Science.gov

Sample records for lake county oregon

  1. Gravity Survey on the Glass Buttes Geothermal Exploration Project Lake County, Oregon

    DOE Data Explorer

    John Akerley

    2011-10-12

    This report covers data acquisition, instrumentation and processing of a gravity survey performed on the Glass Buttes Geothermal Exploration Project, located in Lake County, Oregon for ORMAT Technologies Inc. The survey was conducted during 21 June 2010 to 26 June 2010. The survey area is located in T23S, R21-23E and lies within the Glass Buttes, Hat Butte, and Potato Lake, Oregon 1:24,000 topographic sheets. A total of 180 gravity stations were acquired along five profile lines.

  2. Lakeview uranium area, Lake County, Oregon - constraints on genetic modelling from a district-scale perspective

    SciTech Connect

    Weissenburger, K.W.

    1984-01-01

    Extent-of-outcrop geologic mapping (1:12,000) on the Cox Flat 7.5-minute quadrangle establishes the stratigraphy and structure near the White King uranium mine, about 25 km northwest of Lakeview, Lake County, Oregon. Bedrock includes an Oligocene andesitic volcanic/sedimentary section, four late Oligocene rhyodacitic ignimbrite sequences, a late Oligocene/Miocene tuffaceous section, locally thick early to late Miocene basaltic flows, and an interbedded sequence of late Miocene (about 7-8 Ma old) felsic tuffs and thin basalt flows. Relatively intense down-to-the northeast normal faulting and southwestward stratal tilting resulted from a pre-Basin-and-Range extensional tectonic regime with an ENE least-principal stress orientation. This faulting and tilting began after the late Oligocene ignimbrite volcanism and before the spread of Coleman Rim-equivalent basalt flows. The interpreted geology constrains genetic models, resource estimates, and exploration strategies for uranium occurrences in the Lakeview area. Fault- and fracture-controlled hydrothermal uranium deposits are restricted to favorable stratigraphic horizons of the Miocene section with the important exception of porous and permeable upper portions of the late Oligocene section. Previous models have stressed the importance of intrusive rhyolite plug domes as sources of uranium and/or heat in ore genesis and targeted exploration efforts at dome contacts. Mass balance and other arguments show that an association with rhyolite domes is not a necessary criterion for ore formation or exploration.

  3. The Holocene History of the North American Flux lobe: New Constraints From Fish Lake, Harney County, Oregon

    NASA Astrophysics Data System (ADS)

    Stoner, J. S.; Abbott, M. B.; Ziegler, L. B.; Reilly, B. T.; Finkenbinder, M. S.; Hatfield, R. G.; Hillman, A. L.; Konyndyk, D.

    2015-12-01

    To constrain the Holocene history of the North American flux lobe we present new relative paleointensity (RPI) and paleomagnetic secular variation (PSV) data from Fish Lake, Harney County Oregon. Located high on Steens Mt, Fish Lake (42° 44' 15" N, 118° 38' 57" W, 2,246.7 m) is the largest of several lakes in the Fish Lake glacial valley. Cored along with Pate Lake in the summer of 2012, sediment from four offset holes were cored to a maximum depth of 9 m using a UWITEC coring system. Field based magnetic susceptibility insured that a completely duplicated sediment sequence was recovered. Computer tomographic scans confirmed the quality of the recovered sediment and allowed precise mapping of overlapping sequences. Additional physical properties data, along with Pb-210, radiocarbon dating and discrete tephra layers, including Mazama, tightly constrain this sequence from -0.06 to 14 ka. Progressive alternating field demagnetization of u-channel samples demonstrate that a consistently strong, stable, and low coercivity magnetization is preserved, with low MAD values both before and after deconvolution. Inclinations vary around expected values for the site latitude, with no evidence for inclination shallowing as suggested in previous studies. Declination was reconstructed by initially rotating the declination of each drive to a mean of zero, then further rotating to achieve maximum alignment of overlapping sections, followed by a final rotation of the entire sequence base upon a 400 yr historical model calibration. Remanence is normalized using ARM acquisition, ARM demagnetization, and IRM demagnetization and agreement between these suggests that RPI is preserved. RPI from Fish Lake provides a previously missing proxy for the North American flux lobe that invites comparison with other high quality, high resolution, and independently dated paleomagnetic and archeomagnetic records from the NE Pacific to Europe; allowing us to tease out modes of variability of a large

  4. County portraits of Oregon and Northern California.

    Treesearch

    Wendy J. McGinnis; Richard H. Phillips; Kent P. Connaughton

    1996-01-01

    This publication provides a general picture of the population, economy, and natural resources of the counties in Oregon and northern California. The intent of this report is to provide insight to changes in a county over the last 10 to 20 years, to compare county trends to statewide trends (and state trends to national trends), and to provide information on all the...

  5. Timber resources of Douglas County, Oregon.

    Treesearch

    Colin D. MacLean

    1976-01-01

    This report summarizes a 1973 timber resource inventory of Douglas County, Oregon. Detailed tables of forest area, timber volume, growth, mortality, and cut are presented. A discussion of the present resource situation highlights the condition of cutover lands and the opportunities for silvicultural treatment.

  6. Hydrology of Lake County, Florida

    USGS Publications Warehouse

    Knochenmus, Darwin D.; Hughes, G.H.

    1976-01-01

    Lake County includes a 1,150 square-mile area consisting of ridges, uplands, and valleys in central-peninsular Florida. About 32 percent of the county is covered by lakes, swamps, and marshes. Water requirements in 1970 averaged about 54 million gallons per day. About 85 percent of the water was obtained from wells; about 15 percent from lakes. The Floridan aquifer supplies almost all the ground water used in Lake County. Annual recharge to the Floridan aquifer averages about 7 inches over the county; runoff average 8.5 inches. The quality of ground and surface water in Lake County is in general good enough for most uses; however, the poor quality of Floridan-aquifer water in the St. John River Valley probably results from the upward movement of saline water along a fault zone. Surface water in Lake County is usually less mineralized than ground water but is more turbid and colored. (Woodard-USGS)

  7. Sediment magnetic and paleomagnetic data from Buck Lake, Oregon

    USGS Publications Warehouse

    Rosenbaum, J.G.; Reynolds, R.L.; Fitzmaurice, P.L.; Drexler, J.W.; Whitney, C.G.; Adam, D.P.

    1994-01-01

    Sediment magnetic and paleomagnetic studies were conducted on a core from Buck Lake, Klamath County, Oregon, that was collected as part of an investigation into the Quaternary climate history of the western United States. This report documents the methods used to obtain paleomagnetic directions, magnetic properties, and ancillary data, and presents these data in tabular form. Adam (1993) and Adam and others (1994) describe the site, the drilling methods, and lithology of the lacustrine sediments. Rosenbaum and others (1994) present preliminary interpretations of the sediment magnetic data and show that variations in magnetic properties closely reflect changes in climate as interpreted from the pollen record.

  8. Hydrogeologic setting and preliminary estimates of hydrologic components for Bull Run Lake and the Bull Run Lake drainage basin, Multnomah and Clackamas counties, Oregon

    USGS Publications Warehouse

    Snyder, Daniel T.; Brownell, Dorie L.

    1996-01-01

    Suggestions for further study include (1) evaluation of the surface-runoff component of inflow to the lake; (2) use of a cross-sectional ground-water flow model to estimate ground-water inflow, outflow, and storage; (3) additional data collection to reduce the uncertainties of the hydrologic components that have large relative uncertainties; and (4) determination of long-term trends for a wide range of climatic and hydrologic conditions.

  9. 78 FR 24717 - Crescent Ranger District; Deschutes National Forest; Klamath County, Oregon; Marsh Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Forest Service Crescent Ranger District; Deschutes National Forest; Klamath County, Oregon; Marsh Project... statement (EIS) for a project called Marsh, in the southwestern portion of the Crescent Ranger District just south of Crescent Lake. The Forest Service is approaching this project by looking at the...

  10. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red...

  11. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red...

  12. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red...

  13. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red...

  14. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red...

  15. 38. LANDSCAPE HIGHWAY VIEW, OREGON STATE HIGHWAY 199. JOSPHINE COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. LANDSCAPE HIGHWAY VIEW, OREGON STATE HIGHWAY 199. JOSPHINE COUNTY, OREGON. REEVES CREEK (WHERE ROAD WIDENS) 4 MILES NE OF CAVE JUNCTION. LOOKING S. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  16. Water balance for Crater Lake, Oregon

    USGS Publications Warehouse

    Nathenson, Manuel

    1992-01-01

    A water balance for Crater Lake, Oregon, is calculated using measured lake levels and precipitation data measured at Park Headquarters and at a gage on the North Rim. Total water supply to the lake from precipitation and inflow from the crater walls is found to be 224 cm/y over the area of the lake. The ratio between water supply to the lake and precipitation at Park Headquarters is calculated as 1.325. Using leakage determined by Phillips (1968) and Redmond (1990), evaporation from the lake is approximately 85 cm/y. Calculations show that water balances with precipitation data only from Park Headquarters are unable to accurately define the water-level variation, whereas the addition of yearly precipitation data from the North Rim reduces the average absolute deviation between calculated and modeled water levels by one half. Daily precipitation and water-level data are modeled assuming that precipitation is stored on the rim as snow during fall and winter and released uniformly during the spring and early summer. Daily data do not accurately define the water balance, but they suggest that direct precipitation on the lake is about 10 % higher than that measured at Park Headquarters and that about 17 % of the water supply is from inflow from the rim.

  17. SKY LAKES ROADLESS AREA AND MOUNTAIN LAKES WILDERNESS, OREGON.

    USGS Publications Warehouse

    Smith, James G.; Benham, John R.

    1984-01-01

    Based on a mineral survey of the Sky Lakes Roadless Area and the Mountain Lakes Wilderness, Oregon, the areas have little or no promise for the occurrence of metallic-mineral resources or geothermal energy resources. Nonmetallic resources exist in the areas, but other areas outside the roadless area and wilderness also contain resources of volcanic cinders, scoria, ash, breccia, and sand and gravel which are easier to obtain and closer to markets. The roadless area and wilderness are not geologically favorable for metallic deposits, or for coal, oil, or gas resources.

  18. Optimization Review, Black Butte Mine Superfund Site, Lane County, Oregon

    EPA Pesticide Factsheets

    The BBM Superfund Site (the site) is located in Lane County, Oregon, approximately 35 miles southeast of Eugene and approximately 10 miles upstream from the Cottage Grove Reservoir (CGR). Mercury mining and processing operations were active at the site...

  19. Reconnaissance geologic map and mineral resource potential of the Gearhart Mountain Wilderness and Roadless Area (6225), Lake and Klamath counties, Oregon

    USGS Publications Warehouse

    Walker, George W.; Ridenour, James

    1982-01-01

    The Gearhart Mountain Wilderness, Lake and Klamath Counties, Oreg., is devoid of mines and mineral prospects and there are no known mining claims within the area. Furthermore, the results of this mineral appraisal indicate that there is little likelihood that commercial deposits of metallic minerals will be found in the area. Commercial uranium deposits, like those at the White King and Lucky Lass mines about 16 mi (~25 km) to the southeast of the wilderness, and deposits of mercury, like those south-southeast of the wilderness, are not likely to be found within the wilderness, even though all of these areas are characterized by middle and late Cenozoic intrusive and extrusive volcanic rocks. Rock of low commercial value for construction purposes is present, but better and more accessible deposits are present in adjacent regions. There is no evidence to indicate that mineral fuels are present in the area. Higher than normal heat floe characterizes the region containing Gerheart Mountain, indicating that it may have some, as yet undefined, potential for the development of geothermal energy. Data are not available to determine whether this higher than normal heat flow is meaningful in terms of a potential energy source or as a guide to possible future exploration; lack of thermal springs or other evidence of localized geothermal anomalies within the Gerhart Mountain suggest, however, that the potential for the development of geothermal energy is probably low.

  20. Growth and diet of fish in Waldo Lake, Oregon

    USGS Publications Warehouse

    Swanson, Nicola L.; Liss, W.J.; Ziller, Jeffrey S.; Wade, M.; Gresswell, R.E.

    2000-01-01

    Waldo Lake, located in the Oregon Cascades, is considered to be one of the most dilute lakes in the world. Even with low nutrient concentrations and sparse populations of zooplankton, introduced fish in the lake are large in size and in good condition when compared to fish from other lakes. This apparent anomaly is due to the availability of benthic macroinvertebrates. Taxa found in the stomach contents offish captured in Waldo Lake consist primarily of Chironomidae larvae and pupae, Trichoptera larvae and pupae, amphipods, Ephemeroptera larvae, and Odonata larvae.

  1. In Pursuit of Community Justice: Deschutes County, Oregon.

    ERIC Educational Resources Information Center

    Maloney, Dennis; Holcomb, Deevy

    2001-01-01

    One Oregon community applies a set of community justice principles and philosophies that have produced tangible and successful programs to build community, reduce risk, and repair harm. Describes some of the county's community justice history and programs, including revamped victim assistance programs, victim-offender mediation, and a community…

  2. Detecting long-term hydrological patterns at Crater Lake, Oregon

    USGS Publications Warehouse

    Peterson, D.L.; Silsbee, D.G.; Redmond, Kelly T.

    1999-01-01

    Tree-ring chronologies for mountain hemlock (Tsuga mertensiana) were used to reconstruct the water level of Crater Lake, a high-elevation lake in the southern Cascade Range of Oregon. Reconstructions indicate that lake level since the late 1980s has been lower than at any point in the last 300 years except the early 1930s to mid 1940s. Lake level was consistently higher during the Little Ice Age than during the late 20th century; during the late 17th century, lake level was up to 9 m higher than recent (1980s and 1990s) low levels, which is consistent with paleoclimalic reconstructions of regional precipitation and atmospheric pressure. Furthermore, instrumental data available for the 20th century suggest that there are strong teleconnections among atmospheric circulation (e.g., Pacific Decadal Oscillation), tree growth, and hydrology in southern Oregon. Crater Lake is sensitive to interannual, interdecadal and intercentenary variation in precipitation and atmospheric circulation, and can be expected to track both short-term and longterm variation in regional climatic patterns that may occur in the future.

  3. Lake Sediment Particle Size Analysis for Holocene Paleoenvironmental Study of Steens Mountain, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Morris, J.; Stoner, J. S.; Reilly, B. T.; Hatfield, R. G.; Konyndyk, D.; Abbott, M. B.; Finkenbinder, M. S.; Hillman, A. L.

    2016-12-01

    In order to better understand climate trends in the late Pleistocene and Holocene in southeast Oregon, we present a sedimentological analysis of Fish Lake, Harney County, Oregon. Fish Lake (42° 44' 15" N, 118° 38' 57" W, 2,246.7 m) sits on the west slope of Steens Mountain, a fault-block mountain of Miocene basalt, adjacent to a glacial moraine. The present environment is high desert with sub alpine steppe vegetation, receiving approximately 12" of precipitation annually. The lake was cored in August 2013 with a series of overlapping drives, correlated by six distinct tephra and magnetic susceptibility. The composite section provides a 7.5 m continuous record of at least the last 13 ka, constrained by an age model built with 13 terrestrial macrofossil 14C dates. The recovered sediments, consisting of fine terrigenous and biogenous material in varying proportions, were analyzed with computed tomography (CT) scans, x-ray fluorescence (XRF) scans, magnetic measurements, loss on ignition (LOI), and sediment grain-size. CT and LOI data reveal a low density, high organic interval in the early Holocene ( 8.5-11 ka) with relatively coarse and well-sorted grain-size, suggesting an extended period of low lake level and low precipitation. Sediment grain-sizes are variable through the middle and late Holocene with high amplitude longer period features from 3 ka to the present. We investigate these grain-size fluctuations in the context of regional Holocene records.

  4. Floating Offshore Wind in Oregon: Potential for Jobs and Economic Impacts in Oregon Coastal Counties from Two Future Scenarios

    SciTech Connect

    Jimenez, Tony; Keyser, David; Tegen, Suzanne

    2016-07-01

    This analysis examines the employment and potential economic impacts of large-scale deployment of offshore wind technology off the coast of Oregon. This analysis examines impacts within the seven Oregon coastal counties: Clatsop, Tillamook, Lincoln, Lane, Douglas, Coos, and Curry. The impacts highlighted here can be used in county, state, and regional planning discussions and can be scaled to get a general sense of the economic development opportunities associated with other deployment scenarios.

  5. Household hazardous waste disposal in Benton County, Oregon

    SciTech Connect

    McEvoy, J.W. ); Rossignol, A.M.

    1993-10-01

    Residents of Benton County, Oregon were studied to assess current and recent disposal practices for hazardous household wastes (HHW), plan for future HHW disposal programs, and guide educational and informational resource strategies that foster the safe disposal of HHW. The study results indicate that many Benton County residents dispose of their HHW by methods that may not protect human health and the environment. These methods include landfilling HHW, pouring HHW on the ground or into sewer/septic systems, and burning HHW. The study suggests that the most viable disposal system for HHW in Benton County is a permanent collection site within easy access (fewer than 10 miles) to potential users and funded by user fees.

  6. Oregon Trail Mushrooms geothermal loan guaranty application, Malheur County, Oregon: Environmental assessment

    SciTech Connect

    Not Available

    1981-05-01

    The action assessed is the guaranty of a loan by the Geothermal Loan Guaranty Office of the US Department of Energy (DOE) to finance the construction and operation of a mushroom-growing facility that will use geothermal (hot) water for process and space heat. The project consists of two separate facilities: a growing facility located just outside of the eastern limit of the city of Vale, Oregon (Malheur County, Oregon) and a composting facility located about 6.4 km (4 miles) southwest of the city limits (also in Malheur County, Oregon). Five test wells have been drilled into the geothermal resource at the growing site. Either well No. 4 or well No. 5 will serve as a production well. All geothermal fluids will be reinjected into the geothermal aquifer, so either well No. 3 will be used for this purpose, wells Nos. 1 and 2 will be deepened, or a new well will be drilled on the site. A cold-water well will be drilled at the growing site, and another will be drilled at the composting site. The environmental effects of the proposed project are not expected to be significant.

  7. Educational and Demographic Profile: Lake County.

    ERIC Educational Resources Information Center

    California Postsecondary Education Commission, 2004

    2004-01-01

    This profile uniquely presents a variety of educational and socioeconomic information for Lake County, nearby counties, and the state. The profile highlights the relationship between various factors that affect the economic well-being of individuals and communities. This presentation of information provides a framework for enhanced communication…

  8. Representative Freshwater Bacterioplankton Isolated from Crater Lake, Oregon

    PubMed Central

    Page, Kathleen A.; Connon, Stephanie A.; Giovannoni, Stephen J.

    2004-01-01

    High-throughput culturing (HTC) methods that rely on dilution to extinction in very-low-nutrient media were used to obtain bacterial isolates from Crater Lake, Oregon. 16S rRNA sequence determination and phylogenetic reconstruction were used to determine the potential ecological significance of isolated bacteria, both in Crater Lake and globally. Fifty-five Crater Lake isolates yielded 16 different 16S rRNA gene sequences. Thirty of 55 (55%) Crater Lake isolates had 16S rRNA gene sequences with 97% or greater similarity to sequences recovered previously from Crater Lake 16S rRNA gene clone libraries. Furthermore, 36 of 55 (65%) Crater Lake isolates were found to be members of widely distributed freshwater groups. These results confirm that HTC is a significant improvement over traditional isolation techniques that tend to enrich for microorganisms that do not predominate in their environment and rarely correlate with 16S rRNA gene clone library sequences. Although all isolates were obtained under dark, heterotrophic growth conditions, 2 of the 16 different groups showed evidence of photosynthetic capability as assessed by the presence of puf operon sequences, suggesting that photoheterotrophy may be a significant process in this oligotrophic, freshwater habitat. PMID:15528517

  9. Diatom data from Bradley Lake, Oregon: downcore analyses

    USGS Publications Warehouse

    Hemphill-Haley, Eileen; Lewis, Roger C.

    2003-01-01

    Displaced marine diatoms provide biostratigraphic evidence for tsunami inundation at Bradley Lake, a small freshwater lake on the south-central Oregon coast. During the past 7,200 years, fine-grained lacustrine deposits in the deep axis of the lake were disturbed 17 times by the erosion and emplacement of coarse-grained gyttja and, in some cases, sand. By identifying diatoms in closely spaced core samples, we determined that 13 of the 17 events (termed idisturbance eventsi) record prehistoric tsunamis in Bradley Lake. We consider the evidence strong for 11 events, based on numbers and diversity of marine taxa: De1, De2, De4, De5, De6, De7, De8, De11, De12, De13, and De17. The evidence is less compelling for an additional 2 events (De9 and De10), although tsunami inundation is likely. Finally, we identified 4 events (De3, De14, De15 and De16) in which there were no marine diatoms to support tsunami inundation, although stratigraphic data shows that the lake bottom was disturbed. Freshwater diatoms dominate throughout the Bradley Lake record, showing that the lake has remained a freshwater habitat throughout its existence. However, anomalous occurrences of three species of brackish diatoms (Thalassiosira bramaputrae, Cyclotella meneghiniana, and Mastogloia smithii) may be evidence for short-lived periods of slightly elevated salinities in the lake following De16, De13, De12, De11, De9, De8, and De5. With the exception of De12, increased abundances of one or more of the brackish species is coincident with decreased numbers of freshwater diatoms. A temporary rise in salinity, as evidenced by short-lived increases in abundances of brackish species and decreases in abundances of freshwater species, is consistent with tsunami inundation into the lake.

  10. Hydrology of Lake Butler, Orange County, Florida

    USGS Publications Warehouse

    Smoot, James L.; Schiffer, Donna M.

    1984-01-01

    Lake Butler is one of the lakes that collectively make up the Butler chain of lakes in the headwaters of the Kissimmee River, Florida. The bottom configuration of the lake is typical of relict karst features formed during lower stages in sea level. The top of the Floridan aquifer is 50 to 100 feet below the land surface. The drainage area of Lake Butler is approximately 14.5 sq mi and is comprised of sub-basins of other lakes in the vicinity. Surface outflow from Lake Butler is generally southward to Cypress Creek, a tributary of the Kissimmee River. The extremes in lake stage for the period 1933-81 are 94.67 ft on June 23, 1981 and 101.78 ft on September 13, 1960. The median lake stage for this period was 99.28 ft above sea level. The quality of water in Lake Butler is excellent, based on studies of physical, chemical, and biological conditions by the Orange County Pollution Control Department. The lake water is slightly acidic and soft (48 mg/L hardness as calcium carbonate). Pesticides in water were below detection levels at two sites sampled in the lake, but were detected in the bottom sediments. (USGS)

  11. Norovirus outbreak associated with a natural lake used for recreation - Oregon, 2014.

    PubMed

    Zlot, Amy; Simckes, Maayan; Vines, Jennifer; Reynolds, Laura; Sullivan, Amy; Scott, Agdalena Kendall; McLuckie, J Michael; Kromer, Dan; Hill, Vincent R; Yoder, Jonathan S; Hlavsa, Michele C

    2015-05-15

    In July 2014, Multnomah County public health officials investigated a norovirus outbreak among persons visiting Blue Lake Regional Park in Oregon. During the weekend of the reported illnesses (Friday, July 11-Sunday, July 13) approximately 15,400 persons visited the park. The investigation identified 65 probable and five laboratory-confirmed cases of norovirus infection (70 total cases). No hospitalizations or deaths were reported. Analyses from a retrospective cohort study revealed that swimming at Blue Lake during July 12-13 was significantly associated with illness during July 13-14 (adjusted relative risk = 2.3; 95% confidence interval [CI] = 1.1-64.9). Persons who swam were more than twice as likely to become ill compared with those who did not swim in the lake. To control the outbreak, Blue Lake was closed for 10 days to prevent further illness. This investigation underscores the need for guidance for determining when to reopen untreated recreational water venues (e.g., lakes) associated with outbreaks, and communication tools to inform the public about the risks associated with swimming in untreated recreational water venues and measures that can prevent illness.

  12. 107. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; WEST VIEW OF LAKE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  13. Holocene tephra stratigraphy in four lakes in southeastern Oregon and northwestern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Foit, Franklin F.; Mehringer, Peter J.

    2016-03-01

    To better understand the regional tephra stratigraphy and chronology of northern Nevada and southern Oregon, tephras in archived cores, taken as part of the Steens Mountain Prehistory Project from four lakes, Diamond Pond, Fish and Wildhorse lakes in southeastern Oregon and Blue Lake in northwestern Nevada, were reexamined using more advanced electron microprobe analytical technology. The best preserved and most complete core from Fish Lake along with Wildhorse Lake hosted two tephras from Mt. Mazama (Llao Rock and the Climactic Mazama), a mid-Holocene basaltic tephra from Diamond Craters, Oregon, two Medicine Lake tephras and an unexpected late Holocene Chaos Crags (Mt. Lassen volcanic center) tephra which was also found in the other lakes. Blue Lake was the only lake that hosted a Devils Hill tephra from the Three Sisters volcano in west central Oregon. Another tephra from the Three Sisters Volcano previously reported in sediments of Twin Lakes in NE Oregon, has now been confirmed as Rock Mesa tephra. The Chaos Crags, Devils Hill and Rock Mesa tephras are important late Holocene stratigraphic markers for central and eastern Oregon and northwestern Nevada.

  14. 77 FR 57556 - Lake County Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... Forest Service Lake County Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of Meeting. SUMMARY: The Lake County Resource Advisory Committee (RAC) will hold a meeting. DATES: The... the Lake County Board of Supervisor's Chambers at 255 North Forbes Street, Lakeport or Conference Room...

  15. 76 FR 7531 - Lake County Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... Forest Service Lake County Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake County Resource Advisory Committee (RAC) will hold a meeting. DATES: The... Lake County Board of Supervisor's Chambers at 255 North Forbes Street, Lakeport or Conference Room C...

  16. Hydrology of Hunters Lake, Hernando County, Florida

    USGS Publications Warehouse

    Henderson, S.E.

    1986-01-01

    The size and shape of Hunters Lake, Florida has been significantly altered by development of the surrounding Spring Hill residential community. The lake is the largest in Hernando County, enlarged by lakeshore excavation and connection to nearby ponds to an area of 360 acres at an average stage of 17.2 ft above sea level. Hunters Lake is naturally a closed lake, but development of Spring Hill has resulted in a surface water outflow from the lake in its southwest corner. Inflow to the lake could occur on the east side during extreme high-water periods. The karst terrain of the Hunters Lake area is internally drained through permeable soils, depressions, and sinkholes, and natural surface drainage is absent. The underlying Floridan aquifer system is unconfined except locally near coastal springs. Flow in the groundwater system is to the west regionally and to the southwest in the immediate area of Hunters Lake. Water level gradients in the groundwater system increase from 1.4 ft/mi east of the lake to about 8 ft/mi southwest of the lake. Hunters Lake is hydraulically connected to the groundwater system, receiving groundwater on the northeast side and losing water to the groundwater system on the southwest side. This close relationship with the groundwater system is demonstrated by graphical and numerical comparison of Hunters Lake stage with water levels in nearby groundwater sites. During 1965-84, the stage of Hunters Lake fluctuated between 12.48 and 20.7 ft above sea level. Because area lakes are all directly affected by groundwater levels, they also show a close relationship with water levels in Hunters Lake. Analysis of water quality data for Hunters Lake indicates that the water of the lake is a soft calcium bicarbonate type with ionic concentrations higher than in water from nearby shallow wells and lower than in water from the Upper Floridan aquifer. Samples collected in 1981-1983 indicate slightly higher levels of ionic concentration than in 1965

  17. Geologic setting of the John Day Country, Grant County, Oregon

    USGS Publications Warehouse

    Thayer, Thomas P.

    1977-01-01

    One of the Pacific Northwest's most notable outdoor recreation areas, the "John Day Country" in northeastern Oregon, is named after a native Virginian who was a member of the Astor expedition to the mouth of the Columbia River in 1812. There is little factual information about John Day except that he was born in Culpeper County, Virginia, about 1770. It is known also that in 1810 this tall pioneer "with an elastic step as if he trod on springs" joined John Jacob Astor's overland expedition under Wilson Price Hunt to establish a vast fur-gathering network in the Western States based on a major trading post at the mouth of the Columbia River.

  18. Timber resource statistics for central Oregon.

    Treesearch

    John M. Berger

    1968-01-01

    This publication summarizes the results of the third inventory of the timber resources of nine counties in central Oregon: Crook, Deschutes, Gilliam, Jefferson, Klamath, Lake, Sherman, Wasco, and Wheeler. This block of nine counties is one of 10 such blocks set up in the States of Oregon and Washington by the Forest Survey to facilitate orderly reinventories of the...

  19. Self Study, 1985: College of Lake County.

    ERIC Educational Resources Information Center

    Lake County Coll., Grayslake, IL.

    Developed as part of the reaccreditation process, this report represents a comprehensive self-analysis by the College of Lake County (CLC), which sought to involve the entire institution in an examination of CLC's mission, resources, accomplishments, and future plans. Chapter 1 introduces the self-study's purpose, participants, and processes;…

  20. Empirical models of wind conditions on Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Wood, Tamara M.

    2010-01-01

    Upper Klamath Lake is a large (230 square kilometers), shallow (mean depth 2.8 meters at full pool) lake in southern Oregon. Lake circulation patterns are driven largely by wind, and the resulting currents affect the water quality and ecology of the lake. To support hydrodynamic modeling of the lake and statistical investigations of the relation between wind and lake water-quality measurements, the U.S. Geological Survey has monitored wind conditions along the lakeshore and at floating raft sites in the middle of the lake since 2005. In order to make the existing wind archive more useful, this report summarizes the development of empirical wind models that serve two purposes: (1) to fill short (on the order of hours or days) wind data gaps at raft sites in the middle of the lake, and (2) to reconstruct, on a daily basis, over periods of months to years, historical wind conditions at U.S. Geological Survey sites prior to 2005. Empirical wind models based on Artificial Neural Network (ANN) and Multivariate-Adaptive Regressive Splines (MARS) algorithms were compared. ANNs were better suited to simulating the 10-minute wind data that are the dependent variables of the gap-filling models, but the simpler MARS algorithm may be adequate to accurately simulate the daily wind data that are the dependent variables of the historical wind models. To further test the accuracy of the gap-filling models, the resulting simulated winds were used to force the hydrodynamic model of the lake, and the resulting simulated currents were compared to measurements from an acoustic Doppler current profiler. The error statistics indicated that the simulation of currents was degraded as compared to when the model was forced with observed winds, but probably is adequate for short gaps in the data of a few days or less. Transport seems to be less affected by the use of the simulated winds in place of observed winds. The simulated tracer concentration was similar between model results when

  1. The Politics of Marginality in Wallowa County, Oregon: Contesting the Production of Landscapes of Consumption

    ERIC Educational Resources Information Center

    Abrams, Jesse B.; Gosnell, Hannah

    2012-01-01

    The state of Oregon's (USA) land use planning framework has long been characterized by tensions between state and local authority, between traditionally-defined "urban" and "rural" concerns, and between the competing interests of various landowners. An examination of Wallowa County, Oregon's implementation of House Bill 3326, a…

  2. The Politics of Marginality in Wallowa County, Oregon: Contesting the Production of Landscapes of Consumption

    ERIC Educational Resources Information Center

    Abrams, Jesse B.; Gosnell, Hannah

    2012-01-01

    The state of Oregon's (USA) land use planning framework has long been characterized by tensions between state and local authority, between traditionally-defined "urban" and "rural" concerns, and between the competing interests of various landowners. An examination of Wallowa County, Oregon's implementation of House Bill 3326, a…

  3. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  4. Ultraviolet radiation and bio-optics in Crater Lake, Oregon

    USGS Publications Warehouse

    Hargreaves, B.R.; Girdner, S.F.; Buktenica, M.W.; Collier, R.W.; Urbach, E.; Larson, G.L.

    2007-01-01

    Crater Lake, Oregon, is a mid-latitude caldera lake famous for its depth (594 m) and blue color. Recent underwater spectral measurements of solar radiation (300-800 nm) support earlier observations of unusual transparency and extend these to UV-B wavelengths. New data suggest that penetration of solar UVR into Crater Lake has a significant ecological impact. Evidence includes a correlation between water column chlorophyll-a and stratospheric ozone since 1984, the scarcity of organisms in the upper water column, and apparent UV screening pigments in phytoplankton that vary with depth. The lowest UV-B diffuse attenuation coefficients (K d,320) were similar to those reported for the clearest natural waters elsewhere, and were lower than estimates for pure water published in 1981. Optical proxies for UVR attenuation were correlated with chlorophyll-a concentration (0-30 m) during typical dry summer months from 1984 to 2002. Using all proxies and measurements of UV transparency, decadal and longer cycles were apparent but no long-term trend since the first optical measurement in 1896. ?? 2007 Springer Science+Business Media B.V.

  5. Hydrogeology of the Lake Miona area, northeast Sumter County, Florida

    USGS Publications Warehouse

    Bradner, L.A.

    1986-01-01

    The Lake Miona area, in northeast Sumter County, is characterized by karstic depressions that contain lakes, ponds, and marshes that drain vertically to the upper Floridan aquifer. Lake Miona, Black Lake, and Cherry Lake are the prominent water features of the area. When the lake levels are lowest, the lakes are not connected, but at higher levels, they become connected and water flows eastward from Lake Miona through Black Lake to Cherry Lake. The chemical and biological conditions in the lakes are such that, although they support a large population of submerged aquatic plants, no problem with algae blooms was observed. (USGS)

  6. Economic Impacts of Geothermal Development in Deschutes County, Oregon.

    SciTech Connect

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  7. Economic Impacts of Geothermal Development in Malheur County, Oregon.

    SciTech Connect

    Sifford, Alex; Beale, Kasi

    1993-01-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Malheur County, shown in Figure 1. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Malheur County was chosen as it has both identified resources and industry interest. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued responding as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. Public service impacts include costs such as education, fire protection, roads, waste disposal, and water supply. The project assumption discussion notes experiences at other geothermal areas. The background section compares geothermal with conventional power plants. Power plant fuel distinguishes geothermal from other power sources. Other aspects of development are similar to small scale conventional thermal sources. The process of geothermal development is then explained. Development consists of well drilling, gathering system construction, power plant construction, plant operation and maintenance, and wellfield maintenance.

  8. Electrophonic Sound from the Diamond Lake Oregon Fireball

    NASA Astrophysics Data System (ADS)

    Pugh, R. N.

    1995-09-01

    At 9:16 p.m. Pacific Standard Time, March 28, 1994, a large fire ball exploded near Diamond Lake, South Central, Oregon. The object was five times the diameter of a full moon, casting shadows along the flight path. There were numerous sonic booms near the end point of the fireball. There were fifteen reports of electrophonic sound. These sounds were heard as far away as 340 kilometers. In most cases the observer was near metal objects such as fences or automobiles. There was one report of the fire ball setting off a radar detector in an automobile. This occurred 270 kilometers behind the fireball entry point in the atmosphere. There were several reports of birds who had stopped singing, coyotes that stopped howling, and dogs and cats running for cover.

  9. Hydrology of Lake Panasoffkee, Sumter County, Florida

    USGS Publications Warehouse

    Taylor, G.F.

    1977-01-01

    Lake Panasoffkee, in midwest Sumter County of central Florida, receives water from three creeks and discharges water through Outlet River at an average daily rate of 207 cubic feet per second. The eastern shore of the lake is marsh and wooded swamp with inflow to the lake coming from the northeast and southeast. About 15 percent of the basin contributes surface water to the lake and about 50 percent of the 420-square-mile topographic drainage basin contributes ground water to the lake. The water from the remainder of the basin either evaporates from low areas or directly recharges the Floridan aquifer for discharge outside the basin. The maximum stage on record is 44.28 feet above mean sea level and the minimum stage on record is 37.65 feet above. The lake level is partly affected by the Wysong Dam and has stabilized in recent years at about 40.95 feet above mean sea level. The quality of the water is generally good. The lake supports a favorably balanced fish population even though minor fish kills were reported in 1973 and 1974. These kills were probably the result of algal blooms. (Woodard-USGS)

  10. 75 FR 22892 - Environmental Impact Statement: Salt Lake County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Federal Highway Administration Environmental Impact Statement: Salt Lake County, UT AGENCY: Federal... transportation improvement project in Salt Lake County, Utah. FOR FURTHER INFORMATION CONTACT: Edward Woolford, Environmental Program Manager, Federal Highway Administration, 2520 West 4700 South, Suite 9A, Salt Lake...

  11. 75 FR 9476 - Environmental Impact Statement: Salt Lake County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Federal Highway Administration Environmental Impact Statement: Salt Lake County, UT AGENCY: Federal... transportation improvement project in Salt Lake County, Utah. FOR FURTHER INFORMATION CONTACT: Bryan Dillon, Area Engineer, Federal Highway Administration, 2520 West 4700 South, Suite 9A, Salt Lake City, UT...

  12. 75 FR 17897 - Lake County Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... Forest Service Lake County Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake County Resource Advisory Committee (RAC) will hold a meeting. DATES: The meeting will be held on May 13, 2010 from 3 p.m. to 5 p.m. ADDRESSES: The meeting will be held at the Lake...

  13. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Red Hills Lake County. 9... Red Hills Lake County. (a) Name. The name of the viticultural area described in this section is “Red Hills Lake County”. (b) Approved Map. The appropriate maps for determining the boundary of the Red Hills...

  14. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Red Hills Lake County. 9... Red Hills Lake County. (a) Name. The name of the viticultural area described in this section is “Red Hills Lake County”. (b) Approved Map. The appropriate maps for determining the boundary of the Red Hills...

  15. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Red Hills Lake County. 9... Red Hills Lake County. (a) Name. The name of the viticultural area described in this section is “Red Hills Lake County”. (b) Approved Map. The appropriate maps for determining the boundary of the Red Hills...

  16. Ground-water data in the Baker County-northern Malheur County area, Oregon

    USGS Publications Warehouse

    Collins, C.A.

    1979-01-01

    Ground-water data for the Baker County-northern Malheur area, Oregon, are tabulated for the Bureau of Land Management. The data include well and spring records, a well-location map, drillers ' logs of wells, observation-well hydrographs, and chemical analyses of ground-water samples. The reported yields of wells and springs in the area ranged from less than 1 to 2 ,500 gallons per minute. Dissolved solids in ground-water samples ranged from 50 to 1,587 milligrams per liter, and arsenic ranged from 0.001 to 0.317 milligrams per liter. (Woodard-USGS)

  17. Water-resources of western Douglas County, Oregon

    USGS Publications Warehouse

    Curtiss, D.A.; Collins, C.A.; Oster, E.A.

    1984-01-01

    In western Douglas County, Quaternary coastal dune sands and marine terrace deposits may have the best potential for ground-water development. Yields of 200 gallons per minute have been reported from wells completed in Quaternary fluvial deposits along the lower Umpqua River. The entire area is underlain by Tertiary marine sediments that yield quantities of water barely adequate for domestic use. On the basis of wells sampled and the constituents analyzed, ground-water quality was generally good, but the recommended criteria level of 300 micrograms per liter for iron was exceeded in about one-third of the samples. Average annual runoff from eight streams in western Douglas County was estimated to range from 2.4 cubic feet per second per square mile for Elk Creek to 6.8 cubic feet per second per square mile for Scholfield Creek. The estimated 7-day , 20-year low flow ranges from 0.01 cubic foot per second per square mile for Weatherly Creek to 3.6 cubic feet per second per square mile for the Smith River. The dissolved-solids of the Umpqua River is small and stable, with little seasonal and yearly variation. Likewise, the eight small streams in the project area have small dissolved-solids but have noticeably higher nitrite plus nitrate nitrogen concentrations than those of the Umpqua River. All the lakes in the project area have dissolved-solids concentrations of less than 100 milligrams per liter and, except for Loon Lake, have limited phosphorus available for algal production. Tahkenitch and Elbow Lakes are considered to be the most active in terms of biological productivity. (USGS)

  18. Economic Impacts of Geothermal Development in Harney County, Oregon.

    SciTech Connect

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  19. 100. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; SOUTH VIEW OF HEADGATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  20. 108. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    108. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; OVERALL VIEW SOUTH. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  1. Crater Lake Revealed: Using GIS to Visualize and Analyze Postcaldera Volcanoes Beneath Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Robinson, J. E.; Dartnell, P.; Bacon, C. R.; Gardner, J. V.; Mayer, L. A.; Buktenica, M. W.

    2001-12-01

    Crater Lake, Oregon, partially fills the caldera that formed ~7,700 years ago by the eruption of 50 km3 of mainly rhyodacitic magma and collapse of Mount Mazama. Prior to the climactic event, Mount Mazama had a 400,000-year eruptive history, much of which was like those of other Cascade volcanic centers such as Mount Shasta. Since the climactic eruption, there have been several less violent, smaller eruptions within the caldera itself. Until a recent bathymetric survey, relatively little was known about the character and timing of these eruptions because their products are obscured beneath Crater Lake's surface. In the summer of 2000, the lake bottom was mapped with a high-resolution multibeam echo sounder (Gardner et. al., 2001), providing a 2m/pixel view of the lake floor from its deepest basins virtually to the shoreline. Using Geographic Information Systems (GIS) applications, the bathymetric data has been visualized and analyzed (aided by images and samples obtained with the manned submersible Deep Rover, sediment cores and dredged rocks, and detailed geologic mapping of Mount Mazama) to determine a geologic map of the lake bottom, a history of lake filling (Nathenson et. al., 2001), and volumes, times, and rates of postcaldera eruptions. These calculations have been used to assemble a geologic history for Crater Lake from the time of caldera formation to present day. Postcaldera eruptions have been both subareal and subaqueous, and were well underway within about 90 years after the climactic eruption, beginning with andesitic lava flows from the Wizard Island and central platform volcanoes. The eruptive history of the Wizard Island volcano is divided into three periods defined by former shorelines where subaerial flows entered the lake, quenched rapidly, and fractured, forming lobate deltas and breccia slopes. The shorelines are visible in slope and shaded-relief images of the lake floor created with GIS. The lake filling model suggests that these shorelines

  2. A Holocene paleomagnetic record from Fish Lake, Oregon.

    NASA Astrophysics Data System (ADS)

    Ziegler, L. B.; Stoner, J. S.; Abbott, M. B.; Finkenbinder, M. S.; Hatfield, R. G.; Konyndyk, D.; Reilly, B.; Hillman, A. L.

    2014-12-01

    Paleo-geomagnetic observations provide fundamental models of the core and the geodynamo that cannot other- wise be obtained. Data and modeling studies are beginning to show that regions of concentrated magnetic flux (flux lobes) on the Core-Mantle boundary, those observed historically and others only hinted at from the short historical record, impose a structure on the geomagnetic field that may govern at least some components of geo- magnetic change. Accumulating evidence suggests that this structure reflects the influence of the lower mantle, yet this structure and the evolution of the geomagnetic field within it, even for the Holocene, are only beginning to be- come apparent. Comparison of specific, well-dated Holocene timeseries of PSV (sedimentary and archeomagnetic) inclination, declination, and paleointensity at key locations can provide intriguing insight when viewed through the lens of the known historical and assumed millennial flux lobes. A limiting factor for these studies is the uneven distribution of high quality data with independent chronologies, with Europe and the North Atlantic having better constrained data sets than North America. To begin to fill this data gap, we present initial results from an ongoing study of the paleomagnetic record from Fish Lake, Oregon. Initial evaluation of directions and intensity along with the construction of an independent chronology allow us to assess and build upon prior results to constrain the evolution of the North American flux lobe and refine our understanding of paleo-geomagnetic change during the Holocene.

  3. County Data for Community Action: 1996 Status of Oregon's Children.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Human Resources, Salem.

    This Children First for Oregon report, funded by a Kids Count grant from the Annie Casey Foundation, investigates state and countywide trends in the well-being of Oregon's children. The statistical report is based on 14 indicators of child well-being: (1) child abuse and neglect rates; (2) crimes against persons; (3) child death rate; (4) prenatal…

  4. 102. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; LAKE SIDE OF HEADGATES, NORTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. 105. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    105. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; NORTHWEST VIEW OF LAKE AND HEADGATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. Geologic map of the Washougal quadrangle, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    Evarts, Russell C.; O’Connor, Jim E.; Tolan, Terry L.

    2013-01-01

    The Washougal 7.5’ quadrangle spans the boundary between the Portland Basin and the Columbia River Gorge, approximately 30 km east of Portland, Oregon. The map area contains the westernmost portion of the Columbia River Gorge National Scenic area as well as the rapidly growing areas surrounding the Clark County, Washington, cities of Camas and Washougal. The Columbia River transects the map area, and two major tributaries, the Washougal River in Washington and the Sandy River in Oregon, also flow through the quadrangle. The Columbia, Washougal, and Sandy Rivers have all cut deep valleys through hilly uplands, exposing Oligocene volcanic bedrock in the north part of the map area and lava flows of the Miocene Columbia River Basalt Group in the western Columbia River Gorge. Elsewhere in the map area, these older rocks are buried beneath weakly consolidated to well-consolidated Neogene and younger basin-fill sedimentary rocks and Quaternary volcanic and sedimentary deposits. The Portland Basin is part of the Coastal Lowland that separates the Cascade Range from the Oregon Coast Range. The basin has been interpreted as a pull-apart basin located in the releasing stepover between two en echelon, northwest-striking, right-lateral fault zones. These fault zones are thought to reflect regional transpression, transtension, and dextral shear within the forearc in response to oblique subduction of the Pacific plate along the Cascadia Subduction Zone. The southwestern margin of the Portland Basin is a well-defined topographic break along the base of the Tualatin Mountains, an asymmetric anticlinal ridge that is bounded on its northeast flank by the Portland Hills Fault Zone, which is probably an active structure. The nature of the corresponding northeastern margin of the basin is less clear, but a series of poorly defined and partially buried dextral extensional structures has been hypothesized from topography, microseismicity, potential-field anomalies, and reconnaissance

  7. Water Quality and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; McIntire, C.D.; Buktenica, M.W.; Girdner, Scott

    2007-01-01

    We examine observations of key limnological properties (primarily temperature, salinity, and dissolved oxygen), measured over a 14-year period in Crater Lake, Oregon, and discuss variability in the hypolimnion on time scales of days to a decade. During some years (e.g., 1994a??1995), higher-than-average wintertime deep convection and ventilation led to the removal of significant amounts of heat and salt from the hypolimnion, while dissolved oxygen concentrations increase. In other years, such as the winter of 1996a??1997, heat and salt concentrations increase throughout the year and dissolved oxygen levels drop, indicating conditions were dominated by the background geothermal inputs and dissolved oxygen consumption by bacteria (i.e., minimal deep convection). Over the entire 14 year period, no statistically significant trend was observed in the annual hypolimnetic heat and salt content. Measurements from several thermistors moored in the hypolimnion provide new insight into the time and space scales of the deep convection events. For some events, cool water intrusions are observed sequentially, from shallower depths to deeper depths, suggesting vertical mixing or advection from above. For other events, the cooling is observed first at the deepest sensors, suggesting a thin, cold water pulse that flows along the bottom and mixes more slowly upwards into the basin. In both cases, the source waters must originate from the epilimnion. Conditions during a strong ventilation year (1994a??1995) and a weak ventilation year (1996a??1997) were compared. The results suggest the major difference between these 2 years was the evolution of the stratification in the epilimnion during the first few weeks of reverse stratification such that thermobaric instabilities were easier to form during 1995 thana?#1997. Thus, the details of surface cooling and wind-driven mixing during the early stages ofa?#reverse stratification may determine the neta?#amount of ventilation possible during

  8. Exsolution of metallic copper from Lake County labradorite

    NASA Astrophysics Data System (ADS)

    Hofmeister, Anne M.; Rossman, George R.

    1985-09-01

    Some gem-quality labradorite phenocrysts in Miocene basaltic lava from Lake County, Oregon, have a pink schiller due to metallic copper; some have a transparent red or green color. The copper content of the crystals varies systematically with color: pale-yellow labradorite sections have 0 40 ppm CuO; greens have about 100 ppm CuO; reds have 150 to 200 ppm CuO; schiller-bearing laths have 80 to 300 ppm CuO. The variation of Cu content among different crystals is primary and reflects a variation in magma chemistry during plagioclase fractionation. Similarity of absorption spectra of the red zones to that of copper-ruby color in glass shows that the red arises from the intrinsic absorption of colloidal Cu0 particles that are too small to scatter light (<22 nm). Particle size depends on Cu content because the temperature at which copper begins to exsolve from the feldspar increases with Cu content and the higher temperatures promote diffusion. At 900 to 1100 °C the reduction of Cu is controlled by reactions in the basalt that keep fo2 near the QFM buffer. The green color may be caused by either Cu1+/Cu0 IVCT or Cu0 pairs. *Present address: Geophysical Laboratory, Carnegie Institution, Washington, D.C. 20008

  9. Geologic Map of the Carlton Quadrangle, Yamhill County, Oregon

    USGS Publications Warehouse

    Wheeler, Karen L.; Wells, Ray E.; Minervini, Joseph M.; Block, Jessica L.

    2009-01-01

    The Carlton, Oregon, 7.5-minute quadrangle is located in northwestern Oregon, about 35 miles (57 km) southwest of Portland. It encompasses the towns of Yamhill and Carlton in the northwestern Willamette Valley and extends into the eastern flank of the Oregon Coast Range. The Carlton quadrangle is one of several dozen quadrangles being mapped by the U.S. Geological Survey (USGS) and the Oregon Department of Geology and Mineral Industries (DOGAMI) to provide a framework for earthquake- hazard assessments in the greater Portland, Oregon, metropolitan area. The focus of USGS mapping is on the structural setting of the northern Willamette Valley and its relation to the Coast Range uplift. Mapping was done in collaboration with soil scientists from the National Resource Conservation Service, and the distribution of geologic units is refined over earlier regional mapping (Schlicker and Deacon, 1967). Geologic mapping was done on 7.5-minute topographic base maps and digitized in ArcGIS to produce ArcGIS geodatabases and PDFs of the map and text. The geologic contacts are based on numerous observations and samples collected in 2002 and 2003, National Resource Conservation Service soils maps, and interpretations of 7.5-minute topography. The map was completed before new, high-resolution laser terrain mapping was flown for parts of the northern Willamette Valley in 2008.

  10. 40 CFR 81.273 - Lake County Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Lake County Intrastate Air Quality... Quality Control Regions § 81.273 Lake County Intrastate Air Quality Control Region. The Lake County... outermost boundaries of the area so delimited): In the State of California: Lake County. ...

  11. 40 CFR 81.273 - Lake County Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Lake County Intrastate Air Quality... Quality Control Regions § 81.273 Lake County Intrastate Air Quality Control Region. The Lake County... outermost boundaries of the area so delimited): In the State of California: Lake County. ...

  12. 40 CFR 81.273 - Lake County Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Lake County Intrastate Air Quality... Quality Control Regions § 81.273 Lake County Intrastate Air Quality Control Region. The Lake County... outermost boundaries of the area so delimited): In the State of California: Lake County. ...

  13. 40 CFR 81.273 - Lake County Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Lake County Intrastate Air Quality... Quality Control Regions § 81.273 Lake County Intrastate Air Quality Control Region. The Lake County... outermost boundaries of the area so delimited): In the State of California: Lake County. ...

  14. 40 CFR 81.273 - Lake County Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Lake County Intrastate Air Quality... Quality Control Regions § 81.273 Lake County Intrastate Air Quality Control Region. The Lake County... outermost boundaries of the area so delimited): In the State of California: Lake County. ...

  15. Oxygen Isotope Character of the Lake Owyhee Volcanic Field, Oregon

    NASA Astrophysics Data System (ADS)

    Blum, T.; Strickland, A.; Valley, J. W.

    2012-12-01

    Oxygen isotope analyses of zircons from lavas and tuffs from the Lake Owyhee Volcanic Field (LOVF) of east central Oregon unequivocally demonstrate the presence of mid-Miocene low-δ18O magmas (δ18Ozrc<4.7 ‰). Despite the growing data set of low-δ18O melts within, and proximal to, the Snake River Plain (SRP) Large Igneous Province, debate persists regarding both the mechanisms for low-δ18O magma petrogenesis, and their relative influence in the SRP. The LOVF is associated with widespread silicic volcanism roughly concurrent with the eruption of the Steens-Columbia River Basalt Group between ~17-15Ma. Silicic activity in the LOVF is limited to 16-15Ma, when an estimated 1100km3 of weakly peralkaline to metaluminous rhyolitic lavas and ignimbrites erupted from a series of fissures and calderas. Geographically, the LOVF overlaps the Oregon-Idaho Graben (OIG), and straddles the 87Sr/86Sr= 0.704 line which, together with the 0.706 line to the east, delineate the regional transition from the North American Precambrian continental crust to the east to younger Phanerozoic accreted terranes to the west. Here we report high accuracy ion microprobe analyses of δ18O in zircons using a 10-15μm spot, with average spot-to-spot precision ±0.28‰ (2SD), to investigate intra-grain and intra-unit δ18Ozrc trends for LOVF rhyolites. Due to its high closure temperature, chemical and physical resistance, and slow oxygen diffusion rates, zircon offers a robust record of magmatic oxygen isotope ratios during crystallization and provides constraints on the petrogenesis of Snake River Plain (SRP) low-δ18O melts. Individual zircons from LOVF rhyolites show no evidence of core-rim δ18O zoning, and populations exhibit ≤0.42‰ (2SD) intra-unit variability. Unit averages range from 2.2 to 4.3‰, with the lowest values in caldera-forming ignimbrites, but all units show evidence of crystallization from low-δ18O melts. Quartz and feldspar analyses by laser fluorination (precision

  16. Controls on the Burial Efficiency of Sediments in Lake Billy Chinook, Oregon

    NASA Astrophysics Data System (ADS)

    Stratton, L. E.; Goni, M. A.; Grant, G.

    2016-12-01

    The importance of water reservoirs to the global carbon cycle has been recognized for at least a decade, but the processes controlling carbon mineralization and burial in reservoir systems remain poorly understood. Most studies of surface emissions from reservoirs have generally ignored the complication of carbon burial in reservoir sediments, despite the fact that while riverine sediment transport has increased compared to pre-Anthropocene rates, less sediment now enters world oceans. To better understand the importance of carbon mineralization and burial in reservoir sediments, this study investigates the burial efficiency of sediments in Lake Billy Chinook, a major hydropower reservoir in Jefferson County, Oregon. Burial efficiency is the mass balance between the total input of organic carbon to the sediment/water interface, losses of organic carbon due to respiration in the biologically active surface sediments, and sequestration of organic carbon by burial. Because Lake Billy Chinook inundates the confluence of three distinct river systems sourced in different climates and terrains, it provides a natural laboratory to investigate differences in sediment input, nutrient loading, and water temperature. Buried organic carbon and total mass accumulation rate are estimated through a combination of organic content analysis, stratigraphy, bathymetric data, and depth-dependent radionuclide concentrations (210Pb, 137Cs) of sediments in cores collected from the topset and prodelta environments of each reservoir arm. Mineralization rates are estimated by inverse modeling of the diffusion and reaction equations conditioned to pore-water profiles and bottom water concentrations. Calculated burial efficiency of sediments in each tributary and analyzed average precipitation, discharge, and water temperature, calculated C:N ratios in buried sediments, lithology, and hydrograph characteristics.

  17. Possible effects on Lake Abert of a proposed impoundment on Chewaucan River, south-central Oregon

    USGS Publications Warehouse

    Van Denburgh, A.S.

    1975-01-01

    This statement is a response to questions raised by personnel of the U.S. Forest Service, Lakeview, Oregon, with respect to the possible effects on Lake Abert and its basin if the propos ed Coffeepot Reservoir is built on Chewaucan River. The responses are keyed to paragraphs in a letter of inquiry but are self-explanatory without reference to that letter.

  18. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  19. Smaller Communities Program: Grant and Wheeler Counties, Oregon. Combined Economic Base Report and Applicant Potential Report; An Evaluation of the Economic and Human Resources of a Rural Oregon County.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Employment, Salem.

    Prepared by the Smaller Communities Services Program of the Oregon Department of Employment, this 1968 report summarizes the program findings with relation to Grant and Wheeler counties, Oregon. As stated, the overall objective of the program was promotion of the economic adjustment of specific rural, low-income areas--including the occupational…

  20. Geochemical map of the North Fork John Day River Roadless Area, Grant County, Oregon

    USGS Publications Warehouse

    Evans, James G.

    1986-01-01

    The North Fork John Day River Roadless Area comprised 21,210 acres in the Umatilla and Wallowa-Whitman National Forests, Grant County, Oregon, about 30 miles northwest of Baker, Oregon. The irregularly shaped area extends for about 1 mile on both sides of a 25-mile segment of the North Fork John Day River from Big Creek on the west to North Fork John Day Campground on the east. Most of the roadless area is in the northern half of the Desolation Butte 15-minute quadrangle. The eastern end of the area is in parts of the Granite and Trout Meadows 7½-minute quadrangles.

  1. Geothermal greenhouse heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon

    NASA Astrophysics Data System (ADS)

    1982-02-01

    The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the nursing home, the present site was selected primarily on the basis of its geothermal resource. This resource currently provides space and domestic hot water heating for the nursing home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the nursing home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the nursing home.

  2. Pulpwood Production in the Lake States, by County, 1978

    Treesearch

    James E. Blyth; W. Brad Smith

    1979-01-01

    Pulpwood production in the Lake States - Michigan, Minnesota, and Wisconsin - advances from 4.74 million cords in 1977 to 4.91 millions cords in 1978. Pulpwood production is shown by county and species group for these three States

  3. Pulpwood Production in the Lake States by County, 1973

    Treesearch

    James E. Blyth; Jerold T. Hahn

    1974-01-01

    This 28th annual report shows 1973 pulpwood production by county and species group in Michigan, Minnesota, and Wisconsin. Lake States pulpwood production rose to 4.7 million cords in 1973 from 4.3 million cords in 1972.

  4. Nest observations of the long-eared owl (Asio otus) in Benton County, Oregon, with notes on their food habits

    Treesearch

    Richard T. Reynolds

    1970-01-01

    A nesting pair of long-eared owls was found 10 miles north of Corvallis, Benton County, Oregon, on 24 April, 1969. The pair was observed and photographed until 30 May, when the young left the nest. This is the third record of nesting Asio otus west of the Oregon Cascades. Gabrielson and Jewett (1940) reported that Pope collected eggs from a nest...

  5. The Utilization of the Oregon Department of Education Materials by Vocational Teachers in Linn, Benton and Lincoln Counties. Final Report.

    ERIC Educational Resources Information Center

    Lofts, Ada

    Secondary vocational instructors, community college instructors, and career directors in three Oregon counties were interviewed to assess usage of occupational cluster guides, individualized instruction packages, and other curriculum materials developed by the Oregon Department of Education (ODE). Focus was on level and depth of usage, deterrents…

  6. 101. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; NORTHEAST VIEW OF DRY CREEK OUTLET. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 106. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; CLOSE-UP OF GATES, NORTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. Models for the Filling of Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Bacon, C. R.; Gardner, J. V.

    2001-12-01

    Crater Lake partially fills, to a depth of 593 m, the 10-km-diameter, 1200-m-deep caldera formed by collapse of Mount Mazama volcano. The lake receives water from direct precipitation and inflow from the caldera walls and loses water by surface evaporation and leakage. No streams flow from Crater Lake. A high-resolution multibeam echo sounding survey of the lake floor conducted in 2000 (Gardner et al., 2001) revealed seven drowned beaches between 1849 and 1878 m elevation (reference lake elevation is 1883 m). The beaches are thought to reflect drier periods in the lake's history since the climactic, caldera-forming eruption of Mount Mazama, approximately 7,700 years ago. The shallowest drowned beach at 1878 m represents the deepest part of a wave-cut platform up to 100 m wide, substantially wider than any of the beaches, where erodible talus or intensely altered rocks are present. The great width of the platform compared to the width of the drowned beaches indicates that the lake has mostly been near its current level during the lake's history. Unambiguous evidence of former highstands above 1883 m has not been reported. In order to explain the occurrence of the drowned beaches and their relatively narrow depth range, leakage through the caldera walls must vary with depth and cannot occur just at the lake bottom or at the modern lake level. A reasonable model is that leakage is proportional to elevation above the bottom of the lake. Recognition that there is a thick layer of relatively permeable debris resting on glaciated lava in the northeast caldera wall above an elevation of 1845 m suggests a variant of this model where leakage is proportional to elevation above 1845 m. Climate studies indicate that Crater Lake began to fill during a dry period. Assuming that precipitation at that time was 70% of modern and that the beach at 1853 m (the deeper beach is somewhat suspect) corresponds to this amount of precipitation, a combination of the above leakage models is

  9. Thermal, chemical, and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.

    2007-01-01

    Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was

  10. Ground water in the northern part of Clackamas County, Oregon

    USGS Publications Warehouse

    Leonard, A.R.; Collins, C.A.

    1983-01-01

    The number of domestic wells and domestic-water use have increased rapidly since 1960 in the 250-square-mile study area southeast of Portland, Oregon. The rolling upland area is underlain by volcanic and stream-deposited rocks, all units of which serve as aquifers locally. Depths of wells range from less than 50 to more than 1,000 feet and yields from less than one to several hundred gallons per minute. Local recharge rates are judged to be adequate for any forseeable projected development for domestic water supplies. Wells are expected to yield adequate water for domestic needs nearly everywhere in the study area. However, some exploration, as by test drilling, may be needed in siting irrigation, industrial, or public-supply wells of moderate to high yield. Additional ground water can be developed from all aquifers, but the Columbia River Basalt Group is considered susceptible to problems of overdevelopment locally. (USGS)

  11. Pumice deposits of the Klamath Indian Reservation, Klamath County, Oregon

    USGS Publications Warehouse

    Walker, George Walton

    1951-01-01

    A large volume of pumice is widely distributed over the Klamath Indian Reservation in 'flow' and 'fall' deposits. The flow material on the Reservation is restricted to the area west of Klamath Marsh, and the fall material is thickest immediately southeast of the Marsh. Tests of the chemical and physical properties of the pumice indicate that the pumice is suitable, with some limitations, for use as an aggregate and as a low-grade abrasive. Preliminary examination also indicates that with proper processing it may have a potential use as pozzuolana. The pumice is similar to material now being marketed for lightweight aggregate in Oregon, but processing of the pumice is necessary to obtain a suitable size distribution of the particles.

  12. Subaqueous geology and a filling model for Crater Lake, Oregon

    USGS Publications Warehouse

    Nathenson, M.; Bacon, C.R.; Ramsey, D.W.

    2007-01-01

    Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time

  13. Revisiting School Readiness: Washington County, Oregon, Summer 2007

    ERIC Educational Resources Information Center

    Severeide, Rebecca

    2007-01-01

    Purpose and Methods: This report is the second benchmark study to assess the system of supports for school readiness. The data for this study was collected in the fall of 2006 on 537 entering kindergarten children and their families in eight representative schools across the County. The ecological model and methods from the first study, which was…

  14. Hydrologic and climatologic data, 1966, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1967-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11 and 12 contain data collected through 1965. This release contains climatologic and surface-water data for the 1966 water year (October 1965 to September 1966) and groundwater data collected during the 1966 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  15. Hydrologic and climatologic data, 1965, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District. contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Release No. 11 contains data collected through 1964. This release contains climatologic and surface-water data for the 1965 water year (October 1964 to September 1965) and ground-water data collected during the 1965 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  16. Post-Mazama (7 KA) faulting beneath Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Colman, Steven M.; Rosenbaum, J.G.; Reynolds, R.L.; Sarna-Wojcicki, A. M.

    2000-01-01

    High-resolution seismic-reflection profiles (3.5 kHz) show that a distinctive, widespread reflection occurs in the sediments beneath Upper Klamath Lake, Oregon. Coring reveals that this reflection is formed by Mazama tephra (MT), about 7 ka in age. The MT horizon is faulted in many places and locally displaced by as much as 3.1 m. Differential displacement of multiple horizons indicates recurrent fault movement, perhaps three episodes since deposition of the Mazama. The pattern of faulting indicates northeast-southwest extension beneath the lake basin.

  17. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  18. Volcano and earthquake hazards in the Crater Lake region, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Mastin, Larry G.; Scott, Kevin M.; Nathenson, Manuel

    1997-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. This report describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The main conclusions are summarized below.

  19. Hydrology of Lake Carroll, Hillsborough County, Florida

    USGS Publications Warehouse

    Henderson, S.E.; Hayes, R.D.; Stoker, Y.E.

    1985-01-01

    Lakeshore property around Lake Carroll has undergone extensive residential development since 1960. This development increased the lake shoreline, altered surface water flow to and from the lake, and may have affected lake-stage characteristics. Some areas of the lake were dredged to provide fill material for lakefront property. Water-balance analyses for 1952-60, a predevelopment period, and 1961-80, a period of residential development, indicate that both net surface water flow to the lake and downward leakage from the lake to the Floridan aquifer were greater after 1960. These changes were due more to changes in the regional climate and related changes in ground-water levels than to changes associated with residential development. Results of water quality analyses in 1980-81 are within State limits for surface waters used for recreation and wildlife propagation. (USGS)

  20. Water resources of Lincoln County coastal area, Oregon

    USGS Publications Warehouse

    Frank, F.J.; Laenen, Antonius

    1976-01-01

    Water supplies for all municipalities in Lincoln County currently (1975) are obtained from surface-water sources. Because of rapid economic development of the coastal area, it is expected that additional water will be needed in the future. Additional water can be supplied (1) by reservoirs on major streams; (2) by the expansion, in some locations, of present surface-water facilities on small streams; and (3) locally, by an additional small volume of supplemental water from ground-water sources.

  1. Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003

    USGS Publications Warehouse

    Sullivan, Annette B.; Rounds, Stewart A.

    2004-01-01

    The two-dimensional model CE-QUAL-W2 was used to simulate hydrodynamics, temperature, and water quality in Henry Hagg Lake, Oregon, for the years 2000 through 2003. Input data included lake bathymetry, meteorologic conditions, tributary inflows, tributary temperature and water quality, and lake outflows. Calibrated constituents included lake hydrodynamics, water temperature, orthophosphate, total phosphorus, ammonia, algae, chlorophyll a, zooplankton, and dissolved oxygen. Other simulated constituents included nitrate, dissolved and particulate organic matter, dissolved solids, and suspended sediment. Two algal groups (blue-green algae, and all other algae) were included in the model to simulate the lakes algal communities. Measured lake stage data were used to calibrate the lakes water balance; calibration of water temperature and water quality relied upon vertical profile data taken in the deepest part of the lake near the dam. The model initially was calibrated with data from 200001 and tested with data from 200203. Sensitivity tests were performed to examine the response of the model to specific parameters and coefficients, including the light-extinction coefficient, wind speed, tributary inflows of phosphorus, nitrogen and organic matter, sediment oxygen demand, algal growth rates, and zooplankton feeding preference factors.

  2. A 36-year history of fatal road rage in Marion County, Oregon: 1963-1998.

    PubMed

    Batten, P J; Penn, D W; Bloom, J D

    2000-03-01

    This paper documents the 36-year history, with five examples, of fatal road rage in Marion County, Oregon. Relevant details (all that were available) from each case are presented. Alcohol intoxication was present in four of our five cases. We include two deaths by gunshot at close range, two deaths as a result of a motor vehicle traffic accident, and one natural death. All subjects were males. Three were Caucasian and two were Hispanic. The three subjects in Cases 1, 2 and 3 were complete strangers to the occupants of the other involved vehicles. The subjects in Cases 4 and 5 (along with the occupants of their own vehicles) were acquaintances of the occupants of the involved vehicle. There appears to be no previous forensic, medical or psychiatric literature on road rage as such. We present an initial psychiatric evaluation of the perpetrators of this type of fatal assault. There are no specific statutes in Oregon, at the state or county levels, regarding road rage. However, the city of Gresham, Oregon, recently enacted an ordinance regarding road rage. We stress the need for further study of this phenomenon, especially through the use of the psychological-psychiatric autopsy.

  3. Geologic map of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, Charles

    1990-01-01

    Crater Lake caldera collapsed about 6,850 yr B.P. during the climactic eruption of Mount Mazama, a High Cascade basaltic andesitic to dacitic volcanic center that was constructed during a period of about 400,000 yr. The caldera and the products of the climactic eruption are clear evidence for the presence of a shallow magma body that must have supported a hydrothermal system in the recent past. The geology of Mount Mazama has been mapped at a scale of 1:24,000 based on detailed study of the walls of Crater Lake caldera and mapping of the flanks of the volcano. The map shows lavas and fragmental deposits of Mount Mazama, lavas of nearby monogenetic volcanoes, pre-Mazama silicic volcanic rocks, products of the climactic eruption, and glacial deposits. Related topical studies of the volcanology, geochronology, petrology, and geochemistry of the Crater Lake area depend on field relations established by geologic mapping.

  4. Hydrologic and climatologic data, 1967, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1968-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological Survey.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 contain data collected through 1966. This release contains climatologic and surfacewater data for the 1967 water year (October 1966 to September 1967) and ground-water data collected during the 1967 calendar year. A similar annual release will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  5. Hydrologic and climatologic data, 1968, Salt Lake County, Utah

    USGS Publications Warehouse

    1969-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological SurveyThe investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 and 15 contain data collected through 1967. This release contains climatologic and surface-water data for the 1968 water year (October 1967 to September 1968) and ground-water data collected during the 1968 calendar year. This is the final annual release of basic data for this investigation. Interpretive reports summarizing the results are in preparation. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  6. Pulpwood Production in the Lake States Counties 1963

    Treesearch

    Arthur G. Horn

    1964-01-01

    This is the fifth annual report on the pulpwood harvest in the Lakes States counties. Another record in pulpwood production was established in 1963 when the Lake States cut amounted to 3,662,300 cords--10 percent larger than the previous high of 3,342,400 cords in 1962. Pulpwood from roundwood accounted for 96 percent of the total cut; the remaining 4 percent came...

  7. Pulpwood Production in the Lake States Counties 1964

    Treesearch

    Arthur G. Horn

    1965-01-01

    This is the sixth annual report on the pulpwood harvest in the Lakes States counties. The 1964 harvest of pulpwood in the Lakes States amounted to approximately 3.628,000 cords, 1 percent less than the all-time high in 1963. Ninety-six percent of the pulpwood production was roundwood, while the remaining 4 percent was wood residue supplied by local primary wood-using...

  8. Geothermal greenhouse-heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon

    SciTech Connect

    Not Available

    1982-02-01

    The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the Nursing Home, the present site was selected primarily on the basis of its geothermal resource. This resource (approx. 190/sup 0/F) currently provides space and domestic hot water heating for the Nursing Home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the Nursing Home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the Nursing Home.

  9. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  10. Under trees and water at Crater Lake National Park, Oregon

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Wayne, Chris

    2012-01-01

    Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-ft-high volcano known as Mount Mazama. The caldera-forming, or climactic, eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000-year history of volcanic activity similar to other large Cascade volcanoes such as Mounts Shasta, Hood, and Rainier. Since the caldera formed, many smaller, less violent eruptions occurred at volcanic vents below Crater Lake's surface, including Wizard Island. A survey of Crater Lake National Park with airborne LiDAR (Light Detection And Ranging) resulted in a digital elevation map of the ground surface beneath the forest canopy. The average resolution is 1.6 laser returns per square meter yielding vertical and horizontal accuracies of ±5 cm. The map of the floor beneath the surface of the 1,947-ft-deep (593-m-deep) Crater Lake was developed from a multibeam sonar bathymetric survey and was added to the map to provide a continuous view of the landscape from the highest peak on Mount Scott to the deepest part of Crater Lake. Four enlarged shaded-relief views provide a sampling of features that illustrate the resolution of the LiDAR survey and illustrate its utility in revealing volcanic landforms and subtle features of the climactic eruption deposits. LiDAR's high precision and ability to "see" through the forest canopy reveal features that may not be easily recognized-even when walked over-because their full extent is hidden by vegetation, such as the 1-m-tall arcuate scarp near Castle Creek.

  11. Sedimentation in Santa Margarita Lake, San Luis Obispo County, California

    USGS Publications Warehouse

    Glysson, G. Douglas

    1977-01-01

    The 1975 storage capacity of Santa Margarita Lake in San Luis Obispo County, Calif., was 41,400 acre-feet, a decrease of 3,400 acre-feet since 1941. Usable capacity decreased from 25,800 to 23,000 acre-feet. Long-term sediment yield for the Salinas River basin upstream from the lake was estimated at 1,150 tons per square mile per year. A correlation between the annual water discharge of the Salinas River near Pozo and the annual quantity of sediment deposited in the lake was developed that can be used to stimate future sediment deposition. (Woodard-USGS)

  12. Water quality of Bear Creek basin, Jackson County, Oregon

    USGS Publications Warehouse

    Wittenberg, Loren A.; McKenzie, Stuart W.

    1980-01-01

    Water-quality data identify surface-water-quality problems in Bear Creek basin, Jackson County, Oreg., where possible, their causes or sources. Irrigation and return-flow data show pastures are sources of fecal coliform and fecal streptococci bacteria and sinks for suspended sediment and nitrite-plus-nitrate nitrogen. Bear Creek and its tributaries have dissolved oxygen and pH values that do not meet State standards. Forty to 50% of the fecal coliform and fecal streptococci concentrations were higher than 1,000 bacteria colonies per 100 milliliters during the irrigation season in the lower two-thirds of the basin. During the irrigation season, suspended-sediment concentrations, average 35 milligrams per liter, were double those for the nonirrigation season. The Ashland sewage-treatment plant is a major source of nitrite plus nitrate, ammonia, and Kjeldahl nitrogen, and orthophosphate in Bear Creek. (USGS)

  13. Benthic nutrient sources to hypereutrophic Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Kuwabara, J.S.; Topping, B.R.; Lynch, D.D.; Carter, J.L.; Essaid, H.I.

    2009-01-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A porewater profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical, concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m2/d. The mass flux over an approximate 200-km2 lake area was comparable in magnitude to riverine inputs. An additional concern, related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m2/d, again, comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 104 individuals/m2, suggested, that the diffusive-flux estimates may be significantly enhanced, by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources ?? 2009 SETAC.

  14. Benthic nutrient sources to hypereutrophic upper Klamath Lake, Oregon, USA.

    PubMed

    Kuwabara, James S; Topping, Brent R; Lynch, Dennis D; Carter, James L; Essaid, Hedeff I

    2009-03-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m(2)/d. The mass flux over an approximate 200-km(2) lake area was comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m(2)/d, again comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 10(4) individuals/m(2), suggested that the diffusive-flux estimates may be significantly enhanced by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources.

  15. Geologic map of the Three Sisters Wilderness, Deschutes, Lane, and Linn counties, Oregon

    USGS Publications Warehouse

    Taylor, E.M.; MacLeod, N.S.; Sherrod, D.R.; Walker, G.W.

    1987-01-01

    The Wilderness Act (Public Law 88-577, September 3, 1964) and related acts require the U.S. Geological Survey and the U.S. Bureau of Mines to survey certain areas on Federal lands to determine the mineral values, if any, that may be present. Results must be made available to the public and to be submitted to the President and Congress. This report presents the results of a geologic survey of the Three Sisters Wilderness, Deschutes and Willamette National Forests, Deschutes, Lane and Linn Counties, Oregon

  16. College of Lake County National Workplace Literacy Program. Final Report.

    ERIC Educational Resources Information Center

    Gee, Mary Kay

    The College of Lake County's 3-year National Workplace Literacy Program (1994-1997) contributed to economic development by meeting companies' changing educational and production needs as they fluctuated and met new challenges for global marketing and improvement. It assessed 883 employees at 8 business sites with customized assessment tools and…

  17. Regional Photonics Initiative at the College of Lake County

    ERIC Educational Resources Information Center

    Dulmes, Steven; Kellerhals, William

    2017-01-01

    The College of Lake County Regional Photonics Initiative project was motivated in part by the hiring of out-of-state technicians for local Photonics industry positions. Fifteen high paying employment opportunities during the recent recession could not be filled from the locally available workforce. Research on the current demand and future growth…

  18. Pulpwood Production in the Lake States by County, 1977

    Treesearch

    James E. Blyth; W. Brad Smith

    1978-01-01

    This 32nd annual report shows 1977 pulpwood production by county and species group in Michigan, Minnesota, and Wisconsin. Production in these three Lake States inched ahead to 4.74 million cords from 4.69 million cords in 1976

  19. Pulpwood Production in the Lake States by County, 1974

    Treesearch

    James E. Blyth; Jerold T. Hahn

    1975-01-01

    This 29th annual report shows 1974 pulpwood production by county and species group in Michigan, Minnesota, and Wisconsin. Production in these three Lake States climbed to 5.5 million cords in 1974 from 4.7 million cords in 1973.

  20. Surficial geology of Panther Lake Quadrangle, Oswego County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    1981-01-01

    The location and extent of eight kinds of surficial deposits in Panther Lake quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for groundwater development at any specific location. (USGS)

  1. Evaluating the potential for watershed restoration to reduce nutrient loading to Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    McCormick, Paul V.; Campbell, Sharon G.

    2007-01-01

    A literature review of best management practices to reduce nutrient loading was performed to provide information for resource managers in the Klamath Basin, Oregon. Although BMPs have already been implemented in the watershed, some sense of their effectiveness in reducing phosphorus loading and their cost for installation and maintenance is still lacking. This report discusses both causes of nutrient loading and a wide-variety of BMPs used to treat or reduce causal factors. We specifically focused on cattle grazing as the principal land-use and causal factor for nutrient loading in the Klamath Basin above Upper Klamath Lake, Oregon. Several BMP types, including stream corridor fencing, riparian buffer strips and constructed wetlands, seem to have potential for reducing phosphorus loading that may result from cattle grazing. However, no single BMP is likely to be the most effective in all locations or situations.

  2. Heating Facilities: Klamath County Road Department Shops, Klamath Falls, Oregon.

    SciTech Connect

    Not Available

    1980-12-30

    Maywood Industries is presently utilizing 118/sup 0/F water pumped from a geothermal well about 1500 feet deep. The Klamath County Road complex presently heats about 13,000 square feet of space using electric and natural gas heaters. It is planned to increase the total heated area to nearly 24,000 square feet. This study is based on eliminating the existing electrical and natural gas heaters and heating the entire 24,000 square feet geothermally. It was found to be practical and economically feasible to heat the road department shop complex geothermally. Capital cost is estimated to be $170,000. Annual energy savings for the enlarged facility would be 56,720 KWH of electricity and 36,924 therms of natural gas, with a first year value of $18,175. This savings, less operating costs, when applied with escalation considerations over a period of twenty years, result in a present worth of $382,385 when discounted at 8%. Thus, with 8% bonds financing of this project is economically attractive. (MHR)

  3. Vertical distribution of a deep-water moss and associated epiphytes in Crater Lake, Oregon

    USGS Publications Warehouse

    McIntire, C.D.; Phinney, H.K.; Larson, Gary L.; Buktenica, M.W.

    1994-01-01

    A one-person submersible was used to examine the vertical distribution of the deep-water moss Drepanocladus aduncus (Hedw.) Warnst in Crater Lake (Oregon). Living specimens were found attached to sediment and rocks at depths between 25 m and 140 m. Dense beds of the moss were observed at depths between 30 m and 80 m, a region that corresponded roughly to the zone of maximum primary production by phytoplankton. The moss population supported a diverse assemblage of epiphytic algae, of which the most abundant genera included Cladophora,Oedogonium, Rhizoclonium, Tribonema, Vaucheria, and the diatoms Cocconeis, Cymbella, Epithemia, Fragilaria, Gomphonema, Melosira, Navicula, and Synedra. Chemical and physical data supported the hypothesis that the lower limit of distribution of the moss is determined by light limitation, whereas the upper limit is related to the availability of nutrients, particularly nitrate-nitrogen and trace elements. Deep-water videotapes of the moss population indicated that D. aduncus with its epiphytic algae was abundant enough in regions associated with the metalimnion and upper hypolimnion to have a potential influence on the nutrient dynamics of the Crater Lake ecosystem. Although the maximum depth at which living bryophytes occur in Crater Lake is similar to that found for Lake Tahoe, conditions in Lake Tahoe allow the growth and survival of a much more diverse assemblage of bryophytes and charophytes than is present in Crater Lake.

  4. Lake Aquilla - Habitat Survey Hill County, Texas

    DTIC Science & Technology

    2017-08-01

    M. E., M. L. Morrison, and R. N. Wilkins. 2013. Tree species composition and food availability affect productivity of an endangered species : The...forests at Lake Aquilla. 15. SUBJECT TERMS Aquilla Lake (Tex.) Vegetation surveys Plant communities Restoration ecology Endangered species Black... endangered Golden-cheeked Warbler (Dendroica chrysoparia P. L. Sclater and Salvin). Data was collected using a combination of plots and transects. All

  5. Chronology of sediment deposition in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Colman, Steven M.; Bradbury, J.P.; McGeehin, J.P.; Holmes, C.W.; Edginton, D.; Sarna-Wojcicki, A. M.

    2004-01-01

    A combination of tephrochronology and 14C, 210Pb, and 137Cs measurements provides a robust chronology for sedimentation in Upper Klamath Lake during the last 45 000 years. Mixing of surficial sediments and possible mobility of the radio-isotopes limit the usefulness of the 137Cs and 210Pb data, but 210Pb profiles provide reasonable average sediment accumulation rates for the last 100-150 years. Radiocarbon ages near the top of the core are somewhat erratic and are too old, probably as a result of detrital organic carbon, which may have become a more common component in recent times as surrounding marshes were drained. Below the tops of the cores, radiocarbon ages in the center of the basin appear to be about 400 years too old, while those on the margin appear to be accurate, based on comparisons with tephra layers of known age. Taken together, the data can be combined into reasonable age models for each site. Sediments have accumulated at site K1, near the center of the basin, about 2 times faster than at site CM2, on the margin of the lake. The rates are about 0.10 and 0.05 cm/yr, respectively. The chronological data also indicate that accumulation rates were slower during the early to middle Holocene than during the late Holocene, consistent with increasing wetness in the late Holocene.

  6. Distribution and abundance of zooplankton populations in Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; McIntire, C.D.; Buktenica, M.W.; Girdner, S.F.; Truitt, R.E.

    2007-01-01

    The zooplankton assemblages in Crater Lake exhibited consistency in species richness and general taxonomic composition, but varied in density and biomass during the period between 1988 and 2000. Collectively, the assemblages included 2 cladoceran taxa and 10 rotifer taxa (excluding rare taxa). Vertical habitat partitioning of the water column to a depth of 200 m was observed for most species with similar food habits and/or feeding mechanisms. No congeneric replacement was observed. The dominant species in the assemblages were variable, switching primarily between periods of dominance of Polyarthra-Keratella cochlearis and Daphnia. The unexpected occurrence and dominance of Asplanchna in 1991 and 1992 resulted in a major change in this typical temporal shift between Polyarthra-K. cochlearis and Daphnia. Following a collapse of the zooplankton biomass in 1993 that was probably caused by predation from Asplanchna, Kellicottia dominated the zooplankton assemblage biomass between 1994 and 1997. The decline in biomass of Kellicottia by 1998 coincided with a dramatic increase in Daphnia biomass. When Daphnia biomass declined by 2000, Keratella biomass increased again. Thus, by 1998 the assemblage returned to the typical shift between Keratella-Polyarthra and Daphnia. Although these observations provided considerable insight about the interannual variability of the zooplankton assemblages in Crater Lake, little was discovered about mechanisms behind the variability. When abundant, kokanee salmon may have played an important role in the disappearance of Daphnia in 1990 and 2000 either through predation, inducing diapause, or both. ?? 2007 Springer Science+Business Media B.V.

  7. 78 FR 33433 - Bear Lake National Wildlife Refuge, Bear Lake County, ID, and Oxford Slough Waterfowl Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Fish and Wildlife Service Bear Lake National Wildlife Refuge, Bear Lake County, ID, and Oxford Slough... Assessment (EA) for the Bear Lake National Wildlife Refuge (NWR, refuge), 7 miles south of Montpelier, Idaho... ``Bear Lake NWR CCP'' in the subject line of the message. U.S. Mail: Annette de Knijf, Refuge Manager...

  8. Hydrologic and suspended-sediment data for Reelfoot Lake, Obion and Lake Counties, northwestern Tennessee, May 1985-September 1986

    USGS Publications Warehouse

    Garrett, J.W.

    1988-01-01

    Hydrologic data for Reelfoot Lake in Obion and Lake Counties, Tennessee, were collected at 4 surface water inflow stations, 1 outflow station, 2 rainfall stations, 2 lake elevation stations, and 29 wells for the period May 1, 1985 through September 30, 1986. Additionally, suspended-sediment data were collected at three stations on two of the major tributaries to the lake. (USGS)

  9. Hydrologic considerations in dewatering and refilling Lake Carlton : Orange and Lake Counties, Florida

    USGS Publications Warehouse

    Anderson, Warren; Hughes, G.H.

    1977-01-01

    Lake Carlton straddles the line between Lake and Orange Counties in central Florida. The 382-acre lake is highly eutrophic and subject to virtually perpetual algal blooms. The Florida Game and Fresh Water Fish Commission has proposed to restore the lake to a less eutrophic state by dewatering the lake long enough to allow the muck on its bottom to dry and compact. Lake Carlton would be permanently sealed off from Lake Carlton. On the assumption that the seasonal rainfall would be normal, and that the dewatering phase would begin on March 1, the predicted time required to dewater the lake at a pumping rate of 50,000 gpm (gallons per minute) is 21 days. The average rate of pumping required to maintain the lake in a dewatered condition is computed to be 2,400 gpm. If pumping is ended May 31, the predicted altitude to which the lake would recover by October 31 as a result of net natural input is 56.2 feet above sea level. Raising the lake level to 63 feet above sea level by October 31 would require that the net natural input be supplemented at an average rate of about 4,860 gpm between May 31 and October 31. (Woodard-USGS)

  10. Development of Turbulent Diffusion Transfer Model to Estimate Hydrologic Budget of Upper Klamath Lake Oregon, USA

    NASA Astrophysics Data System (ADS)

    Sahoo, G. B.; Schladow, G.

    2013-12-01

    Detailed and accurate hydrologic budgets of lake or reservoirs are essential for sustainable water supply and ecosystem managements due to increasing water demand and uncertainties related to climate change. Ensuring sustainable water allocation to stakeholders requires accurate heat and hydrologic budgets. A number of micrometeorological methods have been developed to approximate heat budget components, such as evaporative and sensible heat loss, that are not directly measurable. Although micrometeorological methods estimate the sensible and evaporative loss well for stationary (i.e. ideal) condition, these methods can rarely be approximated for non-idealized condition. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ), developed at UC Davis, with the goal of correctly estimating the hydrologic budget of Upper Klamath Lake Oregon, USA. The measured and DLM-WQ estimated lake water temperatures and water elevation are in excellent agreement with correlation coefficient equals 0.95 and 0.99, respectively. Consistent with previous studies, the sensible and latent heat exchange coefficients were found to be site specific. Estimated lake mixing shows that the lake became strongly stratified during summer (between late April and the end of August). For the hypereutrophic shallow Upper Klamath Lake, longer stratification results in low dissolved oxygen (DO) concentration at the sediment surface causing DO sensitive habitat destruction and ecological problems. The updated DLM-WQ can provide quantitative estimates of hydrologic components and predict the effects of natural- or human-induced changes in one component of the hydrologic cycle on the lake supplies and associated consequences.

  11. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  12. Long-term limnological research and monitoring at Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Collier, R.; Buktenica, M.

    2007-01-01

    Crater Lake is located in the caldera of Mount Mazama in Crater Lake National Park, Oregon. The lake has a surface area of about 53 km2at an elevation of 1882 m and a maximum depth of 594 m. Limited studies of this ultraoligotrophic lake conducted between 1896 and 1981, lead to a 10-year limnological study to evaluate any potential degradation of water quality. No long-term variations in water quality were observed that could be attributed to anthropogenic activity. Building on the success of this study, a permanent limnological program has been established with a long-term monitoring program to insure a reliable data base for use in the future. Of equal importance, this program serves as a research platform to develop and communicate to the public a better understanding of the coupled biological, physical, and geochemical processes in the lake and its surrounding environment. This special volume represents our current state of knowledge of the status of this pristine ecosystem including its special optical properties, algal nutrient limitations, pelagic bacteria, and models of the inter-relationships of thermal properties, nutrients, phytoplankton, deep-water mixing, and water budgets. ?? 2007 Springer Science+Business Media B.V.

  13. 40 CFR 81.338 - Oregon.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Malheur County Morrow County Umatilla County Union County Wallowa County Wheeler County AQCR 192 Northwest... County Wallowa County Wheeler County AQCR 192 Northwest Oregon Intrastate Unclassifiable/Attainment... Harney County Malheur County Morrow County Umatilla County Union County Wallowa County Wheeler County...

  14. Map showing geochemical characteristics of the North Fork Smith River Roadless Areas, Del Norte County, California, Curry and Josephine Counties, Oregon

    USGS Publications Warehouse

    Page, Norman J; Carlson, Carl A.; Gray, Floyd; Carlson, R.A.; Briggs, P.H.; Haffty, Joseph; Cooley, E.F.

    1985-01-01

    The North Fork Smith River Roadless Areas are located primarily in Del Norte County, northern California, include small parts of Curry and Josephine Counties, Oreg., and cover parts of the Gasquet, Crescent City, and Chetco Peak 15-minute quadrangles. The areas encompass aproximately 39,400 acres of Six rivers National Forest and 950 acres of Siskiyou National Forest and extend from just north of the California-Oregon border southward about 6 mi to the town of Gasquet, Calif. (fig. 1).

  15. Hulah Lake: Survey and Evaluation of Cultural Resources at Hulah Lake, Osage County, Oklahoma

    DTIC Science & Technology

    1987-12-01

    1985c:327). The Bryson - Paddock and Deer Creek sites in Kay County are two Witchita villages visited by Claude Du Tisne in 1719 (Bell 1984:364). European...This is evidenced by the historic material recovered from such sites as Deer Creek, Bryson and Love located west of the project area near Kaw Reservoir...extra shoreline areas of Hulah Lake, Osage County, Oklahoma resulted in the discovery of 22 new sites and the rediscovery of 3 previously recorded

  16. Hydrology of Crater, East and Davis Lakes, Oregon; with section on Chemistry of the Lakes

    USGS Publications Warehouse

    Phillips, Kenneth N.; Van Denburgh, A.S.

    1968-01-01

    Crater, East, and Davis Lakes are small bodies of fresh water that occupy topographically closed basins in Holocene volcanic terrane. Because the annual water supply exceeds annual evaporation, water must be lost by seepage from each lake. The seepage rates vary widely both in volume and in percentage of the total water supply. Crater Lake loses about 89 cfs (cubic feet per second), equivalent to about 72 percent of its average annual supply. East Lake loses about 2.3 cfs, or about 44 percent of its estimated supply. Davis Lake seepage varies greatly with lake level, but the average loss is about 150 cfs, more than 90 percent of its total supply. The destination of the seepage loss is not definitely known for any of the lakes. An approximate water budget was computed for stationary level for each lake, by using estimates 'by the writer to supplement the hydrologic data available. The three lake waters are dilute. Crater Lake contains about 80 ppm, (parts per million) of dissolved solids---mostly silica, sodium, and bicarbonate, and lesser amounts of calcium, sulfate, and chloride. Much of the dissolved-solids content of Crater Lake---especially the sulfate and chloride---may be related to fumarole and thermal-spring activity that presumably followed the collapse of Mount Mazama. Although Grater Lake loses an estimated 7,000 tons of its 1.5million-ton salt content each year by leakage, the chemical character of the lake did not change appreciably between 1912 and 1964. East Lake contains 200 ppm of dissolved solids, which includes major proportions of calcium, sodium, bicarbonate, and sulfate, but almost no chloride. The lake apparently receives much of its dissolved solids from subsurface thermal springs. Annual solute loss from East Lake by leakage is about 450 tons, or 3 percent of the lake's 15,000-ton estimated solute content. Davis Lake contains only 48 ppm of dissolved solids, much of which is silica and bicarbonate; chloride is almost completely absent

  17. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    USGS Publications Warehouse

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  18. Role of storms and forestry practices in sedimentation in an Oregon Coast Range Lake

    NASA Astrophysics Data System (ADS)

    Guerrero, F. J.; Richardson, K.; Hatten, J. A.; Wheatcroft, R. A.

    2015-12-01

    Contemporary harvesting practices have been shown to reduce sediment transport rates relative to historic practices; however, it is not well understood how these practices interact with climate to influence sediment flux and source. We are currently studying sedimentation rates in Loon Lake, in the Oregon Coast Range. The watershed of Loon Lake is 80% privately owned, and is therefore an ideal system for examining the effect of policy affected management shifts on water quality and sediment transport. We analyzed one 690cm core that represents about 1500yrs of sedimentation in the lake. We measured accumulation by layer thickness and character by proxies of elemental analysis, magnetic susceptibility, particle size, and bulk density. Radionuclides and radiocarbon dates provide an age model with depth downcore. Our preliminary results show that there is some evidence that the sedimentation rate in the lake decreased around the time of passing of the Oregon Forest Practices Act when climate is taken into account; pre-OFPA, the estimated mean sedimentation rate was 1.0 cm/year, and post-OFPA, the estimated mean sedimentation rate was 0.76 cm/year. Both of these sedimentation rates appear to be different than pre-European settlement period which averaged about 0.40 cm/year; however, this conclusion is preliminary. In general, it seems there is some evidence that the Best Management Practices instituted with OFPA are associated with lower sedimentation rates. In our presentation we will discuss the role of forestry and climate in changing these sedimentation rates and compare these modern sedimentation rates with sedimentation in the pre-settlement period.

  19. 78 FR 45270 - Notice of Realty Action; Proposed Modified Competitive Sale of Public Land in Jackson County, Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... Bureau of Land Management Notice of Realty Action; Proposed Modified Competitive Sale of Public Land in Jackson County, Oregon AGENCY: Bureau of Land Management, Interior. ACTION: Notice of realty action. SUMMARY: The Bureau of Land Management (BLM) proposes to sell a 9.26 acre parcel of public land in...

  20. 78 FR 24231 - Notice of Realty Action: Proposed Direct Sale of Public Land in Josephine County, Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... Bureau of Land Management Notice of Realty Action: Proposed Direct Sale of Public Land in Josephine County, Oregon AGENCY: Bureau of Land Management, Interior. ACTION: Notice of realty action. SUMMARY: The Bureau of Land Management (BLM) proposes to sell a 0.66- acre parcel of public land in Josephine...

  1. A Profile of Oregon Counties: Human Resources, Educational, and Economic Indicators Associated with Young Children and Families.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Student Services Section.

    This profile of counties in Oregon covers factors that may predispose youth to grow up at risk of dropping out of high school or not acquiring the skills needed for adult life. The profile presents data on human resources and educational and economic indicators that were collected from state agencies and organizations. For the state as a whole,…

  2. Coyote Springs Cogeneration Project, Morrow County, Oregon: Draft Environmental Impact Statement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1994-01-01

    BPA is considering whether to transfer (wheel) electrical power from a proposed privately-owned, combustion-turbine electrical generation plant in Oregon. The plant would be fired by natural gas and would use combined-cycle technology to generate up to 440 average megawatts (aMW) of energy. The plant would be developed, owned, and operated by Portland General Electric Company (PGE). The project would be built in eastern Oregon, just east of the City of Boardman in Morrow County. The proposed plant would be built on a site within the Port of Morrow Industrial Park. The proposed use for the site is consistent with the County land use plan. Building the transmission line needed to interconnect the power plant to BPA`s transmission system would require a variance from Morrow County. BPA would transfer power from the plant to its McNary-Slatt 500-kV transmission line. PGE would pay BPA for wheeling services. Key environmental concerns identified in the scoping process and evaluated in the draft Environmental Impact Statement (DEIS) include these potential impacts: (1) air quality impacts, such as emissions and their contributions to the {open_quotes}greenhouse{close_quotes} effect; (2) health and safety impacts, such as effects of electric and magnetic fields, (3) noise impacts, (4) farmland impacts, (5) water vapor impacts to transportation, (6) economic development and employment impacts, (7) visual impacts, (8) consistency with local comprehensive plans, and (9) water quality and supply impacts, such as the amount of wastewater discharged, and the source and amount of water required to operate the plant. These and other issues are discussed in the DEIS. The proposed project includes features designed to reduce environmental impacts. Based on studies completed for the DEIS, adverse environmental impacts associated with the proposed project were identified, and no evidence emerged to suggest that the proposed action is controversial.

  3. Clay mineralogy of Pleistocene Lake Tecopa, Inyo County, California

    USGS Publications Warehouse

    Starkey, Harry C.; Blackmon, Paul D.

    1979-01-01

    Pleistocene Lake Tecopa in southeastern Inyo County, Calif., was formed when the Amargosa River was blocked at the southern end of its valley. The lake acted as a settling basin for detrital material being transported by the river. This detritus consisted of clays, quartz, feldspars, and micas which became mudstones and siltstones. These mudstones and siltstones, much eroded and dissected after the draining of the lake, extend over the entire basin and are interbedded with tuffs formed by the intermittent deposition of volcanic ashfalls in the former lake waters. These lightcolored mudstones and siltstones are tough and well indurated and break with a conchoidal fracture. The predominant clay mineral in these detrital beds is a lithiumbearing saponite, which is found not only in the lake beds but also in the area beyond the boundaries of the lake, especially in fluvial deposits in the drainage basin of the Amargosa River to the north. This saponite does not contain enough lithium to be classified as a hectorite, and we have observed no indications that this clay consists of a mixture of two phases, such as hectorite and a diluent. Some authigenic dioctahedral montmorillonite, found only in small quantities close to the tuffs, was formed by alteration of the volcanic glass of the tuffs and was then admixed with the overlying or underlying detrital clays. The only authigenic clay-type mineral found in any significant quantity is sepiolite, found near the edges of the lake basin and stratigraphically located mainly within a meter of the two uppermost tuffs. This sepiolite probably was precipitated when silica became available to the magnesium-bearing lake water through dissolution of the volcanic ash. Precipitation of sepiolite probably did not occur within the tuffs owing to the presence of alumina in solution. Zeolites were produced there and sepiolite formed outside the margins of the tuffs. Also formed by the high-pH lake waters were water-soluble minerals, which

  4. Debris flow from 2012 failure of moraine-dammed lake, Three Fingered Jack volcano, Mount Jefferson Wilderness, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Wills, Barton B.

    2014-01-01

    The Three Fingered Jack debris flow is one of several that have issued from moraine-dammed lakes in the Oregon Cascade Range. A thorough summary of those lakes and the hazards associated with them was published in 2001, based largely on fieldwork by Jim O’Connor and Jasper Hardison in the early 1990s. Described here are details of the 2012 event, an update to the O’Connor story begun earlier.

  5. Multibeam Sonar Mapping and Modeling of a Submerged Bryophyte Mat in Crater Lake, Oregon

    USGS Publications Warehouse

    Dartnell, Peter; Collier, Robert; Buktenica, Mark; Jessup, Steven; Girdner, Scott; Triezenberg, Peter

    2008-01-01

    Traditionally, multibeam data have been used to map sea floor or lake floor morphology as well as the distribution of surficial facies in order to characterize the geologic component of benthic habitats. In addition to using multibeam data for geologic studies, we want to determine if these data can also be used directly to map the distribution of biota. Multibeam bathymetry and acoustic backscatter data collected in Crater Lake, Oregon, in 2000 are used to map the distribution of a deep-water bryophyte mat, which will be extremely useful for understanding the overall ecology of the lake. To map the bryophyte's distribution, depth range, acoustic backscatter intensity, and derived bathymetric index grids are used as inputs into a hierarchical decision-tree classification model. Observations of the bryophyte mat from over 23 line kilometers of lake-floor video collected in the summer of 2006 are used as controls for the model. The resulting map matches well with ground-truth information and shows that the bryophyte mat covers most of the platform surrounding Wizard Island as well as on outcrops around the caldera wall.

  6. Hydroclimatic and landscape controls on phosphorus loads to hypereutrophic Upper Klamath Lake, Oregon, United States

    NASA Astrophysics Data System (ADS)

    Records, R.; Fassnacht, S. R.; Arabi, M.; Duffy, W. G.

    2014-12-01

    Elevated total phosphorus (P) loading into Upper Klamath Lake, southern Oregon, United States has caused hypereutrophic conditions impacting endangered lake fish species. Increases in P loading have been attributed to land use changes, such as timber harvest and wetland drainage. The contribution of P to Upper Klamath Lake has been estimated from each major tributary, yet little research has explored what land use or other variables have most influence on P loading within the tributaries. In addition, previous work has shown a range of potential hydroclimatic shifts by the 2040s, with potential to alter P loading mechanisms. In this study, we use statistical methods including principle component analysis and multiple linear regression to determine what hydroclimatic and landscape variables best explain flow-weighted P concentration in the Sprague River, one of three main tributaries to Upper Klamath Lake. Identification of key variables affecting P loading has direct implications for management decisions in the Upper Klamath River Basin. Increases in P loading related to sediment loading are due to bank and upslope erosion. The former is more prevalent in areas of historic channel alteration and cattle grazing, while the latter is more dominant in areas of heavy timber harvesting and more precipitation as rain.

  7. Neotectonic analysis of upper klamath lake, oregon: New insights from seismic reflection data

    USGS Publications Warehouse

    Liberty, L.M.; Pratt, T.L.; Lyle, M.; Madin, I.P.

    2009-01-01

    We present marine high-resolution seismic reflection data from Upper Klamath Lake, Oregon, to discern the underlying structure and estimate Quaternary slip rates in this actively extending Basin and Range system. The sediment patterns and structures imaged on our seismic profiles reveal a complex geologic system that reflects a changing climate record, shallow water conditions, growth faulting, contrasting sediment sources, and high slip rates. We observe that Upper Klamath Lake is a sedimentsaturated environment, and sediment accumulation rates are therefore controlled by basin subsidence rather than sediment supply. Published slip rates for Holocene extension are greater than our determined late Quaternary slip rates, assuming reasonable rates of deposition. The apparent increased Holocene fault-slip rates may be in part an artifact of long recurrence intervals between major earthquakes, with recent seismicity accommodating long-term strain. The quantity of observed faults below the lake is at least an order of magnitude greater than those mapped outside the lake, suggesting that many hidden faults throughout the region may be unaccounted for when estimating Basin and Range extension rates. Copyright ?? 2009 The Geological Society of America. All rights reserved.

  8. Archaeological Survey of the Lewisville Lake Shoreline, Denton County, Texas

    DTIC Science & Technology

    1990-01-01

    within an abandoned park that has a boat ramp, sandy ridges paralleling the Elm Fork proximal to the outhouse, concrete grills, and picnic tables...County in 1851 and settled at New Al---. This town boats sporadically serviced early settlements on the was located a short distance down Hickory...Missouri, Kansas, and Texas railroad tracks. It Is Lewisville Lake Park. A boat ramp occurs 2 m west of situated at the head of a steep draw at a point

  9. Water resources of Lake and Moody counties, South Dakota

    USGS Publications Warehouse

    Hansen, D.S.

    1986-01-01

    The primary sources of surface water in Lake and Moody Counties are the Big Sioux River and its intermittent tributaries, and Lakes Herman, Madison, and Brant. Seasonal variations in streamflow and lake levels are directly related to seasonal variations in precipitation. Dissolved-solids concentration in water from streams and lakes increases as streamflow decreases and lake levels decline. Eight glacial aquifers and four bedrock aquifers were delineated in Lake and Moody Counties. The Big Sioux, North Skunk Creek, Pipestone Creek, Battle Creek, and East Fork Vermillion aquifers are composed of glacial outwash. These aquifers are less than 60 feet below land surface, and are in hydraulic connection with the river or creek of the same name. The Rutland, Ramona, and Howard aquifers are composed of glacial outwash and are overlain by 50 to 470 feet of till. The four bedrock aquifers are the Niobrara, Codell, Dakota, and Quartzite wash. The average thickness of the Big Sioux, Pipestone Creek, North Skunk Creek, Battle Creek, and East Fork Vermillion aquifers ranges from 14 feet for the Battle Creek aquifer to 39 feet for the North Skunk Creek aquifer. The average thickness of the Rutland, Ramona, and Howard aquifers ranges from 18 feet for the Ramona aquifer to 40 feet for the Howard aquifer. Predominant chemical constituents in water from the Big Sioux, North Skunk Creek, and Pipestone Creek aquifers are calcium and bicarbonate. Predominant chemical constituents in the Battle Creek and East Fork Vermillion aquifers are calcium and sulfate. Predominant chemical constituents in water from the Rutland, Ramona, and Howard aquifers are calcium, sulfate and biocarbonate. The average thickness of the four bedrock aquifers ranges from 60 to 400 feet. The aquifers are under artesian conditions. Predominant chemical constituents in water from the Niobrara aquifer are calcium, sodium, and sulfate; from the Codell and Dakota aquifers are sodium and sulfate; and from the Quartzite

  10. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  11. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    Treesearch

    Megan K. Walsh; Christopher A. Pearl; Cathy Whitlock; Patrick J. Bartlein; Marc A. Worona

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11 000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11 000-7500 calendar years before present [cal yr BP]), warmer, drier summers than at...

  12. Bathymetry of Lake Manatee, Manatee County, Florida, 2009

    USGS Publications Warehouse

    Bellino, Jason C.; Pfeiffer, William R.

    2010-01-01

    Lake Manatee, located in central Manatee County, Florida, is the principal drinking-water source for Manatee and Sarasota Counties. The drainage basin of Lake Manatee encompasses about 120 square miles, and the reservoir covers a surface area of about 1,450 acres at an elevation of 38.8 feet above NAVD 88 or 39.7 feet above NGVD 29. The full pool water-surface elevation is 39.1 feet above NAVD 88 (40.0 feet above NGVD 29), and the estimated minimum usable elevation is 25.1 feet above NAVD 88 (26.0 feet above NGVD 29). The minimum usable elevation is based on the elevation of water intake structures. Manatee County has used the stage/volume relation that was developed from the original survey in the 1960s to estimate the volume of water available for consumption. Concerns about potential changes in storage capacity of the Lake Manatee reservoir, coupled with a recent drought, led to this bathymetry mapping effort.

  13. Timber resource statistics for eastern Oregon, 1999.

    Treesearch

    David L. Azuma; Paul A. Dunham; Bruce A. Hiserote; Charles F. Veneklase

    2004-01-01

    This report is a summary of timber resource statistics for eastern Oregon, which includes Baker, Crook, Deschutes, Gilliam, Grant, Harney, Jefferson, Klamath, Lake, Malheur, Morrow, Sherman, Umatilla, Union, Wallowa, Wasco, and Wheeler Counties. Data were collected as part of a statewide multiresource inventory. The inventory sampled all private and public lands except...

  14. Geologic Map of the Camas Quadrangle, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.

    2008-01-01

    The Camas 7.5' quadrangle is in southwestern Washington and northwestern Oregon approximately 20 km east of Portland. The map area, bisected by the Columbia River, lies on the eastern margin of the Portland Basin, which is part of the Puget-Willamette Lowland that separates the Cascade Range from the Oregon Coast Range. Since late Eocene time, the Cascade Range has been the locus of an episodically active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Bedrock consists largely of basalt and basaltic andesite flows that erupted during late Oligocene time from one or more vents located outside the map area. These rocks crop out only north of the Columbia River: at the base of Prune Hill in Camas, where they dip southward at about 5?; and east of Lacamas Creek, where they dip to the southeast at 15 to 30?. The volcanic bedrock is unconformably overlain by Neogene sediments that accumulated as the Portland Basin subsided. In the Camas quadrangle, most of these sediments consist of basaltic hyaloclastic debris generated in the volcanic arc to the east and carried into the Portland Basin by the ancestral Columbia River. The dominant structures in the map area are northwest-striking dextral strike-slip faults that offset the Paleogene basin floor as well as the lower part of the basin fill. The Oligocene rocks at Prune Hill and to the east were uplifted in late Pliocene to early Pleistocene time within a restraining bend along one of these dextral faults. In Pleistocene time, basaltic andesite flows issued from a volcano centered on the west side of Prune Hill; another flow entered the map area from the east. These flows are part of the Boring volcanic field, which comprises several dozen late Pliocene and younger monogenetic volcanoes scattered throughout the greater Portland region. In latest Pleistocene time, the Missoula floods of glacial-outburst origin inundated the Portland

  15. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005

    USGS Publications Warehouse

    Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.

    2008-01-01

    During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow

  16. Role of storms and forest practices in sedimentation of an Oregon Coast Range lake

    NASA Astrophysics Data System (ADS)

    Richardson, K.; Hatten, J. A.; Wheatcroft, R. A.; Guerrero, F. J.

    2014-12-01

    The design of better management practices in forested watersheds to face climate change and the associated increase in the frequency of extreme events requires a better understanding of watershed responses to extreme events in the past and also under management regimes. One of the most sensitive watershed processes affected is sediment yield. Lake sediments record events which occur in a watershed and provide an opportunity to examine the interaction of storms and forest management practices in the layers of the stratigraphy. We hypothesize that timber harvesting and road building since the 1900s has resulted in increases in sedimentation; however, the passage of the Oregon Forest Practices Act (OFPA) in 1972 has led to a decrease in sedimentation. Sediment cores were taken at Loon Lake in the Oregon Coast Range. The 32-m deep lake captures sediment from a catchment highly impacted by recent land use and episodic Pacific storms. We can use sedimentological tools to measure changes in sediment production as motivated by extreme floods before settlement, during a major timber harvesting period, and after installation of forestry Best Management Practices. Quantification of changes in particle size and elemental composition (C, N, C/N) throughout the cores can elucidate changes in watershed response to extreme events, as can changes in layer thickness. Age control in the cores is being established by Cesium-137 and radiocarbon dating. Given the instrumental meteorological data and decadal climate reconstructions, we will disentangle climate driven signals from changes in land use practices. The sediment shows distinct laminations and varying thickness of layers throughout the cores. Background deposition is composed of thin layers (<0.5 cm) of fine silts and clays, punctuated by thicker layers (3-25 cm) every 10 to 75 cm. These thick layers consist of distinctly textured units, generally fining upward. We interpret the thick layers in Loon Lake to be deposited by

  17. Geologic Map of the Saint Helens Quadrangle, Columbia County, Oregon, and Clark and Cowlitz Counties, Washington

    USGS Publications Warehouse

    Evarts, Russell C.

    2004-01-01

    The Saint Helens 7.5' quadrangle is situated in the Puget-Willamette Lowland approximately 35 km north Portland, Oregon. The lowland, which extends from Puget Sound into west-central Oregon, is a complex structural and topographic trough that lies between the Coast Range and the Cascade Range. Since late Eocene time, Cascade Range has been the locus of a discontinuously active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. The Coast Range occupies the forearc position within the Cascadia arc-trench system and consists of a complex assemblage of Eocene to Miocene volcanic and marine sedimentary rocks. The Saint Helens quadrangle lies in the northern part of the Portland Basin, a roughly 2000-km2 topographic and structural depression. It is the northernmost of several sediment-filled structural basins that collectively constitute the Willamette Valley segment of the Puget-Willamette Lowland (Beeson and others, 1989; Swanson and others, 1993; Yeats and others, 1996). The rhomboidal basin is approximately 70 km long and 30 km wide, with its long dimension oriented northwest. The Columbia River flows west and north through the Portland Basin at an elevation near sea level and exits through a confined bedrock valley less than 2.5 km wide about 16 km north of Saint Helens. The flanks of the basin consist of Eocene through Miocene volcanic and sedimentary rocks that rise to elevations exceeding 2000 ft (610 m). Seismic-reflection profiles (L.M. Liberty, written commun., 2003) and lithologic logs of water wells (Swanson and others, 1993; Mabey and Madin, 1995) indicate that as much as 550 m of late Miocene and younger sediments have accumulated in the deepest part of the basin near Vancouver. Most of this basin-fill material was carried in from the east by the Columbia River but contributions from streams draining the adjacent highlands are locally important. The Portland Basin has

  18. Limnological and climatic environments at Upper Klamath Lake, Oregon during the past 45 000 years

    USGS Publications Warehouse

    Bradbury, J.P.; Colman, Steven M.; Dean, W.E.

    2004-01-01

    Upper Klamath Lake, in south-central Oregon, contains long sediment records with well-preserved diatoms and lithological variations that reflect climate-induced limnological changes. These sediment archives complement and extend high resolution terrestrial records along a north-south transect that includes areas influenced by the Aleutian Low and Subtropical High, which control both marine and continental climates in the western United States. The longest and oldest core collected in this study came from the southwest margin of the lake at Caledonia Marsh, and was dated by radiocarbon and tephrochronology to an age of about 45 ka. Paleolimnological interpretations of this core, based upon geochemical and diatom analyses, have been augmented by data from a short core collected from open water environments at nearby Howards Bay and from a 9-m core extending to 15 ka raised from the center of the northwestern part of Upper Klamath Lake. Pre- and full-glacial intervals of the Caledonia Marsh core are characterized and dominated by lithic detrital material. Planktic diatom taxa characteristic of cold-water habitats (Aulacoseira subarctica and A. islandica) alternate with warm-water planktic diatoms (A. ambigua) between 45 and 23 ka, documenting climate changes at millennial scales during oxygen isotope stage (OIS) 3. The full-glacial interval contains mostly cold-water planktic, benthic, and reworked Pliocene lacustrine diatoms (from the surrounding Yonna Formation) that document shallow water conditions in a cold, windy environment. After 15 ka, diatom productivity increased. Organic carbon and biogenic silica became significant sediment components and diatoms that live in the lake today, indicative of warm, eutrophic water, became prominent. Lake levels fell during the mid-Holocene and marsh environments extended over the core site. This interval is characterized by high levels of organic carbon from emergent aquatic vegetation (Scirpus) and by the Mazama ash (7.55 ka

  19. Technical evaluation of a total maximum daily load model for Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Wherry, Susan A.; Carter, James L.; Kuwabara, James S.; Simon, Nancy S.; Rounds, Stewart A.

    2013-01-01

    We reviewed a mass balance model developed in 2001 that guided establishment of the phosphorus total maximum daily load (TMDL) for Upper Klamath and Agency Lakes, Oregon. The purpose of the review was to evaluate the strengths and weaknesses of the model and to determine whether improvements could be made using information derived from studies since the model was first developed. The new data have contributed to the understanding of processes in the lakes, particularly internal loading of phosphorus from sediment, and include measurements of diffusive fluxes of phosphorus from the bottom sediments, groundwater advection, desorption from iron oxides at high pH in a laboratory setting, and estimates of fluxes of phosphorus bound to iron and aluminum oxides. None of these processes in isolation, however, is large enough to account for the episodically high values of whole-lake internal loading calculated from a mass balance, which can range from 10 to 20 milligrams per square meter per day for short periods. The possible role of benthic invertebrates in lake sediments in the internal loading of phosphorus in the lake has become apparent since the development of the TMDL model. Benthic invertebrates can increase diffusive fluxes several-fold through bioturbation and biodiffusion, and, if the invertebrates are bottom feeders, they can recycle phosphorus to the water column through metabolic excretion. These organisms have high densities (1,822–62,178 individuals per square meter) in Upper Klamath Lake. Conversion of the mean density of tubificid worms (Oligochaeta) and chironomid midges (Diptera), two of the dominant taxa, to an areal flux rate based on laboratory measurements of metabolic excretion of two abundant species suggested that excretion by benthic invertebrates is at least as important as any of the other identified processes for internal loading to the water column. Data from sediment cores collected around Upper Klamath Lake since the development of the

  20. Hydrology, water quality, and nutrient loads to Lake Catherine and Channel Lake, near Antioch, Lake County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Johnson, Gary P.; Schrader, David L.

    2000-01-01

    From April 21, 1998, through April 30, 1999, the U.S. Geological Survey, in cooperation with the Fox Waterway Agency, conducted an investigation designed to characterize the hydrology, water quality, hydrologic budget, sediment budget, and nutrient budget of Lake Catherine and Channel Lake, Lake County, Illinois. These lakes are the northernmost lakes of the Fox Chain of Lakes. Lake Catherine and Channel Lake are divided into two basins by a submerged ridge but are continuous at the surface. The lakes are marginally to moderately eutrophic. Lake Catherine and Channel Lake have a combined volume of 7,098 acre-feet at a stage of about 736.5 feet above sea level. Lake Catherine and Channel Lake are subject to thermal stratification. Although most of the water in the lakes is well oxidized, nearly anoxic conditions were present at the bottom of Lake Catherine and Channel Lake during part of the summer in 1998. Water enters Lake Catherine and Channel Lake as inflow from surface water in the watershed (61.9 percent), inflow through the State Highway 173 bridge openings (20.7 percent), direct precipitation (8.2 percent), inflow from storm drains (7.2 percent), and inflow of ground water (2.0 percent). Water exits Lake Catherine and Channel Lake as outflow through the State Highway 173 bridge openings (87.8 percent), evaporation (7.2 percent), and as outflow to ground water (5.0 percent). About 5,200 pounds of phosphorus and 107,200 pounds of nitrogen compounds were added to the lakes during the period of investigation. Phosphorus compounds were derived from primarily internal regeneration (40.2 percent), inflow from surface water in the watershed (30.9 percent), inflow from storm drains (12.5 percent), and inflow through the State Highway 173 bridge openings (9.8 percent). Inflowing ground water, waterfowl excrement, precipitation, and atmospheric deposition of particulate matter account for 6.6 percent of the phosphorus load. Nitrogen was derived from inflow of surface

  1. Fate and behavior of rotenone in Diamond Lake, Oregon, USA following invasive tui chub eradication.

    PubMed

    Finlayson, Brian J; Eilers, Joseph M; Huchko, Holly A

    2014-07-01

    In September 2006, Diamond Lake (OR, USA) was treated by the Oregon Department of Fish and Wildlife with a mixture of powdered and liquid rotenone in the successful eradication of invasive tui chub Gila bicolor. During treatment, the lake was in the middle of a phytoplankton (including cyanobacteria Anabaena sp.) bloom, resulting in an elevated pH of 9.7. Dissipation of rotenone and its major metabolite rotenolone from water, sediment, and macrophytes was monitored. Rotenone dissipated quickly from Diamond Lake water; approximately 75% was gone within 2 d, and the average half-life (t½) value, estimated by using first-order kinetics, was 4.5 d. Rotenolone persisted longer (>46 d) with a short-term t½ value of 16.2 d. Neither compound was found in groundwater, sediments, or macrophytes. The dissipation of rotenone and rotenolone appeared to occur in 2 stages, which was possibly the result of a release of both compounds from decaying phytoplankton following their initial dissipation. Fisheries managers applying rotenone for fish eradication in lentic environments should consider the following to maximize efficacy and regulatory compliance: 1) treat at a minimum of twice the minimum dose demonstrated for complete mortality of the target species and possibly higher depending on the site's water pH and algae abundance, and 2) implement a program that closely monitors rotenone concentrations in the posttreatment management of a treated water body. © 2014 SETAC.

  2. Effects of ambient water quality on the endangered Lost River sucker in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Martin, B.A.; Saiki, M.K.

    1999-01-01

    Populations of the Lost River sucker Deltistes luxatus have declined so precipitously in the Upper Klamath Basin of Oregon and California that this fish was recently listed for federal protection as an endangered species. Although Upper Klamath Lake is a major refuge for this species, fish in the lake occasionally experience mass mortalities during summer and early fall. This field study was implemented to determine if fish mortalities resulted from degraded water quality conditions associated with seasonal blooms of phytoplankton, especially Aphanizomenon flos-aquae. Our results indicated that fish mortality did not always increase as water temperature, pH, and un-ionized ammonia concentration increased in Upper Klamath Lake. Little or no mortality occurred when these water quality variables attained their maximum values. On the other hand, an inverse relation existed between fish mortality and dissolved oxygen concentration. High mortality (>90%) occurred whenever dissolved oxygen concentrations decreased to 1.05 mg/L, whereas mortality was usually low (< 10%) when dissolved oxygen concentrations equaled or exceeded 1.58 mg/L. Stepwise logistic regression also indicated that the minimum concentration of dissolved oxygen measured was the single most important determinant of fish mortality.

  3. Microbial transformations in Alkali Lake, Oregon. Final report, 1 Aug 88-31 Jul 91

    SciTech Connect

    Boone, D.R.

    1991-01-01

    An examination was made of the terminal metabolic processes in subsurface sediments near West Alkali Lake, Oregon, by performing microbial counts of methanogenic bacteria and isolating the predominant methanogenic culture. This methanogen was characterized and found to be physiologically and phylogenetically different from other described strains, so it represents a previously undescribed species of bacterium, which was named 'Methanohalophilus oregonensis'. In contrast to published descriptions of many other methanogens which have been isolated from hypersaline environments, this one is halotolerant rather than halophilic. Another important characteristic of this organism is that it is capable of catabolizing dimethylsulfide or methanethiol. This ability is important because these methylated sulfur compounds are major conduits by which sulfur moves between the atmosphere and terrestrial and aquatic ecosystems. Phylogenetic comparisons to known methanogens showed that this strain is closely related to another methanogen, 'Methanolobus siciliae' T4/M which was named but not described.

  4. Environmental influences on children's physical activity and eating habits in a rural Oregon County.

    PubMed

    Findholt, Nancy E; Michael, Yvonne L; Jerofke, Linda J; Brogoitti, Victoria W

    2011-01-01

    PURPOSE. To identify environmental barriers and facilitators of children's physical activity and healthy eating in a rural county. DESIGN. Community-based participatory research using mixed methods, primarily qualitative. SETTING. A rural Oregon county. SUBJECTS. Ninety-five adults, 6 high school students, and 41 fifth-grade students. MEASURES. In-depth interviews, focus groups, Photovoice, and structured observations using the Physical Activity Resource Assessment, System for Observing Play and Leisure Activity, Community Food Security Assessment Toolkit, and School Food and Beverage Marketing Assessment Tool. ANALYSIS. Qualitative data were coded by investigators; observational data were analyzed using descriptive statistics. The findings were triangulated to produce a composite of environmental barriers and assets. RESULTS. Limited recreational resources, street-related hazards, fear of strangers, inadequate physical education, and denial of recess hindered physical activity, whereas popularity of youth sports and proximity to natural areas promoted physical activity. Limited availability and high cost of healthy food, busy lifestyles, convenience stores near schools, few healthy meal choices at school, children's being permitted to bring snacks to school, candy used as incentives, and teachers' modeling unhealthy eating habits hindered healthy eating, whereas the agricultural setting and popularity of gardening promoted healthy eating. CONCLUSIONS. This study provides data on a neglected area of research, namely environmental determinants of rural childhood obesity, and points to the need for multifaceted and multilevel environmental change interventions.

  5. Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099

    USGS Publications Warehouse

    Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F

    2016-05-04

    The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by

  6. Geologic map of the Vancouver and Orchards quadrangles and parts of the Portland and Mount Tabor quadrangles, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Cannon, Charles M.; Mangano, Joseph F.; Evarts, Russell C.

    2016-06-03

    IntroductionThis is a 1:24,000-scale geologic map of the Vancouver and Orchards quadrangles and parts of the Portland and Mount Tabor quadrangles in the States of Washington and Oregon. The map area is within the Portland Basin and includes most of the city of Vancouver, Washington; parts of Clark County, Washington; and a small part of northwestern Multnomah County, Oregon. The Columbia River flows through the southern part of the map area, generally forming the southern limit of mapping. Mapped Quaternary geologic units include late Pleistocene cataclysmic flood deposits, eolian deposits, and alluvium of the Columbia River and its tributaries. Older deposits include Miocene to Pleistocene alluvium from an ancestral Columbia River. Regional geologic structures are not exposed in the map area but are inferred from nearby mapping.

  7. Modeling water quality effects of structural and operational changes to Scoggins Dam and Henry Hagg Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.

    2006-01-01

    To meet water quality targets and the municipal and industrial water needs of a growing population in the Tualatin River Basin in northwestern Oregon, an expansion of Henry Hagg Lake is under consideration. Hagg Lake is the basin's primary storage reservoir and provides water during western Oregon's typically dry summers. Potential modifications include raising the dam height by 6.1 meters (20 feet), 7.6 meters (25 feet), or 12.2 meters (40 feet); installing additional outlets (possibly including a selective withdrawal tower); and adding additional inflows to provide greater reliability of filling the enlarged reservoir. One method of providing additional inflows is to route water from the upper Tualatin River through a tunnel and into Sain Creek, a tributary to the lake. Another option is to pump water from the Tualatin River (downstream of the lake) uphill and into the reservoir during the winter--the 'pump-back' option. A calibrated CE-QUAL-W2 model of Henry Hagg Lake's hydrodynamics, temperature, and water quality was used to examine the effect of these proposed changes on water quality in the lake and downstream. Most model scenarios were run with the calibrated model for 2002, a typical water year; a few scenarios were run for 2001, a drought year. More...

  8. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The

  9. Public health assessment for east Multnomah County, ground water contamination, Gresham, Multnomah County, Oregon, region 10. Cerclis No. ORD987185030. Final report

    SciTech Connect

    1995-07-14

    The proposed East Mulnomah County Groundwater Contamination National Priorities List (NPL) Site is east of Portland, Oregon. Numerous environmental investigations indicate that the groundwater within the proposed NPL site has been contaminated with various chlorinated organic solvents. Because of the complex hydrogeology within the proposed NPL site, it is not possible to determine precisely when each well became contaminated. Based on the available information, the Agency for Toxic Substances and Disease Registry (ATSDR) concludes that the proposed East Multnomah County Groundwater Contamination NPL Site is a public health hazard (past, current, and future). ATSDR representatives made this determination because one contaminated drinking water well has been and is being used by two households.

  10. Late Pleistocene outburst flooding from pluvial Lake Alvord into the Owyhee River, Oregon

    NASA Astrophysics Data System (ADS)

    Carter, Deron T.; Ely, Lisa L.; O'Connor, Jim E.; Fenton, Cassandra R.

    2006-05-01

    At least one large, late Pleistocene flood traveled into the Owyhee River as a result of a rise and subsequent outburst from pluvial Lake Alvord in southeastern Oregon. Lake Alvord breached Big Sand Gap in its eastern rim after reaching an elevation of 1292 m, releasing 11.3 km 3 of water into the adjacent Coyote Basin as it eroded the Big Sand Gap outlet channel to an elevation of about 1280 m. The outflow filled and then spilled out of Coyote Basin through two outlets at 1278 m and into Crooked Creek drainage, ultimately flowing into the Owyhee and Snake Rivers. Along Crooked Creek, the resulting flood eroded canyons, stripped bedrock surfaces, and deposited numerous boulder bars containing imbricated clasts up to 4.1 m in diameter, some of which are located over 30 m above the present-day channel. Critical depth calculations at Big Sand Gap show that maximum outflow from a 1292- to 1280-m drop in Lake Alvord was ˜ 10,000 m 3 s - 1 . Flooding became confined to a single channel approximately 40 km downstream of Big Sand Gap, where step-backwater calculations show that a much larger peak discharge of 40,000 m 3 s - 1 is required to match the highest geologic evidence of the flood in this channel. This inconsistency can be explained by (1) a single 10,000 m 3 s - 1 flood that caused at least 13 m of vertical incision in the channel (hence enlarging the channel cross-section); (2) multiple floods of 10,000 m 3 s - 1 or less, each producing some incision of the channel; or (3) an earlier flood of 40,000 m 3 s - 1 creating the highest flood deposits and crossed drainage divides observed along Crooked Creek drainage, followed by a later 10,000 m 3 s - 1 flood associated with the most recent shorelines in Alvord and Coyote Basins. Well-developed shorelines of Lake Alvord at 1280 m and in Coyote Basin at 1278 m suggest that after the initial flood, postflood overflow persisted for an extended period, connecting Alvord and Coyote Basins with the Owyhee River of the

  11. Late Pleistocene outburst flooding from pluvial Lake Alvord into the Owyhee River, Oregon

    USGS Publications Warehouse

    Carter, D.T.; Ely, L.L.; O'Connor, J. E.; Fenton, C.R.

    2006-01-01

    At least one large, late Pleistocene flood traveled into the Owyhee River as a result of a rise and subsequent outburst from pluvial Lake Alvord in southeastern Oregon. Lake Alvord breached Big Sand Gap in its eastern rim after reaching an elevation of 1292 m, releasing 11.3 km3 of water into the adjacent Coyote Basin as it eroded the Big Sand Gap outlet channel to an elevation of about 1280 m. The outflow filled and then spilled out of Coyote Basin through two outlets at 1278 m and into Crooked Creek drainage, ultimately flowing into the Owyhee and Snake Rivers. Along Crooked Creek, the resulting flood eroded canyons, stripped bedrock surfaces, and deposited numerous boulder bars containing imbricated clasts up to 4.1 m in diameter, some of which are located over 30 m above the present-day channel. Critical depth calculations at Big Sand Gap show that maximum outflow from a 1292- to 1280-m drop in Lake Alvord was ??? 10,000 m3 s- 1. Flooding became confined to a single channel approximately 40 km downstream of Big Sand Gap, where step-backwater calculations show that a much larger peak discharge of 40,000 m3 s- 1 is required to match the highest geologic evidence of the flood in this channel. This inconsistency can be explained by (1) a single 10,000 m3 s- 1 flood that caused at least 13 m of vertical incision in the channel (hence enlarging the channel cross-section); (2) multiple floods of 10,000 m3 s- 1 or less, each producing some incision of the channel; or (3) an earlier flood of 40,000 m3 s- 1 creating the highest flood deposits and crossed drainage divides observed along Crooked Creek drainage, followed by a later 10,000 m3 s- 1 flood associated with the most recent shorelines in Alvord and Coyote Basins. Well-developed shorelines of Lake Alvord at 1280 m and in Coyote Basin at 1278 m suggest that after the initial flood, postflood overflow persisted for an extended period, connecting Alvord and Coyote Basins with the Owyhee River of the Columbia River

  12. Lost Lake Research Natural Area: guidebook supplement 48

    Treesearch

    Reid Schuller; Bryan. Wender

    2016-01-01

    This guidebook describes major biological and physical attributes of the 155-ha (384-ac) Lost Lake Research Natural Area (RNA), in Jackson County, Oregon. The RNA has been designated because it contains examples of a landslide-dammed lake; and a low-elevation lake with aquatic beds and fringing marsh, surrounded by mixed-conifer forest (ONHAC 2010).

  13. Bathymetry of Bonnie Doone Lake, Kornbow Lake, Mintz Pond, and Glenville Lake, Cumberland County, North Carolina, 1996-98

    USGS Publications Warehouse

    Giorgino, M.J.; Strain, R.E.

    1999-01-01

    Bathymetric surveys were conducted at four water-supply impoundments of Little Cross Creek in Cumberland County, North Carolina. The surveys were conducted in April 1996 at Mintz Pond and Glenville Lake, and in January 1998 at Bonnie Doone Lake and Kornbow Lake. The resulting bathymetric maps are the first to cover the entire range in depth for these reservoirs and provide a framework for future evaluations of bathymetry and storage capacity. Bathymetric maps were constructed from depth and position data collected at each reservoir. A boat-mounted, research-grade fathometer was used to record water depths with a vertical accuracy of 0.1 foot. At Mintz Pond and Glenville Lake, position was measured by using a wide-band laser tracking system interfaced with a total station survey instrument. This positioning method required multiple land-based control points to be established and was hampered by line-of-sight restrictions between the control points and the boat. At Bonnie Doone Lake and Kornbow Lake, a global positioning system was used to collect differentially corrected location data. This positioning method enabled more rapid data collection, eliminated the need for land-based control points, and provided improved data coverage. Spillway elevations range from 172.8 feet above mean sea level at Bonnie Doone Lake to 113.1 feet at Glenville Lake. Surface area and storage volume were computed for each reservoir and were related to water-surface elevations at 1-foot intervals. The combined surface acreage of the four Little Cross Creek reservoirs at their full-pool elevations is 120.97 acres, consisting of 21.20 acres at Bonnie Doone Lake, 47.09 acres at Kornbow Lake, 15.56 acres at Mintz Pond, and 37.12 acres at Glenville Lake. The four reservoirs have a combined usable storage capacity of 674.91 acre-feet, which is the sum of 127.93 acre-feet in Bonnie Doone Lake, 320.62 acre-feet in Kornbow Lake, 53.25 acre-feet in Mintz Pond, and 173.11 acre-feet in Glenville Lake.

  14. Optical dating of tsunami-laid sand from an Oregon coastal lake

    USGS Publications Warehouse

    Ollerhead, J.; Huntley, D.J.; Nelson, A.R.; Kelsey, H.M.

    2001-01-01

    Optical ages for five samples of tsunami-laid sand from an Oregon coastal lake were determined using an infrared optical-dating method on K-feldspar separates and, as a test of accuracy, compared to ages determined by AMS 14C dating of detrital plant fragments found in the same beds. Two optical ages were about 20% younger than calibrated 14C ages of about 3.1 and 4.3 ka. Correction of the optical ages using measured anomalous fading rates brings them into agreement with the 14C ages. The approach used holds significant promise for improving the accuracy of infrared optical-dating methods. Luminescence data for the other three samples result in optical age limits much greater than the 14C ages. These data provide a textbook demonstration of the correlation between scatter in the luminescence intensity of individual sample aliquots and their normalization values that is expected when the samples contain sand grains not adequately exposed to daylight just prior to or during deposition and burial. Thus, the data for these three samples suggest that the tsunamis eroded young and old sand deposits before dropping the sand in the lake. ?? 2001 Elsevier Science Ltd. All rights reserved.

  15. Feeding ecology of Gila boraxobius (Osteichthyes: Cyprindae) endemic to a thermal lake in southeastern Oregon

    SciTech Connect

    Williams, J.E.; Williams, C.D.

    1980-06-30

    Gila boraxobius is a dwarf species of cyprinid endemic to a thermal lake in southeastern Oregon. Despite a relatively depauperate fauna and flora in the lake, 24 food items were found in intestines of G. boraxobius. Ten of the 24 foods, including six insects, were of terrestrial origin. The relative importance of food items fluctuated seasonally. Diatoms, chironomid larvae, microcrustaceans, and dipteran adults were the primary foods during spring. In summer, diatoms decreased and terrestrial insects increased in importance. During autumn important foods were terrestrial insects, chironomid larvae, and diatoms. Diatoms and microcrustaceans increased in importance during winter. Chironomid larvae were of importance in winter, when the importance of terrestrial food items decreased substantially. Similar food habits were observed between juveniles and adults, except that adults consumed more gastropods and diatoms and juveniles consumed more copepods and terrestrial insects. Gila boraxobius feeds opportunistically with individuals commonly containing mostly one food item. Fish typically feed by picking foods from soft bottom sediments or from rocks. However, fish will feed throughout the water column or on the surface if food is abundant there. Gila boraxobius feeds throughout the day, with a peak in feeding activity just after sunset. A daily ration of 11.1 percent body weight was calculated for the species during June. A comparison of food habits among G. boraxobius and populations of G. alvordensis during the summer shows that all are opportunistic in feeding, but that G. boraxobius relies more heavily on terrestrial foods.

  16. 75 FR 79018 - Notice of Realty Action: Proposed Sale of Public Lands in Bear Lake County, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Bureau of Land Management Notice of Realty Action: Proposed Sale of Public Lands in Bear Lake County, ID... Management (BLM) proposes the sale of 26 parcels of public lands totaling 1,543.14 acres in Bear Lake County... Bear Lake County, Idaho, are proposed for sale under the authority of Sections 203 and 209 of FLPMA (90...

  17. Optimizing Numerical Modeling and Field Data Collection in an Interdisciplinary Study of Upper Klamath Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Cheng, R. T.; Wood, T. M.; Gartner, J. W.

    2005-12-01

    Severe water quality conditions in Upper Klamath Lake (UKL), Oregon have led to critical fishery concerns for the region including the listing of Lost River and shortnose suckers as endangered species in 1988. Upper Klamath Lake was historically eutrophic but has become hypereutrophic, in large part due to land-use practices in the Klamath Basin. In 2002, in cooperation with the US Bureau of Reclamation (BOR), the U. S. Geological Survey (USGS) began a three-year study of the behavioral response of radio-tagged Lost River and shortnose suckers to water quality conditions in the lake. To support the tracking study, an array of continuous water quality monitors was installed in the northern third of UKL, and wind speed and direction were recorded at two sites. Two Acoustic Doppler Current Profilers (ADCPs) were deployed in the lake for two summer months in 2003 and 2004, providing the first continuous measurements of water velocities. Hydrodynamics is the key factor determining the water quality in the lake, velocities measured at only two locations are not sufficient to even qualitatively describe the lake-wide circulation. To establish a quantitative description of the complex circulation in UKL, an unstructured grid 3-D hydrodynamic model (UnTRIM) was implemented. When the observed wind speed and direction were used to drive the model, the numerical model reproduced the wind 'set-up' and 'set-down' at down wind and upwind ends of the lake, respectively. The UnTRIM model also reproduced the measured velocity time-series throughout the two-month ADCP deployment in 2003 with good agreement at a deep station. The correlations between the model results and ADCP data showed the same trend (slope nearly 1), but the R2 value was less than 0.5. This discrepancy is likely due to the fact that a uniform hourly averaged wind was applied over the lake. The complicated circulation patterns derived from the numerical model suggested a new strategy in designing the data

  18. RECENT GEOCHEMICAL SAMPLING AND MERCURY SOURCES AT SULPHUR BANK MERCURY MINE, LAKE COUNTY, CA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM), located on the shore of Clear Lake in Lake County, California, has been identified as a significant source of mercury to the lake. Sulphur Bank was actively minded from the 1880's to the 1950's. Mining and processing operations at the Sulph...

  19. 76 FR 29259 - Swan Lake National Wildlife Refuge, Chariton County, MO; Final Comprehensive Conservation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... Fish and Wildlife Service Swan Lake National Wildlife Refuge, Chariton County, MO; Final Comprehensive... Significant Impact (FONSI) for the Environmental Assessment (EA) for Swan Lake National Wildlife Refuge (NWR... years. ADDRESSES: Copies of the Final CCP and FONSI/EA may be viewed at the Swan Lake National...

  20. 77 FR 37702 - Grays Lake National Wildlife Refuge, Caribou and Bonneville Counties, ID; Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Fish and Wildlife Service Grays Lake National Wildlife Refuge, Caribou and Bonneville Counties, ID...), intend to prepare a comprehensive conservation plan (CCP) for Grays Lake National Wildlife Refuge (refuge...@fws.gov . Include ``Grays Lake CCP EA'' in the subject line of the message. Fax: Attn: William Smith...

  1. RECENT GEOCHEMICAL SAMPLING AND MERCURY SOURCES AT SULPHUR BANK MERCURY MINE, LAKE COUNTY, CA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM), located on the shore of Clear Lake in Lake County, California, has been identified as a significant source of mercury to the lake. Sulphur Bank was actively minded from the 1880's to the 1950's. Mining and processing operations at the Sulph...

  2. Preliminary Study of the Effect of the Proposed Long Lake Valley Project Operation on the Transport of Larval Suckers in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.

    2009-01-01

    A hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to explore the effects of the operation of proposed offstream storage at Long Lake Valley on transport of larval suckers through the Upper Klamath and Agency Lakes system during May and June, when larval fish leave spawning sites in the Williamson River and springs along the eastern shoreline and become entrained in lake currents. A range in hydrologic conditions was considered, including historically high and low outflows and inflows, lake elevations, and the operation of pumps between Upper Klamath Lake and storage in Long Lake Valley. Two wind-forcing scenarios were considered: one dominated by moderate prevailing winds and another dominated by a strong reversal of winds from the prevailing direction. On the basis of 24 model simulations that used all combinations of hydrology and wind forcing, as well as With Project and No Action scenarios, it was determined that the biggest effect of project operations on larval transport was the result of alterations in project management of the elevation in Upper Klamath Lake and the outflow at the Link River and A Canal, rather than the result of pumping operations. This was because, during the spring time period of interest, the amount of water pumped between Upper Klamath Lake and Long Lake Valley was generally small. The dominant effect was that an increase in lake elevation would result in more larvae in the Williamson River delta and in Agency Lake, an effect that was enhanced under conditions of wind reversal. A decrease in lake elevation accompanied by an increase in the outflow at the Link River had the opposite effect on larval concentration and residence time.

  3. A TWO-YEAR FOLLOW-UP SURVEY OF ANTIBODY TO CRYPTOSPORIDIUM IN JACKSON COUNTY, OREGON FOLLOWING AN OUTBREAK OF WATERBORNE DISEASE

    EPA Science Inventory

    To estimate the duration of Cryptosporidium-specific antibody, a Western blot assay measured antibody in paired sera from 124 residents of Jackson County, Oregon collected 0.5 and 2.5 years after the end of an outbreak in Talent, Jackson County. The outcome measure was the intens...

  4. A TWO-YEAR FOLLOW-UP SURVEY OF ANTIBODY TO CRYPTOSPORIDIUM IN JACKSON COUNTY, OREGON FOLLOWING AN OUTBREAK OF WATERBORNE DISEASE

    EPA Science Inventory

    To estimate the duration of Cryptosporidium-specific antibody, a Western blot assay measured antibody in paired sera from 124 residents of Jackson County, Oregon collected 0.5 and 2.5 years after the end of an outbreak in Talent, Jackson County. The outcome measure was the intens...

  5. 78 FR 43827 - Irish Potatoes Grown in Modoc and Siskiyou Counties, California, and in All Counties in Oregon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... that the order is no longer an effective marketing tool for the Oregon- California potato industry, and... conclude that the order is no longer an effective marketing tool. Termination would relieve the industry of... order is no longer an effective marketing tool for the Oregon-California potato industry. Evidence...

  6. Timber resource statistics for all forest land, except national forests, in eastern Oregon.

    Treesearch

    Donald R. Gedney; Patricia M. Bassett; Mary A. Mei

    1989-01-01

    This report summarizes a 1987 timber resource inventory of all forest land, except National Forests, in the 17 counties (Baker, Crook, Deschutes, Gilliam, Grant, Harney, Jefferson, Klamath, Lake, Malheur, Morrow, Sherman, Umatilla, Union, Wallowa, Wasco, and Wheeler Counties) in eastern Oregon. Detailed tables of forest area, timber volume, growth, mortality, and...

  7. Modeling Hydrodynamics and Heat Transport in Upper Klamath Lake, Oregon, and Implications for Water Quality

    USGS Publications Warehouse

    Wood, Tamara M.; Cheng, Ralph T.; Gartner, Jeffrey W.; Hoilman, Gene R.; Lindenberg, Mary K.; Wellman, Roy E.

    2008-01-01

    The three-dimensional numerical model UnTRIM was used to model hydrodynamics and heat transport in Upper Klamath Lake, Oregon, between mid-June and mid-September in 2005 and between mid-May and mid-October in 2006. Data from as many as six meteorological stations were used to generate a spatially interpolated wind field to use as a forcing function. Solar radiation, air temperature, and relative humidity data all were available at one or more sites. In general, because the available data for all inflows and outflows did not adequately close the water budget as calculated from lake elevation and stage-capacity information, a residual inflow or outflow was used to assure closure of the water budget. Data used for calibration in 2005 included lake elevation at 3 water-level gages around the lake, water currents at 5 Acoustic Doppler Current Profiler (ADCP) sites, and temperature at 16 water-quality monitoring locations. The calibrated model accurately simulated the fluctuations of the surface of the lake caused by daily wind patterns. The use of a spatially variable surface wind interpolated from two sites on the lake and four sites on the shoreline generally resulted in more accurate simulation of the currents than the use of a spatially invariant surface wind as observed at only one site on the lake. The simulation of currents was most accurate at the deepest site (ADCP1, where the velocities were highest) using a spatially variable surface wind; the mean error (ME) and root mean square error (RMSE) for the depth-averaged speed over a 37-day simulation from July 26 to August 31, 2005, were 0.50 centimeter per second (cm/s) and 3.08 cm/s, respectively. Simulated currents at the remaining sites were less accurate and, in general, underestimated the measured currents. The maximum errors in simulated currents were at a site near the southern end of the trench at the mouth of Howard Bay (ADCP7), where the ME and RMSE in the depth-averaged speed were 3.02 and 4.38 cm

  8. Surface-water hydrology of Honey Lake Valley, Lassen County, California and Washoe County, Nevada

    USGS Publications Warehouse

    Rockwell, Gerald L.

    1993-01-01

    Honey Lake Valley straddles the State line of California and Nevada; it is about 35 mi north of Reno and about three-fourths of the area is in California. In this report, Honey Lake Valley (also referred to as “the basin") includes the entire area within the hydrographic boundary shown in figure 1. Susanville, Calif., in the northwestern part of the basin, is the largest town. Population is increasing rapidly in the Susanville area and in the Reno area of adjacent Washoe County, Nev. Lassen and Washoe Counties have identified water resources in Honey Lake Valley as a possible source to meet their needs for future development. An important component of an assessment of the availability of additional long-term supply is an appraisal of surface-water resources.The U.S. Geological Survey, in cooperation with the California Department of Water Resources and the Nevada Division of Water Resources, began a hydrologic assessment of the area in 1987. The study was primarily an appraisal of ground-water resources, but it also included an assessment of surface-water resources. The purpose of this map report is to present the results of the surface-water assessment, including (1) a broad overview of surface-water conditions in the basin, (2) an estimate of mean annual streamflow to the valley floor, and (3) an evaluation of the characteristics of Honey lake. Results of the study related to ground-water resources of the basin are discussed in a separate report by Handman and others (1990) and are summarized in a short “Water Fact Sheet” by Handman (1990).

  9. Summary of water resources of Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, R.W.; Harr, C. Albert

    1972-01-01

    This report is a summary of a comprehensive report on the present water resources of Salt Lake County, Utah, and the potential for additional developmentThe average total annual withdrawals from surface and underground sources during 1964-68 were about 580,000 acre-feet for all uses that deplete the supply, except that used for maintenance of waterfowl-management areas. The withdrawals projected for the year 2020 are 1,200,000 acre-feet. The maximum annual firm supply that can be derived from the sources now available is about 700,000 acre-feet, of which about 200,000 acre-feet would be derived from subsurface sources. Achievement of this annual yield would require nearly complete regulation of streamflow that now is practically unregulated, larger drawdowns of ground-water levels than have been experienced, and overall management of surface and subsurface sources as parts of a single resource.

  10. Use of agricultural land evaluation and site assessment in Linn County, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Huddleston, J. Herbert; Pease, James R.; Forrest, William G.; Hickerson, Hugh J.; Langridge, Russell W.

    1987-07-01

    Oregon state law requires each county in the state to identify agricultural land and enact policies and regulations to protect agricultural land use. State guidelines encourage the preservation of large parcels of agricultural land and discourage partitioning of agricultural land and construction of nonfarm dwellings in agricultural areas. A land evaluation and site assessment (LESA) system was developed in Linn County to aid in the identification of agricultural land and provide assistance to decision makers concerning the relative merits of requests to partition existing parcels of ricultural land and introduce nonagricultural uses. Land evaluation was determined by calculating soil potential ratings for each agricultural soil in the county based on the soil potentials for winter wheat, annual ryegrass, permanent pasture, and irrigated sweet corn. Soil potential ratings were expressed on a scale of 0 to 150 points. The land evaluation score for a parcel consists of the weighted average soil potential rating for all of the soils in the parcel, weighted by the percentage of each soil present in the parcel. Site assessment was based on the size of a parcel and on the amount of existing conflict between agricultural and nonagricultural uses, particularly rural residential uses, both adjacent to and in the vicinity of a parcel. Parcel size refers to both size in relation to a typical field and size in relation to a typical farm unit. Conflict takes into account the number of nonfarm dwellings within 1/4 mile (0.4 km) of a parcel, the amount of the perimeter that adjoins conflicting land uses, and the residential density adjacent to the parcel. Empirical scales were derived for assigning points to each of the site assessment factors. Both parcel size and conflict were worth 75 points in the model. For parcel size, 45 points were allocated to field size and 30 points to farm-unit size. For conflict, 30 points were allocated to nonfarm dwellings within 1/4 mile and 45

  11. Hydrology, water quality, and phosphorus loading of Kirby Lake, Barron County, Wisconsin

    USGS Publications Warehouse

    Rose, William J.; Robertson, Dale M.

    1998-01-01

    In 1992, residents near Kirby Lake, located about five miles northwest of Cumberland, in Barron County, Wisconsin, formed the Kirby Lake Management District. The Lake District immediately began to gather information needed for the preparation of a comprehensive lake-management plan that would be used to protect the natural and recreational assets of the lake. The Lake District completed a land-use inventory of the watershed and an evaluation of available lake water-quality data. The land-use data were used to assess the potential contribution of nutrients to the lake from the watershed. The evaluation of lake water-quality data, which were collected as part of the Wisconsin Department of Natural Resources (WDNR) Self-Help Monitoring Program, indicated the lake has relatively good water quality. Before a comprehensive lake-management plan could be prepared, however, a better understanding of several aspects of the lake and its surroundings was needed. To address those aspects including the definition of the lake's hydrology and the principal sources of nutrients, and the relation of the lake's water quality to nutrient loading the U.S. Geological Survey, in cooperation with the Lake District and the WDNR (through a Lake Management Planning Grant), conducted a study of Kirby Lake and its watershed. This Fact Sheet presents the results of that study.

  12. The western juniper resource of eastern Oregon, 1999.

    Treesearch

    David L. Azuma; Bruce A. Hiserote; Paul A. Dunham

    2005-01-01

    This report summarizes resource statistics for eastern Oregon's juniper forests, which are in Baker, Crook, Deschutes, Gilliam, Grant, Harney, Jefferson, Klamath, Lake, Malheur, Morrow, Sherman, Umatilla, Union, Wallowa, Wasco, and Wheeler Counties. We sampled all ownerships outside of the National Forest System; we report the statistics on juniper forest on...

  13. Wyoming big sagebrush associations of eastern Oregon; vegetation attributes

    USDA-ARS?s Scientific Manuscript database

    This report provides a synopsis of several vegetative characteristics for the Wyoming big sagebrush complex in eastern Oregon covering the High Desert , Snake River, and Owyhee Ecological Provinces in Harney, Lake, and Malheur Counties. The complex has been grouped into six associations defined by t...

  14. Hydrologic hazards along Squaw Creek from a hypothetical failure of the glacial moraine impounding Carver Lake near Sisters, Oregon

    USGS Publications Warehouse

    Laenen, Antonius; Scott, K.M.; Costa, J.E.; Orzol, L.L.

    1987-01-01

    A hydrologic hazard exists that could create a large-magnitude, but short-duration, flood in the Squaw Creek drainage and inundate areas in and around the community of Sisters, Oregon. There is a 1 to 5% probability that Carver Lake, located at elevation 7,800 ft above sea level on the east slope of South Sister mountain, Oregon, could catastrophically empty. At the U.S. Geological Survey gage (14075000) on Squaw Creek between Carver Lake and Sisters, the magnitude of the breakout flood would be 10 times that of a 1% probability meteorological flood. In Sisters, the magnitude of the breakout flood would be about five times that of a 1% probability meteorological flood. Several conditions at Carver Lake indicate the potential hazard: (1) The lake is very deep for its size; the lake contains 740 acre-ft of water and is more than 100 ft deep; (2) There is a probability that a large magnitude avalanche and consequent overtopping of the lake could occur. There are steep slopes of unstable volcanic rock and an extensively cravassed glacier located above the lake; (3) The moraine dam confining the lake is steep-faced, rendering the dam unstable, and unvegetated making it highly erodible; (4) Large amounts of readily erodible material available for transport would increase the magnitude of a large flood and keep the flood from attenuating in the steep reaches of the Squaw Creek channel; (5) and, Geologically, there is a greater than normal possibility for the area to become seismically active. Earthquakes could cause rock and ice to fall into the lake. A one-dimensional unsteady-state streamflow model was used to route a hypothetical flood down the Squaw Creek drainage. This scenario creates a starting hydrograph with a peak of 180,000 cu ft/sec. The ensuing hypothetical flood would incorporate readily erodible debris and sediments in the steep canyons, increasing the total volume of the flood by a factor of two. As the peak emerges from the steeper slopes into a more

  15. Overview for geologic field-trip guides to Mount Mazama, Crater Lake Caldera, and Newberry Volcano, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Donnelly-Nolan, Julie M.; Jensen, Robert A.; Wright, Heather M.

    2017-08-16

    These field-trip guides were written for the occasion of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial scientific assembly in Portland, Oregon, in August 2017. The guide to Mount Mazama and Crater Lake caldera is an updated and expanded version of the guide (Bacon, 1989) for part of an earlier IAVCEI trip to the southern Cascade Range. The guide to Newberry Volcano describes the stops included in the 2017 field trip. Crater Lake and Newberry are the two best-preserved and most recent calderas in the Cascades Volcanic Arc. Although located in different settings in the arc, with Crater Lake on the arc axis and Newberry in the rear-arc, both volcanoes are located at the intersection of the arc and the northwest corner region of the extensional Basin and Range Province.

  16. Proactive Regulation Reduces Asbestos Exposures in Lake County, CA

    NASA Astrophysics Data System (ADS)

    Gearhart, D.; Ley, J. F.

    2012-12-01

    The Lake County Air Quality Management District adopted its rule for Naturally Occurring Asbestos (NOA) in 1996 with the goal of preventing impacts and exposures through education, proactive project design, and common sense. Utilizing detailed GIS mapping and streamlined mitigation measures, the District maintains an effective program to reduce the hazard of NOA in our community. Measures for NOA are also incorporated into the County Grading Ordinance, and most small projects fall under those rules. Larger projects require a Serpentine Dust Control Plan from the District that provides clear mitigation measures, with the focus primarily on dust prevention. This cooperative approach results in a comprehensive effort to minimize potential health hazards from naturally occurring asbestos. Compliance is more easily achieved when workers are informed of the hazards and potential for exposure, and the rules/mitigation measures are clear and simple. Informed individuals generally take prompt corrective action to protect themself and those around them from the potential for breathing asbestos-containing dust. This proactive program results in improved community health by preventing exposure to asbestos.

  17. Chronology and climatic controls of late Quaternary lake-level fluctuations in Chewaucan, Fort Rock and Alkali basins, south-central Oregon

    SciTech Connect

    Freidel, D.E.

    1993-01-01

    In this study, lake-level chronologies of three closed-basin lakes in south-central Oregon were developed and compared with the chronologies of Lakes Bonneville and Lahontan in Utah and Nevada. Geomorphic and stratigraphic study of shoreline features, and radiocarbon dating of rock varnish and gastroped shells associated with high shorelines indicate that the three Oregon paleolakes reached their most recent high stands synchronously before 18,000 to 17,000 radiocarbon yrs B.P., three thousand to forty-five hundred years earlier than the high stands of Lakes Lahontan and Bonneville. Levels of the Oregon paleolakes began to drop at a time when Lakes Lahontan and Bonneville were still rising. This study employed water balance modelling to evaluate several climatic scenarios that would generate high stands in the three Oregon lakes. Latitudinal shifts in the polar jet stream and associated westerlies, that occurred in response to the growth and decay of the continental ice sheets, have been proposed as a mechanism for the timing and magnitude of the Northern Great Basin paleolake high stands. General circulation model simulations and paleoenvironmental evidence indicate that at 18,000 radiocarbon yrs B.P. colder and moister than present conditions prevailed in the Northern Great Basin, while very cold, arid climatic conditions prevailed in the Northwest due to strong, glacial anticyclonic circulation generated by the continental ice sheet. Water balance modelling in this study indicates that colder and moister than present climatic conditions caused the Oregon lakes to rise to their highest level. Climatic conditions of south-central Oregon at 18,000 radiocarbon yrs B.P. were probably influenced more by the westerlies associated with the jet stream to the south than by the glacial anticylonic circulation to the north.

  18. Phosphorus in sediment in the Kent Park Lake watershed, Johnson County, Iowa, 2014–15

    USGS Publications Warehouse

    Kalkhoff, Stephen J.

    2016-07-12

    Phosphorus data were collected from the Kent Park Lake watershed in Johnson County, Iowa, in 2014 and 2015 to obtain information to assist in the management of the water quality in the lake. Phosphorus concentrations were measured for sediment from several ponds in the watershed and sediment deposited in the lake. The first set of samples was collected in 2014 to understand phosphorus in several potential sources to the lake and the spatial variability in lake sediments. Phosphorus concentrations ranged from 68 to 380 milligrams per kilogram in lake sediment and from 57 to 220 milligrams per kilogram in sedimentation and dredge spoil ponds. Additional samples were collected in 2015 to determine how phosphorus concentrations vary with depth in the lake sediment. Phosphorus concentrations generally decreased with increasing depth within the lake sediment. In 2015, total phosphorus concentrations in lake sediment ranged from 50 to 340 milligrams per kilogram.

  19. 75 FR 6597 - Determination to Approve Alternative Final Cover Request for the Lake County, MT Landfill...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    .... The pilot test consisted of the construction of two landfill cover test plots at the Lake County landfill facility. One plot used a landfill cover design with a flexible membrane liner, and the other plot...

  20. An analysis of the hydrologic effects of proposed test drilling in the Winema National Forest near Crater Lake, Oregon

    SciTech Connect

    Sammel, E.A.; Benson, S.

    1987-07-01

    This paper describes the results of a preliminary study on the hydrologic regime underlying the Crater Lake Caldera, Oregon. The study was performed to provide a basis for evaluating the potential for polluting Crater Lake by drilling exploratory boreholes on the flanks of the mountain. A simple conceptual model of the hydrologic regime was developed by synthesizing the data from the region surrounding the Caldera. Based on the conceptual model, a series of numerical simulations aimed at establishing the basic groundwater flow patterns under and surrounding the lake were performed. In addition to the numerical simulations, we used simple volumetric techniques for estimating the distance that drilling mud would migrate away from the borehole if drilling proceeded without drilling fluid returns. Based on our calculations that show the regional flow of groundwater will oppose the flow of drilling mud toward the lake, and based on our volumetric estimate of drilling mud migration, our study concludes that drilling without returns will not pollute Crater Lake, nor will it affect the hydrologic regime in the immediate vicinity of the Crater Lake Caldera.

  1. National Dam Safety Program. Lake Flower Dam, Inventory Number NY-707. Lake Champlain River Basin. Franklin County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1980-08-01

    AD-A091 596 NEW YORK STATE DE!PT OF ENVIRONMENTAL CONSERVATION ALBANY F/B 13/13 NATIONAL OAM SAFETY PROGRAM. LAKE FLOWER DAM, INVENTORY NUMBER --ETC...tjon Report S. TYPE Or REPORT4 PERIOO COVEReO Lake Flpwer Dam Phase I Inspection Report Lake Champlain River Basin, Franklin County,NiS Inventory No...Safety Program Franklin County Visual Inspeton Saranae River Hydrology, Structural Stability Lake Flower Dam -. LABSTRACT (otbue a reverse eft It

  2. Hydrology of Lake June in winter, Highlands County, South-central Florida

    USGS Publications Warehouse

    Belles, Roger G.; Martin, Edward H.

    1985-01-01

    Lake June in Winter is in central Highlands County near the town of Lake Placid in south-central Florida. Recreation and citrus-grove irrigation are the major uses of lake water. Land use around the lake is residential citrus, and undeveloped. Most of the land use in the 44-square mile lake-drainage area is undeveloped. The surface area of the lake is approximately 5.7 square miles with water-surface altitude average of 74 feet. The extremes in lake altitude for the period 1945-82 were 77.58 feet in October 1948, and 71.62 feet in May 1981. Flow into Lake June in Winter is from Lake Placid to the south through Catfish Creek. Flow out of the Lake is northward through Stearns Creek to Lake Francis, and eventually by Josephine Creek to Lake Istokpoga. The quality of water in Lake June in Winter is good. Specific conductance was found to be generally low, ranging between 90 umho/cm to 170 umho/cm, indicating a lack of dissolved solids present in the lake. The lake is clear, with transparency values between 3 and 14 feet. Total nitrogen was found to be 0.60 mg/L indicating a minimal effect from nitrogen fertilizer washoff or septic-tank discharge. (USGS)

  3. Final environmental impact statement, Coyote Springs Cogeneration Project, Morrow County, Oregon - appendices

    SciTech Connect

    Not Available

    1994-07-01

    Portland General Electric Company (PGE) has submitted an Application for Site Certification (ASC) to the Oregon Department of Energy for development of the Coyote Springs cogeneration power plant in the Port of Morrow, Oregon. This document includes the appendixes for the Environmental Impact Statement. Appendix topics include the following: A-Wildlife and vegetation surveys; B-EMF Supplement; C-Biological Assessment; D-Oregon DOE proposed order, in the matter of the Application for Site Certificate of Portland General Electric Company; E-Ecological Monitoring Program; F-Air contaminant Discharge permit; G-National Pollution Discharge Elimination System Storm Water Discharge Permit; H-Erosion and Sedimentation Control Plan.

  4. Geochemistry of Apatite in Climactic and Pre-Climactic Tephra from Mt. Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Mandeville, C. W.; Langstaff, M.

    2007-12-01

    predict that most Mazama apatites in Cleetwood and climactic pumices should contain 0.4 wt.% or more SO3. Most apatites in Cleetwood and climactic rhyodacites contain less than 0.20 wt.% SO3 indicating crystallization from rhyodacitic melt that exsolved a sulfur-rich vapor prior to eruption that drastically reduced melt sulfur concentration. Apatites with SO3 greater than 0.60 wt.% most probably were derived from more mafic oxidized magmas with dissolved sulfur contents of 2000 ppm or more that have been measured in high-Sr andesitic scoria melt inclusions. Mole fraction fluorapatite in Mazama apatites ranges from 0.20 to 0.96 and based on comparison to recent experimental data predicts melt F concentrations of 200 to 1800 ppm that agrees with measured F in melt inclusions of 200 to 1300 ppm. Mole fraction chlorapatite ranges from 0.11 to 0.19 and based on recent experimental data predicts Cl concentrations in rhyodacitic melt of 0.3 to 0.4 wt.% in reasonable agreement with Cl concentrations in melt inclusions ranging from 0.18 to 0.39 wt.%. References Bacon C.R., and Druitt T.H. (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol. 98:224-256. Druitt T.H., and Bacon C.R. (1989) Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol. 101:245-259. Peng G., Luhr J.F. and McGee J.J. (1997) Factors controlling sulfur concentrations in volcanic apatite. Am. Mineral. 82:1210-1224.

  5. Demographic analysis of Lost River sucker and shortnose sucker populations in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Janney, E.C.; Shively, R.S.; Hayes, B.S.; Barry, P.M.; Perkins, D.

    2008-01-01

    We used 13 years (1995-2007) of capture-mark-recapture data to assess population dynamics of endangered Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate survival, and information theoretic modeling was used to assess variation due to time, gender, species, and spawning subpopulations. Length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Average annual survival probability was 0.88 for Lost River suckers and 0.76 for shortnose suckers. Mean life span estimates based on these survival rates indicated that Lost River suckers survived long enough on average to attempt reproduction eight times, whereas shortnose suckers only survived to spawn three to four times. Shortnose sucker survival was not only poor in years of fish kills (1995-1997) but also was low in years without fish kills (i.e., 2002 and 2004). This suggests that high mortality occurs in some years but is not necessarily associated with fish kills. Annual survival probabilities were not only different between the two species but also differed between two spawning subpopulations of Lost River suckers. Length composition data indicated that recruitment into spawning populations only occurred intermittently. Populations of both species transitioned from primarily old individuals with little size diversity and consistently poor recruitment in the late 1980s and early 1990s to mostly small, recruit-sized fish by the late 1990s. A better understanding of the factors influencing adult survival and recruitment into spawning populations is needed. Monitoring these vital parameters will provide a quantitative means to evaluate population status and assess the effectiveness of conservation and recovery efforts.

  6. Os and U-Th isotope signatures of arc magmatism near Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Ankney, Meagan E.; Shirey, Steven B.; Hart, Garret L.; Bacon, Charles R.; Johnson, Clark M.

    2016-03-01

    Interaction of mantle melts with the continental crust can have significant effects on the composition of the resulting melts as well as on the crust itself, and tracing this interaction is key to our understanding of arc magmatism. Lava flows and pyroclastic deposits erupted from ∼50 to 7.7 ka at Mt. Mazama (Crater Lake, Oregon) were analyzed for their Re/Os and U-Th isotopic compositions. Mafic lavas from monogenetic vents around Mt. Mazama that erupted during the buildup to its climactic eruption have lower 187Os/188Os ratios (0.1394 to 0.1956) and high 230Th excess ((230Th/238U)0 of 1.180 to 1.302), whereas dacites and rhyodacites tend to have higher 187Os/188Os ratios (0.2292 to 0.2788) and significant 238U excess ((230Th/238U)0 of 0.975 to 0.989). The less radiogenic Os isotope compositions of the mafic lavas can be modeled by assimilation of young (∼2.5 to 7 Ma), mafic lower crust that was modified during regional extension, whereas the more radiogenic Os isotope compositions of the dacites and rhyodacites can be attributed to assimilation of older (∼10 to 16 Ma), mid to upper crust that acquired its composition during an earlier period of Cascade magmatism. Production of Th excesses in the lower crust requires very young garnet formation accompanying dehydration melting in the lower crust at less than a few 100 ka by heat from recent basaltic magma injection. The results from this study suggest that the combination of Os and Th isotopes may be used to provide insights into the timescales of evolution of the continental crust in arc settings, as well as the influence of the crust on erupted magmas, and suggest a link between the age and composition of the lower and upper crust to regional tectonic extension and/or earlier Cascade magmatism.

  7. Climate inferences between paleontological, geochemical, and geophysical proxies in Late Pleistocene lacustrine sediments from Summer Lake, Oregon, western Great Basin

    NASA Astrophysics Data System (ADS)

    Heaton, Eric; Thompson, Greg; Negrini, Rob; Wigand, Peter

    2016-04-01

    Paleontological, geochemical, and geophysical data from western Great Basin pluvial Summer Lake, Oregon have established a high resolution paleoclimate record during the late Pleistocene Mono Lake Excursion (~34.75 ka), Dansgaard-Oeschger interstadials 6-8, and the end of Heinrich Even 4 (~38 ka). Proxies of grain-size, magnetic susceptibility, carbon/nitrogen ratio, ostracode analysis and palynology from a depocenter core show new results with improved age control regarding high amplitude, high frequency changes in lake level, lake temperature, and regional precipitation and temperature which correspond directly with colder/warmer and respectively drier/wetter climates as documented with Northern Atlantic Greenland ice core data. Results from geophysical and geochemical analysis, and the presence of ostracode Cytherissa lacustris consistently demonstrate the correspondence of low lake conditions and colder water temperatures during Dansgaard-Oeschger stadials and the Mono Lake Excursion. The opposite holds true during interstadials. Smaller grain size, increases in carbon/nitrogen ratio and consistent absence of C. lacustris suggest periods of increased discharge into the lake, increased lake level, and warmer water temperatures. Warmer/wetter climate conditions are confirmed during interstadials 7 and 8 from pollen analysis. Existence of Atriplex, Rosaceae, Chrysothamnus and Ambrosia, and pollen ratios of Juniperus/Dip Pinus and (Rosaceae+Atriplex+Poaceae+Chrysothamnus+Ambrosia)/(Pinus+Picea+T. mertensiana+Sarcobatus) suggest warmer/wetter semi-arid woodland conditions during interstadials 7 and 8. This contrasts with absences in these pollens and pollen ratios indicating colder/drier continental montane woodland conditions during stadials and the Mono Lake Excursion. Increases in Juniper/Dip Pinus ratio suggest a warmer/wetter climate during interstadial 6 however additional proxies do not demonstrate comparative warmer/wetter climate, deeper lake level or

  8. Geophysical Characterization of the Borax Lake Hydrothermal System in the Alvord Desert, Southeastern Oregon.

    NASA Astrophysics Data System (ADS)

    Hess, S.; Paul, C.; Bradford, J.; Lyle, M.; Clement, W.; Liberty, L.; Myers, R.; Donaldson, P.

    2003-12-01

    We are conducting a detailed geophysical characterization of an active hydrothermal system as part of an interdisciplinary project aiming to study the link between the physical characteristics of hydrothermal systems and biota that occupy those systems. The Borax Lake Hydrothermal System (BLHS), consisting of Borax Lake and the surrounding hot springs, is located near the center of the Alvord Basin in southeastern Oregon. As a result of Basin and Range extension, the Alvord Basin is a north-south trending graben bounded by the Steens Mountains to the west and the Trout Creek Mountains to the east. We are using several geophysical techniques to generate both basin-wide and high-resolution local characterizations of the Alvord Basin and the BLHS. To date we have completed two scales of seismic reflection surveys: an east-west trending basin scale survey and a shallow (~10 - 300 m depth) 3D survey of the BLHS. The basin scale seismic survey consists of 11 km of 2D, 60 fold CMP data acquired with a 200 lb accelerated weight drop. We acquired the 3D survey of the BLHS using a 7.62x39 mm SKS rifle and 240 channel recording system. The 3D patch covers ~ 90,000 sq. m with a maximum inline offset aperture of 225 m, crossline aperture of 75 m, and 360 degree azimuthal coverage. Additionally, we have completed a regional total-field magnetic survey for a large portion of the Alvord Basin and a 3D transient electromagnetic (TEM) survey of the BLHS. The 3D TEM survey covers the central portion of the 3D seismic survey. Initial results from the regional magnetic and seismic surveys indicate a mid-basin basement high. The basement high appears to correlate with the northeast trending BLHS. Additionally, the cross-basin seismic profile clearly shows that recent deformation has primarily been along an eastward dipping normal fault that bounds the basement high to the east. This suggests that both spatial and temporal characteristics of deformation control hydrothermal activity

  9. BOUNDS ON SUBSURFACE MERCURY FLUX FROM THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM) in Lake County, California has been identified as a significant source of mercury to Clear Lake. The mine was operated from the 1860s through the 1950's. Mining started with surface operations, progressed to shaft mining, and later to open p...

  10. BOUNDS ON SUBSURFACE MERCURY FLUX FROM THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM) in Lake County, California has been identified as a significant source of mercury to Clear Lake. The mine was operated from the 1860s through the 1950's. Mining started with surface operations, progressed to shaft mining, and later to open p...

  11. NPDES Permit – East Lake Sewage Lagoon – Mille Lacs Indian Reservation (Aitkin County, MN)

    EPA Pesticide Factsheets

    EPA proposes to reissue a NPDES permit for the treated wastewater discharges from the East Lake Sewage Lagoon located within the boundaries of the Mille Lacs Indian Reservation located in East Lake (McGregor), Minnesota (Aitkin County) to be issued by EPA.

  12. Water Quality of a Drained Wetland, Caledonia Marsh on Upper Klamath Lake, Oregon, after Flooding in 2006

    USGS Publications Warehouse

    Lindenberg, Mary K.; Wood, Tamara M.

    2009-01-01

    The unexpected inundation of Caledonia Marsh, a previously drained wetland adjacent to Upper Klamath Lake, Oregon, provided an opportunity to observe nutrient release from sediments into the water column of the flooded area and the resulting algal growth. Three sites, with differing proximity to the levee breach that reconnected the area to Upper Klamath Lake, were selected for water sample collection in the marsh. Chlorophyll a concentrations (an indicator of algal biomass) were lowest and dissolved nutrient concentrations were highest at the site farthest from the breach. At the site where chlorophyll a concentrations were lowest, dissolved organic carbon concentrations were highest, and the presence of tannic compounds was indicated by the dark brown color of the water. Both DOC and specific conductance was higher at the site farthest from the breach, which indicated less mixing with Upper Klamath Lake water at that site. Dissolved oxygen concentrations and pH were lowest at the beginning of the sampling period at the site farthest from the levee breach, coincident with the lowest algal growth. Phosphorus concentrations measured in the flooded Caledonia Marsh were greater than median concentrations in Upper Klamath Lake, indicating that phosphorus likely was released from the previously drained wetland soils of the marsh when they were flooded. However, a proportional increase in algal biomass was not measured either in the marsh or in the adjacent bay of the lake. Nitrogen to phosphorus ratios indicated that phosphorus was not limiting to algal growth at the marsh sites, and possibly was not limiting in the adjacent bay either. In terms of nutrient dynamics, wetlands normally function as nutrient sinks. In contrast, the drained wetlands around Upper Klamath Lake cannot be expected to provide that function in the short term after being flooded and may, in fact, be a source of nutrients to the lake instead. The consequences for algal growth in the lake, however

  13. 78 FR 28503 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lake and Porter Counties...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... Porter Counties, Indiana, 1997 8-Hour Ozone Maintenance Plan and 1997 Annual Fine Particulate Matter Maintenance Plan Revision to Approved Motor Vehicle Emissions Budgets AGENCY: Environmental Protection Agency... MOVES2010a-based budgets for the Lake and Porter County, Indiana 1997 8-hour ozone maintenance area and...

  14. Explaining human settlement patterns in a recreational lake district: Vilas County, Wisconsin, USA.

    PubMed

    Schnaiberg, Jill; Riera, Joan; Turner, Monica G; Voss, Paul R

    2002-07-01

    Lakeshore development in Vilas County, northern Wisconsin (USA) is heterogeneous, ranging from lakes that are surrounded by homes and commercial establishments to lakes that have no buildings on their shorelines. Development in this recreational area has increased, and since the 1960s over half of new homes have been built on the lakeshore. We examined building density around lakes in relationship to 11 variables, including in-lake, shoreline, and social characteristics. Buildings in many parts of northern Wisconsin tend to be concentrated around shorelines; in Vilas County 61% of all medium-sized buildings (our proxy for residential development) on private land were < or =100 m of a lake. The probability of development on a lake was largely related to lake surface area, with larger, more accessible lakes showing a higher probability of development. Building density along shorelines varied with travel cost, lake surface area, presence of wetlands, and extent of public land ownership. Building density was greater on larger, more accessible lakes that were surrounded by forest (as opposed to wetlands) and public lands. Gaining a more precise understanding of human settlement patterns can help direct planning and resource protection efforts to lakes most likely to experience future development.

  15. Hydrologic, water-quality, and meteorologic data for Newberry Volcano and vicinity, Deschutes County, Oregon, 1991-93

    USGS Publications Warehouse

    Crumrine, Milo D.; Morgan, David S.

    1994-01-01

    This report is a compilation of hydrologic, water- quality, and meteorologic data collected in the vicinity of Newberry Volcano near Bend, Oregon. These data were collected, in cooperation with the Bonneville Power Administration, the U.S. Forest Service, and the Bureau of Land Management, to provide baseline data for identifying and assessing the effects of proposed geothermal development in the vicinity of Newberry Volcano. Types of data collected include ground-water levels, lake levels, streamflow, water quality, and meteorologic measurements. Sites that were monitored include: (1) two thermal wells in the caldera, (2) several nonthermal wells in the caldera, (3) four wells outside of the caldera, (4) Paulina Creek, (5) Paulina and East Lakes, (6) hot springs that discharge into Paulina and East Lakes, and (7) meteorologic conditions near Paulina Lake. Data are presented for the period summer 1991 through fall 1993. Water-quality data collected include concentrations of common anions and cations, nutrients, trace elements, radiochemicals, and isotopes. Meteorologic data collected include wind velocity, air temperature, humidity, solar radiation, and precipitation.

  16. Limnological and geochemical survey of Williams Lake, Hubbard County, Minnesota

    USGS Publications Warehouse

    LaBaugh, J.W.; Groschen, G.E.; Winter, Thomas C.

    1981-01-01

    Calcium and bicarbonate represent more than 90 percent of the dissolved constituents in Williams Lake and the contiguous ground-water system. Major mineralogical constituents of the lake sediments are quartz, dolomite, and calcite. Marl is present only in the littoral zone of the lake. Organic sediments in the lake consist of loose organic floe and gyttja.

  17. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    SciTech Connect

    Jimenez, T.; Tegen, S.; Beiter, P.

    2015-03-01

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and the second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.

  18. HYDROGEOLOGICAL AND GEOCHEMICAL FACTORS INFLUENCING MERCURY FATE AND TRANSPORT AT THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    Clear Lake, located approximately 150 km north of San Francisco in Lake County, is one of the largest fresh water lakes in the California. Elevated mercury levels were first identified in fish from Clear Lake in the late 1970s and early 1980s. Although naturally occurring mercury...

  19. HYDROGEOLOGICAL AND GEOCHEMICAL FACTORS INFLUENCING MERCURY FATE AND TRANSPORT AT THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA

    EPA Science Inventory

    Clear Lake, located approximately 150 km north of San Francisco in Lake County, is one of the largest fresh water lakes in the California. Elevated mercury levels were first identified in fish from Clear Lake in the late 1970s and early 1980s. Although naturally occurring mercury...

  20. Digital Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Ramsey, D. W.

    2002-12-01

    Crater Lake caldera formed ~7700 cal yr B.P. by the eruption of 50 km3 of mainly rhyodacitic magma and the resulting collapse of Mount Mazama. A new 1:24,000-scale digital geologic map compiled in ArcInfo depicts the geology of this volcanic center, peripheral volcanoes, the caldera walls and floor, and superjacent pyroclastic, talus, and glacial deposits. The geology of the caldera walls was mapped in the field on photographs taken from the lake (see accompanying abstract and poster, "Geologic panoramas of the walls of Crater Lake caldera,Oregon"); the geology of the flanks of Mount Mazama and the surrounding area was mapped on aerial photographs; and features of the caldera floor were mapped on a multibeam echo-sounding bathymetric map (Gardner et al., 2001; Bacon et al., 2002). Volcanic map units are defined on the basis of chemical composition and petrographic characteristics. Map unit colors were chosen to indicate the compositions of volcanic rocks, cooler colors for mafic units and warmer colors for silicic units. Map unit color intensity indicates age, with more intense coloring for younger units. Ages of many units have been determined by K-Ar and 40Ar/39Ar dating by M.A. Lanphere. Several undated units have been correlated using paleomagnetic secular variation measurements by D.E. Champion. Crystallization facies of some of the larger lava flows are mapped separately (e.g., vitrophyre, felsite, carapace), as are breccia and lava facies of submerged postcaldera volcanoes. Also shown on the caldera floor are landslide (debris avalanche) and sediment gravity-flow deposits. A major north-south normal fault system traverses the map area west of the caldera and displaces dated late Pleistocene lava flows, allowing determination of a long-term slip rate of ~0.3 mm/yr (Bacon et al., 1999). Faults bounding large downdropped blocks of the south caldera wall are also shown. Where practical, lava flow margins are represented as intra-unit contacts. A number of small

  1. Habitat characteristics of the Silver Lake mule deer range.

    Treesearch

    J. Edward. Dealy

    1971-01-01

    Twenty-one ecosystems of the Silver Lake mule deer range in northern Lake County, Oregon, are described by site, vegetation, and soil. Discussions are included on ecosystem interrelationships, habitat value for game, and habitat manipulation. A field key to ecosystems has been developed using vegetation characteristics easily identifiable on the ground.

  2. 78 FR 21964 - Sheldon National Wildlife Refuge Humboldt and Washoe Counties, NV, and Lake County, OR; Record of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... Fish and Wildlife Service Sheldon National Wildlife Refuge Humboldt and Washoe Counties, NV, and Lake... continued stocking of sterile rainbow trout. Our management of Refuge habitats would continue to include the... removing ] all feral horses and burros from the Refuge within 5 years. Populations of trout species...

  3. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, H.M.; Nelson, A.R.; Hemphill-Haley, E.; Witter, R.C.

    2005-01-01

    Bradley Lake, on the southern Oregon coastal plain, records local tsunamis and seismic shaking on the Cascadia subduction zone over the last 7000 yr. Thirteen marine incursions delivered landward-thinning sheets of sand to the lake from nearshore, beach, and dune environments to the west. Following each incursion, a slug of marine water near the bottom of the freshwater lake instigated a few-year-to-several-decade period of a brackish (??? 4??? salinity) lake. Four additional disturbances without marine incursions destabilized sideslopes and bottom sediment, producing a suspension deposit that blanketed the lake bottom. Considering the magnitude and duration of the disturbances necessary to produce Bradley Lake's marine incursions, a local tsunami generated by a great earthquake on the Cascadia subduction zone is the only accountable mechanism. Extreme ocean levels must have been at least 5-8 m above sea level, and the cumulative duration of each marine incursion must have been at least 10 min. Disturbances without marine incursions require seismic shaking as well. Over the 4600 yr period when Bradley Lake was an optimum tsunami recorder, tsunamis from Cascadia plate-boundary earthquakes came in clusters. Between 4600 and 2800 cal yr B.P., tsunamis occurred at the average frequency of ??? 3-4 every 1000 yr. Then, starting ???2800 cal yr B.P., there was a 930-1260 yr interval with no tsunamis. That gap was followed by a ???1000 yr period with 4 tsunamis. In the last millennium, a 670-750 yr gap preceded the A.D. 1700 earthquake and tsunami. The A.D. 1700 earthquake may be the first of a new cluster of plate-boundary earthquakes and accompanying tsunamis. Local tsunamis entered Bradley Lake an average of every 390 yr, whereas the portion of the Cascadia plate boundary that underlies Bradley Lake ruptured in a great earthquake less frequently, about once every 500 yr. Therefore, the entire length of the subduction zone does not rupture in every earthquake, and Bradley

  4. Lidar Mapping Documents Post-glacial Faulting West of the High Cascades Axis at Crater Lake National Park, Oregon

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Robinson, J. E.

    2014-12-01

    The Cascades magmatic arc lies mainly within the High Cascades graben system in the state of Oregon. Normal faults of the Klamath graben trend north into Mount Mazama, the volcano whose catastrophic eruption ~7700 cal y BP resulted in collapse of 8x10 km Crater Lake caldera. Geologic mapping of Mount Mazama (Bacon, USGS SIM 2832, 2008) delineated faults of the West Klamath Lake fault zone (WKLFZ) and their northern extensions through Crater Lake National Park west of the caldera. Outcrop patterns implied presence of normal faults farther west but dense conifer forest made discovery of subtle scarps impractical. Closer to the Cascades axis, successively decreasing offsets of mapped Mazama lava flows with decreasing age yielded a long-term vertical slip rate of ~0.3 mm/y on the principal fault segments of the WKLFZ near Crater Lake, where the youngest offset lavas are 35 ka in age. Other workers have found offset lateral moraine crests where Last Glacial Maximum (LGM) valley glaciers crossed the WKLFZ south of Crater Lake. A lidar survey of Crater Lake National Park in 2010 supported by the Oregon Lidar Consortium (Robinson, USGS Data Series 716, 2012) revealed meter-scale, dominantly N-S trending fault scarps with down-to-the-east displacement west of most previously mapped faults at the latitude of Crater Lake, increasing the known width of the fault zone there to as much as 11 km. Fault segments as long as 7-16 km form a semi-continuous system for virtually the entire 32 km N-S extent of lidar coverage. Along the western part of the fault zone, scarp height is as great as ~20 m. Scarp length and height imply that several M>6-7 earthquakes have occurred in late Pleistocene-Holocene time. Field observations show that the ignimbrite of the Mazama climactic eruption banks against or covers scarps. One fault vertically displaces a lateral moraine ~3 m. The moraine contains clasts of ~50 ka andesite and therefore likely dates from the LGM so that the most recent

  5. Assessment of the toxicity and mutagenic potential of water of Torch Lake, Houghton County, Michigan

    SciTech Connect

    Keen, R.E.; Bagley, S.T.; Barth, A.K.

    1985-08-01

    The toxicity and mutagenic potential of water of Torch Lake, Houghton County, Michigan was measured. Torch Lake is unusual in having very large levels of dissolved copper in its water due to deposition of large amounts of spent copper are (stamp sands) in over 100 years of copper-mining activity. The presence of liver neoplasms in 100% of a species of fish (saugar) from Torch Lake has been presumptively associated with some features, probably chemical, of the massive stamp sand deposits in the lake. Because both toxicity and mutagentic potential of the lake water would be most evident at the upper end of the food chains due to bioaccumulation of materials dissolved in the water, tests for these effects were conducted with concentrates of water samples from Torch Lake, and from Otter Lake (Houghton County, Michigan) as a control. Water samples were collected at four different times in the lakes annual thermal cycle, from three depths in Torch Lake and one depth in Otter Lake. The samples were filtered and concentrated using both low temperature evaporation and XAD-2 resin. Toxicity was measured using the Ceriodaphnia 7-day life-cycle chronic toxicity test. Mutagentic potential was measured using the Ames Salmonella/microsome mutagenicity assay (Ames Test).

  6. Hydrology and water quality of East Lake Tohopekaliga, Osceola County, Florida

    USGS Publications Warehouse

    Schiffer, Donna M.

    1987-01-01

    East Lake Tohopekaliga, one of the major lakes in central Florida, is located in the upper Kissimmee River basin in north-east Osceola County. It is one of numerous lakes in the upper basin used for flood control, in addition to recreation and some irrigation of surrounding pasture. This report is the fourth in a series of lake reconnaissance studies in the Kissimmee River basin prepared in cooperation with the South Florida Water Management District. The purpose of the report is to provide government agencies and the public with a brief summary of the lake 's hydrology and water quality. Site information is given and includes map number, site name, location, and type of data available (specific conductivity, pH, alkalinity, turbidity, color, dissolved oxygen, hardness, dissolved chlorides, dissolved sodium, dissolved calcium, dissolved magnesium, dissolved potassium, nitrogen, ammonia, nitrates, carbon and phosphorus). The U.S. Geological Survey (USGS) maintained a lake stage gaging station on East Lake Tohopekaliga from 1942 to 1968. The South Florida Water Management District has recorded lake stage since 1963. Periodic water quality samples have been collected from the lake by the South Florida Water Management District and USGS. Water quality and discharge data have been collected for one major tributary to the lake, Boggy Creek. Although few groundwater data are available for the study area, results of previous studies of the groundwater resources of Osceola County are included in this report. To supplement the water quality data for East Lake Tohopekaliga, water samples were collected at selected sites in November 1982 (dry season) and in August 1983 (rainy season). Samples were taken at inflow points, and in the lake, and vertical profiles of dissolved oxygen and temperature were measured in the lake. A water budget from an EPA report on the lake is also included. (Lantz-PTT)

  7. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon

    USGS Publications Warehouse

    Klug, C.; Cashman, K.; Bacon, C.

    2002-01-01

    The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by

  8. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon

    NASA Astrophysics Data System (ADS)

    Klug, C.; Cashman, K. V.; Bacon, C. R.

    2002-06-01

    The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the 7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities ( 5×10-13 m2) and a narrower permeability range (5-50×10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330×10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 µm for the fall deposit clasts and 0.25-1 µm for clasts from the pyroclastic flows. High vesicle number densities ( 109 cm-3) in all clasts suggest that bubble nucleation occurred rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by bubble

  9. Geology of the Lake Mary quadrangle, Iron County, Michigan

    USGS Publications Warehouse

    Bayley, Richard W.

    1959-01-01

    The Lake Mary quadrangle is in eastern Iron County, in the west part of the Upper Peninsula of Michigan. The quadrangle is underlain by Lower and Middle Precambrian rocks, formerly designated Archean and Algonkian rocks, and is extensively covered by Pleistocene glacial deposits. A few Upper Precambrian (Keweenawan) diabase dikes and two remnants of sandstone and dolomite of early Paleozoic age are also found in the area. The major structural feature is the Holmes Lake anticline, the axis of which strikes northwest through the northeast part of the quadrangle. Most of the quadrangle, therefore, is underlain by rock of the west limb of the anticline. To the northwest along the fold axis, the Holmes Lake anticline is separated from the Amasa oval by a saddle of transverse folds in the vicinity of Michigamme Mountain in the Kiernan quadrangle. The Lower Precambrian rocks are represented by the Dickinson group and by porphyritic red granite whose relation to the Dickinson group is uncertain, but which may be older. The rocks of the Dickinson group are chiefly green to black metavolcanic schist and red felsite, some of the latter metarhyolite. The dark schist is commonly magnetic. The Dickinson group underlies the core area of the Holmes Lake anticline, which is flanked by steeply dipping Middle Precambrian formations of the Animikie series. A major unconformity separates the Lower Precambrian rocks from the overlying Middle Precambrian rocks. In ascending order the formations of the Middle Precambrian are the Randville dolomite, the Hemlock formation, which includes the Mansfield iron-bearing slate member, and the Michigamme slate. An unconformity occurs between the Hemlock formation and Michigamme slate. The post-Hemlock unconformity is thought to be represented in the Lake Mary quadrangle by the absence of iron-formation of the Amasa formation, which is known to lie between the Hemlock and the Michigamme to the northwest of the Lake Mary quadrangle in the Crystal

  10. Bathymetry of Lake Michie, Durham County, North Carolina, 1990-92

    USGS Publications Warehouse

    Weaver, J. Curtis

    1993-01-01

    This map report presents the results of a bathymetric survey conducted as part of a 1990-92 study on the effects of sedimentation on Lake Michie, located in northeastern Durham County, North Carolina. Bathymetric data collected at the lake during 1990-92 indicate that, under normal pool conditions at the spillway elevation of 341.0 feet above sea level, the storage volume is 11,070 acre-feet, and the surface area is 508.7 acres. The maximum depth recorded in the lake was 75 feet at approximately 500 feet upstream of Lake Michie Dam.

  11. Cruise report R/V Surf Surveyor cruise S1-00-CL, mapping the bathymetry of Crater Lake, Oregon

    USGS Publications Warehouse

    Gardner, James V.; Mayer, Larry A.; Buktenica, Mark W.

    2000-01-01

    During the Spring of 1999, the US Geological Survey (USGS) Pacific Seafloor Mapping Project (PSMP) was contacted by the US National Park Service Crater Lake National Park (CLNP) to inquire about the plausibility of producing a high-resolution multibeam bathymetric map of Crater Lake. The purpose was to generate a much higher-resolution and more geographically accurate bathymetric map than was produced in 1959, the last time the lake had been surveyed. Scientific interest in various aspects of Crater Lake (aquatic biology, geochemistry, volcanic processes, etc.) has increased during the past decade but the basemap of bathymetry was woefully inadequate. Funds were gathered during the early part of 2000 and the mapping began in late July, 2000. Crater Lake (see fig. 1 in report) is located in south central Oregon (see fig. 2 in report) within the Cascades Range, a chain of volcanoes that stretches from northern California to southern British Columbia. Crater Lake is the collapsed caldera of Mt. Mazama from a climatic eruption about 7700-yr ago (Nelson et al., 1988; Bacon and Lanphere, 1990; Bacon et al., 1997). The floor of Crater Lake has only been mapped three times since the lake was first stumbled upon by gold prospectors in the 1853. The first survey was carried by out by William G. Steel during a joint USGS-US Army expedition under the direction of Maj. Clarence E. Dutton in 1886 (Dutton, 1889). Steel�s mapping survey collected 186 soundings using a Millers lead-line sounding machine (see fig.3 in report). The resulting map (see fig.4 in report) shows only soundings and no attempts were made to generate contours. The second survey, conducted in 1959 by the US Coast and Geodetic Survey, mapped the bathymetry of Crater Lake with an acoustic echo sounder using radar navigation and collected 4000 soundings. The data were contoured by Williams (1961) and Byrne (1962) and the result is a fairly detailed map of the large-scale features of Crater Lake (see fig. 5

  12. Dependence of flow and transport through the Williamson River Delta, Upper Klamath Lake, Oregon, on wind, river inflow, and lake elevation

    USGS Publications Warehouse

    Wood, Tamara M.

    2012-01-01

    The hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to run 384 realizations of a numerical tracer experiment in order to understand the relative effects of wind, lake elevation, and Williamson River inflow on flow and transport (the movement of water and passively transported constituents) through the Williamson River Delta. Significant findings from this study include: * The replacement rate of water increased in Tulana and Goose Bay with increasing lake elevation, Williamson River inflow, and wind speed. * The fraction of Williamson River inflow passing through either side of the Delta increased with lake elevation and Williamson River inflow. * The partial replacement rate of water in Goose Bay with water from the Williamson River increased with wind speed. * The partial replacement rate of water in Tulana with water from the Williamson River decreased with wind speed. * Strong wind forcing at the water surface caused more of the Williamson River inflow to pass through Goose Bay than through Tulana. * Westerly to northwesterly winds result in more of the Williamson River inflow passing through the Goose Bay side of the Delta than through the Tulana side. * Regression models developed from the tracer experiments can be used to quantify the dependencies between transport and the independent variables to obtain rough estimates of useful quantities such as residence time and steady-state solute concentrations.

  13. Recent desiccation of Western Great Basin Saline Lakes: Lessons from Lake Abert, Oregon, U.S.A.

    PubMed

    Moore, Johnnie N

    2016-06-01

    Although extremely important to migrating waterfowl and shorebirds, and highly threatened globally, most saline lakes are poorly monitored. Lake Abert in the western Great Basin, USA, is an example of this neglect. Designated a critical habitat under the Western Hemisphere Shorebird Reserve Network, the lake is at near record historic low levels and ultra-high salinities that have resulted in ecosystem collapse. Determination of the direct human effects and broader climate controls on Lake Abert illustrates the broader problem of saline lake desiccation and suggests future solutions for restoration of key habitat values. A 65-year time series of lake area was constructed from Landsat images and transformed to lake volume and salinity. "Natural" (without upstream withdrawals) conditions were calculated from climate and stream flow data, and compared to measured volume and salinity. Under natural conditions the lake would have higher volume and lower salinities because annual water withdrawals account for one-third of mean lake volume. Without withdrawals, the lake would have maintained annual mean salinities mostly within the optimal range of brine shrimp and alkali fly growth. Even during the last two years of major drought, the lake would have maintained salinities well below measured values. Change in climate alone would not produce the recent low lake volumes and high salinities that have destroyed the brine shrimp and alkali fly populations and depleted shorebird use at Lake Abert. Large scale withdrawal of water for direct human use has drastically increased the imbalance between natural runoff and evaporation during periods of drought in saline lakes worldwide but could be offset by establishing an "environmental water budget" to lay a foundation for the conservation of saline lake habitats under continued threats from development and climate change.

  14. An aem-tem study of weathering and diagenesis, Abert Lake, Oregon: I. Weathering reactions in the volcanics

    USGS Publications Warehouse

    Banfield, J.F.; Jones, B.F.; Veblen, D.R.

    1991-01-01

    Abert Lake in south-central Oregon provides a site suitable for the study of sequential weathering and diagenetic events. In this first of two papers, transmission electron microscopy was used to characterize the igneous mineralogy, subsolidus alteration assemblage, and the structural and chemical aspects of silicate weathering reactions that occur in the volcanic rocks (basalts, basaltic andesites, and dacitic/ rhyolitic extrusive and pyroclastics) that outcrop around the lake. Olivine and pyroxene replacement occurred topotactically, whereas feldspar and glass alteration produced randomly oriented smectite in channels and cavities. The tetrahedral, octahedral, and interlayer compositions of the weathering products, largely dioctahedral smectites, varied with primary mineral composition, rock type, and as the result of addition of elements released from adjacent reaction sites. Weathering of the highly evolved, Fe-rich Jug Mountain complex at the north end of the lake produced a homogeneous smectite assemblage that contrasts with the heterogeneous smectite assemblage replacing the volcanics along the eastern margin of the lake. The variability within and between the smectite assemblages highlights the microenvironmental diversity, fluctuating redox conditions, and variable solution chemistry associated with mineral weathering reactions in the surficial environment. Late-stage exhalative and aqueous alteration of the volcanics redistributed many components and formed a variety of alkali and alkali-earth carbonate, chloride, sulfate, and fluoride minerals in vugs and cracks. Overall, substantial Mg, Si, Na, Ca, and K are released by weathering reactions that include the almost complete destruction of the Mg-smectite that initially replaced olivine. The leaching of these elements from the volcanics provides an important source of these constituents in the lake water. The nature of subsequent diagenetic reactions resulting from the interaction between the materials

  15. Hydrologic and climatologic data collected through 1964, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, and Salt Lake City Chamber of Commerce contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. This basic-data report sets forth climatologic and surface-water data collected by project personnel and others during the water year beginning October 1, 1963, and ending September 30, 1964, and ground-water data collected by project personnel and others for the period July 1, 1963, through December 31, 1964. Included also are some earlier ground-water data not previously published. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables. Data collected during the period of investigation will be published in annual basic-data releases and an interpretative report will be published at the completion of the investigation.

  16. Hydrologic description of Lake Hancock, Polk County, Florida

    USGS Publications Warehouse

    Hammett, K.M.; Snell, L.J.; Joyner, Boyd F.

    1981-01-01

    Available data were evaluated to document hydrologic conditions in the Lake Hancock basin. Bathymetric data indicate that Lake Hancock is very shallow, having a maximum depth of about 3 feet. The lake bottom is covered by a layer of organic material that may be more than 5 feet thick near the center of the lake. Lake Hancock 's stage fluctuates within 0.5 foot of average stage about 40 percent of the time. Lake outflow is through an operable control. There are many days with no outflow in some years. A water-budget analysis of the lake indicates that substantial lake stage declines in 1968 and 1975 followed successive years of deficient precipitation and were primarily the result of a net loss of water from the lake to the ground-water system. During a period in 1971-72 when lake stage remained relatively stable, the ground-water system contributed a significant volume of water to the lake. Water-quality data indicate that Lake Hancock is in a eutrophic state. The eutrophication process appears to have been accelerated through the addition of nutrients from inflow of wastewater effluent from secondary treatment plants. (USGS)

  17. Geology of the Anlauf and Drain Quadrangles, Douglas and Lane Counties, Oregon

    USGS Publications Warehouse

    Hoover, Linn

    1963-01-01

    The Anlauf and Drain quadrangles, Oregon, lie about 20 miles south of the city of Eugene, in Douglas and Lane Counties. They constitute an area of about 435 square miles that includes parts of both the Cascade Range and Coast Range physiographic provinces. A sequence of lower Tertiary sedimentary and volcanic rocks with a maximum thickness of about 20,000 feet is exposed in the area. The oldest part of this sequence is the Umpqua formation of early Eocene age consisting of a lower member of vesicular and amygdaloidal olivine basalt flows, a middle member of water-laid vitric and lapilli crystal tuff, and an upper member of interbedded fissile siltstone and basaltic sandstone which contains a 300-foot tongue of massive to thick-bedded basaltic sandstone near its top. These rocks are predominantly of marine origin, although the general absence of pillow structures which are common in basaltic lavas of equivalent age elsewhere in the Coast Ranges suggests that some of the flows were poured out subaerially. The overlying tuff member, however, contains Foraminifera and in places has a lime content slightly in excess of 10 percent. Mollusca and Foraminifera indicate that the Umpqua formation is of early Eocene age and is a correlative of the Capay formation of California. The Tyee formation of middle Eocene age overlies the Umpqua formation and consists of more than 5,000 feet of rhythmically deposited sandstone and siltstone in beds 2 to 30 feet thick. The basal part of each bed consists of medium- to coarse-grained sandstone that grades upward into fine-grained sand- stone and siltstone. The principal constituents of the sandstone are quartz, partly a1tered feldspar, mica, clay, and fragments of basalt, fine-grained argillaceous rocks, and mica schist. Other detrital minerals include epidote, garnet, blue-green hornblende, tourmaline, and zoisite. The depositional environment of the Tyee formation is poorly known, although the rhythmic-graded bedding suggests turbidity

  18. Invertebrates of Meadow Creek, Union County, Oregon, and their use as food by trout.

    Treesearch

    Carl E. McLemore; William R. Meehan

    1988-01-01

    From 1976 to 1980, invertebrates were collected three times each year from several reaches of Meadow Creek in eastern Oregon. Five sampling methods were used: benthos, drift, sticky traps, water traps, and fish stomachs. A total of 372 taxa were identified, of which 239 were used as food by rainbow trout (steelhead; Salmo gairdneri Richardson). Of...

  19. Status of Oregon's Children: 1999 County Data Book. Special Focus: Early Childhood.

    ERIC Educational Resources Information Center

    Children First for Oregon, Portland.

    This Kids Count data book examined trends in the well-being of Oregon's children, focusing on the well-being of children under 8 years. This statistical portrait is based on indicators of child well being in four areas: (1) health, including immunizations, health insurance, and health risk factors; (2) family well-being, including divorce and…

  20. Status of Oregon's Children: 1997 County Databook. Special Focus: Youth-at-Risk.

    ERIC Educational Resources Information Center

    Children First for Oregon, Portland.

    This Kids Count databook examines statewide trends in the well-being of Oregon's children, focusing on youth at risk. The statistical report is based on 12 indicators of well-being: (1) juvenile arrests; (2) teen sexuality; (3) high school dropout rate; (4) teen suicide; (5) reading proficiency; (6) math proficiency; (7) child abuse and neglect;…

  1. Status of Oregon's Children: 2002 County Data Book. Special Focus: Health and Safety.

    ERIC Educational Resources Information Center

    Children First for Oregon, Portland.

    This Kids Count data book examines trends in the well-being of Oregons children, focusing on child health, nutrition, and child safety. This statistical portrait is based on 17 indicators of child well-being: (1) child care supply; (2) third grade reading proficiency; (3) third grade math proficiency; (4) juvenile arrests; (5) suicide attempts;…

  2. Status of Oregon's Children: 1998 County Data Book. Special Focus: Children's Health Care.

    ERIC Educational Resources Information Center

    Children First for Oregon, Portland.

    This Kids Count report examines statewide trends in the well-being of Oregon's children, focusing on children's health care. The statistical portrait is based on indicators of well-being including: (1) children's insurance coverage; (2) health care access; (3) health outcomes, including immunization rates and early prenatal care; (4) juvenile…

  3. Status of Oregon's Children: County Data Book 2000. Special Focus: Kids in the Middle.

    ERIC Educational Resources Information Center

    Children First for Oregon, Portland.

    This Kids Count data book examined trends in the well-being of Oregon's children, focusing on the well-being of preteens. This statistical portrait is based on 12 indicators of child well being: (1) juvenile arrests; (2) teen pregnancy; (3) suicide attempts for 10- to 17-year-olds; (4) high school dropout rate; (5) eighth grade reading…

  4. Preliminary Results of Subsurface Exploration and Monitoring at the Johnson Creek Landslide, Lincoln County, Oregon

    USGS Publications Warehouse

    Schulz, William H.; Ellis, William L.

    2007-01-01

    The Johnson Creek landslide is a translational, primarily bedrock landslide located along the Oregon coast about 5 km north of Newport. The landslide has damaged U.S. Highway 101 many times since construction of the highway and at least two geological and geotechnical investigations of the landslide have been performed by Oregon State agencies. In cooperation with the Oregon Department of Geology and Mineral Industries and the Oregon Department of Transportation, the U.S. Geological Survey upgraded landslide monitoring systems and installed additional monitoring devices at the landslide beginning in 2004. Monitoring devices at the landslide measured landslide displacement, rainfall, air temperature, shallow soil-water content, and ground-water temperature and pressure. The devices were connected to automatic dataloggers and read at one-hour and, more recently, 15-minute intervals. Monitoring results were periodically downloaded from the dataloggers using cellular telemetry. The purposes of this report are to describe and present preliminary monitoring data from November 19, 2004, to March 31, 2007.

  5. Chemical, isotopic, and dissolved gas compositions of the hot springs of the Owyhee Uplands, Malheur County, Oregon

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, William C.; Nielson, Dennis L.

    1994-01-01

    Hot springs along the Owyhee River in southeastern Oregon between Three Forks and Lake Owyhee could be part of a north flowing regional system or a series of small separate geothermal systems Heat for the waters could be from a very young (Holocene) volcanic activity (basalt flows) of the Owyhee Uplands or the regional heat flow. The springs discharge warm to hot, dilute, slightly alkaline, sodium bicarbonate water. Chemically they are similar to the dilute thermal water at Bruneau Grand View and Twin Falls, Idaho. Maximum aquifer temperatures in the Owyhee Uplands, estimated from chemical geothermometry, are about 100°C. Dissolved helium concentrations, carbon 14 activity, and chemical and isotope data are examined fro systematic trends which would indicate a geothermal system of regional extent.

  6. Hydrologic reconnaissance of Tsala Apopka Lake, Citrus County, Florida

    USGS Publications Warehouse

    Rutledge, A.T.

    1977-01-01

    The swamps, marshes, and open waters of Tsala Apopka Lake, Florida, were mapped and the hydrologic connection between the lake and the Floridan limestone aquifer was studied from October 1975 to September 1976. Tsala Apopka Lake is a series of shallow , interconnected lakes, ponds, and marshes whose water surface slopes northward at 0.5 foot per mile. According to aerial photographs of December 1972, only 6 percent of the 103 square miles of study area is covered by open water. Open water is abundant along the western side of the lake, dense and sparse marshes occupy most of the lake area, and swamps occupy a thick zone around the Withlacoochee River which borders the lake to the east. Only a small fraction of the total surface flow occurs through the lake. The average lake outflow through S-351 canal is 23.6 cfs; while the average river flow at Holder is 714 cfs. Tsala Apopka Lake is hydraulically connected to the Floridan aquifer. At low flow, the major source of water in the river is ground water from the Floridan aquifer. The specific conductance of water in the Floridan aquifer averages 250-350 umho/cm (micromhos per centimeter) at 25C in this area. The specific conductance of water in the Withlacoochee River near Holder averages 268 umho/cm at 25C, while water in Tsala Apopka Lake at Hernando averages 139 umho/cm at 25C. (Woodard-USGS)

  7. Flood-inundation maps for Lake Champlain in Vermont and in northern Clinton County, New York

    USGS Publications Warehouse

    Flynn, Robert H.; Hayes, Laura

    2016-06-30

    Digital flood-inundation maps for an approximately100-mile length of Lake Champlain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York were created by the U.S. Geological Survey (USGS) in cooperation with the International Joint Commission (IJC). The flood-inundationmaps, which can be accessed through the International Joint Commission (IJC) Web site at http://www.ijc.org/en_/, depict estimates of the areal extent flooding correspondingto selected water levels (stages) at the USGS lake gage on the Richelieu River (Lake Champlain) at Rouses Point, N.Y. (station number 04295000). In this study, wind and seiche effects (standing oscillating wave with a long wavelength) were not taken into account and the flood-inundation mapsreflect 11 stages (elevations) for Lake Champlain that are static for the study length of the lake. Near-real-time stages at this lake gage, and others on Lake Champlain, may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the Richelieu River (Lake Champlain) at Rouses Point.Static flood boundary extents were determined for LakeChamplain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York using recently acquired (2013–2014) lidar (light detection and ranging) and may be referenced to any of the five USGS lake gages on Lake Champlain. Of these five lakgages, USGS lake gage 04295000, Richelieu River (Lake Champlain) at Rouses Point, N.Y., is the only USGS lake gage that is also a National Weather Service prediction location. Flood boundary extents for the Lake Champlain static flood-inundation map corresponding to the May 201 flood(103.2 feet [ft], National Geodetic Vertical Datum [NGVD] 29) were evaluated by comparing these boundary

  8. Water quality of Rogers Lake, Dakota County, Minnesota

    USGS Publications Warehouse

    Have, M.R.

    1980-01-01

    Analyses of water from Rogers Lake suggest that sodium and chloride concentrations were higher than in ground water or in water in some surrounding lakes . Sodium ranged from 7.2 to 55 milligrams per liter, and chloride ranged from 15 to 30 milligrams per liter. Concentrations were highest in March 1978, when most of the lake water was frozen. Much of the sodium and chloride may have been derived from road salts used for deicing.

  9. Identification of a new fault and associated lineament features in Oregon's Summer Lake Valley using high-resolution LiDAR data

    NASA Astrophysics Data System (ADS)

    Bennett, L.; Madin, I.

    2012-12-01

    In 2012, the Oregon Department of Geology and Mineral Industries (DOGAMI) contracted WSI to co-acquire airborne Light Detecting and Ranging (LiDAR) and Thermal Infrared Imagery (TIR) data within the region surrounding Summer Lake, Oregon. The objective of this project was to detect surficial expressions of geothermal activity and associated geologic features. An analysis of the LiDAR data revealed one newly identified fault and several accompanying lineaments that strike northwest, similar to the trend of the Ana River, Brothers, and Eugene-Denio Fault Zones in Central Oregon. The age of the Ana River Fault Zone and Summer Lake bed is known to be within the Holocene epoch. Apparent scarp height observed from the LiDAR is up to 8 meters. While detailed analysis is ongoing, the data illustrated the effectiveness of using high resolution remote sensing data for surficial analysis of geologic displacement. This presentation will focus on direct visual detection of features in the Summer Lake, Oregon landscape using LiDAR data.

  10. Water quality of the Malheur Lake system and Malheur River, and simulated water-quality effects of routing Malheur Lake water into Malheur River, Oregon, 1984-85

    USGS Publications Warehouse

    Fuste, L.A.; McKenzie, S.W.

    1987-01-01

    Above average precipitation and runoff between 1980 and 1985 have raised the water-surface elevation of Harney, Mud, and Malheur Lakes in eastern Oregon to the highest levels recorded and have caused mixing and interflow of water among the three lakes. A 50% increase in specific conductance throughout Malheur Lake from 1984 to 1985 resulted from an increase in sodium and chloride concentrations, probably caused by the flow of saline water from Harvey Lake and dissolution of evaporites in flooded areas around it. Arsenic and boron concentrations increased during the two years. Algal productivity was highest towards the center of Malheur Lake. Concentrations of major ions in the Malheur River during the 1985 irrigation season were dilute in upstream reaches because of flow releases from reservoirs; increasing in a downstream direction because of irrigation-return flow. Concentrations also increased with time during irrigation season, with the highest concentrations occurring in October after most diversions for irrigation were discontinued. Mass-balance equations were used to simulate mixing of Malheur Lake with Malheur River water to estimate the water quality that would occur at different points along Malheur River. Simulations of sodium and chloride concentrations and specific conductance values based on August river-flows during irrigation season, show a gradual increase from the headwaters downstream to Hope and greater increases downstream of Hope. After irrigation ceases, the simulated water quality becomes uniform throughout the river, because proposed lake flows are then the principal source of Malheur River flows. Arsenic and boron concentrations increase much more than expected between Namorf and Little Valley; thermal springs could be the source of arsenic and boron in this reach. Groundwater coming in contact with arsenic rich soils may also contribute to the elevated arsenic levels found in the river. At the end of the irrigation season, arsenic

  11. Mercury bioaccumulation in fishes from subalpine lakes of the Wallowa-Whitman National Forest, northeastern Oregon and western Idaho

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2013-01-01

    Mercury (Hg) is a globally distributed pollutant that poses considerable risks to human and wildlife health. Over the past 150 years since the advent of the industrial revolution, approximately 80 percent of global emissions have come from anthropogenic sources, largely fossil fuel combustion. As a result, atmospheric deposition of Hg has increased by up to 4-fold above pre-industrial times. Because of their isolation, remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited Hg through freshwater food webs, as well as for evaluating the relative importance of Hg loading versus landscape influences on Hg bioaccumulation. The increase in Hg deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in Hg emissions may propagate to changes in Hg bioaccumulation and ecological risk. In this study, we evaluated Hg concentrations in fishes of high-elevation, sub-alpine lakes in the Wallowa-Whitman National Forest in northeastern Oregon and western Idaho. Our goals were to (1) assess the magnitude of Hg contamination in small-catchment lakes to evaluate the risk of atmospheric Hg to human and wildlife health, (2) quantify the spatial variability in fish Hg concentrations, and (3) determine the ecological, limnological, and landscape factors that are best correlated with fish total mercury (THg) concentrations in these systems. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. Importantly, our top statistical model explained 87 percent of the variability in fish THg concentrations among lakes with four key landscape and limnological variables— catchment conifer density (basal area of conifers within a lake’s catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. The basal area of conifers

  12. Transition of Benthic Nutrient Sources after Engineered Levee Breaches Adjacent to Upper Klamath and Agency Lakes, Oregon

    NASA Astrophysics Data System (ADS)

    Kuwabara, J. S.; Topping, B. R.; Carter, J. L.; Parchaso, F.; Cameron, J. M.; Asbill, J. R.; Carlson, R. A.; Fend, S. V.; Engelstad, A. C.

    2010-12-01

    Nonmetallic pore-water profilers were deployed during four sampling trips between November 2007 and July 2009 after engineered levee breaches on 30 October 2007, hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. Centimeter-scale measurements of the vertical dissolved-nutrient concentration gradients from the profilers served as the basis for diffusive-flux determinations. Wetland areas undergoing restoration and those being used for water storage around these lakes function very differently than nearby established wetlands within the Upper Klamath National Wildlife Refuge. Consistent with previous results from Upper Klamath Lake, benthic flux of soluble reactive phosphorus (SRP) in the wetlands was consistently positive, and when areally and seasonally averaged over the 13 km2 newly restored wetlands, an SRP flux to the overlying water column (~87,000 kg over the 3-month cyanophyte bloom of Aphanizomenon flos-aquae (AFA)) exceeded the magnitude of riverine inputs (42,000 kg for that season). SRP benthic flux at a site within the restored wetland area ~0.5 km from the breach was elevated relative to all other lake and wetland sites (including another wetland site <0.1 km from the breached levee) in 2009 suggests that the restored wetlands, at least chemically, remain in a transition period following the hydrologic reconnection of the lake and wetland environments. Ammonium fluxes to the water column remained consistently positive throughout the sampling period, generating a toxicological concern for endangered fish populations at elevated summer pH. Soluble reactive phosphorus (SRP) concentrations were lower than detection limits (<0.03 mg-P/L) at all lake and wetland sites following the levee breaches. As indicated in previous studies, SRP concentrations for 2009 sampling trips indicated higher concentrations at the end of the annual AFA bloom relative to its beginning, suggesting a limiting factor or factors other

  13. Mineral resources of the Hawk Mountain Wilderness Study Area, Honey County, Oregon

    SciTech Connect

    Turrin, B.D.; Conrad, J.E.; Plouff, D.; King, H.D. ); Swischer, C.C. ); Mayerle, R.T.; Rains, R.L. )

    1989-01-01

    The Hawk Mountain Wildeness Study Area in south-central Oregon is underlain by Miocene age basalt, welded tuff, and interbedded sedimentary rock. The western part of this study area has a low mineral resource potential for gold. There is a low mineral resource potential for small deposits of uranium in the sedimentary rocks. This entire study area has a low potential for geothermal and oil and gas resources. There are no mineral claims or identified resources in this study area.

  14. Mineral resources of the Orejana Canyon Wilderness Study Area, Harney county, Oregon

    SciTech Connect

    Conrad, J.E.; King, H.D.; Gettings, M.E.; Diggles, M.F.; Sawatzky, D.L. ); Benjamin, D.A. )

    1988-01-01

    The Orejana Canyon Wilderness Study Area in south-central Oregon is discussed. It is underlain by Miocene age basalts and interbedded sediments and rhyolite welded tuff. The study area has low mineral resource potential for gold and silver along the Orejana Rim escarpment. There is low mineral resource potential for tin in some exposures of the rhyolite tuff and low potential for oil and gas resources. There are no mining claims or identified mineral resources in the study area.

  15. Bathymetric survey of Lake Calumet, Cook County, Illinois

    USGS Publications Warehouse

    Duncker, James J.; Johnson, Kevin K.; Sharpe, Jennifer B.

    2015-01-01

    The U.S. Geological Survey collected bathymetric data in Lake Calumet and a portion of the Calumet River in the vicinity of Lake Calumet to produce a bathymetric map. The bathymetric survey was made over 3 days (July 26, September 11, and November 7, 2012). Lake Calumet has become a focus area for Asian carp rapid-response efforts by state and federal agencies, and very little bathymetric data existed prior to this survey. This bathymetric survey provides data for a variety of scientific and engineering studies of the area; for example, hydraulic modeling of water and sediment transport from Lake Calumet to the Calumet River.

  16. Building a large magma chamber at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Karlstrom, L.; Bacon, C. R.

    2012-12-01

    Crater Lake caldera, Oregon, a structure produced by the 50 km3 eruption of Mount Mazama ~7.7 ka, is one of only three identified Quaternary calderas in the Cascades volcanic chain (Hildreth 2007). What were the conditions necessary to build a large volume magma chamber capable of producing this caldera-forming eruption at Mount Mazama? Using the well-documented >400,000 year volcanic history at Mazama (Bacon and Lanphere 2006), an approximation of vent locations for each eruptive unit (Bacon 2008), and a compilation of over 900 whole-rock compositions from Mount Mazama and regional volcanic rocks, we examine questions of magma chamber assembly in an active volcanic arc. These questions include: (1) is magmatic input approximately constant in composition between Mazama and regional monogenetic volcanic centers? (2) how did melt evolution differ in the two cases (Mazama vs. regional volcanism)? (3) is there spatiotemporal evidence in eruption data (including eruptive volume and chemistry) for a growing magma chamber at depth? and (4) does stability of that chamber require pre-warming of the surrounding country rock? An assumption of approximately constant major-element composition magmatic input is consistent with observed compositional overlap between basaltic to basaltic andesitic eruptive products at Mount Mazama and its vicinity (within 15 km of the volcano). MELTS modeling (Ghiorso and Sack 1995) from an initial composition of magnesian basaltic andesite of monogenetic Red Cone (erupted at a distance of ~8 km from the climactic vent) is consistent with water-saturated magmatic evolution at relatively shallow depths (<500 MPa, with the caveat that shallow pressure calibration data are largely lacking from MELTS models). Within this pressure range, differences in whole-rock compositions indicate that regional magmatic rocks evolved at shallower depths and/or drier conditions than those at the Mazama center. Observations of eruptive ages, compositions, vent

  17. Hydrology of the Goat Lake watershed, Snohomish County, Washington, 1982-87

    USGS Publications Warehouse

    Dion, N.P.; Ebbert, J.C.; Poole, J.E.; Peck, B.S.

    1989-01-01

    The Goat Lake watershed in Snohomish County, Washington, functions as an ' experimental watershed ' for long-term studies to determine the effects of acidic precipitation on water resources. Data have been collected there by the U.S. Geological Survey since 1982. The watershed is in a wilderness area of the Cascade Range and is downwind of an industrial and urban area that produces chemical compounds found in acidic precipitation. The lake is considered sensitive to acidic inputs from atmospheric deposition and streamflow. The mean annual discharge of the Goat Lake outflow is 35 cu ft/sec; precipitation on the watershed is calculated to be about 170 in/yr. The inflow to Goat Lake is sufficient to replace the entire contents of the lake basin on an average every 21.5 days, or 17 times/year. Water in Goat Lake, and that of the inlet and outlet, is of low ionic strength and of calcium-bicarbonate type. The lake, although considered oligotrophic, is sufficiently deep to stratify thermally, and summer dissolved-oxygen concentrations in the hypolimnion are depressed. Even though alkalinity and specific conductance at Goat Lake are in the range considered sensitive to acidic inputs , the pH of water in the lake has consistently ranged from 6.1 to 7.2, indicating that the lake is not acidified at this time. (USGS)

  18. Sources of mercury in sediments, water, and fish of the lakes of Whatcom County, Washington

    USGS Publications Warehouse

    Paulson, Anthony J.

    2004-01-01

    Concerns about mercury (Hg) contamination in Lake Whatcom, Washington, were raised in the late 1990s after a watershed protection survey reported elevated concentrations of Hg in smallmouth bass. The U.S. Geological Survey, the Whatcom County Health Department, and the Washington State Department of Ecology (Ecology) cooperated to develop a study to review existing data and collect new data that would lead to a better understanding of Hg deposition to Lake Whatcom and other lakes in Whatcom County, Washington. A simple atmospheric deposition model was developed that allowed comparisons of the deposition of Hg to the surfaces of each lake. Estimates of Hg deposition derived from the model indicated that the most significant deposition of Hg would have occurred to the lakes north of the City of Bellingham. These lakes were in the primary wind pattern of two municipal waste incinerators. Of all the lakes examined, basin 1 of Lake Whatcom would have been most affected by the Hg emissions from the chlor-alkali plant and the municipal sewage-sludge incinerator in the City of Bellingham. The length-adjusted concentrations of Hg in largemouth and smallmouth bass were not related to estimated deposition rates of Hg to the lakes from local atmospheric sources. Total Hg concentrations in the surface sediments of Lake Whatcom are affected by the sedimentation of fine-grained particles, whereas organic carbon regulates the concentration of methyl-Hg in the surface sediments of the lake. Hg concentrations in dated sediment core samples indicate that increases in Hg sedimentation were largest during the first half of the 20th century. Increases in Hg sedimentation were smaller after the chlor-alkali plant and the incinerators began operating between 1964 and 1984. Analysis of sediments recently deposited in basin 1 of Lake Whatcom, Lake Terrell, and Lake Samish indicates a decrease in Hg sedimentation. Concentrations of Hg in Seattle precipitation and in tributary waters were

  19. Exploring the Use of Historic Earthquake Information to Differentiate Between Deposit Triggers for the High-resolution Stratigraphy from Squaw Lakes, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Morey, A. E.; Gavin, D. G.; Goldfinger, C.; Nelson, A. R.

    2014-12-01

    The unique setting and high-resolution stratigraphy at Squaw Lakes, Oregon provides an opportunity to apply lake paleoseismology to southern Cascadia forearc lakes. These lakes were formed when a landslide dammed Squaw Creek located ~100 km from the Oregon coast at the Oregon/California border separating the drainages at the confluence of Squaw and Slickear Creeks. The upper lake contains evidence of disturbance events much too frequent to be the result of earthquakes alone. A link to historic events provides information that may be used to differentiate between deposit triggers and improve the interpretation of the prehistoric portion of the sedimentary record. Regional newspapers published historic accounts of earthquakes experienced by the local people, the most notable of which is the November 23 (or 22nd), 1873 Crescent City, CA earthquake. Although the 1906 San Francisco earthquake was also felt in this region, reports indicate that shaking was much stronger near Jacksonville, Oregon (only 25 miles to the north of Squaw Lakes) as a result of the 1873 earthquake. The depth range that most likely contains sediment deposited within a few years of 1873 can be determined using a new high-resolution age model for the Upper Squaw Lake sediment core (Gavin et al., in prep). This depth range in the core contains a thick deposit that is similar in structure to deposits deeper in the core that have been proposed to correlate with the marine record of Cascadia great earthquakes. These disturbance event deposits are thicker, graded deposits, where grading is dominated by the percentage of organic content as compared to those interpreted to be a result of watershed disturbances. Recently acquired radiocarbon ages for the Lower Squaw Lake core suggests the thicker Upper Squaw Lake deposits correlate to those recorded in the lower-resolution sedimentary record at Lower Squaw Lake. The character of the likely contemporaneous deposits from the lower lake show grading more

  20. Assessment of Mercury in Fish Tissue from Select Lakes of Northeastern Oregon

    EPA Science Inventory

    A fish tissue study was conducted in five northeastern Oregon reservoirs to evaluate mercury concentrations in an area where elevated atmospheric mercury deposition had been predicted by a national EPA model, but where tissue data were sparse. The study targeted resident predator...

  1. Assessment of Mercury in Fish Tissue from Select Lakes of Northeastern Oregon

    EPA Science Inventory

    A fish tissue study was conducted in five northeastern Oregon reservoirs to evaluate mercury concentrations in an area where elevated atmospheric mercury deposition had been predicted by a national EPA model, but where tissue data were sparse. The study targeted resident predator...

  2. Water quality of Nippersink Creek and Wonder Lake, McHenry County, Illinois, 1994-2001

    USGS Publications Warehouse

    Dupre, David H.; Robertson, Dale M.

    2004-01-01

    Wonder Lake, McHenry County, Illinois was formed when an earthen dam was constructed across Nippersink Creek in 1929. The U.S. Geological Survey (USGS), in cooperation with the McHenry County Soil and Water Conservation District, operated two streamflow and water-quality monitoring sites (upstream and downstream of Wonder Lake) from July 1994 through June 1997, and examined the water quality of the lake during 1999-2000. From 1999 through 2001, the USGS National Water-Quality Assessment Program operated the same upstream monitoring station to assess the streamflow, sediments, nutrients, and other chemical and physical characteristics of Nippersink Creek. Interpolation and regression methods were used to compute loads of sediment and nutrients delivered to Wonder Lake through Nippersink Creek by the combination of data sets collected as part of these studies. Since the formation of Wonder Lake, sediment and nutrient loading from Nippersink Creek has caused lake water-quality degradation. Wonder Lake effectively trapped 75 percent of the 15,900 tons of suspended sediment delivered during 1994-97. The average daily sediment load delivered during 1994-2001 was 25 tons. High sediment loading from the watershed reduces water clarity and hinders lake navigation. Nutrient loading from Nippersink Creek results in eutrophic conditions within Wonder Lake as evaluated on a Trophic State Index. The load of total phosphorus trapped in Wonder Lake is from 6 to 28 percent of the delivered load from Nippersink Creek. If the lake could be restored to its original capacity, the sediment trapping efficiency may be increased.

  3. Historical changes to Lake Washington and route of the Lake Washington Ship Canal, King County, Washington

    USGS Publications Warehouse

    Chrzastowski, Michael J.

    1983-01-01

    Lake Washington, in the midst of the greater Seattle metropolitan area of the Puget Sound region (fig. 1), is an exceptional commercial, recreational, and esthetic resource for the region . In the past 130 years, Lake Washington has been changed from a " wild " lake in a wilderness setting to a regulated lake surrounded by a growing metropolis--a transformation that provides an unusual opportunity to study changes to a lake's shoreline and hydrologic characteristics -resulting from urbanization.

  4. EPA Funds Cleaner School Buses with Diesel Rebates in Idaho, Oregon and Washington

    EPA Pesticide Factsheets

    (Seattle - December 11, 2015) The U.S. Environmental Protection Agency today announced $115,000 in rebates to retrofit older diesel school buses at the Shelley School District in Idaho, North Wasco County School District in Oregon, and Moses Lake School Di

  5. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    USGS Publications Warehouse

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby non-augmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit. Ground-water flow patterns around Round Lake were considerably different than the non-augmented lakes. For most of the study, ground-water augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other

  6. Effect of water-column pH on sediment-phosphorus release rates in Upper Klamath Lake, Oregon, 2001

    USGS Publications Warehouse

    Fisher, Lawrence H.; Wood, Tamara M.

    2004-01-01

    Sediment-phosphorus release rates as a function of pH were determined in laboratory experiments for sediment and water samples collected from Shoalwater Bay in Upper Klamath Lake, Oregon, in 2001. Aerial release rates for a stable sediment/water interface that is representative of the sediment surface area to water column volume ratio (1:3) observed in the lake and volumetric release rates for resuspended sediment events were determined at three different pH values (8.1, 9.2, 10.2). Ambient water column pH (8.1) was maintained by sparging study columns with atmospheric air. Elevation of the water column pH to 9.2 was achieved through the removal of dissolved carbon dioxide by sparging with carbon dioxide-reduced air, partially simulating water chemistry changes that occur during algal photosynthesis. Further elevation of the pH to 10.2 was achieved by the addition of sodium hydroxide, which doubled average alkalinities in the study columns from about 1 to 2 milliequivalents per liter. Upper Klamath Lake sediments collected from the lake bottom and then placed in contact with lake water, either at a stable sediment/water interface or by resuspension, exhibited an initial capacity to take up soluble reactive phosphorus (SRP) from the water column rather than release phosphorus to the water column. At a higher pH this initial uptake of phosphorus is slowed, but not stopped. This initial phase was followed by a reversal in which the sediments began to release SRP back into the water column. The release rate of phosphorus 30 to 40 days after suspension of sediments in the columns was 0.5 mg/L/day (micrograms per liter per day) at pH 8, and 0.9 mg/L/day at pH 10, indicating that the higher pH increased the rate of phosphorus release by a factor of about two. The highest determined rate of release was approximately 10% (percent) of the rate required to explain the annual internal loading to Upper Klamath Lake from the sediments as calculated from a lake-wide mass balance

  7. Mineral Resources of the Hells Canyon Study Area, Wallowa County, Oregon, and Idaho and Adams Counties, Idaho

    USGS Publications Warehouse

    Simmons, George C.; Gualtieri, James L.; Close, Terry J.; Federspiel, Francis E.; Leszcykowski, Andrew M.

    2007-01-01

    Field studies supporting the evaluation of the mineral potential of the Hells Canyon study area were carried out by the U.S. Geological Survey and the U.S. Bureau of Mines in 1974-76 and 1979. The study area includes (1) the Hells Canyon Wilderness; (2) parts of the Snake River, Rapid River, and West Fork Rapid River Wild and Scenic Rivers; (3) lands included in the second Roadless Area Review and Evaluation (RARE II); and (4) part of the Hells Canyon National Recreation Area. The survey is one of a series of studies to appraise the suitability of the area for inclusion in the National Wilderness Preservation System as required by the Wilderness Act of 1964. The spectacular and mineralized area covers nearly 950 mi2 (2,460 km2) in northeast Oregon and west-central Idaho at the junction of the Northern Rocky Mountains and the Columbia Plateau.

  8. Osprey distribution, abundance, and status in western North America: II. The Oregon population

    USGS Publications Warehouse

    Henny, C.J.; Collins, J.A.; Deibert, W.J.

    1978-01-01

    An estimated 308 ? 23 pairs of Ospreys nested in the survey area in Oregon in 1976. Major concentration centers include Crane Prairie Reservoir and the adjacent Deschutes National Forest, the coastal lakes and reservoirs between Florence and North Bend, the Rogue River, the Lane County reservoirs, and the Umpqua River. An estimated 47 percent of the Oregon population is nesting at reservoirs. Limited information is available concerning the long-term status of the Oregon population; however, the ability of the species to pioneer newly created reservoirs emphasizes that the population is utilizing new habitats.

  9. Fluctuating Eruption Style at Blue Lake Crater, Central Oregon Cascades: Insights from Deposit Granulometry and Componentry and Pyroclast Textures

    NASA Astrophysics Data System (ADS)

    Johnson, E. R.

    2016-12-01

    Blue Lake crater in the central Oregon Cascades is one of the youngest Cascades volcanoes, erupting <3000 years ago. Based on the deep lake-filled crater excavated during the eruption, Blue Lake is commonly classified as a maar. However, little is known about this young eruption. This study focuses on mapping and detailed analyses of components and textures of the pyroclastic deposits to better understand changes in eruption style as the eruption progressed. Based on a new isopach map of the deposit thickness, the volume of erupted material is 4 x 107 m3. The deposits also suggest that the eruption was dominantly magmatic; phreatomagmatic surge deposits (<30 cm thick) occur locally at or near the base of the deposit but are overlain by much thicker scoria fall deposits. Detailed study of the pyroclasts from throughout the deposit reveal more subtle changes in the influence of external water over time. Granulometry from a complete deposit section (130 cm) reveals that the average grain size is finest immediately overlying the basal surge deposits and increases upsection. Componentry from this section shows that lithic and dense clasts are most abundant below and directly above the surges (near the deposit base) and decrease in abundance upsection, where vesicular scoria dominates. High magnification SEM BSE images of tephra clasts from throughout the deposit were obtained in order to better assess the changing role of external water during the eruption. Preliminary assessment of the images reveals that clasts from the eruption initiation have a glassier matrix compared to those upsection, which have a highly microcrystalline matrix, suggesting that early-erupted samples were likely quenched with external water. Taken together, these datasets suggest that the eruption initiated as dominantly phreatomagmatic but then rapidly transitioned to dominantly magmatic for the eruption duration. Further investigation of clast vesicularity and crystallinity will aid in

  10. Seasonal Phosphorus Sources and Loads to Upper Klamath Lake, Oregon, as Determined by a Dynamic SPARROW Model

    NASA Astrophysics Data System (ADS)

    Saleh, D.; Domagalski, J. L.; Smith, R. A.

    2016-12-01

    The SPARROW (SPAtially-Referenced Regression On Watershed Attributes) model, developed by the U.S. Geological Survey, has been used to identify and quantify the sources of nitrogen and phosphorus in watersheds and to predict their fluxes and concentration at specified locations downstream. Existing SPARROW models use a hybrid statistical approach to describe an annual average ("steady-state") relationship between sources and stream conditions based on long-term water quality monitoring data and spatially-referenced explanatory information. Although these annual models are useful for some management purposes, many water quality issues stem from intra- and inter-annual changes in constituent sources, hydrologic forcing, or other environmental conditions, which cause a lag between watershed inputs and stream water quality. We are developing a seasonal dynamic SPARROW model of sources, fluxes, and yields of phosphorus for the watershed (approximately 9,700 square kilometers) draining to Upper Klamath Lake, Oregon. The lake is hyper-eutrophic and various options are being considered for water quality improvement. The model was calibrated with 11 years of water quality data (2000 to 2010) and simulates seasonal loads and yields for a total of 44 seasons. Phosphorus sources to the watershed include animal manure, farm fertilizer, discharges of treated wastewater, and natural sources (soil and streambed sediment). The model predicts that phosphorus delivery to the lake is strongly affected by intra- and inter-annual changes in precipitation and by temporary seasonal storage of phosphorus in the watershed. The model can be used to predict how different management actions for mitigating phosphorus sources might affect phosphorus loading to the lake as well as the time required for any changes in loading to occur following implementation of the action.

  11. Hydrology of Little Rock Lake in Vilas County, north-central Wisconsin

    USGS Publications Warehouse

    Rose, W.J.

    1993-01-01

    Water budgets were developed for Little Rock Lake for October 1983 through September 1990 as part of a study to evaluate the chemical and biological effects of artificially acidifying one basin of the two-basin lake. The 17.9-hectare seepage lake is situated in 60- to 90-meter-thick, predominantly sand and gravel glacial deposits of Vilas County, north-central Wisconsin. Annual precipitation during the study varied from 647 to 926 mm (millimeters). Average annual precipitation during 1951-80, based on nearby National Weather Service stations, was 825 mm. Annual evaporation from the lake surface ranged from 495 to 648 mm. Total lake-stage fluctuation was 930 mm during the study. Lake volume at the maximum stage was 31 percent greater than at the minimum lake stage. Inflow to the lake was dominated by precipitation, which was about 99 percent of total inflow. Ground-water inflow to the lake was transient, occurring only intermittently during October 1983 through September 1986, and amounted to only about 1 percent of total inflow. No ground water flowed into the lake from October 1986 through September 1990. Evaporation accounted for about two-thirds of total outflow from the lake, and lake water discharging to the underlying aquifer accounted for the remainder. The average hydraulic residence times for the 7-year study period were 3.9, 3.3, and 4 years for the entire lake, the south basin, and the north basin, respectively; corresponding chemical residence times were 10.9, 9.3, and 10 years.

  12. Relation between selected water-quality variables and lake level in Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Fuhrer, Gregory J.; Morace, Jennifer L.

    1996-01-01

    Based on the analysis of data that they have been collecting for several years, the Klamath Tribes recently recommended that the Bureau of Reclamation (Reclamation) modify the operating plan for the dam to make the minimum lake levels for the June-August period more closely resemble pre-dam conditions (Jacob Kann, written commun., 1995). The U.S. Geological Survey (USGS) was asked to analyze the available data for the lake and to assess whether the evidence exists to conclude that year-to-year differences in certain lake water-quality variables are related to year-to-year differences in lake level. The results of the analysis will be used as scientific input in the process of developing an operating plan for the Link River Dam.

  13. Water resources of the Lake Traverse Reservation, South and North Dakota, and Roberts County, South Dakota

    USGS Publications Warehouse

    Thompson, Ryan F.

    2001-01-01

    In 1994, the U.S. Geological Survey, in cooperation with the Sisseton-Wahpeton Sioux Tribe; Roberts County; and the South Dakota Department of Environment and Natural Resources, Geological Survey Program, began a 6-year investigation to describe and quantify the water resources of the area within the 1867 boundary of the Lake Traverse Reservation and adjacent parts of Roberts County. Roberts County is located in extreme northeastern South Dakota, and the 1867 boundary of the Lake Traverse Reservation encompasses much of Roberts County and parts of Marshall, Day, Codington, and Grant Counties in South Dakota and parts of Richland and Sargent Counties in southeast North Dakota. This report includes descriptions of the quantity, quality, and availability of surface and ground water, the extent of the major glacial and bedrock aquifers and named outwash groups, and surface- and ground-water uses within the 1867 boundary of the Lake Traverse Reservation and adjacent parts of Roberts County. The surface-water resources within the 1867 boundary of the Lake Traverse Reservation and adjacent parts of Roberts County include rivers, streams, lakes, and wetlands. The Wild Rice and Bois de Sioux Rivers are tributaries of the Red River within the Souris-Red-Rainy River Basin; the Little Minnesota, Jorgenson, and North Fork Whetstone Rivers are tributaries of the Minnesota River within the Upper Mississippi River Basin, and the James and Big Sioux Rivers are tributaries within the Missouri River Basin. Several of the larger lakes within the study area have been developed for recreation, while many of the smaller lakes and wetlands are used for livestock watering or as wildlife production areas. Statistical summaries are presented for the water-quality data of six selected streams within the study area, and the dominant chemical species are listed for 17 selected lakes within the study area. The glacial history of the study area has led to a rather complex system of glacial

  14. Changes in bathymetry for Lake Katherine and Wood Lake, Richland County, South Carolina, 1989-93

    USGS Publications Warehouse

    Patterson, Glenn G.

    1995-01-01

    Bathymetric surveys of Lake Katherine and Wood Lake, small residential lakes in Columbia, South Carolina, were made in 1989 and 1993. During this period the combined volume of the lakes decreased by 519,000 cubic feet (11.9 acre-feet). Most of the decrease in volume occurred in the northern part of Lake Katherine where deltaic sediment deposits at the mouth of Gills Creek increased in thickness during the 4-year period. The sediment was derived from a combination of sources in the Gills Creek Basin upstream from the lakes. Construction of a highway and a housing development in the Basin were significant factors in the sedimentation.

  15. Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report

    SciTech Connect

    Jenkins, H. II; Giddings, M.; Hanson, P.

    1982-09-01

    This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

  16. Hydrology and hydrogeology of Navajo Lake, Kane County, Utah

    USGS Publications Warehouse

    Wilson, Milton Theurer; Thomas, Harold E.

    1964-01-01

    Navajo Lake, whose entire outflow disappears underground, is on the high Markagurit Plateau where the average annual precipitation is more than 30 inches. It nestles among the headwaters of several streams that flow into arid regions where competition for municipal, industrial, and irrigation water sup- plies is very keen. Several proposals for additional development and use of the water of Navajo Lake have led to controversies and raised questions in regard to the total water supply and its disposition, and to the effect of the proposed projects on existing water rights. This report summarizes the results of an investigation of the water supply of Navajo Lake and the present disposition of that supply.

  17. Hydrologic setting of Williams Lake, Hubbard County, Minnesota

    USGS Publications Warehouse

    Siegel, Donald I.; Winter, Thomas C.

    1980-01-01

    The configuration of the water table and vertical-head gradients measured from July to December 1978 indicate that ground water moves into the lake from the south and east and moves from the lake into the ground-water reservoir to the west. Preliminary numerical models indicate that the sand lens within the till is effectively isolated from the flow system interacting with the lake and that both inseepage and outseepage were about 1.4 inches from mid-July to mid-October 1978. When estimated as a residual in a water balance, ground water showed a net outseepage only of 1.47 inches.

  18. Five-Year Plan for Development of Library Services in Salt Lake County, 1973-1977.

    ERIC Educational Resources Information Center

    Schuurman, Guy

    A five-year plan for the Salt Lake County Library System is presented to meet the complex needs of patrons and to comply with American Library Association's "Minimum Standards for Public Library Systems" (1966). A new main library building is planned to house the main collection, and enlarged nonprint collection, and audiovisual and…

  19. 77 FR 31379 - Hart Mountain National Antelope Refuge, Lake County, OR; Draft Comprehensive Conservation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Fish and Wildlife Service Hart Mountain National Antelope Refuge, Lake County, OR; Draft Comprehensive... to revise the comprehensive conservation plan (CCP) for Hart Mountain National Antelope Refuge... regulations. Hart Mountain National Antelope Refuge The Refuge's approved boundary encompasses 277,893...

  20. Ballads of the Romanian Immigrants. Romanian Americans in Lake County, Indiana: An Ethnic Heritage Curriculum Project.

    ERIC Educational Resources Information Center

    Leuca, Mary, Comp.

    Twelve Romanian immigrant ballads with musical scores, Romanian lyrics, and English translations are presented. Following a description of early 20th Century Romanian immigrants in Lake County, Indiana, a pronunciation guide, descriptions of the ballads, and suggestions for classroom use are provided. English titles include "Lament from…

  1. College of Lake County National Workplace Literacy Program. Final Performance Report.

    ERIC Educational Resources Information Center

    Lake County Coll., Grayslake, IL.

    The College of Lake County in Grayslake, Illinois, formed an educational and business partnership with four area businesses to design and implement workplace literacy programs targeted to the needs of each business. The project's four objectives were as follows: develop a model of cooperation between a community college and the business community…

  2. Development of a CE-QUAL-W2 temperature model for Crystal Springs Lake, Portland, Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Stonewall, Adam J.

    2016-05-19

    Model simulations (scenarios) were run with lower water surface elevations in Crystal Springs Lake and increased shading to the lake to assess the relative effect the lake and pond characteristics have on water temperature. The Golf Pond was unaltered in all scenarios. The models estimated that lower lake elevations would result in cooler water downstream of the Golf Pond and shorter residence times in the lake. Increased shading to the lake would also provide substantial cooling. Most management scenarios resulted in a decrease in 7-day average of daily maximum values by about 2.0– 4.7 °F (1.1 –2.6 °C) for outflow from Crystal Springs Lake during the period of interest. Outflows from the Golf Pond showed a net temperature reduction of 0.5–2.7 °F (0.3–1.5 °C) compared to measured values in 2014 because of solar heating and downstream warming in the Golf Pond resulting from mixing with inflow from Reed Lake.

  3. Particle-tracking investigation of the retention of sucker larvae emerging from spawning grounds in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Wherry, Susan A.; Simon, David C.; Markle, Douglas F.

    2014-01-01

    This study had two objectives: (1) to use the results of an individual-based particle-tracking model of larval sucker dispersal through the Williamson River delta and Upper Klamath Lake, Oregon, to interpret field data collected throughout Upper Klamath and Agency Lakes, and (2) to use the model to investigate the retention of sucker larvae in the system as a function of Williamson River flow, wind, and lake elevation. This is a follow-up study to work reported in Wood and others (2014) in which the hydrodynamic model of Upper Klamath Lake was combined with an individual-based, particle-tracking model of larval fish entering the lake from spawning areas in the Williamson River. In the previous study, the performance of the model was evaluated through comparison with field data comprising larval sucker distribution collected in 2009 by The Nature Conservancy, Oregon State University (OSU), and the U.S. Geological Survey, primarily from the (at that time) recently reconnected Williamson River Delta and along the eastern shoreline of Upper Klamath Lake, surrounding the old river mouth. The previous study demonstrated that the validation of the model with field data was moderately successful and that the model was useful for describing the broad patterns of larval dispersal from the river, at least in the areas surrounding the river channel immediately downstream of the spawning areas and along the shoreline where larvae enter the lake. In this study, field data collected by OSU throughout the main body of Upper Klamath Lake, and not just around the Williamson River Delta, were compared to model simulation results. Because the field data were collected throughout the lake, it was necessary to include in the simulations larvae spawned at eastern shoreline springs that were not included in the earlier studies. A complicating factor was that the OSU collected data throughout the main body of the lake in 2011 and 2012, after the end of several years of larval drift

  4. Sediment characteristics and sedimentation rates in Lake Michie, Durham County, North Carolina, 1990-92

    USGS Publications Warehouse

    Weaver, J.C.

    1994-01-01

    A reservoir sedimentation study was conducted at 508-acre Lake Michie, a municipal water-supply reservoir in northeastern Durham County, North Carolina, during 1990-92. The effects of sedimentation in Lake Michie were investigated, and current and historical rates of sedimentation were evaluated. Particle-size distributions of lake-bottom sediment indicate that, overall, Lake Michie is rich in silt and clay. Nearly all sand is deposited in the upstream region of the lake, and its percentage in the sediment decreases to less than 2 percent in the lower half of the lake. The average specific weight of lake-bottom sediment in Lake Michie is 73.6 pounds per cubic foot. The dry-weight percentage of total organic carbon in lake-bottom sediment ranges from 1.1 to 3.8 percent. Corresponding carbon-nitrogen ratios range form 8.6 to 17.6. Correlation of the total organic carbon percentages with carbon-nitrogen ratios indicates that plant and leaf debris are the primary sources of organic material in Lake Michie. Sedimentation rates were computed using comparisons of bathymetric volumes. Comparing the current and previous bathymetric volumes, the net amount of sediment deposited (trapped) in Lake Michie during 1926-92 is estimated to be about 2,541 acre-feet or slightly more than 20 percent of the original storage volume computed in 1935. Currently (1992), the average sedimentation rate is 38 acre-feet per year, down from 45.1 acre-feet per year in 1935. To confirm the evidence that sedimentation rates have decreased at Lake Michie since its construction in 1926, sediment accretion rates were computed using radionuclide profiles of lake-bottom sediment. Sediment accretion rates estimated from radiochemical analyses of Cesium-137 and lead-210 and radionuclides in the lake-bottom sediment indicate that rates were higher in the lake?s early years prior to 1962. Estimated suspended-sediment yields for inflow and outflow sites during 1983-91 indicate a suspended-sediment trap

  5. Water Velocity and Suspended Solids Measurements by In-situ Instruments in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Wellman, Roy E.; Wood, Tamara M.; Cheng, Ralph T.

    2007-01-01

    The U. S. Geological Survey conducted hydrodynamic measurements in Upper Klamath Lake during four summer seasons (approximately mid-June to mid-September) during 2003 to 2006. Measurements included water current profiles made by acoustic Doppler current profilers at a number of fixed locations in the lake during all four years as well as from a moving boat during 2005 and 2006. Measurements of size distribution of suspended material were made at four locations in the lake during 2004-2006. Raw (unfiltered) data are presented as time series of measurements. In addition, water-velocity data have been filtered to remove wind-induced variations with periods less than thirty hours from the measurements. Bar graphs of horizontal and vertical water speed and acoustic backscatter have been generated to discern diurnal variations, especially as they relate to wind patterns over the lake. Mean speeds of the horizontal currents in the lake range between about 3.5 to 15 cm/s with the higher speeds at the deep locations in the trench on the west side of the lake. Current directions generally conform to the lake's bathymetry contours and the water circulation pattern is usually in a clockwise direction around the lake as established by the prevailing north to northwesterly surface winds in the region. Diurnal patterns in horizontal currents probably relate to diurnal wind patterns with minimum wind speeds near noon and maximum wind speeds near 2100. Diurnal variations in vertical velocities do not appear to be related to wind patterns; they do appear to be related to expected patterns of vertical migration of Aphanizomenon flos aquae, (AFA) the predominant species of blue-green algae in the lake. Similarly, diurnal variations in acoustic backscatter, especially near the lake's surface, are probably related to the vertical migration of AFA.

  6. Salamander colonization of Chase Lake, Stutsman County, North Dakota

    USGS Publications Warehouse

    Mushet, David M.; McLean, Kyle I.; Stockwell, Craig A.

    2013-01-01

    Salt concentrations in lakes are dynamic. In the western United States, water diversions have caused significant declines in lake levels resulting in increased salinity, placing many aquatic species at risk (Galat and Robinson 1983, Beutel et al. 2001). Severe droughts can have similar effects on salt concentrations and aquatic communities (Swanson et al. 2003). Conversely, large inputs of water can dilute salt concentrations and contribute to community shifts (Euliss et al. 2004).

  7. Late Quaternary slip rate and seismic hazards of the West Klamath Lake fault zone near Crater Lake, Oregon Cascades

    USGS Publications Warehouse

    Bacon, C.R.; Lanphere, M.A.; Champion, D.E.

    1999-01-01

    Crater Lake caldera is at the north end of the Klamath graben, where this N10??W-trending major Basin and Range structure impinges upon the north-south-trending High Cascades volcanic arc. East-facing normal faults, typically 10-15 km long, form the West Klamath Lake fault zone, which bounds the graben on its west side. The fault zone terminates on the south near the epicentral area of the September 1993 Klamath Falls earthquakes. It continues north past Crater Lake as the Annie Spring fault, which is within ~1 km of the west caldera rim, and Red Cone Spring fault. We have determined a long-term vertical slip rate of 0.3 mm/yr for these two faults using high-precision K-Ar and 40Ar/39Ar age measurements on offset lava flows ranging in age from ca. 35 to 300 ka. Holocene offset reported by Hawkins et al. and epicenters of eight MW 2 earthquakes in 1994 and 1995 indicate that the West Klamath Lake fautl zone is active. Empirical relations between earthquake magnitudes and scarp heights or fault lengths suggest that the fault zone is capable of producing earthquakes as large as MW 7 1/4 . Earthquakes on these or other faults of the zone could trigger landslides and rockfalls from the walls of the caldera, possibly resulting in large waves on Crater Lake.

  8. Geologic field trip guide to Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Wright, Heather M.

    2017-08-08

    Crater Lake partly fills one of the most spectacular calderas of the world—an 8 by 10 kilometer (km) basin more than 1 km deep formed by collapse of the Mount Mazama volcano during a rapid series of explosive eruptions ~7,700 years ago. Having a maximum depth of 594 meters (m), Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 square kilometers (km2) of pristine forested and alpine terrain, including the lake itself, and virtually all of Mount Mazama. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama’s climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest United States, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. In addition, many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama provide information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive processes revealed by

  9. Hydrology of the Lake Deaton and Lake Okahumpka area, Northeast Sumter County, Florida

    USGS Publications Warehouse

    Simonds, Edward P.; German, E.R.

    1980-01-01

    The Floridan aquifer in the Lake Deaton and Lake Okahumpka area is 50 to 130 feet below land surface. During the 16-year period 1963-78 lake evaporation exceeded rainfall by 0.4 inches. Drainage from Lake Deaton and its surrounding area goes into Chitty Chatty Creek and on the Hogeye Sink when the altitude of the potentiometric surface of the Floridan aquifer is low. During a higher altitude of the Floridan potentiometric surface, Hogeye Sink may discharge water; this water, along with the normal runoff, goes into Lake Okahumpka. Average lake fluctuation is 1.5 to 2.0 feet per year. Lake Deaton supports a large population of blue-green algae and Lake Okahumpka is choked with aquatic plants. The water quality of the two lakes differ, with Lake Deaton having a sodium chloride water and Lake Okahumpka having a calcium bicarbonate water. Analysis of water and bottom material samples showed that only cadmium and mercury exceeded the Florida Department of Environmental Regulation 's criteria for Class III waters; however, the amounts detected were at or slightly above the limits of the analytical method. (USGS)

  10. Ground-water movement and water quality in Lake Point, Tooele County, Utah, 1999-2003

    USGS Publications Warehouse

    Kenney, T.A.; Wright, S.J.; Stolp, B.J.

    2006-01-01

    Water-level and water-quality data in Lake Point, Tooele County, Utah, were collected during August 1999 through August 2003. Water levels in Lake Point generally declined about 1 to 2 feet from July 2001 to July 2003, likely because of less-than-average precipitation. Ground water generally flows in two directions from the Oquirrh Mountains. One component flows north toward the regional topographic low, Great Salt Lake. The other component generally flows southwest toward a substantial spring complex, Factory/Dunne's Pond. This southwest component flows through a coarse gravel deposit believed to be a shoreline feature of historic Lake Bonneville. The dominant water-quality trend in Lake Point is an increase in dissolved-solids concentration with proximity to Great Salt Lake. The water type changes from calcium-bicarbonate adjacent to the Oquirrh Mountains to sodium-chloride with proximity to Great Salt Lake. Evaluation of chloride-bromide weight ratios indicates a mixture of fresher recharge waters with a brine similar to what currently exists in Great Salt Lake.

  11. Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99

    USGS Publications Warehouse

    Schrader, David L.; Holmes, Jr., Robert R.

    2000-01-01

    The Fox Chain of Lakes is a glacial lake system in McHenry and Lake Counties in northern Illinois and southern Wisconsin. Sedimentation and nutrient overloading have occurred in the lake system since the first dam was built (1907) in McHenry to raise water levels in the lake system. Using data collected from December 1, 1997, to June 1, 1999, suspended-sediment budgets were constructed for the most upstream lake in the system, Grass Lake, and for the lakes downstream from Grass Lake. A total of 64,900 tons of suspended sediment entered Grass Lake during the study, whereas a total of 70,600 tons of suspended sediment exited the lake, indicating a net scour of 5,700 tons of sediment. A total of 44,100 tons of suspended sediment was measured exiting the Fox Chain of Lakes at Johnsburg, whereas 85,600 tons entered the system downstream from Grass Lake. These suspended-sediment loads indicate a net deposition of 41,500 tons downstream from Grass Lake, which represents a trapping efficiency of 48.5 percent. A large amount of recreational boating takes place on the Fox Chain of Lakes during summer months, and suspended-sediment load was observed to rise from 110 tons per day to 339 tons per day during the 1999 Memorial Day weekend (May 26 ?31, 1999). Presumably, this rise was the result of the boating traffic because no other hydrologic event is known to have occurred that might have caused the rise. This study covers a relatively short period and may not represent the long-term processes of the Fox Chain of Lakes system, although the sediment transport was probably higher than an average year. The bed sediments found on the bottom of the lakes are composed of mainly fine particles in the silt-clay range. The Grass Lake sediments were characterized as black peat with an organic content of between 9 and 18 percent, and the median particle size ranged from 0.000811 to 0.0013976 inches. Other bed material samples were collected at streamflow-gaging stations on the

  12. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    NASA Astrophysics Data System (ADS)

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-05-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11 000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11 000-7500 calendar years before present [cal yr BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11 200-9300 cal yr BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500 cal yr BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000 cal yr BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160 cal yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500 years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history.

  13. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    USGS Publications Warehouse

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  14. Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area, Oregon

    USGS Publications Warehouse

    Schneider, Tiffany Rae; McFarland, William D.

    1995-01-01

    Information from field visits was used to develop a monitoring plan. The plan would include monitoring Borax Lake by measuring discharge, stage, evaporation, temperature, and specific conductance; water-quality sampling and analysis; and monitoring shallow ground-water levels near Borax Lake using shallow piezometers. Minimally, one hot spring in North Borax Lake Spring Group 1 would be monitored for temperature and specific conductance and sampled for water-quality analysis. In addition, two flowing wells would be monitored for water levels, temperature, specific conductance, and discharge and sampled for water-quality analysis. The construction characteristics of these wells must be verified before long-term data collection begins. In the future, it may be helpful to monitor shallow and (or) deep observation wells drilled into the thermal aquifer to understand the possible effects of geothermal development on Borax Lake and nearby springs.

  15. Convective heat discharge of Wood River group of springs in the vicinity of Crater Lake, Oregon

    USGS Publications Warehouse

    Nathenson, Manuel; Mariner, Robert H.; Thompson, J. Michael

    1994-01-01

    Data sets for spring and stream chemistry are combined to estimate convective heat discharge and discharge anomalous amounts of sodium and chloride for the Wood River group of springs south of Crater Lake. The best estimate of heat discharge is 87 MWt based on chloride inventory; this value is 3-5 times the heat input to Crater Lake itself. Anomalous discharges of sodium and chloride are also larger that into Crater Lake. Difference between the chemical and thermal characteristics of the discharge into Crater Lake and those from the Wood River group of springs suggest that the heat sources for the two systems may be different, although both ultimately related to the volcanic system.

  16. Ribosomal DNA identification of Nosema/Vairimorpha in freshwater polychaete, Manayunkia speciosa, from Oregon/California and the Laurentian Great Lakes.

    PubMed

    Malakauskas, David M; Altman, Emory C; Malakauskas, Sarah J; Thiem, Suzanne M; Schloesser, Donald W

    2015-11-01

    We examined Manayunkia speciosa individuals from the Klamath River, Oregon/California and Lake Erie, Michigan, USA for the presence of Microsporidia. We identified microsporidian spores and sequenced their SSU, ITS, and part of the LSU rDNA. Phylogenetic analysis of SSU rDNA indicated spores from both populations belonged to the Nosema/Vairimorpha clade. PCR showed an infection prevalence in Lake Erie M. speciosa of 0.6% (95% CI=0.5%, 0.7%). This represents the first known example of molecularly characterized Nosema/Vairimorpha isolates infecting a non-arthropod host.

  17. Ribosomal DNA identification of Nosema/Vairimorpha in freshwater polychaete, Manayunkia speciosa, from Oregon/California and the Laurentian Great Lakes

    USGS Publications Warehouse

    Malakauskas, David M.; Altman, Emory C.; Malakauskas, Sarah J.; Thiem, Suzanne M.; Schloesser, Donald W.

    2015-01-01

    We examined Manayunkia speciosa individuals from the Klamath River, Oregon/California and Lake Erie, Michigan, USA for the presence of Microsporidia. We identified microsporidian spores and sequenced their SSU, ITS, and part of the LSU rDNA. Phylogenetic analysis of SSU rDNA indicated spores from both populations belonged to the Nosema/Vairimorpha clade. PCR showed an infection prevalence in Lake Erie M. speciosa of 0.6% (95% CI = 0.5%, 0.7%). This represents the first known example of molecularly characterized Nosema/Vairimorpha isolates infecting a non-arthropod host.

  18. Geologic map of the Krumbo Reservoir Quadrangle, Harney County, Southeastern Oregon

    USGS Publications Warehouse

    Johnson, Jenda A.

    1994-01-01

    The Krumbo Reservoir 7.5-minute quadrangle encompasses parts of the Blitzen Valley and northwestern flank of Steens Mountain in the Basin and Range physiographic province of southeastern Oregon (fig. 1). The entire map area is underlain by a bimodal assemblage of middle and upper Miocene olivine basalt flows and rhyolite ash-flow tuffs (figs. 2 and 3). This assemblage is characteristic of volcanic rocks in the northern Basin and Range province and is thought to result from Cascade Range back-arc volcanic activity (Hart and Carlson, 1987). Locally derived Quaternary alluvium blankets part of the area. Faulting associated with Basin and Range extension has created the north-trending Blitzen Valley. In contrast, west-northwest-striking faults are parallel to and probably related to the Brothers fault zone, a northwest-trending zone of closely spaced, discontinuous fractures (Walker, 1969c; Lawrence, 1976).

  19. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  20. Hot-spring sinter deposits in the Alvord-Pueblo Valley, Harney County, Oregon

    SciTech Connect

    Cummings, M.L.; St. John, A.M. . Dept. of Geology)

    1993-04-01

    Silica sinter deposits occur at Borax Lake, Alvord Hot Springs, and Mickey Springs in the Alvord-Pueblo Valley. Although the sinter deposits occur in areas of active hot springs, sinter is not being deposited. Hot springs are localized along faults that have been active since the Pleistocene. The sinter deposits formed after the drying of glacial Lake Alvord, but before and during extensive wind deflation of glacial-lacustrine sediments. At Mickey Springs, sinter rests directly on unaltered, unconsolidated lithic-rich sand. At Borax Lake, sinter overlies unaltered diatomite, but some armoring, presumably by silica, of the 30 m vent has developed. Field relations suggest rapid dumping of silica from solution without alteration of the country rock at the vent. Discharge of thermal fluids and cold groundwater along the same structure may have produced colloidal silica carried in a solution stripped of dissolved silica. Sinter is composed of opal-a, traces of detrital feldspar and quartz, and evaporation-related boracite. The concentration of Sb is similar among the three sinter deposits (20 to 70 ppm); however, As, Cs, and Br are highest at Borax Lake (5 to 560 ppm; 26 to 118 ppm; 5 to 1,040 ppm) while Hg is highest at Mickey Springs (1.0 to 5.2 ppm).

  1. Assessing Magmatic Processes and Hazards at two Basaltic Monogenetic Centers: Volcan Jorullo, Mexico, and Blue Lake Maar, Oregon

    NASA Astrophysics Data System (ADS)

    Johnson, E. R.; Cashman, K.; Wallace, P.; Delgado Granados, H.

    2007-05-01

    Although monogenetic basaltic volcanoes exhibit a wide variety of eruption styles, the origin of this diversity is poorly understood and often ignored when assessing volcanic hazards. To better understand magmatic processes and hazards associated with these eruptions, we have studied two monogenetic centers with differing behavior: Volcan Jorullo, a cinder cone in Mexico, and Blue Lake, a maar in the Oregon High Cascades. Although compositionally similar (medium-K basalt to basaltic andesite), their eruptive styles and products are quite different. Jorullo had violent strombolian eruptions that deposited alternating beds of ash and tephra, as well as lava flows. In contrast, Blue Lake exhibited initial phreatomagmatism that formed a 100m deep crater and produced surge deposits. This activity was followed by magmatic eruptions that produced deposits of tephra and bombs, but no lava flows. The diversity in eruptive style at these two centers reflects different magma ascent and crystallization processes, deduced using olivine-hosted melt inclusions. Jorullo melt inclusions trap variably degassed melts (0.5-5 wt% H2O; 0-1000 ppm CO2), with associated crystallization pressures that decrease from early (<4 kbars) to late (<100 bars) in the eruption. These data support the formation of a shallow storage region beneath the volcano that facilitated both crystallization and magma degassing, which is consistent with effusion of degassed lavas from the base of the cone throughout the eruption. In contrast, Blue Lake inclusions trap melts with a restricted range of volatiles (2.6-4 wt% H2O; 677-870 ppm CO2) corresponding to crystallization pressures of 2.2-3.2 kbars. This suggests that the magma feeding Blue Lake stalled in the upper crust and crystallized before ascending rapidly to the surface, without further crystallization of olivine or shallow storage. This is consistent with both the observed unstratified tephra deposits (indicating single rather than pulsatory eruptions

  2. Digital Data for Volcano Hazards in the Crater Lake Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.

    2008-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.

  3. Water-quality data for Smith and Bybee Lakes, Portland, Oregon, June to November, 1982

    USGS Publications Warehouse

    Clifton, Daphne G.

    1983-01-01

    Water-quality monitoring at Smith and Bybee Lakes included measurement of water temperature, dissolved oxygen concentration and percent saturation, pH, specific conductance, lake depth, alkalinity, dissolved carbon, total dissolved solids, secchi disk light transparency, nutrients, and chlorophyll a and b. In addition, phytoplankton, zooplankton, and benthic invertebrate populations were identified and enumerated. Lakebed sediment was analyzed for particle size, volatile solids, immediate oxygen demand, trace metals, total organic carbon, nutrients, and organic constituents. (USGS)

  4. The Transition of Benthic Nutrient Sources after Planned Levee Breaches Adjacent to Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Parcheso, Francis; Cameron, Jason M.; Asbill, Jessica R.; Fend, Steven V.; Duff, John H.; Engelstad, Anita C.

    2010-01-01

    Four sampling trips were coordinated after planned levee breaches that hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. Sets of nonmetallic pore-water profilers were deployed during these trips in November 2007, June 2008, May 2009, and July 2009. Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae (AFA) and spatially involved three lake and four wetland sites. Profilers, typically deployed in triplicate at each lake or wetland site, provided high-resolution (centimeter-scale) estimates of the vertical concentration gradients for diffusive-flux determinations. Estimates based on molecular diffusion may underestimate benthic flux because solute transport across the sediment-water interface can be enhanced by processes including bioturbation, bioirrigation and groundwater advection. Water-column and benthic samples were also collected to help interpret spatial and temporal trends in diffusive-flux estimates. Data from these samples complement taxonomic and geochemical analyses of bottom-sediments taken from Upper Klamath Lake (UKL) in prior studies. This ongoing study provides information necessary for developing process-interdependent solute-transport models for the watershed (that is, models integrating physical, geochemical, and biological processes) and supports efforts to evaluate remediation or load-allocation strategies. To augment studies funded by the U.S. Bureau of Reclamation (USBR), the Department of the Interior supported an additional full deployment of pore-water profilers in November 2007 and July 2009, immediately following the levee breaches and after the crash of the annual summer AFA bloom. As observed consistently since 2006, benthic flux of 0.2-micron filtered, soluble reactive phosphorus (that is, biologically available phosphorus, primarily as orthophosphate; SRP) was consistently positive (that is, out of the sediment into the overlying water column) and

  5. Hydrology and water quality of Geneva Lake, Walworth County, Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Goddard, Gerald L.; Mergener, Elizabeth A.; Rose, William J.; Garrision, Paul J.

    2002-01-01

    Direct measurements and indirect measurements based on sediment-core analyses indicate that the water quality of Geneva Lake has degraded in the last 170 years, the greatest effects resulting from urbanization. Sedimentation rates were highest between 1900 to 1930, and phosphorus concentrations were highest between the 1930s to early 1980s. As a result of the recent reduction in phosphorus loading, in-lake near-surface phosphorus concentrations decreased from 20.25 ?g/L to about 10.15 ?g/L and are similar to those estimated for the lake in the early 1900s. Concentrations of other chemical constituents associated with urban areas, however, have continually increased, especially in Williams Bay and Geneva Bay.

  6. 3. Historic American Buildings Survey, Courtesy of Oregon Historical Society, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey, Courtesy of Oregon Historical Society, Photo from 'West Shore' VILLIARD HALL, 1886, DEADY HALL, 1876. - University of Oregon, Deady Hall, University of Oregon Campus, Eugene, Lane County, OR

  7. Fishery survey and related limnological conditions of Williams Lake, Hubbard County, Minnesota

    USGS Publications Warehouse

    Taylor, W.W.; LaBaugh, J.W.; Freeberg, M.H.; Dowling, D.C.

    1985-01-01

    Bluegill (Lepomis macrochirus), pumpkinseed sunfish (Lepomis gibbosus), largemouth bass (Micropterus salmoides), yellow perch (Perca flavescens) rock bass (Amploplites rupestris), black crappie (Pomozis nigromaculatus), and northern pike (Esox lucius) were found in Williams Lake, Hubbard County, Minnesota, during a fishery survey of the lake in late August 1982. The most abundant fish were the bluegills. These fish live in the large littoral zone of the lake; this zone underlies 55% of the surface area of the lake. The most ubiquitous benthic invertebrate in the littoral zone (amphipods) and the most abundant benthic invertebrate (chironomid larvae) were major food sources for the bluegill. Other organisms found in the stomach contents of fish collected in this survey were zooplankton, gastropods, Diptera larvae, odonates, terrestrial insects, and other fish. Daphnia were the only zooplankters of a diverse plankton community that were found in stomach contents. The abundance of fish other than bluegill was typical for a system in which northern pike is the major predator.

  8. Mineral resources of the Fifteen Mile Creek, Oregon Canyon, Twelve Mile Creek, and Willow Creek Wilderness Study Areas, Malheur and Harney counties, Oregon

    SciTech Connect

    Peterson, J.A.; Rytuba, J.J.; Plouff, D.; Vercountere, T.L.; Turner, R.L.; Sawatzky, D.L. ); Leszcykowski, A.M.; Peters, T.J.; Schmauch, S.W.; Winters, R.A. )

    1988-01-01

    The four contiguous study areas are located in a volcanic terrane dominated by tuffs that were erupted from calderas of the McDermitt Caldera complex and the Whitehorse Caldera. None of these areas have identified resources, despite the proximity of mercury, uranium, and lithium mineralization to the south. The southern parts of the Fifteen Mile Creek and the Oregon Canyon Wilderness Study Areas have a low potential for mercury and uranium. The southern parts of the Fifteen Mile Creek, Oregon Canyon, and Willow Creek and the northwestern part of the Oregon Wilderness Study Areas have low potential for antimony, bismuth, mercury, silver,molybdenum, and zinc. In the Oregon Canyon Wilderness Study Area, the tuff of Oregon Canyon and the rim of the caldera of the McDermitt Caldera complex have a low potential for gold and silver in epithermal veins. The study areas have a low potential for zeolite minerals, oil and gas, and geothermal energy throughout, and restricted parts of the study areas have a low potential for pumice, rare-earth elements, zirconium, and decorative building stone.

  9. Hydrologic factors affecting lake-level fluctuations in the Big Marine Lake, Washington County, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1985-01-01

    Long-term trends in cumulative departure from mean annual precipitation suggest that recharge to the drift aquifer in the area has been increasing since the 1940's. The increase in precipitation and recharge corresponds to the observed rise in lake level since 1965 when regular lake-level measurements began. Fluctuations in lake level in the future will depend on changes in recharge to the drift and bedrock aquifers, which is directly related to changes in long-term precipitation patterns.

  10. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... intersection with the 1,400-foot contour line, section 3, T12N, R7W (Clearlake Highlands Quadrangle); then (2) Proceed east-southeasterly along the meandering 1,400-foot contour line onto the Lower Lake map south of Anderson Flat, then reverse direction with the contour line and continue westerly, leaving the Lower...

  11. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... intersection with the 1,400-foot contour line, section 3, T12N, R7W (Clearlake Highlands Quadrangle); then (2) Proceed east-southeasterly along the meandering 1,400-foot contour line onto the Lower Lake map south of Anderson Flat, then reverse direction with the contour line and continue westerly, leaving the Lower...

  12. Climatic data for Williams Lake, Hubbard County, Minnesota, 1985

    USGS Publications Warehouse

    Sturrock, A.M.; Rosenberry, D.O.; Winter, T.C.

    1987-01-01

    Research on the hydrology of Williams Lake, north-central Minnesota includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: water-surface temperature, dry-bulb and wet-bulb air temperatures, wind speed, precipitation, and solar and atmospheric radiation. Data are collected at raft and land stations.

  13. Climatic data for Williams Lake, Hubbard County, Minnesota, 1984

    USGS Publications Warehouse

    Sturrock, A.M.; Rosenberry, D.O.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of Williams Lake, north-central Minnesota includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: water-surface temperature, dry-bulb and wet-bulb air temperatures, wind speed, precipitation, and solar and atmospheric radiation. Data are collected at raft and land stations.

  14. Climatic data for Williams Lake, Hubbard County, Minnesota, 1983

    USGS Publications Warehouse

    Sturrock, A.M.; Rosenberry, D.O.; Engelbrecht, L.G.; Gothard, W.A.; Winter, T.C.

    1984-01-01

    Research on the hydrology of Williams Lake, north-central Minnesota includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies,including: water-surface temperature, dry-bulb and wet-bulb air temperatures, wind speed, precipitation, and solar radiation. Data are collected at raft and land stations.

  15. Bathymetry and capacity of Chambers Lake, Chester County, Pennsylvania

    USGS Publications Warehouse

    Gyves, Matthew C.

    2015-10-26

    This report describes the methods used to create a bathymetric map of Chambers Lake for the computation of reservoir storage capacity as of September 2014. The product is a bathymetric map and a table showing the storage capacity of the reservoir at 2-foot increments from minimum usable elevation up to full capacity at the crest of the auxiliary spillway.

  16. δ18O and δD of lake waters across the Coast Range and Cascades, central Oregon: Modern insights from hydrologically open lakes into the control of landscape on lake water composition in deep time

    NASA Astrophysics Data System (ADS)

    Finkelstein, D. B.; Curtin, T.

    2016-12-01

    Reconstructing the stable isotopic composition of paleolake water normally requires an assumption of paleotemperature. However, hydrologically open paleolakes with short water residence times may have recorded paleoprecipitation along topographic gradients that are independent of lake water temperature. To identify the environmental and geographic controls on the isotopic composition of lake water, we sampled 22 natural lakes and reservoirs along a longitudinal and elevation gradient from the Pacific Ocean up and over the Coast and Cascade Ranges of central Oregon to the High Lava Plains in 2013 and 2015. The transect spans lakes of different origins, 6 geomorphic regions and an elevation range of 2-1942 m absl. The Coast Range lakes are sand hosted whereas the remaining are bedrock (volcanic and sedimentary) hosted. The lakes are hydrologically open and dominated by meteoric recharge. The water residence time ranges from months to decades. Samples were analyzed for temperature, pH, and total dissolved solids (TDS) in the field, and alkalinity and major cations and anions and stable isotopes of D and O in the lab. The pH ranges from 7 to 9.8 and shows no systematic variation based on substrate type or elevation. The lakes are dilute (avg. TDS = 35.8 ppm) and have low alkalinties (18.9 mg/L CaCO3) except for those in the High Lava Plains (avg. TDS = 337 ppm, alk: 291.2 mg/L CaCO3). In the Coast Range, Na is the major cation on an equivalent basis, reflecting proximity to the ocean. The easternmost lakes within the Coast Range are dominated by Ca, reflecting different drainage basins and substrate type. Lakes in the Western and High Cascades are dominated by Ca. The dominant cation and stable isotopic analyses clearly differentiate waters from different geomorphic regions. The δ18O ranges from -5.7 to -9.3 ‰ (VSMOW), and δD ranges from -37.8 to -63.6 ‰ (VSMOW) in the Coast Range whereas the δ18O ranges from -9.7 to -12.1 ‰ (VSMOW) and δD ranges from -71

  17. Hydrology of the Reelfoot Lake basin, Obion and Lake counties, northwestern Tennessee

    USGS Publications Warehouse

    Robbins, C.H.

    1985-01-01

    Nine maps describe the following water resources aspects of the Reelfoot Lake watershed: Map 1-Surface water gaging stations, lake level, and locations of observation wells, rainfall stations and National Weather Service rainfall stations; Maps 2 and 3-water level contours, river stage, groundwater movement; Maps 4 and 5-grid blocks simulating constant head on the Mississippi River, Reelfoot Lake, Running Reelfoot Bayou, Reelfoot Creek, and Running Slough; Maps 6 and 7-difference between model calculated and observed water levels; and Maps 8 and 9-line of equal groundwater level increase and approximate lake area at pool elevation. (Lantz-PTT)

  18. 77 FR 23791 - Oregon Disaster #OR-00042

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... ADMINISTRATION Oregon Disaster OR-00042 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of OREGON dated 04/02/2012... adversely affected by the disaster: Primary Counties: Marion. Contiguous Counties: Oregon:...

  19. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    USGS Publications Warehouse

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of

  20. Lava Flows, Rivers, and Lakes: Complex Interactions Along the McKenzie River, Central Oregon

    NASA Astrophysics Data System (ADS)

    Deligne, N. I.; Cashman, K. V.; Grant, G. E.

    2008-12-01

    There are few studies of lava - surface water interactions, undoubtedly because most contemporary research on lava flows has been carried out in places with little surface water (e.g., Hawaii and Mt Etna). However, as described by a written account of the 1783 Laki eruption in Iceland, this interaction can be quite dynamic and dramatic: lava flows can disrupt water sources and rivers, simultaneously causing water shortages downstream and severe flooding upstream. In the Cascade volcanic range there are numerous examples of pre-historic Holocene lava - surface water interaction. For example, multiple lava flows have entered the McKenzie River, which occupies the western margin of High Cascades graben. Clear Lake, at the head of the McKenzie River, formed when lava flows from the Sand Mountain chain entered the ancestral McKenzie River and dammed it; dated drowned trees preserved on the lake bottom suggest that damming occurred c. 3000 years ago. While the modern forest masks the location and extent of the damming lava flow, principle components analysis of Landsat imagery helps to define flow boundaries and areal extent. This extensive flow is at least 54 meters thick and flowed west until it encountered the graben wall, at which point it flowed south, burying and damming the ancestral McKenzie River. The river currently overtops the lava dam and travels south along the graben wall. Poorly vegetated flows enter Clear Lake on its eastern margin; while early workers mapped two separate flow units around Clear Lake with younger flows distinguished by their lack of vegetation, recent workers have mapped all flows bordering Clear Lake as part of the same complex. We agree with earlier interpretations and additionally use bathymetric studies to show that the lake prematurely stopped the advance of these younger lava flows. Further downstream, flows from Belknap volcano entered the McKenzie River approximately 1500 years after the formation of Clear Lake. While these flows

  1. Geologic map and database of the Roseburg 30' x 60' quadrangle, Douglas and Coos counties, Oregon

    USGS Publications Warehouse

    Wells, Ray E.; Jayko, A.S.; Niem, A.R.; Black, G.; Wiley, T.; Baldwin, E.; Molenaar, K.M.; Wheeler, K.L.; DuRoss, C.B.; Givler, R.W.

    2001-01-01

    The Roseburg 30' x 60' Quadrangle covers the southeastern margin of the Oregon Coast Range and its tectonic boundary with Mesozoic terranes of the Klamath Mountains (see figures 1 and 2 in pamphlet, also shown on map sheet). The geologic framework of the Roseburg area was established by the pioneering work of Diller (1898), Wells and Peck, (1961) and Ewart Baldwin (1974) and his students (see figure 3 in pamphlet, also shown on map sheet). Baldwin and his students focussed on the history of the Eocene Tyee basin, where the sediments lap across the tectonic boundary with the Mesozoic terranes and record the accretion of the Coast Range basement to the continent. Others have examined the sedimentary fill of the Tyee basin in detail, recognizing the deep marine turbidite facies of the Tyee Formation (Snavely and others, 1964) and proposing several models for the Eocene evolution of the forearc basin (Heller and Ryberg, 1983; Chan and Dott, 1983; Heller and Dickinson, 1985; Molenaar, 1985; see Ryu and others, 1992 for a comprehensive summary). Along the eastern margin of the quadrangle, both the Tyee basin and the Klamath terranes are overlain by Eocene volcanic rocks of the Western Cascade arc (Walker and MacLeod, 1991). The thick Eocene sedimentary sequence of the Tyee basin has significant oil and gas potential (Armentrout and Suek, 1985; Gautier and others, 1993; Ryu and others, 1996). Although 13 deep test wells have been drilled in the Roseburg quadrangle (see figure 2 and table 1 in pamphlet, also shown on map sheet), exploration to date has been hampered by an incomplete understanding of the basin�s tectonic setting and evolution. In response, the Oregon Department of Geology and Mineral Industries (DOGAMI) initiated a five year assessment of the oil and gas potential of the Tyee basin. This map is a product of a cooperative effort by the U. S. Geological Survey, Oregon State University, and DOGAMI to systematically map the sedimentary facies and structure

  2. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    NASA Astrophysics Data System (ADS)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks

  3. Seepage study of six canals in Salt Lake County, Utah, 1982-1983

    USGS Publications Warehouse

    Herbert, L.R.; Cruff, R.W.; Waddell, K.M.

    1985-01-01

    A study of selected reaches of the Utah and Salt Lake, Utah Lake Distributing, Provo Reservoir, Draper Irrigation, East Jordan, and Jordan and Salt Lake City Canals in Salt Lake County, Utah, was made to determine gains or losses of flow in those reaches. Three to five sets of seepage measurements were made on each canal during 1982 or 1983. Adjustments for fluctuations in flow were made from information obtained from water-stage recorders operated at selected locations during the time of each seepage run.The study showed an overall net loss of about 9.5 cubic feet per second in the Utah and Salt Lake Canal, 11.0 cubic feet per second in the Utah Lake Distributing canal, 20.5 cubic feet per second in the Provo Reservoir canal, 1.5 cubic feet per second in the Draper Irrigation Canal, and 4.0 cubic feet per second in the East Jordan canal. It also showed a net gain of about 6.0 cubic feet per second in the Jordan and Salt Lake City Canal. The gains and losses are attributed primarily to the relation of the canals to the depth of the water table near the canals.

  4. Forest statistics for northwest Oregon.

    Treesearch

    Melvin E. Metcalf; John W. Hazard

    1964-01-01

    This publication summarizes the results of the latest reinventory of 10 counties in northwest Oregon: Clackamas, Clatsop, Columbia, Hood River, Marion, Multnomah, Polk, Tillamook, Washington, and Yamhill. This block of counties is one of 10 such blocks set up in the States of Oregon and Washington by the Forest Survey to facilitate orderly reinventories of the timber...

  5. Forest statistics for southwest Oregon.

    Treesearch

    John W. Hazard; Melvin E. Metcalf

    1964-01-01

    This publication summarizes the results of the latest reinventory of five counties in southwest Oregon: Coos, Curry, Douglas, Jackson, and Josephine. This block of five counties is one of 10 such blocks set up in the States of Oregon and Washington by the Forest Survey to facilitate orderly reinventories of the timber resources. Each block will be reinventoried at 10-...

  6. Geologic, aeromagnetic and mineral resource potential maps of the Whisker Lake Wilderness, Florence County, Wisconsin

    USGS Publications Warehouse

    Schulz, Klaus J.

    1983-01-01

    The mineral resource potential of the Whisker Lake Wilderness in the Nicolet National Forest, Florence County, northeastern Wisconsin, was evaluated in 1982. The bedrock consists of recrystallized and deformed volcanic and sedimentary rocks of Early Proterozoic age. Sand and gravel are the only identified resources in the Whisker Lake Wilderness. However, the area is somewhat isolated from current markets and both commodities are abundant regionally. The wilderness also has low potential for peat in swampy lowlands. The southwestern part of the wilderness has a low to moderate mineral resource potential for stratabound massive-sulfide (copper-zinc-lead) deposits.

  7. Inventory of peat resources: an area of Beltrami and Lake of the Woods counties, Minnesota

    SciTech Connect

    Not Available

    1984-01-01

    This report presents the findings of the Minnesota Peat Inventory Project's (MPIP) reconnaissance-level survey of an area of Beltrami and Lake of the Woods counties. Peatlands cover about 314,000 hectares (775,000 acres) of this area and constitute about 12 percent of the state's total peat resource. The survey identifies the location and amount of fuel-grade and horticultural peat in the two county area. The report provides a general discussion of peatlands and describes the field and laboratory procedures of this peatland survey and presents a map of the peat resources in the surveyed area. 28 references, 12 figures, 12 tables.

  8. Field geology of the northwest quarter of the Broken Top 15' quadrangle, Deschutes County, Oregon

    SciTech Connect

    Taylor, E.M.

    1987-01-01

    The report is a compilation of geologic field observations and supporting laboratory data obtained during a study of the eastern slope of the High Cascade Range of Oregon, north of Broken Top volcano. General geologic relationships are summarized, then followed by lithologic descriptions, petrographic characteristics, and stratigraphic information, cross-indexed to tables of chemical analyses of pertinent rock units. The 7.5-minute N.W. Broken Top quadrange is bounded by 44/sup 0/07'30'' and 44/sup 0/15'00'' north latitude and by 121/sup 0/37'30'' and 121/sup 0/45'00'' west longitude, 6 km east of North and Middle Sister volcanoes and 35 km northwest of Bend. The quadrangle is covered by glacial till and calc-alkaline lavas, most of which originated on the adjacent slopes of the High Cascades. Basalt, basaltic andesite, andesite, and rhyodacite are represented in a variety of forms including lava flows, volcanic domes, cinder cones, and a welded ash-flow tuff.

  9. Hydrologic Data for Deep Creek Lake and Selected Tributaries, Garrett County, Maryland, 2007-08

    USGS Publications Warehouse

    Banks, William S.L.; Davies, William J.; Gellis, Allen C.; LaMotte, Andrew E.; McPherson, Wendy S.; Soeder, Daniel J.

    2010-01-01

    Introduction Recent and ongoing efforts to develop the land in the area around Deep Creek Lake, Garrett County, Maryland, are expected to change the volume of sediment moving toward and into the lake, as well as impact the water quality of the lake and its many tributaries. With increased development, there is an associated increased demand for groundwater and surface-water withdrawals, as well as boat access. Proposed dredging of the lake bottom to improve boat access has raised concerns about the adverse environmental effects such activities would have on the lake. The Maryland Department of Natural Resources (MDDNR) and the U.S. Geological Survey (USGS) entered into a cooperative study during 2007 and 2008 to address these issues. This study was designed to address several objectives to support MDDNR?s management strategy for Deep Creek Lake. The objectives of this study were to: Determine the current physical shape of the lake through bathymetric surveys; Initiate flow and sediment monitoring of selected tributaries to characterize the stream discharge and sediment load of lake inflows; Determine sedimentation rates using isotope analysis of sediment cores; Characterize the degree of hydraulic connection between the lake and adjacent aquifer systems; and Develop an estimate of water use around Deep Creek Lake. Summary of Activities Data were collected in Deep Creek Lake and in selected tributaries from September 2007 through September 2008. The methods of investigation are presented here and all data have been archived according to USGS policy for future use. The material presented in this report is intended to provide resource managers and policy makers with a broad understanding of the bathymetry, surface water, sedimentation rates, groundwater, and water use in the study area. The report is structured so that the reader can access each topic separately using any hypertext markup (HTML) language reader. In order to establish a base-line water-depth map of

  10. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    SciTech Connect

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.

  11. Coal exploration - Fence Lake Project, Catron County, New Mexico

    SciTech Connect

    Greenberg, M.A.; Patton, J.C.; Thompson, R.T.

    1984-01-01

    The Fence Lake Project is located in the Salt Lake coal field, an extension of the San Juan Basin. Geologic formations exposed in the Project area range in age from late Cretaceous to Quaternary. Coal is encountered in the Moreno Hill Formation (upper Cretaceous). Salt River Project (SRP) followed the basic textbook approach for the exploration, regional appraisal, detailed reconnaissance, detailed surface appraisal and three-dimensional sampling (physical exploration). SRP is exploring this property as a potential fuel source for the Coronado Generating Station. Therefore, for the physical exploration stage, the quality sampling program was designed from a utility company viewpoint to determine possible impacts to the Station. Exploration drilling was completed in spring, 1982; September, 1982, and summer, 1984.

  12. Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California

    SciTech Connect

    1990-12-01

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab.

  13. Climatic data for Williams Lake, Hubbard County, Minnesota, 1986

    USGS Publications Warehouse

    Rosenberry, D.O.; Sturrock, A.M.; Winter, T.C.

    1988-01-01

    Research on the hydrology of Williams Lake, north-central Minnesota includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: water-surface temperature, dry-bulb and wet-bulb air temperatures, wind speed, precipitation, and solar and atmospheric radiation. Some calculated values necessary for these studies, such as vapor pressure and Bowen ratio numbers, also are presented. Data are collected at raft and land stations.

  14. Climatic data for Williams Lake, Hubbard County, Minnesota, 1982

    USGS Publications Warehouse

    Rosenberry, D.O.; Sturrock, A.M.; Scarborough, J.L.; Winter, T.C.

    1988-01-01

    Research on the hydrology of Williams Lake, north-central Minnesota includes study of evaporation. Those climatic data needed for energy budget and mass transfer studies are presented , including: water surface temperature, dry-bulb and wet-bulb air temperatures, wind speed, precipitation, and solar and atmospheric radiation. Some calculated values necessary for these studies are also presented, such as vapor pressure and Bowen-ratio values. Data are collected at raft and land stations.

  15. Bathymetric survey of Rock Run Rookery Lake, Will County, Illinois.

    USGS Publications Warehouse

    Duncker, James J.; Sharpe, Jennifer B.

    2017-01-01

    The bathymetric data set was collected in Rock Run on Dec. 10, 2015 by USGS ILWSC staff Clayton Bosch and Louis Pappas. The bathymetric data were collected with an RD Instruments 1200 kHz ADCP (S/N 8617) and Trimble Ag 162 GPS mounted on the M/V La Moine. A temporary reference point (TRP) was established on the north side of the footbridge over the connecting channel to the Des Plaines River. The mean water surface elevation (504.97 feet, WGS 84) during the survey was established from a temporary reference point whose elevation was later established by GPS survey. The measured depths were then converted to a lake bed elevation. The location and depth data were compiled into a bathymetry dataset (Rock Run Bathymetry Data.csv). The dataset was imported as a shapefile into ArcMap (ArcGIS software 10.3.1). A shape file of lake boundary elevation was developed based on imagery from September 16, 2015 (U.S. Department of Agriculture Farm Services Agency National Agriculture Imagery Program (NAIP)) (point data can be found in Rock Run Lake Boundary.csv). This shape file was merged with the elevation shape file to enforced the lake and island edges in the final bathymetry. This elevation shape file was then contoured using Geostatistical Analyst/Deterministic methods/Radial Basis Functions with Completely Regularized Spline (defaults were used except Sector type: 4 Sectors, Angle: 42, Major semiaxis: 800, Minor semiaxis: 500). The raster was then exported to a GeoTIFF file with a resulting raster cell size of 1 foot.

  16. Effects of groundwater pumping on agricultural drains in the Tule Lake subbasin, Oregon and California

    USGS Publications Warehouse

    Pischel, Esther M.; Gannett, Marshall W.

    2015-07-24

    To better define the effect of increased pumping on drain flow and on the water balance of the groundwater system, the annual water volume pumped from drains in three subareas of the Tule Lake subbasin was estimated and a fine-grid, local groundwater model of the Tule Lake subbasin was constructed. Results of the agricultural-drain flow analysis indicate that groundwater discharge to drains has decreased such that flows in 2012 were approximately 32,400 acre-ft less than the 1997–2000 average flow. This decrease was concentrated in the northern and southeastern parts of the subbasin, which corresponds with the areas of greatest groundwater pumping. Model simulation results of the Tule Lake subbasin groundwater model indicate that increased supplemental pumping is the dominant stress to the groundwater system in the subbasin. Simulated supplemental pumping and decreased recharge from irrigation between 2000 and 2010 totaled 323,573 acre-ft, 234,800 acre-ft (73 percent) of which was from supplemental pumping. The response of the groundwater system to this change in stress included about 180,500 acre-ft (56 percent) of decreased groundwater discharge to drains and a 126,000 acre-ft (39 percent) reduction in aquifer storage. The remaining 5 percent came from reduced groundwater flow to other model boundaries, including the Lost River, the Tule Lake sumps, and interbasin flow.

  17. Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon

    USGS Publications Warehouse

    Fink, Jonathan H.; Anderson, Steven W.

    2017-07-19

    This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.

  18. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    USGS Publications Warehouse

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  19. 78 FR 8016 - Establishment of the Elkton Oregon Viticultural Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... Alcohol and Tobacco Tax and Trade Bureau 27 CFR Part 9 RIN 1513-AB88 Establishment of the Elkton Oregon...-acre ``Elkton Oregon'' viticultural area in Douglas County, Oregon. The viticultural area lies totally within the Umpqua Valley viticultural area and the multi-county Southern Oregon viticultural area....

  20. A novel myxosporean parasite Myxobolus klamathellus n. sp. (Cnidaria: Myxosporea) from native blue chub (Gila coerulea) in Klamath Lake, Oregon.

    PubMed

    Atkinson, Stephen Douglas; Banner, Craig Randall

    2017-01-01

    Blue chub, Gila coerulea Girard, 1856 is a freshwater cyprinid fish native to inland drainages of western North America. It has not previously been recorded as a host of any myxosporean parasite (Cnidaria: Myxosporea), despite myxosporeans being cosmopolitan in freshwater and marine fishes worldwide and sympatric with this host. Herein, we describe a novel myxosporean from subcutaneous cysts in native blue chub from Klamath Lake, Oregon. Myxospores were consistent with genus Myxobolus, being obovoid but compressed in thickness, length 14.3 ± 0.4 (13-15) μm, width 9.7 ± 0.4 (9-10) μm, thickness 7.7 ± 0.3 (7-8) μm; two polar capsules ovoid slightly dissimilar in size, length 6.4 ± 0.4 (6-7) μm, width 3.8 ± 0.3 (3-4) μm, with four (3-5) turns of the polar filament (tubule); capsule openings apical, one in each valve cell. The small subunit ribosomal DNA sequence was up to 97 % similar to Myxobolus spp. from other cyprinids from North America and Europe. Given the novel host, unique myxospore morphometrics, and DNA sequence, we describe this as Myxobolus klamathellus n. sp.

  1. Mineral resources of the Henry's Lake Wilderness Study Area, Fremont County, Idaho

    SciTech Connect

    Tysdal, R.G. ); Peters, T.J. )

    1988-01-01

    The authors report on the 350-acre Henry's Lake Wilderness Study Area in the southern part of the Madison Range. Fremont County, Idaho, and is about 17 miles north of the hamlet of Islan Park. The southwestern part of the wilderness study area, along the Madison Range Fault, is rated as having a moderate energy resource potential for geothermal water, and the remainder of the study area has a low potential for this resource.

  2. Archaeological Data Recovery at 31Dh234, Falls Lake Project, Durham County, North Carolina

    DTIC Science & Technology

    1988-12-01

    contexts at protohistoric and historic aboriginal sites in the North Carolina piedmont ( Wall and Fredricks sites - Holm 1987:241, 1988:91-93). Catfish...fishing net weights, hammerstones, pitted cobbles, bone awls, and thick- walled tubular clay pipes (Coe 1964). Previous survey of the Falls Lake project has...counties (Anderson 1985; Hargrove et al. n.d.:4.1-4.8). Although Black slavery was a standard component of the region’s agricultural economy even at this

  3. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota, 1983

    USGS Publications Warehouse

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1987-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Climatic data needed for energy-budget and mass-transfer evaporation studies that were collected during 1983 include water-surface temperature, sediment temperature, dry-bulb and wet-bulb air temperature, vapor pressure at and above the water surface, wind speed, and short-and long-wave radiation. Data are collected at raft and land stations. (USGS)

  4. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota 1982

    USGS Publications Warehouse

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer evaporation studies, including: water-surface temperature, sediment temperature dry-bulb and wet-bulb air temperatures, vapor pressure at and above the water surface, wind speed, and short- and long-wave radiation. Data were collected at raft and land stations.

  5. 71. MYRTLE CREED BRIDGE, OREGON STATE HIGHWAY 199, AT END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. MYRTLE CREED BRIDGE, OREGON STATE HIGHWAY 199, AT END OF STOUT GROVE ROAD. JOSEPHINE COUNTY, OREGON. LOOKING WNW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  6. 36. MYRTLE CREEK BRIDGE, OREGON STATE HIGHWAY 199, AT END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. MYRTLE CREEK BRIDGE, OREGON STATE HIGHWAY 199, AT END OF STOUT GROVE ROAD. JOSEPHINE COUNTY, OREGON LOOKING WNW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  7. 37. BRIDGE 115, SMITH RIVER MIDDLE FORK OREGON STATE HIGHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. BRIDGE 1-15, SMITH RIVER MIDDLE FORK OREGON STATE HIGHWAY 199. JOSEPHINE COUNTY, OREGON. LOOKING SSW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  8. 39. CAVEMAN BRIDGE, ROGUE RIVER, OREGON STATE HIGHWAY 199. GRANTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. CAVEMAN BRIDGE, ROGUE RIVER, OREGON STATE HIGHWAY 199. GRANTS PASS, JOSEPHINE COUNTY, OREGON. LOOKING SW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  9. 40. CAVEMAN BRIDGE, ROGUE RIVER, OREGON STATE HIGHWAY 199. GRANTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CAVEMAN BRIDGE, ROGUE RIVER, OREGON STATE HIGHWAY 199. GRANTS PASS, JOSEPHINE COUNTY, OREGON. LOOKING S. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  10. 75 FR 13253 - Plan Revision for Lake Tahoe Basin Management Unit, Alpine, El Dorado, and Placer Counties, CA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... management plan (forest plan) and will also prepare an environmental impact statement (EIS) for this revised... Be Made The Lake Tahoe Basin Management Unit is preparing an EIS to revise the current forest plan... Forest Service Plan Revision for Lake Tahoe Basin Management Unit, Alpine, El Dorado, and Placer Counties...

  11. Benthic Fluxes of Dissolved Macro- and Micronutrients to the Water Column of Upper Klamath Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Kuwabara, J. S.; Topping, B. R.; Lynch, D. D.; Murphy, F.; Carter, J. L.; Lindenberg, M.

    2007-12-01

    Hypoxic, environmentally stressful conditions for endangered fish populations have been generated over the past century by an annual phytoplankton bloom in Upper Klamath Lake, OR. The bloom is consistently dominated by the nitrogen-fixing cyanophyte Aphanizomenon flos-aquae (AFA), thus a quantitative understanding of processes affecting the transport of biologically available phosphorus (P), presumably the limiting nutrient, is critical for resource management in the lake. This work was undertaken to help develop sound remediation or restoration strategies, and to set realistic expectations for water-quality improvements. Particle-reactive phosphate can adsorb or complex onto particles that settle and accumulate in the lake bed. Biogeochemical processes near the sediment-water interface can remobilize particle-bound P and generate a benthic flux of bioavailable P. This study provides estimates of the benthic flux of dissolved macronutrients (i.e., phosphorus and nitrogen species) before, during and after the period of: (1) increased water-column nutrient concentrations that cannot be accounted for by riverine inputs, and (2) the annual bloom of AFA. Benthic flux of dissolved orthophosphate was consistently positive (i.e., out of the sediment into the overlying water column) and ranged between 0.5 and 6.1 mg m-2 d-1. Assuming a lake area of 200 km2, this converts to a mass flux to the entire lake of 8,000 to 100,000 kg over a 3-month AFA bloom season which is comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was that dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 100 mg m-2 d-1; also comparable to riverine inputs. In contrast, dissolved nitrate exhibited a consistently negative flux (consumed by the sediment) with values ranging between -20 to -0.1 mg m-2 d-1. Macroinvertebrate densities of the order of 105 individuals-m-2 suggest that the diffusive-flux estimates may be significantly lower

  12. Water-Quality Data from Upper Klamath and Agency Lakes, Oregon, 2007-08

    USGS Publications Warehouse

    Kannarr, Kristofor E.; Tanner, Dwight Q.; Lindenberg, Mary K.; Wood, Tamara M.

    2010-01-01

    Significant Findings The U.S. Geological Survey Upper Klamath Lake water-quality monitoring program collected data from multiparameter continuous water-quality monitors, weekly water-quality samples, and meteorological stations during May-November 2007 and 2008. The results of these measurements and sample analyses are presented in this report for 29 stations on Upper Klamath Lake and 2 stations on Agency Lake, as well as quality-assurance data for the water-quality samples. Some of the significant findings from 2007 and 2008 are listed below. In 2007-08, ammonia concentrations were at or near the detection limit at all stations during the second week in June, after which they began to increase, with peak concentrations occurring from July through November. The concentration of un-ionized ammonia, which can be toxic to aquatic life, first began to increase in mid-June and peaked in July or August at most sites. Concentrations of un-ionized ammonia measured in the Upper Klamath Lake in 2007-08 did not reach concentrations that would have been potentially lethal to suckers. Samples collected for the analysis of dissolved organic carbon (DOC) late in the 2007 season showed no evidence of an increase in DOC subsequent to the breaching of the Williamson River Delta levees on October 30. In 2007-08, the lakewide daily median of dissolved oxygen concentration began to increase in early June, and peaked in mid- to late June. The lakewide daily median pH began to increase from early June and peaked in late June (2007) or early July (2008). Lakewide daily median pH slowly decreased during the rest of both seasons. The 2007 lakewide daily median specific conductance values first peaked on July 1, coincident with a peak in dissolved oxygen concentration and pH, followed by a decrease through mid-July. Specific conductance then remained relatively stable until mid-October when a sharp increase began that continued until the end of the season. Lakewide specific conductance

  13. Baseline water quality of Schmidt, Hornbeam, and Horseshore Lakes, Dakota County, Minnesota

    USGS Publications Warehouse

    Payne, G.A.

    1980-01-01

    Three lakes in Dakota County were sampled five times during an 18-month period to determine baseline water quality prior to construction of an interstate highway. Results of physical measurements and chemical analyses showed that the lakes were shallow, nonstratified, and nutrient enriched. Considerable seasonal variations in dissolved solids, nutrient, and dissolved-oxygen concentrations were observed. Oxygen depletion and high nutrient concentrations were characteristics of conditions under an ice cover. Blue-green algal blooms typically were established soon after ice breakup and persisted until late fall. Data from the study will be supplemented with data--collected during and after construction of the highway to assess the impact of highway construction s \\d drainage on water quality of the lakes.

  14. Modeling and model validation of wind-driven circulation in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.; Wood, T.

    2005-01-01

    The hydrodynamics in the Upper Klamath Lake (UKL) plays a significant role in the water quality conditions of the lake. In order to provide a quantitative evaluation of the impacts of hydrodynamics on water quality in UKL, a detailed hydrodynamic model was implemented using an unstructured grid 3-D hydrodynamic model known as the UnTRIM model. The circulation in UKL is driven primarily by wind. Wind speed and direction time-series records were used as input, the numerical model reproduced the wind "set-up" and "set-down" at down wind and upwind ends of the lake, respectively. Of the two acoustic Doppler current profiler (ADCP) records, the UnTRIM model reproduced the measured velocity at the deep station. At the shallow station, the model results showed diurnal patterns that correlated well with wind variations, but the measured velocity showed water velocity sustained at 3 to 5 cm/sec or above. Discrepancies between the model results and observations at the shallow ADCP station is discussed on the basis of correct physics. If the field measurements are inconsistent with the known physics, there exists the possibility that the field data are suspect or the field data are revealing some physical processes that are not yet understood. Copyright ASCE 2005.

  15. Revision and proposed modification for a total maximum daily load model for Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wherry, Susan A.; Wood, Tamara M.; Anderson, Chauncey W.

    2015-01-01

    Using the extended 1991–2010 external phosphorus loading dataset, the lake TMDL model was recalibrated following the same procedures outlined in the Phase 1 review. The version of the model selected for further development incorporated an updated sediment initial condition, a numerical solution method for the chlorophyll a model, changes to light and phosphorus factors limiting algal growth, and a new pH-model regression, which removed Julian day dependence in order to avoid discontinuities in pH at year boundaries. This updated lake TMDL model was recalibrated using the extended dataset in order to compare calibration parameters to those obtained from a calibration with the original 7.5-year dataset. The resulting algal settling velocity calibrated from the extended dataset was more than twice the value calibrated with the original dataset, and, because the calibrated values of algal settling velocity and recycle rate are related (more rapid settling required more rapid recycling), the recycling rate also was larger than that determined with the original dataset. These changes in calibration parameters highlight the uncertainty in critical rates in the Upper Klamath Lake TMDL model and argue for their direct measurement in future data collection to increase confidence in the model predictions.

  16. Historical Changes to Lake Washington and Route of the Lake Washington Ship Canal, King County, Washington

    USGS Publications Warehouse

    Chrzastowski, Michael J.

    1983-01-01

    Historical shoreline changes to hydrologic characteristics were studied for Lake Washington and the route of Lake Washington Ship Canal. The study is based on comparison of maps made during the period 1875-1907 and modern topographic maps, supplemented with historical documents that describe the once-natural setting of the lakes and streams in the Lake Washington drainage basin. The observed shoreline changes range from minor to substantial. The water-surface area has been historically reduced by about 6 square kilometers, and total shoreline has been reduced by 20 kilometers. Approximately 4 square kilometers of the historical wetland area has been eliminated, or about 93 percent of the natural wetland extent. The changes have resulted from construction of the Lake Washington Ship Canal and accompanying water-level adjustments, shoreline modification from urban growth of the area, and limited natural processes. The map comparison documents (1) extent of shoreline changes (2) historical loss of wetlands area, (3) loss of small streams that historically entered the lakes and bays, and (4) historical vegetation and land-use patterns around the lakeshore and canal route. The identification of historical shorelines, wetlands, and small streams that have no expression on today 's landscape is information of value to land-use planning and local engineering activities. (USGS)

  17. Books for Children with Oregon Settings: A Revision of a Similar Booklist Compiled by the Jackson County Library System.

    ERIC Educational Resources Information Center

    Uhreen, David

    This annotated bibliography contains about 50 books on Oregon history for student reading. It includes topics such as fishing, pioneer families, frontier life, geography of the northwest, trading and mining, Indians, and the Oregon Trail. Most of the books listed are fiction. A few easily read nonfiction books are included. Most listings identify…

  18. National Dam Safety Program. Mallard Lake Dam (MO 30807), Mississippi - Kaskaskia - St. Louis Basin, Perry County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1980-02-01

    Mallard Lake Dam (MO 30807) 6. PF.RORMINd-RG. AEPORT NUMBER Perry County , Missouri 1. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(t) Horner & Shifrin, Inc...National Dam Safety Program. Mallard Lake Dam (MO 30807),1111 SUPPLEMENTARY NOTESI Mississippi - Kaskaskia - St. Louis"’ IT Basin, Perry County , Missouri...THIS PAOE(When DMa EnIat.d) MISSISSIPPI - KASKASKIA - ST. LOUIS BASIN MALLARD LAKE DAM PERRY COUNTY , MISSOURI.. MO 30807 PHASE 1 INSPECTION REPORT

  19. Database for the Geologic Map of Newberry Volcano, Deschutes, Klamath, and Lake Counties, Oregon

    USGS Publications Warehouse

    Bard, Joseph A.; Ramsey, David W.; MacLeod, Norman S.; Sherrod, David R.; Chitwood, Lawrence A.; Jensen, Robert A.

    2013-01-01

    Newberry Volcano, one of the largest Quaternary volcanoes in the conterminous United States, is a broad shield-shaped volcano measuring 60 km north-south by 30 km east-west with a maximum elevation of more than 2 km. Newberry Volcano is the product of deposits from thousands of eruptions, including at least 25 in the past approximately 12,000 years (Holocene Epoch). Newberry Volcano has erupted as recently as 1,300 years ago, but isotopic ages indicate that the volcano began its growth as early as 0.6 million years ago. Such a long eruptive history and recent activity suggest that Newberry Volcano is likely to erupt in the future. This geologic map database of Newberry Volcano distinguishes rocks and deposits based on their composition, age, and lithology.

  20. Mineral resources of the Diablo Mountain Wilderness Study Area, Lake County, Oregon

    SciTech Connect

    Diggles, M.F.; King, H.D.; Gettings, ME.; Conrad, J.E.; Sawatzky, D.L.; Soreghan, G.S.

    1990-01-01

    This paper reports on the Diablo Mountain Wilderness Study Area which has no identified mineral resources, but it has moderate mineral resource potential for soda ash, boron compounds, sodium sulfate, magnesium compounds, salts, potash, bromine, lithium, tungsten, and geothermal energy. The area also has low mineral resource potential for low-grade, high-tonnage, epithermal, hot-spring gold-silver deposits, for magnesium deposits, and for oil and gas.

  1. Algal toxins in Upper Klamath Lake, Oregon: Linking water quality to juvenile sucker health

    USGS Publications Warehouse

    VanderKooi, S.P.; Burdick, S.M.; Echols, K.R.; Ottinger, C.A.; Rosen, B.H.; Wood, T.M.

    2010-01-01

    As the lead science agency for the Department of Interior, the U.S. Geological Survey is actively involved in resource issues in the Klamath River basin. Activities include research projects on endangered Lost River and shortnose suckers, threatened coho salmon, groundwater resources, seasonal runoff forecasting, water quality in Upper Klamath Lake and the Klamath River, nutrient cycling in wetlands, and assessment of land idling programs to reduce water consumption. Many of these studies are collaborations with various partners including Department of Interior agencies, Indian Tribes, and State agencies.

  2. 2000 Multibeam Sonar Survey of Crater Lake, Oregon - Data, GIS, Images, and Movies

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter

    2001-01-01

    In the summer of 2000, the U.S. Geological Survey, Pacific Seafloor Mapping Project in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire used a state-of-the-art multibeam sonar system to collect high-resolution bathymetry and calibrated, co-registered acoustic backscatter to support both biological and geological research in the Crater Lake area. This interactive CD-ROM contains the multibeam bathymetry and acoustic backscatter data, along with an ESRI ArcExplorer project (and software), images, and movies.

  3. Geology and ground-water resources of upper Grande Ronde River Basin, Union County, Oregon

    USGS Publications Warehouse

    Hampton, E.R.; Brown, S.G.

    1964-01-01

    The upper Grande Ronde River basin is a 1,400-square-mile area in northeastern Oregon, between the Blue Mountains to the west and the Wallowa Mountains to the east. The area is drained by the Grande Ronde River, which flows northeast through this region and is tributary to the Snake River. The climate is generally moderate; temperature extremes recorded at La Grande are 22?F. below zero and 108?F. above. The average annual precipitation ranges from 13 to 20 inches in the Grande Ronde Valley to . more than 35 inches in the mountain highlands surrounding the valley. The topography of. the area is strongly controlled by the geologic structures, principally those related to block faulting. The terrain ranges from the nearly flat floors of the Grande Ronde and Indian Valleys, whose elevations are 2,600 to about 2,750 feet, to the mountainous uplands, whose average elevations are about 5,000 feet and which have local prominences exceeding 6,500 feet. The rocks in the upper Grande Ronde River basin, from oldest to youngest, are metamorphic rocks of pre-Tertiary age; igneous masses of diorite and granodiorite that intruded the metamorphic rocks; tuff-breccia, welded and silicified tuff, and andesite and dacite flows, of Tertiary age; the Columbia River basalt of Miocene and possibly early Pliocene age; fanglomerate and lacustrine deposits of Pliocene and Pleistocene age; and younger deposits . of alluvium, colluvium, and welded tuff. In the graben known as the Grande Ronde Valley, which is the principal populated district in the area, the valley fill deposits are as thick as 2,000 feet. The valley is bordered by the scarps of faults, the largest of which have displacements of more than 4.000 feet. Most of the wells in the area obtain small to moderate supplies of water from unconfined aquifers in the val1ey fill and alluvial fan deposits. Moderate to large quantities of water are obtained from aquifers carrying artesian water in the fan alluvium and the Columbia River

  4. Analysis of water-level fluctuations of Lakes Winona and Winnemissett-- two landlocked lakes in a karst terrane in Volusia County, Florida

    USGS Publications Warehouse

    Hughes, G.H.

    1979-01-01

    The water levels of Lakes Winona and Winnemissett in Volusia County, Fla., correlate reasonably well during dry spells but only poorly during wet spells. Disparities develop mostly at times when the lake levels rise abruptly owing to rainstorms passing over the lake basins. The lack of correlation is attributed to the uneven distribution of the storm rainfall, even though the average annual rainfall at National Weather Service gages in the general area of the lakes is about the same. Analyses of the monthly rainfall data show that the rainfall variability between gages is sufficient to account for most of the disparity between monthly changes in the levels of the two lakes. The total annual rainfall at times may differ between rainfall gages by as much as 15 to 20 inches. Such differences tend to balance over the long term but may persist in the same direction for two or more years, causing apparent anomalies in lake-level fluctuations. (Woodard-USGS)

  5. 76 FR 33401 - Environmental Impact Statement: Will and Kankakee Counties, Illinois and Lake County, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... impacts at a planning level of detail using a Geographic Information System (GIS) supplemented as needed... County, Indiana. FOR FURTHER INFORMATION CONTACT: Norman R. Stoner, P.E., Division Administrator, Federal..., N758, Indianapolis, IN 46204, Phone: (317) 232-0694. SUPPLEMENTARY INFORMATION: The FHWA,...

  6. Dispersal of larval suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006-09

    USGS Publications Warehouse

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.; Buccola, Norman L.

    2012-01-01

    An advection/diffusion modeling approach was used to simulate the transport of larval suckers from spawning areas in the Williamson River, through the newly restored Williamson River Delta, to Upper Klamath Lake. The density simulations spanned the years of phased restoration, from 2006/2007 prior to any levee breaching, to 2008 when the northern part of the delta was reconnected to the lake, and 2009 when levees on both sides of the delta had been breached. Model simulation results from all four years were compared to field data using rank correlation. Spearman ρ correlation coefficients were usually significant and in the range 0.30 to 0.60, providing moderately strong validation of the model. The correlation coefficients varied with fish size class in a way that suggested that the model best described the distribution of smaller fish near the Williamson River channel, and larger fish away from the channel. When Lost River and shortnose/Klamath largescale suckers were simulated independently, the correlation results suggested that the model better described the transport and dispersal of the latter species. The incorporation of night-time-only drift behavior in the Williamson River channel neither improved nor degraded correlations with field data. The model showed that advection by currents is an important factor in larval dispersal.

  7. Geothermal exploration assessment and interpretation, Upper Klamah Lake Area, Klamath Basin, Oregon

    SciTech Connect

    Stark, M.; Goldstein, N.E.; Wollenberg, H.A.

    1980-09-01

    Data from public and private sources on the Klamath Basin geothermal resource are reviewed, synthesized, and reinterpreted. In this, the second and final phase of the work, geological, remote sensing, geochemical, temperature gradient, gravity, aeromagnetic, and electrical resistivity data sets are examined. These data were derived from surveys concentrated on the east and west shores of Upper Klamath Lake. The geological, remote sensing, and potential field data suggest a few northeast-trending discontinuities, which cross the regional north-westerly strike. The near-surface distribution of warm water appears to be related to the intersections of these lineaments and northwest-trending faults. The groundwater geochemical data are reviewed and the various reservoir temperature estimates compared. Particular attention is given to specific electrical conductivities of waters as an interpretational aid to the subsurface resistivity results. A clear trend emerges in the Klamath Falls/Olene Gap area; hotter waters are associated with higher specific conductivities. In the Nuss Lake/Stukel Mountain area the opposite trend prevails, although the relationship is somewhat equivocal.

  8. Quantifying the Benthic Source of Nutrients to the Water Column of Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Lynch, Dennis D.; Topping, Brent R.; Murphy, Fred; Carter, James L.; Simon, Nancy S.; Parcheso, Francis; Wood, Tamara M.; Lindenberg, Mary K.; Wiese, Katryn; Avanzino, Ronald J.

    2007-01-01

    Executive Summary Five sampling trips were coordinated in April, May and August 2006, and May and July 2007 to sample the water column and benthos of Upper Klamath Lake, OR (Fig. 1; Table 1), before, during and after the annual cyanophyte bloom of Aphanizomenon flos-aquae (AFA). A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients for diffusive-flux determinations. Estimates based on molecular diffusion may underestimate benthic flux because solute transport across the sediment-water interface can be enhanced by processes including bioturbation, bioirrigation and ground-water advection. Water-column and benthic samples were also collected to help interpret spatial and temporal trends in diffusive-flux estimates. Data from these samples complement geochemical analyses of bottom-sediments taken from Upper Klamath Lake (UKL) in 2005. This ongoing study provides information necessary for developing process-interdependent solute-transport models for the watershed (that is, models integrating physical, geochemical and biological processes), and supports efforts to evaluate remediation or load-allocation strategies. To augment studies funded by the U.S. Bureau of Reclamation (USBR), the Department of Interior supported an additional full deployment of pore-water profilers in July 2007, during the summer AFA bloom. Results from this recent field trip are not fully completed. Data not presented herein will be included in a subsequent publication, scheduled for March 2009.

  9. Georectification of historical aerial photos to track meander change in Wood River, Klamath County, Oregon

    NASA Astrophysics Data System (ADS)

    Nash, C.; Hughes, M. L.

    2010-12-01

    The Wood River in Oregon’s Upper Klamath Basin is a meandering channel draining the southeastern slopes of Crater Lake National Park. Its valley floor is heavily grazed and highly altered by a series of irrigation channels that have substantially affected the river’s spring-fed flow regime and morphology. Despite efforts to restore the river’s hydrology, very little information is available about the river’s geomorphology. Using high-resolution LIDAR data from 2004 and georectified aerial photos from 1940-2009, we analyzed meander changes along the Wood River in the geomorphic context of its valley floor and meander belt. Aerial photos were scanned to produce digital images with sub-meter pixels, then georectified with a second-order polynomial transformation. Nine or fewer ground-control points were used for each photo to achieve an overall root-mean-square error value of 0.6 - 0.7 m. The scarcity of buildings and changes in the road and fence networks over the study period required the partial use of “natural pattern matching” during photo rectification. Semi-permanent patterns of fan erosion on the upper valley floor and hydrogeomorphic wetland patterns in lower valley provided the primary bases for natural pattern matching, further aided by the use of transparency during photo overlaying. Six prototypes of meander change were identified: extension, compression, translation, rotation, compound heading, and cutoff. Of these types, extension of meanders was the most frequently occurring. However, the effects of extension were counteracted by numerous meander cutoffs, which nominally affected sinuosity, but actually shortened the channel by about 1 km, or about 3%. Cutoffs were most frequent in the upper reaches of the river, where valley slope is higher, the meander belt is wider, and accommodation space was adequate to promote relatively high initial sinuosity. In these reaches, some cutoffs appear to have initiated downstream transfers of bedload

  10. Evapotranspiration from marsh and open-water sites at Upper Klamath Lake, Oregon, 2008--2010

    USGS Publications Warehouse

    Stannard, David I.; Gannett, Marshall W.; Polette, Danial J.; Cameron, Jason M.; Waibel, M. Scott; Spears, J. Mark

    2013-01-01

    Water allocation in the Upper Klamath Basin has become difficult in recent years due to the increase in occurrence of drought coupled with continued high water demand. Upper Klamath Lake is a central component of water distribution, supplying water downstream to the Klamath River, supplying water for irrigation diversions, and providing habitat for various species within the lake and surrounding wetlands. Evapotranspiration (ET) is a major component of the hydrologic budget of the lake and wetlands, and yet estimates of ET have been elusive—quantified only as part of a lumped term including other substantial water-budget components. To improve understanding of ET losses from the lake and wetlands, measurements of ET were made from May 2008 through September 2010. The eddy-covariance method was used to monitor ET at two wetland sites continuously during this study period and the Bowen-ratio energy-balance method was used to monitor open-water lake evaporation at two sites during the warmer months of the 3 study years. Vegetation at one wetland site (the bulrush site) consists of a virtual monoculture of hardstem bulrush (formerly Scirpus acutus, now Schoenoplectus acutus), and at the other site (the mixed site) consists of a mix of about 70 percent bulrush, 15 percent cattail (Typha latifolia), and 15 percent wocus (Nuphar polysepalum). Measured ET at these two sites was very similar (means were ±2.5 percent) and mean wetland ET is computed as a 70 to 30 percent weighted average of the bulrush and mixed sites, respectively, based on community-type distribution estimated from satellite imagery. Biweekly means of wetland ET typically vary from maximum values of around 6 to 7 millimeters per day during midsummer, to minimum values of less than 1 mm/d during midwinter. This strong annual signal primarily reflects life-cycle changes in the wetland vegetation, and the annual variation of radiative input to the surface and resulting temperature. The perennial vegetation

  11. Geologic map database of the El Mirage Lake area, San Bernardino and Los Angeles Counties, California

    USGS Publications Warehouse

    Miller, David M.; Bedford, David R.

    2000-01-01

    This geologic map database for the El Mirage Lake area describes geologic materials for the dry lake, parts of the adjacent Shadow Mountains and Adobe Mountain, and much of the piedmont extending south from the lake upward toward the San Gabriel Mountains. This area lies within the western Mojave Desert of San Bernardino and Los Angeles Counties, southeastern California. The area is traversed by a few paved highways that service the community of El Mirage, and by numerous dirt roads that lead to outlying properties. An off-highway vehicle area established by the Bureau of Land Management encompasses the dry lake and much of the land north and east of the lake. The physiography of the area consists of the dry lake, flanking mud and sand flats and alluvial piedmonts, and a few sharp craggy mountains. This digital geologic map database, intended for use at 1:24,000-scale, describes and portrays the rock units and surficial deposits of the El Mirage Lake area. The map database was prepared to aid in a water-resource assessment of the area by providing surface geologic information with which deepergroundwater-bearing units may be understood. The area mapped covers the Shadow Mountains SE and parts of the Shadow Mountains, Adobe Mountain, and El Mirage 7.5-minute quadrangles. The map includes detailed geology of surface and bedrock deposits, which represent a significant update from previous bedrock geologic maps by Dibblee (1960) and Troxel and Gunderson (1970), and the surficial geologic map of Ponti and Burke (1980); it incorporates a fringe of the detailed bedrock mapping in the Shadow Mountains by Martin (1992). The map data were assembled as a digital database using ARC/INFO to enable wider applications than traditional paper-product geologic maps and to provide for efficient meshing with other digital data bases prepared by the U.S. Geological Survey's Southern California Areal Mapping Project.

  12. Depth of cinder deposits and water-storage capacity at Cinder Lake, Coconino County, Arizona

    USGS Publications Warehouse

    Macy, Jamie P.; Amoroso, Lee; Kennedy, Jeff; Unema, Joel

    2012-01-01

    The 2010 Schultz fire northeast of Flagstaff, Arizona, burned more than 15,000 acres on the east side of San Francisco Mountain from June 20 to July 3. As a result, several drainages in the burn area are now more susceptible to increased frequency and volume of runoff, and downstream areas are more susceptible to flooding. Resultant flooding in areas downgradient of the burn has resulted in extensive damage to private lands and residences, municipal water lines, and roads. Coconino County, which encompasses Flagstaff, has responded by deepening and expanding a system of roadside ditches to move flood water away from communities and into an area of open U.S. Forest Service lands, known as Cinder Lake, where rapid infiltration can occur. Water that has been recently channeled into the Cinder Lake area has infiltrated into the volcanic cinders and could eventually migrate to the deep regional groundwater-flow system that underlies the area. How much water can potentially be diverted into Cinder Lake is unknown, and Coconino County is interested in determining how much storage is available. The U.S. Geological Survey conducted geophysical surveys and drilled four boreholes to determine the depth of the cinder beds and their potential for water storage capacity. Results from the geophysical surveys and boreholes indicate that interbedded cinders and alluvial deposits are underlain by basalt at about 30 feet below land surface. An average total porosity for the upper 30 feet of deposits was calculated at 43 percent for an area of 300 acres surrounding the boreholes, which yields a total potential subsurface storage for Cinder Lake of about 4,000 acre-feet. Ongoing monitoring of storage change in the Cinder Lake area was initiated using a network of gravity stations.

  13. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon

    SciTech Connect

    La Tourrette, T.Z.; Burnett, D.S. ); Bacon C.R. )

    1991-02-01

    Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO{sub 2}), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give D{sub U}{sup oxide/liq} {approx} 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are modestly well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster that the zircons were dissolving. Based on the authors measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractional during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in the authors samples. This demonstrates an actual case of nonequilibrium source retention of accessory phases, which in general could be an important trace element fractionation mechanism. Their results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites.

  14. Forms and accumulation of soil P in natural and recently restored peatlands - Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Graham, S.A.; Craft, C.B.; McCormick, P.V.; Aldous, A.

    2005-01-01

    Forms, amounts, and accumulation of soil phosphorus (P) were measured in natural and recently restored marshes surrounding Upper Klamath Lake located in south-central Oregon, USA to determine rates of P accumulation in natural marshes and to assess changes in P pools caused by long-term drainage in recently restored marshes. Soil cores were collected from three natural marshes and radiometrically dated to determine recent (l37Cs-based) and long-term (210Pb-based) rates of peat accretion and P accumulation. A second set of soil cores collected from the three natural marshes and from three recently restored marshes was analyzed using a modification of the Hedley procedure to determine the forms and amounts of soil P. Total P in the recently restored marshes (222 to 311 ??g cm-3) was 2-3 times greater than in the natural marshes (103 to 117 ??g cm-3), primarily due to greater bulk density caused by soil subsidence, a consequence of long-term marsh drainage. Occluded Fe- and Al-bound Pi, calcium-bound Pi and residual P were 4 times, 22 times, and 5 times greater, respectively, in the recently restored marshes. More than 67% of the P pool in both the natural and recently restored marshes was present in recalcitrant forms (humic-acid P o and residual P) that provide long-term P storage in peat. Phosphorus accumulation in the natural marshes averaged 0.45 g m-2 yr-1 (137Cs) and 0.40 g m-2 yr-1 (210Pb), providing a benchmark for optimizing P sequestration in the recently restored marshes. Effective P sequestration in the recently restored marshes, however, will depend on re-establishing equilibrium between the P-enriched soils and the P concentration of floodwaters and a hydrologie regime similar to the natural marshes. ?? 2005, The Society of Wetland Scientists.

  15. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon

    USGS Publications Warehouse

    Tourrette, T.Z.L.; Burnett, D.S.; Bacon, C.R.

    1991-01-01

    Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO2), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give DUoxide/liq ??? 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are moderately well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster than the zircons were dissolving. Minimum U, Y, and P concentrations in zircons give maximum DUzrc/liq = 13,DYzrc/liq = 23, and DPzrc/liq = 1, but these are considerably lower than reported by other workers for U and Y. Based on our measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractionation during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in our samples. This demonstrates an actual case of non-equilibrium source retention of accessory phases, which in general could be an important trace-element fractionation mechanism. Our results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites. Rough calculations based on Zr gradients in the glass indicate that the samples could have been partially molten for 800 to 8000 years. ?? 1991.

  16. Depositional environments of the Cache, Lower Lake, and Kelseyville Formations, Lake County, California

    USGS Publications Warehouse

    Rymer, Michael J.; Roth, Barry; Bradbury, J. Platt; Forester, Richard M.

    1988-01-01

    We describe the depositional environments of the Cache, Lower Lake, and Kelseyville Formations in light of habitat preferences of recovered mollusks, ostracodes, and diatoms. Our reconstruction of paleoenvironments for these late Cenozoic deposits provides a framework for an understanding of basin evolution and deposition in the Clear Lake region. The Pliocene and Pleistocene Cache Formation was deposited primarily in stream and debris flow environments; fossils from fine-grained deposits indicate shallow, fresh-water environments with locally abundant aquatic vegetation. The fine-grained sediments (mudstone and siltstone) were probably deposited in ponds in abandoned channels or shallow basins behind natural levees. The abandoned channels and shallow basins were associated with the fluvial systems responsible for deposition of the bulk of the technically controlled Cache Formation. The Pleistocene Lower Lake Formation was deposited in a water mass large enough to contain a variety of local environments and current regimes. The recovered fossils imply a lake with water depths of 1 to 5 m. However, there is strong support from habitat preferences of the recovered fossils for inferring a wide range of water depths during deposition of the Lower Lake Formation; they indicate a progressively shallowing system and the culmination of a desiccating lacustrine system. The Pleistocene Kelseyville Formation represents primarily lacustrine deposition with only minor fluvial deposits around the margins of the basin. Local conglomerate beds and fossil tree stumps in growth position within the basin indicate occasional widespread fluvial incursions and depositional hiatuses. The Kelseyville strata represent a large water mass with a muddy and especially fluid substrate having permanent or sporadic periods of anoxia. Central-lake anoxia, whether permanent or at irregular intervals, is the simplest way to account for the low numbers of benthic organisms recovered from the

  17. Combining 14C/U-Th Series Geochronology and Stable/Clumped Isotope Geochemistry of MIS 2 Lake Tufas of Lake Chewaucan, Oregon, USA to Reconstruct Deglacial Climate in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Hudson, A. M.; Quade, J.; Ali, G.; Boyle, D. P.; Bassett, S.; Huntington, K. W.

    2015-12-01

    Shoreline deposits surrounding closed-basin lake remnants in the Great Basin of North America have been critical to defining the timing and extent of lake highstands during Marine Isotope Stage 2, recording the wettest climate conditions during the last glacial cycle. We present 14C and U-Th series ages and stable and clumped isotope results from MIS 2 microbialite tufas of pluvial Lake Chewaucan, southern Oregon. At ~42.5°N latitude, the Chewaucan basin is the one of the northernmost lake systems in the Great Basin, a critical location for investigating regional climate. Dating of modern tufa and DIC indicates no 14C reservoir effect. Low lake depth is observed for peak LGM conditions (21.0 ka, +11 m above modern), consistent with regional records and climate model results. In contrast with other Great Basin lake reconstructions for deglacial MIS 2, Lake Chewaucan was deepest during the Bølling/Ållerod (B/A; 14.5-13.0 ka, +50 m) and early Holocene (10.9-9.5 ka +15 m) warm periods, with lowstands during Heinrich Event 1 (+0-1 m) and Younger Dryas cold periods (+0 m). This supports previous evidence for wet interstadials in the Pacific Northwest (PNW) during MIS 2-3, the opposite of the central/southern Great Basin, where stadials correlate with wet conditions. δ18O values of tufas (-0.9 to -4.4‰ PDB) reflect high evaporation relative to inflowing meteoric water (-13.6‰ SMOW), and lake water (-6.7 SMOW). δ13C values (+1.7 to +4.5‰ PDB) are consistent with equilibrium with lake DIC (+1.5‰ PDB) and atmospheric CO2, supporting atmospheric 14C equilibrium. Clumped isotope temperatures for modern tufa (20±7°C) are consistent with summer lake surface temperature for modern lake remnant, Abert Lake (17.7-22.0°C), supporting previous clumped isotope results for tufas as summer temperature indicators. Clumped temperatures for the B/A highstand are 19±4°C, indicating near modern lake temperatures during deepest lake conditions. 13±4°C is indicated for the

  18. Nitrogen and phosphorus loading from drained wetlands adjacent to Upper Klamath and Agency lakes, Oregon

    USGS Publications Warehouse

    Snyder, Daniel T.; Morace, Jennifer L.

    1997-01-01

    The results of this study could be useful in helping to prioritize which drained wetlands may provide the greatest benefits with regard to reducing nutrient loads to the lake if restoration or land-use modifications are instituted. Recent acquisition and planned restoration of drained wetland areas at the Wood River and Williamson River North properties may produce significant reduction in the quantity of nutrients released by the decomposition of peat soils of these areas. If the water table rises to predrainage levels, the peats soils may become inundated most of the year, resulting in the continued long-term storage of nutrients within the peat soils by reducing aerobic decomposition. The maximum benefit, in terms of decreasing potential nutrient loss due to peat decomposition, could be the reduction of total nitrogen and total phosphorus loss to about one-half that of the 1994–95 annual loss estimated for all the drained wetlands sampled for this study.

  19. Water-quality data from Upper Klamath and Agency Lakes, Oregon, 2009-10

    USGS Publications Warehouse

    Eldridge, D. Blake; Caldwell Eldridge, Sara L.; Schenk, Liam N.; Tanner, Dwight Q.; Wood, Tamara M.

    2012-01-01

    The U.S. Geological Survey Upper Klamath Lake water-quality monitoring program collected data from multiparameter continuous water-quality monitors, weekly water-quality samples, and meteorological stations during 2009 and 2010 from May through November each year. The results of these measurements and sample analyses, as well as quality-control data for the water-quality samples, are presented in this report for 14 sites on Upper Klamath Lake and 2 sites on Agency Lake. These 2 years of data demonstrate a contrast in the seasonal bloom of the dominant cyanobacterium, Aphanizomenon flos-aquae, that can be related to differences in the measured water quality and meteorological variables. Some of the significant findings from 2009 and 2010 are listed below. * Both 2009 and 2010 were characterized by two cyanobacteria blooms, but the blooms differed in timing and intensity. The first bloom in 2009 peaked in late June and at higher chlorophyll a concentrations at most sites than the first bloom in 2010, which peaked in mid-July. A major decline in the first 2009 bloom occurred in late July and was followed by a second bloom that peaked at most sites in mid-August and persisted through September. The decline of the weaker first bloom in 2010 occurred in early August and was followed by a more substantial second bloom that peaked between late August and early September at most sites. * Dissolved oxygen minima associated with bloom declines occurred approximately 2 weeks earlier in 2009 (mid-July) than in 2010 (early August). pH maxima associated with rapid bloom growth occurred in late June and again in mid-August in 2009 and in mid-July and late August in 2010. * In both years, the maxima for total phosphorus and total nitrogen concentrations coincided with the chlorophyll a maximum. The maxima for dissolved nutrient concentrations (orthophosphate, ammonia, and nitrite plus nitrate) coincided with the declines of the first blooms. * Total particulate carbon, total

  20. Origin of phenocrysts and compositional diversity in pre-Mazama rhyodacite lavas, Crater Lake, Oregon

    USGS Publications Warehouse

    Nakada, S.; Bacon, C.R.; Gartner, A.E.

    1994-01-01

    Phenocrysts in porphyritic volcanic rocks may originate in a variety of ways in addition to nucleation and growth in the matrix in which they are found. Porphyritic rhyodacite lavas that underlie the eastern half of Mount Mazama, the High Cascade andesite/dacite volcano that contains Crater Lake caldera, contain evidence that bears on the general problem of phenocryst origin. Phenocrysts in these lavas apparently formed by crystallization near the margins of a magma chamber and were admixed into convecting magma before eruption. About 20 km3 of pre-Mazama rhyodacite magma erupted during a relatively short period between ~400 and 500 ka; exposed pre-Mazama dacites are older and less voluminous. The rhyodacites formed as many as 40 lava domes and flows that can be assigned to three eruptive groups on the basis of composition and phenocryst content. -from Authors

  1. Multiple isotopic components in Quaternary volcanic rocks of the Cascade Arc near Crater lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Gunn, S.H.; Lanphere, M.A.; Wooden, J.L.

    1994-01-01

    Quaternary lavas and pyroclastic rocks of Mount Mazama, Crater lake caldera, and the surrounding area have variable Sr, Nd, and Pb isotopic compositions. High-alumina olivine tholeiites have 87Ar/86Ar ratios of 0.70346-0.70364; basaltic andesite, 0.70349-0.70372; shoshonitic basaltic andesite, 0.70374-0.70388; and andesite, 0.70324-0.70383. Dacites of Mount Mazama have 87Sr/ 86Sr ratios of 0.70348-0.70373. Most rhyodacites converge on 0.7037. Andesitic to mafic-cumulate scoriae of the climatic eruption, and enclaves in pre-climactic rhyodacites, cluster in two groups but show nearly the entire 87Sr/86Sr range of the data set, confirming previously suggested introduction of diverse parental magmas into the growing climactic chamber. Magma evolution is described. -from Authors

  2. 3D Seismic and Magnetic characterization of the Borax Lake Hydrothermal System in the Alvord Desert, southeastern Oregon.

    NASA Astrophysics Data System (ADS)

    Hess, S.; Bradford, J.; Lyle, M.; Routh, P.; Liberty, L.; Donaldson, P.

    2004-05-01

    As part of an interdisciplinary project aiming to study the link between the physical characteristics of hydrothermal systems and biota that occupy those systems, we are conducting a detailed geophysical characterization of an active hydrothermal system. The Borax Lake Hydrothermal System (BLHS), consisting of Borax Lake and the surrounding hot springs. BLHS is located near the center of the Alvord Basin in southeastern Oregon. The Alvord Basin is a north-south trending graben in the Northern Great Basin bounded by the Steens Mountains to the west and the Trout Creek Mountains to the east. We conducted a 2D seismic survey to characterize the geologic structure of the basin, a high-resolution 3D seismic survey to characterize the geologic structure of the BLHS, and a high-resolution 3D magnetic survey to characterize any lineaments in the bedrock that might control fluid flow in the BLHS. Previous results from the 2D seismic survey show a mid-basin basement high aligned approximately with the hot springs. In this study we present the results from the high-resolution 3D seismic and magnetic survey of the BLHS. We acquired the 3D seismic data using an SKS rifle and 240 channel recording system. The seismic survey covers approximately 90,000 sq. m with a maximum inline offset aperture of 225 m, crossline aperture of 75 m, and 360 degree azimuthal coverage. The coincidental magnetic survey was collected using a Geometrics 858G cesium vapor magnetometer. We designed both surveys to span nearly 100 active hydrothermal springs, including an approximately 50 m stepover in the trend of the surface expression of the hot springs. After preliminary processing, the 3D seismic data show continuous reflections up to 300 ms (~ 480 m). The initial interpretation of features seen in the 3D data cube include: normal faults dipping to the east and west, near-surface disturbances that are consistent with the trend of the hot springs, and significant near surface velocity anomalies

  3. Environmental Assessment: Lake Yankton Fish Population Renovation Project Yankton County, South Dakota and Cedar County, Nebraska

    DTIC Science & Technology

    2014-08-01

    west of Yankton, South Dakota. The project vicinity consists of the grounds surrounding the Gavins Point Dam National Fish Hatchery and Aquarium...Yankton outlet will be measured to determine any ground water influence. A water budget will be developed to determine water input sources and allow...deer, waterfowl, turkey, squirrel , and rabbit. Bald eagles, golden eagles, osprey, owls, and other raptors pass through the Lake Yankton Area and

  4. Hydrology and water quality of lakes and streams in Orange County, Florida

    USGS Publications Warehouse

    German, Edward R.; Adamski, James C.

    2005-01-01

    Orange County, Florida, is continuing to experience a large growth in population. In 1920, the population of Orange County was less than 20,000; in 2000, the population was about 896,000. The amount of urban area around Orlando has increased considerably, especially in the northwest part of the County. The eastern one-third of the County, however, had relatively little increase in urbanization from 1977-97. The increase of population, tourism, and industry in Orange County and nearby areas changed land use; land that was once agricultural has become urban, industrial, and major recreation areas. These changes could impact surface-water resources that are important for wildlife habitat, for esthetic reasons, and potentially for public supply. Streamflow characteristics and water quality could be affected in various ways. As a result of changing land use, changes in the hydrology and water quality of Orange County's lakes and streams could occur. Median runoff in 10 selected Orange County streams ranges from about 20 inches per year (in/yr) in the Wekiva River to about 1.1 in/yr in Cypress Creek. The runoff for the Wekiva River is significantly higher than other river basins because of the relatively constant spring discharge that sustains streamflow, even during drought conditions. The low runoff for the Cypress Creek basin results from a lack of sustained inflow from ground water and a relatively large area of lakes within the drainage basin. Streamflow characteristics for 13 stations were computed on an annual basis and examined for temporal trends. Results of the trend testing indicate changes in annual mean streamflow, 1-day high streamflow, or 7-day low streamflow at 8 of the 13 stations. However, changes in 7-day low streamflow are more common than changes in annual mean or 1-day high streamflow. There is probably no single reason for the changes in 7-day low streamflows, and for most streams, it is difficult to determine definite reasons for the flow

  5. Technical review of managed underground storage of water study of the upper Catherine Creek watershed, Union County, northeastern Oregon

    USGS Publications Warehouse

    Snyder, Daniel T.

    2014-01-01

    Because of water diversions during summer, flow in Catherine Creek, a tributary to the Grande Ronde River in northeastern Oregon, is insufficient to sustain several aquatic species for which the stream is listed as critical habitat. A feasibility study for managed underground storage (MUS) in the upper Catherine Creek watershed in Union County, Oregon, was undertaken by Anderson Perry and Associates, Inc., to address the issue of low flows in summer. The results of the study were released as a report titled “Upper Catherine Creek Storage Feasibility Study for Grande Ronde Model Watershed,” which evaluated the possibility of diverting Catherine Creek streamflow during winter (when stream discharge is high), storing the water by infiltration or injection into an aquifer adjacent to the stream, and discharging the water back to the stream in summer to augment low flows. The method of MUS would be accomplished using either (1) aquifer storage and recovery (ASR) that allows for the injection of water that meets drinking-water-quality standards into an aquifer for later recovery and use, or (2) artificial recharge (AR) that involves the intentional addition of water diverted from another source to a groundwater reservoir. Concerns by resource managers that the actions taken to improve water availability for upper Catherine Creek be effective, cost-efficient, long-term, and based on sound analysis led the National Fish and Wildlife Foundation to request that the U.S. Geological Survey conduct an independent review and evaluation of the feasibility study. This report contains the results of that review. The primary objectives of the Anderson Perry and Associates study reviewed here included (1) identifying potentially fatal flaws with the concept of using AR and (or) ASR to augment the streamflow of Catherine Creek, (2) identifying potentially favorable locations for augmenting streamflow, (3) developing and evaluating alternatives for implementing AR and (or) ASR, and

  6. Physicochemical and analytical data for tributary water, lake water, and lake sediment, Lake Arrowhead, Clay and Archer Counties, Texas, 2006

    USGS Publications Warehouse

    Wilson, Jennifer T.; Musgrove, MaryLynn; Haynie, Monti M.; Van Metre, Peter C.

    2008-01-01

    Lake Arrowhead is a reservoir about 24 kilometers southeast of Wichita Falls, Texas, that provides drinking water for the city of Wichita Falls and surrounding areas. The U.S. Geological Survey, in cooperation with the City of Wichita Falls, did a study in 2006 to assess conditions contributing to elevated arsenic concentrations in Lake Arrowhead. This report describes the sampling and analytical methods, quality assurance, and physicochemical and analytical data. Physiochemical properties were measured in and water samples were collected from five tributaries to Lake Arrowhead (Little Wichita River, West Little Post Oak Creek, East Little Post Oak Creek, Deer Creek, and an unnamed tributary) immediately after storms. Lake water measuring and sampling were done approximately monthly from January through September 2006 at three deep-water sites and seasonally, in January and August 2006, at three shallow-water sites. Cores of lake bottom sediment were collected from five sites on August 30, 2006. Arsenic concentrations in tributary water samples ranged from 1.5 to 6.3 and 0.5 to 4.8 micrograms per liter for unfiltered and filtered samples, respectively. The highest arsenic concentrations were in samples collected from the West Little Post Oak Creek sampling site. Physicochemical properties in lake water varied with depth and season. Dissolved arsenite plus arsenate concentrations in lake water samples generally were between 3 and 5 micrograms per liter. Arsenite concentrations typically were below the laboratory reporting level of 0.6 microgram per liter. There were no detections of monomethylarsonate or dimethylarsinate. The concentration of arsenic in lake sediment samples ranged from 4.4 to 11.2 milligrams per kilogram, with a median of 6.4 milligrams per kilogram. The median arsenic concentration of the five top-interval sediment samples was 8.8 milligrams per kilogram, which generally is higher than the concentrations estimated to be on suspended sediment in

  7. Late Pleistocene granodiorite beneath Crater Lake caldera, Oregon, dated by ion microprobe

    USGS Publications Warehouse

    Bacon, C.R.; Persing, H.M.; Wooden, J.L.; Ireland, T.R.

    2000-01-01

    Variably melted granodiorite blocks ejected during the Holocene caldera-forming eruption of Mount Mazama were plucked from the walls of the climactic magma chamber ~15 km depth. Ion-microprobe U-Pb dating of zircons from two unmelted granodiorite blocks with SHRIMP RG (sensitive high-resolution ion microprobe-reverse geometry) gives a nominal 238U/206Pb age of 101+78-80 ka, or 174+89-115 ka when adjusted for an initial 230Th deficit. SHRIMP RG U-Th measurements on a subset of the zircons yield a 230Th/238U isochron age of 112 ?? 24 ka, considered to be the best estimate of the time of solidification of the pluton. These results suggest that the granodiorite is related to andesite and dacite of Mount Mazama and not to magmas of the climactic eruption. The unexposed granodiorite has an area of at least 28 km2. This young, shallow pluton was emplaced in virtually the same location where a similarly large magma body accumulated and powered violent explosive eruptions ~7700 yr ago, resulting in collapse of Crater Lake caldera.

  8. Deformation of the Wineglass Welded Tuff and the timing of caldera collapse at Crater Lake, Oregon

    USGS Publications Warehouse

    Kamata, H.; Suzuki-Kamata, K.; Bacon, C.R.

    1993-01-01

    Four types of deformation occur in the Wineglass Welded Tuff on the northeast caldera rim of Crater Lake: (a) vertical tension fractures; (b) ooze-outs of fiamme: (c) squeeze-outs of fiamme; and (d) horizontal pull-apart structures. The three types of plastic deformation (b-d) developed in the lower part of the Wineglass Welded Tuff where degree of welding and density are maximum. Deformation originated from concentric normal faulting and landsliding as the caldera collapsed. The degree of deformation of the Wineglass Welded Tuff increases toward the northeast part of the caldera, where plastic deformation occurred more easily because of a higher emplacement temperature probably due to proximity to the vent. The probable glass transition temperature of the Wineglass Welded Tuff suggests that its emplacement temperature was ???750??C where the tuff is densely welded. Calculation of the conductive cooling history of the Wineglass Welded Tuff and the preclimactic Cleetwood (lava) flow under assumptions of a initially isothermal sheet and uniform properties suggests that (a) caldera collapse occurred a maximum of 9 days after emplacement of the Wineglass Welded Tuff, and that (b) the period between effusion of the Cleetwood (lava) flow and onset of the climactic eruption was <100 years. If cooling is controlled more by precipitation during quiescent periods than by conduction, these intervals must be shorter than the calculated times. ?? 1993.

  9. Phosphorus and nitrogen legacy in a restoration wetland, upper Klamath lake, Oregon

    USGS Publications Warehouse

    Duff, J.H.; Carpenter, K.D.; Snyder, D.T.; Lee, Karl K.; Avanzino, R.J.; Triska, F.J.

    2009-01-01

    The effects of sediment, ground-water, and surface-water processes on the timing, quantity, and mechanisms of N and P fluxes were investigated in the Wood River Wetland 57 years after agricultural practices ceased and seasonal and permanent wetland hydrologies were restored. Nutrient concentrations in standing water largely reflected ground water in winter, the largest annual water source in the closed-basin wetland. High concentrations of total P (22 mg L -1) and total N (30 mg L-1) accumulated in summer when water temperature, air temperature, and evapotranspiration were highest. High positive benthic fluxes of soluble reactive P and ammonium (NH4-N) were measured in two sections of the study area in June and August, averaging 46 and 24 mg m-2 d-1, respectively. Nonetheless, a wetland mass balance simultaneously indicated a net loss of P and N by assimilation, denitrification (1.110.1 mg N m-2 h-1), or solute repartitioning. High nutrient concentrations pose a risk for water quality management. Shifts in the timing and magnitude of water inflows and outflows may improve biogeochemical function and water quality by optimizing seed germination and aquatic plant distribution, which would be especially important if the Wood River Wetland was reconnected with hyper-eutrophic Agency Lake. ?? 2009, The Society of Wetland Scientists.

  10. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.

    2016-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  11. Pennsylvanian fusulinids from the Beaverhead Mountains, Morrison Lake area, Beaverhead County, Montana

    SciTech Connect

    Verville, G.J. ); Sanderson, G.A.; Baesemann, J.F. ); Hampton, G.L. III )

    1990-04-01

    A fusulinid fauna consisting of Triticites spp., Kansanella aff. K. tenuis (Merchant Keroher), Eowaeringella sp., Fusulina sp. (Beedeina of some authors), Wedekindellina henbesti (Skinner), Plectofusulina spp., Pseudostaffella sp., Fusulinella aff. F. acuminata Thompson, and Eoschubertella sp. has been identified from Pennsylvanian rocks exposed on the Continental Divide, Morrison Lake area, Beaverhead County, Montana. These fusulinids, the first to be published from Pennsylvanian rocks in southwestern Montana, indicate that strata of late Atokan, early Desmoinesian, Missourian, and Virgilian age are present. These rocks, previously assigned to the Quadrant Formation in the Morrison Lake area, are subdivided and correlated with the Bloom, Gallagher Peak Sandstone and Juniper Gulch members of the Snaky Canyon Formation (Skipp et al., 1979a).

  12. Quantification of anthropogenic threats to lakes in a lowland county of central Sweden.

    PubMed

    Brunberg, A K; Blomqvist, P

    2001-05-01

    An evaluation of the negative effects caused by anthropogenic influence on lake ecosystems was performed, using data from 143 catchments in Uppsala County, Sweden. The study included i) technical encroachments; i.e. construction of dams, dikes, etc. as well as effects of drainage of land; ii) pollution, i.e. eutrophication, acidification, and contamination by toxic substances; iii) introduction of nonnative species; and iv) exploitation of species populations. Severe damage was caused mostly by drainage of land followed by pollution by toxic substances and, to a smaller extent, introduction of nonnative species and eutrophication. Most lakes were subject to several types of disturbances, interacting in a complex pattern, which made it difficult to link the visible effects to the true causes of the disturbance. Future lake management should include analyses of all disturbances to the lake catchments, taking into account the historical perspective, in order to balance the threats/damages, in an analysis of the possibilities for maintaining biodiversity and sustainability in the ecosystems.

  13. Land use inventory of Salt Lake County, Utah from color infrared aerial photography 1982

    NASA Technical Reports Server (NTRS)

    Price, K. P.; Willie, R. D.; Wheeler, D. J.; Ridd, M. K.

    1983-01-01

    The preparation of land use maps of Salt Lake County, Utah from high altitude color infrared photography is described. The primary purpose of the maps is to aid in the assessment of the effects of urban development on the agricultural land base and water resources. The first stage of map production was to determine the categories of land use/land cover and the mapping unit detail. The highest level of interpretive detail was given to the land use categories found in the agricultural or urbanized portions of the county; these areas are of primary interest with regard to the consumptive use of water from surface streams and wells. A slightly lower level of mapping detail was given to wetland environments; areas to which water is not purposely diverted by man but which have a high consumptive rate of water use. Photos were interpreted on the basis of color, tone, texture, and pattern, together with features of the topographic, hydrologic, and ecological context.

  14. Ground-water-supply possibilities in parts of Bear Lake and Caribou Counties, Idaho

    USGS Publications Warehouse

    Scott, R.C.

    1955-01-01

    Ground-water possibilities in parts of Bear Lake and Caribou counties, Idaho, were studied briefly, with special reference to the vicinities of Dingle and Montpelier and to the availability of ground water for expected industrial developments.  The work was part of the ground-water investigations by the Geological Survey in cooperation with the state of Idaho.  Most of the factual information herein was obtained from well drillers, farmers, and municipal water engineers.  Geological examination was made of apparently favorable areas and water samples were collected from wells at Dingle Station and south of Wardboro.

  15. Geologic investigations in the Lake Valley area, Sierra County, New Mexico

    USGS Publications Warehouse

    O'Neill, J. M.

    2002-01-01

    At the request of the Bureau of Land Management, the U.S. Geological Survey evaluated the area of the historic Lake Valley mining district and townsite, Sierra County, New Mexico, for its potential for undiscovered mineral resources. The four chapters of this report describe the geology of the area, present the results of geophysical investigations carried out to aid in interpreting subsurface geology, describe the mining history and character of the region's ore deposits, and present geochemical data on potential for contamination from abandoned mine dumps in the mining district.

  16. Phase IV Archaeological Investigations at El Dorado Lake, Butler County, Kansas, Summer 1980,

    DTIC Science & Technology

    1980-01-01

    of flasks; three are insulator fragments; two are Coca Cola bottle fragments, and one light amethyst specimen .* has a partial label: -LIN- (Liniment... effect of construction work and flooding on local prehis- toric and historic cultural resources at El Dorado Lake, Butler County, Kansas, a field party...14BU9, 14BU19, 14BU56, and 14BU31,sand at 14BU27 and 14130, and pri- marily bone at 14BU55. The presence of zoned and dentate stamped ceramics from 14BU9

  17. Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Lanphere, Marvin A.

    2006-01-01

    Geologic mapping, K-Ar, and 40Ar/39Ar age determinations, supplemented by paleomagnetic measurements and geochemical data, are used to quantify the Quaternary volcanic history of the Crater Lake region in order to define processes and conditions that led to voluminous explosive eruptions. The Cascade arc volcano known as Mount Mazama collapsed during its climactic eruption of ∼50 km3 of mainly rhyodacitic magma ∼7700 yr ago to form Crater Lake caldera. The Mazama edifice was constructed on a Pleistocene silicic lava field, amidst monogenetic and shield volcanoes ranging from basalt to andesite similar to parental magmas for Mount Mazama. Between 420 ka and 35 ka, Mazama produced medium-K andesite and dacite in 2:1 proportion. The edifice was built in many episodes; some of the more voluminous occurred approximately coeval with volcanic pulses in the surrounding region, and some were possibly related to deglaciation following marine oxygen isotope stages (MIS) 12, 10, 8, 6, 5.2, and 2. Magmas as evolved as dacite erupted many times, commonly associated with or following voluminous andesite effusion. Establishment of the climactic magma chamber was under way when the first preclimactic rhyodacites vented ca. 27 ka. The silicic melt volume then grew incrementally at an average rate of 2.5 km3 k.y.−1 for nearly 20 k.y. The climactic eruption exhausted the rhyodacitic magma and brought up crystal-rich andesitic magma, mafic cumulate mush, and wall-rock granodiorite. Postcaldera volcanism produced 4 km3 of andesite during the first 200–500 yr after collapse, followed at ca. 4800 yr B.P. by 0.07 km3 of rhyodacite. The average eruption rate for all Mazama products was ∼0.4 km3 k.y.−1, but major edifice construction episodes had rates of ∼0.8 km3 k.y.−1. The long-term eruption rate for regional monogenetic and shield volcanoes was d∼0.07 km3 k.y.−1, but only ∼0.02 km3 k.y.−1 when the two major shields are excluded. Plutonic xenoliths and evidence for

  18. Water-quality conditions in Upper Klamath Lake, Oregon, 2002-04

    USGS Publications Warehouse

    Wood, Tamara M.; Hoilman, Gene R.; Lindenberg, Mary K.

    2006-01-01

    Eleven (2002) to 14 (2003 and 2004) continuous water-quality monitors that measured pH, dissolved oxygen, temperature, and specific conductance, were placed in Upper Klamath Lake to support a telemetry tracking study of endangered adult shortnose and Lost River suckers. Samples for the analysis of chlorophyll a and nutrients were collected at a subset of the water-quality monitor sites in each year. The seasonal pattern in the occurrence of supersaturated dissolved oxygen concentrations and high pH associated with photosynthetic activity, as well as the undersaturated dissolved oxygen concentrations associated with oxygen demand through respiration and decay in excess of photosynthetic production, were well described by the dynamics of the massive blooms of Aphanizomenon flos aquae (AFA) that occur each year. Data from the continuous monitors provided a means to quantify the occurrence, duration, and spatial extent of water-quality conditions potentially harmful to fish (dissolved- oxygen concentration less than 4 milligrams per liter, pH greater than 9.7, and temperature greater than 28 degrees Celsius) in the northern part of the lake, where the preferred adult sucker habitat is found. There were few observations of temperature greater than 28 degrees Celsius, suggesting that temperature is not a significant source of chronic stress to fish, although its role in the spread of disease is harder to define. Observations of pH greater than 9.7 were common during times when the AFA bloom was growing rapidly, so pH may be a source of chronic stress to fish. Dissolved oxygen concentrations less than 4 milligrams per liter were common in all 3 years at the deeper sites, in the lower part of the water column and for short periods during the day. Less common were instances of widespread low dissolved oxygen, throughout the water column and persisting through the entire day, but this was the character of a severe low dissolved oxygen event (LDOE) that culminated in the

  19. Statistical analysis of the water-quality monitoring program, Upper Klamath Lake, Oregon, and optimization of the program for 2013 and beyond

    USGS Publications Warehouse

    Eldridge, Sara L. Caldwell; Wherry, Susan A.; Wood, Tamara M.

    2014-01-01

    Upper Klamath Lake in south-central Oregon has become increasingly eutrophic over the past century and now experiences seasonal cyanobacteria-dominated and potentially toxic phytoplankton blooms. Growth and decline of these blooms create poor water-quality conditions that can be detrimental to fish, including two resident endangered sucker species. Upper Klamath Lake is the primary water supply to agricultural areas within the upper Klamath Basin. Water from the lake is also used to generate power and to enhance and sustain downstream flows in the Klamath River. Water quality in Upper Klamath Lake has been monitored by the Klamath Tribes since the early 1990s and by the U.S. Geological Survey (USGS) since 2002. Management agencies and other stakeholders have determined that a re-evaluation of the goals for water-quality monitoring is warranted to assess whether current data-collection activities will continue to adequately provide data for researchers to address questions of interest and to facilitate future natural resource management decisions. The purpose of this study was to (1) compile an updated list of the goals and objectives for long-term water-quality monitoring in Upper Klamath Lake with input from upper Klamath Basin stakeholders, (2) assess the current water-quality monitoring programs in Upper Klamath Lake to determine whether existing data-collection strategies can fulfill the updated goals and objectives for monitoring, and (3) identify potential modifications to future monitoring plans in accordance with the updated monitoring objectives and improve stakeholder cooperation and data-collection efficiency. Data collected by the Klamath Tribes and the USGS were evaluated to determine whether consistent long-term trends in water-quality variables can be described by the dataset and whether the number and distribution of currently monitored sites captures the full range of environmental conditions and the multi-scale variability of water

  20. Inconsistent Climate Inferences between Pollen and other Paleontological, Geochemical, and Geophysical Proxies in Late Pleistocene Lacustrine Sediments from Summer Lake, Oregon, Western Great Basin

    NASA Astrophysics Data System (ADS)

    Heaton, E.; Thompson, G.; Negrini, R. M.; Wigand, P. E.

    2015-12-01

    This study has established a high resolution paleoclimate record from western Great Basin pluvial Summer Lake, Oregon during the late Pleistocene Mono Lake Excursion (~34 ka), Dansgaard-Oeschger (D-O) interstadials 7 and 8, and the end of Heinrich Even 4 (~38 ka). Proxies of grain-size, carbon/nitrogen (C/N) ratio, ostracode analysis and palynology from a depocenter core show new results regarding high amplitude, high frequency changes in lake level, precipitation and temperature which correspond directly with colder/warmer and respectively drier/wetter climates as documented with Northern Atlantic Greenland ice core data. The granulometry, geochemical, and ostracode results consistently demonstrate the correspondence of low lake conditions and colder water temperatures during D-O stadials and warmer/wetter climate during interstadials. These results are contradicted by the pollen results. Existence of cold temperature spores Botrychium and Selaginella coincide with increases in Artemisia, Atriplex, Sarcobatus, Cyperaceae and decreases in Pinus, also suggesting periods of colder/drier climate and shallower lake levels but the timing does not match that of those conditions inferred by the other methods. Granulometry, geochemical, and ostracode proxies denote cold periods and low lake levels roughly between 37.5-35.6 ka and 34.6-33.8 ka. Pollen analysis suggests near-opposite time intervals with cold periods roughly 38-37.5 ka, 35.6-35 ka. This pollen inconsistency suggests the possibility of (1) a millennial-scale lag response of vegetation to climate change, (2) runoff from stadial precipitation causing influx in pollen abundances and variety found in the depocenter core, or (3) turbulent mixing from shallow lake level causing resuspension and redeposition of pollen (Bradley 1999).

  1. Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Lowenstern, J. B.

    2005-01-01

    Rhyodacite tephra and three lavas erupted ???27 ka, interpreted to be early leaks from the climactic magma chamber of Mount Mazama, contain ubiquitous resorbed crystals (antecrysts) that were recycled from young granodiorite and related plutonic rocks of the same magmatic system. The shallow composite pluton is represented by blocks ejected in the 7.7-ka climactic eruption that formed Crater Lake caldera. Plagioclase crystals in both rhyodacite and granodiorites commonly have cores with crystallographically oriented Fe-oxide needles exsolved at subsolidus conditions. At least 80% of plagioclase crystals in the rhyodacite are antecrysts derived from plutonic rocks. Other crystals in the rhyodacite, notably zircon, also were recycled. SIMS 238U- 230Th dating indicates that zircons in 4 granodiorite blocks crystallized at various times between ???20 ka and ???300 ka with concentrations of analyses near 50-70, ???110, and ???200 ka that correspond to periods of dacitic volcanism dated by K- Ar. U-Th ages of zircon from a rhyodacite sample yield similar results. No analyzed zircons from the granodiorite or rhyodacite are pre-Quaternary. Zircon minimum ages in blocks from different locations around the caldera reflect ages of nearby volcanic vents and may map the distribution of intrusions within a composite pluton. Survival of zircon in zircon-undersaturated hydrous magma and of Fe-oxide needles in plagioclase suggests that little time elapsed from entrainment of antecrysts to the ???27-ka eruption of the rhyodacite. The ???27-ka rhyodacite is an example of young silicic magma that preserved unstable antecrysts from a known source early during growth of a large high-level magma chamber. In contrast, the voluminous 7.7-ka climactic rhyodacite pumice is virtually lacking in zircon, indicating dissolution of any granodioritic debris in the intervening period. Mineralogical evidence of assimilation may be destroyed in hot, vigorously growing silicic magma bodies such as

  2. Residential and service-population exposure to multiple natural hazards in the Mount Hood region of Clackamas County, Oregon

    USGS Publications Warehouse

    Mathie, Amy M.; Wood, Nathan

    2013-01-01

    The objective of this research is to document residential and service-population exposure to natural hazards in the rural communities of Clackamas County, Oregon, near Mount Hood. The Mount Hood region of Clackamas County has a long history of natural events that have impacted its small, tourism-based communities. To support preparedness and emergency-management planning in the region, a geospatial analysis of population exposure was used to determine the number and type of residents and service populations in flood-, wildfire-, and volcano-related hazard zones. Service populations are a mix of residents and tourists temporarily benefitting from local services, such as retail, education, or recreation. In this study, service population includes day-use visitors at recreational sites, overnight visitors at hotels and resorts, children at schools, and community-center visitors. Although the heavily-forested, rural landscape suggests few people are in the area, there are seasonal peaks of thousands of visitors to the region. “Intelligent” dasymetric mapping efforts using 30-meter resolution land-cover imagery and U.S. Census Bureau data proved ineffective at adequately capturing either the spatial distribution or magnitude of population at risk. Consequently, an address-point-based hybrid dasymetric methodology of assigning population to the physical location of buildings mapped with a global positioning system was employed. The resulting maps of the population (1) provide more precise spatial distributions for hazard-vulnerability assessments, (2) depict appropriate clustering due to higher density structures, such as apartment complexes and multi-unit commercial buildings, and (3) provide new information on the spatial distribution and temporal variation of people utilizing services within the study area. Estimates of population exposure to flooding, wildfire, and volcanic hazards were determined by using overlay analysis in a geographic information system

  3. Pygmy rabbit surveys on state lands in Oregon

    USGS Publications Warehouse

    Hagar, Joan; Lienkaemper, George

    2007-01-01

    The pygmy rabbit (Brachylagus idahoensis) is classified by the federal government as a species of concern (i.e., under review by the U.S. Fish and Wildlife Service for consideration as a candidate for listing as threatened or endangered under the Endangered Species Act) because of its specialized habitat requirements and evidence of declining populations. The Oregon Department of Fish and Wildlife (ODFW) lists pygmy rabbits as “sensitive-vulnerable,” meaning that protective measures are needed if sustainable populations are to be maintained over time (Oregon Natural Heritage Program, 2001). The Oregon Natural Heritage Program considers this species to be threatened with extirpation from Oregon. Pygmy rabbits also are a species of concern in all the other states where they occur (NatureServe, 2004). The Washington population, known as the Columbia Basin pygmy rabbit, was listed as endangered by the federal government in 2003. Historically, pygmy rabbits have been collected from Deschutes, Klamath, Crook, Lake, Grant, Harney, Baker, and Malheur Counties in Oregon. However, the geographic range of pygmy rabbit in Oregon may have decreased in historic times (Verts and Carraway, 1998), and boundaries of the current distribution are not known. Not all potentially suitable sites appear to be occupied, and populations are susceptible to rapid declines and local extirpation (Weiss and Verts, 1984). In order to protect and manage remaining populations on State of Oregon lands, Oregon Department of Fish and Wildlife needs to identify areas currently occupied by pygmy rabbits, as well as suitable habitats. The main objective of this survey was document to presence or absence of pygmy rabbits on state lands in Malheur, Harney, Lake, and Deschutes counties. Knowledge of the location and extent of pygmy rabbit populations can provide a foundation for the conservation and management of this species in Oregon. The pygmy rabbit is just one of a suite of species of concern

  4. Pygmy Rabbit Surveys on State Lands in Oregon

    USGS Publications Warehouse

    Hagar, Joan; Lienkaemper, George

    2007-01-01

    Introduction The pygmy rabbit (Brachylagus idahoensis) is classified by the federal government as a species of concern (i.e., under review by the U.S. Fish and Wildlife Service for consideration as a candidate for listing as threatened or endangered under the Endangered Species Act) because of its specialized habitat requirements and evidence of declining populations. The Oregon Department of Fish and Wildlife (ODFW) lists pygmy rabbits as 'sensitive-vulnerable,' meaning that protective measures are needed if sustainable populations are to be maintained over time (Oregon Natural Heritage Program, 2001). The Oregon Natural Heritage Program considers this species to be threatened with extirpation from Oregon. Pygmy rabbits also are a species of concern in all the other states where they occur (NatureServe, 2004). The Washington population, known as the Columbia Basin pygmy rabbit, was listed as endangered by the federal government in 2003. Historically, pygmy rabbits have been collected from Deschutes, Klamath, Crook, Lake, Grant, Harney, Baker, and Malheur Counties in Oregon. However, the geographic range of pygmy rabbit in Oregon may have decreased in historic times (Verts and Carraway, 1998), and boundaries of the current distribution are not known. Not all potentially suitable sites appear to be occupied, and populations are susceptible to rapid declines and local extirpation (Weiss and Verts, 1984). In order to protect and manage remaining populations on State of Oregon lands, Oregon Department of Fish and Wildlife needs to identify areas currently occupied by pygmy rabbits, as well as suitable habitats. The main objective of this survey was document to presence or absence of pygmy rabbits on state lands in Malheur, Harney, Lake, and Deschutes counties. Knowledge of the location and extent of pygmy rabbit populations can provide a foundation for the conservation and management of this species in Oregon. The pygmy rabbit is just one of a suite of species of

  5. Lithic breccia and ignimbrite erupted during the collapse of Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Druitt, T.H.; Bacon, C.R.

    1986-01-01

    The climactic eruption of Mount Mazama (6845 y.B.P.) vented a total of ???50 km3 of compositionally zoned rhyodacitic to basaltic magma from: (a) a single vent as a Plinian pumice fall deposit and the overlying Wineglass Welded Tuff, and (b) ring vents as ignimbrite and coignimbrite lithic breccia accompanying the collapse of Crater Lake caldera. New field and grain-size data for the ring-vent products are presented in this report. The coarse-grained, poorly bedded, clast-supported lithic breccia extends as far as 18 km from the caldera center. Like the associated ignimbrite, the breccia is compositionally zoned both radially and vertically, and silicic, mixed, and mafic types can be recognized, based on the proportion of rhyodacitic pumice. Matrix fractions in silicic breccias are depleted of fines and are lithic- and crystal-enriched relative to silicic ignimbrite due to vigorous gas sorting during emplacement. Ignimbrite occurs as a proximal veneer deposit overlying the breccia, a medial (??? 8 to ??? 25 km from the caldera center), compositionally zoned valley fill as much as > 110 m thick, and an unzoned distal ({slanted equal to or greater-than} 20 km) facies which extends as far as 55 km from the caldera. Breccia within ??? 9 km of the caldera center is interpreted as a coignimbrite lag breccia formed within the deflation zone of the collapsing ring-vent eruption columns. Expanded pyroclastic flows of the deflation zone were probably vertically graded in both size and concentration of blocks, as recently postulated for some turbidity currents. An inflection in the rate of falloff of lithic-clast size within the lithic breccia at ??? 9 km may mark the outer edge of the deflation zone or may be an artifact of incomplete exposure. The onset of ring-vent activity at Mt. Mazama was accompanied by a marked increase in eruptive discharge. Pyroclastic flows were emplaced as a semicontinuous stream, as few ignimbrite flow-unit boundaries are evident. As eruption from

  6. Red Lake and Clearwater Rivers, Red Lake County, Minnesota. Reconnaissance Report for Red Lake and Clearwater Rivers

    DTIC Science & Technology

    1991-08-01

    reconnaissance report reviews the problems and opportunities associated with existing Corps of Engineers water projects and evaluates the potential for...is hereby requested to review the reports on Red Lake River, Minnesota, including Clearwater River, Minnesota, contained in House Document Numbered...Minnesota Department of Natural Resources, Division of Fish and Wildlife, June 1983. Red River of the North Basin, Preliminary Basinwide Review Study

  7. Water volume and sediment accumulation in Lake Linganore, Frederick County, Maryland, 2009

    USGS Publications Warehouse

    Sekellick, Andrew J.; Banks, S.L.

    2010-01-01

    To assist in understanding sediment and phosphorus loadings and the management of water resources, a bathymetric survey was conducted at Lake Linganore in Frederick County, Maryland in June 2009 by the U.S. Geological Survey, in cooperation with the City of Frederick and Frederick County, Maryland. Position data and water-depth data were collected using a survey grade echo sounder and a differentially corrected global positioning system. Data were compiled and edited using geographic information system software. A three-dimensional triangulated irregular network model of the lake bottom was created to calculate the volume of stored water in the reservoir. Large-scale topographic maps of the valley prior to inundation in 1972 were provided by the City of Frederick and digitized. The two surfaces were compared and a sediment volume was calculated. Cartographic representations of both water depth and sediment accumulation were produced along with an area/capacity table. An accuracy assessment was completed on the resulting bathymetric model. Vertical accuracy at the 95-percent confidence level for the collected data, the bathymetric surface model, and the bathymetric contour map was calculated to be 0.95 feet, 1.53 feet, and 3.63 feet, respectively. The water storage volume of Lake Linganore was calculated to be 1,860 acre-feet at full pool elevation. Water volume in the reservoir has decreased by 350 acre-feet (about 16 percent) in the 37 years since the dam was constructed. The total calculated volume of sediment deposited in the lake since 1972 is 313 acre-feet. This represents an average rate of sediment accumulation of 8.5 acre-feet per year since Linganore Creek was impounded. A sectional analysis of sediment distribution indicates that the most upstream third of Lake Linganore contains the largest volume of sediment whereas the section closest to the dam contains the largest amount of water. In comparison to other Maryland Piedmont reservoirs, Lake Linganore

  8. Water quality of the Fox River and four tributaries in Green Lake County, Wisconsin, 2001-2002

    USGS Publications Warehouse

    Graczyk, David J.; Garn, Herbert S.

    2003-01-01

    The purpose of this report is to summarize the water-quality data collected on the Fox River and its tributaries in Green Lake County, Wisconsin, from November 2001 through August 2002. The goals of the project were to (1) determine the current water quality of the Fox River and selected main tributaries in Green Lake County, (2) assess the spacial variation of the water-quality conditions of the main Fox River reach, and (3) build on the quantitative data base so that future monitoring can help detect and evaluate improving or declining water-quality conditions objectively.

  9. Geology and hydrology between Lake McMillan and Carlsbad Springs, Eddy County, New Mexico

    USGS Publications Warehouse

    Cox, Edward Riley

    1967-01-01

    The hydrology of the Pecos River valley between Lake McMillan and Carlsbad Springs, Eddy County, N. Mex., is influenced by facies changes in rocks of Permian age. Water stored for irrigation leaks from Lake McMillan into evaporite rocks, principally gypsum, of the Seven Rivers Formation and from Lake Avalon into carbonate rocks of the Tansill Formation. This leakage returns to the Pecos River at Major Johnson Springs and Carlsbad Springs. The river has perennial flow between Major Johnson Springs and Lake Avalon, but it loses water into evaporite rocks of the Yates Formation in this reach. Ground-water movement is generally toward the Pecos River in aquifers in the Pecos River valley except in the Rustler Formation east of the river where it moves southeastward toward playas east of Lake Avalon. The chloride content of ground and surface waters indicates that surface water moves from some reaches of the Pecos River and from surface-storage reservoirs to aquifers and also indicates the degree of mixing of ground and surface waters. About 45,000 acre-feet of ground water is stored in highly permeable rocks in a 3-mile wide part of the Seven Rivers Formation between Lake McMillan and Major Johnson Springs. This water in storage comes from leakage from Lake McMillan and from alluvium north of the springs. The flow of Major Johnson Springs is derived from this aquifer. That part of the flow derived from the alluvium north of the springs averaged 13 cfs (cubic feet per second) from 1953 through 1959 ; about 8 cfs of this flow had not been previously measured at gaging stations on the Pecos River and its tributaries. The most favorable plans for increasing terminal storage of the Carlsbad Irrigation District are to construct a dam at the Brantley site (at the downstream end of Major Johnson Springs), or to use underground storage in the permeable Seven Rivers Formation between Lake McMillan and Major Johnson brings in conjunction with surface storage. To avoid excessive

  10. Preliminary report on ground water in the Bonanza Lake area, Power and Blaine counties, Idaho

    USGS Publications Warehouse

    Meisler, Harold

    1958-01-01

    The investigation in the Bonanza Lake area of northwestern Power and southeastern Blaine Counties was made to determine the direction of ground-water movement and to ascertain the relation of the regional ground-water body to the Snake River. The surface of the area is nearly flat to gently rolling, and slopes to the west. Lake Channel, an abandoned channel of the Snake River, and a few volcanic cones modify the gentle relief. The climate is semiarid, the annual precipitation ranging from 10 to 15 inches. Most of the area is uncultivated and covered with sagebrush, the predominate vegetation. A significant amount of the area is dry farmed; about 500 to 650 acres is irrigated with ground water pumped from wells or from ponds in Lake Channel. The Bonanza area and vicinity are underlin by windblown deposits of Recent age (not shown on the geologic map); alluvium with admixed windblown material and black basalt, both also of Recent age; undifferentiated Snake River basalt, of Pliocene to Recent age; the American Falls lake beds and Cedar Butte basalt, or Pleistocene age; of the Raft Lake beds and Massacre volcanic and associated rocks, of Pliocene(?) age. The alluvium contains ground water at shallow depth, but because of its limited areal extent it is not an important aquifer, The Snake River basalt is the most important aquifer in the area and yields water to irrigation, domestic, and stock wells. Several springs discharge from the basalt into Lake Walcott. The Cedar Butte basalt is a major aquifer supplying water to a number of stock and domestic wells and to Bonanza Lake. Ground water moves southward and southwestward through the area from the Aberseen-Springfield tract on the northeast and possibly from the downstream end of American Falls Reservoir. Part of the ground water is discharged to the Snake River and Lake Walcott and part moves westward out of the area of the main ground-water body. The amount of ground water can not be determined from the data bow

  11. Mercury sedimentation in lakes in western Whatcom County, Washington, USA and its relation to local industrial and municipal atmospheric sources

    USGS Publications Warehouse

    Paulson, A.J.; Norton, D.

    2008-01-01

    Concentrations of mercury (Hg) were measured in six dated cores from four lakes in western Whatcom County, Washington, USA, that were at various bearings from a chlor-alkali plant, two municipal waste incinerators and a municipal sewage sludge incinerator. The importance of atmospheric emissions of Hg from these local municipal and industrial sources was evaluating by comparing the temporal trends in sedimentation of the lake cores with the emission history of each Hg species and by examining the geographical distribution of Hg sedimentation in relation to the region's primary wind pattern. Local municipal and industrial sources of atmospheric Hg were not responsible for the majority of the Hg in the upper layer of sediments of Whatcom County lakes because of (1) the significant enrichment of Hg in lake sediments prior to emissions of local industrial and municipal sources in 1964, (2) smaller increases in Hg concentrations occurred after 1964, (3) the similarity of maximum enrichments found in Whatcom County lakes to those in rural lakes around the world, (4) the inconsistency of the temporal trends in Hg sedimentation with the local emission history, and (5) the inconsistency of the geographic trends in Hg sedimentation with estimated deposition. Maximum enrichment ratios of Hg in lake sediments between 2 and 3 that are similar to rural areas in Alaska, Minnesota, and New England suggest that global sources of Hg were primarily responsible for increases of Hg in Whatcom County lakes beginning about 1900. ?? 2007 GovernmentEmployee: U.S. Government, Department of Interior, U.S. Geological Survey.

  12. Simulation and validation of larval sucker dispersal and retention through the restored Williamson River Delta and Upper Klamath Lake system, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.

    2014-01-01

    A hydrodynamic model with particle tracking was used to create individual-based simulations to describe larval fish dispersal through the restored Williamson River Delta and into Upper Klamath Lake, Oregon. The model was verified by converting particle ages to larval lengths and comparing these lengths to lengths of larvae in net catches. Correlations of simulated lengths with field data were moderate and suggested a species-specific difference in model performance. Particle trajectories through the delta were affected by wind speed and direction, lake elevation, and shoreline configuration. Once particles entered the lake, transport was a function of current speed and whether behavior enhanced transport (swimming aligned with currents) or countered transport through greater dispersal (faster random swimming). We tested sensitivity to swim speed (higher speeds led to greater dispersal and more retention), shoreline configuration (restoration increased retention relative to pre-restoration conditions), and lake elevation (retention was maximized at an intermediate elevation). The simulations also highlight additional biological questions, such as the extent to which spatially heterogeneous mortality or fish behavior and environmental cues could interact with wind-driven currents and contribute to patterns of dispersal.

  13. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Druitt, T.H.

    1988-01-01

    The climactic eruption of Mount Mazama has long been recognized as a classic example of rapid eruption of a substantial fraction of a zoned magma body. Increased knowledge of eruptive history and new chemical analyses of ???350 wholerock and glass samples of the climactic ejecta, preclimactic rhyodacite flows and their inclusions, postcaldera lavas, and lavas of nearby monogenetic vents are used here to infer processes of chemical evolution of this late Pleistocene - Holocene magmatic system. The 6845??50 BP climactic eruption vented ???50 km3 of magma to form: (1) rhyodacite fall deposit; (2) welded rhyodacite ignimbrite; and (3) lithic breccia and zoned ignimbrite, these during collapse of Crater Lake caldera. Climactic ejecta were dominantly homogeneous rhyodacite (70.4??0.3% SiO2), followed by subordinate andesite and cumulate scoriae (48-61% SiO2). The gap in wholerock composition reflects mainly a step in crystal content because glass compositions are virtually continuous. Two types of scoriae are distinguished by different LREE, Rb, Th, and Zr, but principally by a twofold contrast in Sr content: High-Sr (HSr) and low-Sr (LSr) scoriae. HSr scoriae were erupted first. Trace element abundances indicate that HSr and LSr scoriae had different calcalkaline andesite parents; basalt was parental to some mafic cumulate scoriae. Parental magma compositions reconstructed from scoria wholerock and glass data are similar to those of inclusions in preclimactic rhyodacites and of aphyric lavas of nearby monogenetic vents. Preclimactic rhyodacite flows and their magmatic inclusions give insight into evolution of the climactic chamber. Evolved rhyodacite flows containing LSr andesite inclusions were emplaced between ???30000 and ???25000 BP. At 7015??45 BP, the Llao Rock vent produced a zoned rhyodacite pumice fall, then rhyodacite lava with HSr andesite inclusions. The Cleetwood rhyodacite flow, emplaced immediately before the climactic eruption and compositionally

  14. Timber resources of northwest Oregon.

    Treesearch

    Mary A. Mei

    1979-01-01

    This report presents statistics from a 1976 timber resource inventory of 10 counties in northwest Oregon: Clackamas, Clatsop, Columbia, Hood River, Marion, Multnomah, Polk, Tillamook, Washington, and Yamhill. Tables presented are of forest area, timber volume, growth, mortality, and harvest.

  15. Ground-water resources of Honey Lake valley, Lassen County, California, and Washoe County, Nevada

    USGS Publications Warehouse

    Handman, E.H.; Londquist, C.J.; Maurer, D.K.

    1990-01-01

    Honey Lake Valley is a 2,200 sq-mi, topographically closed basin about 35 miles northwest of Reno, Nevada. Unconsolidated basin-fill deposits on the valley floor and fractured volcanic rocks in northern and eastern uplands are the principal aquifers. In the study area, about 130,000 acre- ft of water recharges the aquifer system annually, about 40% by direct infiltration of precipitation and about 60% by infiltration of streamflow and irrigation water. Balancing this is an equal amount of groundwater discharge, of which about 65% evaporates from the water table or is transpired by phreatophytes, about 30 % is withdrawn from wells, and about 5% leaves the basin as subsurface outflow to the east. Results of a groundwater flow model of the eastern part of the basin, where withdrawals for public supply have been proposed, indicate that if 15,000 acre-ft of water were withdrawn annually, a new equilibrium would eventually be established by a reduction of about 60% in both evapotranspiration and subsurface outflow to the east. Hydrologic effects would be minimal at the western boundary of the flow-model area. Within the modeled area, the increased withdrawals cause an increase in the simulated net flow of groundwater eastward across the California-Nevada State line from about 670 acre-ft/yr to about 2,300 acre-ft/yr. (USGS)

  16. Recreational fishing in surface mine lakes - a case study in St. Clair County, Illinois

    SciTech Connect

    Mannz, R.H.

    1985-12-09

    Recent mining legislation mandates the reclamation of surface-mined areas to the pre-mining contour, eliminating the potential of many new lakes. However, many pre-law mine lakes have considerable recreational value benefiting the surrounding regions. During 1983, 5296 anglers participated in Peabody Coal Company's Coal Company's recreational fishing program in St. Clair County, Illinois. A random sample of participants were mailed a questionnaire designed to identify user/area characteristics economic implications, and sport fishing resources of the program lakes. Sample data indicated 62,760 angling days spent on 600 acres of program waters during 1983. The single most sought after fish was the large mouth bass. Expenditures by 1983 program users were estimated at $753,120 or $1255 per acre of surface water. Opportunity cost calculations indicated that recreational fishing was an equal or better trade-off to the regional economy when compared to income that could have been produced from rowcrop agriculture. Reclamation techniques designed for fish and wildlife purposes and leaving such areas should be encouraged. Returning surface-mined areas to the pre-mining contour and use is not necessarily the most cost effective or desirable method of reclamation. 14 references, 4 tables.

  17. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range... California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the... (CA), Trinity (CA)—Hoopa Valley Reservation Lewiston Dam (Lewiston Reservoir). Salmon...

  18. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range... California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the... (CA), Trinity (CA)—Hoopa Valley Reservation Lewiston Dam (Lewiston Reservoir). Salmon...

  19. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range... California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the... (CA), Trinity (CA)—Hoopa Valley Reservation Lewiston Dam (Lewiston Reservoir). Salmon...

  20. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range... California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the... (CA), Trinity (CA)—Hoopa Valley Reservation Lewiston Dam (Lewiston Reservoir). Salmon...

  1. 50 CFR Table 6 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Southern Oregon/Northern California...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Critical Habitat for Southern Oregon/Northern California Coasts Coho Salmon, Tribal Lands Within the Range... California Coasts Coho Salmon, Tribal Lands Within the Range of the ESU, and Dams/Reservoirs Representing the... (CA), Trinity (CA)—Hoopa Valley Reservation Lewiston Dam (Lewiston Reservoir). Salmon...

  2. Water quality and the effects of changes in phosphorus loading, Red Cedar Lakes, Barron and Washburn Counties, Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Garn, Herbert S.

    2003-01-01

    The Red Cedar Lakes consist of three mainstem lakes (Balsam, Hemlock and Red Cedar) on the Red Cedar River in Barron and Washburn Counties, Wisconsin. These lakes are productive because of high phosphorus loading, and classified as mesotrophic to eutrophic. Because of concerns that the water quality of these lakes was degrading, three cooperative studies were conducted by the U.S. Geological Survey between 1993 and 2003. As part of these studies, water quality in the lakes was documented in 1993?94, 1996?97, and 2000?01, and water and phosphorus budgets were constructed for water year 2001. Historical water-quality data indicated that the lakes have changed little since the late 1980s. A detailed phosphorus budget indicated that most of the 14,100 pounds of phosphorus input to the lakes during 2001 came from the upstream lakes, streams draining relatively undeveloped land upstream of Hemlock Lake, and ground water. Simulation results from two water-quality models (BATHTUB and WiLMS) indicated that about a 50-percent reduction in phosphorus loading from that measured in 2001 is required for all three lakes to be classified as mesotrophic; therefore, appreciable improvements in the water quality would require improvements in the water quality of the upstream lakes. Although the water quality of the lakes has not changed appreciably in recent years and major improvements in water quality are unlikely without major improvements to upstream lakes, continued efforts to protect the susceptible watershed are necessary to maintain the current level of water quality.

  3. Health and condition of endangered juvenile Lost River and shortnose suckers relative to water quality and fish assemblages in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California

    USGS Publications Warehouse

    Burdick, Summer M.; Elliott, Diane G.; Ostberg, Carl O.; Conway, Carla M.; Dolan-Caret, Amari; Hoy, Marshal S.; Feltz, Kevin P.; Echols, Kathy R.

    2015-11-25

    Differences in sucker health and condition between lakes were considered the most promising clues to the causes of differential juvenile sucker morality between lakes. A low prevalence of petechial hemorrhaging of the skin (16 percent) and deformed opercula (8 percent) in Upper Klamath Lake suckers may indicate exposure to a toxin other than microcystin. Suckers grew slower in their first year of life, but had similar or greater triglyceride and glycogen levels in Upper Klamath Lake compared to Clear Lake Reservoir. These findings do not suggest a lack of prey quantity but may indicate lower prey quality in Upper Klamath Lake.

  4. The comparative evaluation of ERTS-1 imagery for resource inventory in land use planning. [Oregon - Newberry Caldera, Mt. Washington, and Big Summit Prairie in Crook County

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J. (Principal Investigator); Simonson, G. H.; Paine, D. P.; Lawrence, R. D.; Pyott, W. T.; Herzog, J. H.; Murray, R. J.; Norgren, J. A.; Cornwell, J. A.; Rogers, R. A.

    1974-01-01

    The author has identified the following significant results. Multidiscipline team interpretation and mapping of resources for Crook County is complete on 1:250,000 scale enlargements of ERTS imagery and 1:120,000 hi-flight photography. Maps of geology, soils, vegetation-land use and land resources units were interpreted to show limitations, suitabilities, and geologic hazards for land use planning. Mapping of lineaments and structures from ERTS imagery has shown a number of features not previously mapped in Oregon. A multistage timber inventory of Ochoco National Forest was made, using ERTS images as the first stage. Inventory of forest clear-cutting practices was successfully demonstrated with color composites. Soil tonal differences in fallow fields correspond with major soil boundaries in loess-mantled terrain. A digital classification system used for discriminating natural vegetation and geologic material classes was successful in separating most major classes around Newberry Caldera, Mt. Washington, and Big Summit Prairie.

  5. Forest statistics for west central Oregon.

    Treesearch

    John W. Hazard; Melvin E. Metcalf

    1965-01-01

    This publication summarizes the results of the latest reinventory of four counties centrally located in western Oregon: Benton, Lane, Lincoln, and Linn. This block of four counties is one of 10 such blocks set up in the States of Oregon and Washington by the Forest Survey to facilitate orderly reinventories of the timber resources. Each block will be reinventoried at...

  6. A Study of Child Care Professionals' Salaries, Benefits, and Working Conditions: Lake, Marin, Mendocino, Napa, and Sonoma Counties.

    ERIC Educational Resources Information Center

    Community Child Care Council of Sonoma County, Santa Rosa, CA.

    Surveys were made of the salaries, benefits, and working conditions of child care professionals in Lake, Marin, Mendocino, Napa, and Sonoma Counties. The centers sampled operated under a variety of auspices. Centers included nonprofit (without subsidized child care spaces), proprietary, public, and subsidized organizations. The survey instrument…

  7. 75 FR 53735 - Notice of Final Federal Agency Actions on East Lake Sammamish Master Plan Trail in King County, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... [Federal Register Volume 75, Number 169 (Wednesday, September 1, 2010)] [Notices] [Pages 53735-53736] [FR Doc No: 2010-21804] DEPARTMENT OF TRANSPORTATION Federal Highway Administration Notice of Final Federal Agency Actions on East Lake Sammamish Master Plan Trail in King County, WA AGENCY:...

  8. Migrant Characteristics of a "Turnaround" Area: 1965-70 Immigration to a 45-County Subarea of the Upper Great Lakes.

    ERIC Educational Resources Information Center

    Voss, Paul R.; Fuguitt, Glenn V.

    Utilizing 1970 census data on a 45-county area in the northern Upper Great Lakes Region, the following questions were addressed: (1) In what ways do recent migrants to this nonmetropolitan region differ from those "nonmigrants" who resided in the region in both 1965 and 1970? (2) To what extent do the recent migrants from metropolitan…

  9. The World of the Developmentally Disabled Child: A Parents' Handbook with Directory of Services for Families in Lake County, Illinois.

    ERIC Educational Resources Information Center

    Suelzle, Marijean; Keenan, Vincent

    Intended for parents of developmentally disabled children, the handbook provides information on service needs and services available in Lake County, Illinois. Section I focuses on life course planning with sections of diagnosis and assessment, professionals involved with special education, education for the developmentally disabled, vocational…

  10. Analysis of meteorological data and water chemistry of Latir Lakes, Taos County, New Mexico, 1985-88

    USGS Publications Warehouse

    Anderholm, S.K.; Roybal, R.G.; Risser, D.W.; Somers, Georgene

    1994-01-01

    Data were analyzed to determine the chemistry of atmospheric deposition and water of the Latir Lakes in Taos County New Mexico, from 1985 to 1988. The Latir Lakes consist of a series of nine paternoster lakes that range in altitude from 11,061 to 11,893 feet above sea level. The pH of wet precipitation generally ranged from 4.6 to 5.5 and the specific conductance of wet precipitation ranged from 1 to 18 microsiemens per centimeter at 25 degrees Celsius from December 1985 through September 1988. Snowpack chemistry data indicate a change in the specific conductance, pH, and alkalinity of the snowpack from month to month. The dominant cation in the snowpack is calcium, and the dominant anions are nitrate and sulfate. The samples having the smallest values of specific conductance generally did not contain measurable alkalinity. When the snowpack starts to melt in the spring, specific conductance of the entire snowpack decreases, consistent with the hypothesis that the initial fluid draining from the snowpack transports a large amount of dissolved material out of the snowpack. Water chemistries in the Latir Lakes are similar although specific conductance increases downstream from lake 9 to lake 1. Calcium is the dominant cation and the ions that produce alkalinity are the dominant anions. Concentrations of sodium, magnesium, chloride, and sulfate do not vary substantially from year to year or during the year in a particular lake. Alkalinity and calcium concentration, however, do vary from year to year and during the year. The pH of outflow from the Latir Lakes varies from lake to lake and from year to year. In 1986, the range in pH in the lakes was less than 1 unit in mid-June, but was greater than 2.5 units by late October. The pH generally was larger than 7.0 in all of the lakes and was as large as 9.9 in several of the lakes during the period of study. The pH of outflow water generally increases from early spring to late summer in the Latir Lakes, and snowmelt does

  11. Water-quality and biological data for selected streams, lakes, and wells in the High Point Lake watershed, Guilford County, North Carolina, 1988-89

    USGS Publications Warehouse

    Davenport, M.S.

    1993-01-01

    Water and bottom-sediment samples were collected at 26 sites in the 65-square-mile High Point Lake watershed area of Guilford County, North Carolina, from December 1988 through December 1989. Sampling locations included 10 stream sites, 8 lake sites, and 8 ground-water sites. Generally, six steady-flow samples were collected at each stream site and three storm samples were collected at five sites. Four lake samples and eight ground-water samples also were collected. Chemical analyses of stream and lake sediments and particle-size analyses of lake sediments were performed once during the study. Most stream and lake samples were analyzed for field characteristics, nutrients, major ions, trace elements, total organic carbon, and chemical-oxygen demand. Analyses were performed to detect concentrations of 149 selected organic compounds, including acid and base/neutral extractable and volatile constituents and carbamate, chlorophenoxy acid, triazine, organochlorine, and organophosphorus pesticides and herbicides. Selected lake samples were analyzed for all constituents listed in the Safe Drinking Water Act of 1986, including Giardia, Legionella, radiochemicals, asbestos, and viruses. Various chromatograms from organic analyses were submitted to computerized library searches. The results of these and all other analyses presented in this report are in tabular form.

  12. Causes of fluctuations in the rate of discharge of Clear Lake Springs, Millard County, Utah

    USGS Publications Warehouse

    Mower, R.W.

    1967-01-01

    The Clear Lake Springs in southeastern Millard County are the source of water for the maintenance of the Clear Lakes Migratory Waterfowl Refuge. Seasonal declines in the rate of discharge were noted during 1959-60. Fluctuations in the flow of Clear Lake Springs are caused both by natural variations in the quantity of recharge and by variations in the quantity of water pumped from an increasing number of irrigation wells in the southern four districts of adjacent Pavant Valley. The springs are the principal discharge point for an aquifer in a complex of highly permeable basalt flows. Water enters the basalt aquifer as direct recharge from precipitation, as interformational leakage from a contiguous artesian aquifer in lake and alluvial sediments, and as infiltration of infrequent flood runoff and of unconsumed irrigation water in the lowlands of Pavant Valley. A hydrograph of the flow of the springs indicates that precipitation on the basalt outcrop recharges the aquifer; this conclusion is strengthened by fluctuations in the chemical quality of the spring water. The effects due to precipitation, however, are partly masked by the larger effects due to the pumping of ground water for irrigation in southern Pavant Valley. Withdrawal of ground water from wells in the southern four districts causes seasonal reductions in the flow of the springs by reducing the hydraulic gradient between the wells and the springs. Statistical analysis of three parameters--the (1) October-April precipitation, (2) annual pumpage, and (3) annual lowest rate of spring discharge--shows that a departure of 1 inch from the normal October-April precipitation at Fillmore is accompanied by a change of 0.41 cubic feet per second in the low flow of Clear Lake Springs. Similarly, a departure of 1,000 acre-feet from the 1961-64 average annual pumpage causes the low flow of the springs to change by 0.23 cubic feet per second. The average annual volume of discharge from Clear Lake Springs during 1960

  13. Assessment of suspended-sediment transport, bedload, and dissolved oxygen during a short-term drawdown of Fall Creek Lake, Oregon, winter 2012-13

    USGS Publications Warehouse

    Schenk, Liam N.; Bragg, Heather M.

    2014-01-01

    The drawdown of Fall Creek Lake resulted in the net transport of approximately 50,300 tons of sediment from the lake during a 6-day drawdown operation, based on computed daily values of suspended-sediment load downstream of Fall Creek Dam and the two main tributaries to Fall Creek Lake. A suspended-sediment budget calculated for 72 days of the study period indicates that as a result of drawdown operations, there was approximately 16,300 tons of sediment deposition within the reaches of Fall Creek and the Middle Fork Willamette River between Fall Creek Dam and the streamgage on the Middle Fork Willamette River at Jasper, Oregon. Bedload samples collected at the station downstream of Fall Creek Dam during the drawdown were primarily composed of medium to fine sands and accounted for an average of 11 percent of the total instantaneous sediment load (also termed sediment discharge) during sample collection. Monitoring of dissolved oxygen at the station downstream of Fall Creek Dam showed an initial decrease in dissolved oxygen concurrent with the sediment release over the span of 5 hours, though the extent of dissolved oxygen depletion is unknown because of extreme and rapid fouling of the probe by the large amount of sediment in transport. Dissolved oxygen returned to background levels downstream of Fall Creek Dam on December 18, 2012, approximately 1 day after the end of the drawdown operation.

  14. Evidence for millennial-scale climate change during marine isotope stages 2 and 3 at Little Lake, Western Oregon, U.S.A.

    USGS Publications Warehouse

    Grigg, L.D.; Whitlock, C.; Dean, W.E.

    2001-01-01

    Pollen and geochemical data from Little Lake, western Oregon, suggest several patterns of millennial-scale environmental change during marine isotope stage (MIS) 2 (14,100-27,600 cal yr B.P.) and the latter part of MIS 3 (27,600-42,500 cal yr B.P.). During MIS 3, a series of transitions between warm- and cold-adapted taxa indicate that temperatures oscillated by ca. 2??-4??C every 1000-3000 yr. Highs and lows in summer insolation during MIS 3 are generally associated with the warmest and coldest intervals. Warm periods at Little Lake correlate with warm sea-surface temperatures in the Santa Barbara Basin. Changes in the strength of the subtropical high and the jet stream may account for synchronous changes at the two sites. During MIS 2, shifts between mesic and xeric subalpine forests suggest changes in precipitation every 1000-3000 yr. Increases in Tsuga heterophylla pollen at 25,000 and 22,000 cal yr B.P. imply brief warmings. Minimum summer insolation and maximum global ice-volumes during MIS 2 correspond to cold and dry conditions. Fluctuations in precipitation at Little Lake do not correlate with changes in the Santa Barbara Basin and may be explained by variations in the strength of the glacial anticyclone and the position of the jet stream. ?? 2001 University of Washington.

  15. Time scales of change in chemical and biological parameters after engineered levee breaches adjacent to Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Wood, Tamara M.; Parcheso, Francis; Cameron, Jason M.; Asbill, Jessica R.; Carlson, Rick A.; Fend, Steven V.

    2012-01-01

    Eight sampling trips were coordinated after engineered levee breaches hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. The reconnection, by a series of explosive blasts, was coordinated by The Nature Conservancy to reclaim wetlands that had for approximately seven decades been leveed for crop production. Sets of nonmetallic porewater profilers (U.S. Patent 8,051,727 B1; November 8, 2011; http://www.uspto.gov/web/patents/patog/ week45/OG/html/1372-2/US08051727-20111108.html.) were deployed during these trips in November 2007, June 2008, May 2009, July 2009, May 2010, August 2010, June 2011, and July 2011 (table 1). Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae and spatially involved three lake and four wetland sites. Spatial and temporal variation in solute benthic flux was determined by the field team, using the profilers, over an approximately 4-year period beginning 3 days after the levee breaches. The highest flux to the water column of dissolved organic carbon (DOC) was detected in the newly flooded wetland, contrasting negative or insignificant DOC fluxes at adjacent lake sites. Over the multiyear study, DOC benthic fluxes dissipated in the reconnected wetlands, converging to values similar to those for established wetlands and to the adjacent lake (table 2). In contrast to DOC, benthic sources of soluble reactive phosphorus, ammonium, dissolved iron and manganese from within the reconnected wetlands were consistently elevated (that is, significant in magnitude relative to riverine and established-wetland sources) indicating a multi-year time scale for certain chemical changes after the levee breaches (table 2). Colonization of the reconnected wetlands by aquatic benthic invertebrates during the study trended toward the assemblages in established wetlands, providing further evidence of a multiyear transition of this area to permanent aquatic habitat (table 3). Both the

  16. 40 CFR 81.220 - Eastern Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Eastern Oregon Intrastate Air Quality... Quality Control Regions § 81.220 Eastern Oregon Intrastate Air Quality Control Region. The Eastern Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Baker County, Gilliam County,...

  17. 40 CFR 81.220 - Eastern Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Eastern Oregon Intrastate Air Quality... Quality Control Regions § 81.220 Eastern Oregon Intrastate Air Quality Control Region. The Eastern Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Baker County, Gilliam County,...

  18. 40 CFR 81.220 - Eastern Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Eastern Oregon Intrastate Air Quality... Quality Control Regions § 81.220 Eastern Oregon Intrastate Air Quality Control Region. The Eastern Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Baker County, Gilliam County,...

  19. 40 CFR 81.220 - Eastern Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Eastern Oregon Intrastate Air Quality... Quality Control Regions § 81.220 Eastern Oregon Intrastate Air Quality Control Region. The Eastern Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Baker County, Gilliam County,...

  20. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Central Oregon Intrastate Air Quality... Quality Control Regions § 81.219 Central Oregon Intrastate Air Quality Control Region. The Central Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County,...

  1. 40 CFR 81.220 - Eastern Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Eastern Oregon Intrastate Air Quality... Quality Control Regions § 81.220 Eastern Oregon Intrastate Air Quality Control Region. The Eastern Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Baker County, Gilliam County,...

  2. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Central Oregon Intrastate Air Quality... Quality Control Regions § 81.219 Central Oregon Intrastate Air Quality Control Region. The Central Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County,...

  3. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Central Oregon Intrastate Air Quality... Quality Control Regions § 81.219 Central Oregon Intrastate Air Quality Control Region. The Central Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County,...

  4. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Central Oregon Intrastate Air Quality... Quality Control Regions § 81.219 Central Oregon Intrastate Air Quality Control Region. The Central Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County,...

  5. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Central Oregon Intrastate Air Quality... Quality Control Regions § 81.219 Central Oregon Intrastate Air Quality Control Region. The Central Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County,...

  6. Sixty thousand years of magmatic volatile history before the caldera-forming eruption of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Wright, Heather M.; Bacon, Charles R.; Vazquez, Jorge A.; Sisson, Thomas W.

    2012-01-01

    The well-documented eruptive history of Mount Mazama, Oregon, provides an excellent opportunity to use pre-eruptive volatile concentrations to study the growth of an explosive silicic magmatic system. Melt inclusions (MI) hosted in pyroxene and plagioclase crystals from eight dacitic–rhyodacitic eruptive deposits (71–7.7 ka) were analyzed to determine variations in volatile-element concentrations and changes in magma storage conditions leading up to and including the climactic eruption of Crater Lake caldera. Temperatures (Fe–Ti oxides) increased through the series of dacites, then decreased, and increased again through the rhyodacites (918–968 to ~950 to 845–895 °C). Oxygen fugacity began at nickel–nickel-oxide buffer (NNO) +0.8 (71 ka), dropped slightly to NNO +0.3, and then climbed to its highest value with the climactic eruption (7.7 ka) at NNO +1.1 log units. In parallel with oxidation state, maximum MI sulfur concentrations were high early in the eruptive sequence (~500 ppm), decreased (to ~200 ppm), and then increased again with the climactic eruption (~500 ppm). Maximum MI sulfur correlates with the Sr content (as a proxy for LREE, Ba, Rb, P2O5) of recharge magmas, represented by basaltic andesitic to andesitic enclaves and similar-aged lavas. These results suggest that oxidized Sr-rich recharge magmas dominated early and late in the development of the pre-climactic dacite–rhyodacite system. Dissolved H2O concentrations in MI do not, however, correlate with these changes in dominant recharge magma, instead recording vapor solubility relations in the developing shallow magma storage and conduit region. Dissolved H2O concentrations form two populations through time: the first at 3–4.6 wt% (with a few extreme values up to 6.1 wt%) and the second at ≤2.4 wt%. CO2 concentrations measured in a subset of these inclusions reach up to 240 ppm in early-erupted deposits (71 ka) and are below detection in climactic deposits (7.7 ka). Combined H2O and

  7. A Cultural Resources Sample Survey in the Harlan County Lake Project Lands West of U.S. Highway 183 Harlan County, Nebraska

    DTIC Science & Technology

    1988-01-01

    Order Rodentla Family Geomyldae (plains pocket gopher ) Family Scluridae .ifJLu1 spp. (ground squirrels) 1 1 2 Family Cricetidae (prairie vole) 1 Class...TI TLE (ad Subtitle) S. TYPE OF REPORT & PERIOD COVERED Final Report A Cultural Resources Sample Survey in the Harlan 1983-1984 County Lake Project...to steep, silty soils In divides and drainage ways In the loess mantled uplands" (USDA 1972:4). Only two soil types were encountered at sites In this

  8. National Dam Safety Program. Perry County Sportsman’s Club Lake Dam (MO 31097), Mississippi - Kaskaskia - St. Louis Basin, Perry County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1980-03-01

    AD- AlO 042 HORNER AND SHIFRIN INC ST LOUIS MO F/6 13/13 NATIONAL DAM SAFETY PROGRAM. PERRY COUNTY SPORTSMAN’S CLUB LAKE--9TC(U) MAR 80 H B LOCKETT, A...B3-1 and i3-’- 3f the Appendix. tis-Inos of the HEC-1 ()mn afr Vera :’ oil noat data for both t p.e cahle, inaxmu.-. flood] and tiv 3.’a frecquen

  9. Earthquake hazards to domestic water distribution systems in Salt Lake County, Utah

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  10. Narratives of Stress in Health Meanings of African Americans in Lake County, Indiana.

    PubMed

    Dutta, Mohan; Sastry, Shaunak; Dillard, Sydney; Kumar, Rati; Anaele, Agaptus; Collins, William; Roberson, Calvin; Dutta, Uttaran; Jones, Christina; Gillespie, Tony; Spinetta, Christine

    2016-08-02

    Across the life course, African Americans bear an unequal burden of disease compared to other racial groups. In spite of the widespread acknowledgment of racial health disparities, the voices of African Americans, their articulations of health and their local etiologies of health disparities are limited. In this article, we highlight the important role of communication scholarship to understand the everyday enactment of health disparities. Drawing upon the culture-centered approach (CCA) to co-construct narratives of health with African Americans residents of Lake County, Indiana, we explore the presence of stress in the everyday narratives of health. These narratives voice the social and structural sources of stress, and articulate resistive coping strategies embedded in relationship to structures.

  11. Distribution and occurrence of total coliform bacteria in Floridan aquifer wells, western Lake County, Florida

    SciTech Connect

    Taylor, G.F.

    1984-01-01

    This report presents total coliform bacteria data for Floridan aquifer wells in western Lake County, central Florida. Included are data collected from 1966 to 1979 by the Florida Department of Environmental Regulation for 98 public supply wells, and data collected during 1982 by the US Geological Survey for 29 wells. The data for the 98 public supplies indicate that 85% have a record of total coliform occurrence in the raw water. Data from the 29 wells sampled by the Geological Survey indicate that 55% have a record of total coliform occurrence. Further comparison of the two data sets indicates that the Geological Survey data generally indicate a lower percentage of sites with coliform occurrence and, in some cases, a different pattern of occurrence than did the Department of Environmental Regulation data. 3 refs., 7 figs., 7 tabs.

  12. Selected hydrologic data for Little Cottonwood Creek, Salt Lake County, Utah, September 1998

    USGS Publications Warehouse

    Gerner, L.J.; Rossi, F.J.; Kimball, B.K.

    2001-01-01

    Metals enter Little Cottonwood Creek in Salt Lake County, Utah, in drainage water that discharges from inactive mines in the watershed (fig. 1). As part of a study to evaluate the effects of this mine drainage on water quality, a sodium chloride tracer was injected into Little Cottonwood Creek during September 17-18, 1998. The purpose of the injection was to quantify stream discharge; to identify inflows, both those observable and those dispersed in the subsurface; and ultimately, to determine which areas within the watershed contribute the most metals to Little Cottonwood Creek. The purpose of this report is to make these data available to agencies responsible for managing the area’ s water resources and to supplement interpretive reports for this study.

  13. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa M.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  14. Partial elevation view of the Oregon Trunk Railway Freight Depot, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Partial elevation view of the Oregon Trunk Railway Freight Depot, view looking west at south end of east façade - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR

  15. Detail perspective view of the Oregon Trunk Railway Freight Depot, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail perspective view of the Oregon Trunk Railway Freight Depot, view looking east at south end of building - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR

  16. Partial elevation view of the Oregon Trunk Railway Freight Depot, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Partial elevation view of the Oregon Trunk Railway Freight Depot, view looking west at north end of east façade - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR

  17. Perspective view of the Oregon Trunk Railway Freight Depot, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of the Oregon Trunk Railway Freight Depot, view looking west at south end of building - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR

  18. 1. General view of Oregon Electric Railway, view looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view of Oregon Electric Railway, view looking north at Hedges Creek trestle. - Oregon Electric Railroad, Hedges Creek Trestle, Garden Home to Wilsonville Segment, Milepost 38.7, Garden Home, Washington County, OR

  19. Partial elevation view of the Oregon Trunk Railway Freight Depot, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Partial elevation view of the Oregon Trunk Railway Freight Depot, view looking west at center of east façade - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR

  20. Regional rainfall-runoff relations for simulation of streamflow for watersheds in Lake County, Illinois

    USGS Publications Warehouse

    Duncker, J.J.; Vail, T.J.; Melching, C.S.

    1995-01-01

    Rainfall and streamflow data collected in Lake County, Ill., from March 1990 through September 1993 were used to (1) calibrate a rainfall-runoff model for an area encompassing three watersheds (individual areas of 17.2, 35.7, and 37.0 mi(2) (square miles) and (2) verify the regional model parameter set obtained from the calibration by applying the parameter set to rainfall-runoff models for an additional small (6.3 mi(2)) watershed and a large (59.6 mi (2)) watershed. In addition, rainfall and streamflow data collected from April 1991 through September 1993 were used to calibrate the rainfall-runoff model for three single land-use watersheds (38.2-305 acres), called hydrologic response units (HRU's). Significant differences were found between the best parameters used in the HRU models and in the larger watershed models. The main channels in the HRU's are intermittent streams; thus, the parameters in the HRU models were selected such that a fluctuating water table could be simulated; runoff from the larger watersheds is not as sensitive to the effects of a fluctuating water table. Classification of land cover into two pervious subareas (forest and grass) and one impervious subarea (including parking lots, streets, and rooftops, among others) was sufficient to simulate the rainfall-runoff relations for all watersheds accurately. The model parameters presented in this report, which were refined through regional calibration and verified for watersheds not considered in the calibration, allow simulation of runoff in watersheds in Lake County, Ill., with approximately 93-percent accuracy in the total water balance, an average absolute error in the annual- flow estimates of 10.9 percent (and an error rarely exceeding 25 percent for annual flow), and monthly water balances with correlation coefficients of 93 percent and coefficients of model-fit efficiency of 86 percent. The models closely reproduced the partial-duration series of runoff and storm-runoff frequencies for

  1. Streamflow and water quality of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, October 1984

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1987-01-01

    A diel (24-hour) water-quality survey was done to investigate the sources of dry-weather waste inputs attributable to other than permitted point-source effluent and to evaluate the waste-load assimilative capacity of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, in October 1984. Flow in the Grand Calumet River consists almost entirely of municipal and industrial effluents which comprised more than 90% of the 500 cu ft/sec flow observed at the confluence of the East Branch Grand Calumet River and the Indiana Harbor Ship Canal during the study. At the time of the study, virtually all of the flow in the West Branch Grand Calumet River was municipal effluent. Diel variations in streamflow of as much as 300 cu ft/sec were observed in the East Branch near the ship canal. The diel variation diminished at the upstream sampling sites in the East Branch. In the West Branch, the diel variation in flow was quite drastic; complete reversals of flow were observed at sampling stations near the ship canal. Average dissolved-oxygen concentrations at stations in the East Branch ranged from 5.7 to 8.2 mg/L and at stations in the West Branch from 0.8 to 6.6 mg/L. Concentrations of dissolved solids, suspended solids, biochemical-oxygen demand, ammonia, nitrite, nitrate, and phosphorus were substantially higher in the West Branch than in the East Branch. In the East Branch, only the Indiana Stream Pollution Control Board water-quality standards for total phosphorus and phenol were exceeded. In the West Branch, water-quality standards for total ammonia, chloride, cyanide, dissolved solids, fluoride, total phosphorus, mercury, and phenol were exceeded and dissolved oxygen was less than the minimum allowable. Three areas of significant differences between cumulative effluent and instream chemical-mass discharges were identified in the East Branch and one in the West Branch. The presence of unidentified waste inputs in the East Branch were indicated by

  2. National Dam Safety Program. Lake Placid Village Dam. (Inventory Number NY 781), Lake Champlain River Basin, Essex County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1980-09-16

    Village of Lake Placid, Town of North Elba , Essex County, New York. c. Size Classification The maximum height of the dam is approximately 19 feet. The...certain assumptions, based on experience and existing data were used in this analysis and in the determination of the dam’s spillway capacity to pass...Day: Year 5. pparenc use - I. Fish & Wildlife Management 4. Power 2. Recreation 5. Farm * 3. Water Supply 6. No Apparent Use 6. li I. Earth with Aux

  3. Map showing flood and surface water information in the Sugar House quadrangle, Salt Lake County, Utah

    USGS Publications Warehouse

    Van Horn, Richard; Fields, F.K.

    1974-01-01

    In the past man has built on land that might be covered by floodwaters, with little consideration of the consequences. The result has been disastrous to those in the path of floodwaters and has cost the loss of thousands of lives and untold billions of dollars in property damage in the United States. Salt Lake County, of which the Sugar House quadrangle is a part, has had many floods in the past and can be expected to have more in the future. Construction has taken place in filled or dried-up marshes and lakes, in spring areas, and even in stream channels. Lack of prior knowledge of these and other forms of surface water (water at the surface of the ground) can increase construction and maintenance costs significantly.The map shows the area that probably will be covered by floods at least once in every 100 years on the long-term average (unit IRF, intermediate regional flood), the area that probably will be covered by floods from the worst possible combination of very wet weather and high streamflow reasonably expected of the area (unit SPF, standard project flood), the mapped extent of streamflow by channel shifting or flooding in the past 5,000 years (unit fa), and the probable maximum extent of damaging flash floods and mudflows from small valleys in the Wasatch Range. The map also shows the location of water at the surface of the ground: lakes, streams, springs, weep holes, canals, and reservoirs. Lakes and marshes that existed within the past 100 years, but now are drained, filled, or dried up, are also shown.The following examples show that the presence of water can be desirable or undesirable, depending on how the water occurs. Floods, the most spectacular form of surface water, may result in great property damage and loss of life. Lakes normally are beneficial, in that they may support plant growth and provide habitats for fish and other wildlife, provide water for livestock, and can be used for recreation. Springs may or may not be desirable: they may

  4. Seasonal Distribution and Abundance of Larval and Juvenile Lost River and Shortnose Suckers in Hanks Marsh, Upper Klamath National Wildlife Refuge, Upper Klamath Lake, Oregon: 2007 Annual Report

    USGS Publications Warehouse

    Anderson, Greer O.; Wilkens, Alexander X.; Burdick, Summer M.; VanderKooi, Scott P.

    2009-01-01

    In the summer of 2007, we undertook an assessment of larval and juvenile sucker use of Hanks Marsh in Upper Klamath Lake, Oregon. This 1,200-acre marsh on the southeastern shoreline of the lake represents part of the last remaining natural emergent wetland habitat in the lake. Because of the suspected importance of this type of habitat to larval and juvenile endangered Lost River and shortnose suckers, it was thought that sucker abundance in the marsh might be comparatively greater than in other non-vegetated areas of the lake. It also was hoped that Hanks Marsh would serve as a reference site for wetland restoration projects occurring in other areas of the lake. Our study had four objectives: to (1) examine seasonal distribution and relative abundance of larval suckers in and adjacent to Hanks Marsh in relation to habitat features such as depth, vegetation, water quality, and relative abundance of non-sucker species; (2) determine the presence or absence and describe the distribution of juvenile suckers [35 to 80 mm standard length (SL)] along the periphery of Hanks Marsh; (3) assess spatial and temporal overlap between larval suckers and their potential predators; and (4) assess suitability of water quality throughout the summer for young-of-the-year suckers. Due to the low number of suckers found in the marsh and our inability to thoroughly sample all marsh habitats due to declining lake levels during the summer, we were unable to completely address these objectives in this pilot study. The results, however, do give some indication of the relative use of Hanks Marsh by sucker and non-sucker species. Through sampling of larval and juvenile suckers in various habitat types within the marsh, we determined that sucker use of Hanks Marsh may be very low in comparison with other areas of the lake. We caught only 42 larval and 19 juvenile suckers during 12 weeks of sampling throughout the marsh. Sucker catches were rare in Hanks Marsh, and were lower than catch rates

  5. Temporal and spatial distribution of endangered juvenile Lost River and shortnose suckers in relation to environmental variables in Upper Klamath Lake, Oregon: 2009 annual data summary

    USGS Publications Warehouse

    Bottcher, Jared L.; Burdick, Summer M.

    2010-01-01

    Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year. Similar declines of age-1 suckers between spring and late summer also occur annually. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. Summer age-0 sucker habitat use and distribution have been studied extensively, but many uncertainties remain about age-1 and older juvenile habitat use, distribution, and movement patterns within Upper Klamath Lake. This study was designed to examine seasonal changes in distribution of age-1 suckers in Upper Klamath Lake as they relate to depth and water quality. The results of our third annual spring and summer sampling effort are presented in this report. Catch data collected in 2009 indicate seasonal changes in age-1 and older juvenile sucker habitat use coincident with changes in water quality. Although age-1 sucker catch rates were again concentrated along the western shore in June and early July, as they were in 2007 and 2008, very few age-1 suckers were captured in Eagle Ridge Trench in 2009 - a deepwater area along the western shore extending from Howard Bay to Eagle Ridge Point. Instead, suckers in 2009 were concentrated in the relatively shallow bays along the western shore. Nevertheless, as dissolved-oxygen concentrations decreased in mid-July below sublethal thresholds around the Eagle Ridge Trench, age-1 suckers apparently moved away from the western shore, and subsequently were captured

  6. Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from lacustrine sediment in Upper Klamath Lake, southern Oregon

    USGS Publications Warehouse

    Reynolds, R.L.; Rosenbaum, J.G.; Rapp, J.; Kerwin, M.W.; Bradbury, J.P.; Colman, S.; Adam, D.

    2004-01-01

    Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37-25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins

  7. Mineral resources of the Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas, Malheur and Harney counties, Oregon

    SciTech Connect

    Sherrod, D.R.; Griscom, A.; Turner, R.L.; Minor, S.A.; Graham, D.E.; Buehler, A.R.

    1988-01-01

    The Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas encompass most of the Sheepshead Mountains in southeast Oregon. The mountains comprise several fault blocks of middle and late Miocene basalt, basaltic andesite, andesite, and dacite lava; pyroclastic and sedimentary rocks are minor. The three wilderness study areas have low resource potential for gold, silver, and oil and gas. A few small areas have low-to-high resource potential for diatomite, as indicated by the occurrence of low-grade diatomite. Some fault zones have a moderate potential for geothermal energy.

  8. Timber resources of southwest Oregon.

    Treesearch

    Patricia M. Bassett

    1979-01-01

    This report presents statistics from a 1973 inventory of timber resources of Douglas County and from a 1974 inventory of timber resources of Coos, Curry, Jackson, and Josephine Counties, Oregon. Tables presented are of forest area and of timber volume, growth, and mortality.

  9. Simulated Effects of Ground-Water Augmentation on the Hydrology of Round and Halfmoon Lakes in Northwestern Hillsborough County, Florida

    USGS Publications Warehouse

    Yager, Richard M.; Metz, P.A.

    2004-01-01

    Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were

  10. Hydrology of the Hamilton lakes and vicinity, Polk County, central Florida

    USGS Publications Warehouse

    Anderson, Warren G.; Simonds, Edward P.

    1983-01-01

    The Hamilton lakes, headwaters of the eastern arm of the Peace River drainage system, consist of Lake Hamilton, Middle Lake Hamilton, and Little Lake Hamilton. The lakes, which are connected by canals that tend to equalize their levels, probably occupy coalesced sinkhole depressions. The drainage basin of Lake Hamilton contains several water-control structures which can alter the effective size of the area contributing water to the Hamilton lakes according to their gate settings. The chemical and biological conditions in the Hamilton lakes are such that the lakes are not sufficiently enriched to cause problems with excessive weed growth or algae blooms. (USGS)

  11. Assessing movement and sources of mortality of juvenile catostomids using passive integrated transponder tags, Upper Klamath Lake, Oregon - Summary of 2012 effort

    USGS Publications Warehouse

    Burdick, Summer M.

    2013-01-01

    Survival of juvenile endangered Lost River and shortnose suckers is thought to limit recruitment into the adult populations and ultimately limit the recovery of these species in Upper Klamath Lake, Oregon. Although many hypotheses exist about the sources of mortality, the contribution of each speculated source of mortality has not been examined. To examine causes of mortality, validate estimated age to maturity, and examine movement patterns for juvenile suckers in Upper Klamath Lake, passive integrated transponder (PIT) tags and remote tag detection systems were used. Age-1 suckers were opportunistically tagged in 2009 and 2010 during another study on juvenile sucker distribution. After the distribution study concluded in 2010, USGS redirected sampling efforts to target age-1 suckers for tagging. Tags were redetected using an existing infrastructure of remote PIT tag readers and tag scanning surveys at American white pelican (Pelecanus erythrorhynchos), double-crested cormorant (Phalacrocorax auritus), and Forster’s tern (Sterna forsteri) breeding and loafing areas. Individual fish histories are used to describe the distance, direction, and timing of juvenile sucker movement. Sucker PIT tag detections in the Sprague and Williamson Rivers in mid-summer and in autumn indicate tagged juvenile suckers use these tributaries outside of the known spring spawning season. PIT tags detected in bird habitats indicate predation by birds was a cause of mortality.

  12. Integrating Climate Change Scenarios and Co-developed Policy Scenarios to Inform Coastal Adaptation: Results from a Tillamook County, Oregon Knowledge to Action Network

    NASA Astrophysics Data System (ADS)

    Lipiec, E.; Ruggiero, P.; Serafin, K.; Bolte, J.; Mills, A.; Corcoran, P.; Stevenson, J.; Lach, D.

    2014-12-01

    Local decision-makers often lack both the information and tools to reduce their community's overall vulnerability to current and future climate change impacts. Managers are restricted in their actions by the scale of the problem, inherent scientific uncertainty, limits of information exchange, and the global nature of available data, rendering place-based strategies difficult to generate. Several U.S. Pacific Northwest coastal communities are already experiencing chronic erosion and flooding, hazards only to be exacerbated by sea level rise and changing patterns of storminess associated with climate change. To address these issues, a knowledge to action network (KTAN) consisting of local Tillamook County stakeholders and Oregon State University researchers, was formed to project future flooding and erosion impacts and determine possible adaptation policies to reduce vulnerability. Via an iterative scenario planning process, the KTAN has developed four distinct adaptation policy scenarios, including 'Status Quo', 'Hold The Line', 'ReAlign', and 'Laissez-Faire'. These policy scenarios are being integrated with a range of climate change scenarios within the modeling framework Envision, a multi-agent GIS-based tool, which allows for the combination of physical processes data, probabilistic climate change information, coastal flood and erosion models, and stakeholder driven adaptation strategies into distinct plausible future scenarios. Because exact physical and social responses to climate change are impossible to ascertain, information about the differences between possible future scenarios can provide valuable information to decision-makers and the community at large. For example, the fewest projected coastal flood and erosion impacts to buildings occur under the 'ReAlign' policy scenario (i.e., adaptation strategies that move dwellings away from the coast) under both low and high climate change scenarios, especially in comparison to the 'Status Quo' or 'Hold The

  13. High-resolution digital elevation dataset for Crater Lake National Park and vicinity, Oregon, based on LiDAR survey of August-September 2010 and bathymetric survey of July 2000

    USGS Publications Warehouse

    Robinson, Joel E.

    2012-01-01

    Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-foot volcano known as Mount Mazama. The caldera-forming or climactic eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Because the Crater Lake region is potentially volcanically active, knowledge of past events is important to understanding hazards from future eruptions. Similarly, because the area is seismically active, documenting and evaluating geologic faults is critical to assessing hazards from earthquakes. As part of the American Recovery and Reinvestment Act (ARRA) of 2009, the U.S. Geological Survey was awarded funding for high-precision airborne LiDAR (Light Detection And Ranging) data collection at several volcanoes in the Cascade Range through the Oregon LiDAR Consortium, administered by the Oregon Department of Geology and Mineral Industries (DOGAMI). The Oregon LiDAR Consortium contracted with Watershed Sciences, Inc., to conduct the data collection surveys. Collaborating agencies participating with the Oregon LiDAR Consortium for data collection in the Crater Lake region include Crater Lake National Park (National Park Service) and the Federal Highway Administration. In the immediate vicinity of Crater Lake National Park, 798 square kilometers of LiDAR data were collected, providing a digital elevation dataset of the ground surface beneath forest cover with an average resolution of 1.6 laser returns/m2 and both vertical and horizontal accuracies of ±5 cm. The LiDAR data were mosaicked in this report with bathymetry of the lake floor of Crater Lake, collected in 2000 using high-resolution multibeam sonar in a collaborative effort between the U.S. Geological Survey, Crater Lake National Park, and the Center for Coastal and Ocean Mapping at the University of New Hampshire. The bathymetric survey

  14. Geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado

    USGS Publications Warehouse

    Shroba, Ralph R.; Kellogg, Karl S.; Brandt, Theodore R.

    2014-01-01

    The geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado, portrays the geology in the upper Arkansas valley and along the lower flanks of the Sawatch Range and Mosquito Range near the town of Granite. The oldest rocks, exposed in the southern and eastern parts of the quadrangle, include gneiss and plutonic rocks of Paleoproterozoic age. These rocks are intruded by younger plutonic rocks of Mesoproterozoic age. Felsic hypabyssal dikes, plugs, and plutons, ranging in age from Late Cretaceous or Paleocene to late Oligocene, locally intruded Proterozoic rocks. A small andesite lava flow of upper Oligocene age overlies Paleoproterozoic rock, just south of the Twin Lakes Reservoir. Gravelly fluvial and fan deposits of the Miocene and lower Pliocene(?) Dry Union Formation are preserved in the post-30 Ma upper Arkansas valley graben, a northern extension of the Rio Grande rift. Mostly north-northwest-trending faults displace deposits of the Dry Union Formation and older rock units. Light detection and ranging (lidar) imagery suggests that two short faults, near the Arkansas River, may displace surficial deposits as young as middle Pleistocene. Surficial deposits of middle Pleistocene to Holocene age are widespread in the Granite quadrangle, particularly in the major valleys and on slopes underlain by the Dry Union Formation. The main deposits are glacial outwash and post-glacial alluvium; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; till deposited during the Pinedale, Bull Lake, and pre-Bull Lake glaciations; rock-glacier deposits; and placer-tailings deposits formed by hydraulic mining and other mining methods used to concentrate native gold. Hydrologic and geologic processes locally affect use of the land and locally may be of concern regarding the stability of buildings and infrastructure, chiefly in low-lying areas along and near stream channels and locally in areas of moderate to steep slopes. Low

  15. Temporal and Spatial Distribution of Endangered Juvenile Lost River and Shortnose Suckers in Relation to Environmental Variables in Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    USGS Publications Warehouse

    Burdick, Summer M.; VanderKooi, Scott P.

    2010-01-01

    Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year and age-1 and older sub-adult suckers are rare. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. A lack of access to, or abundance of, optimal rearing habitat may exacerbate juvenile sucker mortality or restrict juvenile growth or development. Summer age-0 sucker habitat use and distribution has been studied extensively, but many uncertainties remain about age-1 and older juvenile habitat use, distribution, and movement patterns within Upper Klamath Lake. We designed a study to examine seasonal changes in distribution of age-1 suckers in Upper Klamath Lake as they relate to depth and water quality. In this document, which meets our annual data summary and reporting obligations, we discuss the results of our second annual spring and summer sampling effort. Catch data collected in 2007 and 2008 indicate seasonal changes in age-1 and older juvenile sucker habitat use coincident with changes in water quality, which were previously undocumented. In both years during April and May, age-1 and older juvenile suckers were found in shallow water environments. Then, as water temperatures began to warm throughout Upper Klamath Lake in June, age-1 and older juvenile suckers primarily were captured along the western shore in some of the deepest available environments. Following a dramatic decrease in dissolved oxygen concentrations in Eagle Ridge

  16. Estimation of reservoir storage capacity using multibeam sonar and terrestrial lidar, Randy Poynter Lake, Rockdale County, Georgia, 2012

    USGS Publications Warehouse

    Lee, K.G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Rockdale County Department of Water Resources, conducted a bathymetric and topographic survey of Randy Poynter Lake in northern Georgia in 2012. The Randy Poynter Lake watershed drains surface area from Rockdale, Gwinnett, and Walton Counties. The reservoir serves as the water supply for the Conyers-Rockdale Big Haynes Impoundment Authority. The Randy Poynter reservoir was surveyed to prepare a current bathymetric map and determine storage capacities at specified water-surface elevations. Topographic and bathymetric data were collected using a marine-based mobile mapping unit to estimate storage capacity. The marine-based mobile mapping unit operates with several components: multibeam echosounder, singlebeam echosounder, light detection and ranging system, navigation and motion-sensing system, and data acquisition computer. All data were processed and combined to develop a triangulated irregular network, a reservoir capacity table, and a bathymetric contour map.

  17. Spatial and temporal dynamics of cyanotoxins and their relation to other water quality variables in Upper Klamath Lake, Oregon, 2007-09

    USGS Publications Warehouse

    Eldridge, Sara L. Caldwell; Wood, Tamara M.; Echols, Kathy R.

    2012-01-01

    Phytoplankton blooms dominated by cyanobacteria that occur annually in hypereutrophic Upper Klamath Lake, Oregon, produce microcystins at concentrations that may contribute to the decline in populations of endangered Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers. During 2007–09, water samples were collected from Upper Klamath Lake to determine the presence and concentrations of microcystins and cylindrospermopsins and to relate the spatial and temporal occurrences of microcystins to water quality and other environmental variables. Samples were analyzed for intracellular (particulate) and extracellular (dissolved) microcystins and cylindrospermopsins using enzyme-linked immunosorbent assays (ELISA). Samples contained the highest and most variable concentrations of microcystins in 2009, the year in which an earlier and heavier Aphanizomenon flos-aquae-dominated phytoplankton bloom occurred. Concentrations were lowest in 2008 when the bloom was lighter, overall, and delayed by nearly 1 month. Microcystins occurred primarily in dissolved and large (> 63 μm) particulate forms in all years of the study, and overall, concentrations were highest at MDT (the deepest site in the study) and HDB, although HDB was sampled only in 2007 and MDT was not sampled in 2008. Comparisons among daily median total microcystin concentrations; chlorophyll a concentrations; total, dissolved, and particulate nutrient concentrations; and nutrient ratios measured in 2009 and between 2007 and 2009 indicate that microcystin concentrations generally increase following the decline of the first A. flos-aquae-dominated bloom of each season in response to an increase in bioavailable nitrogen and phosphorus. Nitrogen fixation by A. flos-aquae early in the sample season appears to provide new nitrogen for growth of toxigenic Microcystis aeruginosa, whereas, later in the season, these species appear to co-exist. Understanding the ecological interactions between these

  18. Distribution and condition of larval and juvenile Lost River and Shortnose Suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon: 2009 annual data summary

    USGS Publications Warehouse

    Burdick, Summer M.; Brown, Daniel T.

    2010-01-01

    Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in others. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, which is seasonally anoxic.The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana Unit) in October 2007 and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Unit) a year later to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2009 by the U.S. Geological Survey as a part of this monitoring effort.

  19. Geologic map of the Wildcat Lake 7.5' quadrangle: Kitsap and Mason counties, Washington

    USGS Publications Warehouse

    Haeussler, Peter J.; Clark, Kenneth P.

    2000-01-01

    The Wildcat Lake quadrangle lies in the forearc of the Cascadia subduction zone, about 20-km east of the Cascadia accretionary complex exposed in the Olympic Mountains (Tabor and Cady, 1978),and about 100-km west of the axis of the Cascades volcanic arc. The quadrangle lies near the middle of the Puget Lowland, which typically has elevations less than 600 feet (183 m), but on Gold Mountain, in the center of the quadrangle, the elevation rises to 1761 feet (537 m). This anomalously high topography also provides a glimpse of the deeper crust beneath the Lowland. Exposed on Green and Gold Mountains are rocks related to the Coast Range basalt terrane. This terrane consists of Eocene submarine and subaerial tholeiitic basalt of the Crescent Formation, which probably accreted to the continental margin in Eocene time (Snavely and others, 1968). The Coast Range basalt terrane may have originated as an oceanic plateau or by oblique marginal rifting (Babcock and others, 1992), but its subsequent emplacement history is complex (Wells and others, 1984). In southern Oregon, onlapping strata constrain the suturing to have occured by 50 Ma; but on southern Vancouver Island where the terrane-bounding Leech River fault is exposed, Brandon and Vance (1992) concluded suturing to North America occurred in the broad interval between 42 and 24 Ma. After emplacement of the Coast Range basalt terrane, the Cascadia accretionary complex,exposed in the Olympic Mountains west of the quadrangle,developed by frontal accretion and underplating (e.g., Clowes and others, 1987). The Seattle basin, part of which lies to the north of Green Mountain, also began to develop in late Eocene time due to forced flexural subsidence along the Seattle fault zone (Johnson and others, 1994). Domal uplift of the accretionary complex beneath the Olympic Mountains occurred after approximately 18 million years ago (Brandon and others, 1998). Ice-sheet glaciation during Quaternary time reshaped the topography of the

  20. An integrated assessment for wind energy in Lake Michigan coastal counties.

    PubMed

    Nordman, Erik; VanderMolen, Jon; Gajewski, Betty; Isely, Paul; Fan, Yue; Koches, John; Damm, Sara; Ferguson, Aaron; Schoolmaster, Claire

    2015-04-01

    The benefits and challenges of onshore and offshore wind energy development were assessed for a 4-county area of coastal Michigan. Economic, social, environmental, and spatial dimensions were considered. The coastal counties have suitable wind resources for energy development, which could contribute toward Michigan's 10% renewable energy standard. Wind energy is cost-effective with contract prices less than the benchmark energy price of a new coal-fired power plant. Constructing a 100 MW wind farm could have a $54.7 million economic impact. A patchwork of township-level zoning ordinances regulates wind energy siting. Voluntary collaborations among adjacent townships standardizing the ordinances could reduce regulatory complexity. A Delphi Inquiry on offshore wind energy in Lake Michigan elicited considerable agreement on its challenges, but little agreement on the benefits to coastal communities. Offshore turbines could be acceptable to the participants if they reduced pollution, benefited coastal communities, involved substantial public participation, and had minimal impact on property values and tourism. The US Coast Guard will take a risk-based approach to evaluating individual offshore developments and has no plans to issue blanket restrictions around the wind farms. Models showed that using wind energy to reach the remainder of the 10% renewable energy standard could reduce SO2 , NOx , and CO2 pollution by 4% to 7%. Turbines are highly likely to impact the area's navigational and defense radar systems but planning and technological upgrades can reduce the impact. The integrated assessment shows that responsible wind energy development can enhance the quality of life by reducing air pollution and associated health problems and enhancing economic development. Policies could reduce the negative impacts to local communities while preserving the benefits to the broader region. © 2015 SETAC.

  1. The effects of calcium magnesium acetate (CMA) deicing material on the water quality of Bear Creek, Clackamas County, Oregon, 1999

    USGS Publications Warehouse

    Tanner, Dwight Q.; Wood, Tamara M.

    2000-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Oregon Department of Transportation (ODOT), to evaluate the effects of the highway deicing material, calcium magnesium acetate (CMA), on the water quality of Bear Creek, in the Cascade Range of Oregon. ODOT began using CMA (an alternative deicer that has fewer adverse environmental effects than road salt) in the mid-1990s and began this study with the USGS to ensure that there were no unexpected effects on the water quality of Bear Creek. Streamflow, precipitation, dissolved oxygen, pH, specific conductance, and water temperature were measured continuously through the 1998?99 winter. There was no measurable effect of the application of CMA to Highway 26 on the biochemical oxygen demand (BOD), calcium concentration, or magnesium concentration of Bear Creek and its tributaries. BOD was small in all of the water samples, some of which were collected before CMA application, and some of which were collected after application. Five-day BOD values ranged from 0.1 milligrams per liter to 1.5 milligrams per liter, and 20-day BOD values ranged from 0.2 milligrams per liter to 2.0 milligrams per liter. Dissolved copper concentrations in a small tributary ditch on the north side of Highway 26 exceeded the U.S. Environmental Protection Agency aquatic life criteria on three occasions. These exceedances were probably not caused by the application of CMA because (1) one of the samples was a background sample (no recent CMA application), and (2) dissolved copper was not detected in Bear Creek water samples to which CMA was added during laboratory experiments.

  2. Eighth year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL). [Oregon

    NASA Technical Reports Server (NTRS)

    Lewis, A. J.; Isaacson, D. L.; Schrumpf, B. J. (Principal Investigator)

    1980-01-01

    Projects completed for the NASA Office of University Affairs include the application of remote sensing data in support of rehabilitation of wild fire damaged areas and the use of LANDSAT 3 return beam vidicon in forestry mapping applications. Continuing projects for that office include monitoring western Oregon timber clearcut; detecting and monitoring wheat disease; land use monitoring for tax assessment in Umatilla, Lake, and Morrow Counties; and the use of Oregon Air National Guard thermal infrared scanning data. Projects funded through other agencies include the remote sensing inventory of elk in the Blue Mountains; the estimation of burned agricultural acreage in the Willamette Valley; a resource inventory of Deschutes County; and hosting a LANDSAT digital workshop.

  3. A case-control study evaluating the role of internet meet-up sites and mobile telephone applications in influencing a syphilis outbreak: Multnomah County, Oregon, USA 2014.

    PubMed

    DeSilva, Malini; Hedberg, Katrina; Robinson, Byron; Toevs, Kim; Neblett-Fanfair, Robyn; Petrosky, Emiko; Hariri, Susan; Schafer, Sean

    2016-08-01

    Early syphilis in Multnomah County, Oregon, USA, increased 16-fold during 2007-2013. Cases predominantly occurred among men who have sex with men (MSM); 55% were HIV coinfected. We conducted a case-control study to evaluate the association between meeting sex partners online and early syphilis. Cases subjects (cases) were Multnomah County resident, English speaking, MSM, aged ≥18 years with laboratory-confirmed early syphilis reported 1 January to 31 December 2013. We recruited two MSM controls subjects (controls) per case, frequency matched by HIV status and age. Participants completed self-administered questionnaires. We performed multivariable logistic regression. Seventy per cent (40/57) of cases and 42% (50/119) of controls met partners online (p<0.001). Cases more frequently met partners online (adjusted OR (aOR)=3.0; 95% CI 1.2 to 6.7), controlling for presumptive confounders. Cases reported more partners than controls (medians 5, 2; p<0.001). When including number of partners, aOR decreased to 1.4 (95% CI 0.5 to 3.9). Early syphilis was associated with meeting partners online. We believe this association may be related to number of sex partners acting as an intermediate variable between use of online resources to meet sex partners and early syphilis. Online meet-up sites might represent areas for public health interventions targeting at-risk individuals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Rural Oregon Community Perspectives

    PubMed Central

    Young-Lorion, Julia; Davis, Melinda M.; Kirks, Nancy; Hsu, Anna; Slater, Jana Kay; Rollins, Nancy; Aromaa, Susan; McGinnis, Paul

    2013-01-01

    The Community Health Improvement Partnership (CHIP) model has supported community health development in more than 100 communities nationally. In 2011, four rural Oregon CHIPs collaborated with investigators from the Oregon Rural Practice-based Research Network (ORPRN), a component of the Oregon Clinical and Translational Research Institute (OCTRI), to obtain training on research methods, develop and implement pilot research studies on childhood obesity, and explore matches with academic partners. This article summarizes the experiences of the Lincoln County CHIP, established in 2003, as it transitioned from CHIP to Community Health Improvement and Research Partnership (CHIRP). Our story and lessons learned may inform rural community-based health coalitions and academicians who are engaged in or considering Community-based participatory research (CBPR) partnerships. Utilizing existing infrastructure and relationships in community and academic settings provides an ideal starting point for rural, bidirectional research partnerships. PMID:24056513

  5. National Dam Safety Program. Clove Lake Dam (NJ 00259) Delaware River Basin, Shimers Brook, Sussex County, New Jersey. Phase I Inspection Report.

    DTIC Science & Technology

    1981-08-01

    A0-A103 762 NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON -ETC P/A 13/13 NATIONAL DAM SAFETY PROGRAM. CLOVE LAKE DAM (NJ 00259 DELAW ARE--ETC(U...ERLO National Dam Safety Program YIN-I Clove Lake Dam, NJO0259 4 S RIG R." OTUE Sussex County, New Jersey _______________ 7. AUTHOR(*) .CMaCgqA!yBRO...unlimited. KNational Dam Safety Programs clove - Lake Dm(NJ 00259) Delaware River Basins Shimers Brook, Sussex County, 17. DISTmIGUTION STATE[T (o

  6. White Lake AOC

    EPA Pesticide Factsheets

    White Lake is in Muskegon County along the eastern shore of Lake Michigan. It was named an Area of Concern on the Great Lakes under the Great Lakes Water Quality Agreement of 1987 and delisted in 2014.

  7. The volcanic, sedimentologic, and paleolimnologic history of the Crater Lake caldera floor, Oregon:Evidence for small caldera evolution

    USGS Publications Warehouse

    Nelson, C. Hans; Bacon, Charles R.; Robinson, Stephen W.; Adam, David P.; Bradbury, J. Platt; Barber, John H.; Schwartz, Deborah; Vagenas, Ginger

    1994-01-01

    Apparent phreatic explosion craters, caldera-floor volcanic cones, and geothermal features outline a ring fracture zone along which Mount Mazama collapsed to form the Crater Lake caldera during its climactic eruption about 6,850 yr B.P. Within a few years, subaerial deposits infilled the phreatic craters and then formed a thick wedge (10-20 m) of mass flow deposits shed from caldera walls. Intense volcanic activity (phreatic explosions, subaerial flows, and hydrothermal venting) occurred during this early postcaldera stage, and a central platform of subaerial andesite flows and scoria formed on the caldera floor.Radiocarbon ages suggest that deposition of Iacustrine hemipelagic sediment began on the central platform about 150 yr after the caldera collapse. This is the minimum time to fill the lake halfway with water and cover the platform assuming present hydrologic conditions of precipitation and evaporation but with negligible leakage of lake water. Wizard Island formed during the final part of the 300-yr lake-filling period as shown by its (1) upper subaerial lava flows from 0 to -70 m below present water level and lower subaqueous lava flows from -70 to -500 m and by (2) lacustrine turbidite sand derived from Wizard Island that was deposited on the central platform about 350 yr after the caldera collapse. Pollen stratigraphy indicates that the warm and dry climate of middle Holocene time correlates with the early lake deposits. Diatom stratigraphy also suggests a more thermally stratified and phosphate-rich environment associated respectively with this climate and greater hydrothermal activity during the early lake history.Apparent coarse-grained and thick-bedded turbidites of the early lake beds were deposited throughout northwest, southwest, and eastern basins during the time that volcanic and seismic activity formed the subaqueous Wizard Island, Merriam Cone, and rhyodacite dome. The last known postcaldera volcanic activity produced a subaqueous rhyodacite

  8. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2005-2006 Annual Report.

    SciTech Connect

    Faucera, Jason

    2006-06-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  9. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon : Coordination and Technical Assistance, 2004-2005 Annual Report.

    SciTech Connect

    Faucera, Jason

    2005-06-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  10. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2003-2004 Annual Report.

    SciTech Connect

    Faucera, Jason

    2004-05-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  11. Basis for paleoenvironmental interpretation of magnetic properties of sediment from Upper Klamath Lake (Oregon): Effects of weathering and mineralogical sorting

    USGS Publications Warehouse

    Rosenbaum, J.G.; Reynolds, R.L.

    2004-01-01

    Studies of magnetic properties enable reconstruction of environmental conditions that affected magnetic minerals incorporated in sediments from Upper Klamath Lake. Analyses of stream sediment samples from throughout the catchment of Upper Klamath Lake show that alteration of Fe-oxide minerals during subaerial chemical weathering of basic volcanic rocks has significantly changed magnetic properties of surficial deposits. Titanomagnetite, which is abundant both as phenocrysts and as microcrystals in fresh volcanic rocks, is progressively destroyed during weathering. Because fine-grained magnetite is readily altered due to large surface-to-volume ratios, weathering causes an increase in average magnetic grain size as well as reduction in the quantity of titanomagnetite both absolutely and relative to hematite. Hydrodynamic mineralogical sorting also produces differences in magnetic properties among rock and mineral grains of differing sizes. Importantly, removal of coarse silicate and Fe-oxide grains by sorting concentrated extremely fine-grained magnetite in the resulting sediment. The effects of weathering and sorting of minerals cannot be completely separated. These processes combine to produce the magnetic properties of a non-glacial lithic component of Upper Klamath Lake sediments, which is characterized by relatively low magnetite content and coarse magnetic grain size. Hydrodynamic sorting alone causes significant differences between the magnetic properties of glacial flour in lake sediments and of fresh volcanic rocks in the catchment. In comparison to source volcanic rocks, glacial flour in the lake sediment is highly enriched in extremely fine-grained magnetite.

  12. Water Quality, Hydrology, and Response to Changes in Phosphorus Loading of Nagawicka Lake, a Calcareous Lake in Waukesha County, Wisconsin

    USGS Publications Warehouse

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Goddard, Gerald L.; Horwatich, Judy A.

    2006-01-01

    Nagawicka Lake is a 986-acre, usually mesotrophic, calcareous lake in southeastern Wisconsin. Because of concern over potential water-quality degradation of the lake associated with further development in its watershed, a study was conducted by the U.S. Geological Survey from 2002 to 2006 to describe the water quality and hydrology of the lake; quantify sources of phosphorus, including those associated with urban development; and determine the effects of past and future changes in phosphorus loading on the water quality of the lake. All major water and phosphorus sources were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake. The Bark River, near-lake surface inflow, precipitation, and ground water contributed 74, 8, 12, and 6 percent of the inflow, respectively. Water leaves the lake primarily through the Bark River outlet (88 percent) or by evaporation (11 percent). The water quality of Nagawicka Lake has improved dramatically since 1980 as a result of decreasing the historical loading of phosphorus to the lake. Total input of phosphorus to the lake was about 3,000 pounds in monitoring year (MY) 2003 and 6,700 pounds in MY 2004. The largest source of phosphorus entering the lake was the Bark River, which delivered about 56 percent of the total phosphorus input, compared with about 74 percent of the total water input. The next largest contributions were from the urbanized near-lake drainage area, which disproportionately accounted for 37 percent of the total phosphorus input but only about 5 percent of the total water input. Simulations with water-quality models within the Wisconsin Lakes Modeling Suite (WiLMS) indicated the response of Nagawicka Lake to 10 phosphorus-loading scenarios. These scenarios included historical (1970s) and current (base) years (MY 2003-04) for which lake water quality and loading were known, six scenarios with percentage increases or decreases in phosphorus loading from

  13. Progress report on the geothermal assessment of the Jordan Valley, Salt Lake County, Utah

    SciTech Connect

    Klauk, R.H.; Darling, R.; Davis, D.A.; Gwynn, J.W.; Murphy, P.J.; Ruscetta, C.A.; Foley, D.

    1981-05-01

    Two known geothermal areas have been investigated previously in the Jordan Valley, Salt Lake County, Utah. These reports indicate meteoric water is being circulated to depth and heated by the ambient temperature derived from normal heat flow. This warm water subsequently migrates upward along permiable fault zones. The gravity survey conducted in the valley indicates a number of fault blocks are present beneath the unconsolidated valley sediments. The faults bounding these blocks could provide conduits for the upward migration of warm water. Four areas of warm water wells, in addition to the two known geothermal areas, have been delineated in the valley. However, the chemistry of the Jordan Valley is quite complex and at this time is not fully understood in regard to geothermal potential. Thick sequences of unconsolidated valley fill could conceal geothermal areas due to lateral dispersion or dilution within the principal aquifer, as well as retardation of warm water flow allowing time for cooling prior to discharge in wells or springs. Other areas are possibly diluted and cooled by high quality, ground water recharge from snow melt in the Wasatch Range.

  14. Dissolved-oxygen regime of the Jordan River, Salt Lake County, Utah

    USGS Publications Warehouse

    Stephens, D.W.

    1984-01-01

    Concentrations of dissolved oxygen in the Jordan River in Salt Lake County decrease considerably as the river flows northward. Mean concentrations of dissolved oxygen decreased from 8.1 milligrams per liter at the Jordan Narrows to 4.7 milligrams per liter at 500 North Street during April 1981 to September 1982. Coincident with the decrease, the biochemical-oxygen demand increased from 5 to 7 milligrams per liter. About 50 percent of the dissolved-oxygen concentrations and 90 percent of the 5-day biochemical-oxygen demand measured downstream from 1700 South Street exceeded the State intended-use standards. An estimated 6. million pounds of oxygen-demanding substances as measured by 5-day biochemical-oxygen demand were discharged to the Jordan River during 1981 from point sources downstream from 9000 South Street. Seven wastewater-treatment plants contributed 77 percent of this load, nonstorm base flows contributed 22 percent, and storm flows less than 1 percent. The Surplus Canal diversion at 2100 South Street removed about 70 percent of this load, and travel time of about 1 day also decreased the actual effects of the load on the river. Reaeration rates during September and October were quite high (average K2 at 20 degrees Celsius was about 12 per day) between the Jordan Narrows and 9000 South Street, but they decreased to 2.4 per day in the reach from 1330 South to 1800 North Streets. (USGS)

  15. Water-surface elevations and channel characteristics for a selected reach of the Applegate River, Jackson County, Oregon

    USGS Publications Warehouse

    Harris, David Dell; Alexander, Clyde W.

    1970-01-01

    In land-use planning for the Applegate River and its flood plain, consideration should be given to (1) preservation of the recreational attributes of the area, (2) allowance for optimum development of the flood plain's natural resources, and (3) protection of the rights of private landowners. Major factors that influence evaluation of the above considerations are the elevations and characteristics of floods. Heretofore, such flood data for the Applegate River have been inadequate to evaluate the flood potential or to use as a basis for delineating reasonable land-use zones. Therefore, at the request of Jackson County, this study was made to provide flood elevations, water-surface profiles, and channel characteristics (geometry and slope) for a reach of the Applegate River from the Jackson-Josephine County line upstream to the Applegate damsite (fig. 1). A similar study was previously made for reaches of adjacent Rogue River and Elk Creek (Harris, 1970).

  16. Simulation of the interaction of karstic lakes Magnolia and Brooklyn with the upper Floridan Aquifer, southwestern Clay County, Florida

    USGS Publications Warehouse

    Merritt, M.L.

    2001-01-01

    The stage of Lake Brooklyn, in southwestern Clay County, Florida, has varied over a range of 27 feet since measurements by the U.S. Geological Survey began in July 1957. The large stage changes have been attributed to the relation between highly transient surface-water inflow to the lake and subsurface conduits of karstic origin that permit a high rate of leakage from the lake to the Upper Floridan aquifer. After the most recent and severe stage decline (1990-1994), the U.S. Geological Survey began a study that entailed the use of numerical ground-water flow models to simulate the interaction of the lake with the Upper Floridan aquifer and the large fluctuations of stage that were a part of that process. A package (set of computer programs) designed to represent lake/aquifer interaction in the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model (MODFLOW-96) and the Three-Dimensional Method-of-Characteristics Solute-Transport Model (MOC3D) simulators was prepared as part of this study, and a demonstration of its capability was a primary objective of the study. (Although the official names are Brooklyn Lake and Magnolia Lake (Florida Geographic Names), in this report the local names, Lake Brooklyn and Lake Magnolia, are used.) In the simulator of lake/aquifer interaction used in this investigation, the stage of each lake in a simulation is updated in successive time steps by a budget process that takes into account ground-water seepage, precipitation upon and evaporation from the lake surface, stream inflows and outflows, overland runoff inflows, and augmentation or depletion by artificial means. The simulator was given the capability to simulate both the division of a lake into separate pools as lake stage falls and the coalescence of several pools into a single lake as the stage rises. This representational capability was required to simulate Lake Brooklyn, which can divide into as many as 10 separate pools at sufficiently low stage. In the

  17. Forensic Hydrogeography: Assessing Arsenic Contamination in Drinking Water, Livestock, and Agricultural Wells in Harney County, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Smitherman, L. L.

    2014-12-01

    This study investigates the relationship between elevated arsenic levels in groundwater and the regional geography within the Harney Basin in Eastern Oregon. There are multiple aquifers within this region used for public consumption, livestock production, and agriculture. Initial observations by the United States Geological Survey and independent residential water quality assessments have identified some wells containing arsenic concentrations an order of magnitude greater than the United States Environmental Protection Agency's Maximum Contaminant Level of 10 parts per billion for drinking water. However, these data are inadequate to characterize the spatial extent of arsenic contamination throughout the basin; it remains unclear which aquifers are contaminated. The basin contains a geology comprised of tuffaceous sedimentary rocks and basalt formations with extensive faulting. Productive wells range in depth from 6 to 240 meters. The present study examines the spatial extent and seasonal variation of arsenic concentrations due to changing water levels stemming from agricultural pumping. These data will aid in the development of a regional model of arsenic contamination throughout the basin.

  18. Formative Evaluation to Increase Availability of Healthy Snacks and Beverages in Stores Near Schools in Two Rural Oregon Counties, 2013

    PubMed Central

    Findholt, Nancy E.; Pickus, Hayley A.

    2015-01-01

    Introduction Children living in rural areas are at greater risk for obesity than their urban counterparts. Differences in healthy food access may contribute to this disparity. Most healthy food access initiatives target stores in urban areas. We conducted a formative evaluation to increase availability of healthy snacks and beverages in food stores near schools in rural Oregon. Methods We assessed availability of healthy snacks and beverages in food stores (n = 15) using the SNACZ (Students Now Advocating to Create Healthy Snacking Zones) checklist and conducted in-depth interviews with food store owners (n = 6). Frequency distributions were computed for SNACZ checklist items, and interview data were analyzed by using applied thematic analysis. Results Overall, availability of healthy snacks and beverages in study communities was low. Four interrelated themes regarding store owner perspectives on stocking healthy snacks and beverages emerged from the interviews: customer demand, space constraints, vendor influence, and perishability. Conclusion In addition to working with food store owners, efforts to increase availability of healthy snacks and beverages in rural areas should engage young people, food buyers (eg, schools), and vendors as stakeholders for identifying strategies to increase demand for and availability of these items. Further research will be needed to determine which strategies or combinations of strategies are feasible to implement in the study communities. PMID:26632956

  19. Formative Evaluation to Increase Availability of Healthy Snacks and Beverages in Stores Near Schools in Two Rural Oregon Counties, 2013.

    PubMed

    Izumi, Betty T; Findholt, Nancy E; Pickus, Hayley A

    2015-12-03

    Children living in rural areas are at greater risk for obesity than their urban counterparts. Differences in healthy food access may contribute to this disparity. Most healthy food access initiatives target stores in urban areas. We conducted a formative evaluation to increase availability of healthy snacks and beverages in food stores near schools in rural Oregon. We assessed availability of healthy snacks and beverages in food stores (n = 15) using the SNACZ (Students Now Advocating to Create Healthy Snacking Zones) checklist and conducted in-depth interviews with food store owners (n = 6). Frequency distributions were computed for SNACZ checklist items, and interview data were analyzed by using applied thematic analysis. Overall, availability of healthy snacks and beverages in study communities was low. Four interrelated themes regarding store owner perspectives on stocking healthy snacks and beverages emerged from the interviews: customer demand, space constraints, vendor influence, and perishability. In addition to working with food store owners, efforts to increase availability of healthy snacks and beverages in rural areas should engage young people, food buyers (eg, schools), and vendors as stakeholders for identifying strategies to increase demand for and availability of these items. Further research will be needed to determine which strategies or combinations of strategies are feasible to implement in the study communities.

  20. Preliminary Geologic Map of the Lake Mead 30' X 60' Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Beard, L.S.; Anderson, R.E.; Block, D.L.; Bohannon, R.G.; Brady, R.J.; Castor, S.B.; Duebendorfer, E.M.; Faulds, J.E.; Felger, T.J.; Howard, K.A.; Kuntz, M.A.; Williams, V.S.

    2007-01-01

    Introduction The geologic map of the Lake Mead 30' x 60' quadrangle was completed for the U.S. Geological Survey's Las Vegas Urban Corridor Project and the National Parks Project, National Cooperative Geologic Mapping Program. Lake Mead, which occupies the northern part of the Lake Mead National Recreation Area (LAME), mostly lies within the Lake Mead quadrangle and provides recreation for about nine million visitors annually. The lake was formed by damming of the Colorado River by Hoover Dam in 1939. The recreation area and surrounding Bureau of Land Management lands face increasing public pressure from rapid urban growth in the Las Vegas area to the west. This report provides baseline earth science information that can be used in future studies of hazards, groundwater resources, mineral and aggregate resources, and of soils and vegetation distribution. The preliminary report presents a geologic map and GIS database of the Lake Mead quadrangle and a description and correlation of map units. The final report will include cross-sections and interpretive text. The geology was compiled from many sources, both published and unpublished, including significant new mapping that was conducted specifically for this compilation. Geochronologic data from published sources, as well as preliminary unpublished 40Ar/39Ar ages that were obtained for this report, have been used to refine the ages of formal Tertiary stratigraphic units and define new informal Tertiary sedimentary and volcanic units.