigan and St. Mary's River sites. Sediment samples were analyzed for metals, polychlorinated aromatics, and polynuclear aromatic hydrocarbons (PAH). Liver neoplasms occurred in brown bullhead from the Cuyahoga River and Munuscong Lake; brown bullhead captured from Munuscong Lake were older than those collected from the other locations. Brown bullhead from these same two rivers had elevated hepatosomatic indexes. No liver neoplasms were found in brown bullhead from the Fox and Menominee rivers, although polychlorinated aromatics were highest in both Fox River sediment and Fox and Menominee brown bullhead, and arsenic was highest in Menominee River sediment and fish. Liver neoplasms in brown bullhead from the Cuyahoga River fit the prevailing hypothesis that elevated PAH in sediment can induce cancer in wild fish. The cause of the liver neoplasms in Munuscong Lake brown bullhead is undetermined.

  6. Assessing the link between coastal urbanization and the quality of nekton habitat in mangrove tidal tributaries

    USGS Publications Warehouse

    Krebs, Justin M.; Bell, Susan S.; McIvor, Carole C.

    2014-01-01

    To assess the potential influence of coastal development on habitat quality for estuarine nekton, we characterized body condition and reproduction for common nekton from tidal tributaries classified as undeveloped, industrial, urban or man-made (i.e., mosquito-control ditches). We then evaluated these metrics of nekton performance, along with several abundance-based metrics and community structure from a companion paper (Krebs et al. 2013) to determine which metrics best reflected variation in land-use and in-stream habitat among tributaries. Body condition was not significantly different among undeveloped, industrial, and man-made tidal tributaries for six of nine taxa; however, three of those taxa were in significantly better condition in urban compared to undeveloped tributaries. Palaemonetes shrimp were the only taxon in significantly poorer condition in urban tributaries. For Poecilia latipinna, there was no difference in body condition (length–weight) between undeveloped and urban tributaries, but energetic condition was significantly better in urban tributaries. Reproductive output was reduced for both P. latipinna (i.e., fecundity) and grass shrimp (i.e., very low densities, few ovigerous females) in urban tributaries; however a tradeoff between fecundity and offspring size confounded meaningful interpretation of reproduction among land-use classes for P. latipinna. Reproductive allotment by P. latipinna did not differ significantly among land-use classes. Canonical correspondence analysis differentiated urban and non-urban tributaries based on greater impervious surface, less natural mangrove shoreline, higher frequency of hypoxia and lower, more variable salinities in urban tributaries. These characteristics explained 36 % of the variation in nekton performance, including high densities of poeciliid fishes, greater energetic condition of sailfin mollies, and low densities of several common nekton and economically important taxa from urban tributaries

  7. Influence of geomorphic setting on sedimentation of two adjacent alpine lakes, Triglav Lakes Valley (Julian Alps, NW Slovenia)

    NASA Astrophysics Data System (ADS)

    Smuc, Andrej; Skabene, Dragomir; Muri, Gregor; Vreča, Polona; Jaćimović, Radojko; Čermelj, Branko; Turšič, Janja

    2013-04-01

    The Triglav Lakes Valley is elongated, 7km long depression, located high (at places over 2000 m.a.s.l.) in the central part of the Julian Alps (NW Slovenia). It hosts 6 small isolated lakes that formed due to the combination of Neogene tectonic and Pleistocene glaciation. The study is focused on the 5th and 6th Triglav Valley Lakes that characterize lower part of the valley. The lakes are located so close to each other that they are even connected in times of high water. Thus, they share the same bedrock geology, are subjected to the same climatic forcing and share similar vegetation communities. Despite their proximity, the lakes differ in their hydrologic and geomorphic setting. The lakes have no permanent surface tributaries; however 5th is fed periodically, at times of high water level, by the Močivec spring, while additional water flows from the swamp area near its northern shore. An underground spring on the eastern side of 5th represents the lake's only permanent freshwater inflow, while drainage takes place to the west via a small ponor. 6th has only one weak underground spring on the eastern side of the lake. Water levels may fluctuate between 2 and 3 m. Additionally, the lakes have different configuration of lakes shores; the northern shores of the 5th lake are low-angle soil and debris covered plateau, while southern shores of the 5th lake and shores of the 6th lake are represented by heavily karstified carbonate base rock and covered partly by trees. The detailed sedimentary analysis of the lakes record showed some similarities, but also some significant differences. Sediments of both lakes are represented by fine-grained turbidity current deposits that are transported from lake shores during snow melt or storms. The grain-size and sedimentary rates of the lakes are however markedly different. The 5th lake has coarser grained sediments, with mean ranging from 46 to 60 µm and records higher sedimentation rates of ~0,57 cm/year, compared to the 6th lake

  8. Effects of watershed and in-stream liming on macroinvertebrate communities in acidified tributaries to an Adirondack lake

    USGS Publications Warehouse

    George, Scott D.; Baldigo, Barry P.; Lawrence, Gregory B.; Fuller, Randall L.

    2018-01-01

    Liming techniques are being explored as a means to accelerate the recovery of aquatic biota from decades of acid deposition in many regions. The preservation or restoration of native sportfish populations has typically been the impetus for liming programs, and as such, less attention has been given to its effects on other biological assemblages such as macroinvertebrates. Furthermore, the differing effects of various lime application strategies such as in-stream and watershed applications are not well understood. In 2012, a program was initiated using in-stream and aerial (whole-watershed) liming to improve water quality and Brook Trout (Salvelinus fontinalis) recruitment in three acidified tributaries of a high-elevation Adirondack lake in New York State. Concurrently, macroinvertebrates were sampled annually between 2013 and 2016 at 3 treated sites and 3 untreated reference sites to assess the effects of each liming technique on this community. Despite improvements in water chemistry in all three limed streams, our results generally suggest that neither liming technique succeeded in improving the condition of macroinvertebrate communities. The watershed application caused an immediate and unsustained decrease in the density of macroinvertebrates and increase in the proportion of sensitive taxa. These changes were driven primarily by a one-year 71 percent reduction of the acid-tolerant Leuctra stoneflies and likely represent an initial chemistry shock from the lime application rather than a recovery response. The in-stream applications appeared to reduce the density of macroinvertebrates, particularly in one stream where undissolved lime covered the natural substrate. The close proximity of our study sites to the in-stream application points (50 and 1230 m) may partly explain these negative effects. Our results are consistent with prior studies of in-stream liming which indicate that this technique often fails to restore macroinvertebrate communities to a pre

  9. Hydrology and water quality of East Lake Tohopekaliga, Osceola County, Florida

    USGS Publications Warehouse

    Schiffer, Donna M.

    1987-01-01

    East Lake Tohopekaliga, one of the major lakes in central Florida, is located in the upper Kissimmee River basin in north-east Osceola County. It is one of numerous lakes in the upper basin used for flood control, in addition to recreation and some irrigation of surrounding pasture. This report is the fourth in a series of lake reconnaissance studies in the Kissimmee River basin prepared in cooperation with the South Florida Water Management District. The purpose of the report is to provide government agencies and the public with a brief summary of the lake 's hydrology and water quality. Site information is given and includes map number, site name, location, and type of data available (specific conductivity, pH, alkalinity, turbidity, color, dissolved oxygen, hardness, dissolved chlorides, dissolved sodium, dissolved calcium, dissolved magnesium, dissolved potassium, nitrogen, ammonia, nitrates, carbon and phosphorus). The U.S. Geological Survey (USGS) maintained a lake stage gaging station on East Lake Tohopekaliga from 1942 to 1968. The South Florida Water Management District has recorded lake stage since 1963. Periodic water quality samples have been collected from the lake by the South Florida Water Management District and USGS. Water quality and discharge data have been collected for one major tributary to the lake, Boggy Creek. Although few groundwater data are available for the study area, results of previous studies of the groundwater resources of Osceola County are included in this report. To supplement the water quality data for East Lake Tohopekaliga, water samples were collected at selected sites in November 1982 (dry season) and in August 1983 (rainy season). Samples were taken at inflow points, and in the lake, and vertical profiles of dissolved oxygen and temperature were measured in the lake. A water budget from an EPA report on the lake is also included. (Lantz-PTT)

  10. 33 CFR 117.993 - Lake Champlain.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... on signal: (1) From June 15 through September 15: (i) Monday through Friday from 9 a.m. to 5 p.m... each of the drawbridges listed in this section must open as soon as possible for the passage of public... South Hero Island and North Hero Island, shall operate as follows: (1) The draw shall open on signal on...

  11. 33 CFR 117.993 - Lake Champlain.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on signal: (1) From June 15 through September 15: (i) Monday through Friday from 9 a.m. to 5 p.m.: (ii) Saturdays, Sundays, Independence Day and Labor Day from 7 a.m. to 11 p.m.; (iii) At all other times, if at least two hours notice is given. (2) From September 16 through June 14, if at least 24...

  12. 33 CFR 117.993 - Lake Champlain.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) A sufficient number of infrared cameras shall be maintained in good working order at all times with... infrared cameras to verify that the channel is clear of all approaching vessel traffic. All approaching...

  13. 33 CFR 117.993 - Lake Champlain.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) A sufficient number of infrared cameras shall be maintained in good working order at all times with... infrared cameras to verify that the channel is clear of all approaching vessel traffic. All approaching...

  14. Influence of sex and reproductive status on seasonal movement of Lake Sturgeon in Namakan Reservoir, Minnesota–Ontario

    USGS Publications Warehouse

    Shaw, Stephanie L.; Chipps, Steven R.; Windels, Steve K.; Webb, Molly A. H.; McLeod, Darryl T.

    2013-01-01

    We evaluated the influence of sex and reproductive condition on seasonal distribution and movement patterns of Lake Sturgeon Acipenser fulvescens in Namakan Reservoir, Minnesota–Ontario. Blood samples were collected from 133 Lake Sturgeon prior to spawning and plasma concentrations of testosterone and estradiol-17ß were analyzed using radioimmunoassay. Steroid concentrations were used to determine sex and the reproductive stage of each sturgeon. A subset of 60 adults were implanted with acoustic transmitters prior to spawning in 2007 and 2008. Movement was monitored using an array of 15 stationary receivers covering U.S. and Canadian waters of Namakan Reservoir and its tributaries. Of the monitored sturgeon, there was no significant difference in the minimum distance traveled between sexes or among seasons. Site residency did not differ between sexes but differed significantly among seasons, and Lake Sturgeon of both sexes had higher residency during winter (mean = 24 d). Five females implanted with transmitters were characterized as presumed reproductive and 14 as nonreproductive based on plasma steroid concentrations. In general, movement patterns (i.e., migration) of presumed reproductive females corresponded positively with availability of spawning habitat in tributaries. Moreover, presumed reproductive females traveled greater distances than nonreproductive females, particularly during prespawn, spawning, and fall time periods. Distance traveled by presumed reproductive females was highest in the fall compared with other seasons and may be linked to increased energy requirements during late oogenesis before spawning in spring. Combining movement data with information on Lake Sturgeon reproductive status and habitat suitability provided a robust approach for understanding their seasonal migration patterns and identifying spawning locations.

  15. Critical role of seasonal tributaries for native fish and aquatic biota in the Sacramento River

    NASA Astrophysics Data System (ADS)

    Marchetti, M.

    2016-12-01

    We examined the ecology of seasonal tributaries in California in terms of native fishes and aquatic macroinvertebrates. This talk summarizes data from five individual studies. Studying juvenile Chinook growth using otolith microstructure we find that fish grow faster and larger in seasonal tributaries. In a four-year study on the abundance of native fish larvae in tributaries of the Sacramento River we find certain tributaries produce an order of magnitude more native fish larvae than nearby permanent streams. In a study comparing the distribution and abundance of aquatic macroinvertebrates in a seasonal tributary with a permanent stream we find the seasonal tributary contains unique taxa, higher drift densities and ecologically distinct communities. In a cross-watershed comparison of larval fish drift we find that a seasonal tributary produces more larvae than all other streams/rivers we examined. In a comparison of juvenile Chinook growth morphology between seasonal and permanent streams using geometric morphometrics we find that salmon show phenotypic plasticity and their growth is characteristically different in seasonal tributaries. Taken together, this body of work highlights the critical ecological importance of this habitat.

  16. Patterns of invasion and colonization of the sea lamprey (Petromyzon marinus) in North America as revealed by microsatellite genotypes.

    PubMed

    Bryan, M B; Zalinski, D; Filcek, K B; Libants, S; Li, W; Scribner, K T

    2005-10-01

    Invasions by exotic organisms have had devastating affects on aquatic ecosystems, both ecologically and economically. One striking example of a successful invader that has dramatically affected fish community structure in freshwater lakes of North America is the sea lamprey (Petromyzon marinus). We used eight microsatellite loci and multiple analytical techniques to examine competing hypotheses concerning the origins and colonization history of sea lamprey (n = 741). Analyses were based on replicated invasive populations from Lakes Erie, Huron, Michigan, and Superior, populations of unknown origins from Lakes Ontario, Champlain, and Cayuga, and populations of anadromous putative progenitor populations in North America and Europe. Populations in recently colonized lakes were each established by few colonists through a series of genetic bottlenecks which resulted in lower allelic diversity in more recently established populations. The spatial genetic structure of invasive populations differed from that of native populations on the Atlantic coast, reflecting founder events and connectivity of invaded habitats. Anadromous populations were found to be panmictic (theta(P) = 0.002; 95% CI = -0.003-0.006; P > 0.05). In contrast, there was significant genetic differentiation between populations in the lower and upper Great Lakes (theta(P) = 0.007; P < 0.05; 95% CI = 0.003-0.009). Populations in Lakes Ontario, Champlain, and Cayuga are native. Alternative models that describe different routes and timing of colonization of freshwater habitats were examined using coalescent-based analyses, and demonstrated that populations likely originated from natural migrations via the St Lawrence River.

  17. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and

  18. A Mathematical Model of Melt Lake Development on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Buzzard, S. C.; Feltham, D. L.; Flocco, D.

    2018-02-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. Melt lakes have been implicated in ice shelf collapse; Antarctica's Larsen B Ice Shelf was observed to have a large amount of surface melt lakes present preceding its collapse in 2002. Such collapse can affect ocean circulation and temperature, cause habitat loss and contribute to sea level rise through the acceleration of tributary glaciers. We present a mathematical model of a surface melt lake on an idealized ice shelf. The model incorporates a calculation of the ice shelf surface energy balance, heat transfer through the firn, the production and percolation of meltwater into the firn, the formation of ice lenses, and the development and refreezing of surface melt lakes. The model is applied to the Larsen C Ice Shelf, where melt lakes have been observed. This region has warmed several times the global average over the last century and the Larsen C firn layer could become saturated with meltwater by the end of the century. When forced with weather station data, our model produces surface melting, meltwater accumulation, and melt lake development consistent with observations. We examine the sensitivity of lake formation to uncertain parameters and provide evidence of the importance of processes such as lateral meltwater transport. We conclude that melt lakes impact surface melt and firn density and warrant inclusion in dynamic-thermodynamic models of ice shelf evolution within climate models, of which our model could form the basis for the thermodynamic component.

  19. Final Oahe Dam/Lake Oahe Master Plan Missouri River, South Dakota and North Dakota

    DTIC Science & Technology

    2010-09-01

    STUDY Recreation Management Opportunities, Inc. "Market Analysis & Feasibility of Recreation & Tourism Development of the Missouri River Basin in...Missouri River between Sioux City, Iowa and the mouth near St. Louis. One of Lake Oahe’s primary water management functions is to provide the extra...slopes tend to flatten toward the stream’s mouth . Generally, the right-bank tributaries have comparatively narrow valleys and are entrenched roughly 100

  20. The response of sediment source and transfer dynamics to land use (change) in the Lake Manyara catchment

    NASA Astrophysics Data System (ADS)

    Wynants, Maarten; Munishi, Linus; Solomon, Henok; Grenfell, Michael; Taylor, Alex; Millward, Geoff; Boeckx, Pascal; Ndakidemi, Patrick; Gilvear, David; Blake, William

    2017-04-01

    The Lake Manyara basin in the East African Rift Region of Tanzania is considered to be an important driver for sustainable development in northern Tanzania in terms of biodiversity conservation, ecotourism, fisheries, pastoralism and (irrigation) agriculture. Besides local conservation, Lake Manyara National Park and its surroundings also have a vital function as a wildlife corridor connecting the Tarangire and Maasai steppe ecosystem with the entire northern Tanzania and Southern Kenya collective of national parks and ecosystems. However, driven by population pressure, increasing number of farmers are establishing agricultural operations in the catchment, causing a shift of the natural vegetation towards agricultural land. Furthermore, pastoralists with ever growing cattle stocks are roaming the grasslands, causing a decrease in soil structure due to overgrazing and compaction of the soil. We hypothesize that these processes increase the vulnerability to erosion, which presents a credible threat to ecosystem service provision, on the one hand the agricultural- and rangelands where loss of this finite resource threatens food security and people's livelihoods and on the other hand the water bodies, where siltation and eutrophication threatens the water quality and biodiversity. Knowledge of sediment source and transfer dynamics in the main tributaries of Lake Manyara and the response of these dynamics to land use (change) is critical to inform sustainable management policy decisions to maintain and enhance future food and water security. Using geochemical tracing techniques and Bayesian unmixing models we were able to attribute the lake sediment proportionally to its contributing tributaries. Furthermore, we were able to identify differences in erosion processes in different tributary systems using gamma spectrometry measurements of surface-elevated fallout radionuclides (137Cs and 210Pb). In our results we found that almost half of the sediment in the lake could be

  1. Instability of Water Quality of a Shallow, Polymictic, Flow-Through Lake.

    PubMed

    Ferencz, Beata; Dawidek, Jarosław; Toporowska, Magdalena

    2018-01-01

    This paper describes catchment processes that favor the trophic instability of a shallow polymictic lake, in which a shift from eutrophy to hypertrophy occurs rapidly. In the lake, in 2007, the winter discharge maximum and an intensive precipitation (monthly sums exceeded 60 mm) in a vegetation season were observed. In 2007, the cyanobacterial blooms disappeared and the water trophy decreased. Total phosphorus (TP) was the main factor determining the high trophic status of the lake. The TP retention resulted from a quick flow of two inflows: QI1 (r = 0.64) and QI2 (0.56), and the base flow of tributary 1 (0.62). A significant negative correlation between TP and precipitation ( r  = - 0.54) was observed. Both the surface and the groundwater inflow of I4 showed a positive correlation with the retention of PO 4 ( r  = 0.67 and r  = 0.60, respectively), whereas the outlet discharge determined RNO 3 ( r  = 0.57). The trophy of Lake Syczyńskie was determined by the relationship between nutrient input and export, expressed as the ionic retention, Carlson's trophic state index (TSI), and phytoplankton abundance. The results showed that many factors influence the stability of water quality in small, polymictic lakes. However, in the studied lake, intense precipitation and winter discharge maxima (particularly base flow) prevented summer cyanobacterial blooms.

  2. Outburst floods from glacier-dammed lakes: The effect of mode of lake drainage on flood magnitude

    USGS Publications Warehouse

    Walder, J.S.; Costa, J.E.

    1996-01-01

    Published accounts of outburst floods from glacier-dammed lakes show that a significant number of such floods are associated not with drainage through a tunnel incised into the basal ice - the process generally assumed - but rather with ice-marginal drainage, mechanical failure of part of the ice dam, or both. Non-tunnel floods are strongly correlated with formation of an ice dam by a glacier advancing from a tributary drainage into either a main river valley or a pre-existing body of water (lake or fiord). For a given lake volume, non-tunnel floods tend to have significantly higher peak discharges than tunnel-drainage floods. Statistical analysis of data for floods associated with subglacial tunnels yields the following empirical relation between lake volume V and peak discharge script Q signp : script Q signp = 46V0.66 (r2 = 0.70), when script Q signp is expressed in metres per second and V in millions of cubic metres. This updates the so-called Clague-Mathews relation. For non-tunnel floods, the analogous relation is script Q signp = 1100V0.44 (r2 = 0.58). The latter relation is close to one found by Costa (1988) for failure of constructed earthen dams. This closeness is probably not coincidental but rather reflects similarities in modes of dam failure and lake drainage. We develop a simple physical model of the breach-widening process for non-tunnel floods, assuming that (1) the rate of breach widening is controlled by melting of the ice, (2) outflow from the lake is regulated by the hydraulic condition of critical flow where water enters the breach, and (3) the effect of lake temperature may be dealt with as done by Clarke (1982). Calculations based on the model simulate quite well outbursts from Lake George, Alaska. Dimensional analysis leads to two approximations of the form script Q signp ??? Vqf(hi, ??0), where q = 0.5 to 0.6, hi is initial lake depth, ??0 is lake temperature, and the form of f(hi, ??0) depends on the relative importance of viscous

  3. Hydromorphodynamic effects of the width ratio and local tributary widening on discordant confluences

    NASA Astrophysics Data System (ADS)

    Guillén-Ludeña, S.; Franca, M. J.; Alegria, F.; Schleiss, A. J.; Cardoso, A. H.

    2017-09-01

    River training works performed in the last couple of centuries constrained the natural dynamics of channel networks in locations that include the confluences between tributaries and main channels. As a result, the dynamics of these confluences are currently characterized by homogeneous flow depths, flow velocities, and morphologic conditions, which are associated with impoverished ecosystems. The widening of river reaches is seen as a useful measure for river restoration, as it enhances the heterogeneity in flow depths, flow velocities, sediment transport, and bed substrates. The purpose of this study is to analyze the effects of local widening of the tributary mouth as well as the effects of the ratio between the width of the tributary and that of the main channel on the flow dynamics and bed morphology of river confluences. For that purpose, 12 experiments were conducted in a 70° laboratory confluence. In these experiments, three unit-discharge ratios were tested (qr = 0.37, 0.50, and 0.77) with two width ratios and two tributary configurations. The unit-discharge ratio is defined as the unit discharge in the tributary divided by that of the main channel, measured upstream of the confluence. The width ratio, which is defined as the width of the tributary divided by that of the main channel, was modified by changing the width of the main channel from 0.50 to 1.00 m (corresponding to Br = 0.30 and 0.15 respectively). The tributary configurations consisted of (i) a straight reach with a constant width (the so-called reference configuration) and (ii) a straight reach with a local widening at the downstream end (the so-called widened configuration). During the experiments, a uniform sediment mixture was continuously supplied to both channels. This experimental setup is novel among existing experimental studies on confluence dynamics, as it addresses new confluence configurations and includes a continuous sediment supply to both channels. The experiments were run

  4. Extent of Pleistocene lakes in the western Great Basin

    USGS Publications Warehouse

    Reheis, Marith C.

    1999-01-01

    During the Pliocene to middle Pleistocene, pluvial lakes in the western Great Basin repeatedly rose to levels much higher than those of the well-documented late Pleistocene pluvial lakes, and some presently isolated basins were connected. Sedimentologic, geomorphic, and chronologic evidence at sites shown on the map indicates that Lakes Lahontan and Columbus-Rennie were as much as 70 m higher in the early-middle Pleistocene than during their late Pleistocene high stands. Lake Lahontan at its 1400-m shoreline level would submerge present-day Reno, Carson City, and Battle Mountain, and would flood other now-dry basins. To the east, Lakes Jonathan (new name), Diamond, Newark, and Hubbs also reached high stands during the early-middle(?) Pleistocene that were 25-40 m above their late Pleistocene shorelines; at these very high levels, the lakes became temporarily or permanently tributary to the Humboldt River and hence to Lake Lahontan. Such a temporary connection could have permitted fish to migrate from the Humboldt River southward into the presently isolated Newark Valley and from Lake Lahontan into Fairview Valley. The timing of drainage integration also provides suggested maximum ages for fish to populate the basins of Lake Diamond and Lake Jonathan. Reconstructing and dating these lake levels also has important implications for paleoclimate, tectonics, and drainage evolution in the western Great Basin. For example, shorelines in several basins form a stair-step sequence downward with time from the highest levels, thought to have formed at about 650 ka, to the lowest, formed during the late Pleistocene. This descending sequence indicates progressive drying of pluvial periods, possibly caused by uplift of the Sierra Nevada and other western ranges relative to the western Great Basin. However, these effects cannot account for the extremely high lake levels during the early middle Pleistocene; rather, these high levels were probably due to a combination of increased

  5. Ecological risk assessment of Grass Carp (Ctenopharyngodon idella) for the Great Lakes Basin

    USGS Publications Warehouse

    Kolar, Cynthia S.; Cudmore, Becky

    2017-01-01

    Grass Carp (Ctenopharyngodon idella) is an herbivorous, freshwater fish that was first introduced in the United States in the early 1960s for use in biological control of aquatic vegetation. It has since escaped and dispersed through the Mississippi River basin towards the Great Lakes. To characterize the risk of Grass Carp to the Great Lakes basin, a binational ecological risk assessment of Grass Carp was conducted.This risk assessment covered both triploid (sterile) and diploid (fertile) Grass Carp and assessed the likelihood of arrival, survival, establishment, and spread, and the magnitude of the ecological consequences within 5, 10, 20 and 50 years from 2014 (i.e., the baseline year) to the connected Great Lakes basin (defined as the Great Lakes basin and its tributaries to the first impassable barrier; risk was assessed based on current climate conditions and at the individual lake scale but does not address a finer geographical scale (e.g., bay or sub-region).For triploid Grass Carp, the probability of occurrence (likelihood of arrival, survival, and spread) was assessed, and for diploid Grass Carp the probability of introduction (likelihood of arrival, survival, establishment and spread) was assessed.

  6. 33 CFR 207.180 - All waterways tributary to the Gulf of Mexico (except the Mississippi River, its tributaries...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DEFENSE NAVIGATION REGULATIONS § 207.180 All waterways tributary to the Gulf of Mexico (except the... least three (3) inches less than the depth over the sills or breast walls. (iv) Vessels having...

  7. Particulate organic matter dynamics in ephemeral tributaries of a Central Appalachian stream

    EPA Science Inventory

    Headwater ephemeral tributaries are external interfaces between uplands and downstream waters. Terrestrial particulate organic matter (POM) is important in fueling aquatic ecosystems, however the extent to which ephemeral tributaries are functionally connected to downstream water...

  8. Progress report: chemical character of surface waters in the Devils Lake Basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert A.

    1950-01-01

    Devils Lake in northeastern North Dakota was at one time the most popular summer resort in the state. With decline in lake level the lake has become a shallow body pf vary saline water, which scenic value and recreational appeal completely destroyed. Under the Missouri River development program, it is proposed to restore the lake level to an altitude of 1,425 feet by diversion of Missouri River water. The chemical character of the water in Devils Lake and in other surface bodies in Devils Lake Basin is determined from the analyses of 95 samples. The physical and chemical properties of lake bed deposits are also shown. Lake water in the basin vary considerable in both concentration and composition, ranging from fresh bicarbonate waters of 300 parts per million dissolved solids to sulfate waters of over 100,000 parts per million of soluble salts. Twenty-four samples indicates the chemical character of water in the Red River of the North and its tributaries. The probable concentration of dissolved solids in water of Devils Lake at altitude 1,425 feet has been estimated as ranging from 3,000 to 7,600 parts per million. Final concentration will largely depend upon the percentage of deposited salts reentering solution and the quality of the inflow water. The possible effects of lake effluents on downstream developments, with particular reference to sanitation and pollution problems, are also discussed in this report.

  9. Active Neotectonic Structures in Glacial and Postglacial Sediment in Lake Timiskaming, Timiskaming Graben, Ontario/Quebec Canada

    NASA Astrophysics Data System (ADS)

    Doughty, M.; Eyles, N.; Eyles, C.

    2009-05-01

    The Timiskaming Graben (TG) is a northwest-trending arm of the Ottawa-Bonnechere Graben and the St. Lawrence Rift System (SLRS) in eastern Canada. Together they form a 600 km long failed rift in the Canadian Shield, extending southward along the border of Ontario and Quebec to the St.Lawrence River Valley onto the Hudson Valley and Lake Champlain in the USA. The Timiskaming Graben preserves faulted outliers of Early Paleozoic limestones and has been reactivated several time during the Phanerozoic most recently during the breakup of Pangea. The 110 kilometre-long, ~100 m deep Lake Timiskaming fills the inner part of the Timiskaming Graben along the border of Ontario and Quebec. It is the postglacial successor to glacial Lake Barlow ponded against the northward-retreating Laurentide Ice Sheet some 9,000 years BP. The sedimentary record of Lake Timiskaming was established by collecting more than 1000 line kilometres of high-resolution 'chirp' seismic profiles, side scan and multibeam survey data between 2003 and 2007. These show that bathymetric relief is the product of ongoing tectonic subsidence where lateglacial Barlow glaciolacustrine and postglacial sediments are extensively deformed by closely-spaced horst and grabens. The greatest subsidence has occurred within a narrow (< 3 km) and deep (up to 209 m) central graben basin. We are able to infer the presence of hitherto unrecognized bounding and relay faults within the graben, and a 20 km long 8 m high fault scarp and sand blows produced by large postglacial earthquakes. The region is one of the most seismically active areas in eastern North America (Western Quebec Seismic Zone) with frequent moderate to large magnitude (> M5) intracratonic earthquakes. Structural activity is ongoing along the Timiskaming Graben and its lateglacial and postglacial sediment record provides the clearest evidence to date of modern intracratonic faulting anywhere in eastern North America.

  10. Climate-driven changes in riverine inputs affecting the stoichiometry of Earth's largest lake

    NASA Astrophysics Data System (ADS)

    Sterner, R.; Small, G. E.

    2014-12-01

    Lake Superior, Earth's largest lake by area, has seen a steady increase in nitrate levels over the past century, while phosphorus remains exceedingly low, resulting in an increasingly imbalanced stoichiometry. Although its ratio of watershed area:lake area is relatively small, rivers emptying into Lake Superior could be important drivers of long-term changes in lake stoichiometry. To better assess how the Lake Superior watershed affects its stoichiometry, we examined the chemistry of two of its largest tributaries, the Saint Louis River and the Nipigon River, at their confluences with Lake Superior. Both of these rivers have high dissolved organic carbon (DOC) but low nitrate (NO3) concentrations relative to the lake. Using simple mixing models, we found these nearshore confluences to create sinks of lake NO3 as a result of relatively high rates of denitrification. Climate change is altering the amounts and patterns of delivery of materials from land to lakes and we also examined the plume from a June, 2012 100-year flood in the Saint Louis River. Three days after this historic rain event, we found elevated chlorophyll levels throughout the plume, up to 5-fold higher than in the open lake. Combining our samples with satellite imagery, we conservatively estimate that this plume contained 598,000 kg of phosphorus in dissolved and particulate form, or 40% of the average annual P input to the lake. If storm events such as this occur with increasing frequency as predicted in climate change scenarios, the lake's productivity may increase and stoichiometry could become more balanced, through greater P input and increased N retention due to sedimentation and denitrification.

  11. Evaluation of Head-of-Reservoir Conditions for Downstream Migration of Juvenile Chinook Salmon and Steelhead at Shasta Lake, California

    NASA Astrophysics Data System (ADS)

    Clancey, K. M.; Saito, L.; Svoboda, C.; Bender, M. D.; Hannon, J.; Hellmann, K. M.

    2015-12-01

    Since completion of Shasta Dam, migration of Chinook salmon and steelhead trout in the Sacramento River has been blocked, causing loss of spawning and rearing habitat. This has been a factor leading to population declines of these fish species over several decades. Winter-run Chinook salmon, spring-run Chinook salmon and steelhead trout are now listed under the Endangered Species Act. A habitat assessment of the tributaries upstream of Shasta Dam showed that the Sacramento and McCloud tributaries have suitable habitat for reintroduction of adult salmon and steelhead for spawning. Such reintroduction would require downstream passage of juvenile Chinook salmon and steelhead past Shasta Dam. To evaluate the possibility of collecting and transporting juvenile Chinook salmon and steelhead past Shasta Dam, a CE-QUAL-W2 model of Shasta Lake and the Sacramento River, McCloud River, Pit River and Squaw Creek tributaries was used to assess where and when conditions were favorable at head-of-reservoir locations upstream of proposed temperature curtains to collect juvenile fish. Head-of-reservoir is the zone of transition between the river and the upstream end of the reservoir. Criteria for evaluating locations suitable to collect these fish included water temperature and velocities in the Sacramento and McCloud tributaries. Model output was analyzed during months of downstream migration under dry, median and wet year conditions. Potential for proposed temperature curtains, anchored and floating, to improve conditions for fish migration was also evaluated with the CE-QUAL-W2 model. Use of temperature curtains to assist fish migration is a novel approach that to our knowledge has not previously been assessed for recovery of Chinook salmon and steelhead populations. Providing safe passage conditions is challenging, however the study findings may assist in formulation of a juvenile fish passage alternative that is suitable for Shasta Lake.

  12. The sterile-male-release technique in Great Lakes sea lamprey management

    USGS Publications Warehouse

    Twohey, Michael B.; Heinrich, John W.; Seelye, James G.; Fredricks, Kim T.; Bergstedt, Roger A.; Kaye, Cheryl A.; Scholefield, Ron J.; McDonald, Rodney B.; Christie, Gavin C.

    2003-01-01

    The implementation of a sterile-male-release technique from 1991 through 1999 and evaluation of its effectiveness in the Great Lakes sea lamprey (Petromyzon marinus) management program is reviewed. Male sea lampreys were injected with the chemosterilant bisazir (P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide) using a robotic device. Quality assurance testing indicated the device delivered a consistent and effective dose of bisazir. Viability of embryos in an untreated control group was 64% compared to 1% in a treatment group. A task force developed nine hypotheses to guide implementation and evaluation of the technique. An annual average of 26,000 male sea lampreys was harvested from as many as 17 Great Lakes tributaries for use in the technique. An annual average of 16,100 sterilized males was released into 33 tributaries of Lake Superior to achieve a theoretical 59% reduction in larval production during 1991 to 1996. The average number of sterile males released in the St. Marys River increased from 4,000 during 1991 to 1996 to 20,100 during 1997 to 1999. The theoretical reduc-stertion in reproduction when combined with trapping was 57% during 1991 to 1996 and 86% during 1997 to 1999. Evaluation studies demonstrated that sterilized males were competitive and reduced production of larvae in streams. Field studies and simulation models suggest reductions in reproduction will result in fewer recruits, but there is risk of periodic high recruitment events independent of sterile-male release. Strategies to reduce reproduction will be most reliable when low densities of reproducing females are achieved. Expansion of the technique is limited by access to additional males for sterilization. Sterile-male release and other alternative controls are important in delivering integrated pest management and in reducing reliance on pesticides.

  13. An exploratory investigation of the landscape-lake interface: Land cover controls over consumer N and C isotopic composition in Lake Michigan rivermouths

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Vallazza, Jonathan M.; Nelson, J. C.

    2012-01-01

    Rivermouth ecosystems are areas where tributary waters mix with lentic near-shore waters and provide habitat for many Laurentian Great Lakes fish and wildlife species. Rivermouths are the interface between terrestrial activities that influence rivers and the ecologically important nearshore. Stable isotopes of nitrogen (N) and carbon (C) in consumers were measured from a range of rivermouths systems to address two questions: 1) What is the effect of rivermouth ecosystems and land cover on the isotopic composition of N available to rivermouth consumers? 2) Are rivermouth consumers composed of lake-like or river-like C? For question 1, data suggest that strong relationships between watershed agriculture and consumer N are weakened or eliminated at the rivermouth, in favor of stronger relationships between consumer N and depositional areas that may favor denitrification. For question 2, despite apparently large riverine inputs, consumers only occasionally appear river-like. More often consumers seem to incorporate large amounts of C from either the nearshore or primary production within the rivermouth itself. Rivermouths appear to be active C and N processing environments, thus necessitating their explicit incorporation into models estimating nearshore loading and possibly contributing to their importance to Great Lakes biota.

  14. Hydrologic data; North Canadian River from Lake Overholser to Lake Eufaula, central Oklahoma

    USGS Publications Warehouse

    Havens, J.S.

    1984-01-01

    The data contained in this report were gathered during the period 1982 to 1984 for use in constructing a digital model of the North Canadian River from Lake Overholser, in the western part of Oklahoma City, to Lake Eufaula, in eastern Oklahoma. Locations of test holes and sampling sites are show in figure 1. Information on well depths and water levels in table 1 was gathered in the summer of 1982. Some information in the table was reported by well owners. Field water-quality data for water temperatures, specific conductance, and pH were measured at the time the wells were inventoried in 1982 and appear in table 2. Forty-nine test holes were augered to provide more comprehensive lithologic and water-level data along the North Canadian River. Lithologic logs of these test holes appear in table 3. Thirty-eight of the test holes were completed as observations wells by placing perforated plastic casing in the holes. Water levels were measured in these observations wells from the time of completion in mid-1982 through mid-1984. Hydrographs of the observation wells are shown in figures 2 through 15. The data are presented graphically for clarity. Hydrographs of water-level fluctuations in two wells equipped with continuous water-level recorders and hydrographs of stage fluctuations on the North Canadian River at nearby gaging stations are shown in figures 16 and 17. Two sets of low-flow measurements for the North Canadian River showing gains and losses in flow between measuring sites in the reach from Lake Overholser to Lake Eufaula are given in table 4. Measurements of flow on tributary streams are also given in this table. Analyses of water-quality samples collected at the time of the low-flow measurements are given in table 5.

  15. Techniques for restoration of disturbed coastal wetlands of the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Whillans, Thomas H.

    1999-01-01

    A long history of human-induced degradation of Great Lakes wetlands has made restoration a necessity, but the practice of wetland restoration is relatively new, especially in large lake systems. Therefore, we compiled tested methods and developed additional potential methods based on scientific understanding of Great Lakes wetland ecosytems to providc an overview of approaches for restoration. We addressed this challenge by focusing on four general fields of science: hydrology, sedimentology, chemistry, and biology. Hydrologic remediation methods include restoring hydrologic connections between diked and hydrologically altered wetlands and the lakes, restoring water tables lowered by ditching, and restoring natural variation in lake levels of regulated lakes Superior and Ontario. Sedimentological remediation methods include management of sediment input from uplands, removal or proper management of dams on tributary rivers, and restoration of protective barrier beaches and sand spits. Chemical remediation methods include reducing or eliminating inputs of contaminants from point and non-pont sources, natural sediment remediation by biodegradation and chemical degradation, and active sediment remediation by removal or byin situ treatment Biological remediation methods include control of non-target organisms, enhancing populations of target organisms, and enhancing habitat for target organisms. Some of these method were used in three major restoration projects (Metzger Marsh on Lake Erie and Cootes Paradise and Oshawa Second Marsh on Lake Ontario), which are described as case studies to show practical applications of wetland restoration in the Great Lakes. Successful restoration techniques that do not require continued manipulation must be founded in the basic tenets of ecology and should mimic natural processes. Success is demonstrated by the sustainability, productivity, nutrient-retention ability, invasibility, and biotic interactions within a restored wetland.

  16. 33 CFR 334.460 - Cooper River and tributaries at Charleston, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Cooper River and tributaries at... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.460 Cooper River and tributaries at Charleston, SC. (a) The areas: (1) That portion of the Cooper River beginning on the west shore...

  17. Streamflow and sediment-transport data, Colorado River and three tributaries in Grand Canyon, Arizona, 1983 and 1985-86

    USGS Publications Warehouse

    Garrett, W.B.; van de Vanter, E.K.; Graf, J.B.

    1993-01-01

    The U.S. Geological Survey collected streamflow and sediment-transport data at 5 streamflow-gaging stations on the Colorado River between Glen Canyon Dam and Lake Mead as a part of an interagency environmental study. The data were collected for about 6 mo in 1983 and about 4 mo in 1985-86; data also were collected at 3 sites on tributary streams in 1983. The data were used for development of unsteady flow-routing and sediment-transport models, sand-load rating curves, and evaluation of channel changes. For the 1983 sampling period, 1,076 composite cross-section suspended-sediment samples were analyzed; 809 of these samples were collected on the main stem of the Colorado River and 267 samples were from the tributaries. Bed-material samples were obtained at 1,988 verticals; 161 samples of material in transport near the bed (bedload) were collected to define the location of sand, gravel, and bed rock in the channel cross section; and 664 discharge measurements were made. For the 1985-86 sampling period, 765 composite cross-section suspended-sediment samples and 887 individual vertical samples from cross sections were analyzed. Bed-material samples were obtained at 531 verticals, 159 samples of bedload were collected, and 218 discharge measurements were made. All data are presented in tabular form. Some types of data also are presented in graphs to better show trends or variations. (USGS)

  18. Trends and variability of water quality in Lake Tana, Ethiopia using MODIS-Aqua

    NASA Astrophysics Data System (ADS)

    DeLuca, N. M.; Zaitchik, B. F.; Monger, B. C.

    2017-12-01

    Determining long-term water quality trends and variability in remote inland lakes has been challenging due to a lack of continuous in situ measurements. Utilizing ocean color remote sensing techniques for these lakes is difficult due to their sizes, shapes, and optically complex waters. Lake Tana is the largest body of water in Ethiopia, and is located in the country's northwestern highlands. The lake is quite shallow, averaging at about 8 meters depth, and is characteristically turbid due to nearby land degradation and high soil erosion rates. Lake Tana is an important source of accessible water for the rapidly growing population of Ethiopia and serves as the headwaters for the Blue Nile. Therefore, understanding water quality trends and seasonal variation over the past decade is essential to better preparing for future water needs. Here we use MODIS-Aqua data spanning years 2002-2016 to investigate these trends and variability in Lake Tana, where in situ measurements are limited. Daily water quality products were first processed using SeaDAS and then aggregated by month and year for analyses. Frequent cloud cover in the June, July, and August (JJA) rainy season due to monsoon and zonal dynamics presents an obstacle for obtaining mean lake values during these months. We also performed analyses on targeted regions of Lake Tana to determine whether some of the major tributaries and their corresponding watersheds have more influence on observed trends than others.

  19. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  20. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron.

    PubMed

    Hayden, Todd A; Holbrook, Christopher M; Fielder, David G; Vandergoot, Christopher S; Bergstedt, Roger A; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  1. The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie.

    PubMed

    Maavara, Taylor; Slowinski, Stephanie; Rezanezhad, Fereidoun; Van Meter, Kimberly; Van Cappellen, Philippe

    2018-05-01

    Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Gasoline-related organics in Lake Tahoe before and after prohibition of carbureted two-stroke engines

    USGS Publications Warehouse

    Lico, M.S.

    2004-01-01

    On June 1, 1999, carbureted two-stroke engines were banned on waters within the Lake Tahoe Basin of California and Nevada. The main gasoline components MTBE (methyl tert-butyl ether) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were present at detectable concentrations in all samples taken from Lake Tahoe during 1997-98 prior to the ban. Samples taken from 1999 through 2001 after the ban contained between 10 and 60 percent of the pre-ban concentrations of these compounds, with MTBE exhibiting the most dramatic change (a 90 percent decrease). MTBE and BTEX concentrations in water samples from Lake Tahoe and Lower Echo Lake were related to the amount of boat use at the sampling sites. Polycyclic aromatic hydrocarbon (PAH) compounds are produced by high-temperature pyrolytic reactions. They were sampled using semipermeable membrane sampling devices in Lake Tahoe and nearby Donner Lake, where carbureted two-stroke engines are legal. PAHs were detected in all samples taken from Lake Tahoe and Donner Lake. The number of PAH compounds and their concentrations are related to boat use. The highest concentrations of PAH were detected in samples from two heavily used boating areas, Tahoe Keys Marina and Donner Lake boat ramp. Other sources of PAH, such as atmospheric deposition, wood smoke, tributary streams, and automobile exhaust do not contribute large amounts of PAH to Lake Tahoe. Similar numbers of PAH compounds and concentrations were found in Lake Tahoe before and after the ban of carbureted two-stroke engines. ?? by the North American Lake Management Society 2004.

  3. A water-quality reconnaissance of Big Bear Lake, San Bernardino County, California, 1972-1973

    USGS Publications Warehouse

    Irwin, George A.; Lemons, Michael

    1974-01-01

    A water-quality reconnaissance study of the Big Bear Lake area in southern California was made by the U.S. Geological Survey from April 1972 through April 1973. The primary purpose of the study was to measure the concentration and distribution of selected primary nutrients, organic carbon, dissolved oxygen, phytoplankton, and water temperature in the lake. Estimates of the nitrogen, phosphorus, and silica loading to the lake from surface-water tributaries and precipitation were also made.Results of the study indicate that Big Bear Lake is moderately eutrophic, at least in regard to nitrogen, phosphorus, and organic content. Nitrate was found in either trace concentrations or below detectable limits; however, ammonia nitrogen was usually detected in concentrations greater than 0.05 milligrams per liter. Orthophosphate phosphorus was detected in mean concentrations ranging from 0.01 to 0.05 milligrams per liter. Organic nitrogen and phosphorus were also detected in measurable concentrations.Seasonal levels of dissolved oxygen indicated that the nutrients and other controlling factors were optimum for relatively high primary productivity. However, production varied both seasonally and areally in the lake. Primary productivity seemed highest in the eastern and middle parts of the lake. The middle and western parts of the lake exhibited severe oxygen deficits in the deeper water during the warmer summer months of June and July 1972.

  4. Seasonal Dynamics of Glyphosate and AMPA in Lake Greifensee: Rapid Microbial Degradation in the Epilimnion During Summer.

    PubMed

    Huntscha, Sebastian; Stravs, Michael A; Bühlmann, Andreas; Ahrens, Christian H; Frey, Jürg E; Pomati, Francesco; Hollender, Juliane; Buerge, Ignaz J; Balmer, Marianne E; Poiger, Thomas

    2018-04-17

    Occurrence and fate of glyphosate, a widely used herbicide, and its main metabolite AMPA was investigated in Lake Greifensee, Switzerland. Monthly vertical concentration profiles in the lake showed an increase of glyphosate concentrations in the epilimnion from 15 ng/L in March to 145 ng/L in July, followed by a sharp decline to <5 ng/L in August. A similar pattern was observed for AMPA. Concentrations of glyphosate and AMPA in the two main tributaries generally were much higher than in the lake. Simulations using a numerical lake model indicated that a substantial amount of glyphosate and AMPA dissipated in the epilimnion, mainly in July and August, with half-lives of only ≈2-4 days which is ≫100 times faster than in the preceding months. Fast dissipation coincided with high water temperatures and phytoplankton densities, and low phosphate concentrations. This indicates that glyphosate might have been used as an alternative phosphorus source by bacterio- and phytoplankton. Metagenomic analysis of lake water revealed the presence of organisms known to be capable of degrading glyphosate and AMPA.

  5. Anthropogenic impacts on American eel demographics in Hudson River tributaries, New York

    USGS Publications Warehouse

    Machut, L.S.; Limburg, K.E.; Schmidt, R.E.; Dittman, D.

    2007-01-01

    Populations of American eel Anguilla rostrata along the eastern coast of North America have declined drastically for largely unknown reasons. We examined the population dynamics of American eels in six tributaries of the Hudson River, New York, to quantify their distribution and the impacts of anthropogenic stressors. With up to 155 American eels per 100 m2, tributary densities are greater than those within the main stem of the Hudson River and are among the highest reported anywhere. The predominance of small American eels (<200 mm) and wide range of ages (from young-of-year glass eels to 24-year-old yellow eels) suggest that tributaries are an important nursery area for immature American eels. However, upstream of natural and artificial barriers, American eel densities were reduced by at least a factor of 10 and condition, as measured by mass, was significantly lower. Significantly lower American eel condition was also found with increasing riparian urbanization. Density-dependent growth limitations below barriers are suggested by increased growth rates above the first tributary barrier. We suggest that (1) tributaries are important habitat for the conservation of American eels and (2) mitigation of anthropogenic stressors is vital for complete utilization of available habitat and conservation of the species. ?? Copyright by the American Fisheries Society 2007.

  6. Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin)

    PubMed Central

    Bouillon, Steven; Yambélé, Athanase; Gillikin, David P.; Teodoru, Cristian; Darchambeau, François; Lambert, Thibault; Borges, Alberto V.

    2014-01-01

    The Oubangui is a major tributary of the Congo River. We describe the biogeochemistry of contrasting tributaries within its central catchment, with watershed vegetation ranging from wooded savannahs to humid rainforest. Compared to a 2-year monitoring record on the mainstem Oubangui, these tributaries show a wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity, and total alkalinity) in rainforests to those more typical for savannah systems. Spectral analyses of chromophoric dissolved organic matter showed wide temporal variations in the Oubangui compared to spatio-temporal variations in the tributaries, and confirm that different pools of dissolved organic carbon are mobilized during different hydrological stages. δ13C of dissolved inorganic carbon ranged between −28.1‰ and −5.8‰, and was strongly correlated to both partial pressure of CO2 and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the weathering regime on CO2 fluxes. All tributaries were oversaturated in dissolved greenhouse gases (CH4, N2O, CO2), with highest levels in rivers draining rainforest. The high diversity observed underscores the importance of sampling that covers the variability in subcatchment characteristics, to improve our understanding of biogeochemical cycling in the Congo Basin. PMID:24954525

  7. Nekton community structure varies in response to coastal urbanization near mangrove tidal tributaries

    USGS Publications Warehouse

    Krebs, Justin M.; McIvor, Carole C.; Bell, Susan S.

    2014-01-01

    To assess the potential influence of coastal development on estuarine-habitat quality, we characterized land use and the intensity of land development surrounding small tidal tributaries in Tampa Bay. Based on this characterization, we classified tributaries as undeveloped, industrial, urban, or man-made (i.e., mosquito-control ditches). Over one third (37 %) of the tributaries have been heavily developed based on landscape development intensity (LDI) index values >5.0, while fewer than one third (28 %) remain relatively undeveloped (LDI < 3.0). We then examined the nekton community from 11 tributaries in watersheds representing the four defined land-use classes. Whereas mean nekton density was independent of land use, species richness and nekton-community structure were significantly different between urban and non-urban (i.e., undeveloped, industrial, man-made) tributaries. In urban creeks, the community was species-poor and dominated by high densities of poeciliid fishes, Poecilia latipinna and Gambusia holbrooki, while typically dominant estuarine taxa including Menidia spp., Fundulus grandis, and Adinia xenica were in low abundance and palaemonid grass shrimp were nearly absent. Densities of economically important taxa in urban creeks were only half that observed in five of the six undeveloped or industrial creeks, but were similar to those observed in mosquito ditches suggesting that habitat quality in urban and mosquito-ditch tributaries is suboptimal compared to undeveloped tidal creeks. Furthermore, five of nine common taxa were rarely collected in urban creeks. Our results suggest that urban development in coastal areas has the potential to alter the quality of habitat for nekton in small tidal tributaries as reflected by variation in the nekton community.

  8. Use of isotopic data to estimate water residence times of the Finger Lakes, New York

    USGS Publications Warehouse

    Michel, Robert L.; Kraemer, Thomas F.

    1995-01-01

    Water retention times in the Finger Lakes, a group of 11 lakes in central New York with similar hydrologic and climatic characteristics, were estimated by use of a tritium-balance model. During July 1991, samples were collected from the 11 lakes and selected tributary streams and were analyzed for tritium, deuterium, and oxygen-18. Additional samples from some of the sites were collected in 1990, 1992 and 1993. Tritium concentration in lake water ranged from 24.6 Tritium Units (TU) (Otisco Lake) to 43.2 TU (Seneca Lake).The parameters in the model used to obtain water retention time (WRT) included relative humidity, evaporation rate, tritium concentrations of inflowing water and lake water, and WRT of the lake. A historical record of tritium concentrations in precipitation and runoff was obtained from rainfall data at Ottawa, Canada, analyses of local wines produced during 1977–1991, and streamflow samples collected in 1990–1991. The model was simulated in yearly steps for 1953–1991, and the WRT was varied to reproduce tritium concentrations measured in each lake in 1991. Water retention times obtained from model simulations ranged from 1 year for Otisco Lake to 12 years for Seneca Lake, and with the exception of Seneca Lake and Skaneateles Lake, were in agreement with earlier estimates obtained from runoff estimates and chloride balances. The sensitivity of the model to parameter changes was tested to determine possible reasons for the differences calculated for WRT's for Seneca Lake and Skaneateles Lake. The shorter WRT obtained from tritium data for Lake Seneca (12 years as compared to 18 years) can be explained by a yearly addition of less than 3% by lake volume of ground water to the lake, the exact percentage depending on tritium concentration in the ground water.

  9. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large, shallow, and eutrophic lake in China.

    PubMed

    Zhou, Yongqiang; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Niu, Cheng

    2015-09-01

    High concentrations of chromophoric dissolved organic matter (CDOM) are terrestrially derived from upstream tributaries to Lake Taihu, China, and are influenced by hydrological conditions of the upstream watershed. To investigate how the dynamics of CDOM in Lake Taihu are influenced by upstream inflow runoff, four sampling cruises, differing in hydrological conditions, were undertaken in the lake and its three major tributaries, rivers Yincun, Dapu, and Changdou. CDOM absorption, fluorescence spectroscopy, chemical oxygen demand (COD), and stable isotope δ(13)C and δ(15)N measurements were conducted to characterize the dynamics of CDOM. The mean absorption coefficient a(350) collected from the three river profiles (5.15 ± 1.92 m(-1)) was significantly higher than that of the lake (2.95 ± 1.88 m(-1)), indicating that the upstream rivers carried a substantial load of CDOM to the lake. This finding was substantiated by the exclusively terrestrial signal exhibited by the level of δ(13)C (-26.23 ± 0.49‰) of CDOM samples collected from the rivers. Mean a(350) and COD in Lake Taihu were significantly higher in the wet season than in the dry season (t test, p < 0.0001), suggesting that the abundance of CDOM in the lake is strongly influenced by hydrological conditions of the watershed. Four components were identified by parallel factor analysis, including two protein-like components (C1 and C2), a terrestrial humic-like component (C3), and a microbial humic-like (C4) component. The contribution percentage of the two humic-like components relative to the summed fluorescence intensity of the four components (C humic) increased significantly from the dry to the wet season. This seasonal difference in contribution further substantiated that an enhanced rainfall followed by an elevated inflow runoff in the lake watershed in the wet season may result in an increase in humic-like substances being discharged into the lake compared to that in the dry

  10. Water quality, hydrology, and phosphorus loading to Little St. Germain Lake, Wisconsin, with special emphasis on the effects of winter aeration and ground-water inputs

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Saad, David A.

    2005-01-01

    Several empirical water-quality models were used to simulate how the East and Upper East Bays of the lake should respond to reductions in phosphorus loading from Muskellunge Creek. Simulation results indicated that reductions in tributary loading could improve the water quality of the East and Upper East Bays. Improving the water quality of these bays would also improve the water quality of the South and Second South Bays because of the flow of water through the lake. However, even with phosphorus loading from Muskellunge Creek completely eliminated, most of the lake would remain borderline mesotrophic/eutrophic because of the contributions of phosphorus from ground water.

  11. Age and condition of juvenile catostomids in Clear Lake Reservoir, California

    USGS Publications Warehouse

    Burdick, Summer M.; Rasmussen, Josh

    2013-01-01

    Although infrequent recruitment of new individuals into the adult spawning populations of Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) limits recovery of these species in Upper Klamath Lake, it is not clear that populations are recruitment limited in Clear Lake Reservoir (hereafter Clear Lake). Specifically, some evidence indicates that shortnose suckers may regularly recruit to the adult spawning population in Clear Lake. Therefore, a study of early life history patterns and recruitment dynamics in Clear Lake may lead to a better understanding of what is limiting recovery of suckers in both lakes. Adult suckers in Clear Lake migrate up Willow Creek and its tributaries to spawn in some years, but low flow in Willow Creek may inhibit spawning migrations in other years. It is unclear whether spawning is successful, larvae survive, or how frequently juveniles persist to adulthood. Environmental variables associated with successful spawning or young-of-year survival have not been identified, and early life history for these populations is poorly understood. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, initiated a study in 2011 to better understand juvenile sucker life history in Clear Lake, and to identify constraints in the early life history that may limit recruitment to the adult spawning populations. The relative weights of shortnose suckers from Clear Lake and Upper Klamath Lake were compared to examine differences in condition. However, it is unclear whether the disparity in relative weights between the populations reflects differences in condition, phenotype, or both. Approximately 80 percent of juvenile suckers in Clear Lake are shortnose suckers with some morphologic features similar to Klamath largescale suckers (Catostomus snyderi), whereas juvenile suckers in Upper Klamath Lake can be clearly classified as either shortnose or Lost River suckers. The presence of juvenile suckers

  12. Water resources of the Lake Traverse Reservation, South and North Dakota, and Roberts County, South Dakota

    USGS Publications Warehouse

    Thompson, Ryan F.

    2001-01-01

    In 1994, the U.S. Geological Survey, in cooperation with the Sisseton-Wahpeton Sioux Tribe; Roberts County; and the South Dakota Department of Environment and Natural Resources, Geological Survey Program, began a 6-year investigation to describe and quantify the water resources of the area within the 1867 boundary of the Lake Traverse Reservation and adjacent parts of Roberts County. Roberts County is located in extreme northeastern South Dakota, and the 1867 boundary of the Lake Traverse Reservation encompasses much of Roberts County and parts of Marshall, Day, Codington, and Grant Counties in South Dakota and parts of Richland and Sargent Counties in southeast North Dakota. This report includes descriptions of the quantity, quality, and availability of surface and ground water, the extent of the major glacial and bedrock aquifers and named outwash groups, and surface- and ground-water uses within the 1867 boundary of the Lake Traverse Reservation and adjacent parts of Roberts County. The surface-water resources within the 1867 boundary of the Lake Traverse Reservation and adjacent parts of Roberts County include rivers, streams, lakes, and wetlands. The Wild Rice and Bois de Sioux Rivers are tributaries of the Red River within the Souris-Red-Rainy River Basin; the Little Minnesota, Jorgenson, and North Fork Whetstone Rivers are tributaries of the Minnesota River within the Upper Mississippi River Basin, and the James and Big Sioux Rivers are tributaries within the Missouri River Basin. Several of the larger lakes within the study area have been developed for recreation, while many of the smaller lakes and wetlands are used for livestock watering or as wildlife production areas. Statistical summaries are presented for the water-quality data of six selected streams within the study area, and the dominant chemical species are listed for 17 selected lakes within the study area. The glacial history of the study area has led to a rather complex system of glacial

  13. A quarter-million years of paleoenvironmental change at Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Kaufman, D.S.; Bright, Jordon; Dean, W.E.; Rosenbaum, J.G.; Moser, K.; Anderson, R. Scott; Colman, Steven M.; Heil, C.W.; Jiménez-Moreno, Gonzalo; Reheis, M.C.; Simmons, K.R.

    2009-01-01

    A continuous, 120-m-long core (BL00-1) from Bear Lake, Utah and Idaho, contains evidence of hydrologic and environmental change over the last two glacial-interglacial cycles. The core was taken at 41.95??N, 111.31??W, near the depocenter of the 60-m-deep, spring-fed, alkaline lake, where carbonate-bearing sediment has accumulated continuously. Chronological control is poor but indicates an average sedimentation rate of 0.54 mm yr-1. Analyses have been completed at multi-centennial to millennial scales, including (in order of decreasing temporal resolution) sediment magnetic properties, oxygen and carbon isotopes on bulk-sediment carbonate, organic- and inorganiccarbon contents, palynology; mineralogy (X-ray diffraction), strontium isotopes on bulk carbonate, ostracode taxonomy, oxygen and carbon isotopes on ostracodes, and diatom assemblages. Massive silty clay and marl constitute most of the core, with variable carbonate content (average = 31 ?? 19%) and oxygen-isotopic values (??18O ranging from -18??? to -5??? in bulk carbonate). These variations, as well as fluctuations of biological indicators, reflect changes in the water and sediment discharged from the glaciated headwaters of the dominant tributary, Bear River, and the processes that influenced sediment delivery to the core site, including lake-level changes. Although its influence has varied, Bear River has remained a tributary to Bear Lake during most of the last quarter-million years. The lake disconnected from the river and, except for a few brief excursions, retracted into a topographically closed basin during global interglaciations (during parts of marine isotope stages 7, 5, and 1). These intervals contain up to 80% endogenic aragonite with high ??18O values (average = -5.8 ?? 1.7???), indicative of strongly evaporitic conditions. Interglacial intervals also are dominated by small, benthic/tychoplanktic fragilarioid species indicative of reduced habitat availability associated with low lake levels

  14. Annual estimates of water and solute export from 42 tributaries to the Yukon River

    USGS Publications Warehouse

    Frederick Zanden,; Suzanne P. Anderson,; Striegl, Robert G.

    2012-01-01

    Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions.

  15. Anthropopression markers in lake bottom sediments

    NASA Astrophysics Data System (ADS)

    Nadolna, Anna; Nowicka, Barbara

    2014-05-01

    Lakes are vulnerable to various types of anthropogenic disturbances. Responses of lake ecosystems to environmental stressors are varied and depend not only on the type of a factor but also on the lake natural resistance to degradation. Within the EULAKES project an evaluation of anthropogenic stress extent in a flow-through, postglacial, ribbon lake (Lake Charzykowskie) was carried out. It was assumed, that this impact manifests unevenly, depending on a type and degree of the pressure on the shore zones, water quality of tributaries, lake basin shape and dynamics of a water movement. It was stated, that anthropogenic markers are substances accumulated in bottom sediments as a result of allochthonous substances inflow from the catchment and atmosphere. Along the selected transects 105 samples from the top layer of sediments (about 20 cm) was collected representing the contemporary accumulation (about 15 years). The content of selected chemical elements and compounds was examined, including nutrients (TN and TP), heavy metals (arsenic, cadmium, lead, chromium, nickel, copper, zinc, mercury, iron, and manganese) and pesticides (DDT, DDD, DDE, DMDT , γ-HCH). The research was conducted in the deepest points of each lake basin and along the research transects - while choosing the spots, the increased intensity of anthropogenic impact (ports, roads with heavy traffic, wastewater discharge zones, built-up areas) was taken into consideration. The river outlets to the lake, where there are ecotonal zones between limnic and fluvial environment, were also taken into account. Analysis of the markers distribution was carried out against the diversity of chemical characteristics of limnic sediments. Ribbon shape of the lake basin and the dominant wind direction provide an opportunity of easy water mixing to a considerable depth. Intensive waving processes cause removal of the matter from the littoral zone towards lake hollows (separated by the underwater tresholds), where the

  16. Estimating spawning times of Alligator Gar (Atractosteus spatula) in Lake Texoma, Oklahoma

    USGS Publications Warehouse

    Snow, Richard A.; Long, James M.

    2015-01-01

    In 2013, juvenile Alligator Gar were sampled in the reservoir-river interface of the Red River arm of Lake Texoma. The Red River, which flows 860 km along Oklahoma’s border with Texas, is the primary in-flow source of Lake Texoma, and is impounded by Denison Dam. Minifyke nets were deployed using an adaptive random cluster sampling design, which has been used to effectively sample rare species. Lapilli otoliths (one of the three pair of ear stones found within the inner ear of fish) were removed from juvenile Alligator Gar collected in July of 2013. Daily ages were estimated by counting the number of rings present, and spawn dates were back-calculated from date of capture and subtracting 8 days (3 days from spawn to hatch and 5 days from hatch to swimup when the first ring forms). Alligator Gar daily age estimation ranged from 50 to 63 days old since swim-up. Spawn dates corresponded to rising pool elevations of Lake Texoma and water pulses of tributaries.

  17. Water-quality and Llake-stage data for Wisconsin Lakes, Water Year 2004

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2005-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2004 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2003 through September 30, 2004 is called 'water year 2004.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2004.' Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available throught the World Wide Web on the Internet. The Wisconsin Water Science Center's home page is at http://wi.water.usgs.gov/. Information on the

  18. Demographic characteristics of an adfluvial bull trout population in Lake Pend Oreille, Idaho

    USGS Publications Warehouse

    McCubbins, Jonathan L; Hansen, Michael J.; DosSantos, Joseph M; Dux, Andrew M

    2016-01-01

    Introductions of nonnative species, habitat loss, and stream fragmentation have caused the Bull Trout Salvelinus confluentus to decline throughout much of its native distribution. Consequently, in June 1998, the Bull Trout was listed under the U.S. Endangered Species Act as threatened. The Bull Trout has existed in Lake Pend Oreille and its surrounding tributaries since the last ice age, and the lake once supported a world-renowned Bull Trout fishery. To quantify the current status of the Bull Trout population in Lake Pend Oreille, Idaho, we compared the mean age, growth, maturity, and abundance with reports in a study conducted one decade earlier. Abundance was estimated by mark–recapture for Bull Trout caught in trap nets and gill nets set in Lake Pend Oreille during ongoing suppression netting of Lake Trout S. namaycushin 2007–2008. Bull Trout sampled in 2006–2008 were used to estimate age structure, survival, growth, and maturity. Estimated Bull Trout abundance was similar to that estimated one decade earlier in Lake Pend Oreille. Bull Trout residing in Lake Pend Oreille between 2006 and 2008 were between ages 4 and 14 years; their growth was fastest between ages 1 and 2 and slowed thereafter. Male and female Bull Trout matured at a similar age, but females grew faster than males, thereby maturing at a larger size. Our findings suggest that management has effectively addressed current threats to increase the likelihood of long-term persistence of the Bull Trout population in Lake Pend Oreille.

  19. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    USGS Publications Warehouse

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  20. Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron

    PubMed Central

    Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913

  1. Lessons from White Lake - Connecting Students to their Community through Environmental Stewardship

    NASA Astrophysics Data System (ADS)

    Tate, Susan

    2014-05-01

    White Lake and its surrounding community have been negatively affected by shoreline degradation and wildlife habitat loss caused primarily by historical logging practices, and reduced water quality from industrial pollution and storm water runoff. This led to the lake being identified as a Great Lakes Area of Concern by the United States Environmental Protection Agency three decades ago. Local community partners have worked diligently in recent years to reverse habitat loss, and repair damaged ecosystems. The "H2O White Lake" (Healthy Habitats On White Lake) project has involved over seven hundred middle school students in grades six through eight over the course of the last five years. Students begin by researching the environmental history of the watershed and then they monitor six tributaries of the lake for nutrient pollution and habitat degradation. Students use the field experience as a community inventory to identify stewardship needs, for which they then identify solutions that take into account land usage and community behaviors. Class projects have focused on stream bank restoration, storm water management, eradication of invasive species, shoreline clean-up, and community outreach and education. This year, the project culminated in the first ever White Lake Environmental Film Festival, for which students had the opportunity to create their own short documentary. This multiple year place based education project allows students to apply their classroom studies of surface water and groundwater dynamics to an authentic, real-world situation, conduct themselves as scientists, and feel valuable through connections with community partners.

  2. Lake Roosevelt Fisheries Evaluation Program : Limnological and Fisheries Monitoring Annual Report 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLellan, Holly; Lee, Chuck; Scofield, Ben

    1999-08-01

    The Grand Coulee Dam was constructed in 1939 without a fish ladder, which eliminated steelhead (Onchorhynchus mykiss), chinook salmon (O. twshwastica), coho salmon (O. kisutch) and sockeye salmon (O. nerka) from returning to approximately 1,835 km (1,140 miles) of natal streams and tributaries found in the upper Columbia River Drainage in the United States and Canada. The Pacific Northwest Electric Power Planning and Conservation Act of 1980 gave the Bonneville Power Administration (BPA), the authority and responsibility to use its legal and financial resources, 'to protect, mitigate, and enhance fish and wildlife to the extent affected by the development andmore » operation of any hydroelectric project of the Columbia River and its tributaries. This is to be done in a manner consistent with the program adopted by the Northwest Power Planning Council (NWPPC), and the purposes of the Act' (NWPPC, 1987). With the phrase 'protect, mitigate and enhance', Congress signaled its intent that the NWPPC's fish and wildlife program should do more than avoid future hydroelectric damage to the basin's fish and wildlife. The program must also counter past damage, work toward rebuilding those fish and wildlife populations that have been harmed by the hydropower system, protect the Columbia Basin's fish and wildlife resources, and mitigate for harm caused by decades of hydroelectric development and operations. By law, this program is limited to measures that deal with impacts created by the development, operation and management of hydroelectric facilities on the Columbia River and its tributaries. However, off-site enhancement projects are used to address the effects of the hydropower system on fish and wildlife (NWPPC 1987). Resident game fish populations have been established in Franklin D. Roosevelt Lake, the reservoir behind Grand Coulee Dam, since the extirpation of anadromous fish species. The resident game fish populations are now responsible for attracting a large

  3. Lumped parameter, isotopic model simulations of closed-basin lake response to drought in the Pacific Northwest and implications for lake sediment oxygen isotope records.

    NASA Astrophysics Data System (ADS)

    Steinman, B. A.; Rosenmeier, M.; Abbott, M.

    2008-12-01

    The economy of the Pacific Northwest relies heavily on water resources from the drought-prone Columbia River and its tributaries, as well as the many lakes and reservoirs of the region. Proper management of these water resources requires a thorough understanding of local drought histories that extends well beyond the instrumental record of the twentieth century, a time frame too short to capture the full range of drought variability in the Pacific Northwest. Here we present a lumped parameter, mass-balance model that provides insight into the influence of hydroclimatological changes on two small, closed-basin systems located in north- central Washington. Steady state model simulations of lake water oxygen isotope ratios using modern climate and catchment parameter datasets demonstrate a strong sensitivity to both the amount and timing of precipitation, and to changes in summertime relative humidity, particularly at annual and decadal time scales. Model tests also suggest that basin hypsography can have a significant impact on lake water oxygen isotope variations, largely through surface area to volume and consequent evaporative flux to volume ratio changes in response to drought and pluvial sequences. Additional simulations using input parameters derived from both on-site and National Climatic Data Center historical climate datasets accurately approximate three years of continuous lake observations (seasonal water sampling and continuous lake level monitoring) and twentieth century oxygen isotope ratios in sediment core authigenic carbonate recovered from the lakes. Results from these model simulations suggest that small, closed-basin lakes in north-central Washington are highly sensitive to changes in the drought-related climate variables, and that long (8000 year), high resolution records of quantitative changes in precipitation and evaporation are obtainable from sediment cores recovered from water bodies of the Pacific Northwest.

  4. Low PCB concentrations observed in American eel (Anguilla rostrata) in six Hudson River tributaries

    USGS Publications Warehouse

    Limburg, K.E.; Machut, L.S.; Jeffers, P.; Schmidt, R.E.

    2008-01-01

    We analyzed 73 eels, collected in 2004 and 2005 above the head of tide in six Hudson River tributaries, for total PCBs, length, weight, age, and nitrogen stable isotope ratios (??15N). Mean total PCB concentration (wet weight basis) was 0.23 ppm ?? 0.08 (standard error), with a range of 0.008 to 5.4 ppm. A majority of eels (84) had concentrations below 0.25 ppm, and only seven eels (10%) had concentrations exceeding 0.5 ppm. Those eels with higher PCB concentrations were ???12 yr; there was a weak correlation of PCB concentration with ??15N and also with weight. Compared to recent (2003) data from the mainstem of the Hudson River estuary, these results indicate that tributaries are generally much less contaminated with PCBs. We hypothesize that those tributary eels with high PCB concentrations were relatively recent immigrants from the mainstem. Given concern over the possible adverse effects of PCBs on eel reproduction, these tributaries may serve as refugia. Therefore, providing improved access to upland tributaries may be critically important to this species. ?? 2008 Northeastern Naturalist.

  5. Importance of reservoir tributaries to spawning of migratory fish in the upper Paraná River

    USGS Publications Warehouse

    da Silva, P.S.; Makrakis, Maristela Cavicchioli; Miranda, Leandro E.; Makrakis, Sergio; Assumpcao, L.; Paula, S.; Dias, João Henrique Pinheiro; Marques, H.

    2015-01-01

    Regulation of rivers by dams transforms previously lotic reaches above the dam into lentic ones and limits or prevents longitudinal connectivity, which impairs access to suitable habitats for the reproduction of many migratory fish species. Frequently, unregulated tributaries can provide important habitat heterogeneity to a regulated river and may mitigate the influence of impoundments on the mainstem river. We evaluated the importance of tributaries to spawning of migratory fish species over three spawning seasons, by comparing several abiotic conditions and larval fish distributions in four rivers that are tributaries to an impounded reach of the Upper Parana River, Brazil. Our study confirmed reproduction of at least 8 long-distance migrators, likely nine, out of a total of 19 occurring in the Upper Parana River. Total larval densities and percentage species composition differed among tributaries, but the differences were not consistent among spawning seasons and unexpectedly were not strongly related to annual differences in temperature and hydrology. We hypothesize that under present conditions, densities of larvae of migratory species may be better related to efficiency of fish passage facilities than to temperature and hydrology. Our study indicates that adult fish are finding suitable habitat for spawning in tributaries, fish eggs are developing into larvae, and larvae are finding suitable rearing space in lagoons adjacent to the tributaries. Our findings also suggest the need for establishment of protected areas in unregulated and lightly regulated tributaries to preserve essential spawning and nursery habitats.

  6. Proposed 9th Infantry Division Force Conversion; Maneuver Damage, Erosion and Natural Resources Assessment Fort Lewis, Washington. Volume 1: Main Text

    DTIC Science & Technology

    1990-08-01

    Oncorhynchus mychiss Sea-run in Nisqually and tributaries Kokanee (landlocked Managed species American Lake sockeye salmon), Oncorhynchus nerka Chum...plan (Directorate of Engineering and Housing 1984). In addition, the kokanee ( Oncorhynchus nerka ) occurs in American Lake where it is managed and...Migratory Maintained in lakes Oncorhynchus clarki Sea-run in Nisqually and tributaries Rainbow trout (steelhead) Managed species Landlocked in lakes

  7. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  8. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  9. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  10. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  11. Effects of Jackson Lake Dam on the Snake River and its floodplain, Grand Teton National Park, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Marston, Richard A.; Mills, John D.; Wrazien, David R.; Bassett, Beau; Splinter, Dale K.

    2005-10-01

    In 1906, the Bureau of Reclamation created Jackson Lake Dam on the Snake River in what later became Grand Teton National Park. The geomorphic, hydrologic and vegetation adjustments downstream of the dam have yet to be documented. After a larger reservoir was completed further downstream in 1957, the reservoir release schedule from Jackson Lake Dam was changed in a manner that lowered the magnitude and frequency of floods. The stability of the Snake River exhibited a complex response to the change in flow regime. Close to major tributaries, the Snake River increased in total sinuosity and rates of lateral channel migration. Away from the influence of tributaries, the river experienced fewer avulsions and a decrease in sinuosity. Vegetation maps were constructed from 1945 and 1989 aerial photography and field surveys. Using these data, we determined how vegetation is directly related to the number of years since each portion of the floodplain was last occupied by the channel. The vegetation has changed from a flood-pulse dominated mosaic to a more terrestrial-like pattern of succession. Changes in the Snake River and its floodplain have direct implications on bald eagle habitat, moose habitat, fish habitat, safety of rafting and canoeing, and biodiversity at the community and species levels.

  12. Techniques and methods for estimating abundance of larval and metamorphosed sea lampreys in Great Lakes tributaries, 1995 to 2001

    USGS Publications Warehouse

    Slade, Jeffrey W.; Adams, Jean V.; Christie, Gavin C.; Cuddy, Douglas W.; Fodale, Michael F.; Heinrich, John W.; Quinlan, Henry R.; Weise, Jerry G.; Weisser, John W.; Young, Robert J.

    2003-01-01

    Before 1995, Great Lakes streams were selected for lampricide treatment based primarily on qualitative measures of the relative abundance of larval sea lampreys, Petromyzon marinus. New integrated pest management approaches required standardized quantitative measures of sea lamprey. This paper evaluates historical larval assessment techniques and data and describes how new standardized methods for estimating abundance of larval and metamorphosed sea lampreys were developed and implemented. These new methods have been used to estimate larval and metamorphosed sea lamprey abundance in about 100 Great Lakes streams annually and to rank them for lampricide treatment since 1995. Implementation of these methods has provided a quantitative means of selecting streams for treatment based on treatment cost and estimated production of metamorphosed sea lampreys, provided managers with a tool to estimate potential recruitment of sea lampreys to the Great Lakes and the ability to measure the potential consequences of not treating streams, resulting in a more justifiable allocation of resources. The empirical data produced can also be used to simulate the impacts of various control scenarios.

  13. Evaluating the conservation potential of tributaries for native fishes in the Upper Colorado River Basin

    USGS Publications Warehouse

    Laub, Brian G.; Thiede, Gary P.; Macfarlane, William W.; Budy, Phaedra

    2018-01-01

    We explored the conservation potential of tributaries in the upper Colorado River basin by modeling native fish species richness as a function of river discharge, temperature, barrier‐free length, and distance to nearest free‐flowing main‐stem section. We investigated a historic period prior to large‐scale water development and a contemporary period. In the historic period, species richness was log‐linearly correlated to variables capturing flow magnitude, particularly mean annual discharge. In the contemporary period, the log‐linear relationship between discharge and species richness was still evident but weaker. Tributaries with lower average temperature and separated from free‐flowing main‐stem sections often had fewer native species compared to tributaries with similar discharge but with warmer temperature and directly connected to free‐flowing main stems. Thus, tributaries containing only a small proportion of main‐stem discharge, especially those at lower elevations with warmer temperatures and connected to free‐flowing main stems, can support a relatively high species richness. Tributaries can help maintain viable populations by providing ecological processes disrupted on large regulated rivers, such as natural flow and temperature regimes, and may present unique conservation opportunities. Efforts to improve fish passage, secure environmental flows, and restore habitat in these tributaries could greatly contribute to conservation of native fish richness throughout the watershed.

  14. Modeling water quality effects of structural and operational changes to Scoggins Dam and Henry Hagg Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.

    2006-01-01

    To meet water quality targets and the municipal and industrial water needs of a growing population in the Tualatin River Basin in northwestern Oregon, an expansion of Henry Hagg Lake is under consideration. Hagg Lake is the basin's primary storage reservoir and provides water during western Oregon's typically dry summers. Potential modifications include raising the dam height by 6.1 meters (20 feet), 7.6 meters (25 feet), or 12.2 meters (40 feet); installing additional outlets (possibly including a selective withdrawal tower); and adding additional inflows to provide greater reliability of filling the enlarged reservoir. One method of providing additional inflows is to route water from the upper Tualatin River through a tunnel and into Sain Creek, a tributary to the lake. Another option is to pump water from the Tualatin River (downstream of the lake) uphill and into the reservoir during the winter--the 'pump-back' option. A calibrated CE-QUAL-W2 model of Henry Hagg Lake's hydrodynamics, temperature, and water quality was used to examine the effect of these proposed changes on water quality in the lake and downstream. Most model scenarios were run with the calibrated model for 2002, a typical water year; a few scenarios were run for 2001, a drought year. More...

  15. Remote Sensing as a Tool to Track Algal Blooms in the Great Salt Lake, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bradt, S. R.; Wurtsbaugh, W. A.; Naftz, D.; Moore, T.; Haney, J.

    2006-12-01

    The Great Salt Lake is a large hypersaline, terminal water body in northern Utah, USA. The lake has both a significant economic importance to the local community as a source of brine shrimp and mineral resources, as well as, an ecological importance to large numbers of migratory waterfowl. Due to nutrient input from sewage treatment plants, sections of the Great Salt Lake are subjected to highly eutrophic conditions. One of the main tributaries, Farmington Bay, experiences massive blooms of cyanobacteria which can reach concentrations in excess of 300 mg l-1 in the bay. Effects of these blooms can be observed stretching into the rest of the lake. The detrimental outcomes of the blooms include unsightly scums, foul odor and the danger of cyanobacterial toxins. While the blooms have an obvious effect on Farmington Bay, it is quite possible that the cyanobacteria impact a much wider area of the lake as currents move eutrophic water masses. Of particular interest is the reaction of brine shrimp to the plumes of cyanobacteria-rich water leaving Farmington Bay. We are employing remote sensing as a tool to map the distribution of algae throughout the lake and produce lake-wide maps of water quality on a regular basis. On-lake reflectance measurements have been coupled with MODIS satellite imagery to produce a time series of maps illustrating changes in algal distribution. The successes and shortcomings of our remote sensing technique will be a central topic of this presentation.

  16. Congruent Bifurcation Angles in River Delta and Tributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, Thomas S.; Shaw, John B.

    2017-11-01

    We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding incipient bifurcations, producing a characteristic angle of 72∘. We measured 25 unique distributary bifurcations in an experimental delta and 197 bifurcations in 10 natural deltas, yielding a mean angle of 70.4∘±2.6∘ (95% confidence interval) for field-scale deltas and a mean angle of 68.3∘±8.7∘ for the experimental delta, consistent with this theoretical prediction. The bifurcation angle holds for small scales relative to channel width length scales. Furthermore, the experimental data show that the mean angle is 72∘ immediately after bifurcation initiation and remains relatively constant over significant time scales. Although distributary networks do not mirror tributary networks perfectly, the similar control and expression of bifurcation angles suggests that additional morphodynamic insight may be gained from further comparative study.

  17. Identification and determination of the contribution of iron-steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China.

    PubMed

    Zhang, Liu; Bai, Ya-Shu; Wang, Ji-Zhong; Peng, Shu-Chuan; Chen, Tian-Hu; Yin, Da-Qiang

    2016-11-01

    Seventeen polycyclic aromatic hydrocarbon (PAH) compounds were determined in surface sediments collected from the Chaohu Lake (a large shallow lake in eastern China) and its tributaries. Both diagnostic ratios and a receptor model (positive matrix factorization, PMF) were applied to identify and determine the contribution of a local iron-steel manufacturing plant located in the Nanfei River (NFR) to the Chaohu Lake basin. The results show that sites located in the downstream of the steel plant contained concentrations of 17 PAH (Σ 17 PAH) approximately two orders of magnitudes higher than those from other sites. Five factors were identified by the PMF model, including industrial waste, wood/biomass burning, diagenetic origin, domestic coal combustion, and industrial combustion. Our findings suggest that sediments in the downstream of the plant and in the western part of the Chaohu Lake were predominantly affected by industrial coal combustion. A mixture of pyrolytic origins impacted urban sediments in the upstream of the plant, whereas diagenetic origins along with coal and biomass burning were suggested to influence the eastern part and rural tributaries of the lake. To assess the potential ecological risk and toxicity caused by the iron-steel plant, sediment toxicity was evaluated by the PMF model, sediment quality guideline, and toxic equivalent factors. All of the three approaches suggested PAH accumulation in the NFR sediments could produce significant adverse ecological effects and half of the sediment toxicity in the NFR may be attributed to the emissions from the iron-steel plant. Some rural locations also exhibited PAH concentrations above probable effects, most likely contributed by wood/biomass burning.

  18. An investigation of enhanced recessions in Poyang Lake: Comparison of Yangtze River and local catchment impacts

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Ye, Xu-chun; Werner, Adrian D.; Li, Yun-liang; Yao, Jing; Li, Xiang-hu; Xu, Chong-yu

    2014-09-01

    Changes in lake hydrological regimes and the associated impacts on water supplies and ecosystems are internationally recognized issues. During the past decade, the persistent dryness of Poyang Lake (the largest freshwater lake in China) has caused water supply and irrigation crises for the 12.4 million inhabitants of the region. There is conjecture as to whether this dryness is caused by climate variability and/or human activities. This study examines long-term datasets of catchment inflow and Lake outflow, and employs a physically-based hydrodynamic model to explore catchment and Yangtze River controls on the Lake's hydrology. Lake water levels fell to their lowest during 2001-2010 relative to previous decades. The average Lake size and volume reduced by 154 km2 and 11 × 108 m3 during the same period, compared to those for the preceding period (1970-2000). Model simulations demonstrated that the drainage effect of the Yangtze River was the primary causal factor. Modeling also revealed that, compared to climate variability impacts on the Lake catchment, modifications to Yangtze River flows from the Three Gorges Dam have had a much greater impact on the seasonal (September-October) dryness of the Lake. Yangtze River effects are attenuated in the Lake with distance from the River, but nonetheless propagate some 100 km to the Lake's upstream limit. Proposals to build additional dams in the upper Yangtze River and its tributaries are expected to impose significant challenges for the management of Poyang Lake. Hydraulic engineering to modify the flow regime between the Lake and the Yangtze River would somewhat resolve the seasonal dryness of the Lake, but will likely introduce other issues in terms of water quality and aquatic ecosystem health, requiring considerable further research.

  19. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    USGS Publications Warehouse

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent

  20. Age and extent of a giant glacial-dammed lake at Yarlung Tsangpo gorge in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Weiming; Lai, Zhongping; Hu, Kaiheng; Ge, Yonggang; Cui, Peng; Zhang, Xiaogang; Liu, Feng

    2015-10-01

    Many glacier dams on major rivers at the southeastern edge of the Tibetan Plateau had been previously determined through remote sensing and glacier terminal position calculation. It was hypothesized that such damming substantially impeded river incision into the plateau interior. Investigation on the large glacial-dammed lake at the entrance of Tsangpo gorge is critical for understanding this hypothesis. So far, the issues, such as age, lake surface elevation, and stages of this dammed lake, are still in debate. Our field survey of lacustrine deposits and loess distribution along the middle Yarlung Tsangpo River and its tributary, Nyang River, suggested that the lake surface elevation was at about 3180 m asl. The 23 quartz optically stimulated luminescence (OSL) and 4 organic AMS 14C ages all fall into the Last Glacial period ( 41-13 ka). The OSL and 14C ages are in general agreement with each other where applicable. There might be only one long damming event because the ages of lacustrine deposits from 2970 to 3100 m asl are similar, and every lacustrine section is sustained for a long time. The estimated lake surface area was 1089 km2, and the volume was 170 km3, which differ from previous estimations which suggested two-stage (about early Holocene and 1.5 ka) lakes, and the largest lake surface elevation reached 3500 m.

  1. Hydrologic and geomorphic changes resulting from episodic glacial lake outburst floods: Rio Colonia, Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Jacquet, J.; McCoy, S. W.; McGrath, D.; Nimick, D. A.; Fahey, M.; O'kuinghttons, J.; Friesen, B. A.; Leidich, J.

    2017-01-01

    Glacial lake outburst floods (GLOFs) are a prominent but poorly understood cryospheric hazard in a warming climate. We quantify the hydrologic and geomorphic response to 21 episodic GLOFs that began in April 2008 using multitemporal satellite imagery and field observations. Peak discharge exiting the source lake became progressively muted downstream. At 40-60 km downstream, where the floods entered and traveled down the main stem Rio Baker, peak discharges were generally < 2000 m3 s-1, although these flows were still >1-2 times the peak annual discharge of this system, Chile's largest river by volume. As such, caution must be applied to empirical relationships relating lake volume to peak discharge, as the latter is dependent on where this observation is made along the flood path. The GLOFs and subsequent periods of free drainage resulted in > 40 m of incision, the net removal of 25 × 106 m3 of sediment from the source lake basin, and a nonsteady channel configuration downstream. These results demonstrate that GLOFs sourced from low-order tributaries can produce significant floods on major main stem rivers, in addition to significantly altering sediment dynamics.

  2. Water Quality, Hydrology, and Simulated Response to Changes in Phosphorus Loading of Butternut Lake, Price and Ashland Counties, Wisconsin, with Special Emphasis on the Effects of Internal Phosphorus Loading in a Polymictic Lake

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2008-01-01

    Butternut Lake is a 393-hectare, eutrophic to hypereutrophic lake in northcentral Wisconsin. After only minor improvements in water quality were observed following several actions taken to reduce the nutrient inputs to the lake, a detailed study was conducted from 2002 to 2007 by the U.S. Geological Survey to better understand how the lake functions. The goals of this study were to describe the water quality and hydrology of the lake, quantify external and internal sources of phosphorus, and determine the effects of past and future changes in phosphorus inputs on the water quality of the lake. Since the early 1970s, the water quality of Butternut Lake has changed little in response to nutrient reductions from the watershed. The largest changes were in near-surface total phosphorus concentrations: August concentrations decreased from about 0.09 milligrams per liter (mg/L) to about 0.05 mg/L, but average summer concentrations decreased only from about 0.055-0.060 mg/L to about 0.045 mg/L. Since the early 1970s, only small changes were observed in chlorophyll a concentrations and water clarity (Secchi depths). All major water and phosphorus sources, including the internal release of phosphorus from the sediments (internal loading), were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake during monitoring years (MY) 2003 and 2004. During these years, Butternut Creek, Spiller Creek, direct precipitation, small tributaries and near-lake drainage area, and ground water contributed about 62, 20, 8, 7, and 3 percent of the inflow, respectively. The average annual load of phosphorus to the lake was 2,540 kilograms (kg), of which 1,590 kg came from external sources (63 percent) and 945 kg came from the sediments in the lake (37 percent). Of the total external sources, Butternut Creek, Spiller Creek, small tributaries and near-lake drainage area, septic systems, precipitation, and ground water contributed about

  3. Lower Vistula fluvial lakes as possible places of deep groundwaters effluence (Grudziądz Basin, North Central Poland)

    NASA Astrophysics Data System (ADS)

    Kordowski, Jaroslaw; Kubiak-Wójcicka, Katarzyna; Solarczyk, Adam; Tyszkowski, Sebastian

    2014-05-01

    carbonaceous mineralization. Similar measurements were also conducted in other fluvial lakes and Vistula tributaries. Investigations carried proved the general similarity between physical and chemical properties of lakes and watercourses analysed. However, there exists distinct gradient of carbonaceous mineralization from small values in the Vistula channel to high values at the valley edges. PH and Eh parameters in the Old Vistula lake were different than in all other surveyed sites what leads to conclusion that it is fed by deeper groundwaters than in the case of other fluvial lakes and Vistula tributaries, particularly in low water stand times. Acknowledgements: This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association.

  4. Expansion of tubenose gobies Proterorhinus semilunaris into western Lake Erie and potential effects on native species

    USGS Publications Warehouse

    Kocovsky, P.M.; Tallman, J.A.; Jude, D.J.; Murphy, D.M.; Brown, J.E.; Stepien, C.A.

    2011-01-01

    The Eurasian freshwater tubenose goby Proterorhinus semilunaris (formerly Proterorhinus marmoratus) invaded the Laurentian Great Lakes in the 1990s, presumably via ballast water from transoceanic cargo ships. Tubenose gobies spread throughout Lake St. Clair, its tributaries, and the Detroit River system, and also are present in the Duluth-Superior harbor of Lake Superior. Using seines and bottom trawls, we collected 113 tubenose gobies between July 2007 and August 2009 at several locations in western Lake Erie. The number and range of sizes of specimens collected suggest that that tubenose gobies have become established and self-sustaining in the western basin of Lake Erie. Tubenose gobies reached maximum densities in sheltered areas with abundant macrophyte growth, which also is their common habitat in native northern Black Sea populations. The diet of tubenose gobies was almost exclusively invertebrates, suggesting dietary overlap with other benthic fishes, such as darters (Etheostoma spp. and Percina sp.), madtoms (Noturus spp.), and sculpins (Cottus spp.). A single mitochondrial DNA haplotype was identified, which is the most common haplotype found in the original colonization area in the Lake St. Clair region, suggesting a founder effect. Tubenose gobies, like round gobies Neogobius melanostomus, have early life stages that drift owing to vertical migration, which probably allowed them to spread from areas of colonization. The Lake St. Clair-Lake Erie corridor appears to have served as an avenue for them to spread to the western basin of Lake Erie, and abundance of shallow macrophyte-rich habitats may be a key factor facilitating their further expansion within Lake Erie and the remainder of the Laurentian Great Lakes.

  5. Variability in response of lakes to climate change explained by surrounding watersheds

    NASA Astrophysics Data System (ADS)

    Råman Vinnå, Love; Wüest, Alfred; Bouffard, Damien

    2017-04-01

    The consequences of climate change for inland waters have been shown to vary extensively not only globally, but also on a sub-regional scale [O'Reilly et al., 2015, GRL]. Local factors affecting heating include morphology [Toffolon et al., 2014, LO], irradiance absorption [Williamson et al., 2015, SR], local weather conditions and onset of stratification [Zhong et al., 2016, LO] as well as ice conditions [Austin and Colman, 2007, GRL]. However, inland waters are often a complex web of rivers, streams, lakes and reservoirs. Thereby, to correctly assess and predict future changes in lakes/reservoirs due to climate change, it is important to consider the changes occurring in the surrounding watersheds and how they affect downstream waters. Here we evaluate the impact of climate change on rivers originating in the Swiss Alps (Aare and Rhône) and downstream located perialpine lakes (Lake Biel and Lake Geneva). We use regional predictions for air temperature increase and the subsequently expected shift in river discharge regime under the A1B emission scenario [Bey et al., 2011, CH2011; Federal Office for the Environment FOEN, 2012, CCHydro]. Focus is on predicting the changes in water temperature, particle content, stratification and deep water renewal rate using the 1D SIMSTRAT [Goudsmit et al., 2002, JGR] and Air2Stream [Toffolon and Piccolroaz, 2015, ERL] models. We show that the effect of tributaries on the reaction for downstream lakes to climate change are inversely proportional to the hydraulic residence time of the systems. We furthermore include known changes in anthropogenic thermal emissions, which in Lake Biel correspond to 2 decades of climate induced warming. Our results are put into context with future water utility plans in Lake Biel.

  6. The effects of liming an Adirondack lake watershed on downstream water chemistry: Effects of liming on stream chemistry

    USGS Publications Warehouse

    Burns, Douglas A.

    1996-01-01

    Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO3- and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO42- and NO3- concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO42--reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO42- reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 ??eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+, as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+, H+, AlIM, and DOC revealed net downstream losses of

  7. The Battle of Bennington: An American Victory. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Hunter, Kathleen

    During the summer of 1777 the British undertook an ambitious campaign to isolate New England from the rest of the colonies. For two months General John Burgoyne led his army down the Lake Champlain-Hudson River toward Albany (New York) with apparent ease, but he then found he needed provisions, wagons, cattle, and horses for his army. He sent an…

  8. Water Quality of the Snake River and Five Eastern Tributaries in the Upper Snake River Basin, Grand Teton National Park, Wyoming, 1998-2002

    USGS Publications Warehouse

    Clark, Melanie L.; Sadler, Wilfrid J.; O'Ney, Susan E.

    2004-01-01

    To address water-resource management objectives of the National Park Service in Grand Teton National Park, the U.S. Geological Survey in cooperation with the National Park Service has conducted water-quality sampling in the upper Snake River Basin. Routine sampling of the Snake River was conducted during water years 1998-2002 to monitor the water quality of the Snake River through time. A synoptic study during 2002 was conducted to supplement the routine Snake River sampling and establish baseline water-quality conditions of five of its eastern tributaries?Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek. Samples from the Snake River and the five tributaries were collected at 12 sites and analyzed for field measurements, major ions and dissolved solids, nutrients, selected trace metals, pesticides, and suspended sediment. In addition, the eastern tributaries were sampled for fecal-indicator bacteria by the National Park Service during the synoptic study. Major-ion chemistry of the Snake River varies between an upstream site above Jackson Lake near the northern boundary of Grand Teton National Park and a downstream site near the southern boundary of the Park, in part owing to the inputs from the eastern tributaries. Water type of the Snake River changes from sodium bicarbonate at the upstream site to calcium bicarbonate at the downstream site. The water type of the five eastern tributaries is calcium bicarbonate. Dissolved solids in samples collected from the Snake River were significantly higher at the upstream site (p-value<0.001), where concentrations in 43 samples ranged from 62 to 240 milligrams per liter, compared to the downstream site where concentrations in 33 samples ranged from 77 to 141 milligrams per liter. Major-ion chemistry of Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek generally did not change substantially between the upstream sites near the National Park Service boundary with the National

  9. Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data

    NASA Astrophysics Data System (ADS)

    El-Shirbeny, Mohammed A.; Abutaleb, Khaled A.

    2018-05-01

    Apart from the Renaissance Dam and other constructed dams on the River Nile tributaries, Egypt is classified globally as a state of scarce water. Egypt's water resources are very limited and do not contribute a significant amount to its water share except the River Nile (55.5 billion m3/year). While the number of population increases every year, putting more stress on these limited resources. This study aims to use remote-sensing data to assess the change in surface area and water-level variation in Lake Nasser using remote-sensing data from Landsat-8 and altimetry data. In addition, it investigates the use of thermal data from Landsat-8 to calculate water loss based on evaporation from Lake Nasser. The eight Landsat-8 satellite images were used to study the change in surface area of Lake Nasser representing winter (January) and summer (June/July) seasons in two consecutive years (2015 and 2016). Time series analyses for 10-day temporal resolution water-level data from Jason-2/OSTM and Jason-3 altimetry was carried out to investigate water-level trends over the long term (1993 and 2016) and short term (2015-2016) in correspondence with the change of the surface area. Results indicated a shrink in the lake surface area in 2016 of approximately 14% compared to the 2015 area. In addition, the evaporation rate in the lake is very high causing a loss of approximately 20% of the total water share from the river Nile.

  10. Final Environmental Impact Statement Permit Application by United States Steel Corp. Proposed Lake Front Steel Mill, Conneaut, Ohio. Volume 1,

    DTIC Science & Technology

    1979-04-01

    FRONT STEEL MILL CONNEAUT, OHIO 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a) S. CONTRACT OR GRANT NUMBERS) Paul G. Leuchner and Gregory P. Keppel... PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS U.S. Army Engineer District, Buffalo 1776 Niagara...the Army permit to perform certain work in Lake Erie and its tributaries. Activities proposed by the applicant include the construction of a water

  11. Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China

    NASA Astrophysics Data System (ADS)

    Liu, Linghua; Peng, Wenqi; Wu, Leixiang; Liu, Laisheng

    2018-01-01

    Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Daniiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.

  12. 33 CFR 207.160 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the United States or under its authorization. (6) When rafts are left for any reason with no one in... be left clear for navigation along the tributary. Such storage spaces must be protected by booms and... north of New River Inlet, North Carolina; to the Superintendent of Lighthouses at Charleston, South...

  13. Effects of lake surface elevation on shoreline-spawning Lost River Suckers

    USGS Publications Warehouse

    Burdick, Summer M.; Hewitt, David A.; Rasmussen, J.E.; Hayes, Brian; Janney, Eric; Harris, Alta C.

    2015-01-01

    We analyzed remote detection data from PIT-tagged Lost River Suckers Deltistes luxatus at four shoreline spawning areas in Upper Klamath Lake, Oregon, to determine whether spawning of this endangered species was affected by low water levels. Our investigation was motivated by the observation that the surface elevation of the lake during the 2010 spawning season was the lowest in 38 years. Irrigation withdrawals in 2009 that were not replenished by subsequent winter-spring inflows caused a reduction in available shoreline spawning habitat in 2010. We compared metrics of skipped spawning, movement among spawning areas, and spawning duration across 8 years (2006-2013) that had contrasting spring water levels. Some aspects of sucker spawning were similar in all years, including few individuals straying from the shoreline areas to spawning locations in lake tributaries and consistent effects of increasing water temperatures on the accumulation of fish at the spawning areas. During the extreme low water year of 2010, 14% fewer female and 8% fewer male suckers joined the shoreline spawning aggregation than in the other years. Both males and females visited fewer spawning areas within Upper Klamath Lake in 2010 than in other years, and the median duration at spawning areas in 2010 was at least 36% shorter for females and 20% shorter for males relative to other years. Given the imperiled status of the species and the declining abundance of the population in Upper Klamath Lake, any reduction in spawning success and egg production could negatively impact recovery efforts. Our results indicate that lake surface elevations above 1,262.3-1,262.5 m would be unlikely to limit the number of spawning fish and overall egg production.

  14. Analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics in Lake Maumelle, Arkansas, 1991-92

    USGS Publications Warehouse

    Green, W. Reed

    2001-01-01

    Lake Maumelle is the major drinking-water source for the Little Rock metropolitan area in central Arkansas. Urban and agricultural development has increased in the Lake Maumelle Basin and information is needed related to constituent transport and waterquality response to changes in constituent loading or hydrologic regime. This report characterizes ambient conditions in Lake Maumelle and its major tributary, Maumelle River; describes the calibration and verification of a numerical model of hydrodynamics and water quality; and provides several simulations that describe constituent transport and water quality response to changes in constituent loading and hydrologic regime. Ambient hydrologic and water-quality conditions demonstrate the relatively undisturbed nature of Lake Maumelle and the Maumelle River. Nitrogen and phosphorus concentrations were low, one to two orders of magnitude lower than estimates of national background nutrient concentrations. Phosphorus and chlorophyll a concentrations in Lake Maumelle demonstrate its oligotrophic/mesotrophic condition. However, concentrations of chlorophyll a appeared to increase since 1990 within the upper and middle reaches of the reservoir. A two-dimensional, laterally averaged hydrodynamic and water-quality model developed and calibrated for Lake Maumelle simulates water level, currents, heat transport and temperature distribution, conservative material transport, and the transport and transformation of 11 chemical constituents. Simulations included the movement and dispersion of spills or releases in the reservoir during stratified and unstratified conditions, release of the fish nursery pond off the southern shore of Lake Maumelle, and algal responses to changes in external loading. The model was calibrated using 1991 data and verified using 1992 data. Simulated temperature and dissolved oxygen concentrations related well when compared to measured values. Simulated nutrient and algal biomass also related reasonably

  15. Simulation of the effects of different inflows on hydrologic conditions in Lake Houston with a three-dimensional hydrodynamic model, Houston, Texas, 2009–10

    USGS Publications Warehouse

    Rendon, Samuel H.; Lee, Michael T.

    2015-12-08

    Lake Houston, an important water resource for the Houston, Texas, area, receives inflows from seven major tributaries that compose the San Jacinto River Basin upstream from the reservoir. The effects of different inflows from the watersheds drained by these tributaries on the residence time of water in Lake Houston and closely associated physical and chemical properties including lake elevation, salinity, and water temperature are not well known. Accordingly, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, developed a three-dimensional hydrodynamic model of Lake Houston as a tool for evaluating the effects of different inflows on residence time of water in the lake and associated physical and chemical properties. The Environmental Fluid Dynamics Code (EFDC), a grid-based, surface-water modeling package for simulating three-dimensional circulation, mass transport, sediments, and biogeochemical processes, was used to develop the model of Lake Houston. The Lake Houston EFDC model was developed and calibrated by using 2009 data and verified by using 2010 data. Three statistics (mean error, root mean square error, and the Nash-Sutcliffe model efficiency coefficient) were used to evaluate how well the Lake Houston EFDC model simulated lake elevation, salinity, and water temperature. The residence time of water in reservoirs is associated with various physical and chemical properties (including lake elevation, salinity, and water temperature). Simulated and measured lake-elevation values were compared at USGS reservoir station 08072000 Lake Houston near Sheldon, Tex. The accuracy of simulated salinity and water temperature values was assessed by using the salinity (computed from measured specific conductance) and water temperature at two USGS monitoring stations: 295826095082200 Lake Houston south Union Pacific Railroad Bridge near Houston, Tex., and 295554095093401 Lake Houston at mouth of Jack’s Ditch near Houston, Tex. Specific conductance

  16. Suspended-sediment trapping in the tidal reach of an estuarine tributary channel

    USGS Publications Warehouse

    Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    Evidence of decreasing sediment supply to estuaries and coastal oceans worldwide illustrates the need for accurate and updated estimates. In the San Francisco Estuary (Estuary), recent research suggests a decrease in supply from its largest tributaries, implying the increasing role of smaller, local tributaries in sediment supply to this estuary. Common techniques for estimating supply from tributaries are based on gages located above head of tide, which do not account for trapping processes within the tidal reach. We investigated the effect of a tidal reach on suspended-sediment discharge for Corte Madera Creek, a small tributary of the Estuary. Discharge of water (Q) and suspended-sediment (SSD) were observed for 3 years at two locations along the creek: upstream of tidal influence and at the mouth. Comparison of upstream and mouth gages showed nearly 50 % trapping of upstream SSD input within the tidal reach over this period. At the storm time scale, suspended-sediment trapping efficiency varied greatly (range −31 to 93 %); storms were classified as low- or high-yield based on upstream SSD. As upstream peak Q increased, high-yield storms exhibited significantly decreased trapping. Tidal conditions at the mouth—ebb duration and peak ebb velocity—during storms had a minor effect on sediment trapping, suggesting fluvial processes dominate. Comparison of characteristic fluvial and tidal discharges at the storm time scale demonstrated longitudinal differences in the regulating process for SSD. These results suggest that SSD from gages situated above head of tide overestimate sediment supply to the open waters beyond tributary mouths and thus trapping processes within the tidal reach should be considered.

  17. Tumours in white suckers from Lake Michigan tributaries: Pathology and prevalence

    USGS Publications Warehouse

    Blazer, Vicki S.; Walsh, H.L.; Braham, R.P.; Hahn, C. M.; Mazik, P.; McIntyre, P.B.

    2016-01-01

    The prevalence and histopathology of neoplastic lesions were assessed in white suckerCatostomus commersonii captured at two Lake Michigan Areas of Concern (AOCs), the Sheboygan River and Milwaukee Estuary. Findings were compared to those observed at two non-AOC sites, the Root and Kewaunee rivers. At each site, approximately 200 adult suckers were collected during their spawning migration. Raised skin lesions were observed at all sites and included discrete white spots, mucoid plaques on the body surface and fins and large papillomatous lesions on lips and body. Microscopically, hyperplasia, papilloma and squamous cell carcinoma were documented. Liver neoplasms were also observed at all sites and included both hepatocellular and biliary tumours. Based on land use, the Kewaunee River was the site least impacted by human activities previously associated with fish tumours and had significantly fewer liver neoplasms when compared to the other sites. The proportion of white suckers with liver tumours followed the same patterns as the proportion of urban land use in the watershed: the Milwaukee Estuary had the highest prevalence, followed by the Root, Sheboygan and Kewaunee rivers. The overall skin neoplasm (papilloma and carcinoma) prevalence did not follow the same pattern, although the percentage of white suckers with squamous cell carcinoma exhibited a similar relationship to land use. Testicular tumours (seminoma) were observed at both AOC sites but not at the non-AOC sites. Both skin and liver tumours were significantly and positively associated with age but not sex.

  18. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    NASA Astrophysics Data System (ADS)

    Griffiths, Ronald E.; Topping, David J.

    2017-11-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability. Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not

  19. The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland

    NASA Astrophysics Data System (ADS)

    Perrin, J.; Jeannin, P.-Y.; Cornaton, F.

    2007-01-01

    SummarySolute concentration variations during flood events were investigated in a karst aquifer of the Swiss Jura. Observations were made at the spring, and at the three main subterraneous tributaries feeding the spring. A simple transient flow and transport numerical model was able to reproduce chemographs and hydrographs observed at the spring, as a result of a mixing of the concentration and discharge of the respective tributaries. Sensitivity analysis carried out with the model showed that it is possible to produce chemical variations at the spring even if all tributaries have constant (but different for each of them) solute concentrations. This process is called tributary mixing. The good match between observed and modelled curves indicate that, in the phreatic zone, tributary mixing is probably an important process that shapes spring chemographs. Chemical reactions and other mixing components (e.g. from low permeability volumes) have a limited influence. Dissolution-related (calcium, bicarbonate, specific conductance) and pollution-related parameters (nitrate, chloride, potassium) displayed slightly different behaviours: during moderate flood events, the former showed limited variations compared to the latter. During large flood events, both presented chemographs with significant changes. No significant event water participates in moderate flood events and tributary mixing will be the major process shaping chemographs. Variations are greater for parameters with higher spatial variability (e.g. pollution-related). Whereas for large flood events, the contribution of event water becomes significant and influences the chemographs of all the parameters. As a result, spring water vulnerability to an accidental pollution is low during moderate flood events and under base flow conditions. It strongly increases during large flood events, because event water contributes to the spring discharge.

  20. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... the Gulf of Mexico east and south of St. Marks, Fla. (a) Description. This section applies to the... or with the Gulf of Mexico east and south of St. Marks, Florida. (2) United States property. All...

  1. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... the Gulf of Mexico east and south of St. Marks, Fla. (a) Description. This section applies to the... or with the Gulf of Mexico east and south of St. Marks, Florida. (2) United States property. All...

  2. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... the Gulf of Mexico east and south of St. Marks, Fla. (a) Description. This section applies to the... or with the Gulf of Mexico east and south of St. Marks, Florida. (2) United States property. All...

  3. Historical accumulation and ecological risk assessment of heavy metals in sediments of a drinking water lake.

    PubMed

    Wang, Guoqiang; Hu, Xinqi; Zhu, Yi; Jiang, Hong; Wang, Hongqi

    2018-06-21

    Heavy metal contamination in sediments is progressively being recognized as a challenging problem in large parts of the developing world, particularly in Asian countries. A drinking water lake in Yunnan-Guizhou plateau, China named Hongfeng Lake was selected as the research target. Forty surface sediment samples and 4 sediment cores were collected to reveal the accumulation of heavy metals in the sediments of the lake. The mean concentrations of Cr, Cu, Pb, Cd, As, and Hg in surface sediments were 81.67, 45.61, 29.78, 0.53, 22.71, and 0.25 mg/kg, respectively, which exceeded the background levels of sediment 1.1~3.3 times. The calculation of geoaccumulation (I geo ) and potential ecological risk (PER) index analysis were preformed, and the results showed a considerable risk for Cd and Hg on the whole. Spatially, the northern part showed a higher risk than the southern part and tributaries of the lake, and a moderate risk in the overall sediment of the lake. The historical level of heavy metals in Hongfeng Lake was traced by vertical sediments study and it was dated back approximately 35 years. The EF trends of a feature sampling site HF8 showed strong temporal variations, and peaked in the year 1995. After that, the EFs exhibited a declining trend, which reflects productive environmental protection and management by the local government. For the Hongfeng Lake, a typical lake with heavy metal-contaminated sediments, the in-situ remediation technique could be a suitable method for its remediation.

  4. Seasonal variation of oxygen-18 in precipitation and surface water of the Poyang Lake Basin, China.

    PubMed

    Hu, Chunhua; Froehlich, Klaus; Zhou, Peng; Lou, Qian; Zeng, Simiao; Zhou, Wenbin

    2013-06-01

    Based on the monthly δ(18)O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ(18)O in precipitation (δ(18)OPPT) and runoff (δ(18)OSUR) are discussed. The δ(18)OPPT and δ(18)OSUR values range from-2.75 to-14.12 ‰ (annual mean value=-7.13 ‰ ) and from-2.30 to-8.56 ‰, respectively. The seasonal variation of δ(18)OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ(18)OSUR in runoff of the rivers and δ(18)OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period.

  5. Title: Water Quality Monitoring to Restore and Enhance Lake Herrick

    NASA Astrophysics Data System (ADS)

    Kannan, A.; Saintil, T.; Radcliffe, D. E.; Rasmussen, T. C.

    2017-12-01

    Lake Allyn M. Herrick is about 1.5 km2 and covers portions of the University of Georgia's East campus, the Oconee forest, residential and commercial land use. Lake Herrick, a 15-acre water body established in 1982 at the University of Georgia's campus was closed in 2002 for recreation due to fecal contamination, color change, and heavy sedimentation. Subsequent monitoring confirmed cyanobacterium blooms on the surface of lake and nutrient concentration especially phosphorus was one of the primary reasons. However, no studies have been done on lake inflows and outflows after 2005 in terms of nutrients and fecal Indicator bacteria. Two inflow tributaries and the outlet stream were monitored for discharge, E. coli, total coliform, forms of nitrogen and phosphorus and other water quality parameters during base flow and storm conditions. External environmental factors like precipitation, land-use/location, discharge, and internal factors within the water like temperature, DO, pH, conductivity, and turbidity influencing fecal indicator bacteria and nutrients will be discussed with data collected from the inflows/outflow between February 2016 to October 2017. Following this, microbial source tracking methods were also used to detect the bacterial source in the samples specific to a ruminant or human host. The source tracking data will be presented during the timeframe of January 2017 to September 2017, to draw a conclusion on the potential source of fecal contamination. The future aim of the project will include modeling flow and bacteria at the watershed scale in order to make management decisions to restore the lake for recreational uses where green infrastructure could play a key role.

  6. Relative sampling efficiency and movements of subadult Lake Sturgeon in the Lower Wolf River, Wisconsin

    USGS Publications Warehouse

    Snobl, Zachary R.; Isermann, Daniel A.; Koenigs, Ryan P.; Raabe, Joshua K.

    2017-01-01

    Understanding sampling efficiency and movements of subadult Lake Sturgeon Acipenser fulvescens is necessary to facilitate population rehabilitation and recruitment monitoring in large systems with extensive riverine and lacustrine habitats. We used a variety of sampling methods to capture subadult Lake Sturgeon (i.e., fish between 75 and 130 cm TL that had not reached sexual maturity) and monitored their movements using radio telemetry in the lower Wolf River, a tributary to the Lake Winnebago system in Wisconsin. Our objectives were to determine whether (1) capture efficiency (expressed in terms of sampling time) of subadult Lake Sturgeon using multiple sampling methods was sufficient to justify within-river sampling as part of a basin-wide recruitment survey targeting subadults, (2) linear home ranges varied in relation to season or sex, and (3) subadult Lake Sturgeon remained in the lower Wolf River. From 2013 to 2014, 628 h of combined sampling effort that included gill nets, trotlines, electrofishing, and scuba capture was required to collect 18 subadult sturgeon, which were then implanted with radio transmitters and tracked by boat and plane. Linear home ranges did not differ in relation to sex but did vary among seasons, and the majority of movement occurred in spring. Seven of the 18 (39%) Lake Sturgeon left the river and were not detected in the river again during the study. Between 56% and 70% of subadult fish remaining in the river made definitive movements to, or near, known spawning locations when adult Lake Sturgeon were actively spawning. Our results suggest only a small proportion of subadult Lake Sturgeon in the Lake Winnebago population use the lower Wolf River, indicating that riverine sampling may not always be warranted when targeting subadults in large lake–river complexes. More information is needed on distribution of subadult Lake Sturgeon to develop sampling protocols for this population segment.

  7. REGIONAL, WATERSHED, AND SITE-SPECIFIC ENVIRONMENTAL INFLUENCES ON FISH ASSEMBLAGE STRUCTURE AND FUNCTION IN WESTERN LAKE SUPERIOR TRIBUTARIES

    EPA Science Inventory

    The relative importance of regional, watershed, and in-stream environmental factors on stream fish assemblage structure and function was investigated as part of a comparative watershed project in the western Lake Superior basin. We selected 48 second and third order watersheds fr...

  8. Analysis of Enterococci and Bacteriodales Fecal Indicator Bacteria in a Lake Michigan Tributary by Real-Time Quantitative PCR

    EPA Science Inventory

    The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...

  9. Streamflow and water-quality data for selected watersheds in the Lake Tahoe basin, California and Nevada, through September 1998

    USGS Publications Warehouse

    Rowe, T.G.; Saleh, D.K.; Watkins, S.A.; Kratzer, C.R.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency, and the University of California, Davis-Tahoe Research Group, has monitored tributaries in the Lake Tahoe Basin since 1988. This monitoring has characterized streamflow and has determined concentrations of nutrients and suspended sediment, which may have contributed to loss of clarity in Lake Tahoe. The Lake Tahoe Interagency Monitoring Program was developed to collect water-quality data in the basin. In 1998, the tributary-monitoring program included 41 water-quality stations in 14 of the 63 watersheds totaling half the area tributary to Lake Tahoe. The monitored watershed areas range from 1.08 square miles for First Creek to 56.5 square miles for the Upper Truckee River.Annual and unit runoff for 20 primary and secondary streamflow gaging stations in 10 selected watersheds are described. Water years 1988-98 were used to compare runoff data. The Upper Truckee River at South Lake Tahoe, Calif., had the highest annual runoff and Logan House Creek near Glenbrook, Nev., had the lowest. Blackwood Creek near Tahoe City, Calif., had the highest unit runoff and Logan House Creek had the lowest. The highest instantaneous peak flow was recorded at Upper Truckee River at South Lake Tahoe during the January 2, 1997, flood event.Certain water-quality measurements were made in the field. Ranges and median values of those measurements are described for 41 stations. Water temperature ranged from 0 to 23?C. Specific conductance ranged from 13 to 900 microsiemens per centimeter at 25?C. pH ranged from 6.7 to 10.6. Dissolved-oxygen concentrations ranged from 5.2 to 12.6 mg/L and from 70 to 157 percent of saturation.Loads, yields, and trends of nutrients and suspended sediment during water years 1988-98 at the streamflow gaging stations also are described. The Upper Truckee River at South Lake Tahoe had the largest median monthly load for five of the six measured nutrients and of suspended sediment

  10. Estimates of average annual tributary inflow to the lower Colorado River, Hoover Dam to Mexico

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1987-01-01

    Estimates of tributary inflow by basin or area and by surface water or groundwater are presented in this report and itemized by subreaches in tabular form. Total estimated average annual tributary inflow to the Colorado River between Hoover Dam and Mexico, excluding the measured tributaries, is 96,000 acre-ft or about 1% of the 7.5 million acre-ft/yr of Colorado River water apportioned to the States in the lower Colorado River basin. About 62% of the tributary inflow originates in Arizona, 30% in California, and 8% in Nevada. Tributary inflow is a small component in the water budget for the river. Most of the quantities of unmeasured tributary inflow were estimated in previous studies and were based on mean annual precipitation for 1931-60. Because mean annual precipitation for 1951-80 did not differ significantly from that of 1931-60, these tributary inflow estimates are assumed to be valid for use in 1984. Measured average annual runoff per unit drainage area on the Bill Williams River has remained the same. Surface water inflow from unmeasured tributaries is infrequent and is not captured in surface reservoirs in any of the States; it flows to the Colorado River gaging stations. Estimates of groundwater inflow to the Colorad River valley. Average annual runoff can be used in a water budget; although in wet years, runoff may be large enough to affect the calculation of consumptive use and to be estimated from hydrographs for the Colorado River valley are based on groundwater recharge estimates in the bordering areas, which have not significantly changed through time. In most areas adjacent to the Colorado River valley, groundwater pumpage is small and pumping has not significantly affected the quantity of groundwater discharged to the Colorado River valley. In some areas where groundwater pumpage exceeds the quantity of groundwater discharge and water levels have declined, the quantity of discharge probably has decreased and groundwater inflow to the Colorado

  11. The Use of Enzyme Hydrolysis to Assess the Seasonal Mobility and Bioavailability of Organic Phosphorus in Lake Sediments

    NASA Astrophysics Data System (ADS)

    Giles, C. D.; Lee, L. G.; Cade-Menun, B. J.; Rutila, B. C.; Schroth, A. W.; Xu, Y.; Hill, J. E.; Druschel, G.

    2013-12-01

    Lake sediments represent a significant internal source of phosphorus (P) in eutrophic freshwater systems during periods of high biological activity and oxygen depletion in sediments. Enzyme-labile and redox-sensitive P fractions may be a major component of the mobile sediment P pool which contributes to the development of harmful algal blooms. We present a high-through-put enzyme-based method for assessing potentially bioavailable (enzyme-labile) P in lake sediments and describe the relationship between enzyme-labile P, ascorbate-extractable (reactive) P and metals (Fe, Mn, Al, Ca), and P species identified using solution 31-P NMR spectroscopy. Sediment cores (0-10 cm) were collected from Lake Champlain over multiple years (Missisquoi Bay, VT, USA; 2007-2013). A principal components analysis of sediment properties suggests that enzyme-labile and reactive P, Mn, and Fe concentrations were more effective than the 31-P NMR methodology alone for differentiating algal bloom stage associated with periods of sediment anoxia. Bloom onset (July 2008) and peak bloom (August 2008, 2012) periods corresponded to the highest enzyme-labile P and lowest reactive P and metals proportions, despite 31-P NMR profiles which did not change significantly with respect to time and depth. High levels of reduced Fe and Mn ions were also detected in pore-water during this period, confirming previous reports that organic P bioavailability is linked to the redox status of sediments. High through-put analysis of enzyme-labile P fractions will provide spatially and temporally resolved information on bioavailable P pools at lower cost than traditional methods (i.e., 31-P NMR), and provide much-needed detail on aquatic P cycles during discrete stages of algal bloom development and sediment anoxia.

  12. Floodplain lakes and alluviation cycles of the lower Colorado River

    NASA Astrophysics Data System (ADS)

    Malmon, D.; Felger, T. J.; Howard, K. A.

    2007-05-01

    dams has prevented sediment infilling of the lakes. Bed lowering below dams and in artificially confined reaches could potentially dewater floodplain lakes, a process occurring at Beal Lake, a natural lake used for native fish restoration in the Havasu National Wildlife Refuge. Sedimentation near the upstream ends of reservoirs has created large areas of still water. One of the largest, Topock Marsh, is connected to the main channel, restricting its usefulness as a native fish nursery; other backwater areas are confined by bars that isolate standing water at tributaries.

  13. Using Stable Isotope Mixing in a Great Lakes Coastal Tributary to Determine Food Web Linkages in Young Fishes

    EPA Science Inventory

    Our objectives were to determine whether we can detect a stable isotope gradient along the river-Great Lake hydrologic continuum in a coastal river and use it to identify changes across this gradient in the food web supporting young-of-year (YOY) and juvenile fish production. We ...

  14. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    USGS Publications Warehouse

    Griffiths, Ronald; Topping, David

    2017-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability.Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not

  15. Methylmercury exposure in a subsistence fishing community in Lake Chapala, Mexico: an ecological approach

    PubMed Central

    2010-01-01

    Background Elevated concentrations of mercury have been documented in fish in Lake Chapala in central Mexico, an area that is home to a large subsistence fishing community. However, neither the extent of human mercury exposure nor its sources and routes have been elucidated. Methods Total mercury concentrations were measured in samples of fish from Lake Chapala; in sections of sediment cores from the delta of Rio Lerma, the major tributary to the lake; and in a series of suspended-particle samples collected at sites from the mouth of the Lerma to mid-Lake. A cross-sectional survey of 92 women ranging in age from 18-45 years was conducted in three communities along the Lake to investigate the relationship between fish consumption and hair mercury concentrations among women of child-bearing age. Results Highest concentrations of mercury in fish samples were found in carp (mean 0.87 ppm). Sediment data suggest a pattern of moderate ongoing contamination. Analyses of particles filtered from the water column showed highest concentrations of mercury near the mouth of the Lerma. In the human study, 27.2% of women had >1 ppm hair mercury. On multivariable analysis, carp consumption and consumption of fish purchased or captured from Lake Chapala were both associated with significantly higher mean hair mercury concentrations. Conclusions Our preliminary data indicate that, despite a moderate level of contamination in recent sediments and suspended particulate matter, carp in Lake Chapala contain mercury concentrations of concern for local fish consumers. Consumption of carp appears to contribute significantly to body burden in this population. Further studies of the consequences of prenatal exposure for child neurodevelopment are being initiated. PMID:20064246

  16. Methylmercury exposure in a subsistence fishing community in Lake Chapala, Mexico: an ecological approach.

    PubMed

    Trasande, Leonardo; Cortes, Juanita E; Landrigan, Philip J; Abercrombie, Mary I; Bopp, Richard F; Cifuentes, Enrique

    2010-01-11

    Elevated concentrations of mercury have been documented in fish in Lake Chapala in central Mexico, an area that is home to a large subsistence fishing community. However, neither the extent of human mercury exposure nor its sources and routes have been elucidated. Total mercury concentrations were measured in samples of fish from Lake Chapala; in sections of sediment cores from the delta of Rio Lerma, the major tributary to the lake; and in a series of suspended-particle samples collected at sites from the mouth of the Lerma to mid-Lake. A cross-sectional survey of 92 women ranging in age from 18-45 years was conducted in three communities along the Lake to investigate the relationship between fish consumption and hair mercury concentrations among women of child-bearing age. Highest concentrations of mercury in fish samples were found in carp (mean 0.87 ppm). Sediment data suggest a pattern of moderate ongoing contamination. Analyses of particles filtered from the water column showed highest concentrations of mercury near the mouth of the Lerma. In the human study, 27.2% of women had >1 ppm hair mercury. On multivariable analysis, carp consumption and consumption of fish purchased or captured from Lake Chapala were both associated with significantly higher mean hair mercury concentrations. Our preliminary data indicate that, despite a moderate level of contamination in recent sediments and suspended particulate matter, carp in Lake Chapala contain mercury concentrations of concern for local fish consumers. Consumption of carp appears to contribute significantly to body burden in this population. Further studies of the consequences of prenatal exposure for child neurodevelopment are being initiated.

  17. Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates. PMID:25373871

  18. Source identification and mass balance studies of mercury in Lake An-dong, S. Korea

    NASA Astrophysics Data System (ADS)

    Han, J.; Byeon, M.; Yoon, J.; Park, J.; Lee, M.; Huh, I.; Na, E.; Chung, D.; Shin, S.; Kim, Y.

    2009-12-01

    In this study, mercury and methylmercury were measured in atmospheric, tributary, open-lake water column, sediment, planktons and fish samples in the catchments area of Lake An-dong, S. Korea. Lake An-dong, an artificial freshwater lake is located on the upstream of River Nak-dong. It has 51.5 km2 of open surface water and 1.33 year of hydraulic residence time. It is a source of drinking water for 0.3 million S. Koreans. Recently, the possibilities of its mercury contamination became an issue since current studies showed that the lake had much higher mercury level in sediment and certain freshwater fish species than any other lakes in S. Korea. This catchments area has the possibilities of historical mercury pollution by the location of more than 50 abandoned gold mines and Young-poong zinc smelter. The objective of this study was to develop a mercury mass balance and identify possible mercury sources in the lake. The results of this study are thus expected to offer valuable insights for the sources of mercury loading through the watershed. In order to estimate the mercury flux, TGM, RGM and particulate mercury were measured using TEKRAN 2537 at the five sites surrounding Lake An-dong from May, 2009 with wet and dry deposition. The fate and transport of mercury in water body were predicted by using EFDC (Environmental Dynamic Fluid Code) and Mercury module in WASP7 (Water quality analysis program) after subsequent distribution into water body, sediments, followed by bioaccumulation and ultimate uptake by humans. The mercury mass balance in Young-poong zinc smelter was also pre-estimated by measuring mercury content in zinc ores, emission gases, sludge, wastewater and products.

  19. Timing, frequency and environmental conditions associated with mainstem-tributary movement by a lowland river fish, golden perch (Macquaria ambigua).

    PubMed

    Koster, Wayne M; Dawson, David R; O'Mahony, Damien J; Moloney, Paul D; Crook, David A

    2014-01-01

    Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007-2011). Fish were tagged and released in autumn 2007-2009 in the mid-Murray (n = 42) and lower Goulburn (n = 37) rivers within 3-6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem-tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem-tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers.

  20. Timing, Frequency and Environmental Conditions Associated with Mainstem–Tributary Movement by a Lowland River Fish, Golden Perch (Macquaria ambigua)

    PubMed Central

    Koster, Wayne M.; Dawson, David R.; O’Mahony, Damien J.; Moloney, Paul D.; Crook, David A.

    2014-01-01

    Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007–2011). Fish were tagged and released in autumn 2007–2009 in the mid-Murray (n = 42) and lower Goulburn (n = 37) rivers within 3–6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem–tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem–tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers. PMID:24788137

  1. Growth and survival of sea lampreys from metamorphosis to spawning in Lake Huron

    USGS Publications Warehouse

    Swink, William D.; Johnson, Nicholas S.

    2014-01-01

    Larval Sea Lampreys Petromyzon marinus live burrowed in stream bottoms and then metamorphose into their parasitic stage. Among larvae that metamorphose in a given year (i.e., parasitic cohort), autumn out-migrants (October–December) to the Laurentian Great Lakes can feed on fish for up to 6 months longer than spring outmigrants (March–May), which overwinter in streams without feeding. We evaluated whether the season of outmigration affected growth or survival of newlymetamorphosed Sea Lampreys in LakeHuron. Newlymetamorphosed individuals (n=2,718) from three parasitic cohorts were netted during their out-migration from BlackMallard Creek, Michigan, to LakeHuron during autumn 1997 through spring 2000; each out-migrant was injected with a sequentially numbered coded wire tag and was released back into the creek. After up to 18 months of feeding in the Great Lakes, 224 (8.2%) Sea Lampreys were recaptured (in 1999–2001) as upstream-migrating adults in tributaries to Lakes Huron and Michigan. Recovery rates of autumn and spring out-migrants as adults were 9.4% and 7.8%, respectively, and these rates did not significantly differ. Overwinter feeding (i.e., as parasites) by autumn out-migrants did not produce adult mean sizes greater than those of spring out-migrants. Because we detected no growth or survival differences between autumn and spring out-migrants, the capture of newly metamorphosed Sea Lampreys at any point during their out-migration should provide equal reductions in damage to Great Lakes fisheries. The absence of a difference in growth or survival between autumn and spring out-migrants is an aspect of Sea Lamprey life history that yields resiliency to this invasive parasite and complicates efforts for its control in the Great Lakes.

  2. Predicting the occurrence of cold water patches at intermittent and ephemeral tributary confluences with warm rivers

    EPA Science Inventory

    Small, cold tributary streams can provide important thermal refuge habitat for cold-water fishes such as Pacific salmon (Oncorhynchus spp.) residing in warm, downstream receiving waters. We investigated the potential function of small perennial and non-perennial tributary stream...

  3. Matching watershed and otolith chemistry to establish natal origin of an endangered desert lake sucker

    USGS Publications Warehouse

    Strohm, Deanna D.; Budy, Phaedra; Crowl, Todd A.

    2017-01-01

    Stream habitat restoration and supplemental stocking of hatchery-reared fish have increasingly become key components of recovery plans for imperiled freshwater fish; however, determining when to discontinue stocking efforts, prioritizing restoration areas, and evaluating restoration success present a conservation challenge. In this study, we demonstrate that otolith microchemistry is an effective tool for establishing natal origin of the June Sucker Chasmistes liorus, an imperiled potamodromous fish. This approach allows us to determine whether a fish is of wild or hatchery origin in order to assess whether habitat restoration enhances recruitment and to further identify areas of critical habitat. Our specific objectives were to (1) quantify and characterize chemical variation among three main spawning tributaries; (2) understand the relationship between otolith microchemistry and tributary chemistry; and (3) develop and validate a classification model to identify stream origin using otolith microchemistry data. We quantified molar ratios of Sr:Ca, Ba:Ca, and Mg:Ca for water and otolith chemistry from three main tributaries to Utah Lake, Utah, during the summer of 2013. Water chemistry (loge transformed Sr:Ca, Ba:Ca, and Mg:Ca ratios) differed significantly across all three spawning tributaries. We determined that Ba:Ca and Sr:Ca ratios were the most important variables driving our classification models, and we observed a strong linear relationship between water and otolith values for Sr:Ca and Ba:Ca but not for Mg:Ca. Classification models derived from otolith element : Ca signatures accurately sorted individuals to their experimental tributary of origin (classification tree: 89% accuracy; random forest model: 91% accuracy) and determined wild versus hatchery origin with 100% accuracy. Overall, this study aids in evaluating the effectiveness of restoration, tracking progress toward recovery, and prioritizing future restoration plans for fishes of conservation

  4. Chemical hazards from acid crater lakes

    NASA Astrophysics Data System (ADS)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pH<0.5) sulphate, chloride and fluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from <1 to 2.5-4 is largely due to dilution with moderately acid springs (pH= ca. 4) and neutral tributaries (pH= ca. 7) inside the Ijen caldera. Geochemical controls that regulate element transport are subject to seasonal fluctuations in rainfall. Long-term monitoring has shown that fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where

  5. Evaluating the Potential of Tributary Restoration to Increase the Overall Survival of Salmon

    NASA Astrophysics Data System (ADS)

    Budy, P.; Schaller, H.

    2006-12-01

    Stream restoration has become a major focus of conservation efforts with millions of dollars spent each year on efforts aimed at recovering imperiled species; however, for animals with complex life-history strategies, this reliance on stream restoration for increasing overall survival requires that several key assumptions be met. We addressed fundamental uncertainties of the current focus on tributary restoration for recovery of endangered Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha): 1) is there potential for improving habitat in tributary streams, 2) what magnitude of early survival improvement can be expected based on stream restoration, and 3) will incremental increases in early survival be sufficient to ensure viability of the populations that compose the Evolutionarily Significant Unit (ESU)? We combined simple mechanistic habitat models, population viability measures, and categorical filters to quantify the potential for increasing total life-cycle survival (TLCS) across all 32 populations (ESU), based on increases to early freshwater survival, predicted to occur in response to restored tributary condition. A wide gap remains between how much survival improvement is needed, versus what is likely to occur under tributary restoration; tributary restoration has the potential to increase survival to the necessary minimum for only four populations in the ESU while the remaining populations (84%) still fall far below the survival needed for future viability. In addition, across the ESU; on average, a 171% increase in TLCS is necessary, whereas only ~106% appears possible. A recovery strategy for these salmon that relies largely on tributary restoration, to mitigate for known mortality imposed at other life stages (e.g., migration through hydropower dams) is risky and has a low probability of success. For animals with complex life cycles and exhibiting long migrations, stream restoration efforts may be ineffective and misplaced, if the

  6. Hydrologic behaviour of the Lake of Monate (Italy): a parsimonious modelling strategy

    NASA Astrophysics Data System (ADS)

    Tomesani, Giulia; Soligno, Irene; Castellarin, Attilio; Baratti, Emanuele; Cervi, Federico; Montanari, Alberto

    2016-04-01

    The Lake of Monate (province of Varese, Northern Italy), is a unique example of ecosystem in equilibrium. The lake water quality is deemed excellent notwithstanding the intensive agricultural cultivation, industrial assets and mining activities characterising the surrounding areas. The lake has a true touristic vocation and is the only swimmable water body of the province of Varese, which counts several natural lakes. Lake of Monate has no tributary and its overall watershed area is equal to c.a. 6.6 km2 including the lake surface (i.e. 2.6 km2), of which 3.3 out of c.a. 4.0 km2 belong to the topographical watershed, while the remaining 0.7 km2 belong to the underground watershed. The latter is larger than the topographical watershed due to the presence of moraine formations on top of the limestone bedrock. The local administration recently promoted an intensive environmental monitoring campaign that aims to reach a better understanding of the hydrology of the lake and the subsurface water fluxes. The monitoring campaign started in October 2013 and, as a result, several meteoclimatic and hydrologic data have been collected up to now at daily and hourly timescales. Our study focuses on a preliminary representation of the hydrological behaviour of the lake through a modified version of HyMOD, a conceptual 5-parameter lumped rainfall-runoff model based on the probability-distributed soil storage capacity. The modified model is a semi-distributed application of HyMOD that uses the same five parameters of the original version and simulates the rainfall-runoff transformation for the whole lake watershed at daily time scale in terms of: direct precipitation on, and evaporation from, the lake surface; overall lake inflow, by separating the runoff component (topographic watershed) from the groundwater component (overall watershed); lake water-level oscillation; streamflow at the lake outlet. We used the first year of hydrometeorological observations as calibration data and

  7. Temporal Variations in 234U/238U Activity Ratios in Four Mississippi River Tributaries

    NASA Astrophysics Data System (ADS)

    Grzymko, T. J.; Marcantonio, F.

    2005-05-01

    In 2004 we sampled the four tributaries that are the major contributors to the Mississippi River in terms of water discharge, i.e., the Arkansas, Missouri, Upper Mississippi, and Ohio rivers. Each river was sampled four times over the course of the year at variable levels of discharge in an attempt to constrain the causes of the temporal variations of 234U/238U activity ratios in the lower Mississippi River at New Orleans. The tributary uranium data support the idea that lower river uranium isotope and elemental systematics are controlled by a simple mass balance of the source tributary discharges. Furthermore, the uranium isotope ratios of the individual tributaries show coherent patterns of variability. Specifically, the data obtained from the four sampling trips yielded similar patterns of temporal variation in the 234U/238U activity ratios of all of the rivers, although the absolute values of these ratios were distinctly different from one river to the next. The pattern was such that the highest 234U/238U activity ratios were observed during the highest flow associated with the spring freshet while the lowest ratios occurred during the summer. For example, in the Missouri River, the 234U/238U activity ratios varied from 1.51 (February 12) to 1.37 (April 14) to 1.34 (July 16) to 1.37 (November 12), while in the Ohio River the same ratios varied from 1.36 (February 12) to 1.29 (April 14) to 1.21 (July 16) to 1.23 (November 12). The apparent seasonal pattern of these ratios in each tributary has led to several ideas as to the causes of the observed trends. The first, and most obvious, is that in each individual drainage basin there are various source tributaries that contribute to the uranium isotope systematics of the main stem of the tributary of interest. It follows that the variations in the uranium activity ratios may be caused by spatial variations in the source rock chemistry of the drainage basin. Other more complex scenarios can also be envisioned and

  8. Estimation of sediment inflows to Lake Tuscaloosa, Alabama, 2009-11

    USGS Publications Warehouse

    Lee, K.G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the City of Tuscaloosa, evaluated the concentrations, loads, and yields of suspended sediment in the tributaries to Lake Tuscaloosa in west-central Alabama, from October 1, 2008, to January 31, 2012. The collection and analysis of these data will facilitate the comparison with historical data, serve as a baseline for future sediment-collection efforts, and help to identify areas of concern. Lake Tuscaloosa, at the reservoir dam, receives runoff from a drainage area of 423 square miles (mi2). Basinwide in 2006, forested land was the primary land cover (68 percent). Comparison of historical imagery with the National Land Cover Database (2001 and 2006) indicated that the greatest temporal land-use change was timber harvest. The land cover in 2006 was indicative of this change, with shrub/scrub land (12 percent) being the secondary land use in the basin. Agricultural land use (10 percent) was represented predominantly by hay and pasture or grasslands. Urban land use was minimal, accounting for 4 percent of the entire basin. The remaining 6 percent of the basin has a land use of open water or wetlands. Storm and monthly suspended-sediment samples were collected from seven tributaries to Lake Tuscaloosa: North River, Turkey Creek, Binion Creek, Pole Bridge Creek, Tierce Creek, Carroll Creek, and Brush Creek. Suspended-sediment concentrations and streamflow measurements were statistically analyzed to estimate annual suspended-sediment loads and yields from each of these contributing watersheds. Estimated annual suspended-sediment yields in 2009 were 360, 540, and 840 tons per square mile (tons/mi2) at the North River, Turkey Creek, and Carroll Creek streamflow-gaging stations, respectively. Estimated annual suspended-sediment yields in 2010 were 120 and 86 tons/mi2 at the Binion Creek and Pole Bridge Creek streamflow-gaging stations, respectively. Estimated annual suspended-sediment yields in 2011 were 190 and 300 tons/mi2

  9. Spatial and Ontogenetic Variation in Mercury in Lake Superior Basin Sea Lamprey (Petromyzon marinus).

    PubMed

    Moses, Sara K; Polkinghorne, Christine N; Mattes, William P; Beesley, Kimberly M

    2018-01-01

    Mercury concentrations were measured in eggs, larvae, and adult spawning-phase sea lampreys (Petromyzon marinus) collected in tributaries of Lake Superior to investigate spatial and ontogenetic variation. There were significant differences in mercury concentrations between all three life stages, with levels highest in adults (mean = 3.01 µg/g), followed by eggs (mean = 0.942 µg/g), and lowest in larvae (mean = 0.455 µg/g). There were no significant differences in mercury concentrations by location for any life stage or by sex in adults. Mercury was not correlated with adult or larval lamprey length or mass. Mercury levels in adult lampreys exceeded U.S. and Canadian federal guidelines for human consumption. Mercury concentrations in all life stages exceeded criteria for the protection of piscivorous wildlife, posing a threat to local fish, birds, and mammals. High mercury levels in adult lampreys combined with their semelparous life history make them a potential source of lake-derived mercury to spawning streams.

  10. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    PubMed

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  11. Streamflow characteristics of small tributaries of Rock Creek, Milk River basin, Montana, base period water years 1983-87

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.

    1990-01-01

    Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)

  12. The sterile-male-release technique in Great Lakes sea lamprey management

    USGS Publications Warehouse

    Bergstedt, Roger A.; Twohey, Michael B.

    2005-01-01

    The parasitic sea lamprey (Petromyzon marinus) has been a serious pest since its introduction into the Great Lakes, where it contributed to severe imbalances in the fish communities by selectively removing large predators (Smith 1968; Christie 1974; Schneider et al.1996). Since the 1950s, restoration and maintenance of predator-prey balance has depended on the Great Lakes Fishery Commission (GLFC) sea lamprey management program. Initially, management relied primarily on stream treatments with a selective lampricide to kill larvae, on barriers to migration, and on trapping to remove potential spawners (Smith and Tibbles 1980). By the late 1970s, however, it was clear that the future of sea lamprey management lay in development of a larger array of control strategies, including more alternatives to lampricide applications (Sawyer 1980). Since then the only new alternative to chemical control to reach operational status is the release of sterilized male sea lampreys. Research on the concept began at the USGS, Hammond Bay Biological Station in Millersburg, MI (HBBS) during the 1970s (Hanson and Manion 1980). Development and evaluation continued through the 1980s, leading to the release of sterilized males in Great Lakes tributaries since 1991 (Twohey et al. 2003a). The objectives of this paper are 1) to review the implementation and evaluations of sterile-male-release technique (SMRT) as it is being applied against sea lampreys in the Great Lakes, 2) to review our current understanding of its efficacy, and 3) to identify additional research areas and topics that would increase either the efficacy of SMRT or expand its geographic potential for application.

  13. First evidence of grass carp recruitment in the Great Lakes Basin

    USGS Publications Warehouse

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  14. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  15. Targeting the Sources of Fecal Contamination using Dog-, Human-, and Ruminant- Specific Markers in the Lake Herrick Watershed, Georgia.

    NASA Astrophysics Data System (ADS)

    Saintil, T.; Radcliffe, D. E.; Rasmussen, T. C.; Habteselassie, M.; Sowah, R.; Kannan, A.

    2016-12-01

    The Lake Herrick Watershed is about 1.5 km2 and covers portions of the University of Georgia's East campus, the Oconee Forest, residential and commercial landuse. Lake Herrick, a recreational site on the University of Georgia campus, was closed in 2002 due to fecal contamination. Subsequent monitoring confirmed persistent contamination, which led to a permanent closure to swimming, boating, and fishing. While fecal coliform abundance is a standard metric for determining human health risks, Geldreich (1970) showed that fecal abundance does not necessarily correlate with the presence of pathogens. Nor does it identify pollution sources, which are needed to mitigate health risks. Two inflow tributaries and the outlet stream were monitored for discharge, fecal coliform, forms of nitrogen and phosphorus and other water-quality data to quantify lake influent and effluent bacteria loads. Fecal sources were identified using the human HF183 genetic marker (Seurinck et al., 2005), the ruminant BacR marker (Reischer et al., 2006), and the dog mitochondrial DNA (mtDNA) marker (Tambalo et al., 2012). Preliminary results confirm high concentrations of E. coli and Enterococci, above the State's limit of 124 MPN/100 mL, in both baseflows and stormflows. The findings also suggest that the E. coli and Enterococci loads from the inlet tributaries are on average higher compared to the bacteria loads coming out of the outlet stream. The human markers were detectable at all three sites but most of the samples were not quantifiable. The ruminant markers were quantifiable at both inlets but no ruminant markers were found at the outlet. The dog markers were detectable but not quantifiable at both inlets and no dog markers were detected at the outlet. Statistical analyses will be used to establish relationships between the nutrients data, the fecal concentrations, and the gene-specific markers.

  16. Mercury accumulation in sea lamprey (Petromyzon marinus) from Lake Huron

    USGS Publications Warehouse

    Madenjian, Charles P.; Johnson, Nicholas S.; Siefkes, Michael J.; Dettmers, John M.; Blum, Joel D.; Johnson, Marcus W.

    2014-01-01

    We determined whole-fish total mercury (Hg) concentrations of 40 male and 40 female adult sea lampreys (Petromyzon marinus) captured in the Cheboygan River, a tributary to Lake Huron, during May 2011. In addition, bioenergetics modeling was used to explore the effects of sex-related differences in activity and resting (standard) metabolic rate (SMR) on mercury accumulation. The grand mean for Hg concentrations was 519 ng/g (standard error of the mean = 46 ng/g). On average, males were 16% higher in Hg concentration than females. Bioenergetics modeling results indicated that 14% higher activity and SMR in males would account for this observed sex difference in Hg concentrations. We concluded that the higher Hg concentration in males was most likely due to higher rate of energy expenditure in males, stemming from greater activity and SMR. Our findings have implications for estimating the effects of sea lamprey populations on mercury cycling within ecosystems, as well as for the proposed opening of sea lamprey fisheries. Eventually, our results may prove useful in improving control of sea lamprey, a pest responsible for substantial damage to fisheries in lakes where it is not native.

  17. Hydrologic and Water-Quality Characterization and Modeling of the Onondaga Lake Basin, Onondaga County, New York

    USGS Publications Warehouse

    Coon, William F.; Reddy, James E.

    2008-01-01

    Onondaga Lake in Onondaga County, New York, has been identified as one of the Nation?s most contaminated lakes as a result of industrial and sanitary-sewer discharges and stormwater nonpoint sources, and has received priority cleanup status under the national Water Resources Development Act of 1990. A basin-scale precipitation-runoff model of the Onondaga Lake basin was identified as a desirable water-resources management tool to better understand the processes responsible for the generation of loads of sediment and nutrients that are transported to Onondaga Lake. During 2003?07, the U.S. Geological Survey (USGS) developed a model based on the computer program, Hydrological Simulation Program?FORTRAN (HSPF), which simulated overland flow to, and streamflow in, the major tributaries of Onondaga Lake, and loads of sediment, phosphorus, and nitrogen transported to the lake. The simulation period extends from October 1997 through September 2003. The Onondaga Lake basin was divided into 107 subbasins and within these subbasins, the land area was apportioned among 19 pervious and impervious land types on the basis of land use and land cover, hydrologic soil group (HSG), and aspect. Precipitation data were available from three sources as input to the model. The model simulated streamflow, water temperature, concentrations of dissolved oxygen, and concentrations and loads of sediment, orthophosphate, total phosphorus, nitrate, ammonia, and organic nitrogen in the four major tributaries to Onondaga Lake?Onondaga Creek, Harbor Brook, Ley Creek, and Ninemile Creek. Simulated flows were calibrated to data from nine USGS streamflow-monitoring sites; simulated nutrient concentrations and loads were calibrated to data collected at six of the nine streamflow-monitoring sites. Water-quality samples were collected, processed, and analyzed by personnel from the Onondaga County Department of Water Environment Protection. Several time series of flow, and sediment and nutrient loads

  18. Benthic nutrient sources to hypereutrophic upper Klamath Lake, Oregon, USA.

    PubMed

    Kuwabara, James S; Topping, Brent R; Lynch, Dennis D; Carter, James L; Essaid, Hedeff I

    2009-03-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m(2)/d. The mass flux over an approximate 200-km(2) lake area was comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m(2)/d, again comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 10(4) individuals/m(2), suggested that the diffusive-flux estimates may be significantly enhanced by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources.

  19. Benthic nutrient sources to hypereutrophic Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Kuwabara, J.S.; Topping, B.R.; Lynch, D.D.; Carter, J.L.; Essaid, H.I.

    2009-01-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A porewater profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical, concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m2/d. The mass flux over an approximate 200-km2 lake area was comparable in magnitude to riverine inputs. An additional concern, related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m2/d, again, comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 104 individuals/m2, suggested, that the diffusive-flux estimates may be significantly enhanced, by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources ?? 2009 SETAC.

  20. Gasoline-Related Compounds in Lakes Mead and Mohave, Nevada, 2004-06

    USGS Publications Warehouse

    Lico, Michael S.; Johnson, B. Thomas

    2007-01-01

    The distribution of man-made organic compounds, specifically gasoline-derived compounds, was investigated from 2004 to 2006 in Lakes Mead and Mohave and one of its tributary streams, Las Vegas Wash. Compounds contained in raw gasoline (benzene, toluene, ethylbenzene, xylenes; also known as BTEX compounds) and those produced during combustion of gasoline (polycyclic aromatic hydrocarbon compounds; also known as PAH compounds) were detected at every site sampled in Lakes Mead and Mohave. Water-quality analyses of samples collected during 2004-06 indicate that motorized watercraft are the major source of these organic compounds to the lakes. Concentrations of BTEX increase as the boating season progresses and decrease to less than detectable levels during the winter when few boats are on the water. Volatilization and microbial degradation most likely are the primary removal mechanisms for BTEX compounds in the lakes. Concentrations of BTEX compounds were highest at sampling points near marinas or popular launching areas. Methyl tert-butyl ether (MTBE) was detected during 2004 but concentrations decreased to less than the detection level during the latter part of the study; most likely due to the removal of MTBE from gasoline purchased in California. Distribution of PAH compounds was similar to that of BTEX compounds, in that, concentrations were highest at popular boating areas and lowest in areas where fewer boats traveled. PAH concentrations were highest at Katherine Landing and North Telephone Cove in Lake Mohave where many personal watercraft with carbureted two-stroke engines ply the waters. Lake-bottom sediment is not a sink for PAH as indicated by the low concentrations detected in sediment samples from both lakes. PAH compounds most likely are removed from the lakes by photochemical degradation. PAH compounds in Las Vegas Wash, which drains the greater Las Vegas metropolitan area, were present in relatively high concentrations in sediment from the upstream

  1. Grass carp in the Great Lakes region: establishment potential, expert perceptions, and re-evaluation of experimental evidence of ecological impact

    USGS Publications Warehouse

    Wittmann, Marion E.; Jerde, Christopher L.; Howeth, Jennifer G.; Maher, Sean P.; Deines, Andrew M.; Jenkins, Jill A.; Whitledge, Gregory W.; Burbank, Sarah B.; Chadderton, William L.; Mahon, Andrew R.; Tyson, Jeffrey T.; Gantz, Crysta A.; Keller, Reuben P.; Drake, John M.; Lodge, David M.

    2014-01-01

    Intentional introductions of nonindigenous fishes are increasing globally. While benefits of these introductions are easily quantified, assessments to understand the negative impacts to ecosystems are often difficult, incomplete, or absent. Grass carp (Ctenopharyngodon idella) was originally introduced to the United States as a biocontrol agent, and recent observations of wild, diploid individuals in the Great Lakes basin have spurred interest in re-evaluating its ecological risk. Here, we evaluate the ecological impact of grass carp using expert opinion and a suite of the most up-to-date analytical tools and data (ploidy assessment, eDNA surveillance, species distribution models (SDMs), and meta-analysis). The perceived ecological impact of grass carp by fisheries experts was variable, ranging from unknown to very high. Wild-caught triploid and diploid individuals occurred in multiple Great Lakes waterways, and eDNA surveillance suggests that grass carp are abundant in a major tributary of Lake Michigan. SDMs predicted suitable grass carp climate occurs in all Great Lakes. Meta-analysis showed that grass carp introductions impact both water quality and biota. Novel findings based on updated ecological impact assessment tools indicate that iterative risk assessment of introduced fishes may be warranted.

  2. Surficial geology and stratigraphy of Pleistocene Lake Manix, San Bernardino County, California

    USGS Publications Warehouse

    Reheis, Marith C.; Redwine, Joanna R.; Wan, Elmira; McGeehin, John P.; VanSistine, D. Paco

    2014-01-01

    Pluvial Lake Manix and its surrounding drainage basin, in the central Mojave Desert of California, has been a focus of paleoclimate, surficial processes, and neotectonic studies by the U.S. Geological Survey (USGS) since about 2004. The USGS initiated studies of Lake Manix deposits to improve understanding of the paleoclimatic record and the shifts in atmospheric circulation that controlled precipitation in the Mojave Desert. Until approximately 25,000 years ago, Lake Manix was the terminus of the Mojave River, which drains northeasterly from the San Bernardino Mountains; the river currently terminates in the Soda Lake and Silver Lake playas. Pleistocene Lake Manix occupied several subbasins at its maximum extent. This map focuses on the extensive exposures created by incision of the Mojave River and its tributaries into the interbedded lacustrine and alluvial deposits within the central (Cady) and northeastern (Afton) subbasins of Lake Manix, and extends from the head of Afton Canyon to Manix Wash. The map illuminates the geomorphic development and depositional history of the lake and alluvial fans within the active tectonic setting of the eastern California shear zone, especially interactions with the left-lateral Manix fault. Lake Manix left an extraordinarily detailed but complex record of numerous transgressive-regressive sequences separated by desiccation and deposition of fan, eolian, and fluvial deposits, and punctuated by tectonic movements and a catastrophic flood that reconfigured the lake basin. Through careful observation of the intercalated lacustrine and fan sequences and by determining the precise elevations of unit contacts, this record was decoded to understand the response of the lake and river system to the interplay of climatic, geomorphic, and tectonic forces. These deposits are exposed in steep badland topography. Mapping was carried out mostly at scales of 1:12,000, although the map is presented at 1:24,000 scale, and employs custom unit

  3. Rodent neurotoxicity bioassays for screening contaminated Great Lakes fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beattie, M.K.; Hoffman, R.; Gerstenberger, S.

    1996-03-01

    Standard laboratory rat neurotoxicity protocols were used to study the consequences resulting from the consumption of walleye (Stizostedion vitreum), whitefish (Coregonus clupeaformis), and lake trout (Salvelinus namaycush) from Lake Superior (LS) and the consumption of carp (Cyprinus carpio) from Little Lake Butte des Morte (LLBM) near Oshkosh, Wisconsin, USA. Two 90-d subchronic studies are described, including a 45-d exposure to fish diets using male Sprague-Dawley hooded rats, and a 90-d exposure to fish diets using female rats of the same species. Behavioral alterations were tested using a battery of behavioral tests. In addition, pharmacologic challenges using apomorphine and D-amphetamine weremore » administered to the rats to reveal latent neurotoxic effects. Cumulative fish consumption data were recorded daily, weight gain recorded weekly, and behavior data collected prior to exposure, and on days 7, 14, 55 {+-} 2, 85 {+-} 2. Motor activity data were collected on days 30 {+-} 2, 60 {+-} 2, and 90 {+-} 2 of the feeding protocols. Brain tissue from rodents fed these fish were subsequently analyzed for either mercury (Hg) or polychlorinated biphenyls (PCB). Mercury concentrations were increased in the brains of the walleye-fed rats, and PCB concentrations ranged from 0.5 nl/L to 10 nl/L in the brains of rats fed carp from LLBM, a Lake Michigan tributary. Adult male rats fed LLBM carp for 45 d exhibited the greatest behavior responses to the dopaminergic agonist apomorphine on the accelerating rotarod, although these differences were not significant. The 90-d exposure of LS walleye or Hg-spiked LS walleye resulted in behavior alterations on tactile startle response and second footsplay. D-Amphetamine challenge caused changes in tactile startle response, second footsplay, and accelerating rotarod performance after consuming walleye diets. Rats fed LLBM carp had altered behavioral responses to apomorphine on the accelerating rotarod.« less

  4. Installation Restoration Program. Phase I. Records Search, Plattsburgh AFB, New York

    DTIC Science & Technology

    1985-04-01

    Storage Area (WSA) drainage to the Salmon River, the POL and housing area drainage to Lake Champlaln, and the golf course streams and ponds drain...Sanitary Engineering; 2. Michael A. Zapkln, Project Director, M. Eng. Environmental Engineering and M.S. Biology - Team Chief and Ecologlst; 3. Andrew...college courses were offered to World War II veterans. This center became part of the State University system in 1950 and was known as Champlain College

  5. Effects of exploitation, environmental changes, and new species on the fish habitats and resources of Lake Erie

    USGS Publications Warehouse

    Hartman, Wilbur L.

    1973-01-01

    No other lake as large as Lake Erie (surface area, 25,690 km2) has been subjected to such extensive changes in the drainage basin, the lake environment, and the fish populations over the last 150 years. Deforestation and prairie burning led to erosion of the watershed and siltation of valuable spawning grounds. Marsh spawning areas were drained. Lake-to-river spawning migrations of sturgeon, walleye, and other fishes were blocked by mill dams. Accelerated cultural nutrient loading increased total dissolved solids by nearly 50% (1920-70). Phosphate loading reached 469 metric tons per year by the 1950's and continued to increase. The biomass of phytoplankton increased 20-fold between 1919 and 1963. Oxygen demand for decomposition of these algae so degraded oxygen regimes in the western and central basins by the 1950's that the once abundant mayfly nymphs were destroyed and the central basin hypolimnion became anoxic. The sequence of disappearance or severe depletion of fish species was as follows: lake trout, sturgeon, lake herring, lake whitefish, sauger, blue pike, and walleye. Yellow perch are now declining. All resources were intensively exploited at one time or another. Lake trout suffered only this stress, but changes in the watershed significantly stressed sturgeon and lake whitefish. Degradation of the lake spawning grounds, benthos, and oxygen regimes culminated in severe stress by the 1950's on the remnants of the lake herring and lake whitefish, and on the sauger, blue pike, and walleye. Additional mortality may have been imposed on walleye and blue pike fry by predacious smelt that successfully colonized Lake Erie after first appearing in 1932. The cultural stresses, in the probable order of greatest to least net effects on the fish community of Lake Erie, appear to have been: (1) an intense, opportunistic, ineffectively controlled commercial fishery; (2) changes in the watershed, such as erosion and siltation of stream beds and inshore lake areas, and

  6. Mercury concentrations of fish, river water, and sediment in the Río Ramis-Lake Titicaca watershed, Peru.

    PubMed

    Gammons, Christopher H; Slotton, Darell G; Gerbrandt, Butch; Weight, Willis; Young, Courtney A; McNearny, Richard L; Cámac, Eugenio; Calderón, Ruben; Tapia, Henri

    2006-09-15

    This study reports the first set of data on the concentration of mercury in muscle tissue of several varieties of fish from Lake Titicaca, including the pejerrey (Basilichthyes bonariensis), the carachi (Orestias), and 2 types of indigenous catfish (Trichomycterus). Approximately 27% of the pejerrey and 75% of the carachi exceeded the US EPA fish tissue-based water quality criterion level of 0.30 microg g(-1). Mercury levels of pejerrey increased with fish size, although this relationship was less apparent for the smaller carachi. The pejerrey and carachi are important food fish for local residents. A synoptic sampling of the Río Ramis--the largest tributary to Lake Titicaca--was conducted in an attempt to determine if mercury releases from artisanal gold mining could be an important source of Hg contamination to Lake Titicaca. Although highly elevated concentrations of Hg and other heavy metals were documented in headwater streams near the mining centers of La Rinconada and Cecilia, the quantity of Hg entering Lake Titicaca that could be attributed to mining in the Ramis watershed was below the quantifiable limit in our July 2002 study. This does not diminish the localized threat to mercury exposure for the artisanal gold miners themselves, as well as their families. Further studies of mercury dynamics in Lake Titicaca are recommended, as well as in the rivers draining into the lake. It is probable that most of the downgradient transport of Hg and other trace metals from the headwater mining centers occurs as suspended sediment during seasonal periods of high-flow.

  7. Tidal and meteorological forcing of sediment transport in tributary mudflat channels.

    PubMed

    Ralston, David K; Stacey, Mark T

    2007-06-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.

  8. Tidal and meteorological forcing of sediment transport in tributary mudflat channels

    PubMed Central

    Ralston, David K.; Stacey, Mark T.

    2011-01-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides. PMID:21499572

  9. Biological consequences of the coaster brook trout restoration stocking program in Lake Superior tributaries with Pictured Rocks National Lakeshore

    USGS Publications Warehouse

    Leonard, Jill B.K.; Stott, Wendylee; Loope, Delora M.; Kusnierz, Paul C.; Sreenivasan, Ashwin

    2013-01-01

    The coaster Brook Trout Salvelinus fontinalis is a Lake Superior ecotype representing intraspecific variation that has been impacted by habitat loss and overfishing. Hatchery strains of Brook Trout derived from populations in Lake Superior were stocked into streams within Pictured Rocks National Lakeshore, Michigan, as part of an effort to rehabilitate adfluvial coaster Brook Trout. Wild and hatchery Brook Trout from three streams (Mosquito River, Hurricane River, and Sevenmile Creek) were examined for movement behavior, size, physiology, and reproductive success. Behavior and size of the stocked fish were similar to those of wild fish, and less than 15% of the stocked, tagged Brook Trout emigrated from the river into which they were stocked. There was little evidence of successful reproduction by stocked Brook Trout. Similar to the results of other studies, our findings suggest that the stocking of nonlocal Brook Trout strains where a local population already exists results in limited natural reproduction and should be avoided, particularly if the mechanisms governing the ecotype of interest are poorly understood.

  10. Preliminary juvenile Lost River and shortnose sucker investigations in Clear Lake, California--2011 pilot study summary

    USGS Publications Warehouse

    Burdick, Summer M.; Rasmussen, Josh

    2012-01-01

    Poor recruitment appears to limit the recovery of Lost River and shortnose sucker populations in Clear Lake Reservoir, California, but the cause is unknown. Adult suckers migrate up Willow Creek and its tributaries to spawn in some years, but low flow in Willow Creek may inhibit spawning migrations in other years. It is unclear whether spawning is successful, larvae survive, or juveniles persist to adulthood. Environmental variables associated with successful spawning or young-of-year survival have not been identified and early life history for these populations is poorly understood. The U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service and Ruby Pipeline L.L.C. Corporation (El Paso, Tex.) initiated a study in 2011 to better understand juvenile sucker life history in Clear Lake Reservoir, and to identify constraints in the early life history that may limit recruitment to the adult spawning populations. This is a report on the 2011 pilot study for this project.

  11. Fish Lake, Utah - a promising long core site straddling the Great Basin to Colorado Plateau transition zone

    NASA Astrophysics Data System (ADS)

    Marchetti, D. W.; Abbott, M. B.; Bailey, C.; Wenrich, E.; Stoner, J. S.; Larsen, D. J.; Finkenbinder, M. S.; Anderson, L.; Brunelle, A.; Carter, V.; Power, M. J.; Hatfield, R. G.; Reilly, B.; Harris, M. S.; Grimm, E. C.; Donovan, J.

    2015-12-01

    Fish Lake (~7x1.5 km and 2696 m asl) is located on the Fish Lake Plateau in central Utah. The Lake occupies a NE-striking tectonic graben; one of a suite of grabens on the Plateau that cut 21-26 Ma volcanic rocks. The lake outflows via Lake Creek to the NE where it joins Sevenmile Creek to become the Fremont River, a tributary to the Colorado River. A bathymetric survey reveals a mean depth of 27 m and a max depth of 37.2 m. The lake bottom slopes from NW to SE with the deepest part near the SE wall, matching the topographic expression of the graben. Nearby Fish Lake Hightop (3545 m) was glaciated with an ice field and outlet glaciers. Exposure ages indicate moraine deposition during Pinedale (15-23 ka) and Bull Lake (130-150 ka) times. One outlet glacier at Pelican Canyon deposited moraines and outwash into the lake but the main basin of the lake was never glaciated. Gravity measurements indicate that lake sediments thicken toward the SE side of the lake and the thickest sediment package is modeled to be between 210 and 240 m. In Feb 2014 we collected cores from Fish Lake using a 9-cm diameter UWITECH coring system in 30.5 m of water. A composite 11.2-m-long core was constructed from overlapping 2 m drives that were taken in triplicate to ensure total recovery and good preservation. Twelve 14C ages and 3 tephra layers of known age define the age model. The oldest 14C age of 32.3±4.2 cal ka BP was taken from 10.6 m. Core lithology, CT scans, and magnetic susceptibility (ms) reveal three sediment packages: an organic-rich, low ms Holocene to post-glacial section, a fine-grained, minerogenic glacial section with high ms, and a short section of inferred pre-LGM sediment with intermediate composition. Extrapolating the age model to the maximum estimated sediment thicknesses suggest sediments may be older than 500-700 ka. Thus Fish Lake is an ideal candidate for long core retrieval as it likely contains paleoclimatic records extending over multiple glacial cycles.

  12. Hydrologic, water-quality, and meteorologic data from selected sites in the Upper Catawba River Basin, North Carolina, January 1993 through March 1994

    USGS Publications Warehouse

    Jaynes, M.L.

    1994-01-01

    Hydrologic, water-quality, and meteorologic data were collected from January 1993 through March 1994 as part of a water-quality investigation of the Upper Catawba River Basin, North Carolina. Specific objectives of the investigation were to characterize the water quality of Rhodhiss Lake, Lake Hickory, and three tributary streams, and to calibrate hydrodynamic water-quality models for the two reservoirs. Sampling locations included 11 sites in Rhodhiss Lake, 14 sites in Lake Hickory, and 3 tributary sites. Tributary sites were located at Lower Creek upstream from Rhodhiss Lake and at Upper Little River and Middle Little River upstream from Lake Hickory. During 21 sampling visits, specific conductance, pH, water temperature, dissolved-oxygen concentration, and water transparency were measured at all sampling locations. Water samples were collected for analysis of biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, suspended sediment, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium from three sites in each reservoir and from the three tributary sites. Chemical and particle-size analyses of bottom material from Rhodhiss Lake and Lake Hickory were performed once during the study. At selected locations, automated instruments recorded water level, streamflow, water temperature, solar radiation, and air temperature at 15-minute intervals throughout the study. Hydrologic data presented in the report include monthly water-level statistics and daily mean values of discharge. Diagrams, tables, and statistical summaries of water-quality data are provided. Meteorologic data in the report include monthly precipitation, and daily mean values of solar radiation and air temperature.

  13. Water Quality of a Reservoir and Its Major Tributary Located in East-Central Mexico

    PubMed Central

    Castilla-Hernández, Patricia; Torres-Alvarado, María del Rocío; Herrera-San Luis, José Antonio; Cruz-López, Norma

    2014-01-01

    A reservoir with ecological and economic importance and its major tributary, localized in east-central Mexico, were studied. The aim of this work was to know the physicochemical water characteristics of both water bodies and to contrast these by their different uses, and also estimate overall water quality using a Water Quality Index (WQI). Water samples from the reservoir and the tributary were obtained in different climatic seasons. In the tributary, anoxic and hypoxic conditions and high levels of organic matter, orthophosphate, and ammonium showed that this is strongly impacted by wastewater discharges and that the water is not suitable for different uses; independently of the season, the WQI showed “poor” quality (34.4–47.2). In contrast, in the reservoir a better water quality was determined; the WQI in the sampling months ranged from 72.1–76.6 (“good” quality), and spatially, this was from 66.5–79.5 (“fair” and “good” quality). PMID:24919132

  14. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    USGS Publications Warehouse

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of

  15. Spatial and temporal variability of dissolved sulfate in Devils Lake, North Dakota, 1998

    USGS Publications Warehouse

    Sether, Bradley A.; Vecchia, Aldo V.; Berkas, Wayne R.

    1998-01-01

    The Devils Lake Basin is a 3,810-squaremile closed subbasin of the Red River of the North Basin (fig. 1). About 3,320 square miles of the total 3,810 square miles is tributary to Devils Lake. The Devils Lake Basin contributes to the Red River of the North Basin when the level of Devils Lake is greater than 1,459 feet above sea level.Lake levels of Devils Lake were recorded sporadically from 1867 to 1890. In 1901, the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 through 1998, the lake level has fluctuated between a minimum of 1,400.9 feet above sea level in 1940 and a maximum of 1,444.7 feet above sea level in 1998 (fig. 2). The maximum, which occurred on July 7, 1998, was 22.1 feet higher than the level recorded in February 1993.The rapid rise in the lake level of Devils Lake since 1993 is in response to abovenormal precipitation and below-normal evaporation from the summer of 1993 through 1998. Because of the rising lake level, more than 50,000 acres of land and many roads around the lake have been flooded. In addition, the water quality of Devils Lake changed substantially in 1993 because of the summer flooding (Williams-Sether and others, 1996). In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) flood mitigation options. Current and accurate hydrologic and water-quality information is needed to assess the effectiveness of the flood mitigation options, which include managing and storing water in the Devils Lake Basin, continuing infrastructure protection, and providing an outlet to the Sheyenne River (Wiche, 1998). As part of the U.S. Army Corps of Engineers Devils Lake emergency outlet feasibility study, the U.S. Geological Survey is modeling lake levels and sulfate concentrations in Devils Lake to simulate operation of an emergency outlet. Accurate simulation of sulfate concentrations in

  16. Sediment sources in the Lake Tahoe Basin, California-Nevada; preliminary results of a four-year study, August 1983-September 1987

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1988-01-01

    Data were collected during a 4-yr study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood, General, Edgewood, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel mapping; analyses of bank and bed material samples; tabulations of bed material point counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  17. Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Schannwell, C.; Barrand, N. E.; Radic, V.

    2016-12-01

    Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. Here the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. The British Antarctic Survey Antarctic Peninsula Ice Sheet Model (BAS-APISM), previously shown to be suitable for the unique topographic setting from the AP, is forced by temperature output from 13 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to the high greenhouse gas emission scenario (Representative Concentration Pathway (RCP)8.5), simulations project contribution to SLR of 28±16 to 32±16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers ( ˜8-18 mm). In this cooler scenario, 2.4±1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ˜70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11±2 and 32±16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR. Iceberg calving and

  18. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem

    USGS Publications Warehouse

    Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, Dale M.

    2011-01-01

    The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.

  19. Cartier, Champlain, and the fruits of the New World: botanical exchange in the 16th and 17th centuries.

    PubMed

    Dickenson, Victoria

    2008-01-01

    Much has been written of the Columbian exchange, the transfer between New World and Old of people, pathogens, flora and fauna. The biota of two hemispheres, once seemingly irredeemably separated, were interpenetrated, both through accident and through human agency. Part of this exchange involved medicinal and food plants, discovered in the New World and adopted into the Old. This paper examines the translation of a number of New World plants that were part of the 'Cartierian' or 'Champlinian' exchange that followed the voyages to North America by Jacques Cartier (1491-1557) between 1534 and 1541, and the explorations and settlements undertaken by Samuel de Champlain (1580?-1635) from 1603 to his death at Quebec in 1635. During this period, a number of North American plants were propagated in European nurseries and even found their way into everyday use in gardens or kitchens. How were these new plants viewed on their introduction and how were they incorporated into Europe's "vegetable" consciousness? Where did these new plants fit in the classification of the edible and the exotic?

  20. Defining acceptable levels for ecological indicators: an approach for considering social values.

    PubMed

    Smyth, Robyn L; Watzin, Mary C; Manning, Robert E

    2007-03-01

    Ecological indicators can facilitate an adaptive management approach, but only if acceptable levels for those indicators have been defined so that the data collected can be interpreted. Because acceptable levels are an expression of the desired state of the ecosystem, the process of establishing acceptable levels should incorporate not just ecological understanding but also societal values. The goal of this research was to explore an approach for defining acceptable levels of ecological indicators that explicitly considers social perspectives and values. We used a set of eight indicators that were related to issues of concern in the Lake Champlain Basin. Our approach was based on normative theory. Using a stakeholder survey, we measured respondent normative evaluations of varying levels of our indicators. Aggregated social norm curves were used to determine the level at which indicator values shifted from acceptable to unacceptable conditions. For seven of the eight indicators, clear preferences were interpretable from these norm curves. For example, closures of public beaches because of bacterial contamination and days of intense algae bloom went from acceptable to unacceptable at 7-10 days in a summer season. Survey respondents also indicated that the number of fish caught from Lake Champlain that could be safely consumed each month was unacceptably low and the number of streams draining into the lake that were impaired by storm water was unacceptably high. If indicators that translate ecological conditions into social consequences are carefully selected, we believe the normative approach has considerable merit for defining acceptable levels of valued ecological system components.

  1. Defining Acceptable Levels for Ecological Indicators: An Approach for Considering Social Values

    NASA Astrophysics Data System (ADS)

    Smyth, Robyn L.; Watzin, Mary C.; Manning, Robert E.

    2007-03-01

    Ecological indicators can facilitate an adaptive management approach, but only if acceptable levels for those indicators have been defined so that the data collected can be interpreted. Because acceptable levels are an expression of the desired state of the ecosystem, the process of establishing acceptable levels should incorporate not just ecological understanding but also societal values. The goal of this research was to explore an approach for defining acceptable levels of ecological indicators that explicitly considers social perspectives and values. We used a set of eight indicators that were related to issues of concern in the Lake Champlain Basin. Our approach was based on normative theory. Using a stakeholder survey, we measured respondent normative evaluations of varying levels of our indicators. Aggregated social norm curves were used to determine the level at which indicator values shifted from acceptable to unacceptable conditions. For seven of the eight indicators, clear preferences were interpretable from these norm curves. For example, closures of public beaches because of bacterial contamination and days of intense algae bloom went from acceptable to unacceptable at 7-10 days in a summer season. Survey respondents also indicated that the number of fish caught from Lake Champlain that could be safely consumed each month was unacceptably low and the number of streams draining into the lake that were impaired by storm water was unacceptably high. If indicators that translate ecological conditions into social consequences are carefully selected, we believe the normative approach has considerable merit for defining acceptable levels of valued ecological system components.

  2. Comparisons of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska

    USGS Publications Warehouse

    Burger, C.V.; Wilmot, R.L.; Wangaard, D.B.

    1985-01-01

    From 1979 to 1982,188 chinook salmon (Oncorhynchus tshawytscha) were tagged with radio transmitters to locate spawning areas in the glacial Kenai River, southcentral Alaska. Results confirmed that an early run entered the river in May and June and spawned in tributaries, and a late run entered the river from late June through August and spawned in the main stem. Spawning peaked during August in tributaries influenced by lakes, but during July in other tributaries. Lakes may have increased fall and winter temperatures of downstream waters, enabling successful reproduction for later spawning fish within these tributaries. This hypothesis assumes that hatching and emergence can be completed in a shorter time in lake-influenced waters. The time of upstream migration and spawning (mid- to late August) of the late run is unique among chinook stocks in Cook Inlet. This behavior may have developed only because two large lakes (Kenai and Skilak) directly influence the main-stem Kenai River. If run timing is genetically controlled, and if the various components of the two runs are isolated stocks that have adapted to predictable stream temperatures, there are implications for stock transplantation programs and for any activities of man that alter stream temperatures.

  3. Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Schannwell, Clemens; Barrand, Nicholas E.; Radić, Valentina

    2016-11-01

    Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. In this paper, the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. An ice-sheet model forced by temperature output from 13 global climate models (GCMs), in response to the high greenhouse gas emission scenario (RCP8.5), projects AP contribution to SLR of 28 ± 16 to 32 ± 16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers (∼8-18 mm). In this cooler scenario, 2.4 ± 1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ∼70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11 ± 2 and 32 ± 16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR.

  4. Seasonal variations in suspended-sediment dynamics in the tidal reach of an estuarine tributary

    USGS Publications Warehouse

    Downing-Kunz, Maureen A.; Schoellhamer, David H.

    2013-01-01

    Quantifying sediment supply from estuarine tributaries is an important component of developing a sediment budget, and common techniques for estimating supply are based on gages located above tidal influence. However, tidal interactions near tributary mouths can affect the magnitude and direction of sediment supply to the open waters of the estuary. We investigated suspended-sediment dynamics in the tidal reach of Corte Madera Creek, an estuarine tributary of San Francisco Bay, using moored acoustic and optical instruments. Flux of both water and suspended-sediment were calculated from observed water velocity and turbidity for two periods in each of wet and dry seasons during 2010. During wet periods, net suspended-sediment flux was seaward; tidally filtered flux was dominated by the advective component. In contrast, during dry periods, net flux was landward; tidally filtered flux was dominated by the dispersive component. The mechanisms generating this landward flux varied; during summer we attributed wind–wave resuspension in the estuary and subsequent transport on flood tides, whereas during autumn we attributed increased spring tide flood velocity magnitude leading to local resuspension. A quadrant analysis similar to that employed in turbulence studies was developed to summarize flux time series by quantifying the relative importance of sediment transport events. These events are categorized by the direction of velocity (flood vs. ebb) and the magnitude of concentration relative to tidally averaged conditions (relatively turbid vs. relatively clear). During wet periods, suspended-sediment flux was greatest in magnitude during relatively turbid ebbs, whereas during dry periods it was greatest in magnitude during relatively turbid floods. A conceptual model was developed to generalize seasonal differences in suspended-sediment dynamics; model application to this study demonstrated the importance of few, relatively large events on net suspended-sediment flux

  5. Water and bed-sediment quality in the vicinity of Berlin Lake, Ohio, 2001

    USGS Publications Warehouse

    Darner, Robert A.

    2002-01-01

    Berlin Lake, in northeast Ohio, was created by the U.S. Army Corps of Engineers in 1943 and is used primarily for flood control for the upper reaches of the Mahoning River. The area surrounding and under the lake has been tapped for oil and natural gas production. One of the by-products of oil and gas production is concentrated salt water or brine, which might have an effect on the chemical quality of area potable-water sources. This report presents the results of a U.S. Geological Survey baseline study to collect current (2001) water and sediment-quality data and to characterize water quality in the Berlin Lake watershed. Chloride-to-bromide ratios were used to detect the presence of brine in water samples and to indicate possible adverse effects on water quality. Analyses of ground-water samples from domestic wells in the area indicate a source of chloride and bromide, but defining the source would require more data collection. Analyses of specific conductance and dissolved solids indicate that 78 percent (14 of 18) of the ground-water samples exceeded the Secondary Maximum Contaminant Level for dissolved solids in public water supplies of 500 milligrams per liter (mg/L), compared to 6 percent of samples exceeding 500 mg/L in two nearby studies. Surface water was analyzed twice, once each during low-flow and surface runoff conditions. A comparison of the 2001 data to historical chloride concentrations, accounting for seasonal changes, does not indicate an increase in chloride loads for surface water in the area of Berlin Lake. Polycyclic aromatic hydrocarbons were found in bed-sediment samples collected from the mouths of major tributaries to Berlin Lake. Polycyclic aromatic hydrocarbons are produced during the incomplete combustion of organic carbon materials such as wood and fossil fuels, and they are components of petroleum products.

  6. Effects of changes in climate variability and extremes on the exceedance of critical algal bloom thresholds

    NASA Astrophysics Data System (ADS)

    Hecht, J. S.; Zia, A.; Beckage, B.; Winter, J.; Schroth, A. W.; Bomblies, A.; Clemins, P. J.; Rizzo, D. M.

    2017-12-01

    Identifying critical thresholds associated with algal blooms in freshwater lakes is important for avoiding persistent eutrophic conditions and their undesirable ecological, recreational and drinking water impacts. Recent Integrated Assessment Model (IAM) and Bayesian network studies have demonstrated that future climatic changes could increase the duration and intensity of these blooms. Yet, few studies have systematically examined the sensitivity of algal blooms to projected changes in precipitation and temperature variability and extremes at storm-event to seasonal timescales. We employ an IAM, which couples downscaled Global Climate Model (GCM) output with hydrologic and water quality models, to examine the sensitivity of algal blooms in Lake Champlain's shallow Missisquoi Bay to potential future climate changes. We first identify a set of statistically downscaled GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5) that reproduce recent historical daily temperature and precipitation observations well in the Lake Champlain basin. Then, we identify plausible covarying changes in the (i) mean and variance of seasonal precipitation and temperature distributions and (ii) frequency and magnitude of individual storm events. We assess the response of water quality indicators (e.g. chlorophyll a concentrations, Trophic State Index) and societal impacts to sequences of daily meteorological series generated from distributions that account for these covarying changes. We also discuss strategies for examining the sensitivity of bloom impacts to different weather sequences generated from a single set of precipitation and temperature distributions with a limited number of computationally intensive IAM simulations. We then evaluate the implications of modeling these changes in climate variability and extreme precipitation events for nutrient management. Finally, we consider the generalizability of our findings for water bodies with different physical and

  7. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of

  8. Surface- and ground-water characteristics in the Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, July-December 1996

    USGS Publications Warehouse

    Rowe, T.G.; Allander, Kip K.

    2000-01-01

    The Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, were studied from July to December 1996 to develop a better understanding of the relation between surface water and ground water. Base flows at 63 streamflow sites were measured in late September 1996 in the Upper Truckee River and Trout Creek watersheds. Most reaches of the main stem of the Upper Truckee River and Trout Creek had gaining or steady flows, with one losing reach in the mid-section of each stream. Twenty-seven of the streamflow sites measured in the Upper Truckee River watershed were on 14 tributaries to the main stem of the Upper Truckee River. Sixteen of the 40 streamflow sites measured in the Upper Truckee River watershed had no measurable flow. Streamflow in Upper Truckee River watershed ranged from 0 to 11.6 cubic feet per second (ft3/s). The discharge into Lake Tahoe from the Upper Truckee River was 11.6 ft3/s, of which, 40 percent of the flow was from ground-water discharge into the main stem, 40 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Gains from or losses to ground water along streams ranged from a 1.4 cubic feet per second per mile (ft3/s/mi) gain to a 0.5 ft3/s/mi loss along the main stem. Fourteen of the streamflow sites measured in the Trout Creek watershed were on eight tributaries to the main stem of Trout Creek. Of the 23 streamflow sites measured in the Trout Creek watershed, only one site had no flow. Flows in the Trout Creek watershed ranged from zero to 23.0 ft3/s. Discharge into Lake Tahoe from Trout Creek was 23.0 ft3/s, of which, about 5 percent of the flow was from ground-water discharge into the main stem, 75 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Ground-water seepage rates ranged from a 1.4 ft3/s/mi gain to a 0.9 ft3/s/mi loss along the main stem. Specific conductances measured during the seepage run in September 1996 increased in a

  9. Organochlorine pesticide residues in bed sediments of the San Joaquin River and its tributary streams, California

    USGS Publications Warehouse

    Gilliom, R.J.; Clifton, D.G.

    1987-01-01

    The distribution and concentrations of organochlorine pesticide residues in bed sediments were assessed from samples collected at 24 sites in the San Joaquin River and its tributaries in the San Joaquin Valley, California. Sampling was designed to collect the finest grained bed sediments present in the vicinity of each site. One or more of the 14 pesticides analyzed were detected at every site. Pesticides detected at one or more sites were chlordane, DDD, DDE, DDT, dieldrin, endosulfan, mirex, and toxaphene. Pesticides not detected were endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, and perthane. The most frequently detected pesticides were DDD (83% of sites), DDE (all sites), DDT (33% of sites), and dieldrin (58% of sites). Maximum concentrations of these pesticides, which were correlated with each other and with the amount of organic carbon in the sample, were DDD, 260 micrograms/kg; DDE, 430 micrograms/kg; DDT, 420 micrograms/kg; and dieldrin, 8.9 micrograms/kg. Six small tributary streams that drain agricultural areas west of the San Joaquin River had the highest concentrations. Water concentrations and loads were estimated for each pesticide from its concentration in bed sediments, the concentration of suspended sediment, and streamflow. Estimated loadings of DDD, DDE, DDT, and dieldrin from tributaries to the San Joaquin River indicate that most of the loading to the river at the time of the study was probably from the westside tributaries. Estimated water concentrations exceeded the aquatic life criterion for the sum of DDD, DDE, and DDt of 0.001 microgram/L at nine of the 24 sites sampled. Five of the nine sites are westside tributaries and one is the San Joaquin River near Vernalis. (Author 's abstract)

  10. Towards a National Hydrological Forecasting system for Canada : Lessons Learned from the Great Lakes and St. Lawrence Prediction System

    NASA Astrophysics Data System (ADS)

    Fortin, V.; Durnford, D.; Gaborit, E.; Davison, B.; Dimitrijevic, M.; Matte, P.

    2016-12-01

    Environment and Climate Change Canada has recently deployed a water cycle prediction system for the Great Lakes and St. Lawrence River. The model domain includes both the Canadian and US portions of the watershed. It provides 84-h forecasts of weather elements, lake level, lake ice cover and surface currents based on two-way coupling of the GEM numerical weather prediction (NWP) model with the NEMO ocean model. Streamflow of all the major tributaries of the Great Lakes and St. Lawrence River are estimated by the WATROUTE routing model, which routes the surface runoff forecasted by GEM's land-surface scheme and assimilates streamflow observations where available. Streamflow forecasts are updated twice daily and are disseminated through an OGC compliant web map service (WMS) and a web feature service (WFS). In this presentation, in addition to describing the system and documenting its forecast skill, we show how it is being used by clients for various environmental prediction applications. We then discuss the importance of two-way coupling, land-surface and hillslope modelling and the impact of horizontal resolution on hydrological prediction skill. In the second portion of the talk, we discuss plans for implementing a similar system at the national scale, using what we have learned in the Great Lakes and St. Lawrence watershed. Early results obtained for the headwaters of the Saskatchewan River as well as for the whole Nelson-Churchill watershed are presented.

  11. A brief history of commercial fishing in Lake Erie

    USGS Publications Warehouse

    Applegate, Vernon C.; Van Meter, Harry D.

    1970-01-01

    Salient features of the development of the industry from about 1815 to 1968, changes in fishing gears and methods, changes in the kinds and abundance of fishes caught, and the attendant effects of disappearing species on the stability of the fishery are described. The history and present status of the walleye, yellow perch, and eight other fishes, still taken in commercial quantities, are presented in more detail and are considered in the context of their effect on the current moribund state of the U.S. fishery. Past and present contributions of Lake Erie's tributaries and northerly connecting waters to the fishery are outlined briefly. The "outlook" for the fishery under present conditions of selective overfishing for high-value species, excessive pollution, ineffective and uncoordinated regulation, and antiquated methods of handling, processing, and marketing fish are discussed, and possible solutions to these problems are suggested.

  12. Development of an Assessment Tool for Agricultural Best Management Practice Iimplementation in the Great Lakes Restoration Initiative Priority Watersheds—Alger Creek, Tributary to Saginaw River, Michigan

    USGS Publications Warehouse

    Merriman, Katherine R.

    2015-11-19

    The Great Lakes face a number of serious challenges that cause damage to water quality, habitat, ecology, and coastal health. Excess nutrients from point and nonpoint sources have a history of causing harmful algal blooms (HABs); since the late 1990s, a resurgence of HABs have forced beach closures and resulted in water quality impairments across the Great Lakes. Studies increasingly point to phosphorus (P) runoff from agricultural lands as the cause of these HABs. In 2010, the Great Lakes Restoration Initiative (GLRI) was launched to revitalize the Great Lakes. The GLRI aims to address the challenges facing the Great Lakes and provide a framework for restoration and protection. As part of this effort, the Priority Watersheds Work Group (PWWG), cochaired by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA–NRCS), is targeting Priority Watersheds (PWs) to reduce the amount of P reaching the Great Lakes. Within the PWs, USDA–NRCS identifies small-scale subbasins with high concentrations of agriculture for coordinated nutrient reduction efforts and enhanced monitoring and modeling. The USDA–NRCS supplies financial and/or technical assistance to producers to install or implement best management practices (BMPs) to lessen the negative effects of agriculture to water quality; additional funding is provided by the GLRI through USDA–NRCS to saturate the small-scale subbasins with BMPs. The watershed modeling component, introduced in this fact sheet, assesses the effectiveness of USDA–NRCS funded BMPs, and nutrient reductions because of GLRI or other funding programs are differentiated. Modeling scenarios consider BMPs that have already been applied and those planned to be implemented across the small-scale subbasins.

  13. Development of an Assessment Tool for Agricultural Best Management Practice Implementation in the Great Lakes Restoration Initiative Priority Watersheds—Eagle Creek, Tributary to Maumee River, Ohio

    USGS Publications Warehouse

    Merriman, Katherine R.

    2015-11-19

    The Great Lakes face a number of serious challenges that cause damage to water quality, habitat, ecology, and coastal health. Excess nutrients from point and nonpoint sources have a history of causing harmful algal blooms (HABs); since the late 1990s, a resurgence of HABs have forced beach closures and resulted in water quality impairments across the Great Lakes. Studies increasingly point to phosphorus (P) runoff from agricultural lands as the cause of these HABs. In 2010, the Great Lakes Restoration Initiative (GLRI) was launched to revitalize the Great Lakes. The GLRI aims to address the challenges facing the Great Lakes and provide a framework for restoration and protection. As part of this effort, the Priority Watersheds Work Group (PWWG), cochaired by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA–NRCS), is targeting Priority Watersheds (PWs) to reduce the amount of P reaching the Great Lakes. Within the PWs, USDA–NRCS identifies small-scale subbasins with high concentrations of agriculture for coordinated nutrient reduction efforts and enhanced monitoring and modeling. The USDA–NRCS supplies financial and/or technical assistance to producers to install or implement best management practices (BMPs) to lessen the negative effects of agriculture to water quality; additional funding is provided by the GLRI through USDA–NRCS to saturate the small-scale subbasins with BMPs. The watershed modeling component, introduced in this fact sheet, assesses the effectiveness of USDA–NRCS funded BMPs, and nutrient reductions because of GLRI or other funding programs are differentiated. Modeling scenarios consider BMPs that have already been applied and those planned to be implemented across the small-scale subbasins.

  14. Habitat relationships and larval drift of native and nonindigenous fishes in neighboring tributaries of a coastal California river

    Treesearch

    Bret C. Harvey; Jason L. White; Rodney J. Nakamoto

    2002-01-01

    Abstract - Motivated by a particular interest in the distribution of the nonindigenous, piscivorous Sacramento pikeminnow, Ptychocheilus grandis, we examined fish-habitat relationships in small tributaries (draining 20-200 km 2 )in the Eel River drainage of northwestern California.We sampled juvenile and adult fish in 15 tributaries in both the summer and...

  15. Streamflow, water-temperature, and specific-conductance data for selected streams draining into Lake Fryxell, lower Taylor Valley, Victoria Land, Antarctica, 1990-92

    USGS Publications Warehouse

    Von Guerard, Paul; McKnight, Diane M.; Harnish, R.A.; Gartner, J.W.; Andrews, E.D.

    1995-01-01

    During the 1990-91 and 1991-92 field seasons in Antarctica, streamflow, water-temperature, and specific-conductance data were collected on the major streams draining into Lake Fryxell. Lake Fryxell is a permanently ice-covered, closed-basin lake with 13 tributary streams. Continuous streamflow data were collected at eight sites, and periodic streamflow measurements were made at three sites. Continuous water-temperature and specific- conductance data were collected at seven sites, and periodic water-temperature and specific-conductance data were collected at all sites. Streamflow for all streams measured ranged from 0 to 0.651 cubic meter per second. Water temperatures for all streams measured ranged from 0 to 14.3 degrees Celsius. Specific conductance for all streams measured ranged from 11 to 491 microsiemens per centimeter at 25 degrees Celsius. It is probable that stream- flow in the Lake Fryxell Basin during 1990-92 was greater than average. Examination of the 22-year streamflow record in the Onyx River in the Wright Valley revealed that in 1990 streamflow began earlier than for any previous year recorded and that the peak streamflow of record was exceeded. Similar high-flow conditions occurred during the 1991-92 field season. Thus, the data collected on streams draining into Lake Fryxell during 1990-92 are representative of greater than average stream- flow conditions.

  16. Streamflow and estimated loads of phosphorus and dissolved and suspended solids from selected tributaries to Lake Ontario, New York, water years 2012–14

    USGS Publications Warehouse

    Hayhurst, Brett A.; Fisher, Benjamin N.; Reddy, James E.

    2016-07-20

    This report presents results of the evaluation and interpretation of hydrologic and water-quality data collected as part of a cooperative program between the U.S. Geological Survey and the U.S. Environmental Protection Agency. Streamflow, phosphorus, and solids dissolved and suspended in stream water were the focus of monitoring by the U.S. Geological Survey at 10 sites on 9 selected tributaries to Lake Ontario during the period from October 2011 through September 2014. Streamflow yields (flow per unit area) were the highest from the Salmon River Basin due to sustained yields from the Tug Hill aquifer. The Eighteenmile Creek streamflow yields also were high as a result of sustained base flow contributions from a dam just upstream of the U.S. Geological Survey monitoring station at Burt. The lowest streamflow yields were measured in the Honeoye Creek Basin, which reflects a decrease in flow because of withdrawals from Canadice and Hemlock Lakes for the water supply of the City of Rochester. The Eighteenmile Creek and Oak Orchard Creek Basins had relatively high yields due in part to groundwater contributions from the Niagara Escarpment and seasonal releases from the New York State Barge Canal.Annual constituent yields (load per unit area) of suspended solids, phosphorus, orthophosphate, and dissolved solids were computed to assess the relative contributions and allow direct comparison of loads among the monitored basins. High yields of total suspended solids were attributed to agricultural land use in highly erodible soils at all sites. The Genesee River, Irondequoit Creek, and Honeoye Creek had the highest concentrations and largest mean yields of total suspended solids (165 short tons per square mile [t/mi2], 184 t/mi2, and 89.7 t/mi2, respectively) of the study sites.Samples from Eighteenmile Creek, Oak Orchard Creek at Kenyonville, and Irondequoit Creek had the highest concentrations and largest mean yields of phosphorus (0.27 t/mi2, 0.26 t/mi2, and 0.20 t/mi2

  17. Characteristics of Heavy Metals and Pb Isotopic Composition in Sediments Collected from the Tributaries in Three Gorges Reservoir, China

    PubMed Central

    Gao, Bo; Zhou, Huaidong; Huang, Yong; Wang, Yuchun; Gao, Jijun; Liu, Xiaobo

    2014-01-01

    The concentrations, distribution, accumulation, and potential ecological risk of heavy metals (Cr, Cu, Zn, Ni, As, Pb, Cd, and Hg) in sediments from the Three Gorges Reservoir (TGR) tributaries were determined and studied. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of heavy metals in sediment of TGR tributaries were higher than the local background values of soils and sediments in China. The assessment by Geoaccumulation Index indicated that Cu, Ni, and Hg were at the “slightly polluted” level and Cd was ranked as the “moderately polluted” level in tributary sediments of TGR. The assessment by Potential Ecological Risk Index showed that Hg and Cd were the predominant elements in tributary sediments in TGR. The Pb isotopic ratios in sediments varied from 1.171 to 1.202 for 206Pb/207Pb and from 2.459 to 2.482 for 208Pb/207Pb in TGR. All Pb isotopic ratios in sediments were similar to those from coal combustion, lead ores (the mining activities and smelting process), and cement material, indicating that these anthropogenic inputs may be the main sources for Pb pollution in sediments of TGR tributaries. PMID:24624045

  18. Reducing sediment and phosphorus in tributary waters with alum and polyacrylamide.

    PubMed

    Mason, L B; Amrhein, C; Goodson, C C; Matsumoto, M R; Anderson, M A

    2005-01-01

    The Salton Sea is the largest inland water body in California, covering an area of 980 km(2). Inflow to the Salton Sea (1.6 km(3) yr(-1)) is predominately nutrient-rich agricultural wastewater, which has led to eutrophication. Because internal phosphorus release from the bottom sediments is comparatively low and external phosphorus loading to the Salton Sea is high, reduction of tributary phosphorus is expected to reduce algal blooms, increase dissolved oxygen, and reduce odors. Removing both dissolved phosphorus and phosphorus-laden sediment from agricultural drainage water (ADW) should decrease eutrophication. Both alum and polyacrylamide (PAM) are commonly used in wastewater treatment to remove phosphorus and sediment and were tested for use in tributary waters. Laboratory jar tests determined PAM effectiveness (2 mg L(-1)) for turbidity reduction as cationic > anionic = nonionic. Although cationic PAM was the most effective at reducing turbidity at higher speeds, there was no observed difference between the neutral and anionic PAMs at velocity gradients of 18 to 45 s(-1). Alum (4 mg L(-1) Al) reduced turbidity in low energy systems (velocity gradients < 10 s(-1)) by 95% and was necessary to reduce soluble phosphorus, which comprises 47 to 100% of the total P concentration in the tributaries. When PAM was added with alum, the anionic PAM became ineffective in aiding flocculation. The nonionic PAM (2 mg L(-1)) + alum (4 mg L(-1) Al) is recommended to reduce suspended solids in higher energy systems and reduce soluble P by 93%.

  19. Nutrient and suspended-sediment concentrations and loads and benthic-invertebrate data for tributaries to the St. Croix River, Wisconsin and Minnesota, 1997-99

    USGS Publications Warehouse

    Lenz, Bernard N.; Robertson, Dale M.; Fallon, James D.; Ferrin, Randy

    2001-01-01

    Benthic invertebrates were sampled and indices of water quality were calculated at 16 tributaries in fall 1999. Benthic invertebrate indices indicated excellent to good water quality at all tributaries except Valley Creek, Willow River, and Kettle River. No relations were found between benthic invertebrate indices and the calculated and estimated 1999 annual tributary loads and yields.

  20. Geology and hydrology between Lake McMillan and Carlsbad Springs, Eddy County, New Mexico

    USGS Publications Warehouse

    Cox, Edward Riley

    1967-01-01

    The hydrology of the Pecos River valley between Lake McMillan and Carlsbad Springs, Eddy County, N. Mex., is influenced by facies changes in rocks of Permian age. Water stored for irrigation leaks from Lake McMillan into evaporite rocks, principally gypsum, of the Seven Rivers Formation and from Lake Avalon into carbonate rocks of the Tansill Formation. This leakage returns to the Pecos River at Major Johnson Springs and Carlsbad Springs. The river has perennial flow between Major Johnson Springs and Lake Avalon, but it loses water into evaporite rocks of the Yates Formation in this reach. Ground-water movement is generally toward the Pecos River in aquifers in the Pecos River valley except in the Rustler Formation east of the river where it moves southeastward toward playas east of Lake Avalon. The chloride content of ground and surface waters indicates that surface water moves from some reaches of the Pecos River and from surface-storage reservoirs to aquifers and also indicates the degree of mixing of ground and surface waters. About 45,000 acre-feet of ground water is stored in highly permeable rocks in a 3-mile wide part of the Seven Rivers Formation between Lake McMillan and Major Johnson Springs. This water in storage comes from leakage from Lake McMillan and from alluvium north of the springs. The flow of Major Johnson Springs is derived from this aquifer. That part of the flow derived from the alluvium north of the springs averaged 13 cfs (cubic feet per second) from 1953 through 1959 ; about 8 cfs of this flow had not been previously measured at gaging stations on the Pecos River and its tributaries. The most favorable plans for increasing terminal storage of the Carlsbad Irrigation District are to construct a dam at the Brantley site (at the downstream end of Major Johnson Springs), or to use underground storage in the permeable Seven Rivers Formation between Lake McMillan and Major Johnson brings in conjunction with surface storage. To avoid excessive