Sample records for lake erie ohio

  1. Ohio Lake Erie Commission Homepage

    Science.gov Websites

    view the Lake Erie Protection & Restoration Plan 2016. Phosphorus Task Force Click here to see the Ohio Lake Erie Phosphorus Task Force II Final Report 2013. About the Lake Erie Commission The role of

  2. 78 FR 53677 - Safety Zone; Battle of Lake Erie Fireworks, Lake Erie, Put-In-Bay, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...-AA00 Safety Zone; Battle of Lake Erie Fireworks, Lake Erie, Put-In- Bay, OH AGENCY: Coast Guard, DHS... waters of Lake Erie, Put-In-Bay, Ohio. This zone is intended to restrict vessels from a portion of Lake Erie during the Battle of Lake Erie Fireworks. [[Page 53678

  3. The Ohio & Erie Canal: Catalyst of Economic Development for Ohio. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Ayers, Deborah

    In the 19th century, canal boats pulled along by mules carried much cargo. The canal boat was the family business, their livelihood, and their home. In Ohio, these boats glided gracefully along the Ohio and Erie Canal, heavily laden with lumber on its way north to Lake Erie where it was transferred to a lake freighter and sent to Buffalo (New…

  4. Limited Regulation of Lake Erie.

    DTIC Science & Technology

    1983-11-01

    Ontario,, Cedar Point in Ohio, Presque Isle in Pennsylvania and Hamlin in New York. Recreational boating is a significant activity on Lake Erie . Along...RD-Al47 936 LIMITED REGULATION OF LAKE ERIE (U) INTERNATIONAL LAKE i/i ERIE REGULATION STUDY BOARD NOV 83 UNCLASSIFIED F/G 13/2 N lhhhhh..hEmhhI...o lake Erie ’Governmen of 4,- % * L CTE " 84100400 .- Canad Unite Stte INTRNAIONL OIN COMISIO 4WD’ This document hais been ow for public rleoe and so

  5. 27 CFR 9.83 - Lake Erie.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... on the islands of Lake Erie across the States of New York, Pennsylvania, and Ohio. The beginning... approximately one mile north of Rock Creek, Ohio. (7) The boundary proceeds southwestward, then westward, then... is reached which is due north of the easternmost point of Kelleys Island. (9) The boundary then...

  6. 77 FR 62440 - Safety Zone; Wounded Warriors Benefit, Lake Erie, Huron, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...-AA00 Safety Zone; Wounded Warriors Benefit, Lake Erie, Huron, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the waters of Lake Erie, East Huron, Ohio. This regulation is intended to restrict vessels from portions of Lake Erie...

  7. 75 FR 33741 - Safety Zone; Tracey/Thompson Wedding, Lake Erie, Catawba Island, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ...-AA00 Safety Zone; Tracey/Thompson Wedding, Lake Erie, Catawba Island, OH AGENCY: Coast Guard, DHS... zone on Lake Erie, Catawba Island, Ohio. This temporary safety zone is intended to restrict vessels from portions of Lake Erie during the Tracey/Thompson Wedding Fireworks. This temporary safety zone is...

  8. Regional Geology of the Southern Lake Erie (Ohio) Bottom: A Seismic Reflection and Vibracore Study.

    DTIC Science & Technology

    1982-12-01

    identify by block number) Geomorphology Sand resources Seismic reflection Lake Erie Sediments Vibracores Ohio 20. ABST’RACT (Cotfme -n 9e~re .ft if...postglacial deposit thicknesses range from 0 to 22 meters and like the till, the postglacial sediment thickens lakeward. The tills were first deposited on an...ihen Data Entered) PREFACE This report is one of three reports which describe results of the Inner Continental Shelf Sediment and Structure (ICONS

  9. 78 FR 53675 - Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...-AA00 Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in-Bay... temporary safety zone in the waters of Lake Erie in the vicinity of Put-In-Bay, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during Battle of Lake Erie Reenactment near Put-In...

  10. Links related to the Western Lake Erie Basin

    EPA Pesticide Factsheets

    Western Lake Erie Basin, near Toledo (Ohio) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts

  11. Meetings and Events about Western Lake Erie Basin

    EPA Pesticide Factsheets

    Western Lake Erie Basin, near Toledo (Ohio), Louisiana of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts

  12. Massive Microbiological Groundwater Contamination Associated with a Waterborne Outbreak in Lake Erie, South Bass Island, Ohio

    PubMed Central

    Fong, Theng-Theng; Mansfield, Linda S.; Wilson, David L.; Schwab, David J.; Molloy, Stephanie L.; Rose, Joan B.

    2007-01-01

    Background A groundwater-associated outbreak affected approximately 1,450 residents and visitors of South Bass Island, Ohio, between July and September 2004. Objectives To examine the microbiological quality of groundwater wells located on South Bass Island, we sampled 16 wells that provide potable water to public water systems 15–21 September 2004. Methods We tested groundwater wells for fecal indicators, enteric viruses and bacteria, and protozoa (Cryptosporidium and Giardia). The hydrodynamics of Lake Erie were examined to explore the possible surface water–groundwater interactions. Results All wells were positive for both total coliform and Escherichia coli. Seven wells tested positive for enterococci and Arcobacter (an emerging bacterial pathogen), and F+-specific coliphage was present in four wells. Three wells were positive for all three bacterial indicators, coliphages, and Arcobacter; adenovirus DNA was recovered from two of these wells. We found a cluster of the most contaminated wells at the southeast side of the island. Conclusions Massive groundwater contamination on the island was likely caused by transport of microbiological contaminants from wastewater treatment facilities and septic tanks to the lake and the subsurface, after extreme precipitation events in May–July 2004. This likely raised the water table, saturated the subsurface, and along with very strong Lake Erie currents on 24 July, forced a surge in water levels and rapid surface water–groundwater interchange throughout the island. Landsat images showed massive influx of organic material and turbidity surrounding the island before the peak of the outbreak. These combinations of factors and information can be used to examine vulnerabilities in other coastal systems. Both wastewater and drinking water issues are now being addressed by the Ohio Environmental Protection Agency and the Ohio Department of Health. PMID:17589591

  13. Lake Erie Wastewater Management Study.

    DTIC Science & Technology

    1982-09-01

    quality problems, the causes of these problems, and a cost- effective strategy to improve Lake Erie’s water quality.Numerous questions remain...unanswered about the exact relationship between land use and water quality and about the effectiveness of the proposed management strategy. However, enough...Dr. Terry J. Logan of Ohio State University who wrote the biological availa- bility section and developed cost effectiveness of different Best

  14. National water-quality assessment of the Lake Erie-Lake St. Clair Basin, Michigan, Indiana, Ohio, Pennsylvania, and New York; environmental and hydrologic setting

    USGS Publications Warehouse

    Casey, G.D.; Myers, Donna N.; Finnegan, D.P.; ,

    1998-01-01

    The Lake Erie-Lake St. Clair Basin covers approximately 22,300 mi ?(square miles) in parts of Indiana, Michigan, Ohio, Pennsylvania, and New York. Situated in two major physiographic provinces, the Appalachian Plateaus and the Central Lowland, the basin includes varied topographic and geomorphic features that affect the hydrology. As of 1990, the basin was inhabited by approximately 10.4 million people. Lake effect has a large influence on the temperature and precipitation of the basin, especially along the leeward southeast shore of Lake Erie. Mean annual precipitation generally increases from west to east, ranging from 31.8 inches at Detroit, Mich., to 43.8 inches at Erie, Pa. The rocks that underlie the Lake Erie-Lake St. Clair Basin range in age from Cambrian through Pennsylvanian, but only Silurian through Pennsylvanian rocks are part of the shallow ground-water flow system. The position of the basin on the edge of the Michigan and Appalachian Basins is responsible for the large range in geologic time of the exposed rocks. Rock types range from shales, siltstones, and mudstones to coarse-grained sandstones and conglomerates. Carbonate rocks consisting of limestones, dolomites, and calcareous shales also underlie the basin. All the basin is overlain by Pleistocene deposits- till, fine-grained stratified sediments, and coarse-grained stratified sediments-most of Wisconsinan age. A system of buried river valleys filled with various lacustrine, alluvial, and coarse glacial deposits is present in the basin. The soils of the Lake Erie-Lake St. Clair Basin consist of two dominant soil orders: Alfisols and Inceptisols. Four other soil orders in the basin (Mollisols, Histisols, Entisols, and Spodosols) are of minor significance, making up less than 8 percent of the total area. The estimated water use for the Lake Erie-Lake St. Clair Basin for 1990 was 10,649 Mgal/d (million gallons per day). Power generation accounted for about 77 percent of total water withdrawals for

  15. Toward an annual estimate of methane emissions from Lake Erie

    NASA Astrophysics Data System (ADS)

    Fernandez, J.; Townsend-Small, A.

    2017-12-01

    Lake Erie is the shallowest, warmest, and most eutrophic of all of the North American Great Lakes. The central basin of Lake Erie exhibits seasonally hypoxic bottom waters, which contributes to biological methane (CH4) production. Leaks from extensive natural gas wells and pipelines in Canadian waters are a potential source of thermogenic CH4 to the lake. The shallow western basin lacks water column hypoxia, but experiences increasingly frequent algal blooms and hypoxic sediments. Our past research, focused on the central basin, indicated that Lake Erie is a positive source of CH4 during late summer (August - September), emitting 1.3 ± 0.6 × 105 kg CH4-C day. Here, we present a seasonal dataset of CH4 fluxes measured throughout a 16-month period starting in the spring of 2015 and ending late summer in 2016 to estimate an annual lake wide CH4 emission. Our results indicate that the western basin experienced the greatest CH4 emissions, and the highest rates of CH4 flux co-occur with the highest rates of nutrient loading and largest algal blooms near the mouth of the Maumee River. Winter CH4 fluxes were minimal and similar throughout the lake, indicating that natural gas wells are a minimal source of CH4 emissions. Emissions were highest in August and tapered off through the fall and winter, rising again in spring. The estimated annual CH4 emission in Lake Erie was 4.41 × 107 kg CH4-C yr-1. We compared this to other CH4 sources in Michigan and Ohio in the USEPA Greenhouse Gas Reporting Program Database, and found that Lake Erie is second largest emitter of CH4 in Ohio (a landfill in Cincinnati is a larger source), and the largest in Michigan. Recent work has shown that eutrophication in lakes such as Lake Erie may be on the rise due to climate change induced increases in precipitation. If so, these large CH4 emissions may have positive feedback consequences to climate warming. Therefore, more research is needed to indicate whether or not these CH4 emissions are

  16. Targets set to reduce Lake Erie algae

    USGS Publications Warehouse

    Evans, Mary

    2016-01-01

    In February 2016, the Great Lakes Executive Committee, which oversees the implementation of the Great Lakes Water Quality Agreement (GLWQA) between the U.S. and Canada, approved phosphorus loading targets for Lake Erie to reduce the size of harmful algal blooms (HABs), reduce the presence of the low oxygen zone in the central basin, and protect nearshore water quality. The targets are set with respect to the nutrient loads calculated for 2008. To reduce the impacts of HABs on Lake Erie a target was set of a 40 percent reduction in total and soluble reactive phosphorus loads in the spring from two Canadian rivers and several Michigan and Ohio rivers, especially the Maumee River (https://binational.net/2016/02/22/ finalptargets-ciblesfinalesdep/). States and the province of Ontario are already developing Domestic Action Plans to accomplish the reductions and scientists are developing research and monitoring plans to assess progress.

  17. Managing inherent complexity for sustainable walleye fisheries in Lake Erie

    USGS Publications Warehouse

    Roseman, Edward F.; Drouin, Richard; Gaden, Marc; Knight, Roger; Tyson, Jeff; Zhao, Yingming; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    In Lake Erie, Walleye (Sander vitreus vitreus) is king. The naturally occurring species is the foundation of commercial fishing operations on the Canadian side of the lake and is a much-prized sport fish on the American side. Management of Lake Erie walleye fisheries is complex and takes place in an inter-jurisdictional setting composed of resource agencies from the states of Michigan (MDNR), Ohio (ODNR), Pennsylvania (PFBC), and New York (NYDEC) and the province of Ontario (OMNR). The complexity of walleye management is exacerbated by interactions among environmental and ecological changes in Lake Erie, complex life-history characteristics of the species, public demand for walleye, and cultural/governance differences among managing groups and their respective constituents. Success of future management strategies will largely hinge upon our ability to understand these inherent complexities and to employ tactics that successfully accommodate stock productivity and human demand in a highly dynamic environment. In this report, we review the history of Lake Erie walleye management, outline the multi-jurisdictional process for international management of walleye, and discuss strategies to address challenges facing managers.

  18. Lake Erie...Take a Bow.

    ERIC Educational Resources Information Center

    Canning, Maureen; Dunlevy, Margie

    This elementary school teaching unit was developed as a part of a series of teaching units that deal with Lake Erie. This unit was developed to enable children to: (1) identify the Great Lakes and pick out Lake Erie on a map; (2) demonstrate knowledge of Lake Erie's origin and geography; (3) list some uses of Lake Erie; and (4) give examples of…

  19. Final Environmental Impact Statement. Permit Application by United States Steel Corp., Proposed Lake Front Steel Mill, Conneaut, Ohio. Volume 3.

    DTIC Science & Technology

    1979-01-01

    effluent will generally be carried by lake currents past Presque Isle and into the Lake Erie eastern basin. In the passage between Long Point and Presque ...the city of Erie Building Trades Council(s) which have jurisdiction as far west as the Ohio/ Pennsylvania border while some of the same individual craft...the relative (large) size of Erie local unions and the fact that most of their members live in the Pennsylvania Principal Study Area. Within the Ohio

  20. First records of a European cladoceran, Bythotrephes cederstroemi, in Lakes Erie and Huron

    USGS Publications Warehouse

    Bur, Michael T.; Klarer, David M.; Krieger, Kenneth A.

    1986-01-01

    Adult forms of the cladoceran Bythotrephes cederstroemi Schoedler (Cercopagidae), a widespread European freshwater zooplankter, occurred in the stomachs of four common species of Lake Erie fish (yellow perch, Perca flavescens; white perch, Morone americana; white bass, M. chrysops; and walleye, Stizostedion vitreum vitreum) collected in early October 1985. The fish were collected at several stations in the nearshore open waters of the central basin between Ashtabula and Huron, Ohio. Other investigators have seen this species in other locations in Lake Erie and also in Lake Huron. The report of B. cederstroemi in Lake Huron in December 1984 appears to be the first record of this species in North America.

  1. Testing and Refining the Ohio Nowcast at Two Lake Erie Beaches-2008

    USGS Publications Warehouse

    Francy, Donna S.; Bertke, Erin E.; Darner, Robert A.

    2009-01-01

    The Ohio Nowcast has been providing real-time beach advisories to the public on the basis of predictive models since 2006. In support of the nowcast, data were collected during the recreational season of 2008 to validate and refine predictive models at two Lake Erie beaches. Predictive models yield data on the probability that the single-sample bathing-water standard for E. coli will be exceeded. Field personnel collected or compiled data on Escherichia coli (E. coli) concentrations as well as variables expected to affect these concentrations, including manual and automated measurements of turbidity, wave height, and water temperature; lake level; and radar and airport rainfall amounts. Two new variables were measured during 2008 - photosynthetically-active radiation at Huntington (Bay Village) and foreshore head at Edgewater (Cleveland). (The foreshore is a strip of land along a body of water between low and high water marks.) The performance of the nowcast was monitored during 2008. The Huntington nowcast yielded a greater percentage of correct responses (84.9 percent) than did the previous day's E. coli concentration (75.2 percent). In contrast, at Edgewater, the nowcast yielded a slightly higher percentage of correct responses (61.0 percent) as compared to the previous day's E. coli concentration (56.5 percent), but both percentages were relatively low. Lake levels in 2008 were significantly higher than levels in the data used to develop the Edgewater models (2004-7), confounding their abilities to provide correct responses. At Edgewater during 2008, the strongest relation (as measured by Pearson's correlation) was between E. coli concentrations and the difference in foreshore head over the past 24 hours (r=0.48), a variable not included in the models. At Huntington, photosynthetically-active radiation on the previous day showed a significant negative relation to E. coli concentrations (r=-0.33) during 2008. Refined models were developed for Huntington and

  2. Barriers and benefits to desired behaviors for single use plastic items in northeast Ohio's Lake Erie basin.

    PubMed

    Bartolotta, Jill F; Hardy, Scott D

    2018-02-01

    Given the growing saliency of plastic marine debris, and the impact of plastics on beaches and aquatic environments in the Laurentian Great Lakes, applied research is needed to support municipal and nongovernmental campaigns to prevent debris from reaching the water's edge. This study addresses this need by examining the barriers and benefits to positive behavior for two plastic debris items in northeast Ohio's Lake Erie basin: plastic bags and plastic water bottles. An online survey is employed to gather data on the use and disposal of these plastic items and to solicit recommendations on how to positively change behavior to reduce improper disposal. Results support a ban on plastic bags and plastic water bottles, with more enthusiasm for a bag ban. Financial incentives are also seen as an effective way to influence behavior change, as are location-specific solutions focused on education and outreach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Water Quality Protection of the Grand Lake St. Marys in Ohio

    EPA Science Inventory

    Grand Lake St. Marys (GLSM) in northwestern Ohio is experiencing toxic levels of algal blooms resulting from nutrients, especially phosphorus (P) input from agricultural runoff. Originally constructed as a feeder reservoir for the Miami and Erie Canal, recreation activities on t...

  4. 77 FR 41686 - Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ...-AA00 Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Sheffield Lake, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  5. Lessons Learned from Stakeholder-Driven Modeling in the Western Lake Erie Basin

    NASA Astrophysics Data System (ADS)

    Muenich, R. L.; Read, J.; Vaccaro, L.; Kalcic, M. M.; Scavia, D.

    2017-12-01

    Lake Erie's history includes a great environmental success story. Recognizing the impact of high phosphorus loads from point sources, the United States and Canada 1972 Great Lakes Water Quality Agreement set load reduction targets to reduce algae blooms and hypoxia. The Lake responded quickly to those reductions and it was declared a success. However, since the mid-1990s, Lake Erie's algal blooms and hypoxia have returned, and this time with a dominant algae species that produces toxins. Return of the algal blooms and hypoxia is again driven by phosphorus loads, but this time a major source is the agriculturally-dominated Maumee River watershed that covers NW Ohio, NE Indiana, and SE Michigan, and the hypoxic extent has been shown to be driven by Maumee River loads plus those from the bi-national and multiple land-use St. Clair - Detroit River system. Stakeholders in the Lake Erie watershed have a long history of engagement with environmental policy, including modeling and monitoring efforts. This talk will focus on the application of interdisciplinary, stakeholder-driven modeling efforts aimed at understanding the primary phosphorus sources and potential pathways to reduce these sources and the resulting algal blooms and hypoxia in Lake Erie. We will discuss the challenges, such as engaging users with different goals, benefits to modeling, such as improvements in modeling data, and new research questions emerging from these modeling efforts that are driven by end-user needs.

  6. 33 CFR 334.850 - Lake Erie, west end, north of Erie Ordnance Depot, Lacarne, Ohio.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and automatic weapons impact area. (c) Authorized dates and hours of firing: (1) Danger Area I. 6 a.m... the waters of Lake Erie within: (1) Danger Area I. The sector of a circle with a radius of 6,500 yards... latitude 41°34′20″ N., longitude 82°57′10″ W. (2) Danger Area II (Includes Area I). The area bounded as...

  7. Lake Erie Wastewater Management Study.

    DTIC Science & Technology

    1983-06-01

    Lake Erie water quality problem which It has been recognized for many years, dating back this program focused on may be succinctly described Ito...mechanisms fo’ detachment and less. As will be discussed , the costs of achieving fur- transport of sediment and phosphorus to the lake. Fur- ther...WETLANDS FOREST MIXED URBAN OTHER WATER TRANSPORTATION I UTILITIES MISSING are extensively grown in the Lake Erie Basin, especial- measurement by U.S

  8. Synthetic Musk Fragrances in Lake Erie and Lake Ontario Sediment Cores

    PubMed Central

    Peck, Aaron M.; Linebaugh, Emily K.; Hornbuckle, Keri C.

    2009-01-01

    Two sediment cores collected from Lake Ontario and Lake Erie were sectioned, dated, and analyzed for five polycyclic musk fragrances and two nitro musk fragrances. The polycyclic musk fragrances were HHCB (Galaxolide), AHTN (Tonalide), ATII (Traseolide), ADBI (Celestolide), and AHMI (Phantolide). The nitro musk fragrances were musk ketone and musk xylene. Chemical analysis was performed by gas chromatography/mass spectrometry (GC/MS) and results from Lake Erie were confirmed using gas chromatography/triple-quadrupole mass spectrometry (GC/MS/MS). The chemical signals observed at the two sampling locations were different from each other due primarily to large differences in the sedimentation rates at the two sampling locations. HHCB was detected in the Lake Erie core while six compounds were detected in the Lake Ontario core. Using measured fragrance and 210Pb activity, the burden of synthetic musk fragrances estimated from these sediment cores is 1900 kg in Lake Erie and 18000 kg in Lake Ontario. The input of these compounds to the lakes is increasing. The HHCB accumulation rates in Lake Erie for 1979-2003 and 1990-2003 correspond to doubling times of 16 ± 4 yr and 8 ± 2 yr, respectively. The results reflect current U.S. production trends for the sum of all fragrance compounds. PMID:17007119

  9. 77 FR 39638 - Safety Zone; Barbara Harder Wedding Fireworks, Lake Erie, Lake View, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...-AA00 Safety Zone; Barbara Harder Wedding Fireworks, Lake Erie, Lake View, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Lake View, NY. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  10. Reeling in the damages: Harmful algal blooms' impact on Lake Erie's recreational fishing industry.

    PubMed

    Wolf, David; Georgic, Will; Klaiber, H Allen

    2017-09-01

    Lake Erie is one of the most valuable natural resources in the United States, providing billions of dollars in benefits each year to recreationalists, homeowners and local governments. The ecosystem services provided by Lake Erie, however, are under threat due to harmful algal blooms. This paper provides recreational damage estimates using spatially and temporally varying algae measures and monthly fishing permit sales collected between 2011 and 2014. Results indicate that fishing license sales drop between 10% and 13% when algal conditions surpass the World Health's Organization's moderate health risk advisory threshold of 20,000 cyanobacteria cells/mL. For Lake Erie adjacent counties experiencing a large, summer-long algal bloom, this would result in approximately 3600 fewer fishing licenses issued and approximately $2.25 million to $5.58 million in lost fishing expenditures. Our results show a discrete jump in reduced angling activity upon crossing this threshold, with limited additional impacts associated with more severe algal blooms. This suggests that policies aimed at eliminating, rather than mitigating, algal levels are most beneficial to the Ohio angling industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Management of percids in Lake Erie, North America

    USGS Publications Warehouse

    Hatch, Richard W.; Nepszy, Stephen J.; Rawson, Michael R.; van Densen, W.L.T.; Steinmetz, B.; Hughes, R.H.

    1990-01-01

    Lake Erie's fish populations and their habitats have undergone very substantial changes since 1945. Of the four percid forms originally present, the blue pike (Stizostedion vitreum glaucum) is presumed extinct, and the sauger (S. canadense) was commercially extinct by the 1950's. The walleye (S. v. vitreum) has remained stable in eastern Lake Erie but the highly productive stock of the western basin collapsed in the 1960's. Closure of the walleye fishery from 1970 to 1973, necessitated by mercury contamination, provided an opportunity for the development of an international management plan for restoration of the stock. An inter-agency Scientific Protocol Committee evaluated walleye dynamics and recommended management by quota beginning in 1976. Although quotas have been exceeded several times, the walleye stock responded well to limited exploitation, steadily increased, and expanded its range. Landings of the yellow perch (Perca flavescens) increased during the 1950's, but a steady decline in abundance, beginning in the early 1970's led to the formation in 1980 of another international inter-agency task group to recommend a basis for quota management. The short-term management recommendation, reported and accepted in 1986, was to reduce fishing effort by 20% by 1990. Both management schemes evolved when the resource agencies of the five jurisdictions (New York, Pennsylvania, Ohio, Michigan, and Ontario), in the two nations surrounding Lake Erie, perceived a need for the increased and improved management of a shared resource. They sought an international forum in which to develop strategies, appointed inter-agency scientific task groups to develop a basis for management recommendations, and adopted a quota management scheme. Each jurisdiction is responsible for the enforcement and allocation of its portion of the quota between user groups. Reports of catch, effort, and biological observations on stock performance are submitted annually to a standing technical

  12. Ecological effects of rubble-mound breakwater construction and channel dredging at West Harbor, Ohio (western Lake Erie)

    USGS Publications Warehouse

    Manny, Bruce A.; Schloesser, Donald W.; Brown, Charles L.; French, John R. P.

    1985-01-01

    The investigation reported herein indicated that breakwater construction and associated channel dredging activities by the US Army Corps of Engineers in western Lake Erie at the entrance to West Harbor (Ohio) had no detectable adverse impacts on the distributions or abundances of macrozoobenthos and fishes. Rather, increases were noted in the number of fish eggs and larvae and in the density and biomass of periphyton and macrozoobenthos on and near the breakwaters. The area also served as a nursery ground for 20 species of fishes both during and after construction and dredging activities. Colonization of the breakwaters by periphyton, primarily a green alga (Cladophora glomerata), diatoms (Gomphonema parvulum), and a bluegreen alga (Oscillatoria tenuis), and by macrozoobenthos, primarily worms (Oligochaeta), amphipods (Gammarus spp.), and midge larvae (Chironomidae), was rapid and extensive, indicating that the breakwaters provided new, favorable habitat for primary and secondary producer organisms. Marked adverse changes in water quality, especially reduced dissolved oxygen concentrations (25 mg/l), occurred around the entrance to West Harbor in 1983 following cessation of construction and dredging activities. These water quality changes, however, could not be ascribed with certainty to construction and dredging activities at West Harbor. Construction of additional breakwaters in the study area at that time by the State of Ohio served to confound determination of the responsible causal factors.

  13. Nutrient Load Estimates for Lake Erie 2005

    EPA Science Inventory

    Evaluation of phosphorus loads to Lake Erie is in progress for multiple uses in the Lake Erie ECOFORE Program. Emphasis is being placed on phosphorus loadings in 1976, 2005, and 2007 for model calibration and other purposes. This presentation focuses on an overview of temporal ...

  14. Potential strategies for recovery of lake whitefish and lake herring stocks in eastern Lake Erie

    USGS Publications Warehouse

    Oldenburg, K.; Stapanian, M.A.; Ryan, P.A.; Holm, E.

    2007-01-01

    Lake Erie sustained large populations of ciscoes (Salmonidae: Coregoninae) 120 years ago. By the end of the 19th century, abundance of lake whitefish (Coregonus clupeaformis) had declined drastically. By 1925, the lake herring (a cisco) population (Coregonus artedii) had collapsed, although a limited lake herring fishery persisted in the eastern basin until the 1950s. In the latter part of the 20th century, the composition of the fish community changed as oligotrophication proceeded. Since 1984, a limited recovery of lake whitefish has occurred, however no recovery was evident for lake herring. Current ecological conditions in Lake Erie probably will not inhibit recovery of the coregonine species. Recovery of walleye (Sander vitreus) and efforts to rehabilitate the native lake trout (Salvelinus namaycush) in Lake Erie will probably assist recovery because these piscivores reduce populations of alewife (Alosa psuedoharengus) and rainbow smelt (Osmerus mordax), which inhibit reproductive success of coregonines. Although there are considerable spawning substrates available to coregonine species in eastern Lake Erie, eggs and fry would probably be displaced by storm surge from most shoals. Site selection for stocking or seeding of eggs should consider the reproductive life cycle of the stocked fish and suitable protection from storm events. Two potential sites in the eastern basin have been identified. Recommended management procedures, including commercial fisheries, are suggested to assist in recovery. Stocking in the eastern basin of Lake Erie is recommended for both species, as conditions are adequate and the native spawning population in the eastern basin is low. For lake herring, consideration should be given to match ecophenotypes as much as possible. Egg seeding is recommended. Egg seeding of lake whitefish should be considered initially, with fingerling or yearling stocking suggested if unsuccessful. Spawning stocks of whitefish in the western basin of Lake

  15. The occurrence of the longjaw cisco, Leucichthys alpenae, in Lake Erie

    USGS Publications Warehouse

    Scott, W.B.; Smith, Stanford H.

    1962-01-01

    The longjaw cisco, Leucichthys alpenae, is shown to be a species new to the Lake Erie fauna. The taxonomic work on Lake Erie ciscoes is reviewed. Thirty three specimens of L. alpenae taken in 1946, 1947 and 1957 are compared morphometrically with Leucichthys artedi of Lake Erie, the only other cisco species in the lake. L. alpenae has a longer and deeper head, longer maxillary and fewer gill rakers. L. alpenae is more distinct from L. artedi in Lake Huron than in Lake Erie. The rate of growth of L. alpenae in Lake Erie compares favourably with that in Lake Michigan.

  16. Nowcasting Beach Advisories at Ohio Lake Erie Beaches

    USGS Publications Warehouse

    Francy, Donna S.; Darner, Robert A.

    2007-01-01

    Data were collected during the recreational season of 2007 to test and refine predictive models at three Lake Erie beaches. In addition to E. coli concentrations, field personnel collected or compiled data for environmental and water-quality variables expected to affect E. coli concentrations including turbidity, wave height, water temperature, lake level, rainfall, and antecedent dry days and wet days. At Huntington (Bay Village) and Edgewater (Cleveland) during 2007, the models provided correct responses 82.7 and 82.1 percent of the time; these percentages were greater than percentages obtained using the previous day?s E. coli concentrations (current method). In contrast, at Villa Angela during 2007, the model provided correct responses only 61.3 percent of the days monitored. The data from 2007 were added to existing datasets and the larger datasets were split into two (Huntington) or three (Edgewater) segments by date based on the occurrence of false negatives and positives (named ?season 1, season 2, season 3?). Models were developed for dated segments and for combined datasets. At Huntington, the summed responses for separate best models for seasons 1 and 2 provided a greater percentage of correct responses (85.6 percent) than the one combined best model (83.1 percent). Similar results were found for Edgewater. Water resource managers will determine how to apply these models to the Internet-based ?nowcast? system for issuing water-quality advisories during 2008.

  17. Quantifying the Urban and Rural Nutrient Fluxes to Lake Erie Using a Paired Watershed Approach

    NASA Astrophysics Data System (ADS)

    Hopkins, M.; Beck, M.; Rossi, E.; Luh, N.; Allen-King, R. M.; Lowry, C.

    2016-12-01

    Excess nutrients have a detrimental impact on the water quality of Lake Erie, specifically nitrate and phosphate, which can lead to toxic algae blooms. Algae blooms have negatively impacted Lake Erie, which is the main source of drinking water for many coastal Great Lake communities. In 2014 the city of Toledo, Ohio was forced to shut down its water treatment plant due to these toxic algae blooms. The objective of this research is to quantify surface water nutrient fluxes to the eastern basin of Lake Erie using a paired watershed approach. Three different western New York watersheds that feed Lake Erie were chosen based on land use and areal extent: one small urban, one small rural, and one large rural. These paired watersheds were chosen to represent a range of sources of potential nutrient loading to the lake. Biweekly water samples were taken from the streams during the 2015-2016 winter to summer seasonal transition to quantify springtime snow melt effects on nutrient fluxes. These results were compared to the previous year samples, collected over the summer of 2015, which represented wetter conditions. Phosphorous levels were assessed using the ascorbic acid colorimetric assay, while nitrate was analyzed by anion-exchange chromatography. Stream gaging was used to obtain flow measurements and establish a rating curve, which was incorporated to quantify seasonal nutrient fluxes entering the lake. Patterns in the nutrient levels show higher level of nutrients in the rural watersheds with a decrease in concentration over the winter to spring transition. However, nutrient patterns in the urban stream show relatively constant patters of nutrient flux, which is independent of seasonal transition or stream discharge. A comparison of wet and dry seasons shows higher nutrient concentrations during summers with greater rainfall. By identifying the largest contributors of each nutrient, we can better allocate limited attenuation resources.

  18. Impacts of aquatic nonindigenous invasive species on the Lake Erie ecosystem

    USGS Publications Warehouse

    Austen, Madeline J.W.; Ciborowski, Jan J.H.; Corkum, Lynda D.; Johnson, Tim B.; MacIsaac, Hugh J.; Metcalfe-Smith, Janice L.; Schloesser, Donald W.; George, Sandra E.

    2002-01-01

    Lake Erie is particularly vulnerable to the introduction and establishment of aquatic nonindigenous invasive species (NIS) populations. A minimum of 144 aquatic NIS have been recorded in the Lake Erie basin including several species [e.g., Eurasian watermilfoil (Myriophyllum spicatum); zebra mussel (Dreissena polymorpha); quagga mussel (Dreissena bugensis); an amphipod (Echinogammarus ischnus); round goby (Neogobius melanostomus); and sea lamprey (Petromyzon marinus)] that have had discernible impacts on the lake's ecology. NIS pose threats to the Lake Erie ecosystem for a variety of reasons including their ability to proliferate quickly, compete with native species, and transfer contaminants (e.g., PCBs) and disease through the food web. Six of the 14 beneficial use impairments listed in Annex 2 of the Great Lakes Water Quality Agreement are impaired in Lake Erie, in part as a result of the introduction of NIS. The Lake Erie Lakewide Management Plan (LaMP) has adopted an ecosystem approach to restore beneficial use impairments in the lake. Furthermore, a research consortium, known as the Lake Erie Millennium Network, is working alongside the LaMP, to address research problems regarding NIS, the loss of habitat, and the role of contaminants in the Lake Erie ecosystem.

  19. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2014

    USGS Publications Warehouse

    Bodamer Scarbro, Betsy L.; Edwards, William; Gawne, Carrie; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, Mark W.; Stewart, Taylor

    2015-01-01

    In 2014, the USGS LEBS successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Forage Fish Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment, the Eastern Basin Coldwater Community Assessment, and LTLA (see FTG, CWTG, and FTG reports, respectively). Results from the surveys contribute to Lake Erie Committee Task Group data needs and analyses of trends in Lake Erie’s fish communities. The cruise survey schedule in 2014 was greatly increased by LEBS’s participation in the Lake Erie CSMI, which consisted of up-to two weeks of additional sampling per month from April to October. CSMI is a bi-national effort that occurs at Lake Erie every five years with the purpose of addressing data and knowledge gaps necessary to management agencies and the Lake Erie LaMP. LEBS deepwater science capabilities also provided a platform for data collection by Lake Erie investigators from multiple agencies and universities including: the USGS GLSC, ODW, KSU, OSU, UM, PU, UT, and the USNRL. Samples from this survey are being processed and a separate report of the findings will be made available in a separate document. Our 2014 vessel operations were initiated in mid-April, as soon after ice-out as possible, and continued into early December. During this time, crews of the R/V Muskie and R/V Bowfin deployed 196 bottom trawls covering 48.5 km of lake-bottom, nearly 6 km of gillnet, collected data from 60 hydroacoustics transects, 285 lower trophic (i.e., zooplankton and benthos) samples, and 330 water quality measures (e.g., temperature profiles, water samples). Thus, 2014 was an intensive year of field activity. Our June and September bottom trawl surveys in the Western Basin were numerically dominated by Emerald Shiner, White Perch, and Yellow Perch; however, Freshwater Drum were

  20. Lake Erie Water Level Study. Main Report.

    DTIC Science & Technology

    1981-07-01

    of recreational beach activities. Examples include: Rondeau, Long Point and Sandbanks in Canada and Hamlin (New York), Presque Isle ( Pennsylvania ...be most affected by lake level changes. Long Point, Rondeau, Sandusky, and Presque Isle Bays are, due to their shallow nature and sand spit formation...AD-AI14 582 INTERNATIONAL LAKE ERIE REGULATION STUDY BOARD F/9 13/2 LAKE ERIE WATER LEVEL STUDY. MAIN REPORT.(U) UNCLASSIFIED N1.3 iE~hE

  1. Arcobacter in Lake Erie beach waters: an emerging gastrointestinal pathogen linked with human-associated fecal contamination.

    PubMed

    Lee, Cheonghoon; Agidi, Senyo; Marion, Jason W; Lee, Jiyoung

    2012-08-01

    The genus Arcobacter has been associated with human illness and fecal contamination by humans and animals. To better characterize the health risk posed by this emerging waterborne pathogen, we investigated the occurrence of Arcobacter spp. in Lake Erie beach waters. During the summer of 2010, water samples were collected 35 times from the Euclid, Villa Angela, and Headlands (East and West) beaches, located along Ohio's Lake Erie coast. After sample concentration, Arcobacter was quantified by real-time PCR targeting the Arcobacter 23S rRNA gene. Other fecal genetic markers (Bacteroides 16S rRNA gene [HuBac], Escherichia coli uidA gene, Enterococcus 23S rRNA gene, and tetracycline resistance genes) were also assessed. Arcobacter was detected frequently at all beaches, and both the occurrence and densities of Arcobacter spp. were higher at the Euclid and Villa Angela beaches (with higher levels of fecal contamination) than at the East and West Headlands beaches. The Arcobacter density in Lake Erie beach water was significantly correlated with the human-specific fecal marker HuBac according to Spearman's correlation analysis (r = 0.592; P < 0.001). Phylogenetic analysis demonstrated that most of the identified Arcobacter sequences were closely related to Arcobacter cryaerophilus, which is known to cause gastrointestinal diseases in humans. Since human-pathogenic Arcobacter spp. are linked to human-associated fecal sources, it is important to identify and manage the human-associated contamination sources for the prevention of Arcobacter-associated public health risks at Lake Erie beaches.

  2. Resource crises in Lake Erie

    USGS Publications Warehouse

    Hartman, Wilbur L.

    1970-01-01

    Despite the tremendous value of the Great Lakes, a malaise is seriously destroying their worth. Accelerated enrichment, unabated pollution, over-exploitation, and accidental and intentional introduction of exotic species, have all been guided--more often misguided--by man. Of all five Great Lakes, Lake Erie stands out as the one most seriously damaged and in the greates further jeopardy at the present time.

  3. Detection and Modeling of a Meteotsunami in Lake Erie During a High Wind Event on May 27, 2012

    NASA Astrophysics Data System (ADS)

    Anderson, E. J.; Schwab, D. J.; Lombardy, K. A.; LaPlante, R. E.

    2012-12-01

    On May 27, 2012, a mesoscale convective system moved southeast across the central basin of Lake Erie (the shallowest of the Great Lakes) causing an increase in surface wind speed from 3 to 15 m/s over a few minutes. Although no significant pressure change was observed during this period (+1 mbar), the storm resulted in 3 reported edge waves on the southern shore (5 minutes apart), with wave heights up to 7 feet (2.13 m). Witnesses along the coast reported that the water receded before the waves hit, the only warning of the impending danger. After impact on the southern shore, several individuals were stranded in the water near Cleveland, Ohio. Fortunately, there were no fatalities or serious injury as a result of the edge waves. The storm event yielded two separate but similar squall line events that impacted the southern shore of Lake Erie several hours apart. The first event had little impact on nearshore conditions, however, the second event (moving south-eastward at 21.1 m/s or 41 knots), resulted in 7 ft waves near Cleveland as reported above. The thunderstorms generated three closely packed outflow boundaries that intersected the southern shore of Lake Erie between 1700 and 1730 UTC. The outflow boundaries were followed by a stronger outflow at 1800 UTC. Radial velocities on the WSR-88D in Cleveland, Ohio indicated the winds were stronger in the second outflow boundary. The radar indicated winds between 20.6 and 24.7 m/s (40 and 48 knots) within 240 meters (800 feet) above ground level. In order to better understand the storm event and the cause of the waves that impacted the southern shore, a three-dimensional hydrodynamic model of Lake Erie has been developed using the Finite Volume Coastal Ocean Model (FVCOM). The model is being developed as part of the Great Lakes Coastal Forecasting (GLCFS), a set of experimental real-time pre-operational hydrodynamic models run at the NOAA Great Lakes Research Laboratory that forecast currents, waves, temperature, and

  4. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  5. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  6. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  7. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  8. Age and growth of the lake whitefish, Coregonus clupeaformis (Mitchill), in Lake Erie

    USGS Publications Warehouse

    Van Oosten, John; Hile, Ralph

    1949-01-01

    Although the whitefish has by no means ranked first from the standpoint of production, it has always been an important commercial species in Lake Erie. Trends in the output of whitefish have differed in the United States and Canadian waters of the lake. The 1893–1946 average annual yield of 1,201,000 pounds in the United States was only 38.3 percent of the 1879–1890 mean of 3,133,000 pounds, whereas in Canada the more recent (1907–1946) average annual take of 1,397,000 pounds has been 5.48 times the 1871–1906 mean of 255,000 pounds. The United States fishery was centered in the western part of Lake Erie (61.5 percent of the production in Michigan and Ohio) before 1921 and in the eastern part (62.6 percent in Pennsylvania and New York) in 1921–1946. The eastern part of Lake Erie (east of Port Burwell) dominated the Canadian production in 1900–1909 (65.4 percent) and in 1922–1946 (57.2 percent) but the western end was the more productive in 1871–1899 (79.8 percent) and 1910–1921 (69.7 percent). Ages were determined and individual growth histories calculated from the examination and measurement of the scales of 3,399 Lake Erie whitefish captured off four ports (Sandusky, Lorain, and Conneaut, Ohio, and Erie, Pennsylvania) over the period, 1927–1930. The number of specimens used for the investigation of other phases of the life history varied according to the amount of data available or required. Age-group III was typically (but not invariably) dominant in random samples from gear employed for the commercial production of whitefish (trap nets, pound nets, and large-mesh gill nets). The same age group also dominated most samples of the marketable catch (that is, whitefish that equalled or exceeded the minimum legal weight of 1 3/4 pounds) taken in late summer, autumn, and early winter. Age-group IV, however, was strongest among marketable fish from trap nets in early July although the III group was dominant in the random samples from the same nets

  9. Walleye in Lake Erie and Lake St. Clair

    USGS Publications Warehouse

    Nepszy, S.J.; Davies, D.H.; Einhouse, D.; Hatch, R.W.; Isbell, G.; MacLennan, D.; Muth, K.M.

    1991-01-01

    The history and current status of walleye (Stizostedion vitreum vitreum) stocks in Lake Erie and Lake St. Clair are reviewed in relation to their exploitation by commercial and recreational fishermen, environmental factors, rehabilitation efforts, and community dynamics. Management initiatives and stock recovery under these processes are outlined. After the collapse of the fishery in 1957, the highly productive walleye stock of western Lake Erie remained depressed through the 1960s, while the eastern basin stock remained stable. Closure of the fishery for walleye from 1970-73 because of mercury contamination provided an opportunity for the development of an international interagency management plan. With quota management, the walleye stock in western Lake Erie responded well to limited exploitation, steadily increased, and expanded its range. As population expanded, growth began to decline and was more apparent in the young-of-the-year (YOY) in the 1970s, and in older walleye in the late 1970s and 1980s. At the turn of the century, commercial harvest of walleye in Lake St. Clair ranged from 12-127 tonnes annually. A relatively stable period from 1910-59 was followed by significantly increased harvests (100-150 t) in 1959-65. This increase was a result of increased commercial exploitation as well as an increased abundance of walleye. After the mercury contamination problem of 1970, angling effort and harvest was reduced but then gradually increased in Ontario waters from 37 t in 1973 to 62 t in 1988. The increased mean age of the stock during the early 1970s was due to a few strong year-classes (1970, 1972, and 1974) as well as a period of stable or reduced catch per unit effort. With the current mean age not reduced significantly, the stocks of walleye should continue to provide good yields.

  10. Changes in the bottom fauna of western Lake Erie

    USGS Publications Warehouse

    Manny, Bruce A.; Schloesser, D.W.; Munawar, M.; Edsall, T.; Munawar, I.F.

    1999-01-01

    The bottom fauna of western Lake Erie has changed dramatically over the past 50 years in response to environmental degradation and biological invasions. In 1953, low dissolved oxygen reduced the biodiversity of that fauna, especially burrowing mayflies and freshwater mussels (Unionidae). Canada and the United States signed the Great Lakes Water Quality Agreement in 1972. By 1982, over 7 billion dollars were spent to improve wastewater treatment plants in the Great Lakes Basin. To assess how the bottom fauna responded to pollution abatement measures, we studied the distribution, abundance, and diversity of bottom fauna in western Lake Erie in 1982 and compared our findings to those of Carr and Hiltunen (1965). Zebra mussels (Dreissena polymorpha) invaded Lake Erie in 1986 and greatly altered these waters. For perspective, we also compared our results to bottom fauna present at the same stations in 1930 (by reference to data in Carr and Hiltunen, 1965) and reviewed the responses of burrowing mayflies and freshwater mussels to the zebra mussel invasion.

  11. 78 FR 36662 - Safety Zone; Fairport Harbor Mardi Gras, Lake Erie, Fairport, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ...-AA00 Safety Zone; Fairport Harbor Mardi Gras, Lake Erie, Fairport, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Fairport Harbor, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during...

  12. ERTS-1 observes algal blooms in Lake Erie and Utah Lake

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1973-01-01

    During late summer when the surface waters of Lake Erie reach their maximum temperature an algal bloom is likely to develop. Such phenomena have been noticed on other shallow lakes using ERTS-1 and characterize eutrophic conditions. The concentration of the algae into long streamers provides additional information on surface circulations. To augment the ERTS-1 MSS data of Lake Erie an aircraft was flown to provide correlative thermal-IR and additional multiband photographs. The algal bloom is highly absorptive in the visible wavelengths but reverses contrast with the surrounding water in the near-IR bands. The absorption of shortwave energy heats the dark brown algal mass, providing a hot surface target for the thermal-IR scanner.

  13. Internal loading of phosphate in Lake Erie Central Basin.

    PubMed

    Paytan, Adina; Roberts, Kathryn; Watson, Sue; Peek, Sara; Chuang, Pei-Chuan; Defforey, Delphine; Kendall, Carol

    2017-02-01

    After significant reductions in external phosphorus (P) loads, and subsequent water quality improvements in the early 1980s, the water quality of Lake Erie has declined considerably over the past decade. The frequency and magnitude of harmful algal blooms (primarily in the western basin) and the extent of hypoxic bottom waters in the central basin have increased. The decline in ecosystem health, despite meeting goals for external P loads, has sparked a renewed effort to understand P cycling in the lake. We use pore-water P concentration profiles and sediment cores incubation experiments to quantify the P flux from Lake Erie central basin sediments. In addition, the oxygen isotopes of phosphate were investigated to assess the isotopic signature of sedimentary phosphate inputs relative to the isotopic signature of phosphate in lake water. Extrapolating the total P sediment flux based on the pore-water profiles to the whole area of the central basin ranged from 300 to 1250metric tons per year and using the flux based on core incubation experiments an annual flux of roughly 2400metric tons of P is calculated. These estimates amount to 8-20% of the total external input of P to Lake Erie. The isotopic signature of phosphate in the extractable fraction of the sediments (~18‰) can explain the non-equilibrium isotope values of dissolved phosphate in the deep water of the central basin of Lake Erie, and this is consistent with sediments as an important internal source of P in the Lake. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Changing abundance of Hexagenia mayfly nymphs in western Lake Erie of the Laurentian Great Lakes: Impediments to assessment of lake recovery?

    USGS Publications Warehouse

    Schloesser, D.W.; Nalepa, T.F.

    2001-01-01

    After an absence of 40 years, mayfly nymphs of the genus Hexagenia were found in sediments of western Lake Erie of the Laurentian Great Lakes in 1993 and, by 1997, were abundant enough to meet a mayfly-density management goal (ca. 350 nymphs m—2) based on pollution-abatement programs. We sampled nymphs in western Lake Erie and Lake St. Clair, located upstream of western Lake Erie, to determine the importance of seasonal abundance and life-history characteristics of nymphs (e.g., emergence and recruitment) on density estimates relative to the mayfly-density management goal. Two types of density patterns were observed: (1) densities were relatively high in spring and gradually decreased through late summer (observed in Lake Erie and Lake St. Clair in 1997 and Lake St. Clair in 1999) and (2) densities were relatively high in spring, gradually decreased to mid summer, abruptly decreased in mid summer, and then increased between summer and late fall (Lake Erie and Lake St. Clair in 1998 and Lake Erie in 1999). Length-frequency distributions of nymphs and observations of adults indicate that the primary cause for the two density patterns was attributed to failed (first pattern) and successful (second pattern) reproduction and emergence of nymphs into adults in mid summer. Gradual declines in densities were attributed to mortality of nymphs. Our results indicate that caution should be used when evaluating progress of pollution-abatement programs based on mayfly densities because recruitment success is variable both between and within years. Additionally, the interpretation of progress toward management goals, relative to the restoration of Hexagenia populations in the Great Lakes and possibly other water bodies throughout the world, is influenced by the number of years in which consequtive collections are made.

  15. Annotated Bibliography for Lake Erie. Volume I. Biological,

    DTIC Science & Technology

    1974-10-01

    varieties of naiades from I Lake Erie . Nautilus. 32(l):9-12. Three new varieties of naiades collected at Presque Isle , Pennsylvania are carefully...E. 1909. A botanical survey of Presque Isle , Erie County, Pennsylvania . Annals Carnegie Mus. Pittsburgh, Penn. Pub. 53. 5(l):2 9-421. This study...of vegetation on Presque Isle . (SM) 401. Jennings, Otto E. 1930. A survey of the phytoplankton at Erie , Pennsylvania . Science. 71(1848):560-61. A

  16. Annotated Bibliography for Lake Erie. Volume II. Chemical,

    DTIC Science & Technology

    1974-10-01

    on the ecology of Presque Isle Bay, Erie , Pennsylvania . Environmental Sciences, Inc. Pittsburg, Pa. 232 p. Water quality in Presque Isle Bay is...Gottschall, Russell Y. 1930. Preliminary report on the phytoplankton and pollution in Presque Isle Bay, Lake Erie . Proc. Pa. Acad. Sci. 4:69-74. The...waters of Presque Isle Bay and vicinity are contaminated with sewage from the city of Erie . No evidence to date has been found of anaerobic respiration or

  17. Lake Erie phosphorus loading and Cladophora updates

    EPA Science Inventory

    The presentation will focus on updates or progress being made on each Phosphorus Loadings and Cladophora for Lake Erie. The format will give a brief summary of data, findings, and results that were used by the Great Lakes Water Quality Agreement (GLWQA) Annex 4 Nutrients Modeli...

  18. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    NASA Astrophysics Data System (ADS)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  19. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2015

    USGS Publications Warehouse

    Bodamer Scarbro, Betsy L.; Edwards, W.H.; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, M. R.; Schoonyan, A. L.; Stewart, T. R.

    2016-01-01

    In 2015, the U.S. Geological Survey’s (USGS) Lake Erie Biological Station (LEBS) successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Fish Community Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment, the Eastern Basin Coldwater Community Assessment, and Lower Trophic Level Assessment (see Forage and Coldwater Task Group reports). In 2015, LEBS also initiated a Lake Erie Central Basin Trawling survey in response to the need for forage fish data from Management Unit 3 (as defined by the Yellow Perch Task Group). Results from these surveys contribute to Lake Erie Committee Fish Community Goals and Objectives. Our 2015 vessel operations were initiated in early April and continued into late November. During this time, crews of the R/V Muskie and R/V Bowfin deployed 121 bottom trawls covering 83.2 ha of lake-bottom and catching 105,600 fish totaling 4,065 kg during four separate trawl surveys in the western and central basins of Lake Erie. We deployed and lifted 9.5 km of gillnet, which caught an additional 805 fish, 100 (337 kg) of which were the native coldwater predators Lake Trout, Burbot, and Lake Whitefish (these data are reported in the 2016 Coldwater Task Group report). We also conducted 317 km of hydroacoustic survey transects (reported in the 2016 Forage Task Group report), collected 114 lower trophic (i.e. zooplankton and benthos) samples, and obtained 216 water quality observations (e.g., temperature profiles, and water samples). The LEBS also assisted CLC member agencies with the maintenance and expansion of GLATOS throughout all three Lake Erie sub-basins. Within the following report sections, we describe results from three trawl surveys – the spring and autumn Western Basin Forage Fish Assessment and the East Harbor Forage Fish Assessment – and

  20. Occurrence of zebra mussels in near-shore areas of western Lake Erie

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.

    1997-01-01

    Zebra mussels (Dreissena polymorpha) invaded the Great Lakes in the mid-1980s and quickly reached high densities. The objective of this study was to determine current consumption of zebra mussels by waterfowl in the Great Lakes region. Feeding Lesser Scaups (Aythya affinis), Greater Scaups (A. marila), Canvasbacks (A. valisineria), Redheads (A. americana), Buffleheads (Bucephala albeola) and Common Goldeneyes (B. clangula) were collected in western Lake Erie and in Lake St. Clair between fall and spring, 1992-1993 to determine food habits. All 10 Redheads, 97% of Lesser Scaups, 83% of Goldeneyes, 60% of Buffleheads and 9% of Canvasbacks contained one or more zebra mussels in their upper gastrointestinal tracts. The aggregate percent of zebra mussels in the diet of Lesser Scaups was higher in Lake Erie (98.6%) than in Lake St. Clair (54.4%). Zebra mussels, (aggregate percent) dominated the diet of Common Goldeneyes (79.2%) but not in Buffleheads (23.5%), Redheads (21%) or Canvasbacks (9%). Lesser Scaups from Lake Erie fed on larger zebra mussels ( = 10.7 i?? 0.66 mm SE) than did Lesser Scaups from Lake St. Clair ( = 4.4 i?? 0.22 mm). Lesser Scaups, Buffleheads and Common Goldeneyes from Lake Erie consumed zebra mussels of similar size.

  1. Reconstructing Heat Fluxes Over Lake Erie During the Lake Effect Snow Event of November 2014

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, L.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Spence, C.; Chen, J.; Shao, C.; Posselt, D. J.; Wright, D. M.; Lofgren, B. M.; Schwab, D. J.

    2017-12-01

    The extreme North American winter storm of November 2014 triggered a record lake effect snowfall (LES) event in southwest New York. This study examined the evaporation from Lake Erie during the record lake effect snowfall event, November 17th-20th, 2014, by reconstructing heat fluxes and evaporation rates over Lake Erie using the unstructured grid, Finite-Volume Community Ocean Model (FVCOM). Nine different model runs were conducted using combinations of three different flux algorithms: the Met Flux Algorithm (COARE), a method routinely used at NOAA's Great Lakes Environmental Research Laboratory (SOLAR), and the Los Alamos Sea Ice Model (CICE); and three different meteorological forcings: the Climate Forecast System version 2 Operational Analysis (CFSv2), Interpolated observations (Interp), and the High Resolution Rapid Refresh (HRRR). A few non-FVCOM model outputs were also included in the evaporation analysis from an atmospheric reanalysis (CFSv2) and the large lake thermodynamic model (LLTM). Model-simulated water temperature and meteorological forcing data (wind direction and air temperature) were validated with buoy data at three locations in Lake Erie. The simulated sensible and latent heat fluxes were validated with the eddy covariance measurements at two offshore sites; Long Point Lighthouse in north central Lake Erie and Toledo water crib intake in western Lake Erie. The evaluation showed a significant increase in heat fluxes over three days, with the peak on the 18th of November. Snow water equivalent data from the National Snow Analyses at the National Operational Hydrologic Remote Sensing Center showed a spike in water content on the 20th of November, two days after the peak heat fluxes. The ensemble runs presented a variation in spatial pattern of evaporation, lake-wide average evaporation, and resulting cooling of the lake. Overall, the evaporation tended to be larger in deep water than shallow water near the shore. The lake-wide average evaporations

  2. Thinking outside of the Lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed?

    USDA-ARS?s Scientific Manuscript database

    Investment in agricultural conservation practices (CPs) to address Lake Erie's re-eutrophication may offer benefits that extend beyond the lake, such as improved habitat conditions for fish communities throughout the watershed. If such conditions are not explicitly considered in Lake Erie nutrient ...

  3. 78 FR 30765 - Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...-AA00 Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH AGENCY: Coast... zone on Lake Erie, Bay Village, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Bay Village Independence Day Fireworks display. This temporary safety zone is...

  4. 77 FR 39420 - Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ...-AA00 Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH AGENCY: Coast... zone on Lake Erie, Bay Village, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Bay Village Independence Day Fireworks display. This temporary safety zone is...

  5. Estimating microcystin levels at recreational sites in western Lake Erie and Ohio

    USGS Publications Warehouse

    Francy, Donna S.; Brady, Amie M. G.; Ecker, Christopher D.; Graham, Jennifer L.; Stelzer, Erin A.; Struffolino, Pamela; Loftin, Keith A.

    2016-01-01

    Cyanobacterial harmful algal blooms (cyanoHABs) and associated toxins, such as microcystin, are a major global water-quality issue. Water-resource managers need tools to quickly predict when and where toxin-producing cyanoHABs will occur. This could be done by using site-specific models that estimate the potential for elevated toxin concentrations that cause public health concerns. With this study, samples were collected at three Ohio lakes to identify environmental and water-quality factors to develop linear-regression models to estimate microcystin levels. Measures of the algal community (phycocyanin, cyanobacterial biovolume, and cyanobacterial gene concentrations) and pH were most strongly correlated with microcystin concentrations. Cyanobacterial genes were quantified for general cyanobacteria, general Microcystis and Dolichospermum, and for microcystin synthetase (mcyE) for Microcystis, Dolichospermum, and Planktothrix. For phycocyanin, the relations were different between sites and were different between hand-held measurements on-site and nearby continuous monitor measurements for the same site. Continuous measurements of parameters such as phycocyanin, pH, and temperature over multiple days showed the highest correlations to microcystin concentrations. The development of models with high R2values (0.81–0.90), sensitivities (92%), and specificities (100%) for estimating microcystin concentrations above or below the Ohio Recreational Public Health Advisory level of 6 μg L−1 was demonstrated for one site; these statistics may change as more data are collected in subsequent years. This study showed that models could be developed for estimates of exceeding a microcystin threshold concentration at a recreational freshwater lake site, with potential to expand their use to provide relevant public health information to water resource managers and the public for both recreational and drinking waters.

  6. Identification, movement, growth, mortality, and exploitation of walleye stocks in Lake St. Clair and the western basin of Lake Erie

    USGS Publications Warehouse

    Haas, Robert C.; Fabrizio, Mary C.; Todd, Thomas N.

    1988-01-01

    The harvest of walleye by sport and commercial fisheries in lakes St. Clair and Erie is under a cooperative management program involving several states and two countries. In this report we present the results of a long-term tag-recapture study as well as corroborative evidence of stock discreteness fromstudies of population characteristics such as growth and allelic frequencies of walleye in these waters. Walleye were tagged in the spring from 1975-87 in lakes St. Clair and Erie. Tag-recapture data indicate a general tendency for walleye to move northward after tagging. Walleye tagged in Lake St. Clair had higher recovery rates and lower survival rates than walleye tagged in Lake Erie. A reward-tag study in Lake St. Clair provided an estimate of a non-reporting rate of approximately 33% which is comparable to rates in the literature for other species. Data from the Ontario commercial (gill-net) fishery, Michigan Department of Natural Resources trap-net surveys, and sport fisheries from western Lake Erie and Lake St. Clair were analyzed with a catch-at-age model which permitted estimation of population abundance (12.2 to 34.5 million fish), fishing mortality rate (0.19 to 0.37), and annual survival rate (0.57 to 0.68). It appears that exploitation rates for the sport fishery in the western basin exceeded those of the commercial fishery from 1978-82. In recent years (1983-87), exploitation rates were comparable. Average abundance and catch of walleye in the western basin were 12.2 million and 3.4 million fish in 1978-82; average abundance and catch in 1983-87 were 34.5 and 5.2 million fish. We found good agreement between the estimate of the harvest from creel surveys and that from the catch-at-age model for Lake Erie. Walleye abundance and harvest in Lake St. Clair were 10% of the values for the western basin of Lake Erie. Two discrete stocks were delineated be analysis of allelic frequencies of samples from Lake St. Clair and Lake Erie spawning populations. These

  7. 77 FR 38490 - Safety Zone; Mentor Harbor Yachting Club Fireworks, Lake Erie, Mentor, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...-AA00 Safety Zone; Mentor Harbor Yachting Club Fireworks, Lake Erie, Mentor, OH AGENCY: Coast Guard, DHS... Erie, Mentor, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Mentor Harbor Yachting Club fireworks display. This temporary safety zone is necessary to protect...

  8. Using decision analysis to choose phosphorus targets for Lake Erie.

    PubMed

    Anderson, R M; Hobbs, B F; Koonce, J F; Locci, A B

    2001-02-01

    Lake Erie water quality has improved dramatically since the degraded conditions of the 1960s. Additional gains could be made, but at the expense of further investment and reductions in fishery productivity. In facing such cross-jurisdictional issues, natural resource managers in Canada and the United States must grapple with conflicting objectives and important uncertainties, while considering the priorities of the public that live in the basin. The techniques and tools of decision analysis have been used successfully to deal with such decision problems in a range of environmental settings, but infrequently in the Great Lakes. The objective of this paper is to illustrate how such techniques might be brought to bear on an important, real decision currently facing Lake Erie resource managers and stakeholders: the choice of new phosphorus loading targets for the lake. The heart of our approach is a systematic elicitation of stakeholder preferences and an investigation of the degree to which different phosphorus-loading policies might satisfy ecosystem objectives. Results show that there are potential benefits to changing the historical policy of reducing phosphorus loads in Lake Erie. Copyright 2001 Springer-Verlag

  9. Population models of burrowing mayfly recolonization in Western Lake Erie

    USGS Publications Warehouse

    Madenjian, C.P.; Schloesser, D.W.; Krieger, K.A.

    1998-01-01

    Burrowing mayflies, Hexagenia spp. (H. limbata and H. rigida), began recolonizing western Lake Erie during the 1990s. Survey data for mayfly nymph densities indicated that the population experienced exponential growth between 1991 and 1997. To predict the time to full recovery of the mayfly population, we fitted logistic models, ranging in carrying capacity from 600 to 2000 nymphs/m2, to these survey data. Based on the fitted logistic curves, we forecast that the mayfly population in western Lake Erie would achieve full recovery between years 1998 and 2000, depending on the carrying capacity of the western basin. Additionally, we estimated the mortality rate of nymphs in western Lake Erie during 1994 and then applied an age-based matrix model to the mayfly population. The results of the matrix population modeling corroborated the exponential growth model application in that both methods yielded an estimate of the population growth rate, r, in excess of 0.8 yr-1. This was the first evidence that mayfly populations are capable of recolonizing large aquatic ecosystems at rates comparable with those observed in much smaller lentic ecosystems. Our model predictions should prove valuable to managers of power plant facilities along the western basin in planning for mayfly emergences and to managers of the yellow perch (Perca flavescens) fishery in western Lake Erie.

  10. U.S. Draft Domestic Action Plan for Lake Erie

    EPA Pesticide Factsheets

    In 2016, in response to the 2012 Great Lakes Water Quality Agreement commitments, Canada and the U.S. adopted phosphorus reduction targets for Lake Erie. Each country is developing domestic action plans which outline strategies for meeting the new targets.

  11. Reduction in recruitment of white bass in Lake Erie after invasion of white perch

    USGS Publications Warehouse

    Madenjian, Charles P.; Knight, Roger L.; Bur, Michael; Forney, John L.

    2000-01-01

    Recruitment to the adult population of white bass Morone chrysops in Lake Erie sharply declined during the early 1980s. To explain this phenomenon, we formulated the following four hypotheses: (1) the biological characteristics of adult spawners changed during the early 1980s, so that the ability to produce eggs decreased; (2) the decrease in phosphorus loadings to Lake Erie during the 1970s resulted in a lower abundance of crustacean zooplankton and thus in reduced survival of age-0 white bass; (3) the increase in the population of adult walleyes Stizostedion vitreum in Lake Erie during the 1970s and 1980s led to reduced survival of age-0 white bass; and (4) establishment of the white perch Morone americana population in Lake Erie during the early 1980s led to reduced survival of the early life stages of white bass. The growth, maturity, and fecundity of adults during the period 1981-1997 were compared with the same characteristics found by earlier studies. The mean length, weight, and condition factors that we calculated were higher than those reported for Lake Erie in 1927-1929 for all age groups examined, and white bass in Lake Erie matured at an earlier age during 1981-1997 than during 1927-1929. Fecundity estimates ranged from 128,897 to 1,049,207 eggs/female and were similar to estimates from other populations. Therefore, the first hypothesis was rejected. With respect to the second hypothesis, zooplankton surveys conducted during 1970 and 1983-1987 indicated that the abundance of crustacean zooplankton in Lake Erie did not change between the two time periods. However, these results were not conclusive because only a single-year survey was conducted before 1980. Based on walleye diet studies and estimates of walleye population size, walleye predation pressure on age-0 white bass in Lake Erie during 1986-1988 was just slightly higher than that during 1979-1981. Thus, such pressure can explain only a minor portion of the reduction in white bass recruitment. To

  12. Final Environmental Impact Statement Permit Application by United States Steel Corp. Proposed Lake Front Steel Mill, Conneaut, Ohio. Volume 1,

    DTIC Science & Technology

    1979-04-01

    FRONT STEEL MILL CONNEAUT, OHIO 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a) S. CONTRACT OR GRANT NUMBERS) Paul G. Leuchner and Gregory P. Keppel... PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS U.S. Army Engineer District, Buffalo 1776 Niagara...the Army permit to perform certain work in Lake Erie and its tributaries. Activities proposed by the applicant include the construction of a water

  13. Levels of Plant Available Phosphorus in Agricultural Soils in the Lake Erie Drainage Basin.

    DTIC Science & Technology

    1977-12-01

    total P tributary load to Lake Erie is in the form of Tsediment-P and most of the sediment -P is of surficial soil origin. Total P load can be related...extremely high ranges can be attributed to 1) and 2) above. Lake Erie counties in Ontario were identified (Figure 3 ) and published reports of the...M-I -28- -tq 𔃾 way.’ .*..... . .. .. ... oi 111 1111; l -29- Table 8 Available-P in Ontario soils in Lake Erie Basin counties Available*-P (ug/g

  14. Intercalibration of research survey vessels on Lake Erie

    USGS Publications Warehouse

    Tyson, J.T.; Johnson, T.B.; Knight, C.T.; Bur, M.T.

    2006-01-01

    Fish abundance indices obtained from annual research trawl surveys are an integral part of fisheries stock assessment and management in the Great Lakes. It is difficult, however, to administer trawl surveys using a single vessel-gear combination owing to the large size of these systems, the jurisdictional boundaries that bisect the Great Lakes, and changes in vessels as a result of fleet replacement. When trawl surveys are administered by multiple vessel-gear combinations, systematic error may be introduced in combining catch-per-unit-effort (CPUE) data across vessels. This bias is associated with relative differences in catchability among vessel-gear combinations. In Lake Erie, five different research vessels conduct seasonal trawl surveys in the western half of the lake. To eliminate this systematic bias, the Lake Erie agencies conducted a side-by-side trawling experiment in 2003 to develop correction factors for CPUE data associated with different vessel-gear combinations. Correcting for systematic bias in CPUE data should lead to more accurate and comparable estimates of species density and biomass. We estimated correction factors for the 10 most commonly collected species age-groups for each vessel during the experiment. Most of the correction factors (70%) ranged from 0.5 to 2.0, indicating that the systematic bias associated with different vessel-gear combinations was not large. Differences in CPUE were most evident for vessels using different sampling gears, although significant differences also existed for vessels using the same gears. These results suggest that standardizing gear is important for multiple-vessel surveys, but there will still be significant differences in catchability stemming from the vessel effects and agencies must correct for this. With standardized estimates of CPUE, the Lake Erie agencies will have the ability to directly compare and combine time series for species abundance. ?? Copyright by the American Fisheries Society 2006.

  15. Detailed Project Report and Environmental Assessment. Section 111. Shores East of Diked Disposal Area, Lorain Harbor, Ohio.

    DTIC Science & Technology

    1981-11-01

    STONE). &7 LAB 07 AORD LAB APRL 1978 LAB * 107/78.6118 PRESQUE ISLE PROJECT UNK ORD LAB CLEVELAND WEST BREAKWATER JU. LAB 103/78.6240 .R..ABILITATION...NOTES IS. KEY WORDS (Continue on revere side if neeemvr and identify by block number) beach erosion diked disposal areas shore erosion Lake Erie ...House Document No. 229, 83rd Congress, "Appendix VIII, Ohio Shoreline of Lake Erie Between Vermilion and Sheffield Lake Village, Beach Erosion Control

  16. 27 CFR 9.83 - Lake Erie.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Cazenovia Creek and thence up the west branch of Cazenovia Creek to a point approximately one mile north of Colden, New York, exactly 12 statute miles inland from any point on the shore of Lake Erie. (3) The boundary proceeds southwestward and along a line exactly 12 statute miles inland from any point on the...

  17. 27 CFR 9.83 - Lake Erie.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Cazenovia Creek and thence up the west branch of Cazenovia Creek to a point approximately one mile north of Colden, New York, exactly 12 statute miles inland from any point on the shore of Lake Erie. (3) The boundary proceeds southwestward and along a line exactly 12 statute miles inland from any point on the...

  18. 27 CFR 9.83 - Lake Erie.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Cazenovia Creek and thence up the west branch of Cazenovia Creek to a point approximately one mile north of Colden, New York, exactly 12 statute miles inland from any point on the shore of Lake Erie. (3) The boundary proceeds southwestward and along a line exactly 12 statute miles inland from any point on the...

  19. 78 FR 35135 - Special Local Regulation; Kelley's Island Swim, Lake Erie; Kelley's Island, Lakeside, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ...-AA08 Special Local Regulation; Kelley's Island Swim, Lake Erie; Kelley's Island, Lakeside, OH AGENCY... vessel movement in portions of Lake Erie during the annual Kelley's Island Swim from. This special local... special local regulations listed in 33 CFR 100.921 Special Local Regulation; Kelley's Island Swim, Lake...

  20. From Research to Operations: Transitioning Noaa's Lake Erie Harmful Algal Bloom Forecast System

    NASA Astrophysics Data System (ADS)

    Kavanaugh, K. E.; Stumpf, R. P.

    2016-02-01

    A key priority of NOAA's Harmful Algal Bloom Operational Forecast System (HAB-OFS) is to leverage the Ecological Forecasting Roadmap to systematically transition to operations scientifically mature HAB forecasts in regions of the country where there is a strong user need identified and an operational framework can be supported. While in the demonstration phase, the Lake Erie HAB forecast has proven its utility. Over the next two years, NOAA will be transitioning the Lake Erie HAB forecast to operations with an initial operating capability established in the HAB OFS' operational infrastructure by the 2016 bloom season. Blooms of cyanobacteria are a recurring problem in Lake Erie, and the dominant bloom forming species, Microcystis aeruginosa, produces a toxin called microcystin that is poisonous to humans, livestock and pets. Once the toxins have contaminated the source water used for drinking water, it is costly for public water suppliers to remove them. As part of the Lake Erie HAB forecast demonstration, NOAA has provided information regarding the cyanobacterial blooms in a biweekly Experimental HAB Bulletin, which includes information about the current and forecasted distribution, toxicity, potential for vertical mixing or scum formation, mixing of the water column, and predictions of bloom decline. Coastal resource managers, public water suppliers and public health officials use the Experimental HAB Bulletins to respond to and mitigate the impacts of cyanobacterial blooms. The transition to operations will benefit stakeholders through ensuring that future Lake Erie HAB forecast products are sustained, systematic, reliable, and robust. Once operational, the forecasts will continue to be assessed and improvements will be made based on the results of emerging scientific research. In addition, the lessons learned from the Lake Erie transition will be used to streamline the process for future HAB forecasts presently in development.

  1. First-year growth, recruitment, and maturity of walleyes in western Lake Erie

    USGS Publications Warehouse

    Madenjian, Charles P.; Tyson, Jeffrey T.; Knight, Roger L.; Kershner, Mark W.; Hansen, Michael J.

    1996-01-01

    In some lakes, first-year growth of walleyes Stizostedion vitreum has been identified as an important factor governing recruitment of juveniles to the adult population. We developed a regression model for walleye recruitment in western Lake Erie by considering factors such as first-year growth, size of the spawning stock, the rate at which the lake warmed during the spring, and abundance of gizzard shad Dorosoma cepedianum. Gizzard shad abundance during the fall prior to spring walleye spawning explained over 40% of the variation in walleye recruitment. Gizzard shad are relatively high in lipids and are preferred prey for walleyes in Lake Erie. Therefore, the high degree of correlation between shad abundance and subsequent walleye recruitment supported the contention that mature females needed adequate lipid reserves during the winter to spawn the following spring. According to the regression analysis, spring warming rate and size of the parental stock also influenced walleye recruitment. Our regression model explained 92% of the variation in recruitment of age-2 fish into the Lake Erie walleye population from 1981 to 1993. The regression model is potentially valuable as a management tool because it could be used to forecast walleye recruitment to the fishery 2 years in advance. First-year growth was poorly correlated with recruitment, which may reflect the unusually low incidence of walleye cannibalism in western Lake Erie. In contrast, first-year growth was strongly linked to age at maturity.

  2. Evidence that sea lamprey control led to recovery of the burbot population in Lake Erie

    USGS Publications Warehouse

    Stapanian, M.A.; Madenjian, C.P.; Witzel, L.D.

    2006-01-01

    Between 1987 and 2003, the abundance of burbot Lota lota in eastern Lake Erie increased significantly, especially in Ontario waters. We considered four hypotheses to explain this increase: (1) reduced competition with lake trout Salvelinus namaycush, the other major coldwater piscivore in Lake Erie; (2) increased abundance of the two main prey species, rainbow smelt Osmerus mordax and round goby Neogobius melanostomus; (3) reduced interference with burbot reproduction by alewives Alosa pseudoharengus; and (4) reduced predation by sea lampreys Petromyzon marinus on burbot. Species abundance data did not support the first three hypotheses. Our results suggested that the apparent recovery of the burbot population of Lake Erie was driven by effective sea lamprey control. Sea lamprey predation appeared to be the common factor affecting burbot abundance in Lakes Michigan, Huron, Erie, and Ontario. In addition, relatively high alewife density probably depressed burbot abundance in Lakes Ontario and Michigan. We propose that a healthy adult lake trout population may augment burbot recovery in some lakes by serving as a buffer against sea lamprey predation and will not negatively impact burbot through competition.

  3. Hexabromocyclododecane Flame Retardant Isomers in Sediments from Detroit River and Lake Erie of the Laurentian Great Lakes of North America.

    PubMed

    Letcher, Robert J; Lu, Zhe; Chu, Shaogang; Haffner, G Douglas; Drouillard, Ken; Marvin, Christopher H; Ciborowski, Jan J H

    2015-07-01

    Sediments collected in 2004 from along the Detroit River (n = 19) and across all of Lake Erie (n = 18) were analyzed for isomers of the flame retardant chemical, hexabromocyclododecane (HBCD), using liquid chromatography-tandem mass spectrometry. Sediment samples had ΣHBCD concentrations ranging from not detected to 1.6 ng/g d.w. γ-HBCD (56 %-100 % of ΣHBCDs) was the predominate isomer, observed in 7 of 19 samples from the Detroit River and 6 of 18 samples from Lake Erie (all within the western basin). α-HBCD was found in 4 Detroit River and 2 Lake Erie western basin sites, while β-HBCD was only in two Detroit River samples. High ΣHBCD concentrations (>100 ng/g d.w.) were found in two sludge samples from two Windsor, ON, wastewater treatment plants that feed into the Detroit River upstream. HBCD contamination into the Detroit River is a major input vector into Lake Erie and with an apparent sediment dilution effect moving towards the eastern basin.

  4. Impacts of Lake Level Regulation on Beaches and Boating Facilities--Lakes Erie and Ontario and Connecting Waterways. Recreation Beaches Inventory.

    DTIC Science & Technology

    1979-12-18

    feet, the crews were in- structed to take additional measurements. At very long beaches, such as at Presque Isle State Park, in Pennsylvania , the...REGULATION ON BEACHES AND BOATING FACILITIES- LAKES ERIE AND) ONTARIO AND CONNECTING WATERWAYS -I RECREATION BEACHES INVENTORY 3 December 18, 1979 Contract...CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Impacts of Lake Level Regulation on Beaches and Boating Facilities--Lake Erie and

  5. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie.

    PubMed

    Peat, Tyler B; Hayden, Todd A; Gutowsky, Lee F G; Vandergoot, Christopher S; Fielder, David G; Madenjian, Charles P; Murchie, Karen J; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2015-10-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie

    USGS Publications Warehouse

    Peat, Tyler B; Hayden, Todd A.; Gutowsky, Lee F G; Vandergoot, Christopher S.; Fielder, David G.; Madenjian, Charles P.; Murchie, Karen J; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2015-01-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses.

  7. Food of freshwater drum in western Lake Erie

    USGS Publications Warehouse

    Bur, Michael T.

    1982-01-01

    The abundance of freshwater drum (Aplodinotus grunniens) suggests they play an important role in the Lake Erie ecosystem. Our analysis of freshwater drum digestive tracts and macrobenthic samples collected from western Lake Erie indicates that drum were selective feeders. Planktonic cladocerans and larval midges (Chironomidae) were the primary prey organisms eaten by drum. Young-of-the-year fed mostly on cladocerans, while yearling and older drum ate both cladocerans and midge larvae. Decapods, pelecypods, and fish were found only in the digestive tracts of drum longer than 250 mm. While the most abundant organisms in benthic samples were cladocerans (ephippial) and oligochaetes (89.5% by number), they constituted less than 1% of the diet. An evaluation of food selectivity, using Ivlev's index of electivity for benthic organisms, indicated that adult drum preferred midges to any other benthic food.

  8. Draft Programmatic Environmental Impact Statement: U.S. Lake Erie Natural Gas Resource Development in Offshore Waters of New York, Pennsylvania and Ohio

    DTIC Science & Technology

    1980-11-01

    by the Wabash River faults in southeast Illinois and suggests control by basement faults (Hadley and Devine 1974). A smaller cluster of epicenters...E.2). Anthropogenic input to Lake Erie of mercury, lead, zinc, and cadmium exceeds that derived from natural weathering and atmospheric deposition

  9. Detroit, MI, Toledo, OH and Lake Erie

    NASA Image and Video Library

    1973-06-22

    SL2-05-390 (22 June 1973) --- Greater Detroit (42.0N, 82.5W) is located at the southeastern border of Michigan on the Detroit River across from Windsor, Ontario, Canada and Lake Huron to the north. The river connecting Lake Erie is a channel left over from the Ice Age Glaciers. The land use pattern in this scene is typical of this part of the upper Midwest. The once extensive forests have been cleared for farmland and pasture, but narrow rows of trees still line farm boundaries. Photo credit: NASA

  10. Expansion of tubenose gobies Proterorhinus semilunaris into western Lake Erie and potential effects on native species

    USGS Publications Warehouse

    Kocovsky, P.M.; Tallman, J.A.; Jude, D.J.; Murphy, D.M.; Brown, J.E.; Stepien, C.A.

    2011-01-01

    The Eurasian freshwater tubenose goby Proterorhinus semilunaris (formerly Proterorhinus marmoratus) invaded the Laurentian Great Lakes in the 1990s, presumably via ballast water from transoceanic cargo ships. Tubenose gobies spread throughout Lake St. Clair, its tributaries, and the Detroit River system, and also are present in the Duluth-Superior harbor of Lake Superior. Using seines and bottom trawls, we collected 113 tubenose gobies between July 2007 and August 2009 at several locations in western Lake Erie. The number and range of sizes of specimens collected suggest that that tubenose gobies have become established and self-sustaining in the western basin of Lake Erie. Tubenose gobies reached maximum densities in sheltered areas with abundant macrophyte growth, which also is their common habitat in native northern Black Sea populations. The diet of tubenose gobies was almost exclusively invertebrates, suggesting dietary overlap with other benthic fishes, such as darters (Etheostoma spp. and Percina sp.), madtoms (Noturus spp.), and sculpins (Cottus spp.). A single mitochondrial DNA haplotype was identified, which is the most common haplotype found in the original colonization area in the Lake St. Clair region, suggesting a founder effect. Tubenose gobies, like round gobies Neogobius melanostomus, have early life stages that drift owing to vertical migration, which probably allowed them to spread from areas of colonization. The Lake St. Clair-Lake Erie corridor appears to have served as an avenue for them to spread to the western basin of Lake Erie, and abundance of shallow macrophyte-rich habitats may be a key factor facilitating their further expansion within Lake Erie and the remainder of the Laurentian Great Lakes.

  11. Recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia) in western Lake Erie

    USGS Publications Warehouse

    Krieger, Kenneth A.; Schloesser, Don W.; Manny, Bruce A.; Trisler, Carmen E.; Heady, Susan E.; Ciborowski, Jan J.H.; Muth, Kenneth M.

    1996-01-01

    Burrowing mayflies (Hexagenia spp.) are native to western Lake Erie and were abundant until the 1950s, when they disappeared due to degraded water and sediment quality. Nymphs were absent from the sediments of most of western Lake Erie after the 1950s, although small, widely disjunct populations apparently persisted near shore. Sediment samples collected in 1993 revealed several small populations near the western and southern shores and beyond the mouths of the Detroit and Maumee rivers. A larger population was found in the southern island area, but nymphs were absent in the middle of the basin. By 1995, nymphs had spread throughout the western half and eastern end of the basin but remained absent from the middle of the basin. These data indicate thatHexagenia began recolonizing nearshore areas before offshore areas. Increasingly large swarms of winged Hexagenia on shore and over the lake between 1992 and 1994 further indicate that mayflies are recolonizing the basin. Factors that have permitted Hexageniarecovery in western Lake Erie probably include improved sediment and water quality attributed to pollution abatement programs implemented after the early 1970s, and perhaps environmental changes in the early 1990s attributed to effects of the exotic zebra mussel (Dreissena polymorpha).

  12. Assessing Vulnerability of Lake Erie Landscapes to Soil Erosion: Modelled and Measured Approaches

    NASA Astrophysics Data System (ADS)

    Joosse, P.; Laamrani, A.; Feisthauer, N.; Li, S.

    2017-12-01

    Loss of soil from agricultural landscapes to Lake Erie via water erosion is a key transport mechanism for phosphorus bound to soil particles. Agriculture is the dominant land use in the Canadian side of the Lake Erie basin with approximately 75% of the 2.3 million hectares under crop or livestock production. The variable geography and diversity of agricultural production systems and management practices makes estimating risk of soil erosion from agricultural landscapes in the Canadian Lake Erie basin challenging. Risk of soil erosion depends on a combination of factors including the extent to which soil remains bare, which differs with crop type and management. Two different approaches of estimating the vulnerability of landscapes to soil erosion will be compared among Soil Landscapes of Canada in the Lake Erie basin: a modelling approach incorporating farm census and soil survey data, represented by the 2011 Agriculture and Agri-Food Canada Agri-Environmental Indicator for Soil Erosion Risk; and, a measured approach using remotely sensed data that quantifies the magnitude of bare and covered soil across the basin. Results from both approaches will be compared by scaling the national level (1:1 million) Soil Erosion Risk Indicator and the remotely sensed data (30x30 m resolution) to the quaternary watershed level.

  13. Evidence that lake trout served as a buffer against sea lamprey predation on burbot in Lake Erie

    USGS Publications Warehouse

    Stapanian, M.A.; Madenjian, C.P.

    2007-01-01

    The population of burbot Lota lota in Lake Erie recovered during 1986–2003, mainly because of the control of sea lamprey Petromyzon marinus, which began in 1986. Burbot populations continued to grow during 1996–1998, when sea lamprey control was substantially reduced. We calculated mortality parameters for burbot in Lake Erie by estimating age at capture for 2,793 burbot caught in annual gill-net surveys of eastern Lake Erie from 1994 to 2003. Based on catch-curve analysis, annual mortality in Lake Erie during 1994–2003 was estimated as 33%. Annual mortality of the 1992 year-class of burbot was estimated as 30%. The mortality of burbot during the years of reduced sea lamprey control was not different from that during the 3 years preceding reduced control and was significantly lower than that during the entire portion of the time series in which full sea lamprey control was conducted. These results suggest that the reduction in sea lamprey control did not lead to increased burbot mortality. The catch per gill-net lift of large burbot (total length > 600 mm), the size preferred by sea lampreys, was lower than that of adult lake trout Salvelinus namaycush (age 5 and older; total length > 700 mm) before lampricide application was reduced. Although adult lake trout populations declined, the abundance of large burbot did not change during the period of reduced lampricide application. These results support a hypothesis that a healthy population of adult lake trout can serve as a buffer species, acting to reduce predation of burbot by sea lampreys when sea lamprey populations increase. Burbot attained sexual maturity at a relatively early age (3 or 4 years) and a total length (approximately 500 mm) that was smaller than the preferred prey size for sea lampreys. These characteristics and the buffering effect of the lake trout population enabled growth of the burbot population during the brief period when lamprey control was reduced.

  14. Remote sensing study of Maumee River effects of Lake Erie

    NASA Technical Reports Server (NTRS)

    Svehla, R.; Raquet, C.; Shook, D.; Salzman, J.; Coney, T.; Wachter, D.; Gedney, R.

    1975-01-01

    The effects of river inputs on boundary waters were studied in partial support of the task to assess the significance of river inputs into receiving waters, dispersion of pollutants, and water quality. The effects of the spring runoff of the Maumee River on Lake Erie were assessed by a combination of ship survey and remote sensing techniques. The imagery obtained from a multispectral scanner of the west basin of Lake Erie is discussed: this clearly showed the distribution of particulates throughout the covered area. This synoptic view, in addition to its qualitative value, is very useful in selecting sampling stations for shipboard in situ measurements, and for extrapolating these quantitative results throughout the area of interest.

  15. 77 FR 24880 - Safety Zone; Jet Express Triathlon, Sandusky Bay, Lake Erie, Lakeside, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ...-AA00 Safety Zone; Jet Express Triathlon, Sandusky Bay, Lake Erie, Lakeside, OH AGENCY: Coast Guard, DHS... Erie during the Jet Express Triathlon. This proposed safety zone is necessary to protect participants... Erie. The participants will begin by jumping off the ferry boat JET EXPRESS II at the designated...

  16. Limnology of selected lakes in Ohio, 1975

    USGS Publications Warehouse

    Tobin, Robert L.; Youger, John D.

    1977-01-01

    Water-quality reconnaissance by the U.S. Geological Survey and Ohio Environmental Protection Agency, to evaluate the status of Ohio's lakes and reservoirs was begun in 1975 with studies of 17 lakes. Spring and summer data collections for each lake included: profile measurements of temperature, dissolved oxygen, pH, and specific conductance; field and laboratory analyses of physical, biological, chemical organic characteristics; (nutrient), and concentrations of major and minor chemical constituents from composites of the water column; and physical and chemical data from major inflows.Light penetration (secchi disk) ranged from 9.4 feet (2.9 meters) in Lake Hope to 0.4 feet (0.1 meter) in Acton Lake. Seasonal thermal stratification or stability is shown for 10 lakes deeper than 15 feet (4.6 meters). Unstable or modified temperature profiles were observed in shallow lakes (depths less than 15 feet) or lakes controlled through subsurface release valves.Dissolved oxygen saturation ranged from 229 percent (20.8 milligrams per liter) in the epilimnion of Paint Creek Lake to zero in the bottom waters of all thermally stabilized lakes. Marked chemical and physical differences and nutrient uptake and recycling developed within different thermal strata. Anaerobic zones were frequently characterized by hydrogen sulfide and ammonia.Calcium was the dominant or codominant cation, and bicarbonate and(or) sulfate were the major anions in all lakes sampled. Only Hope and Vesuvius Lakes had soft water (hardness less than 61 milligrams per liter as CaCO3 ), and both lakes were further characterized by low pH (less than 7.0). Specific conductance ranged from 510 micromhos (Deer Creek and Salt Fork Lakes) to 128 micromhos (Lake Hope). Pesticide residues were detected in Acton Lake, and concentrations of one or more trace metals were at or above Ohio Environmental Protection Agency recommended limits in 11 lakes.Fecal coliform colony counts were below 400 colonies per 100 milliliters in

  17. Great Lakes and St. Lawrence Seaway Navigation Season Extension. Volume 4. Appendixes D - F

    DTIC Science & Technology

    1979-08-01

    the American additions Fort Presque Isle Rique Archaeological Somewhere unknown Palisaded Erie site within the princi- town destroyed by present city...7) 2.285 Rochester, New York (8) 2.173 Buffalo, New York (9) 2.520 Erie , Pennsylvania (10) 2.172 Cleveland, Ohio (68) 2.720 Toledo, Ohio (70) 2.370...Two Harbors, Duluth, Presque Isle , Marquette, Taconite, Silver Bay, Ashland, Escanaba, Port Dolomite, Port Inland, Drummond Island, other Lake

  18. 77 FR 49401 - Safety Zones; Revolution 3 Triathlon, Lake Erie, Sandusky Bay, Cedar Point, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...-AA00 Safety Zones; Revolution 3 Triathlon, Lake Erie, Sandusky Bay, Cedar Point, OH AGENCY: Coast Guard... permanent safety zones on Lake Erie near Sandusky, OH. This action is necessary to provide for the safety of... injuries or fatalities. The Captain of the Port Detroit proposes to establish this safety zone to protect...

  19. Thermal and hydrologic suitability of Lake Erie and its major tributaries for spawning of Asian carps

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Chapman, Duane C.; McKenna, James E.

    2012-01-01

    Bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella (hereafter Asian carps) have expanded throughout the Mississippi River basin and threaten to invade Lakes Michigan and Erie. Adult bighead carp and grass carp have been captured in Lake Erie, but self-sustaining populations probably do not exist. We examined thermal conditions within Lake Erie to determine if Asian carps would mature, and to estimate time of year when fish would reach spawning condition. We also examined whether thermal and hydrologic conditions in the largest tributaries to western and central Lake Erie were suitable for spawning of Asian carps. We used length of undammed river, predicted summer temperatures, and predicted water velocity during flood events to determine whether sufficient lengths of river are available for spawning of Asian carps. Most rivers we examined have at least 100 km of passable river and summer temperatures suitable (> 21 C) for rapid incubation of eggs of Asian carps. Predicted water velocity and temperature were sufficient to ensure that incubating eggs, which drift in the water column, would hatch before reaching Lake Erie for most flood events in most rivers if spawned far enough upstream. The Maumee, Sandusky, and Grand Rivers were predicted to be the most likely to support spawning of Asian carps. The Black, Huron, Portage, and Vermilion Rivers were predicted to be less suitable. The weight of the evidence suggests that the largest western and central Lake Erie tributaries are thermally and hydrologically suitable to support spawning of Asian carps.

  20. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  1. GC-MS analysis of polybrominated diphenyl ethers in Lake Erie

    NASA Astrophysics Data System (ADS)

    Vagula, Mary C.; Vartak, Marissa; Tallmadge, Weslene

    2012-06-01

    Lake Erie is one of the five great lakes of North America. It is the shallowest, the warmest, and the most biologically productive of the Great Lakes producing more fish than all of the other four lakes combined. It is also a source of drinking water for 11 million people and a recreational asset. On the flipside, it is also very vulnerable and troubled with environmental challenges because it has the smallest water volume, but the greatest pressures from the human settlement. One of the many issues faced by the Lake is pollution. It receives larger loads of many pollutants than any other Great Lake. Even with the best pollution controls many pesticides and organohalogens continue to enter the lake. Polybrominated diphenyl ethers (PBDEs) are a class of flame-retardants that have been used in a variety of consumer products since the 1970s. They are added to many commercial and household products such as computers, foam mattresses, carpets, etc. Being largely non-polar and chemically stable, these chemicals are extremely lipophilic and resist degradation in the environment, thus giving them a high affinity for their bioaccumulation. Due to these properties PBDEs have become ubiquitous environmental contaminants. These compounds are reported to be endocrine disruptors and could cause oxidative damage. This report presents the sample preparation protocol, the GC-MS analysis of PBDEs in Lake Erie sediment samples.

  2. Lake Erie...Build a Fish to Scale!

    ERIC Educational Resources Information Center

    Canning, Maureen; Dunlevy, Margie

    This elementary school teaching unit was developed as a part of a series of teaching units that deal with Lake Erie. This unit was developed to enable children to: (1) name the different parts of a fish; (2) assemble a fish using overlapping overheads to reinforce fish parts; (3) build a fish to scale using jumbo fish puzzle parts; (4) classify…

  3. Length-weight relationship of northern pike, Esox lucius, from East Harbor, Ohio

    USGS Publications Warehouse

    Brown, Edward H.; Clark, Clarence F.

    1965-01-01

    The northern pike is one of Ohio's largest game fish but is well known to comparatively few anglers. Large numbers of the big fish spawn in the Ohio marshes adjacent to Lake Erie. Movements related to spawning reach a peak in late March or early April. Later the spawning population disperses and is seldom represented in catches by experimental gear or by anglers. The short period of availability was used to obtain life history information in March of 1951 through 1953. No comprehensive length-weight data for this species have previously been published from this area. East Harbor is a sandspit pond separated from Lake Erie by a large sand bar. Waters and fish populations of the harbor and lake can mix freely through a permanent connecting channel. The larger part of the 850 surface acres of the harbor is normally less than 8 feet deep. The male northern pike averaged 20.5 inches in length and ranged from 13.5 to 28.5 inches. The conspicuously larger females averaged 26.0 inches and ranged from 15.5 to 37.5 inches.

  4. Trends in phosphorus loading to the western basin of Lake Erie

    EPA Science Inventory

    Dave Dolan spent much of his career computing and compiling phosphorus loads to the Great Lakes. None of his work in this area has been more valuable than his continued load estimates to Lake Erie, which has allowed us to unambiguously interpret the cyanobacteria blooms and hypox...

  5. Stable carbon and oxygen isotope record of central Lake Erie sediments

    USGS Publications Warehouse

    Tevesz, M.J.S.; Spongberg, A.L.; Fuller, J.A.

    1998-01-01

    Stable carbon and oxygen isotope data from mollusc aragonite extracted from sediment cores provide new information on the origin and history of sedimentation in the southwestern area of the central basin of Lake Erie. Sediments infilling the Sandusky subbasin consist of three lithologic units overlying glacial deposits. The lowest of these is a soft gray mud overlain by a shell hash layer containing Sphaerium striatinum fragments. A fluid mud unit caps the shell hash layer and extends upwards to the sediment-water interface. New stable isotope data suggest that the soft gray mud unit is of postglacial, rather than proglacial, origin. These data also suggest that the shell hash layer was derived from erosional winnowing of the underlying soft gray mud layer. This winnowing event may have occurred as a result of the Nipissing flood. The Pelee-Lorain moraine, which forms the eastern boundary of the Sandusky subbasin, is an elevated area of till capped by a sand deposit that originated as a beach. The presence of both the shell hash layer and relict beach deposit strengthens the interpretation that the Nipissing flood was a critical event in the development of the southwestern area of the central basin of Lake Erie. This event, which returned drainage from the upper lakes to the Lake Erie basin, was a dominant influence on regional stratigraphy, bathymetry, and depositional setting.

  6. Diet of the double-crested cormorant in western Lake Erie

    USGS Publications Warehouse

    Bur, Michael T.; Tinnirello, Sandra L.; Lovell, Charles D.; Tyson, Jeff T.

    1999-01-01

    Sport and commercial fishing interest groups are concerned about potential impacts double-crested cormorants (Phalacrocorax auritus) may have on fish species. Our objectives for this study were to determine the diet of the cormorant in western Lake Erie and the diet overlap and competition for resources with piscivorous fish, such as walleye (Stizostedion vitreum). The stomach contents of 302 double-crested cormorants collected in western Lake Erie consisted primarily of young-of-the-year gizzard shad (Dorosoma cepedianum), emerald shiner (Notropis atherinoides), and freshwater drum (Aplodinotus grunniens). In the spring, freshwater drum were the most frequently occurring food in the stomachs and constituted the greatest portion of the diet by weight. Young gizzard shad became the most abundant prey and made up the largest percentage of the diet by weight in the stomachs from the end of July through October. Emerald shiners were abundant in the diet during June, September, and October. The fish species that cormorants ate resembled, by proportion, the species mix found in trawl catches. The diets of cormorants and walleyes were similar from July to October with significant overlap. Results from this study suggest impacts of cormorants at current population levels in Lake Erie are not detrimental to sport and commercial fishing. Therefore, control for the purpose of reducing competition for prey fish with walleye is not warranted at this time.

  7. Zebra mussels invade Lake Erie muds

    USGS Publications Warehouse

    Berkman, Paul Arthur; Haltuch, Melissa A.; Tichich, Emily; Garton, David W.; Kennedy, Gregory W.; Gannon, John E.; Mackey, Scudder D.; Fuller, Jonathan A.; Liebenthal, Dale L.

    1998-01-01

    Zebra mussels (Dreissena polymorpha) originated in western Russia but have now become widespread in Europe and North America. They are widely known for their conspicuous invasion of rocks and other hard substrates in North American and European watersheds. We have found beds of zebra mussels directly colonizing sand and mud sediments each year across hundreds of square kilometres of North America's Lake Erie. This transformation of sedimentary habitats into mussel beds represents an unforeseen change in the invasive capacity of this species.

  8. Turbidity as a factor in the decline of Great Lakes fishes with special reference to Lake Erie

    USGS Publications Warehouse

    Van Oosten, John

    1948-01-01

    All of the evidence indicates, then, that soil erosion on farms and the turbidity of the water were not major factors, if operative at all, in the decline of Great Lakes fishes and that they did not make Lake Erie unsuitable for fish life.

  9. Recolonization and possible recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia spp.) in Lake Erie of the Laurentian Great Lakes

    USGS Publications Warehouse

    Schloesser, Don W.; Krieger, Kenneth A.; Ciborowski, Jan J.H.; Corkum, Lynda D.

    2000-01-01

    Burrowing mayflies of the genus Hexagenia spp. were widely distributed (ca. 80% of sites) and abundant (ca. 160 nymphs/m2) in the western basin of Lake Erie of the Laurentian Great Lakes in 1929–1930, prior to a period of anoxia in the mid 1950s. Nymphs were absent or rare in the basin between 1961 and 1973–1975. In 1979–1991, nymphs were infrequently found (13–46% of sites) in low abundance (3–40 nymphs/m2) near shore (<7.5 km from shore), but were absent or rare offshore (0–7% of sites at 0–1 nymphs/m2). Increased abundance occurred offshore between 1991 (0% of sites) and 1993 (52% of sites at 7/m2). Annual sampling, beginning in 1995, indicates that nymphs increased in both nearshore and offshore waters. By 1997, nymphs were found throughout the lake (88% of sites) at a mean density 40-fold greater (392/m2) than that observed in 1993 (11/m2). In 1998, the distribution of nymphs remained the same as 1997 (88% of sites) but density declined 3-fold (392 to 134/m2). These data indicate that mayflies have recolonized sediments of western Lake Erie and that their abundance may be similar to levels observed before their disappearance in the mid 1950s. However, prior to the mid 1950s, densities were greater in offshore than nearshore waters, but between 1979 and 1998 greater densities occurred near shore than offshore. In addition, there were two areas in the 1990s where low densities consistently occurred. Therefore, recovery of nymphs in western Lake Erie may not have been complete in 1998. At present we do not know the cause for the sudden recolonization of nymphs in large portions of western Lake Erie. Undoubtedly, pollution-abatement programs contributed to improved conditions that would have ultimately led to mayfly recovery in the future. However, the explosive growth of the exotic zebra mussel, Dreissena polymorpha, undoubtedly diverted plankton foods to bottom substrates which could have increased the speed at which Hexagenia spp. nymphs

  10. Fisheries Education: From the Great Lakes to the Sea.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; Mayer, Victor J.

    1980-01-01

    Described are investigations related to fisheries education developed by the Ohio Sea Grant Education Office as a part of a series of Oceanic Education Activities for Great Lake Schools. The investigations discussed are "Yellow Perch in Lake Erie," which concerns fisheries management, and "It's Everyone's Sea: Or Is It," which…

  11. Review of Reports on Lake Erie - Lake Ontario Waterway, New York. Appendix D. Economics.

    DTIC Science & Technology

    1973-10-01

    Venezuela (29 percent). Canada produced 48.3 million tons of iron ore in 1970 ,of which 23.9 million tons were exported to the United States (14.4 million...grain traffic, 1971 D-14 D-6 U.S. - Great Lakes grain exports 1960 - 1971 and projected D-15 D-7 U.S. doal traffic, Lake Erie - Lake Ontario, 1958-1970...Soybeans Wheat Barley Oats Rice Sorghum Grains Flaxseed Oilseeds, n.e.c. Tobacco, leaf Hay and Fodder Field crops, n.e.c. Fresh fruits Co ffee Cocoa beans

  12. Minimum size limits for yellow perch (Perca flavescens) in western Lake Erie

    USGS Publications Warehouse

    Hartman, Wilbur L.; Nepszy, Stephen J.; Scholl, Russell L.

    1980-01-01

    During the 1960's yellow perch (Perca flavescens) of Lake Erie supported a commercial fishery that produced an average annual catch of 23 million pounds, as well as a modest sport fishery. Since 1969, the resource has seriously deteriorated. Commercial landings amounted to only 6 million pounds in 1976, and included proportionally more immature perch than in the 1960's. Moreover, no strong year classes were produced between 1965 and 1975. An interagency technical committee was appointed in 1975 by the Lake Erie Committee of the Great Lakes Fishery Commission to develop an interim management strategy that would provide for greater protection of perch in western Lake Erie, where declines have been the most severe. The committee first determined the age structure, growth and mortality rates, maturation schedule, and length-fecundity relationship for the population, and then applied Ricker-type equilibrium yield models to determine the effects of various minimum length limits on yield, production, average stock weight, potential egg deposition, and the Abrosov spawning frequency indicator (average number of spawning opportunities per female). The committee recommended increasing the minimum length limit of 5.0 inches to at least 8.5 inches. Theoretically, this change would increase the average stock weight by 36% and potential egg deposition by 44%, without significantly decreasing yield. Abrosov's spawning frequency indicator would rise from the existing 0.6 to about 1.2.

  13. Lake Erie Water Level Study. Appendix G. Recreational Beaches and Boating.

    DTIC Science & Technology

    1981-07-01

    economic impact analysis). G-44 I There are two separate phases associated with the development of bene- fits generated at the various water levels in...moorings. The growth factors for the small boat harbor formula (MRI Technical Report No. 5, Economic Impacts of Lake Level Regulation) were developed by...Lakes-St. Lawrence River system. This evaluation was limited to Lakes Erie and Ontario and part of the St. Lawrence River where the

  14. Recruitment of Hexagenia mayfly nymphs in western Lake Erie linked to environmental variability

    USGS Publications Warehouse

    Bridgeman, Thomas B.; Schloesser, Don W.; Krause, Ann E.

    2006-01-01

    After a 40-year absence caused by pollution and eutrophication, burrowing mayflies (Hexagenia spp.) recolonized western Lake Erie in the mid 1990s as water quality improved. Mayflies are an important food resource for the economically valuable yellow perch fishery and are considered to be major indicator species of the ecological condition of the lake. Since their reappearance, however, mayfly populations have suffered occasional unexplained recruitment failures. In 2002, a failure of fall recruitment followed an unusually warm summer in which western Lake Erie became temporarily stratified, resulting in low dissolved oxygen levels near the lake floor. In the present study, we examined a possible link between Hexagenia recruitment and periods of intermittent stratification for the years 1997-2002. A simple model was developed using surface temperature, wind speed, and water column data from 2003 to predict stratification. The model was then used to detect episodes of stratification in past years for which water column data are unavailable. Low or undetectable mayfly recruitment occurred in 1997 and 2002, years in which there was frequent or extended stratification between June and September. Highest mayfly reproduction in 2000 corresponded to the fewest stratified periods. These results suggest that even relatively brief periods of stratification can result in loss of larval mayfly recruitment, probably through the effects of hypoxia. A trend toward increasing frequency of hot summers in the Great Lakes region could result in recurrent loss of mayfly larvae in western Lake Erie and other shallow areas in the Great Lakes.

  15. Buffalo Metropolitan Area, New York Erie County Along Lake Erie and Niagara River Shoreline Protection Interim.

    DTIC Science & Technology

    1987-12-01

    secondary contact recreation, but due to such natural conditions as intermit - tency of flow, water conditions not conducive to propagation of game...saucer. Storm surges are caused by a fast -moving squall line across large water areas such as those of Lake Erie. The two main forces acting during a surge

  16. Selectivity evaluation for two experimental gill-net configurations used to sample Lake Erie walleyes

    USGS Publications Warehouse

    Vandergoot, Christopher S.; Kocovsky, Patrick M.; Brenden, Travis O.; Liu, Weihai

    2011-01-01

    We used length frequencies of captured walleyes Sander vitreus to indirectly estimate and compare selectivity between two experimental gill-net configurations used to sample fish in Lake Erie: (1) a multifilament configuration currently used by the Ohio Department of Natural Resources (ODNR) with stretched-measure mesh sizes ranging from 51 to 127 mm and a constant filament diameter (0.37 mm); and (2) a monofilament configuration with mesh sizes ranging from 38 to 178 mm and varying filament diameter (range = 0.20–0.33 mm). Paired sampling with the two configurations revealed that the catch of walleyes smaller than 250 mm and larger than 600 mm was greater in the monofilament configuration than in the multifilament configuration, but the catch of 250–600-mm fish was greater in the multifilament configuration. Binormal selectivity functions yielded the best fit to observed walleye catches for both gill-net configurations based on model deviances. Incorporation of deviation terms in the binormal selectivity functions (i.e., to relax the assumption of geometric similarity) further improved the fit to observed catches. The final fitted selectivity functions produced results similar to those from the length-based catch comparisons: the monofilament configuration had greater selectivity for small and large walleyes and the multifilament configuration had greater selectivity for mid-sized walleyes. Computer simulations that incorporated the fitted binormal selectivity functions indicated that both nets were likely to result in some bias in age composition estimates and that the degree of bias would ultimately be determined by the underlying condition, mortality rate, and growth rate of the Lake Erie walleye population. Before the ODNR switches its survey gear, additional comparisons of the different gill-net configurations, such as fishing the net pairs across a greater range of depths and at more locations in the lake, should be conducted to maintain congruence in

  17. Invertebrate communities associated with Bangia atropurpurea and Cladophora glomerata in western Lake Erie

    USGS Publications Warehouse

    Chilton, E.W.; Lowe, R.L.; Schurr, K.M.

    1986-01-01

    The appearance of the marine alga Bangia atropurpurea (Rhodophyta) in Lake Erie has been followed by its rapid dispersal throughout the eulittoral zone of the lake. Bangia was extensively sampled to determine its suitability as a habitat for littoral organisms. Present data indicate that the only organisms capable of maintaining populations on Bangia filaments are larval Chironomidae. Cladophora supports a larger and more diverse community. It is concluded that the mucilaginous cell wall of Bangia provides a less stable substrate for attached or clinging organisms than does the cellulose cell wall of Cladophora. The presence of Bangia in the littoral zone of Lake Erie results in a reduction of the quantity and diversity of algal epiphytes and may negatively impact the littoral food web.

  18. An evaluation of effects of groundwater exchange on nearshore habitats and water quality of western Lake Erie

    USGS Publications Warehouse

    Haack, Sheridan K.; Neff, Brian P.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2005-01-01

    Historically, the high potentiometric surface of groundwater in the Silurian/Devonian carbonate aquifer in Monroe County, MI resulted in discharge of highly mineralized, SO4-rich groundwater to the Lake Erie shoreline near both Erie State Game Area (ESGA) and Pointe Mouillee State Game Area (PMSGA). Recently, regional groundwater levels near PMSGA have been drawn down as much as 45 m below lake level in apparent response to quarry dewatering. From August to November of 2003, we conducted preliminary studies of groundwater flow dynamics and chemistry, shallow lake water chemistry, and fish and invertebrate communities at both sites. Consistent with regional observations, groundwater flow direction in the nearshore at ESGA was upward, or toward Lake Erie, and shallow nearshore groundwater chemistry was influenced by regional groundwater chemistry. In contrast, at PMSGA, the groundwater flow potential was downward and lake water, influenced by quarry discharge seeping downward into nearshore sediments, produced a different lake and shallow groundwater chemistry than at ESGA. Although the invertebrate and young fish community was similar at the two sites, taxonomic groups tolerant of degraded water quality were more prevalent at PMSGA. Sensitive taxa were more prevalent at ESGA. We propose a conceptual model, based on well-described models of groundwater/seawater interaction along coastal margins, to describe the interconnection among geologic, hydrologic, chemical, and biological processes in the different nearshore habitats of Lake Erie, and we identify processes that warrant further detailed study in the Great Lakes.

  19. Model distribution of Silver Chub (Macrhybopsis storeriana) in western Lake Erie

    USGS Publications Warehouse

    McKenna, James E.; Castiglione, Chris

    2014-01-01

    Silver Chub (Macrhybopsis storeriana) was once a common forage fish in Lake Erie but has declined greatly since the 1950s. Identification of optimal and marginal habitats would help conserve and manage this species. We developed neural networks to use broad-scale habitat variables to predict abundance classes of Silver Chub in western Lake Erie, where its largest remaining population exists. Model performance was good, particularly for predicting locations of habitat with the potential to support the highest and lowest abundances of this species. Highest abundances are expected in waters >5 m deep; water depth and distance to coastal habitats were important model features. These models provide initial tools to help conserve this species, but their resolution can be improved with additional data and consideration of other ecological factors.

  20. The status of Limnocalanus macrurus (Copepoda: Calanoida: Centropagidae) in Lake Erie

    USGS Publications Warehouse

    Kane, Douglas D.; Gannon, John E.; Culver, David A.

    2004-01-01

    The calanoid copepod Limnocalanus macrurus showed large declines in abundance and a narrowing of spatial distribution with the onset of cultural eutrophication and increases in rainbow smelt (Osmerus mordax) abundances in Lake Erie in the mid 20th century. Since 1995, however, Limnocalanus macrurus appears to have repopulated in western Lake Erie to levels of abundance that have not been observed since the late 1930s. We hypothesize that phosphorus abatement and the subsequent decrease in low dissolved oxygen events have assisted this resurgence. However, Limnocalanus macrurusabundances have not increased in the central and eastern basins, even though water quality has improved there too. High densities of rainbow smelt and associated smelt predation pressure in the central and eastern basins may be responsible for the low numbers in these basins.

  1. Impact of Climate Change on Lake Erie Drinking Water Quality—An Initial Assessment with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liou, L.

    2012-12-01

    A changing climate in the Lake Erie region appears to be having direct impacts on the quality of Lake Erie's drinking water. A dramatic increase in the size and duration of harmful algal blooms (HABs), changes in chlorophyll (Chl) levels and related primary production (PP), prominent sediment plumes, and nearshore production of submerged aquatic vegetation (SAV) are likely being impacted by warmer winters, more intense storms, and reduced ice extent, amongst other meteorological factors. Hypoxia, another major drinking water issue in the lake, is exacerbated by HABs and nearshore SAV. A Michigan Tech research team (Shuchman, Sayers, Brooks) has recently been developing algorithms to derive HAB extents, Chl levels, PP, sediment plume extents, and nearshore SAV maps for the Great Lakes. Inputs have primarily been derived from MODIS Aqua imagery from the NASA Oceancolor website; investigations in the capability of VIIRS imagery to provide the same critical data are being pursued. Remote sensing-derived ice extent and thickness spatial data are also being analyzed. Working with Liou and Lekki of the NASA Glenn Research Center, the study team is deriving algorithms specifically for Lake Erie and integrating them into an analysis of the lake's changing trends over the last 10 years (2002-2012) to improve understanding of how they are impacting the area's water quality, especially for customers dependent on Lake Erie drinking water. This analysis is tying these remote sensing-derived products to climate-driven meteorological factors to enable an initial assessment of how future changes could continue to impact the region's drinking water quality.

  2. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2013

    USGS Publications Warehouse

    Kraus, Richard T.; Rogers, Mark W.; Kocovsky, Patrick; Edwards, William; Bodamer Scarbro, Betsy L.; Keretz, Kevin R.; Berkman, Stephanie A.

    2014-01-01

    In 2013, the U.S. Geological Survey’s Lake Erie Biological Station successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Forage Fish Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment and the Eastern Basin Coldwater Community Assessment (see Forage Task Group and Coldwater Task Group reports, respectively). Further large vessel sampling included individual research data collection as well as assisting with University (e.g., University of Toledo) and agency (e.g., USFWS, USEPA) large vessel sampling needs. Our 2013 vessel operations began on April 4th and concluded on November 21 with a total of 77 large vessel sampling days (83 total days). During this time, crews of the R/V Muskie and R/V Bowfin deployed 174 trawls covering 147 km of lake-bottom, over 13 km of gillnet, collected hydroacoustic data that extended over 250 km of the central and eastern basins, and approximately 180 collective zooplankton, benthos, and water samples. 2013 was the first complete sampling year using the R/V Muskie. Technologies available on the new platform provided opportunities for LEBS to improve data sampling methods and results. An investment was made in mensuration gear for the trawls. This gear is attached to the trawl’s headrope, footrope, and wings; thus, allowing measurement of the area swept and conversion of catches to densities. Another improvement included real-time output of water parameter sonde profiles (e.g., temperature, dissolved oxygen). The ability to view profile data on a tablet allowed quick identification of thermoclines as well as the presence (or absence) of hypoxia. Minor modifications were made to survey designs relative to last year (see 2013 report), and thus, collection of long-term data from the R/V Muskie has commenced. One minor change was that

  3. Isolation, Identification and Phenotypic Characterization of Microcystin-Degrading Bacteria from Lake Erie

    NASA Astrophysics Data System (ADS)

    Krishnan, A.; Mou, X. J.

    2015-12-01

    Lake Erie, the smallest and warmest lake among the Laurentian Great Lakes, is known for its problem of eutrophication and frequent occurrence of harmful cyanobacterial blooms (CyanoHABs). One major harmful effect of CyanoHABs is the production of cyanotoxins, especially microcystins. Microcystins (MC) are a group of hepatotoxins and the predominant variant of them is MC-LR. Field measurements and lab experiments indicate that MC degradation in Lake Erie is mainly carried out by indigenous bacteria. However, our knowledge on taxa involved in this process is very limited. This study aimed to fill this knowledge gap using a culture-dependent approach. Water and surface sediment samples were collected from Lake Erie in 2014 and 2015 and enriched with MC-LR. Cells were plated on a number of culturing media. The obtained pure bacterial cultures were screened for MC degrading abilities by MT2 BIO-LOG assays and by growing cells in liquid media containing MC-LR as the sole carbon source. In the latter experiment, MC concentrations were measured using HPLC. Isolates showing positive MC degradation activities in the screening steps were designated MC+ bacteria and characterized based on their phenotypic properties, including colony pigmentation, elevation, opacity, margin, gram nature and motility. The taxonomic identity of MC+ bacteria was determined by 16S rRNA gene full-length DNA sequencing. The presence of mlrA, a gene encoding MC cleavage pathway, was detected by PCR. Our culturing efforts obtained 520 pure cultures; 44 of them were identified as MC+. These MC+ isolates showed diversity in taxonomic identities and differed in their morphology, gram nature, colony characteristics and motility. PCR amplification of mlrA gene yield negative results for all MC+ isolates, indicating that the primers that were used may not be ubiquitous enough to cover the heterogeneity of mlrA genes or, more likely, alternative degradative genes/pathways were employed by Lake Erie bacteria

  4. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vessel astern, alongside, or by pushing ahead; and (iii) Each dredge and floating plant. (4) The traffic... towing another vessel astern, alongside or by pushing ahead; and (iv) Each dredge and floating plant. (c... Light to the lakeward limits of the improved navigation channels at the head of Lake Erie. District...

  5. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vessel astern, alongside, or by pushing ahead; and (iii) Each dredge and floating plant. (4) The traffic... towing another vessel astern, alongside or by pushing ahead; and (iv) Each dredge and floating plant. (c... Light to the lakeward limits of the improved navigation channels at the head of Lake Erie. District...

  6. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vessel astern, alongside, or by pushing ahead; and (iii) Each dredge and floating plant. (4) The traffic... towing another vessel astern, alongside or by pushing ahead; and (iv) Each dredge and floating plant. (c... Light to the lakeward limits of the improved navigation channels at the head of Lake Erie. District...

  7. Predation of the zebra mussel (Dreissena polymorpha) by freshwater drum in western Lake Erie

    USGS Publications Warehouse

    French, John R. P.; Bur, Michael T.; Nalepa, Thomas F.; Schloesser, Donald W.

    1992-01-01

    Environmental and economic problems associated with the colonization of zebra mussels (Dreissena polymorpha) in western Lake Erie created a need to investigate control mechanisms. Predation by fishes is one potential means of control, but predation on zebra mussels by native fishes in Lake Erie is unknown. The freshwater drum (Aplodinotus grunniens) is the most likely fish predator since it is the only fish with pharyngeal teeth capable of crushing mollusk shells. In 1990, freshwater drum were collected in western Lake Erie from 9 sites near rocky reefs and 13 sites with silt or sand bottoms, and gut contents were examined. Predation on zebra mussels increased as drum size increased. Small drum (200-249 mm in length) fed mainly on dipterans, amphipods, and small fish; small zebra mussels (375 mm in length) fed almost exclusively on zebra mussels (seasons and locations combined). The smallest drum capable of crushing zebra mussel shells was 265 mm. Since freshwater drum over 375 mm feed heavily on zebra mussels, they may become a possible biological control mechanism for mussels in portions of North America.

  8. Informing Lake Erie agriculture nutrient management via scenario evaluation

    USGS Publications Warehouse

    Scavia, Donald; Kalcic, Margaret; Muenich, Rebecca Logsdon; Aloysius, Noel; Arnold, Jeffrey; Boles, Chelsie; Confesor, Remegio; DePinto, Joseph; Gildow, Marie; Martin, Jay; Read, Jennifer; Redder, Todd; Robertson, Dale M.; Sowa, Scott P.; Wang, Yu-Chen; White, Michael; Yen, Haw

    2016-01-01

    Therefore, the overall goal of this study was to identify potential options for agricultural management to reduce phosphorus loads and lessen future HABs in Lake Erie. We applied multiple watershed models to test the ability of a series of land management scenarios, developed in consultation with agricultural and environmental stakeholders, to reach the proposed targets. 

  9. Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair.

    PubMed

    Codling, Garry; Sturchio, Neil C; Rockne, Karl J; Li, An; Peng, H; Tse, Timothy J; Jones, Paul D; Giesy, John P

    2018-06-01

    The temporal and spatial trends in sediment of 22 poly- and perfluorinated (PFAS) compounds were investigated in the southern Great Lakes Erie and Ontario as well as Lake St. Clair. Surface concentrations measured by Ponar grab samples indicated a trend for greater concentrations near to urban sites. Mean concentrations ∑ 22 PFAS were 15.6, 18.2 and 19 ng g -1 dm for Lakes St. Clair, Erie and Ontario, respectively. Perfluoro-n-butanoic acid (PFBA) and Perfluoro-n-hexanoic acid (PFHxA) were frequently determined in surface sediment and upper core samples indicating a shift in use patterns. Where PFBA was identified it was at relatively great concentrations typically >10 ng g -1 dm. However as PFBA and PFHxA are less likely to bind to sediment they may be indicative of pore water concentrations Sedimentation rates between Lake Erie and Lake Ontario differ greatly with greater rates observed in Lake Erie. In Lake Ontario, in general concentrations of PFAS observed in core samples closely follow the increase in use along with an observable change due to regulation implementation in the 1970s for water protection. However some of the more water soluble PFAS were observed in deeper core layers than the time of production could account for, indicating potential diffusion within the sediment. Given the greater sedimentation rates in Lake Erie, it was hoped to observe in greater resolution changes since the mid-1990s. However, though some decrease was observed at some locations the results are not clear. Many cores in Lake Erie had clearly observable gas voids, indicative of gas ebullition activity due to biogenic production, there were also observable mussel beds that could indicate mixing by bioturbation of core layers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Food of young-of-the-year walleyes in Lake Erie

    USGS Publications Warehouse

    Wolfert, David R.

    1966-01-01

    Stomach contents were examined for 794 young-of-the-year (0-group) walleyes (Stizostedion vitreum vitreum) captured by trawls at 17 locations in western Lake Erie in June-November 1962. Food organisms were found in 92.5 percent of the stomachs. Food varied with geographic location and season of capture, but within areas and seasons, selection for certain species and sizes of prey was strong. Walleyes from the extreme western end of Lake Erie fed primarily on gizzard shad and alewives during the summer and shifted to emerald shiners during the fall. The stomach contents of walleyes from the Island region changed from mainly yellow perch during the summer to emerald shiners by the end of the year. Walleyes collected east of the Islands had consumed only smelt and yellow perch. The numbers of forage species caught with walleyes in trawls showed little correlation with the representation of these species in walleye stomachs. Walleyes fed on the smallest individuals of each species regardless of species preferences.

  11. Associations between cyanobacteria and indices of secondary production in the western basin of Lake Erie

    USGS Publications Warehouse

    Larson, James H.; Evans, Mary Anne; Kennedy, Robert J.; Bailey, Sean; Loftin, Keith A.; Laughrey, Zachary; Femmer, Robin; Schaeffer, Jeff; Richardson, William B.; Wynne, Timothy; Nelson, J. C.; Duris, Joseph W.

    2018-01-01

    Large lakes provide a variety of ecological services to surrounding cities and communities. Many of these services are supported by ecological processes that are threatened by the increasing prevalence of cyanobacterial blooms which occur as aquatic ecosystems experience cultural eutrophication. Over the past 10 yr, Lake Erie experienced cyanobacterial blooms of increasing severity and frequency, which have resulted in impaired drinking water for the surrounding communities. Cyanobacterial blooms may impact ecological processes that support other services, but many of these impacts have not been documented. Secondary production (production of primary consumers) is an important process that supports economically important higher trophic levels. Cyanobacterial blooms may influence secondary production because cyanobacteria are a poor‐quality food resource and cyanotoxins may be harmful to consumers. Over 3 yr at 34 sites across the western basin of Lake Erie, we measured three indices of secondary production that focus on the dominant bivalve taxa: (1) growth of a native unionid mussel, (2) the size of young‐of‐year dreissenid mussels, and (3) the mass of colonizing animals on a Hester‐Dendy sampler. Associations between these indices and cyanobacterial data were estimated to assess whether cyanobacteria are associated with variation in secondary production in the western basin of Lake Erie. The results suggest cyanobacterial abundance alone is only weakly associated with secondary production, but that cyanotoxins have a larger effect on secondary production. Given recurring late‐summer cyanobacterial blooms, this impact on secondary production has the potential to undermine Lake Erie's ability to sustain important ecosystem services.

  12. Erie Harbor, Pennsylvania, Channel Shoaling Analysis

    DTIC Science & Technology

    2011-07-01

    Presque Isle is located on the southern shore of Lake Erie and shelters the federal harbor at Erie , Pennsylvania . The US Army...the evaluation of the shoaling and dredging of sediment materials from Erie Harbor as part of the Presque Isle , Pennsylvania 204 feasibility study...ERDC TR-11-4 1 1 Introduction Problem statement Presque Isle is located on the southern shore of Lake Erie , Pennsylvania at the city of Erie

  13. Chemical and biological quality of selected lakes in Ohio, 1978 and 1979

    USGS Publications Warehouse

    Angelo, C.G.; Youger, John D.

    1985-01-01

    Twenty-eight Ohio lakes were sampled by the U.S. Geological Survey and the Ohio Environmental Protection Agency for water-quality characteristics during the spring and summer of 1978 and 1979. This report is the third in a series covering a lake-sampling program that began in 1975. Data include water-column profiles of temperature, dissolved oxygen, pH, and specific conductance. Chemical, physical, and biological properties were measured at specific points in the water column, and selected physical and chemical properties also were measured in the principal inflows. The lakes were predominatly hard (120 180 milligrams per liter) to very hard water, although several soft-water lakes were found in southeastern Ohio. Calcium, bicarbonate, and sulfate were the principal dissolved constituents. Specific conductance ranged from 103 micromhos per centimeter (at 25 degrees Celsius) at Tycoon Lake, 1978, to 2,550 micromhos per centimeter at West Fork Mill Creek Lake, 1978. Thirteen lakes had trace-element concentrations that were above the limits for exceptional warm-water habitat recammended by the Ohio Environmental Protection Agency. Seasonal thermal gradients developed in most lakes deeper than 17 feet. Oxygen concentrations were zero or near zero during the summer sampling of the bottom water of all lakes having definite thermal gradients. Most anaerobic zones contained hydrogen sulfide and high concentrations of ammonia. All lakes were evaluated and classified by Carlson's trophic state index. Most of the lakes were classified as eutrophic. Blue-green algae (CyanophytaJ) dominated the summer algal communities. Fecal colifrom counts were within Ohio standards, although high (more than 1,000 colonies per 100 milliliters) fecal colifrom and fecal streptococcus counts were observed in West Fork Mill Creek Lake after significant runoff.

  14. BOTULISM E IN LAKE ERIE: ECOLOGY AND LOWER FOOD WEB TRANSFER

    EPA Science Inventory

    This project will determine the environmental conditions that favor botulism Type E bacteria in Lake Erie and explore whether quagga mussels are altering bottom sediment conditions to favor C. botulinum growth. Analysis of environmental parameters, including water chemistry, alg...

  15. Cyanobacteria Toxin and Cell Propagation through Six Lake Erie Treatment Plants

    EPA Science Inventory

    Over the past five years, Lake Erie has been experiencing harmful algal blooms (HABs) of progressively increasing severity. Cognizant of the potential health and economic impacts, the United States Environmental Protection Agency’s (USEPA’s) Water Supply and Water Resources Divi...

  16. Burrowing mayflies in Lake Erie - a review

    USGS Publications Warehouse

    Edsall, Thomas A.; Madenjian, C.P.; Manny, B.A.; Munawar, M.; Edsall, T.; Munawar, I.F.

    1999-01-01

    This paper describes the life history, distribution, and abundance of Hexagenia in Lake Erie, as shown by sediment core samples containing preserved Hexagenia remains dating back to about 1740, periodic sampling of living nymphal populations since about 1930, observations of emergences and mating swarms of adults, and the incidence of Hexagenia in fish stomachs. The roles of eutrophication and anoxia, and of oil and heavy metal pollution in the decline, near extinction, and delayed recovery of Hexagenia in the western basin are also discussed.

  17. Spatial and temporal genetic analysis of Walleyes in the Ohio River

    USGS Publications Warehouse

    Page, Kevin S.; Zweifela, Richard D.; Stott, Wendylee

    2017-01-01

    Previous genetic analyses have shown that Walleyes Sander vitreus in the upper Ohio River comprise two distinct genetic strains: (1) fish of Great Lakes origin that were stocked into the Ohio River basin and (2) a remnant native strain (Highlands strain). Resource agencies are developing management strategies to conserve and restore the native strain within the upper reaches of the Ohio River. Hybridization between strains has impacted the genetic integrity of the native strain. To better understand the extent and effects of hybridization on the native strain, we used mitochondrial DNA and microsatellite markers to evaluate the spatial (river sections) and temporal (pre- and poststocking) genetic diversity of Ohio River Walleyes. Contemporary Lake Erie Walleyes and archival museum specimens collected from the Ohio River basin were used for comparison to contemporary Ohio River samples. Although there was evidence of hybridization between strains, most of the genetic diversity within the Ohio River was partitioned by basin of origin (Great Lakes versus the Ohio River), with greater similarity among river sections than between strains within the same section. Results also suggested that the native strain has diverged from historical populations. Furthermore, notable decreases in measures of genetic diversity and increased relatedness among native-strain Walleyes within two sections of the Ohio River may be related to stocking aimed at restoration of the Highlands strain. Our results suggest that although the Highlands strain persists within the Ohio River, it has diverged over time, and managers should consider the potential impacts of future management practices on the genetic diversity of this native strain.

  18. Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in lake Erie

    USGS Publications Warehouse

    Elsbury, K.E.; Paytan, A.; Ostrom, N.E.; Kendall, C.; Young, M.B.; McLaughlin, K.; Rollog, M.E.; Watson, S.

    2009-01-01

    Water samples collected during three sampling trips to Lake Erie displayed oxygen isotopic values of dissolved phosphate (??18O p) that were largely out of equilibrium with ambient conditions, indicating that source signatures may be discerned. ??18O p values in the Lake ranged from +10??? to +17???, whereas the equilibrium value was expected to be around +14???. The riverine weighted average ??18Op value was +11??? and may represent one source of phosphate to the Lake. The lake ?? 18Op values indicated that there must be one or more as yet uncharacterized source(s) of phosphate with a high ?? 18Op value. Potential sources other than rivers are not yet well-characterized with respect to ??18O of phosphate, but we speculate that a likely source may be the release of phosphate from sediments under reducing conditions created during anoxic events in the hypolimnion of the central basin of Lake Erie. Identifying potential phosphorus sources to the Lake is vital for designing effective management plans for reducing nutrient inputs and associated eutrophication. ?? 2009 American Chemical Society.

  19. Ecological comparisons of Lake Erie tributaries with elevated incidence of fish tumors

    USGS Publications Warehouse

    Smith, Stephen B.; Blouin, Marc A.; Mac, Michael J.

    1994-01-01

    Ecological comparisons were made between two Lake Erie tributaries (Black and Cuyahoga rivers) with contaminated sediments and elevated rates of tumors in fish populations and a third, relatively unpolluted, reference tributary, the Huron River. Fish populations, benthic invertebrates, and sediments were evaluated in all three Ohio rivers. Community structure analyses indicated similar total densities but lower species diversity for fish and benthic invertebrates in the contaminated rivers when compared with the reference river. Growth rates in fish from the contaminated areas were either similar to or higher than those offish from the reference site. Brown bullhead (Ameiurus nebulosus) from the two contaminated tributaries exhibited 51% (Black River) and 45% (Cuyahoga River) incidence of liver lesions (neoplastic and preneoplastic) as compared with a 4% incidence of liver lesions in brown bullhead from the reference river (Huron River). Incidence of external abnormalities on brown bullhead was 54% (Black River) and 73% (Cuyahoga River) as compared with a 14% incidence on fish from the Huron River. On a regional basis, incidence of external abnormalities on particular benthic fish species may be an effective method to quickly indicate areas for more intensive contaminant studies.

  20. Infection of the walleye, Stizostedion v. vitreum, of western Lake Erie with Bothriocephalus cuspidatus (Cooper)

    USGS Publications Warehouse

    Wolfert, David R.; Applegate, Vernon C.; Allison, Leonard N.

    1967-01-01

    In recent years appreciable changes have taken place in the biota and physiochemical conditions in Lake Erie. The accelerated eutrophication of the lake has been accompanied by the near disappearance of several fish species, e.g., blue pike (Stizostedion vitreum glaucum), lake herring (Coregonus artedi), lake trout (Salvelinus namaycush), sauger (Stizostedion canadense), and whitefish (Coregonus clupeaformis). Interest in the biology of the remaining species has increased as means have been sought to preserve their numbers in the lake. This report, which describes the caecal and intestinal parasites of the walleye, Stizostedion vitreum vitreum, is a contribution to the natural history of this fish in western Lake Erie. This study concerns: the type and degree of intestinal parasitic infestations in a single year class of walleyes during their first 3 years of life; seasonal changes in the incidence and maturity of the dominant parasite Bothriocephalus cuspidatus; and the effects of the infestations on the physical condition of the host.

  1. Spawning site fidelity and apparent annual survival of walleye (Sander vitreus) differ between a Lake Huron and Lake Erie tributary

    USGS Publications Warehouse

    Hayden, Todd A.; Binder, Thomas; Holbrook, Christopher; Vandergoot, Christopher; Fielder, David G.; Cooke, Steven J.; Dettmers, John M.; Krueger, Charles C.

    2018-01-01

    Fidelity to spawning habitats can maximise reproductive success of fish by synchronising movements to sites of previous recruitment. To determine the role of reproductive fidelity in structuring walleye Sander vitreus populations in the Laurentian Great Lakes, we used acoustic telemetry combined with Cormack–Jolly–Seber capture–recapture models to estimate spawning site fidelity and apparent annual survival for the Tittabawassee River in Lake Huron and Maumee River in Lake Erie. Walleye in spawning condition were tagged from the Tittabawassee River in Lake Huron and Maumee River in Lake Erie in 2011–2012. Site fidelity and apparent annual survival were estimated from return of individuals to the stream where tagged. Site fidelity estimates were higher in the Tittabawassee River (95%) than the Maumee River (70%) and were not related to sex or fish length at tagging. Apparent annual survival of walleye tagged in the Tittabawassee did not differ among spawning seasons but was higher for female than male walleye and decreased linearly as fish length increased. Apparent annual survival of walleye tagged in the Maumee River did not differ among spawning seasons but was higher for female walleye than male walleye and increased linearly as fish length increased. Greater fidelity of walleye tagged in the Tittabawassee River than walleye tagged in the Maumee River may be related to the close proximity to the Maumee River of other spawning aggregations and multiple spawning sites in Lake Erie. As spawning site fidelity increases, management actions to conserve population structure require an increasing focus on individual stocks.

  2. Water resources of the Lake Erie shore region in Pennsylvania

    USGS Publications Warehouse

    Mangan, John William; Van Tuyl, Donald W.; White, Walter F.

    1952-01-01

    An abundant supply of water is available to the Lake Erie Shore region in Pennsylvania. Lake i£rie furnishes an almost inexhaustible supply of water of satisfactory chemical quality. Small quantities of water are available from small streams in the area and from the ground. A satisfactory water supply is one of the factors that affect the economic growth of a region. Cities and towns must have adequate amounts of pure water for human consumption. Industries must have suitable water ih sufficient quantities for all purposes. In order to assure. success and economy, the development of water resources should be based on adequate knowledge of the quantity and quality of the water. As a nation, we can not afford to run the risk of dissipating our resources, especially in times of national emergency, by building projects that are not founded on sound engineering and adequate water-resources information. The purpose of this report is to summarize and interpret all available water-resources information for the Lake Erie Shore region in Pennsylvania. The report will be useful for initial guidance in the location or expansion of water facilities for defense and nondefense industries and the municipalities upon which they are dependent. It will also be useful in evaluating the adequacy of the Geological Survey's part of the basic research necessary to plan the orderly development of the water resources of the Lake Erie Shore region. Most of the data contained inthis report have been obtained'by the U. S. Geological Survey in cooperation with the Pennsylvania Department of Forests and Waters, the Pennsylvania Department of Internal Affairs, and the Pennsylvania State Planning Board, Department of Commerce. The Pennsylv~nia Department of Health furnished information on water pollution. The report was prepared in the Water Resources Division of the U. S. Geological Survey b:y John W. Mangan (Surface Water). Donald W. VanTuyl (Ground Water). and Walter F. White, Jr. (Quality of

  3. First record of Daphnia lumholtzi Sars in the Great Lakes

    USGS Publications Warehouse

    Muzinic, Christopher J.

    2000-01-01

    Adults of the cladoceran Daphnia lumholtzi, native to Australia, Africa, and parts of Asia, were first collected in August 1999 in Lake Erie. Individuals were collected near East Harbor State Park, Lakeside, Ohio from vertical plankton net tows. The average number of D. lumholtzi that were found (0.03/L) indicate that D. lumholtzi is beginning to establish itself in Lake Erie. The morphology of this Daphnia differs greatly from native species because of its elongated head and tail spine. This sighting is important because it acknowledges yet another exotic invader into the Great Lakes basin and it also shows that this, normally, warm water species continues to expand its range northward.

  4. Lake Erie...A Day in the Life of a Fish.

    ERIC Educational Resources Information Center

    Canning, Maureen; Dunlevy, Margie

    This elementary school teaching unit was developed as a part of a series of units that deal with Lake Erie. This unit was developed to enable children to: (1) examine a moving fish; (2) conduct experiments with a live fish; (3) understand the swimming habits of fish; (4) learn how fish breathe; (5) recognize different methods of fish protection…

  5. Internal loading of phosphorus in western Lake Erie

    USGS Publications Warehouse

    Matisoff, Gerald; Kaltenberg, Eliza M.; Steely, Rebecca L.; Hummel, Stephanie K.; Seo, Jinyu; Gibbons, Kenneth J.; Bridgeman, Thomas B.; Seo, Youngwoo; Behbahani, Mohsen; James, William F.; Johnson, Laura; Doan, Phuong; Dittrich, Maria; Evans, Mary Anne; Chaffin, Justin D.

    2016-01-01

    This study applied eight techniques to obtain estimates of the diffusive flux of phosphorus (P) from bottom sediments throughout the western basin of Lake Erie. The flux was quantified from both aerobic and anaerobic incubations of whole cores; by monitoring the water encapsulated in bottom chambers; from pore water concentration profiles measured with a phosphate microelectrode, a diffusive equilibrium in thin films (DET) hydrogel, and expressed pore waters; and from mass balance and biogeochemical diagenetic models. Fluxes under aerobic conditions at summertime temperatures averaged 1.35 mg P/m2/day and displayed spatial variability on scales as small as a centimeter. Using two different temperature correction factors, the flux was adjusted to mean annual temperature yielding average annual fluxes of 0.43–0.91 mg P/m2/day and a western basin-wide total of 378–808 Mg P/year as the diffusive flux from sediments. This is 3–7% of the 11,000 Mg P/year International Joint Commission (IJC) target load for phosphorus delivery to Lake Erie from external sources. Using these average aerobic fluxes, the sediment contributes 3.0–6.3 μg P/L as a background internal contribution that represents 20–42% of the IJC Target Concentration of 15 μg P/L for the western basin. The implication is that this internal diffusive recycling of P is unlikely to trigger cyanobacterial blooms by itself but is sufficiently large to cause blooms when combined with external loads. This background flux may be also responsible for delayed response of the lake to any decrease in the external loading.

  6. Lake Erie, phosphorus and microcystin: Is it really the farmer's fault?

    USDA-ARS?s Scientific Manuscript database

    Agricultural loss of phosphorus (P) have been identified as a primary contributor to eutrophication and the associated release of toxins (i.e., mycrocystin) in Lake Erie. These losses are commonly deemed excessive by the media and the public, singling out agriculture as the culprit in spite of redu...

  7. Phosphorus availability in Western Lake Erie Basin drainage waters: legacy evidence across spatial scales

    USDA-ARS?s Scientific Manuscript database

    The Western Lake Erie Basin (WLEB) was inundated with precipitation during June and July 2015 (2-3× greater than historical averages), which led to significant nutrient loading and the largest in-lake algal bloom on record. Using discharge and concentration data from three spatial scales (0.09 km2 t...

  8. Hydrologic and biogeochemical controls on phosphorus export from western Lake Erie tributaries

    USDA-ARS?s Scientific Manuscript database

    Understanding the processes controlling phosphorus (P) export from agricultural watersheds is essential for predicting and mitigating adverse environmental impacts. In this study, discharge, dissolved reactive phosphorus load, and total phosphorus load time series data (1975-2014) from two Lake Erie...

  9. The effect of mayfly (Hexagenia spp.) burrowing activity on sediment oxygen demand in western Lake Erie

    USGS Publications Warehouse

    Edwards, William J.; Soster, Frederick M.; Matisoff, Gerald; Schloesser, Donald W.

    2009-01-01

    Previous studies support the hypothesis that large numbers of infaunal burrow-irrigating organisms in the western basin of Lake Erie may increase significantly the sediment oxygen demand, thus enhancing the rate of hypolimnetic oxygen depletion. We conducted laboratory experiments to quantify burrow oxygen dynamics and increased oxygen demand resulting from burrow irrigation using two different year classes of Hexagenia spp. nymphs from western Lake Erie during summer, 2006. Using oxygen microelectrodes and hot film anemometry, we simultaneously determined oxygen concentrations and burrow water flow velocities. Burrow oxygen depletion rates ranged from 21.7 mg/nymph/mo for 15 mm nymphs at 23 °C to 240.7 mg/nymph/mo for 23 mm nymphs at 13 °C. Sealed microcosm experiments demonstrated that mayflies increase the rate of oxygen depletion by 2-5 times that of controls, depending on size of nymph and water temperature, with colder waters having greater impact. At natural population densities, nymph pumping activity increased total sediment oxygen demand 0.3-2.5 times compared to sediments with no mayflies and accounted for 22-71% of the total sediment oxygen demand. Extrapolating laboratory results to the natural system suggest that Hexagenia spp. populations may exert a significant control on oxygen depletion during intermittent stratification. This finding may help explain some of the fluctuations in Hexagenia spp. population densities in western Lake Erie and suggests that mayflies, by causing their own population collapse irrespective of other environmental conditions, may need longer term averages when used as a bio-indicator of the success of pollution-abatement programs in western Lake Erie and possibly throughout the Great Lakes.

  10. ENSURING SAFE DRINKING WATER IN LAKE ERIE: QUANTIFYING EXTREME WEATHER IMPACTS ON CYANOBACTERIA AND DISINFECTION BYPRODUCTS (DPBS)

    EPA Science Inventory

    The Great Lakes hold 95% of our Nation's and 20% of World's fresh water supply, and it is home to 30% of the US population. II million people rely on drinking water from Lake Erie, the most southern and biologicaJiy productive lake among the Great Lakes. Under incre...

  11. Simulating hydrodynamics and ice cover in Lake Erie using an unstructured grid model

    NASA Astrophysics Data System (ADS)

    Fujisaki-Manome, A.; Wang, J.

    2016-02-01

    An unstructured grid Finite-Volume Coastal Ocean Model (FVCOM) is applied to Lake Erie to simulate seasonal ice cover. The model is coupled with an unstructured-grid, finite-volume version of the Los Alamos Sea Ice Model (UG-CICE). We replaced the original 2-time-step Euler forward scheme in time integration by the central difference (i.e., leapfrog) scheme to assure a neutrally inertial stability. The modified version of FVCOM coupled with the ice model is applied to the shallow freshwater lake in this study using unstructured grids to represent the complicated coastline in the Laurentian Great Lakes and refining the spatial resolution locally. We conducted multi-year simulations in Lake Erie from 2002 to 2013. The results were compared with the observed ice extent, water surface temperature, ice thickness, currents, and water temperature profiles. Seasonal and interannual variation of ice extent and water temperature was captured reasonably, while the modeled thermocline was somewhat diffusive. The modeled ice thickness tends to be systematically thinner than the observed values. The modeled lake currents compared well with measurements obtained from an Acoustic Doppler Current Profiler located in the deep part of the lake, whereas the simulated currents deviated from measurements near the surface, possibly due to the model's inability to reproduce the sharp thermocline during the summer and the lack of detailed representation of offshore wind fields in the interpolated meteorological forcing.

  12. Relationships among condition indices, feeding and growth of walleye in Lake Erie

    USGS Publications Warehouse

    Hartman, K.J.; Margraf, F.J.

    2006-01-01

    Condition indices are often used as surrogates of fish health, growth, and feeding and to compare ecological well-being among fish populations. In an effort to identify easily measured indices, growth and food consumption were compared with gonadal-somatic index, liver-somatic index (LSI), fat-somatic index and relative weight (Wr) for ages 1-3 walleye, Sander vitreus (Mitchill), in Lake Erie from 1986 to 1988. The LSI and Wr were significantly correlated with growth rate or food consumption, but correlations were too small to be considered biologically meaningful. Furthermore, no consistent relationships between condition indices and growth or consumption were found among combinations of fish age and season. None of the indices are considered reliable surrogates for more laborious estimates of growth and food consumption for Lake Erie walleye. Significant relationships between Wr and relative abundance of key prey species warrant further investigation. ?? 2006 Blackwell Publishing Ltd.

  13. Distribution of native mussel (unionidae) assemblages in coastal areas of Lake Erie, Lake St. Clair, and connecting channels, twenty-five years after a dreissenid invasion

    USGS Publications Warehouse

    Zanatta, David T.; Bossenbroek, Jonathan M.; Burlakova, Lyubov E.; Crail, Todd D.; Szalay, Ferenc de; Griffith, Traci A.; Kapusinski, Douglas; Karatayev, Alexander Y.; Krebs, Robert A.; Meyer, Elizabeth S.; Paterson, Wendy L.; Prescott, Trevor J.; Rowe, Matthew T.; Schloesser, Donald W.; Walsh, Mary C.

    2015-01-01

    Over the past 25 years, unionid mussels in the Laurentian Great Lakes of North America have been adversely impacted by invasive dreissenid mussels, which directly (e.g., by attachment to unionid shells) and indirectly (e.g., by competing for food) cause mortality. Despite the invasion, unionids have survived in several areas in the presence of dreissenid mussels. We investigated current spatial patterns in these native mussel refuges based on surveys for unionid mussels across 48 sampling locations (141 sites) in 2011 and 2012, and documented species abundance and diversity in coastal areas of lakes St. Clair and Erie. The highest-quality assemblages of native mussels (densities, richness, and diversity) appear to be concentrated in the St. Clair delta, where abundance continues to decline, as well as in in Thompson Bay of Presque Isle in Lake Erie and in just a few coastal wetlands and drowned river-mouths in the western basin of Lake Erie. The discovery of several new refuge areas suggests that unionids have a broader distribution within the region than previously thought.

  14. Morphological evidence for discrete stocks of yellow perch in Lake Erie

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Knight, Carey T.

    2012-01-01

    Identification and management of unique stocks of exploited fish species are high-priority management goals in the Laurentian Great Lakes. We analyzed whole-body morphometrics of 1430 yellow perch Perca flavescens captured during 2007–2009 from seven known spawning areas in Lake Erie to determine if morphometrics vary among sites and management units to assist in identification of spawning stocks of this heavily exploited species. Truss-based morphometrics (n = 21 measurements) were analyzed using principal component analysis followed by ANOVA of the first three principal components to determine whether yellow perch from the several sampling sites varied morphometrically. Duncan's multiple range test was used to determine which sites differed from one another to test whether morphometrics varied at scales finer than management unit. Morphometrics varied significantly among sites and annually, but differences among sites were much greater. Sites within the same management unit typically differed significantly from one another, indicating morphometric variation at a scale finer than management unit. These results are largely congruent with recently-published studies on genetic variation of yellow perch from many of the same sampling sites. Thus, our results provide additional evidence that there are discrete stocks of yellow perch in Lake Erie and that management units likely comprise multiple stocks.

  15. The Fossil Fauna of the Islands Region of Western Lake Erie.

    ERIC Educational Resources Information Center

    Bowe, Lulu M., Comp.

    The islands of western Lake Erie are rock-bound isles that abound in rocky outcrops and quarries. The rocks of these islands are of two distinct types, Silurian dolomites and Devonian limestones. The dolomites, exposed in the Bass Islands and Sister Islands are virtually devoid of fossils. Conversely, the limestones of Johnson Island, Marblehead,…

  16. Chemical and biological quality of selected lakes in Ohio, 1976 and 1977

    USGS Publications Warehouse

    Tobin, Robert L.; Youger, John D.

    1979-01-01

    Twenty-eight Ohio lakes (14 per year) were sampled by the U.S. Geological Survey and Ohio Environmental Protection Agency for the water-quality characteristics during the spring and summer of 1976 and 1977. Data items included: profiles of temperature, dissolved oxygen, pH, and specific conductance; physical, biological, nutrient, and organic characteristics; major and minor constituents; and physical and chemical data associated with major inflows. Light penetration (secchi disk) was greatest (21 feet) in Mogadore Reservoir and least (0.8 foot) in Stonelick Lake. Seasonal thermal gradients developed in most lakes greater than 17 feet in depth. Dissolved-oxygen saturation ranged from 220 percent in Summit Lake to zero percent in the bottom waters of all lakes having stable thermal gradients. Five-day BOD ranged from 0.3 milligrams per liter im Michael J. Kirwan Reservoir to more than 17 milligrams per liter in Nimisilia Reservoir. Anaerobic zones were frequently characterized by hydrogen sulfide and high concentrations of ammonia. All lakes had moderately hard to very hard waters. Calcium, bicarbonate, and sulfate were the principal constituents. Specific conductance ranged from 130 micromhos (Lake Logan) to 1250 micromhos (Summit Lake). Because of nutrient uptake and recycling, significant chemical and physical differences developed in different thermal strata. Pesticide residues and trace elements were not above the limits recommended by the Ohio Environmental Protection Agency. All counts of fecal colifrom bacteria were within State standards. Blue-green algae (Cyanophyta) dominated the phytoplankton communities of 18 lakes in spring and 26 lakes in summer. Algal counts from euphotic-zone composite samples ranged from 180 cells per milliliter in Killdeer Reservoir to 3,400,000 cells per milliliter in Kiser Lake. Maximum algal counts were greater than 100,000 cells per milliliter in 19 lakes. Streams ate a major source of macronutrients in Ohio lakes. The

  17. Lake Erie Water Level Study. Appendix B. Regulatory Works.

    DTIC Science & Technology

    1981-07-01

    From Lake Erie to Strawberry Island, a distance of approximately 5 miles, the channel width varies from 9,000 feet at its funnel-shaped entrance to...boating. Downstream from Navy Island, boating is discouraged due to the danger of being swept over Niagara Falls. At Strawberry and Grand Islands, the...reach at the head of Niagara River. Extending from Buffalo Harbor to the river above Strawberry Island, the canal is separated from the river by a series

  18. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia

    USGS Publications Warehouse

    Scavia, Donald; Allan, J. David; Arend, Kristin K.; Bartell, Steven; Beletsky, Dmitry; Bosch, Nate S.; Brandt, Stephen B.; Briland, Ruth D.; Daloğlu, Irem; DePinto, Joseph V.; Dolan, David M.; Evans, Mary Anne; Farmer, Troy M.; Goto, Daisuke; Han, Haejin; Höök, Tomas O.; Knight, Roger; Ludsin, Stuart A.; Mason, Doran; Michalak, Anna M.; Richards, R. Peter; Roberts, James J.; Rucinski, Daniel K.; Rutherford, Edward; Schwab, David J.; Sesterhenn, Timothy M.; Zhang, Hongyan; Zhou, Yuntao

    2014-01-01

    Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiated in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton biomass, and bottom-water hypoxia (dissolved oxygen 2) requires cutting total phosphorus loads by 46% from the 2003–2011 average or reducing dissolved reactive phosphorus loads by 78% from the 2005–2011 average. Reductions to these levels are also protective of fish habitat. We provide potential approaches for achieving those new loading targets, and suggest that recent load reduction recommendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin hypoxia to 2000 km2.

  19. Biodiversity of Clostridium botulinum Type E Associated with a Large Outbreak of Botulism in Wildlife from Lake Erie and Lake Ontario ▿

    PubMed Central

    Hannett, George E.; Stone, Ward B.; Davis, Stephen W.; Wroblewski, Danielle

    2011-01-01

    The genetic relatedness of Clostridium botulinum type E isolates associated with an outbreak of wildlife botulism was studied using random amplification of polymorphic DNA (RAPD). Specimens were collected from November 2000 to December 2008 during a large outbreak of botulism affecting birds and fish living in and around Lake Erie and Lake Ontario. In our present study, a total of 355 wildlife samples were tested for the presence of botulinum toxin and/or organisms. Type E botulinum toxin was detected in 110 samples from birds, 12 samples from fish, and 2 samples from mammals. Sediment samples from Lake Erie were also examined for the presence of C. botulinum. Fifteen of 17 sediment samples were positive for the presence of C. botulinum type E. Eighty-one C. botulinum isolates were obtained from plants, animals, and sediments; of these isolates, 44 C. botulinum isolates produced type E toxin, as determined by mouse bioassay, while the remaining 37 isolates were not toxic for mice. All toxin-producing isolates were typed by RAPD; that analysis showed 12 different RAPD types and multiple subtypes. Our study thus demonstrates that multiple genetically distinct strains of C. botulinum were involved in the present outbreak of wildlife botulism. We found that C. botulinum type E is present in the sediments of Lake Erie and that a large range of bird and fish species is affected. PMID:21115703

  20. Suitability of Lake Erie for bigheaded carps based on bioenergetic models and remote sensing

    USGS Publications Warehouse

    Anderson, Karl R.; Chapman, Duane C.; Wynne, Timothy; Masagounder, Karthik; Paukert, Craig P.

    2015-01-01

    Algal blooms in the Great Lakes are a potential food source for silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis; together bigheaded carps). Understanding these blooms thus plays an important role in understanding the invasion potential of bigheaded carps. We used remote sensing imagery, temperatures, and improved species specific bioenergetics models to determine algal concentrations sufficient for adult bigheaded carps. Depending on water temperature we found that bigheaded carp require between 2 and 7 μg/L chlorophyll or between 0.3 and 1.26 × 105cells/mL Microcystis to maintain body weight. Algal concentrations in the western basin and shoreline were found to be commonly several times greater than the concentrations required for weight maintenance. The remote sensing images show that area of sufficient algal foods commonly encompassed several hundred square kilometers to several thousands of square kilometers when blooms form. From 2002 to 2011, mean algal concentrations increased 273%–411%. This indicates Lake Erie provides increasingly adequate planktonic algal food for bigheaded carps. The water temperatures and algal concentrations detected in Lake Erie from 2008 to 2012 support positive growth rates such that a 4 kg silver carp could gain between 19 and 57% of its body weight in a year. A 5 kg bighead carp modeled at the same water temperatures could gain 20–81% of their body weight in the same period. The remote sensing imagery and bioenergetic models suggest that bigheaded carps would not be food limited if they invaded Lake Erie.

  1. Distribution and abundance of the polychaete, Manayunkia speciosa Leidy, in western Lake Erie

    USGS Publications Warehouse

    Hiltunen, Jarl K.

    1965-01-01

    The abundance and distribution of the freshwater polychaete, Manayunkia speciosa, in 1961, are described for western Lake Erie. Previous records reveal that the species has either been generally overlooked or presently its numbers have greatly increased in the area considered.

  2. Distribution and abundance of freshwater polychaetes, Manayunkia speciosa (Polychaeta), in the Great Lakes with a 70-year case history for western Lake Erie

    USGS Publications Warehouse

    Schloesser, Don W.

    2013-01-01

    Manayunkia speciosa has been a taxonomic curiosity for 150 years with little interest until 1977 when it was identified as an intermediate host of a fish parasite (Ceratomyxa shasta) responsible for fish mortalities (e.g., chinook salmon). Manayunkia was first reported in the Great Lakes in 1929. Since its discovery, the taxon has been reported in 50% (20 of 40 studies) of benthos studies published between 1960 and 2007. When found, Manayunkia comprised 2) and Georgian Bay (1790/m2) than in five other areas (mean = 60 to 553/m2) of the lakes. A 70-year history of Manayunkia in western Lake Erie indicates it was not found in 1930, was most abundant in 1961 (mean = 8039, maximum = 67,748/m2), and decreased in successive periods of 1982 (3529, 49,639/m2), 1993 (1876, 25,332/m2), and 2003 (79, 2583/m2). It occurred at 48% of stations in 1961, 58% in 1982, 52% in 1993, and 6% of stations in 2003. In all years, Manayunkia was distributed primarily near the mouth of the Detroit River. Causes for declines in distribution and abundance are unknown, but may be related to pollution-abatement programs that began in the 1970s, and invasion of dreissenid mussels in the late-1980s which contributed to de-eutrophication of western Lake Erie. At present, importance of the long-term decline of Manayunkia in Lake Erie is unknown.

  3. Estuarine microbial food web patterns in a Lake Erie coastal wetland.

    PubMed

    Lavrentyev, P J; McCarthy, M J; Klarer, D M; Jochem, F; Gardner, W S

    2004-11-01

    Composition and distribution of planktonic protists were examined relative to microbial food web dynamics (growth, grazing, and nitrogen cycling rates) at the Old Woman Creek (OWC) National Estuarine Research Reserve during an episodic storm event in July 2003. More than 150 protistan taxa were identified based on morphology. Species richness and microbial biomass measured via microscopy and flow cytometry increased along a stream-lake (Lake Erie) transect and peaked at the confluence. Water column ammonium (NH4+) uptake (0.06 to 1.82 microM N h(-1)) and regeneration (0.04 to 0.55 microM N h(-1)) rates, measured using 15NH4+ isotope dilution, followed the same pattern. Large light/dark NH4+ uptake differences were observed in the hypereutrophic OWC interior, but not at the phosphorus-limited Lake Erie site, reflecting the microbial community structural shift from net autotrophic to net heterotrophic. Despite this shift, microbial grazers (mostly choreotrich ciliates, taxon-specific growth rates up to 2.9 d(-1)) controlled nanophytoplankton and bacteria at all sites by consuming 76 to 110% and 56 to 97% of their daily production, respectively, in dilution experiments. Overall, distribution patterns and dynamics of microbial communities in OWC resemble those in marine estuaries, where plankton productivity increases along the river-sea gradient and reaches its maximum at the confluence.

  4. Life history of the spottail shiner (Notropis hudsonius) in southeastern Lake Michigan, the Kalamazoo River, and western Lake Erie

    USGS Publications Warehouse

    Wells, LaRue; House, Robert

    1974-01-01

    Young shiners started growing earlier in the year than older ones in all three waters. Males and females of the same age resumed growth at about the same time. The growing season began as early as mid-May in the Kalamazoo River and continued as late as September or early October in the other two waters. Small spottail shiners in Lake Michigan and the Kalamazoo River weighed about the same at a given length, but at lengths greater than about 100 mm the lake fish were heavier. In all three waters, spottail shiners matured at about the same length, and males at a somewhat smaller size than females. Smallest mature fish were 65-69 mm long, and the largest immatures were 80-84 mm. In Lake Michigan about half and in Lake Erie about three-quarters of age-I fish were mature, as were all age-II fish in both lakes. In the Kalamazoo River a few fish of age II and all of age III were mature. The spawning season in Lake Michigan in 1964 was from late June or early July to late July, whereas in 1972, which had a colder spring, spawning occurred from mid-July to late August or early September. All shiners in the Kalamazoo River had spawned by the end of June if 1964. Lake Erie spottail shiners spawned during early June to early or mid-July in 1958. Spottail shiners 87-143 mm long from the different waters contained 915 to 8,898 mature eggs.

  5. Great Lakes clams find refuge from zebra mussels in restored, lake-connected marsh (Ohio)

    USGS Publications Warehouse

    Nichols, S. Jerrine; Wilcox, Douglas A.

    2004-01-01

    Since the early 1990s, more than 95 percent of the freshwater clams once found in Lake Erie have died due to the exotic zebara mussel (Dreissena polymorpha). Zebra mussels attach themselves to native clams in large numbers, impeding the ability of the clams to eat and burrow. However, in 1996, we discovered a population of native clams in Metzger Marsh in western Lake Erie (about 50 miles [80 km] east of Toledo) that were thriving despite the longtime presence of zebra mussel in surrounding waters. At that time, Metzger Marsh was undergoing extensive restoration, including construction of a dike to replace the eroded barrier beach and of a water-control structure to maintain hydrologic connections with the lake (Wilcox and Whillans 1999). The restoration plan called for a drawdown of water levels to promote plant growth from the seedbank -- a process that would also destroy most of the clam population. State and federal resource managers recommended removing as many clams as possible to a site that was isolated from zebra mussels, and then returning them to the marsh after it was restored. We removed about 7,000 native clams in 1996 and moved them back to Metzger Marsh in 1999.

  6. Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.

    PubMed

    Forster, D Lynn; Rausch, Jonathan N

    2002-01-01

    During the past three decades, numerous government programs have encouraged Lake Erie basin farmers to adopt practices that reduce water pollution. The first section of this paper summarizes these state and federal government agricultural pollution abatement programs in watersheds of two prominent Lake Erie tributaries, the Maumee River and Sandusky River. Expenditures are summarized for each program, total expenditures in each county are estimated, and cost effectiveness of program expenditures (i.e., cost per metric ton of soil saved) are analyzed. Farmers received nearly $143 million as incentive payments to implement agricultural nonpoint source pollution abatement programs in the Maumee and Sandusky River watersheds from 1987 to 1997. About 95% of these funds was from federal sources. On average, these payments totaled about $7000 per farm or about $30 per farm acre (annualized equivalent of $2 per acre) within the watersheds. Our analysis raises questions about how efficiently these incentive payments were allocated. The majority of Agricultural Conservation Program (ACP) funds appear to have been spent on less cost-effective practices. Also, geographic areas with relatively low (high) soil erosion rates received relatively large (small) funding.

  7. The effect of zebra mussel consumption on growth of freshwater drum in Lake Erie

    USGS Publications Warehouse

    French, John R. P.; Bur, Michael T.

    1996-01-01

    We examined food habits and scale annuli of freshwater drum (Aplodinotus grunniens) from western Lake Erie to determine whether increasing predation on zebra mussels (Dreissena polymorpha) had affected growth of freshwater drum. The volume of zebra mussels in drum guts was greater in older fish. Growth of age classes 3–4, which consumed few zebra mussels, was greater in the most productive year for zebra mussels, July 1990–August 1991, than in three prior years. The total lengths of 5-year-old drum changed little. The mean total length of 6-year-old females has declined since the zebra mussel invaded Lake Erie, even through mussels comprised more than two-thirds of gut samples in these fish. These studies suggest that zebra mussels may not benefit freshwater drum when serving as a staple in the diet. PDF

  8. Effects of exploitation, environmental changes, and new species on the fish habitats and resources of Lake Erie

    USGS Publications Warehouse

    Hartman, Wilbur L.

    1973-01-01

    No other lake as large as Lake Erie (surface area, 25,690 km2) has been subjected to such extensive changes in the drainage basin, the lake environment, and the fish populations over the last 150 years. Deforestation and prairie burning led to erosion of the watershed and siltation of valuable spawning grounds. Marsh spawning areas were drained. Lake-to-river spawning migrations of sturgeon, walleye, and other fishes were blocked by mill dams. Accelerated cultural nutrient loading increased total dissolved solids by nearly 50% (1920-70). Phosphate loading reached 469 metric tons per year by the 1950's and continued to increase. The biomass of phytoplankton increased 20-fold between 1919 and 1963. Oxygen demand for decomposition of these algae so degraded oxygen regimes in the western and central basins by the 1950's that the once abundant mayfly nymphs were destroyed and the central basin hypolimnion became anoxic. The sequence of disappearance or severe depletion of fish species was as follows: lake trout, sturgeon, lake herring, lake whitefish, sauger, blue pike, and walleye. Yellow perch are now declining. All resources were intensively exploited at one time or another. Lake trout suffered only this stress, but changes in the watershed significantly stressed sturgeon and lake whitefish. Degradation of the lake spawning grounds, benthos, and oxygen regimes culminated in severe stress by the 1950's on the remnants of the lake herring and lake whitefish, and on the sauger, blue pike, and walleye. Additional mortality may have been imposed on walleye and blue pike fry by predacious smelt that successfully colonized Lake Erie after first appearing in 1932. The cultural stresses, in the probable order of greatest to least net effects on the fish community of Lake Erie, appear to have been: (1) an intense, opportunistic, ineffectively controlled commercial fishery; (2) changes in the watershed, such as erosion and siltation of stream beds and inshore lake areas, and

  9. Natural gas situation in Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Ohio, the state hardest hit by the natural gas shortage, experienced a firm service cutback of 68.8 billion CF from January to March 1975, absorbing more than 10% of the entire nation's gas shortage. The state depends heavily on Columbia Gas System, Inc., which ranked second in curtailments last winter and is projecting cutbacks of 27.7% for this winter. Among Gov. James Rhodes' plans for increasing indigenous gas supplies is the extraction of gas from oil shale (jointly with Kentucky and W. Virginia), establishment of an Ohio Energy Development Authority to issue revenue bonds and low-interest energy development loans, developmentmore » of Ohio's natural gas reserves (including any in Lake Erie), increase in oil storage facilities, and utilization of interstate pipelines for intrastate movement. Meanwhile, consumer utility bills continue to increase, causing at least one city, Akron, to freeze natural gas rates at the April, 1975 level. Rural users have been affected the most, with charges in certain areas rising to more than $26 for 15,000 CF/month. As a result, Ohio's government is becoming more aware of LP-gas, a fuel that has not generally been affected by the shortage of other fuels.« less

  10. 78 FR 30762 - Safety Zone; 2013 Fish Festival Fireworks, Lake Erie, Vermilion, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...-AA00 Safety Zone; 2013 Fish Festival Fireworks, Lake Erie, Vermilion, OH AGENCY: Coast Guard, DHS... during the 2013 Fish Festival Fireworks display. This temporary safety zone is necessary to protect... necessary to ensure the safety of spectators and vessels during the 2013 Fish Festival Fireworks. This zone...

  11. Anchistropus spp. (Crustacea: Cladocera: Chydoridae): a new distribution record for Lake Erie

    USGS Publications Warehouse

    Evans, Marlene S.; Hiltunen, Jarl K.; Schloesser, Donald W.

    1990-01-01

    This note extends the known Great Lakes distribution of Anchistropus sp. from Lake Michigan, Huron, Superior, and St. Clair to Rondeau Harbor in Lake Erie. Anchistropus sp. was collected in benthic samples where it occurred as epibionts on hydra. Previous studies, which are briefly reviewed, have noted the parasitic nature of Anchistropus. Although only one species of Anchistropus (A. minor) is known from North America, our specimens cannot be positively identified as that species: the structure of the postabdomen and first leg differs from the original taxonomic description of A. minor. Others have noted differences between the original description of A. minor and the morphology of specimens collected over the succeeding years.

  12. Meteotsunamis in the Great Lakes and Investigation into the May 27, 2012 Event on Lake Erie

    NASA Astrophysics Data System (ADS)

    Anderson, E. J.; Bechle, A.; Wu, C. H.; Schwab, D. J.; Mann, G.

    2016-02-01

    Meteotsunami events have been documented in several countries around the world in the coastal ocean, semi-enclosed basins, and in the Great Lakes. In particular, investigations in the Great Lakes have raised the issue of dangers posed by enclosed basins due to the reflection and interaction of meteotsunami waves, in which the destructive waves can arrive several hours after the atmospheric disturbance has passed. This disassociation in time and space between the atmospheric disturbance and resultant meteotsunami wave can pose a significant threat to the public. In a recent event on May 27, 2012, atmospheric conditions gave rise to two convective systems that generated a series of waves in the meteotsunami band on Lake Erie. The resulting waves swept three swimmers a half-mile offshore, inundated a marina, and may have led to a capsized boat along the southern shoreline. Examination of the observed conditions shows that these events occurred at a time between the arrivals of these two storm systems when atmospheric conditions were relatively calm but water level displacements were at their greatest. In this work, we attempt to explain the processes that led to these conditions through a combination of atmospheric and hydrodynamic modeling and an analysis of the observed radial velocities associated with the meteotsunami-inducing front. Results from a high-resolution atmospheric model and hydrodynamic model reveal that the formation of these destructive waves resulted from a combination of wave reflection, focusing, and edge waves that impacted the southern shore of Lake Erie. This event illustrates the unique danger posed by temporal lags between the inducing atmospheric conditions and resulting dangerous nearshore wave conditions.

  13. Long-term ecosystem monitoring and assessment of the Detroit River and Western Lake Erie.

    PubMed

    Hartig, J H; Zarull, M A; Ciborowski, J J H; Gannon, J E; Wilke, E; Norwood, G; Vincent, A N

    2009-11-01

    Over 35 years of US and Canadian pollution prevention and control efforts have led to substantial improvements in environmental quality of the Detroit River and western Lake Erie. However, the available information also shows that much remains to be done. Improvements in environmental quality have resulted in significant ecological recovery, including increasing populations of bald eagles (Haliaeetus leucocephalus), peregrine falcons (Falco columbarius), lake sturgeon (Acipenser fulvescens), lake whitefish (Coregonus clupeaformis), walleye (Sander vitreus), and burrowing mayflies (Hexagenia spp.). Although this recovery is remarkable, many challenges remain, including population growth, transportation expansion, and land use changes; nonpoint source pollution; toxic substances contamination; habitat loss and degradation; introduction of exotic species; and greenhouse gases and global warming. Research/monitoring must be sustained for effective management. Priority research and monitoring needs include: demonstrating and quantifying cause-effect relationships; establishing quantitative endpoints and desired future states; determining cumulative impacts and how indicators relate; improving modeling and prediction; prioritizing geographic areas for protection and restoration; and fostering long-term monitoring for adaptive management. Key management agencies, universities, and environmental and conservation organizations should pool resources and undertake comprehensive and integrative assessments of the health of the Detroit River and western Lake Erie at least every 5 years to practice adaptive management for long-term sustainability.

  14. Relevance of ERTS-1 to the state of Ohio

    NASA Technical Reports Server (NTRS)

    Sweet, D. C.; Wells, T. L.; Wukelic, G. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. During the first six months of project effort the ability of ERTS-1 imagery to be used for mapping and inventorying strip-mined areas in southeastern Ohio was reported as a significant project result. During this reporting period, the potential of using ERTS-1 imagery in water quality and coastal zone management of Lake Erie became apparent and the extent that ERTS-1 imagery could contribute to localized (metropolitan/urban), multicounty, and overall state land use needs was experimentally demonstrated.

  15. Selection of prey by walleyes in the Ohio waters of the central basin of Lake Erie, 1985-1987

    USGS Publications Warehouse

    Wolfert, David R.; Bur, Michael T.

    1992-01-01

    Walleyes (Stizostedion vitreum vitreum) were collected at five locations in the central basin of Lake Erie in 1985-87. The contents of the fishes' stomachs were examined to identify the species of prey. The seasonal availability of potential prey was determined from sampling with trawl tows. Food electivity indexes for young-of-the-year (YOY) and older walleyes were calculated. Electivity indexes changed monthly in YOY walleyes that consumed mostly YOY gizzard shads (Dorosoma cepedianum) in July and fed moderately on gizzard shads, but more on smelts (Osmerus mordax), in August. In September and October YOY walleyes did not consume YOY white perch (Morone americana). During October, they continued to eat YOY gizzard shads moderately but consumed mostly emerald shiners (Notropis atherinoides). Older walleys were highly partial to YOY gizzard shads, emerald shiners, and smelts and consumed no YOY white perch. The numbers of YOY yellow perch (Perca flavescens) in stomachs were limited. Prey selection by walleyes in the central basin was species-specific irrespective of abundance of prey.

  16. The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie.

    PubMed

    Maavara, Taylor; Slowinski, Stephanie; Rezanezhad, Fereidoun; Van Meter, Kimberly; Van Cappellen, Philippe

    2018-05-01

    Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cylindrospermopsis in Lake Erie: Testing its association with other cyanobacterial genera and major limnological parameters

    EPA Science Inventory

    We report the first documented observation of the potentially toxic cyanobacterium Cylindrospermopsis in lake Erie and Sandusky Bay in 2005 and quantify the physical and chemical parameters and the cyanobacterial community composition contemporaneous to its occurrence. We hypothe...

  18. Ohio Aquatic Gap Analysis-An Assessment of the Biodiversity and Conservation Status of Native Aquatic Animal Species

    USGS Publications Warehouse

    Covert, S. Alex; Kula, Stephanie P.; Simonson, Laura A.

    2007-01-01

    The goal of the GAP Analysis Program is to keep common species common by identifying those species and habitats that are not yet adequately represented in the existing matrix of conservation lands. The Gap Analysis Program (GAP) is sponsored by the Biological Resources Discipline of the U.S. Geological Survey (USGS). The Ohio Aquatic GAP (OH-GAP) is a pilot project that is applying the GAP concept to aquatic-specifically, riverine-data. The mission of GAP is to provide regional assessments of the conservation status of native animal species and to facilitate the application of this information to land-management activities. OH-GAP accomplished this through * mapping aquatic habitat types, * mapping the predicted distributions of fish, crayfish, and bivalves, * documenting the presence of aquatic species in areas managed for conservation, * providing GAP results to the public, planners, managers, policy makers, and researchers, and * building cooperation with multiple organizations to apply GAP results to state and regional management activities. Gap analysis is a coarse-scale assessment of aquatic biodiversity and conservation; the goal is to identify gaps in the conservation of native aquatic species. It is not a substitute for biological field studies and monitoring programs. Gap analysis was conducted for the continuously flowing streams in Ohio. Lakes, reservoirs, wetlands, and the Lake Erie islands were not included in this analysis. The streams in Ohio are in the Lake Erie and Ohio River watersheds and pass through six of the level III ecoregions defined by Omernik: the Eastern Corn Belt Plains, Southern Michigan/Northern Indiana Drift Plains, Huron/Erie Lake Plain, Erie Drift Plains, Interior Plateau, and the Western Allegheny Plateau. To characterize the aquatic habitats available to Ohio fish, crayfish, and bivalves, a classification system needed to be developed and mapped. The process of classification includes delineation of areas of relative

  19. Recent changes in burbot growth in Lake Erie

    USGS Publications Warehouse

    Stapanian, M.A.; Edwards, W.H.; Witzel, L.D.

    2011-01-01

    Recruitment of burbot Lota lota in eastern Lake Erie, estimated by catches of age-4 burbot, was high during 1997–2001 and then abruptly declined to low levels during 2002–2007. The invasive round goby Neogobius melanostomus, a benthic species, was first collected in trawl assessments in eastern Lake Erie in 1999, and was first found in stomachs of burbot in 2001. By 2003, round goby became an important prey in the diet of burbot. We hypothesized that the combined effects of low recruitment and consumption of round goby would result in increased size-at-age in burbot. We reasoned that: (i) decreased competition for resources among juveniles should result in larger adults, and (ii) consumption of a benthic prey by a bottom-dwelling predator such as burbot should require less foraging in the water column, and thus less energetic expenditure. We divided our data into two temporal periods: one in which burbot belonged to strong year classes and ate few, if any round goby (i.e., year classes 1989–1997 collected during 1997–2001) and one in which burbot belonged to weak year classes and probably ate round gobies by age 4 (year classes 1998–2003 collected during 2002–2007). Mass and total lengths at ages 4–7 were generally higher during the second period. However, the rates of growth between ages 4 and 7 were not different for the two periods. The results indicate that greater growth at ages 0–4 resulted in larger size at ages 4–7 in the latter period. More information on juvenile diet and growth in burbot is needed for effective conservation of burbot stocks.

  20. Impact of harmful algal blooms on several Lake Erie drinking water treatment facilities; methodology considerations

    EPA Science Inventory

    The propagation of cyanbacterial cells and their toxins were investigated at seven drinking water treatment plants (DWTPs) on Lake Erie were investigated with regards to harmful algal bloom (HAB) toxin concentrations, water quality variations in treatment plant influents, and pr...

  1. Temporal variation of energy reserves in mayfly nymphs (Hexagenia spp.) from Lake St. Clair and western Erie

    USGS Publications Warehouse

    Cavaletto, J.F.; Nalepa, T.F.; Fanslow, D.L.; Schloesser, D.W.

    2003-01-01

    4. Indicators of potential food (algal fluorescence in the water column and chlorophyll a and chlorophyll a/phaeophytin ratio in sediments) suggest that Hexagenia in Lake St Clair have a food source that is benthic based, especially in early spring, whereas in western Lake Erie nymphs have a food source that is water column based and settles to the lake bottom during late spring and summer.

  2. National Dam Safety Program. Brocton Reservoir (Inventory Number NY 785) , Lake Erie Basin, Chautauqua County, New York. Phase I Inspection Report

    DTIC Science & Technology

    1980-09-26

    Inspection Report Brocton Reservoir National Dam Safety Program Lake Erie Basin, Chautauqua County, New York 6. PERFORMING ORG. REPORT NUMBER Inventory No...LAKE ERIE BASIN BROCTON RESERVOIR I ’CHAUTAUQUA COUNTY, NEW YORK I INVENTORY NO. N.Y. 785 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAMI. I...Drawings I I I I I I I I I I PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAIM NAME OF DAM: Brocton Reservoir Inventory No. N.Y. 785 I STATE LOCATED

  3. Reducing Lake Erie's Harmful Algal Blooms: Projection and Adoption of Management Plans

    NASA Astrophysics Data System (ADS)

    Martin, J.; Aloysius, N.; Howard, G.; Kalcic, M. M.; Wilson, R. S.; Scavia, D.; Roe, B.

    2016-12-01

    In early 2016, the United States and Canada formally agreed to reduce phosphorus inputs to Lake Erie by 40% to reduce the severity of annual Harmful Algal Blooms (HABs). These blooms have become more severe, with record events occurring in 2011 and 2015, and have compromised public safety, shut down drinking water supplies, and negatively impacted the economy of the western Lake Erie basin. Now, key questions revolve around the ability to reach the 40% reduction, required management changes, and resources to support these changes. This presentation will highlight interdisciplinary research to compare the amount and types of practices needed for this reduction to the current and projected levels of adoption. Economic resources to support these management changes are also compared with the financial support from the general public to improve Lake Erie water quality. Multiple models of the Maumee watershed identified management plans and adoption rates needed to reach the reduction targets. For example, one successful scenario estimated necessary adoption rates of 50% for subsurface application of fertilizer on row crops, 58% for cover crops, and 78% for buffer strips. Current adoption is below these levels, but future projections based on farmer surveys shows these levels are possible. Public support is necessary to generate the funding to support cost sharing and other programs aimed at increasing adoption of recommended practices. Comparing results from willingness-to-pay surveys of the general public with the estimated need for these management plans shows a gap in resources to support these levels of adoption. In general, these results show that accelerated adoption of management plans is needed compared to past adoption rates, but that these rates are possible based on likely adoption rates. Projected support from the general public indicates it will be challenging to fund these rates of adoption, especially during climate changes that may require even greater

  4. Stock-specific advection of larval walleye (Sander vitreus) in western Lake Erie: Implications for larval growth, mixing, and stock discrimination

    USGS Publications Warehouse

    Fraker, Michael E.; Anderson, Eric J.; May, Cassandra J.; Chen, Kuan-Yu; Davis, Jeremiah J.; DeVanna, Kristen M.; DuFour, Mark R.; Marschall, Elizabeth A.; Mayer, Christine M.; Miner, Jeffery G.; Pangle, Kevin L.; Pritt, Jeremy J.; Roseman, Edward F.; Tyson, Jeffrey T.; Zhao, Yingming; Ludsin, Stuart A

    2015-01-01

    Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.

  5. Evaluating factors driving population densities of mayfly nymphs in Western Lake Erie

    USGS Publications Warehouse

    Stapanian, Martin A.; Kocovsky, Patrick; Bodamer Scarbro, Betsy L.

    2017-01-01

    Mayfly (Hexagenia spp.) nymphs have been widely used as indicators of water and substrate quality in lakes. Thermal stratification and the subsequent formation of benthic hypoxia may result in nymph mortality. Our goal was to identify potential associations between recent increases in temperature and eutrophication, which exacerbate hypoxic events in lakes, and mayfly populations in Lake Erie. Nymphs were collected during April–May 1999–2014. We used wind and temperature data to calculate four measures of thermal stratification, which drives hypoxic events, during summers of 1998–2013. Bottom trawl data collected during August 1998–2013 were used to estimate annual biomass of fishes known to be predators of mayfly nymphs. We used Akaike's Information Criterion to identify the best one- and two-predictor regression models of annual population densities (N/m2) of age-1 and age-2 nymphs, in which candidate predictors included the four measures of stratification, predator fish biomass, competition, and population densities of age-2 (for age-1) and age-1 (for age-2) nymphs from the previous year. Densities of both age classes of nymphs declined over the time series. Population densities of age-1 and age-2 nymphs from the previous year best predicted annual population densities of nymphs of both age classes. However, hypoxic conditions (indicated by stratification) and predation both had negative effects on annual population density of mayflies. Compared with predation, hypoxia had an inconsistent effect on annual nymph density. The increases in temperature and eutrophication in Lake Erie, which exacerbate hypoxic events, may have drastic effects on the mayfly populations.

  6. BILIARY PAH METABOLITES AS A BIOLOGICAL INDICATOR OF FISH EXPOSURE IN TRIBUTARIES OF LAKE ERIE

    EPA Science Inventory

    Biliary polynuclear aromatic hydrocarbons (PAH) metabolites have been studied as a biological indicator of fish exposure to PAHs since the mid 1980's. Brown bullheads were collected from the following Lake Erie tributaries: Buffalo River (BUF), Niagara River at Love Canal (NIA)...

  7. Detecting Land-based Signals in the Near-shore Zone of Lake Erie During Summer 2009

    EPA Science Inventory

    We conducted two styles of nearshore surveys in Lake Erie during August to mid-September 2009. The first used a spatially-balanced probability survey (SBS) design to establish discrete stations within a GIS-defined target populationthe nearshore zone extending approximately 5 km...

  8. Lake Erie: Effects of exploitation, environmental changes and new species on the fishery resources

    USGS Publications Warehouse

    Hartman, Wilbur L.

    1972-01-01

    In no other lake as large as Lake Erie (surface area, 25,690 km2) have such extensive changes taken place in the drainage basin, the lake environment, and the fish populations over the last 100 years. Deforestation and prairie burning led to erosion and siltation of valuable spawning grounds. Marsh spawning areas were drained. Lake-to-river spawning migrations were blocked by mill dams. Accelerated cultural nutrient loading increased total dissolved solids by nearly 50% (1920-70). Average summer water temperatures increased 1.1 C. Phytoplankton and zooplankton abundance increased severalfold. Severe oxygen depletion developed in the bottom waters of all three basins of the lake. Lake sturgeon were fished out as nuisance fish in the late 1800s. The commercial fisheries for lake trout, lake whitefish, and lake herring collapsed by 1940 and those for blue pike and walleye by 1960. Yellow perch production became unstable in the 1960s. The effects of exploitation, environmental changes, and new species on these fish populations are discussed.

  9. Science to support the understanding of Ohio's water resources

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  10. Discrete Organic Phosphorus Signatures are Evident in Pollutant Sources within a Lake Erie Tributary.

    PubMed

    Brooker, M R; Longnecker, K; Kujawinski, E B; Evert, M H; Mouser, P J

    2018-06-19

    Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary. We detected between 23 and 313 organic phosphorus formulas across our samples, with manure samples having greater abundance of phosphorus- and nitrogen containing compounds compared to other samples. Manures also were enriched in lipids and protein-like compounds. The greatest similarities were observed between the Sandusky River and wastewater treatment plant effluent (WWTP), or the Sandusky River and agricultural edge of field samples. These sample pairs shared 84% of organic compounds and 59-73% of P-containing organic compounds, respectively. This similarity suggests that agricultural and/or WWTP sources dominate the supply of organic phosphorus compounds to the river. We identify formulas shared between the river and pollutant sources that could serve as possible markers of source contamination in the tributary.

  11. Quality of water in the upper Ohio River basin and at Erie, Pennsylvania

    USGS Publications Warehouse

    Lewis, Samuel James

    1906-01-01

    This paper discusses the quality of water on the most important tributaries of Ohio River in Pennsylvania, New York, West Virginia, and Maryland, and the nature of the water supply at Erie, Pa. The amount and character of the pollution is described and the results of drinking contaminated water as shown by typhoid statistics are indicated. The conditions on the tributaries of Ohio River in Ohio are discussed in Water-Supply and Irrigation Paper No. 79, United States Geological Survey, pages 129-187. The water supplies and sewerage of small towns high up toward the head of a large drainage system do not in many cases receive the attention they should. Epidemics of a waterborne disease which affect large municipalities near the mouth of the river and therefore attract attention must necessarily have their origin in the pollution of the watershed above. It is evident, therefore, that adequate sanitation of the small towns and a water supply as carefully guarded as that of a large city would prevent disease at its very source and be far less expensive than the costly battles which are waged against epidemics in huge centers of population after disease has broken out. Typhoid fever statistics for small towns in this section are seldom available and are more or less unreliable at best. The few figures given show the existence of virulent typhoid fever in most towns of the drainage areas in certain years, and as these towns drain into the streams the liability ofthe water to infection is evident. The significance of typhoid fever death rates will be better understood from the statistics presented below, which have been collated from a number of cities having excellent water supplies.

  12. Biomagnification of organochlorines in Lake Erie white bass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, R.W.; Lazar, R.; Haffner, G.D.

    1995-04-01

    Biomagnification of HCB and PCBs was measured in a natural fish population of white bass (Morone chrysops) and their prey, emerald shiner (Notropis atherinoides). It was observed that biomagnification occurred only for chemicals with an octanol/water partition coefficient (log K{sub ow}) greater than 6.1. Hexachlorobenzene and PCB 52 did not biomagnify while PCBs 87, 138, and 180 showed significant biomagnification in Lake Erie white bass. Biomagnification factors increased proportionately with K{sub ow}, and it was concluded that high K{sub ow} chemicals were more important in the biomagnification process. Lipid proportions and chemical concentrations in prey fish (emerald shiner) and whitemore » bass intestinal contents were consistent with a fugacity model of chemical assimilation from food.« less

  13. 77 FR 71531 - Special Local Regulation; Kelley's Island Swim, Lake Erie; Kelley's Island, Lakeside, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ...-AA08 Special Local Regulation; Kelley's Island Swim, Lake Erie; Kelley's Island, Lakeside, OH AGENCY... part 100 by adding a Special Local Regulation within the Captain of the Port Detroit Zone. This... Swim. This special local regulated area is necessary to protect swimmers from vessel traffic. DATES...

  14. Relevance of ERTS-1 to the State of Ohio. [environmental monitoring and resources management

    NASA Technical Reports Server (NTRS)

    Sweet, D. C.; Pincura, P. G.; Wukelic, G. E. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. During the first year of project effort the ability of ERTS-1 imagery to be used for mapping and inventorying strip-mined areas in southeastern Ohio, the potential of using ERTS-1 imagery in water quality and coastal zone management in the Lake Erie region, and the extent that ERTS-1 imagery could contribute to localized (metropolitan/urban), multicounty, and overall state land use needs were experimentally demonstrated and reported as significant project results.

  15. A history of human impacts on the Lake Erie fish community

    USGS Publications Warehouse

    Reutter, Jeffrey M.; Hartman, Wilbur L.; Downhower, J.F.

    1988-01-01

    The fisheries scientist working in the island region of Lake Erie has access to an extremely large and diverse freshwater fish community. It is the intention of this essay to discuss briefly that community and the impacts of human activities to provide future students and researchers with both current and historical information. Human settlements and development within the basin are discussed, followed by a description of the major stresses on the community, the impacts of those stresses, and the resulting or present-day fish community.

  16. The effect of contaminated sediments on fecundity of the brown bullhead in three Lake Erie tributaries

    USGS Publications Warehouse

    Lesko, Lynn T.; Smith, Stephen B.; Blouin, Marc A.

    1996-01-01

    Female brown bullhead (Ameiurus nebulosus) were collected from three Lake Erie tributaries (Ohio) from 8 to 25 May 1989, to determine the effects of contaminated sediments on reproductive potentials. Fish obtained from the Black and Cuyahoga rivers, which contain sediments with elevated concentrations of metals, PCBs, and PAHs, were compared with fish collected in Mud Brook, a tributary of the Huron River, which was selected as our reference site. Fecundity, egg diameter, fish length and weight, and the presence of external abnormalities were recorded for each fish. Brown bullhead from the contaminated sites were larger then those from the reference site and fecundity was significantly (P < 0.05) different in all three river systems. Those from the most polluted river (Cuyahoga River) had the greatest number of eggs per individual female. The high frequency of external abnormalities observed on brown bullhead from the contaminated sites did not appear to have a detrimental influence on fecundity. These results suggest that fecundity of the brown bullhead was not adversely affected in ecosystems altered by the presence of contaminated sediments. Increased fecundity of the brown bullhead from impacted rivers may be the result of reduced competition for an abundant invertebrate food source and limited predation by other fish species whose numbers are largely depleted in these degraded systems.

  17. Seismic images of a tectonic subdivision of the Greenville Orogen beneath lakes Ontario and Erie

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.

    1994-01-01

    New seismic data from marine air-gun and Vibroseis profiles in Lake Ontario and Lake Erie provide images of subhorizontal Phanerozoic sediments underlain by a remarkable series of easterly dipping reflections that extends from the crystalline basement to the lower crust. These reflections are interpreted as structural features of crustal-scale subdivisions within the Grenville Orogen. Broadly deformed, imbricated, and overlapping thrust sheets within the western Central Metasedimentary Belt are succeeded to the west by a complex zone of easterly dipping, apparent thrust faults that are interpreted as a southwest subsurface extension of the boundary zone between the Central Metasedimentary Belt and the Central Gneiss Belt. The interpreted Central Metasedimentary Belt boundary zone has a characteristic magnetic anomaly that provides a link from the adjacent ends of lakes Ontario and Erie to structures exposed 150 km to the north. Less reflective, west-dipping events are interpreted as structures within the eastern Central Gneiss Belt. The seismic interpretation augments current tectonic models that suggest the exposed ductile structures formed at depth as a result of crustal shortening along northwest-verging thrust faults. Relatively shallow reflections across the boundary region suggest local, Late Proterozoic extensional troughs containing post-Grenville sediments, preserved possibly as a result of pre-Paleozoic reactivation of basement structures.

  18. 77 FR 40266 - Safety Zone; Conneaut 4th of July Festival, Lake Erie, Conneaut, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... 1625-AA00 Safety Zone; Conneaut 4th of July Festival, Lake Erie, Conneaut, OH AGENCY: Coast Guard, DHS... the Conneaut 4th of July Festival Fireworks display. This temporary safety zone is necessary to... vessels during the Conneaut 4th of July Festival Fireworks. This zone will be effective and enforced from...

  19. U.S. Lake Erie Natural Gas Resource Development. Final Programmatic Environmental Impact Statement

    DTIC Science & Technology

    1982-03-01

    with expensive investments by end-users in more energy efficient houses, plants and equipment. The end result of this alternative would be to post...construction of transmission systems from other sources into the Lake Erie watershed, construction of synfuel and coal gasi- fication plants and...water treatment plant and by main- taining the pit near neutral during chlorination. 1.022 If jack-up rigs, drillehips, or stimulation barges capsize

  20. Growth, reproduction, mortality, distribution, and biomass of freshwater drum in Lake Erie

    USGS Publications Warehouse

    Bur, Michael T.

    1984-01-01

    Predominant age-groups in the Lake Erie freshwater drum Aplodinotus grunnienspopulation were 3, 4, and 5 as determined from gill net, trap net, bottom trawl, and midwater trawl samples. Age and growth calculations indicated that females grew faster than males. However, the length-weight relation did not differ between sexes and was described by the equation: log W = −5.4383 + 3.1987 log L. Some males became sexually mature at age 2 and all were mature by age 6. Females matured 1 year later than males. Three sizes of eggs were present in ovaries; the average total number was 127,000 per female for 20 females over a length range of 270 to 478 mm. Seasonal analysis of the ovary-body weight ratio indicated that spawning extended from June to August. A total annual mortality rate of 49% for drum aged 4 through 11 was derived from catch-curve analysis. Freshwater drum were widely distributed throughout Lake Erie in 1977–1979, the greatest concentration being in the western basin. They moved into warm, shallow water (less than 10 m deep) during summer, and returned to deeper water in late fall. Summer biomass estimates for the western basin, based on systematic surveys with bottom trawls, were 9,545 t in 1977 and 2,333 t in 1978.

  1. Diets of emerald and spottail shiners and potential interactions with other western Lake Erie planktivorous fishes

    USGS Publications Warehouse

    Hartman, Kyle J.; Vondracek, Bruce; Parrish, Donna L.; Muth, Kenneth M.

    1992-01-01

    Emerald shiner (Notropis atherinoides) and spottail shiner (N. hudsonius) were abundant historically in western Lake Erie. Recent changes in the fish community suggest that shiners may not compete favorably with the invading white perch (Morone americana) or the gizzard shad (Dorosoma cepedianum). We examined the diets of emerald and spottail shiner and compared them to other planktivores in western Lake Erie. Emerald and spottail shiner ate cladocerans such as Daphnia spp.,Leptodora, and Bythotrephes. Biologically significant overlaps (Schoener 1970 index ≥ 0.6) among zooplanktivores occurred from July through September, but most occurred during July. The frequency of significant diet overlaps among planktivores declined since an earlier study in the mid-1970s (Muth and Busch 1989) possibly indicating that competitive interactions have eased since 1975. In addition to competitive interactions, other factors such as increased eutrophication and predator mediated mortality likely played a role in planktivore community changes since the early 1970s.

  2. Vertical Stratification of Soil Phosphorus as a Concern for Dissolved Phosphorus Runoff in the Lake Erie Basin.

    PubMed

    Baker, David B; Johnson, Laura T; Confesor, Remegio B; Crumrine, John P

    2017-11-01

    During the re-eutrophication of Lake Erie, dissolved reactive phosphorus (DRP) loading and concentrations to the lake have nearly doubled, while particulate phosphorus (PP) has remained relatively constant. One potential cause of increased DRP concentrations is P stratification, or the buildup of soil-test P (STP) in the upper soil layer (<5 cm). Stratification often accompanies no-till and mulch-till practices that reduce erosion and PP loading, practices that have been widely implemented throughout the Lake Erie Basin. To evaluate the extent of P stratification in the Sandusky Watershed, certified crop advisors were enlisted to collect stratified soil samples (0-5 or 0-2.5 cm) alongside their normal agronomic samples (0-20 cm) ( = 1758 fields). The mean STP level in the upper 2.5 cm was 55% higher than the mean of agronomic samples used for fertilizer recommendations. The amounts of stratification were highly variable and did not correlate with agronomic STPs (Spearman's = 0.039, = 0.178). Agronomic STP in 70% of the fields was within the buildup or maintenance ranges for corn ( L.) and soybeans [ (L.) Merr.] (0-46 mg kg Mehlich-3 P). The cumulative risks for DRP runoff from the large number of fields in the buildup and maintenance ranges exceeded the risks from fields above those ranges. Reducing stratification by a one-time soil inversion has the potential for larger and quicker reductions in DRP runoff risk than practices related to drawing down agronomic STP levels. Periodic soil inversion and mixing, targeted by stratified STP data, should be considered a viable practice to reduce DRP loading to Lake Erie. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Conditions for the return and simulation of the recovery of burrowing mayflies in western Lake Erie

    USGS Publications Warehouse

    Kolar, Cynthia S.; Hudson, Patrick L.; Savino, Jacqueline F.

    1997-01-01

    In the 1950s, burrowing mayflies, Hexagenia spp. (H. Limbata and H. Rigida), were virtually eliminated from the western basin of Lake Erie (a 3300 kmA? area) because of eutrophication and pollution. We develop and present a deterministic model for the recolonization of the western basin by Hexagenia to pre-1953 densities. The model was based on the logistic equation describing the population growth of Hexagenia and a presumed competitor, Chironomus (dipteran larvae). Other parameters (immigration, low oxygen, toxic sediments, competition with Chironomus, and fish predation) were then individually added to the logistic model to determine their effect at different growth rates. The logistic model alone predicts 10-41 yr for Hexagenia to recolonize western Lake Erie. Immigration reduced the recolonization time by 2-17 yr. One low-oxygen event during the first 20 yr increased recovery time by 5-17 yr. Contaminated sediments added 5-11 yr to the recolonization time. Competition with Chironomus added 8-19 yr to recovery. Fish predators added 4-47 yr to the time required for recolonization. The full model predicted 48-81 yr for Hexagenia to reach a carrying capacity of approximately 350 nymphs/mA?, or not until around the year 2038 if the model is started in 1990. The model was verified by changing model parameters to those present in 1970, beginning the model in 1970 and running it through 1990. Predicted densities overlapped almost completely with actual estimated densities of Hexagenia nymphs present in the western basin in Lake Erie in 1990. The model suggests that recovery of large aquatic ecosystems may lag substantially behind remediation efforts.

  4. Annotated Bibliography for Lake Erie. Volume IV. Physical,

    DTIC Science & Technology

    1974-10-01

    Presque Isle Bay, Erie , Pennsylvania - interim report. Environ- mental Sciences Inc. Pittsburg, Pa. 235 P. The factors... Presque Isle Peninsula, Erie , Pennsylvania , indicates apparent correlation of initial high erosion rates of placed beach fill with sand size character...changes since 1854. (CE) 777. U. S. Army Corps of Engineers. 1960. Presque Isle Peninsula, Erie , Pennsylvania , beach erosion con- trol study.

  5. Aeromonas hydrophila and Aeromonas veronii Predominate among Potentially Pathogenic Ciprofloxacin- and Tetracycline-Resistant Aeromonas Isolates from Lake Erie

    PubMed Central

    Shinko, Jasmine; Augustyniak, Alexander; Gee, Christopher; Andraso, Greg

    2014-01-01

    Members of the genus Aeromonas are ubiquitous in nature and have increasingly been implicated in numerous diseases of humans and other animal taxa. Although some species of aeromonads are human pathogens, their presence, density, and relative abundance are rarely considered in assessing water quality. The objectives of this study were to identify Aeromonas species within Lake Erie, determine their antibiotic resistance patterns, and assess their potential pathogenicity. Aeromonas strains were isolated from Lake Erie water by use of Aeromonas selective agar with and without tetracycline and ciprofloxacin. All isolates were analyzed for hemolytic ability and cytotoxicity against human epithelial cells and were identified to the species level by using 16S rRNA gene restriction fragment length polymorphisms and phylogenetic analysis based on gyrB gene sequences. A molecular virulence profile was identified for each isolate, using multiplex PCR analysis of six virulence genes. We demonstrated that Aeromonas comprised 16% of all culturable bacteria from Lake Erie. Among 119 Aeromonas isolates, six species were identified, though only two species (Aeromonas hydrophila and A. veronii) predominated among tetracycline- and ciprofloxacin-resistant isolates. Additionally, both of these species demonstrated pathogenic phenotypes in vitro. Virulence gene profiles demonstrated a high prevalence of aerolysin and serine protease genes among A. hydrophila and A. veronii isolates, a genetic profile which corresponded with pathogenic phenotypes. Together, our findings demonstrate increased antibiotic resistance among potentially pathogenic strains of aeromonads, illustrating an emerging potential health concern. PMID:24242249

  6. Comparative Sensor Fusion between Hyperspectral and Multispectral Remote Sensing Data for Monitoring Microcystin Distribution in Lake Erie

    EPA Science Inventory

    Urban growth and agricultural production have caused an influx of nutrients into Lake Erie, leading to eutrophic zones. These conditions result in the formation of algal blooms, some of which are toxic due to the presence of Microcystis (a cyanobacteria), which produces the hepat...

  7. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios

    USDA-ARS?s Scientific Manuscript database

    Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relat...

  8. Measuring spatial variation in secondary production and food quality using a common consumer approach in Lake Erie

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Evans, Mary Anne; Schaeffer, Jeff; Wynne, Timothy; Bartsch, Michelle; Bartsch, Lynn; Nelson, J. C.; Vallazza, Jon M.

    2016-01-01

    Lake Erie is a large lake straddling the border of the U.S. and Canada that has become increasingly eutrophic in recent years. Eutrophication is particularly focused in the shallow western basin. The western basin of Lake Erie is hydrodynamically similar to a large estuary, with riverine inputs from the Detroit and Maumee Rivers mixing together and creating gradients in chemical and physical conditions. This study was driven by two questions: How does secondary production and food quality for consumers vary across this large mixing zone? and Are there correlations between cyanobacterial abundance and secondary production or food quality for consumers? Measuring spatial and temporal variation in secondary production and food quality is difficult for a variety of logistical reasons, so here a common consumer approach was used. In a common consumer approach, individuals of a single species are raised under similar conditions until placed in the field across environmental gradients of interest. After some period of exposure, the response of that common consumer is measured to provide an index of spatial variation in conditions. Here, a freshwater mussel (Lampsilis siliquoidea) was deployed at 32 locations that spanned habitat types and a gradient in cyanobacterial abundance in the western basin of Lake Erie to measure spatial variation in growth (an index of secondary production) and fatty acid (FA) content (an index of food quality). We found secondary production was highest within the Maumee rivermouth and lowest in the open waters of the lake. Mussel tissues in the Maumee rivermouth also included more eicosapentaenoic and docosapentaenoic fatty acids (EPA and DPA, respectively), but fewer bacterial FAs, suggesting more algae at the base of the food web in the Maumee rivermouth compared to open lake sites. The satellite-derived estimate of cyanobacterial abundance was not correlated to secondary production, but was positively related to EPA and DPA content in the

  9. Cyanobacteria Toxin and Cell Propagation through Seven Lake Erie Treatment Plants during the 2013 Algal Bloom Season - abstract

    EPA Science Inventory

    Over the past five years, Lake Erie has been experiencing harmful algal blooms (HABs) of progressively increasing severity. Cognizant of the potential health and economic impacts, the United States Environmental Protection Agency’s (USEPA’s) Water Supply and Water Resources Divis...

  10. Science to support the understanding of Ohio's water resources, 2016-17

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie P.; Shaffer, Kimberly; Kula, Stephanie P.

    2016-12-19

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. Although rainfall in normal years can support these activities and needs, occasional floods and droughts can disrupt streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie; it has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all of the rural population obtains drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2016) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  11. Growth of submersed macrophyte communities in the St. Clair - Detroit River system between Lake Huron and Lake Erie

    USGS Publications Warehouse

    Schloesser, Donald W.; Edsall, Thomas A.; Manny, Bruce A.

    1985-01-01

    Growth of submersed aquatic macrophytes was determined from observation and on the basis of biomass of samples collected from April to November 1978 at seven study sites in a major river system of the Great Lakes, the St. Clair – Detroit river system between Lake Huron and Lake Erie. Growth usually began between April and June, peaked between July and October, and decreased by late November. Maximum biomass at six of the seven sites (118–427 g dry weight m−2) was similar or greater than that reported in other rivers at similar latitudes. Seasonal growth of the abundant taxa followed one of three seasonal patterns at each study site: one dominant taxon grew alone; codominant taxa grew sympatrically without species succession; and codominant taxa grew sympatrically with species succession. Differences in growth and seasonal succession of some taxa were apparently caused by the presence or absence of overwintering plant material, competition, and life-cycle differences.

  12. Evaluation of ERTS data for certain oceanographic uses. [precipitation of calcium carbonate in Lake Michigan, Lake Erie, and Lake Ontario

    NASA Technical Reports Server (NTRS)

    Strong, A. E. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. According to Lake Michigan records, the pH levels have been steadily increasing as the lake becomes more eutrophic. Numerous upwellings during the summer of 1973, beginning with the late July event, appear to be triggering a chemical precipitation of calcium carbonate. The upwelling provides abundant carbon dioxide into the surface water and results in massive blooms of phytoplankton. As the CO2 is utilized by these microscopic plants the pH is increased (acidity decreases) and CaCO3 no longer is able to remain in solution. The precipitation takes place where the phytoplankton are living, near depths of 10 meters. Therefore, the whiting observed by ERTS-1 is only seen in the green band, as red cannot penetrate but a few meters. With these whitings, secci disc readings lower in July from 10-15 meters to 3-5 meters and green, milky water is observed by research vessels. It appears that whitings have been becoming more frequent since the middle 60's but until ERTS-1 the extent had never been realized. Calcium levels are too low, presently, for a similar precipitate in Lakes Huron or Superior. However, whitings have been seen by ERTS-1 in Lakes Erie and Ontario where the calcium ion and pH levels are more like those found in Lake Michigan.

  13. Fusion of hyperspectral remote sensing data for near real-time monitoring of microcystin distribution in Lake Erie

    NASA Astrophysics Data System (ADS)

    Vannah, Benjamin; Chang, Ni-Bin

    2013-09-01

    Urban growth and agricultural production have caused an influx of nutrients into Lake Erie, leading to eutrophic zones. These conditions result in the formation of algal blooms, some of which are toxic due to the presence of Microcystis (a cyanobacteria), which produces the hepatotoxin microcystin. Microcystis has a unique advantage over its competition as a result of the invasive zebra mussel population that filters algae out of the water column except for the toxic Microcystis. The toxin threatens human health and the ecosystem, and it is a concern for water treatment plants using the lake water as a tap water source. This presentation demonstrates the prototype of a near real-time early warning system using Integrated Data Fusion techniques with the aid of both hyperspectral remote sensing data to determine spatiotemporal microcystin concentrations. The temporal resolution of MODIS is fused with the higher spatial and spectral resolution of MERIS to create synthetic images on a daily basis. As a demonstration, the spatiotemporal distributions of microcystin within western Lake Erie are reconstructed using the band data from the fused products and applied machine-learning techniques. Analysis of the results through statistical indices confirmed that the this type of algorithm has better potential to accurately estimating microcystin concentrations in the lake, which is better than current two band models and other computational intelligence models.

  14. Lake Erie Yellow perch age estimation based on three structures: Precision, processing times, and management implications

    USGS Publications Warehouse

    Vandergoot, C.S.; Bur, M.T.; Powell, K.A.

    2008-01-01

    Yellow perch Perca flavescens support economically important recreational and commercial fisheries in Lake Erie and are intensively managed. Age estimation represents an integral component in the management of Lake Erie yellow perch stocks, as age-structured population models are used to set safe harvest levels on an annual basis. We compared the precision associated with yellow perch (N = 251) age estimates from scales, sagittal otoliths, and anal spine sections and evaluated the time required to process and estimate age from each structure. Three readers of varying experience estimated ages. The precision (mean coefficient of variation) of estimates among readers was 1% for sagittal otoliths, 5-6% for anal spines, and 11-13% for scales. Agreement rates among readers were 94-95% for otoliths, 71-76% for anal spines, and 45-50% for scales. Systematic age estimation differences were evident among scale and anal spine readers; less-experienced readers tended to underestimate ages of yellow perch older than age 4 relative to estimates made by an experienced reader. Mean scale age tended to underestimate ages of age-6 and older fish relative to otolith ages estimated by an experienced reader. Total annual mortality estimates based on scale ages were 20% higher than those based on otolith ages; mortality estimates based on anal spine ages were 4% higher than those based on otolith ages. Otoliths required more removal and preparation time than scales and anal spines, but age estimation time was substantially lower for otoliths than for the other two structures. We suggest the use of otoliths or anal spines for age estimation in yellow perch (regardless of length) from Lake Erie and other systems where precise age estimates are necessary, because age estimation errors resulting from the use of scales could generate incorrect management decisions. ?? Copyright by the American Fisheries Society 2008.

  15. Night sampling improves indices used for management of yellow perch in Lake Erie

    USGS Publications Warehouse

    Kocovsky, P.M.; Stapanian, M.A.; Knight, C.T.

    2010-01-01

    Catch rate (catch per hour) was examined for age-0 and age-1 yellow perch, Perca flavescens (Mitchill), captured in bottom trawls from 1991 to 2005 in western Lake Erie: (1) to examine variation of catch rate among years, seasons, diel periods and their interactions; and (2) to determine whether sampling during particular diel periods improved the management value of CPH data used in models to project abundance of age-2 yellow perch. Catch rate varied with year, season and the diel period during which sampling was conducted as well as by the interaction between year and season. Indices of abundance of age-0 and age-1 yellow perch estimated from night samples typically produced better fitting models and lower estimates of age-2 abundance than those using morning or afternoon samples, whereas indices using afternoon samples typically produced less precise and higher estimates of abundance. The diel period during which sampling is conducted will not affect observed population trends but may affect estimates of abundance of age-0 and age-1 yellow perch, which in turn affect recommended allowable harvest. A field experiment throughout western Lake Erie is recommended to examine potential benefits of night sampling to management of yellow perch. Published 2010. The article is a US Government work and is in the public domain in the USA.

  16. Ecology and population status of trout-perch (Percopsis omiscomaycus) in western Lake Erie

    USGS Publications Warehouse

    Kocovsky, Patrick; Stoneman, Andrea T.; Kraus, Richard T.

    2014-01-01

    Trout-perch Percopsis omiscomaycus is among the most abundant benthic species in Lake Erie, but comparatively little is known about its ecology. Although others have conducted extensive studies on trout-perch ecology, those efforts predated invasions of white perch Morone americana, Dreissena spp., Bythotrephes longimanus and round goby Neogobius melanostomus, suggesting the need to revisit past work. Trout-perch were sampled with bottom trawls at 56 sites during June and September 2010. We examined diets, fecundity, average annual mortality, sex ratio, and long-term population trends at sites sampled since 1961. Trout-perch abundance fluctuated periodically, with distinct shorter- (4-year) and longer-term (over period of 50 years) fluctuations. Males had higher average annual mortality than females. Both sexes were equally abundant at age 0, but females outnumbered males 4:1 by age 2. Diets of trout-perch were dominated by macroinvertebrates, particularly chironomids and Hexagenia sp. Size distributions of trout-perch eggs varied widely and exhibited multiple modes indicative of protracted batch spawning. A review of the few other studies of trout-perch revealed periodic fluctuations in sex ratio of adults, which in light of our evidence of periodicity in abundance suggests the potential for sex-ratio-mediated intrinsic population regulation. Despite the introduction of numerous invasive species in Lake Erie, trout-perch remain one of the most abundant benthic invertivores and the population is relatively stable.

  17. 75 FR 30319 - Endangered and Threatened Wildlife and Plants; Proposed Rule to remove the Lake Erie Watersnake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 17 [Docket No. FWS-R3-ES-2010... Endangered and Threatened Wildlife AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule.... SUMMARY: We, the U.S. Fish and Wildlife Service (Service), propose to remove the Lake Erie Watersnake...

  18. An assessment of total and leachable contaminants in zebra mussels (Dreissena polymorpha) from Lake Erie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, F.G.; Evans, D.W.; Neuhauser, E.F.

    Samples of zebra mussels, Dreissena polymorpha, from populations infesting two power generating stations on Lake Erie were subjected to tests assessing the potential for leaching of metals and other (inorganic and organic) contaminants from mussel waste destined for disposal in conventional landfills. These tests revealed that mussels collected from Ontario Hydro's Nanticoke Thermal Generating Station and Niagara Mohawk Power Corporation's Dunkirk Steam Station did not release hazardous materials in excess of limits set forth in Canadian and U.S. regulations, respectively. A variety of metals and inorganic materials leached from Nanticoke mussels at levels significantly lower than the registration limits formore » those analytes. Detectable levels of chloroform (0.080 mg/liter) and barium (3.3 mg/liter) leached from Dunkirk mussels at > 30-fold lower levels than U.S. regulatory action limits for those materials. Whole body analyses revealed a lack of detectable levels of herbicides and pesticides in either population with a variety of metals and inorganic constituents in all samples from both populations. The physiological condition of Dunkirk mussels appeared to be consistent with that of other Lake Erie populations based on percentage water and total fat content of soft tissues.« less

  19. An assessment of total and leachable contaminants in zebra mussels (Dreissena polymorpha) from Lake Erie.

    PubMed

    Doherty, F G; Evans, D W; Neuhauser, E F

    1993-06-01

    Samples of zebra mussels, Dreissena polymorpha, from populations infesting two power generating stations on Lake Erie were subjected to tests assessing the potential for leaching of metals and other (inorganic and organic) contaminants from mussel waste destined for disposal in conventional landfills. These tests revealed that mussels collected from Ontario Hydro's Nanticoke Thermal Generating Station and Niagara Mohawk Power Corporation's Dunkirk Steam Station did not release hazardous materials in excess of limits set forth in Canadian and U.S. regulations, respectively. A variety of metals and inorganic materials leached from Nanticoke mussels at levels significantly lower than the registration limits for those analytes. Detectable levels of chloroform (0.080 mg/liter) and barium (3.3 mg/liter) leached from Dunkirk mussels at > 30-fold lower levels than U.S. regulatory action limits for those materials. Whole body analyses revealed a lack of detectable levels of herbicides and pesticides in either population with a variety of metals and inorganic constituents in all samples from both populations. The physiological condition of Dunkirk mussels appeared to be consistent with that of other Lake Erie populations based on percentage water and total fat content of soft tissues.

  20. Spatial variation in biofouling of a unionid mussel (Lampsilis siliquoidea) across the western basin of Lake Erie

    USGS Publications Warehouse

    Larson, James H.; Evans, Mary; Richardson, William B.; Schaeffer, Jeff; Nelson, John

    2016-01-01

    Invasion of North American waters by nonnative Dreissena polymorpha and D. rostriformis bugensishas resulted in declines of the Unionidae family of native North American mussels. Dreissenid mussels biofoul unionid mussels in large numbers and interfere with unionid movement, their acquisition of food, and the native mussels' ability to open and close their shells. Initial expectations for the Great Lakes included extirpation of unionids where they co-occurred with dreissenids, but recently adult and juvenile unionids have been found alive in several apparent refugia. These unionid populations may persist due to reduced dreissenid biofouling in these areas, and/or due to processes that remove biofoulers. For example locations inaccessible to dreissenid veligers may reduce biofouling and habitats with soft substrates may allow unionids to burrow and thus remove dreissenids. We deployed caged unionid mussels (Lampsilis siliquoidea) at 36 sites across the western basin of Lake Erie to assess spatial variation in biofouling and to identify other areas that might promote the persistence or recovery of native unionid mussels. Biofouling ranged from 0.03 – 26.33 g per mussel, reached a maximum in the immediate vicinity of the mouth of the Maumee River, and appeared to primarily consist of dreissenid mussels. A known mussel refugium in the vicinity of a power plant near the mouth of the Maumee actually exhibited very high biofouling rates, suggesting that low dreissenid colonization did not adequately explain unionid survival in this refugium. In contrast, the southern nearshore area of Lake Erie, near another refugium, had very low biofouling. A large stretch of the western basin appeared to have low biofouling rates and muddy substrates, raising the possibility that these open water areas could support remnant and returning populations of unionid mussels. Previous observations of unionid refugia and the occurrence of low biofouling rates in large areas of the western

  1. Circulation, mixing, and transport in nearshore Lake Erie in the vicinity of Villa Angela Beach and Euclid Creek, Cleveland, Ohio, September 11-12, 2012

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    Villa Angela Beach, on the Lake Erie lakeshore near Cleveland, Ohio, is adjacent to the mouth of Euclid Creek, a small, flashy stream draining approximately 23 square miles and susceptible to periodic contamination from combined sewer overflows (CSOs) (97 and 163 CSO events in 2010 and 2011, respectively). Concerns over high concentrations of Escherichia coli (E. coli) in water samples taken along this beach and frequent beach closures led to the collection of synoptic data in the nearshore area in an attempt to gain insights into mixing processes, circulation, and the potential for transport of bacteria and other CSO-related pollutants from various sources in Euclid Creek and along the lakefront. An integrated synoptic survey was completed by the U.S. Geological Survey on September 11–12, 2012, during low-flow conditions on Euclid Creek, which followed rain-induced high flows in the creek on September 8–9, 2012. Data-collection methods included deployment of an autonomous underwater vehicle and use of a manned boat equipped with an acoustic Doppler current profiler. Spatial distributions of water-quality measures and nearshore currents indicated that the mixing zone encompassing the mouth of Euclid Creek and Villa Angela Beach is dynamic and highly variable in extent, but can exhibit a large zone of recirculation that can, at times, be decoupled from local wind forcing. Observed circulation patterns during September 2012 indicated that pollutants from CSOs in Euclid Creek and water discharged from three shoreline CSO points within 2,000 feet of the beach could be trapped along Villa Angela Beach by interaction of nearshore currents and shoreline structures. In spite of observed coastal downwelling, denser water from Euclid Creek is shown to mix to the surface via offshore turbulent structures that span the full depth of flow. While the southwesterly longshore currents driving the recirculation pattern along the beach front were observed during the 2011–12

  2. Grand Lake Saint Marys, Ohio, Survey Report for Flood Control and Allied Purposes. Volume 2. Technical Appendix.

    DTIC Science & Technology

    1981-08-01

    area in the state; however, most of the totally wooded area is in the unglaciated plateau region of southeastern Ohio. In the 17-county area included...in the Southwest Ohio Water Plan, an average of 11.5 percent of the land area was wooded ; counties adjacent to and immediately south of Grand Lake St...Marys are less than 10 percent wooded . Except for a fringe of forest or woodland that remains along the shore of Grand Lake St. Marys, land away from

  3. Historical Sediment Budget (1860s to Present) for the United States Shoreline of Lake Erie

    DTIC Science & Technology

    2016-08-01

    B. Monroe, and D. E. Guy, Jr. 1986. Lake Erie shore erosion: The effect of beach width and shore protection structures. Journal of Coastal Research...2005. Concepts in sediment budgets. Journal of Coastal Research 21(2):307–322. Stewart, C. J. 1999. A revised geomorphic, shore protection , and...Engineer District, Buffalo 1776 Niagara Street Buffalo, NY 14207 Andrew Morang and Ashley E. Frey Coastal and Hydraulics Laboratory U.S. Army

  4. Nitrogen cycling in Sandusky Bay, Lake Erie: oscillations between strong and weak export and implications for harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Salk, Kateri R.; Bullerjahn, George S.; McKay, Robert Michael L.; Chaffin, Justin D.; Ostrom, Nathaniel E.

    2018-05-01

    Recent global water quality crises point to an urgent need for greater understanding of cyanobacterial harmful algal blooms (cHABs) and their drivers. Nearshore areas of Lake Erie such as Sandusky Bay may become seasonally limited by nitrogen (N) and are characterized by distinct cHAB compositions (i.e., Planktothrix over Microcystis). This study investigated phytoplankton N uptake pathways, determined drivers of N depletion, and characterized the N budget in Sandusky Bay. Nitrate (NO3-) and ammonium (NH4+) uptake, N fixation, and N removal processes were quantified by stable isotopic approaches. Dissimilatory N reduction was a relatively modest N sink, with denitrification, anammox, and N2O production accounting for 84, 14, and 2 % of sediment N removal, respectively. Phytoplankton assimilation was the dominant N uptake mechanism, and NO3- uptake rates were higher than NH4+ uptake rates. Riverine N loading was sometimes insufficient to meet assimilatory and dissimilatory demands, but N fixation alleviated this deficit. N fixation made up 23.7-85.4 % of total phytoplankton N acquisition and indirectly supports Planktothrix blooms. However, N fixation rates were surprisingly uncorrelated with NO3- or NH4+ concentrations. Owing to temporal separation in sources and sinks of N to Lake Erie, Sandusky Bay oscillates between a conduit and a filter of downstream N loading to Lake Erie, delivering extensively recycled forms of N during periods of low export. Drowned river mouths such as Sandusky Bay are mediators of downstream N loading, but climate-change-induced increases in precipitation and N loading will likely intensify N export from these systems.

  5. Temporal trends of young-of-year fishes in Lake Erie and comparison of diel sampling periods

    USGS Publications Warehouse

    Stapanian, M.A.; Bur, M.T.; Adams, J.V.

    2007-01-01

    We explored temporal trends of young-of-year (YOY) fishes caught in bottom trawl hauls at an established offshore monitoring site in Lake Erie in fall during 1961–2001. Sampling was conducted during morning, afternoon, and night in each year. Catches per hour (CPH) of alewife (Alosa pseudoharengus) YOY were relatively low and exhibited no temporal trend. This result was consistent with the species’ intolerance to Lake Erie’s adverse winter water temperatures. Gizzard shad (Dorosoma cepedianum) YOY decreased sharply after 1991, which was consistent with recent oligotrophication of the lake. Following the establishment in 1979 and rapid increase of white perch (Morone americana) YOY, white bass (Morone chrysops) and freshwater drum (Aplodinotus grunniens) YOY decreased. Trout-perch (Percopsis omiscomaycus) YOY decreased during 1986–1991, but recovered to previous levels during 1991–2001. The recovery coincided with the resurgence of mayflies (Ephemoptera) in the lake. CPH of spottail shiner (Notropis hudsonius) and emerald shiner (N. atherinoides) YOY exhibited no temporal trend between 1961 and the late 1970s to early 1980s. CPH of yellow perch (Perca flavescens) YOY decreased during 1961–1988, and walleye (Sander vitreum) YOY increased overall during the time series. These observations were consistent with published studies of adults in the region. CPH of 4 of the 10 species of YOY considered were greatest during night. CPH for walleye YOY was higher in the morning than in the afternoon, but there was no significant difference between night and morning abundances. The results suggest that (1) CPH of YOY fishes may be a useful monitoring tool for Lake Erie, and (2) offshore monitoring programs that do not include night sampling periods may underestimate recruitment for several common species.

  6. Stable isotope (O and C) and pollen trends in eastern Lake Erie, evidence for a locally-induced climatic reversal of Younger Dryas age in the Great Lakes basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, C.F.M.; Anderson, T.W.

    A cool period from about 11000 to 10500 BP (11 to 10.5 ka) is recognized in pollen records from the southern Great Lakes area by the return of Picea and Abies dominance and by the persistence of herbs. The area of cooling appears centred on the Upper Great Lakes. A high-resolution record (ca. 9 mm/y) from a borehole in eastern Lake Erie reveals, in the same time interval, this pollen anomaly, isotope evidence of melt-water presence (a-3 per mil shift in {delta} {sup 18}O and a + 1.1 per mil shift in {delta}{sup 13}C), increased sand, and reduced detrital calcitemore » content, all suggesting concurrent cooling of Lake Erie. The onset of cooling is mainly attributed to the effect of enhanced meltwater inflow on the relatively large upstream Main Lake Agassiz. Termination of the cooling coincides with drainage of Lake Algonquin, and is attributed to loss of its cooling effectiveness associated with a substantial reduction in its surface area. It is hypothesized that that the cold extra in-flow effectively prolonged the seasonal presence of lake ice and the period of spring overturn in Lake Algonquin. The deep mixing would have greatly increased the thermal conductive capacity of this extensive lake, causing suppression of summer surface lakewater temperatures and reduction of onshore growing-degree days. Alternatively, a rapid flow of meltwater, buoyed on sediment-charged (denser) lakewater, may have kept the lake surface cold in summer. Other factors such as wind-shifted pollen deposition and possible effects from the Younger Dryas North Atlantic cooling could have contributed to the Great Lakes climatic reversal, but further studies are needed to resolve their relative significance. 51 refs., 5 figs.« less

  7. The Role of Created and Restored Wetlands in Mitigating N and P Pollutants in Agricultural Landscapes: Case Studies in the Florida Everglades, Mississippi-Ohio-Missouri Basin, and Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Mitsch, W. J.

    2016-12-01

    On a global scale, we have lost half of our original wetlands to our current extent of 8 to 12 million km2, with most of that loss in the 20th century. In the United States, we lost 50% of our wetlands by the beginning of the 1970s. I am proposing here a sizeable increase in our wetland resources for solving the diminishing wetland habitat problem, but with the strategic purpose of minimizing the excess phosphorus and nitrogen in our aquatic ecosystems, with the added benefit of sometimes sequesting carbon from the atmosphere, in our rural, urban, and coastal landscapes in a sustainable fashion. Examples include attempts to minimize phosphorus inflows to the Florida Everglades with wetlands to quite low concentrations and a proposal to restore parts of the Black Swamp in NW Ohio to minimize eutrophication of Lake Erie in the Laurentian Great Lakes. Nitrogen retention by wetlands and riparian forests in the Mississippi-Ohio-Missouri Basin, especially in Midwestern USA, has been proposed for 15 years as a solution and endorsed by the Federal government to solve the seasonal hypoxia in the northern portion of the Gulf of Mexico, but there has been little if any progress over those 15 years. Solutions to recycle the nutrients retained in the wetlands back to agriculture to decrease fertilizer use will be presented as a solution to the multiple problems of wetland habitat loss, downstream lake, reservoir, river, and coastal nutrient pollution, diminishing supplies of phosphorus fertilizer, and fertilizer costs.

  8. Microbial source tracking markers at three inland recreational lakes in Ohio, 2011

    USGS Publications Warehouse

    Francy, Donna S.; Stelzer, Erin A.

    2012-01-01

    During the 2011 recreational season, samples were collected for E. coli and microbial source tracking (MST) marker concentrations to begin to understand potential sources of fecal contamination at three inland recreational lakes in Ohio - Buckeye, Atwood, and Tappan Lakes. The results from 32 regular samples, 4 field blanks, and 7 field replicates collected at 5 sites are presented in this report. At the three lakes, the ruminant-associated marker was found most often (57-73 percent of samples) but at estimated quantities, followed by the dog-associated marker (30-43 percent of samples). The human-associated marker was found in 14 and 50 percent of samples from Atwood and Tappan Lakes, respectively, but was not found in any samples from the two Buckeye Lake sites. The gull-associated marker was detected in only two samples, both from Tappan Lake.

  9. A brief history of commercial fishing in Lake Erie

    USGS Publications Warehouse

    Applegate, Vernon C.; Van Meter, Harry D.

    1970-01-01

    Salient features of the development of the industry from about 1815 to 1968, changes in fishing gears and methods, changes in the kinds and abundance of fishes caught, and the attendant effects of disappearing species on the stability of the fishery are described. The history and present status of the walleye, yellow perch, and eight other fishes, still taken in commercial quantities, are presented in more detail and are considered in the context of their effect on the current moribund state of the U.S. fishery. Past and present contributions of Lake Erie's tributaries and northerly connecting waters to the fishery are outlined briefly. The "outlook" for the fishery under present conditions of selective overfishing for high-value species, excessive pollution, ineffective and uncoordinated regulation, and antiquated methods of handling, processing, and marketing fish are discussed, and possible solutions to these problems are suggested.

  10. First evidence of grass carp recruitment in the Great Lakes Basin

    USGS Publications Warehouse

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  11. Thermal and Hydraulic Conditions Supporting the Recruitment of Asian Carp in Seiche Affected Rivers of Lake Erie Basin - A Case Study of the Lower Sandusky River in Ohio

    NASA Astrophysics Data System (ADS)

    Soong, D. T.; Santacruz, S.; Jones, L.; Garcia, T.; Kočovský, P. M.; Embke, H.

    2017-12-01

    Grass Carp Ctenopharyngodon idella (Cyprinidae) is an invasive fish species that spawns in rivers during high-flow events. In their native range, it is believed eggs must hatch within the riverine environment in order to eventually result in production of adult fish. The lower Sandusky River is approximately 26 km long extending from its confluence with Sandusky Bay upstream to the Ballville Dam, which is impassible for Grass Carp. Grass Carp are known to have spawned in the Sandusky River, a tributary to Lake Erie, in 2011, 2013, 2015, and 2017. This study characterizes the thermal and hydraulic conditions under which these eggs could hatch in the lower Sandusky River, a relatively short river reach for egg hatching. Grass Carp eggs collected in 2015 were previously analyzed for hatching locations using a one-dimensional steady-state HEC-RAS hydraulic model. In this study we refine estimates of hatching locations by incorporating the influence of fluctuating water levels downstream due to seiches in Lake Erie and overland and tributary inflows using an unsteady 1D/2D HEC-RAS hydraulic model. Additionally, conditions conducive to successful hatching, which occurs when eggs reach the hatching stage within the river, were analyzed from nine high-flow events between 2011 and 2015. Simulated hydraulic and water temperature data were used as inputs to the Fluvial Egg Drift Simulator (FluEgg) model, which was used to analyze the transport and dispersal of Grass carp eggs until hatching. We will describe the differences in steady- and unsteady-state hydraulic modeling in predicting hatching locations of Grass Carp eggs for the 2015 spawning events. Results will also include hydraulic and temperature variables that contribute to the successful/unsuccessful in-river hatching for the nine flow events simulated.

  12. Nutrient Application and Algal Blooms: Farmer Decisions Regarding the Use of Best Management Practices in Lake Erie's Maumee River Watershed

    NASA Astrophysics Data System (ADS)

    Heeren, A.; Toman, E.; Wilson, R. S.; Martin, J.

    2016-12-01

    Lake Erie is the most productive of the Great Lakes. However, harmful algal blooms (HABs) caused by nutrient run-off threaten the lake. Experts have proposed numerous best management practices (BMPs) designed to reduce nutrient and sediment run-off. However, for these practices to be effective at reducing HABs, a significant portion of farmers and landowners within Lake Erie's watersheds have to first adopt and implement these practices. In order to better understand how farmers and landowners make decisions about whether or not to adopt and implement BMPs we conducted a series of focus groups and a mail survey of Lake Erie's largest watershed. We found that many farmers were supportive of adopting BMPs. For example, 60% of farmers in the watershed have already adopted using grid soil sampling while another 30% are willing to adopt the practice in the future. However, other practices were less popular, for example, only 18% of farmers had already adopted cover crops. Farmers also expressed several reservations about adopting some BMPs. For example, farmers were concerned about the costs of some BMPs, such as cover crops and drainage management systems, and how such practices might interfere with the planting of subsequent crops. Our research has several implications for reducing nutrient production by promoting BMPs. First, we identified potential concerns and limitations farmers faced in implementing specific BMPs. For example, conservationists can design future programs and communication efforts to target these specific concerns. Second, through examining the socio-psychological and cognitive characteristics that influence farmer decision-making, we identified that willingness to adopt nutrient BMPs is association with how strongly a farmer identifies with conservation and how effective they believed the BMP was at reducing run-off. Messages and information about BMPs may be more effective if they are framed in a way that aligns with identities and beliefs about

  13. Molecular evidence of undescribed Ceratonova sp. (Cnidaria: Myxosporea) in the freshwater polychaete, Manayunkia speciosa, from western Lake Erie

    USGS Publications Warehouse

    Malakauskas, David M.; Snipes, Robert Benjamin; Thompson, Ann M.; Schloesser, Donald W.

    2016-01-01

    We used PCR to screen pooled individuals of Manayunkia speciosa from western Lake Erie, Michigan, USA for myxosporean parasites. Amplicons from positive PCRs were sequenced and showed a Ceratonova species in an estimated 1.1% (95% CI = 0.46%, 1.8%) of M. speciosa individuals. We sequenced 18S, ITS1, 5.8S, ITS2 and most of the 28S rDNA regions of this Ceratonova sp., and part of the protein-coding EF2 gene. Phylogenetic analyses of ribosomal and EF2 sequences showed the Lake Erie Ceratonova sp. is most similar to, but genetically distinct from, Ceratonova shasta. Marked interspecific polymorphism in all genes examined, including the ITS barcoding genes, along with geographic location suggests this is an undescribed Ceratonova species. COI sequences showed M. speciosa individuals in Michigan and California are the same species. These findings represent a third parasite in the genus Ceratonovapotentially hosted by M. speciosa.

  14. Analysis of the sensitivity of soils to the leaching of agricultural pesticides in Ohio

    USGS Publications Warehouse

    Schalk, C.W.

    1998-01-01

    Pesticides have not been found frequently in the ground waters of Ohio even though large amounts of agricultural pesticides are applied to fields in Ohio every year. State regulators, including representatives from Ohio Environmental Protection Agency and Departments of Agriculture, Health, and Natural Resources, are striving to limit the presence of pesticides in ground water at a minimum. A proposed pesticide management plan for the State aims at protecting Ohio's ground water by assessing pesticide-leaching potential using geographic information system (GIS) technology and invoking a monitoring plan that targets aquifers deemed most likely to be vulnerable to pesticide leaching. The U.S. Geological Survey, in cooperation with Ohio Department of Agriculture, assessed the sensitivity of mapped soil units in Ohio to pesticide leaching. A soils data base (STATSGO) compiled by U.S. Department of Agriculture was used iteratively to estimate soil units as being of high to low sensitivity on the basis of soil permeability, clay content, and organic-matter content. Although this analysis did not target aquifers directly, the results can be used as a first estimate of areas most likely to be subject to pesticide contamination from normal agricultural practices. High-sensitivity soil units were found in lakefront areas and former lakefront beach ridges, buried valleys in several river basins, and parts of central and south- central Ohio. Medium-high-sensitivity soil units were found in other river basins, along Lake Erie in north-central Ohio, and in many of the upland areas of the Muskingum River Basin. Low-sensitivity map units dominated the northwestern quadrant of Ohio.

  15. 75 FR 36292 - Safety Zone; Bay Swim III, Presque Isle Bay, Erie, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... of Presque Isle Bay, Lake Erie, near Erie, Pennsylvania between 9 a.m. to 11 a.m. on June 26, 2010.... The safety zone will encompass specified waters of Presque Isle Bay, Erie, Pennsylvania starting at...-AA00 Safety Zone; Bay Swim III, Presque Isle Bay, Erie, PA AGENCY: Coast Guard, DHS. ACTION: Temporary...

  16. Geological Character and Mineral Resources of South Central Lake Erie.

    DTIC Science & Technology

    1982-10-01

    Presque Isle Peninsula, Erie , Pennsylvania , being conducted by the U.S. Army Engineer District...the Pennsylvania shoreline. Because of its position and morphology, Presque Isle acts as a natural offshore breakwater for Erie Harbor, blocking the...Research Center, Fort Belvoir, Va. (in preparation, 1982). U.S. ARMY ENGINEER DISTRICT, BUFFALO, " Presque Isle Peninsula, Erie , Pennsylvania ,"

  17. Effects of dreissenids on monitoring and management of fisheries in western Lake Erie

    USGS Publications Warehouse

    Stapanian, Martin A.; Kocovsky, Patrick M.

    2013-01-01

    Water clarity increased in nearshore areas of western Lake Erie by the early-1990s mainly as a result of the filtering activities of dreissenid mussels (Dreissena spp.), which invaded in the mid-1980s. We hypothesized that increased water clarity would result in greater trawl avoidance and thus reduced ability to capture fish in bottom trawls during daytime compared to nighttime. We examined this hypothesis by summarizing three analyses on fish data collected in western Lake Erie. First, we used a two-tiered modeling approach on the ration (R) of catch per hour (CPH) of age-0 yellow perch (Perca flavencens Mitchell) at night to CPH during daytime in 1961-2005. The best a priori and a posteriori models indicated a shift to higher CPH at night (R > 1) between 1990 and 1991, which corresponded to 3 years after the dreissenid invasion and when water clarity noticeably increased at nearshore sites. Secondly, we examined effects of nighttime sampling on estimates of abundance of age-2 and older yellow perch, which form the basis for recommended allowable harvest (RAH). When data from night sampling were included in models that predict abundance of age-2 yellow perch from indices of abundance of age-0 and age-1 yellow perch, predicted abundance was lower and model precision, as measured by r-squared, was higher compared to models that excluded data collected at night. Furthermore, the use of only CPH data collected at night typically resulted in lower estimates of abundance and more precise models compared to models that included CPH data collected during both daytime and nighttime. Thirdly, we used presence/absence data from paired bottom trawl samples to calculate an index of capture probability (or catchability) to determine if our ability to capture the four most common benthic species in western Lake Erie was affected by dreissenid-caused increased water clarity. Three species of fish(white perch, Morone americana Gmelin; yellow perch; and trout-perch, Percopsis

  18. Spatial variation in incidence of mouthpart deformities in larval chironomids (Diptera) from western Lake Erie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, L.A.; Ciborowski, J.J.H.; Corkum, L.D.

    1995-12-31

    The major source of contaminants to the sediments of the western basin of Lake Erie is the Detroit River. In order to determine if contaminant levels are reflected in incidences of genotoxicity of benthic invertebrates, the authors examined larvae of chironomids for mouthpart (mentum) deformities. Sediment genotoxicity is indicated when incidence of deformities in susceptible genera exceeds 5%. Samples were collected from three locations along the contaminant gradient extending from the Detroit River along the main shipping channel of the western basin. A composite sample was taken from several central locations in the western basin. Chironomids were hand-picked from ponarmore » grab or box core samples. The heads were mounted, identified to genus and examined for mentum deformities (extra or missing teeth). Chironomus dominated all samples. The incidence of deformities ({+-}SE) in Chironomus was greatest in the Trenton Channel of the Detroit River (7.8 {+-} 2.2%, n = 153), declined to 5.2 {+-} 1.4% (n = 233) in the center of the basin and was the lowest off East Sister Island (1.9 {+-} 0.9%, n = 210). The incidence of deformities was 4.4 {+-} 0.8% (n = 610) at a reference site on the Canadian side of the Detroit River (Crystal Bay). The spatial pattern of chironomid mentum deformities suggests that sediment genotoxicity declines from west to east in western Lake Erie.« less

  19. Inquiry based Teacher Professional development from a multidisciplinary perspective: The NEOGEO Lake Erie Earth Science Field Trip

    NASA Astrophysics Data System (ADS)

    Ortiz, J. D.; Munro-Stasiuk, M. J.; Hart, B. I.; Mokaren, D. M.; Arnold, B.; Chermansky, J. V.; Vlack, Y. A.

    2006-12-01

    State and national educational standards stress the need to incorporate inquiry-based approaches into the K- 12 science curriculum. However, many teachers either lack training in these pedagogical techniques or science content mastery. Both of these are needed to confidently approach science teaching in the less structured framework associated with a real world exploration of the natural environment. To overcome these barriers to implementation, we have developed an intensive, field-based professional development workshop which explores the connections between the bedrock geology, glacial geomorphology, ecology, and geography of the Lake Erie Islands and the shore of its western basin. This workshop is part of a series of three workshops that form the professional development activities of our NSF funded Graduate Teaching Fellows in K-12 Education (GK-12) project, the Northeast Ohio Geoscience Education Outreach (NEOGEO) Program which seeks to improve the quality of Earth Science education at the middle and high school levels in Northeast Ohio. During the workshop students explored the ecology and geomorphology of a series of coastal wetlands, collecting instrumental data and field observations to evaluate water quality and the forces that created these surface features. Exceptional exposure of glacial scours and striations at Kelleys Island and along the Marblehead Peninsula allowed the participants to reconstruct evolving ice flow paths to see how recent geological history shaped the landscape. Finally, stratigraphic observations in a local quarry enabled the students to understand why the observed glacial features varied as a function of bedrock type. Response to the workshop was overwhelming positive with participants commenting positively on quality and quantity of the material presented and the manner in which inquiry based teaching was modeled. End of term projects which included the conceptualization of a teaching plan to incorporate the approaches learned

  20. 480mm telephoto perspective, looking south toward midspan and south anchor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    480-mm telephoto perspective, looking south toward mid-span and south anchor arm. - Pittsburgh & Lake Erie Railroad, Ohio River Bridge, Spanning Ohio River, West of Beaver River, Beaver, Beaver County, PA

  1. 480mm telephoto perpective, looking south toward midspan and south anchor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    480-mm telephoto perpective, looking south toward mid-span and south anchor arm. - Pittsburgh & Lake Erie Railroad, Ohio River Bridge, Spanning Ohio River, West of Beaver River, Beaver, Beaver County, PA

  2. Culture-based Identification Of Microcystin-Degrading Bacteria In the Sandusky Bay and Maumee Bay of Lake Erie

    NASA Astrophysics Data System (ADS)

    Ormiston, A.; Mou, X.

    2012-12-01

    Harmful cyanobacteria blooms (cyanoHABs) are a serious issue that affects wildlife, human health, recreation and local economics worldwide. CyanoHABs produce cyanotoxins, such as microcystins (MCs) that lead to skin irritation, illness and liver tumors. Bacterially mediated degradation of MCs plays a key role to transform these toxic substrates to less harmful metabolites in natural environments. However, only a few Sphingomonos species have been isolated for degradation of MCs and many of which are from other habitats such as water plants. This project aims to isolate and identify bacteria that can degrade MC-LR and MC-RR, two major forms of MCs found during cyanoHABs in Lake Erie. Water samples were collected from the surface of Sandusky Bay and Maumee Bay of Lake Erie and immediately filtered through 3.0 -μm-pore-size membrane filters to obtain bacterioplankton fraction. The filtrates were amended with excessive inorganic nitrogen and phosphorus compounds and incubated in the dark for a week to purposely establish a carbon-limited condition. Afterwards, enrichment microcosms were established in flasks filled with pre-incubated bacterioplankton and single MC compounds (final concentration 10 μM). Once cell growth was confirmed by flow cytometry-based cell counting, bacterial cells in enriched microcosms were transferred onto solid surfaces, i.e., GFF filter and noble agar for colony isolation. Obtained single colonies were inoculated in defined liquid media with MCs as single carbon source. DNA was extracted from each purified isolate and analyzed by restriction fragment length polymorphism analysis (RFLP). A total of 18 different RFLP banding patterns were found, indicating MC-degrading bacteria may be heterogeneous in studied water samples. 16S rRNA genes of selected bacterial isolates were PCR amplified and sequenced for taxonomic identification. Our results demonstrated that MCs can be degraded by multiple bacterial species in Lake Erie. Future directions

  3. Feasibility Study of Shoreline Protection and Lake Level Regulation for Lake Ontario. Reconnaissance Report. Volume II. Appendices.

    DTIC Science & Technology

    1981-11-01

    Presque Isle , Pennsylvania , Lake Erie . For more information on headlands see Coastal Enqineering, 2, Sedimentation, Estuaries, Tides, Effluents, and...Environmental Inventory. 1978. Erie County Metropolitan Planning Commission. Erie County Land Use Plan, Erie County, Pennsylvania . 1971. Geis, James W...International Lake Erie Regulation Study A-I-13 e. New York State Coastal Zone Management Program A-1-14 f. Pollution from Land Use Activities (PLUARG) A-1-14

  4. 13. Photocopy of engraving (from A. Witteman's Ohio Soldiers' and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of engraving (from A. Witteman's Ohio Soldiers' and Sailors' Home Near Sandusky, (New York: The Albertype Co.), 1894) VIEW EAST, COTTAGE 'L', (UPPER LEFT COTTAGE 'F', COTTAGE 'G'; UPPER RIGHT COTTAGE UNKNOWN) - Ohio Soldiers' & Sailors' Home, Cottage L, U.S. Route 250 at DeWitt Avenue, Sandusky, Erie County, OH

  5. Monitoring of Harmful Algal Blooms through Drinking Water Treatment Facilities Located on Lake Erie in the 2014 and 2015 Bloom Seasons

    EPA Science Inventory

    A number of drinking water treatment plants on Lake Erie have supplied water samples on a monthly basis for analysis related to the occurrence of harmful algal blooms (HABs). General water quality parameters including total organic carbon (TOC), orthophosphate, and chlorophyll-A ...

  6. Airborne Hyperspectral Sensing of Monitoring Harmful Algal Blooms in the Great Lakes Region: System Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Lekki, John; Anderson, Robert; Avouris, Dulcinea; Becker, RIchard; Churnside, James; Cline, Michael; Demers, James; Leshkevich, George; Liou, Larry; Luvall, Jeffrey; hide

    2017-01-01

    Harmful algal blooms (HABs) in Lake Erie have been prominent in recent years. The bloom in 2014 reached a severe level causing the State of Ohio to declare a state of emergency. At that time NASA Glenn Research Center was requested by stakeholders to help monitor the blooms in Lake Erie. Glenn conducted flights twice a week in August and September and assembled and distributed the HAB information to the shoreline water resource managers using its hyperspectral imaging sensor (in development since 2006), the S??3 Viking aircraft, and funding resources from the NASA Headquarters Earth Science Division. Since then, the State of Ohio, National Oceanic and Atmospheric Administration (NOAA), and U.S. Environmental Protection Agency (EPA) have elevated their funding and activities for observing, monitoring, and addressing the root cause of HABs. Also, the communities and stakeholders have persistently requested NASA Glenn??s participation in HAB observation. Abundant field campaigns and sample analyses have been funded by Ohio and NOAA, which provided a great opportunity for NASA to advance science and airborne hyperspectral remote sensing economically. Capitalizing on this opportunity to advance the science of algal blooms and remote sensing, NASA Glenn conducted the Airborne Hyperspectral Observation of harmful algal blooms campaign in 2015 that was, in many respects, twice as large as the 2014 campaign. Focusing mostly on Lake Erie, but also including other small inland lakes and the Ohio River, the campaign was conducted in partnership with a large number of partners specializing in marine science and remote sensing. Airborne hyperspectral observation of HABs holds promise to distinguish potential HABs from nuisance blooms, determine their concentrations, and delineate their movement in an augmented spatial and temporal resolution and under clouds??all of which are excellent complements to satellite observations. Working with collaborators at several Ohio and Michigan

  7. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  8. Development of a stock-recruitment model and assessment of biological reference points for the Lake Erie walleye fishery

    USGS Publications Warehouse

    Zhao, Yingming; Kocovsky, Patrick M.; Madenjian, Charles P.

    2013-01-01

    We developed an updated stock–recruitment relationship for Lake Erie Walleye Sander vitreus using the Akaike information criterion model selection approach. Our best stock–recruitment relationship was a Ricker spawner–recruit function to which spring warming rate was added as an environmental variable, and this regression model explained 39% of the variability in Walleye recruitment over the 1978 through 2006 year-classes. Thus, most of the variability in Lake Erie Walleye recruitment appeared to be attributable to factors other than spawning stock size and spring warming rate. The abundance of age-0 Gizzard Shad Dorosoma cepedianum, which was an important term in previous models, may still be an important factor for Walleye recruitment, but poorer ability to monitor Gizzard Shad since the late 1990s could have led to that term failing to appear in our best model. Secondly, we used numerical simulation to demonstrate how to use the stock recruitment relationship to characterize the population dynamics (such as stable age structure, carrying capacity, and maximum sustainable yield) and some biological reference points (such as fishing rates at different important biomass or harvest levels) for an age-structured population in a deterministic way.

  9. Diets of endangered silver chub (Macrhybopsis storeriana, Kirtland, 1844) in Lake Erie and implications for recovery

    USGS Publications Warehouse

    Kocovsky, Patrick

    2018-01-01

    Silver chub (Macrhybopsis storeriana, Kirtland, 1844) is a native Cyprinid in Lake Erie, one of the Laurentian Great Lakes of North America. It is listed as endangered by the US state of New York and Canada, which has a recovery plan, and as special concern by the state of Michigan. Silver chub faces a potential threat to recovery from control efforts for invasive Grass carp (Ctenopharyngodon idella, Valenciennes 1844). Among the knowledge gaps for protection and restoration is current diet data. I describe the diet of silver chub from western Lake Erie in 2014, and I compare it to past studies to assess changes in diet through time. Silver chub captured in bottom trawls May–September 2014 were frozen in the field, and stomach contents were preserved in ethanol. Diet taxa were identified to the lowest practical taxonomic unit, then dried and weighed. Frequency of occurrence in silver chub diets was highest for Hexagenia spp. mayflies (79%). Dreissena spp. and Hexagenia spp. were both 41% of the diet by dry weight. Analysis of δ13C isotopes identified Hexagenia spp. as the primary source of carbon in silver chub. Compared to past studies, Dreissena spp. have mostly replaced Sphaeriidae and Gastropoda in silver chub diets. There also have been seasonal shifts in relative amounts of shelled organisms and Hexagenia spp. This study and past research suggest a functional link between silver chub and Hexagenia spp. abundance. Maintenance and recovery of silver chub may be dependent on maintaining Hexagenia spp. populations.

  10. Western Lake Erie Shore Study, Ohio. Reconnaissance Report (Stage 1) on Flood Protection and Shoreline Erosion Control,

    DTIC Science & Technology

    1981-06-01

    standards. High cadmium and mercury levels were recorded from Locust Point to Port Clinton while high iron content occurred from the Maumee River to...Railway Company, the Wabash Railroad Company, the Pennsylvania Railroad Company, the Norfolk and Western Railroad Company, the Chesapeake and Ohio

  11. Monitoring for Harmful Algal Blooms in Influent Waters and Through Treatment on Lake Erie in the 2013 and 2014 Bloom Seasons 

    EPA Science Inventory

    Monitoring of Harmful Algal Blooms in Influent and Through Drinking Water Treatment Facilities Located on Lake Erie in the 2013 and 2014 Bloom SeasonsToby Sanan, Nicholas Dugan, Darren Lytle, Heath MashHarmful algal blooms (HABs) and their associated toxins are emerging as signif...

  12. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie

    USGS Publications Warehouse

    Arend, Kristin K.; Beletsky, Dmitry; DePinto, Joseph; Ludsin, Stuart A.; Roberts, James J.; Rucinski, Daniel K.; Scavia, Donald; Schwab, David J.; Höök, Tomas O.

    2011-01-01

    1. Hypoxia occurs seasonally in many stratified coastal marine and freshwater ecosystems when bottom dissolved oxygen (DO) concentrations are depleted below 2–3 mg O2 L-1. 2. We evaluated the effects of hypoxia on fish habitat quality in the central basin of Lake Erie from 1987 to 2005, using bioenergetic growth rate potential (GRP) as a proxy for habitat quality. We compared the effect of hypoxia on habitat quality of (i) rainbow smelt, Osmerus mordax mordax Mitchill (young-of-year, YOY, and adult), a cold-water planktivore, (ii) emerald shiner, Notropis atherinoides Rafinesque (adult), a warm-water planktivore, (iii) yellow perch, Perca flavescens Mitchill (YOY and adult), a cool-water benthopelagic omnivore and (iv) round goby Neogobius melanostomus Pallas (adult) a eurythermal benthivore. Annual thermal and DO profiles were generated from 1D thermal and DO hydrodynamics models developed for Lake Erie’s central basin. 3. Hypoxia occurred annually, typically from mid-July to mid-October, which spatially and temporally overlaps with otherwise high benthic habitat quality. Hypoxia reduced the habitat quality across fish species and life stages, but the magnitude of the reduction varied both among and within species because of the differences in tolerance to low DO levels and warm-water temperatures. 4. Across years, trends in habitat quality mirrored trends in phosphorus concentration and water column oxygen demand in central Lake Erie. The per cent reduction in habitat quality owing to hypoxia was greatest for adult rainbow smelt and round goby (mean: -35%), followed by adult emerald shiner (mean: -12%), YOY rainbow smelt (mean: -10%) and YOY and adult yellow perch (mean: -8.5%). 5. Our results highlight the importance of differential spatiotemporally interactive effects of DO and temperature on relative fish habitat quality and quantity. These effects have the potential to influence the performance of individual fish species as well as population dynamics

  13. Ichthyoplankton assemblages of coastal west-central Lake Erie and associated habitat characteristics

    USGS Publications Warehouse

    McKenna, J.E.; Hunter, R. Douglas; Fabrizio, M.C.; Savino, J.F.; Todd, T.N.; Bur, M.

    2008-01-01

    Early life stage survival often determines fish cohort strength and that survival is affected by habitat conditions. The structure and dynamics of ichthyoplankton assemblages can tell us much about biodiversity and fish population dynamics, but are poorly understood in nearshore areas of the Great Lakes, where most spawning and nursery habitats exist. Ichthyoplankton samples were collected with a neuston net in waters 2-13 m deep weekly or biweekly from mid-April through August, during 3 years (2000-2002) as part of a study of fish assemblages in west-central Lake Erie. A suite of abiotic variables was simultaneously measured to characterize habitat. Cluster and ordination analyses revealed several distinct ichthyoplankton assemblages that changed seasonally. A lake whitefish (Coregonus clupeaformis) dominated assemblage appeared first in April. In May, assemblages were dominated by several percid species. Summer assemblages were overwhelmingly dominated by emerald shiner (Notropis atherinoides), with large gizzard shad (Dorosoma cepedianum) and alewife (Alosa pseudoharengus) components. This seasonal trend in species assemblages was also associated with increasing temperature and water clarity. Water depth and drift processes may also play a role in structuring these assemblages. The most common and widely distributed assemblages were not associated with substratum type, which we characterized as either hard or soft. The timing of hatch and larval growth separated the major groups in time and may have adaptive significance for the members of each major assemblage. The quality and locations (with reference to lake circulation) of spawning and nursery grounds may determine larval success and affect year class strength.

  14. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  15. Food of forage fishes in western Lake Erie, 1975-76

    USGS Publications Warehouse

    Muth, Kenneth M.; Busch, Wolf-Dieter N.

    1989-01-01

    In western Lake Erie in the summer and fall of 1975–1976, food eaten by seven forage fishes—emerald shiner (Notropis atherinoides), spottail shiner (Notropis hudsonius), trout-perch (Percopsis omiscomaycus), andyoung-of-the-year (YOY) of alewife (Alosa pseudoharengus), gizzard shad (Dorosoma cepedianum), white bass (Morone chrysops), and freshwater drum (Aplodi-notus grunniens)—was divided among six major taxa: Cladocera, Copepoda, Diptera, Ostracoda, Amphipoda, and Algae. In addition, fish were eaten by YOY white bass, and Rotifera were consumed by YOY gizzard shad. Interspecies diet overlap indices, calculated to compare the food of the different species and to evaluate diet similarities, were usually highest for YOY white bass and YOY freshwater drum when compared with the other species and usually lowest between emerald shiners and all other forage fishes. Understanding the feeding interactions among fishes that could influence production at the forage-food level of the food web could provide insight into how cascading trophic interactions influence the production of piscivorous predators.

  16. 11. VIEW OF HORIZONTAL MIXER (GedgeGray Co., Lockland, Ohio), LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF HORIZONTAL MIXER (Gedge-Gray Co., Lockland, Ohio), LOCATED IN THE BASEMENT, MIXED ANIMAL FEED TO ORDER. THE WATER-POWERED MIXER WAS SUPERSEDED BY TWO ELECTRIC-POWERED VERTICAL MIXERS, ADDED IN THE 1940S. Photographer: Louise Taft Cawood, July 1986 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH

  17. Comparison of Grazing Intensity & Diets of Native and Invasive Amphipods in Lake Erie

    NASA Astrophysics Data System (ADS)

    Duggan, J. P.; Francouer, S. N.

    2005-05-01

    Echinogammarus ischnus, an invasive amphipod originating from the Ponto Caspian Basin, was first discovered in the Detroit River in 1995 and has migrated through the lower Great Lakes displacing the native amphipod, Gammarus fasciatus. Both amphipods seek food and refuge by inhabiting substrata encrusted with zebra mussels and/or filamentous macro-algae. The filamentous green alga Cladophora, along with its epiphytic communities, are an important food source and refuge from predators and physical stresses. We examined the gut content of both amphipod species to determine their preferred food in their natural habitats, and conducted a laboratory experiment to determine each amphipod's grazing effects on algal biomass. Gut analysis was completed by taking grab samples from 4 study sites located along the western shore of Lake Erie every two weeks July through September, 2004. Amphipods were separated by species and preserved in 90% alcohol for later dissection. Algal taxa from amphipod guts were identified and enumerated using brightfield microscopy. In the lab experiment, algal biomass prior to and after two weeks of amphipod grazing was determined using ash-free dry mass and chlorophyll-a. Preliminary results indicate that E. ischnus and G. fasciatus exert approximately equal grazing pressure on the Great Lakes food web.

  18. 46 CFR 401.407 - Basic rates and charges on Lake Erie and the navigable waters from Southeast Shoal to Port Huron...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Clair River Toledo or any port on Lake Erie west of Southeast Shoal $2,389 $1,412 $3,102 $2,389 N/A Port... Detroit or Windsor or the Detroit River 2,389 3,102 1,412 N/A 3,126 Detroit Pilot Boat 1,729 2,389 N/A N/A...

  19. Use of Spatial Sampling and Microbial Source-Tracking Tools for Understanding Fecal Contamination at Two Lake Erie Beaches

    USGS Publications Warehouse

    Francy, Donna S.; Bertke, Erin E.; Finnegan, Dennis P.; Kephart, Christopher M.; Sheets, Rodney A.; Rhoades, John; Stumpe, Lester

    2006-01-01

    Source-tracking tools were used to identify potential sources of fecal contamination at two Lake Erie bathing beaches: an urban beach (Edgewater in Cleveland, Ohio) and a beach in a small city (Lakeshore in Ashtabula, Ohio). These tools included identifying spatial patterns of Escherichia coli (E. coli) concentrations in each area, determining weather patterns that caused elevated E. coli, and applying microbial source tracking (MST) techniques to specific sites. Three MST methods were used during this study: multiple antibiotic resistance (MAR) indexing of E. coli isolates and the presence of human-specific genetic markers within two types of bacteria, the genus Bacteroides and the species Enterococcus faecium. At Edgewater, sampling for E. coli was done during 2003-05 at bathing-area sites, at nearshore lake sites, and in shallow ground water in foreshore and backshore areas. Spatial sampling at nearshore lake sites showed that fecal contamination was most likely of local origin; E. coli concentrations near the mouths of rivers and outfalls remote to the beach were elevated (greater than 235 colony-forming units per 100 milliliters (CFU/100 mL)) but decreased along transport pathways to the beach. In addition, E. coli concentrations were generally highest in bathing-area samples collected at 1- and 2-foot water depths, midrange at 3-foot depths, and lowest in nearshore lake samples typically collected 150 feet from the shoreline. Elevated E. coli concentrations at bathing-area sites were generally associated with increased wave heights and rainfall, but not always. E. coli concentrations were often elevated in shallow ground-water samples, especially in samples collected less than 10 feet from the edge of water (near foreshore area). The interaction of shallow ground water and waves may be a mechanism of E. coli storage and accumulation in foreshore sands. Infiltration of bird feces through sand with surface water from rainfall and high waves may be concentrating

  20. Detection of the spatiotemporal trends of mercury in Lake Erie fish communities: a Bayesian approach.

    PubMed

    Azim, M Ekram; Kumarappah, Ananthavalli; Bhavsar, Satyendra P; Backus, Sean M; Arhonditsis, George

    2011-03-15

    The temporal trends of total mercury (THg) in four fish species in Lake Erie were evaluated based on 35 years of fish contaminant data. Our Bayesian statistical approach consists of three steps aiming to address different questions. First, we used the exponential and mixed-order decay models to assess the declining rates in four intensively sampled fish species, i.e., walleye (Stizostedion vitreum), yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieui), and white bass (Morone chrysops). Because the two models postulate monotonic decrease of the THg levels, we included first- and second-order random walk terms in our statistical formulations to accommodate nonmonotonic patterns in the data time series. Our analysis identified a recent increase in the THg concentrations, particularly after the mid-1990s. In the second step, we used double exponential models to quantify the relative magnitude of the THg trends depending on the type of data used (skinless-boneless fillet versus whole fish data) and the fish species examined. The observed THg concentrations were significantly higher in skinless boneless fillet than in whole fish portions, while the whole fish portions of walleye exhibited faster decline rates and slower rates of increase relative to the skinless boneless fillet data. Our analysis also shows lower decline rates and higher rates of increase in walleye relative to the other three fish species examined. The food web structural shifts induced by the invasive species (dreissenid mussels and round goby) may be associated with the recent THg trends in Lake Erie fish.

  1. Potential impact of Chironomus plumosus larvae on hypolimnetic oxygen in the central basin of Lake Erie

    USGS Publications Warehouse

    Soster, Frederick M.; Matisoff, Gerald; Schloesser, Donald W.; Edwards, William J.

    2015-01-01

    Previous studies have indicated that burrow-irrigating infauna can increase sediment oxygen demand (SOD) and impact hypolimnetic oxygen in stratified lakes. We conducted laboratory microcosm experiments and computer simulations with larvae of the burrowing benthic midge Chironomus plumosus to quantify burrow oxygen uptake rates and subsequent contribution to sediment oxygen demand in central Lake Erie. Burrow oxygen uptake and water flow velocities through burrows were measured using oxygen microelectrodes and hot film anemometry, respectively. Burrow oxygen consumption averaged 2.66 × 10− 10 (SE = ± 7.82 × 10− 11) mol O2/burrow/s at 24 °C and 9.64 × 10− 10 (SE = ± 4.86 × 10− 10) mol O2/burrow/s at 15 °C. In sealed microcosm experiments, larvae increased SOD 500% at 24 °C (density = 1508/m2) and 375% at 15 °C (density = 864/m2). To further evaluate effects of densities of C. plumosus burrows on SOD we developed a 3-D transport reaction model of the process. Using experimental data and chironomid abundance data in faunal surveys in 2009 and 2010, we estimated that bioirrigation by a population of 140 larvae/m2 could account for between 2.54 × 10− 11 mol/L/s (model results) and 5.58 × 10− 11 mol/L/s (experimental results) of the average 4.22 × 10− 11 mol/L/s oxygen depletion rate between 1970 and 2003, which could have accounted for 60–132% of the oxygen decline. At present, it appears that the population density of this species may be an important factor in development of hypoxic or anoxic conditions in central Lake Erie.

  2. Longshore water-current velocity and the potential for transport of contaminants—A pilot study in Lake Erie from Walnut Creek to Presque Isle State Park beaches, Erie, Pennsylvania, June and August 2015

    USGS Publications Warehouse

    Hittle, Elizabeth A.

    2017-04-20

    Bacteria-driven restrictions and (or) advisories on swimming at beaches in Presque Isle State Park (PISP), Erie, Pennsylvania, can occur during the summer months. One of the suspected sources of bacteria is sediment. A terrestrial sediment source to the west of PISP is Walnut Creek, which discharges to Lake Erie about 8.5 kilometers southwest of PISP Beach 1. On June 24, June 25, August 18, and August 19, 2015, synoptic surveys were conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Sea Grant, in Lake Erie between Walnut Creek and PISP Beach 1 to characterize the water-current velocity and direction to determine whether sediment from Walnut Creek could be affecting the PISP beaches. Water-quality data (temperature, specific conductance, and turbidity) were collected in conjunction with the synoptic surveys in June. Water-quality data (Escherichia coli [E. coli] bacteria, temperature, and turbidity) were collected about a meter from the shore (nearshore) on June 24, August 19, and after a precipitation event on August 11, 2015. Additionally, suspended sediment was collected nearshore on June 24 and August 11, 2015. Samples collected near Walnut Creek during all three bacterial sampling events contained higher counts than other samples. Counts steadily decreased from west to east, then increased about 1–2 kilometers from PISP Beach 1; however, this study was not focused on examining other potential sources of bacteria.The Velocity Mapping Toolbox (VMT) was used to process the water-current synoptic surveys, and the results were visualized within ArcMap. For the survey accomplished on June 24, 2015, potential paths a particle could take between Walnut Creek and PSIP Beach 1 if conditions remained steady over a number of hours were visualized. However, the water-current velocity and direction were variable from one day to the other, indicating this was likely an unrealistic assumption for the study area. This analysis was not accomplished

  3. Water, Ohio's Remarkable Resource.

    ERIC Educational Resources Information Center

    Groves, Carrie J.

    Information on water and water resources in Ohio is presented in seven sections. Water from Ohio streams, water storage, lakes in Ohio, and ground water are discussed in the first section ("Water, A Part of the Earth"). A brief discussion on the ecosystem is provided in the second section ("Water and Life"). Topics discussed in…

  4. Fecundity of walleyes in western Lake Erie, 1966 and 1990-91

    USGS Publications Warehouse

    Muth, Kenneth M.; Ickes, Brian S.

    1993-01-01

    Ovaries were collected from walleyes (Stizostedion vitreum vitreum) in western Lake Erie just prior to spawning in 1990 and 1991 to determine current fecundity. Results were compared with fecundity determined in 1966 prior to stock rehabilitation when walleye abundance was lower and fish size at age was greater. Fecundity estimates determined from 121 fish aged 3-10 ranged from 53,000 to 426,000 eggs per female. Increases in egg production correlated with increases in length and weight, and weight accounting for most of the variability. In 1990-91 the mean egg production of the dominant age groups of spawners (ages 4 to 8) was approximately 25% lower than fishes of similar age in 1966. The mean egg diameter in 1990-91 (1.63 mm) was not related to the size or age of the fish and was not significantly smaller than the egg diameter in 1966 (1.72 mm).

  5. Dynamics of the recovery of the western Lake Erie walleye (Stizostedion vitreum vitreum) stock

    USGS Publications Warehouse

    Hatch, Richard W.; Nepszy, Stephen J.; Muth, Kenneth M.; Baker, Carl T.

    1987-01-01

    After its 1957 collapse under intensive fishing and environmental stresses, the walleye (Stizostedion vitreum vitreum) stock of western Lake Erie remained low throughout the 1960s. A moratorium on both sport and commercial fishing, resulting from the 1970 discovery of mercury concentrations in walleye flesh, provided an opportunity for the development of an international interagency management plan. The quota management plan developed depended on sequential projection of the fishable stock on the basis of estimated annual recruitment and reports of total withdrawals from the stock. The fishery reopened gradually and quota management (including allocation among jurisdictions) was implemented in 1976. The stock, which had been gradually increasing as a result of relatively strong year-classes produced in 1970, 1972, and 1974, responded well to limited exploitation and produced a record year-class in 1977. Quotas were exceeded in 1978-80, but the stock continued to improve to the extent that the recommended rate of exploitation was increased in 1980 and again in 1981. As the population expanded, growth began to decline; the decline became apparent in young-of-the-year in the early 1970s and in older walleyes in the late 1970s. This trend toward progressively slower growth, which continued in the 1977 and subsequent year-classes, was accompanied by an increase in length at sexual maturity and a decrease in the percentage of female walleyes reaching sexual maturity at age III. As a net result of these changes, the proportion of mature females in the stock (an index of stock fecundity) decreased slightly during the interval 1975-84, while the estimated biomass of the standing stock rose from 9 000 to nearly 26 000 t. Both sport and commercial catches increased markedly after 1980 in Lake Erie's central basin.

  6. A biophysical model of Lake Erie walleye (Sander vitreus) explains interannual variations in recruitment

    USGS Publications Warehouse

    Zhao, Yingming; Jones, Michael L.; Shuter, Brian J.; Roseman, Edward F.

    2009-01-01

    We used a three-dimensional coupled hydrodynamic-ecological model to investigate how lake currents can affect walleye (Sander vitreus) recruitment in western Lake Erie. Four years were selected based on a fall recruitment index: two high recruitment years (i.e., 1996 and 1999) and two low recruitment years (i.e., 1995 and 1998). During the low recruitment years, the model predicted that (i) walleye spawning grounds experienced destructive bottom currents capable of dislodging eggs from suitable habitats (reefs) to unsuitable habitats (i.e., muddy bottom), and (ii) the majority of newly hatched larvae were transported away from the known suitable nursery grounds at the start of their first feeding. Conversely, during two high recruitment years, predicted bottom currents at the spawning grounds were relatively weak, and the predicted movement of newly hatched larvae was toward suitable nursery grounds. Thus, low disturbance-based egg mortality and a temporal and spatial match between walleye first feeding larvae and their food resources were predicted for the two high recruitment years, and high egg mortality plus a mismatch of larvae with their food resources was predicted for the two low recruitment years. In general, mild westerly or southwesterly winds during the spawning-nursery period should favour walleye recruitment in the lake.

  7. Unharvested fishes in the U. S. commercial fishery of western Lake Erie in 1969

    USGS Publications Warehouse

    Van Meter, Harry D.

    1973-01-01

    Potential commercial fish production was estimated for U.S. waters of western Lake Erie in 1969 from pounds landed and pounds discarded. Periodic observations of catches in haul seines and trap nets revealed that about 37% of the catch (by weight) in haul seines and 26% of that in trap nets were low-value fishes that were discarded. Projection of these discarded catches to include the total fishing effort indicated that an additional 2.8 million lb of low-value species would have been landed in 1969 if a reasonable profit had been assured. It is concluded that the sustained yield could be increased considerably with only a moderate increase in fishing effort.

  8. Fall diets of red-breasted merganser (Mergus serrator) and walleye (Sander vitreus) in Sandusky Bay and adjacent waters of western Lake Erie

    USGS Publications Warehouse

    Bur, M.T.; Stapanian, M.A.; Bernhardt, G.; Turner, M.W.

    2008-01-01

    Although published studies indicate the contrary, there is concern among many sport anglers that migrating red-breasted mergansers (Mergus serrator) and other waterbirds pose a competitive threat to sport fish species such as walleye (Sander vitreus) in Lake Erie. We quantified the diet of autumn-migrant mergansers and walleye during 1998-2000 in Sandusky Bay and adjacent waters of western Lake Erie. We hypothesized that the diets of both predators would be similar in species composition, but because of different foraging ecologies their diets would differ markedly in size of prey consumed. In addition to predator samples, we used trawl data from the same general area as an index of prey availability. We found that mergansers fed almost exclusively on fish (nine species). Gizzard shad (Dorosoma cepedianum), emerald shiner (Notropis atherinoides) and round goby (Neogobius melanostomus) were consumed in the greatest numbers, most frequently and comprised the greatest biomass. Walleye fed exclusively on fish: gizzard shad, alewife (Alosa psuedoharengus) and emerald shiner were consumed in the greatest numbers, most frequently and comprised the greatest biomass. Diet overlap between mergansers and walleye was 67% by weight and 66% by species frequency. Mean total lengths of gizzard shad, emerald shiner and round goby found in walleye stomachs exceeded those captured in trawls by 47%, on average. Mean total lengths of gizzard shad, emerald shiner and round goby were greater in walleye stomachs than in merganser stomachs. Mean total lengths of emerald shiner and round goby were less in merganser stomachs than in trawls. Our results suggest that although the diets of walleye and mergansers overlapped considerably, mergansers generally consumed smaller fish than walleye. Given the abundance and diversity of prey species available, and the transient nature of mergansers on Lake Erie during migration, we conclude that competition for food between these species is minimal.

  9. Geology and log responses of the Rose Run sandstone in Randolph Township, Portage County, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, C.C.

    1996-09-01

    Approximately 75 wells have penetrated the Cambrian Rose Run sandstone in Randolph Township, Portage County, Ohio, about half of which should produce well beyond economic payout. Only one deep test (to the Rose Run or deeper) was drilled in this Township prior to 1990. Two separate and distinct Rose Run producing fields exist in the Township; the western field is predominately gas-productive and the east is predominantly oil-productive. Both fields are on the north side of the Akron-Suffield Fault Zone, which is part of a regional cross-strike structural discontinuity extending from the Pittsburgh, Pennsylvania area northwestward to Lake Erie. Thismore » feature exhibits control over Berea, Oriskany, Newburg, Clinton, and Rose Run production.« less

  10. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    USGS Publications Warehouse

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  11. National Assessment of Historical Shoreline Change: A Pilot Study of Historical Coastal Bluff Retreat in the Great Lakes, Erie, Pennsylvania

    USGS Publications Warehouse

    Hapke, Cheryl J.; Malone, Shamus; Kratzmann, Meredith G.

    2009-01-01

    Coastal bluff retreat is a chronic problem along many high-relief coastlines in the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regard-ing trends and rates of bluff retreat. There is also a need for a comprehensive analysis that is consistent from one coastal region to another. To address these national needs, the U.S. Geological Survey (USGS), as part of the National Assessment of Coastal Change Hazards Project, conducted a pilot study of bluff retreat along the Lake Erie, Pa., coastline to assess the feasibility of undertaking a larger, multi-state analysis in the Great Lakes region. This report provides an overview of the pilot-study location and bluff geomorphology, the data sources and methodology, results of the analysis, and a discussion of the feasibility of undertaking a similar analysis along eroding bluffs in other Great Lakes states. This pilot study is part of an ongoing effort by the USGS to provide a comprehensive analysis of historical shoreline change and cliff and bluff retreat along open-ocean coastlines of the conterminous United States and parts of Hawaii, Alaska, and the Great Lakes. One purpose of the work is to develop standard, repeatable methods for mapping and analyzing coastal change so that systematic and consistent periodic updates of coastal erosion can be made nationally. Bluff-retreat evaluations are conducted by comparing the location of a historical bluff edge digitized from aerial photographs with those of recent bluff edges interpreted from both aerial photographs and lidar topographic surveys. The historical bluff edge is from 1938, whereas the more recent bluff edges are from 1998 and 2006 lidar data. Long-term (68-year) rates of retreat are calculated using the available bluff-edge data. The rates of retreat presented in this report represent conditions from the 1930s to 1998/2006, and are not intended for

  12. Environmental Impact Research Program. Ecological Effects of Rubble-Mound Breakwater Construction and Channel Dredging at West Harbor, Ohio (Western Lake Erie).

    DTIC Science & Technology

    1985-09-01

    Harbor, Ohio (August 1981-1983) Taxa* Percent Porifera (Spongil a) 0.01 Cnidaria (Hydra) 0.30 Rhabdocoela 0.35 Tricladida 0.16 Nemertinea 0.14 Nematoda...Breakwaters at West Harbor. Ohio (April 1982-September 1983) Taxa* Percent * Cnidaria (Hydra) 5.98 Rhabdocoela 0.14 Tricladida 0.37 Nemertinea 0.11 Nematoda...3 3.0 OL!GOCHAE1A 23 85 2t 2000 CHIRONOMIDAE 3 8 0 163 CNIDARIA 0 2 0 30 BRYOZDA + + + 4 4.0 OLIGOCHAETA 325 56 148 7836 CHIRONOMIDAE 26 13 21

  13. Atlas of Ohio Aquatic Insects: Volume II, Plecoptera

    PubMed Central

    Grubbs, Scott A.; Armitage, Brian J.; Baumann, Richard W.; Clark, Shawn M.; Bolton, Michael J.

    2016-01-01

    aged lake plains climaxed to an expansive wooded wetland, the Black Swamp. The unglaciated Lower Scioto drainage (72 spp.) in south-central Ohio supported the greatest species richness. There was no relationship between species richness and HUC8 drainage size, but the number of unique locations in a drainage strongly related to species richness. All Ohio counties were represented in the data set with Hocking County (59 spp.) of the Lower Scioto drainage being the richest and most heavily sampled. Adult presence phenology was influenced by phylogenetic relationships such that the superfamily Nemouroidea (Capniidae, Leuctridae, Nemouridae, and Taeniopterygidae) generally emerged in winter and spring while the superfamilies Pteronarcyoidea (Pteronarcyidae, Peltoperlidae) and Perloidea (Chloroperlidae, Perlidae, Perlodidae) emerged later, some species continuing emergence through summer months. Species often occupied specific stream size ranges, while others were generalists. Two species once histrorically abundant in the western Lake Erie Bass Islands no longer reside there. Each of the 102 species is discussed in detail, including several that require additional collecting efforts to confirm their identities, presence, and distribution in Ohio. PMID:27932932

  14. Atlas of Ohio Aquatic Insects: Volume II, Plecoptera.

    PubMed

    DeWalt, R Edward; Grubbs, Scott A; Armitage, Brian J; Baumann, Richard W; Clark, Shawn M; Bolton, Michael J

    2016-01-01

    expansive wooded wetland, the Black Swamp. The unglaciated Lower Scioto drainage (72 spp.) in south-central Ohio supported the greatest species richness. There was no relationship between species richness and HUC8 drainage size, but the number of unique locations in a drainage strongly related to species richness. All Ohio counties were represented in the data set with Hocking County (59 spp.) of the Lower Scioto drainage being the richest and most heavily sampled. Adult presence phenology was influenced by phylogenetic relationships such that the superfamily Nemouroidea (Capniidae, Leuctridae, Nemouridae, and Taeniopterygidae) generally emerged in winter and spring while the superfamilies Pteronarcyoidea (Pteronarcyidae, Peltoperlidae) and Perloidea (Chloroperlidae, Perlidae, Perlodidae) emerged later, some species continuing emergence through summer months. Species often occupied specific stream size ranges, while others were generalists. Two species once histrorically abundant in the western Lake Erie Bass Islands no longer reside there. Each of the 102 species is discussed in detail, including several that require additional collecting efforts to confirm their identities, presence, and distribution in Ohio.

  15. Pesticide Use in the Lake Erie Basin and the Impact of Accelerated Conservation Tillage on Pesticide Use and Runoff Losses.

    DTIC Science & Technology

    1981-01-01

    STATEMENT (of the abstrect entered In Block 20, If different from Report) 1S. SUPPLEMENTARY NOTES Copies are available from National Technical Information...Counter 4 Carbaryl Sevin 5 Chlorpyrifos Lorsban 6 Ethoprop 7 Phorate Thimet 8 Chlordane Chlordane 9 M+M* M+M 10 Methidathion - Malathion and...Lake Erie Basin. LEWMS Technical Report Series. Corps of Engineers, Buffalo District. 6. Liksa, B. J., J. V. Osmun and E. L. Park. 1980. Pesticide use

  16. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario

    USGS Publications Warehouse

    Mills, Edward L.; Chrisman, Jana R.; Baldwin, Brad; Owens, Randall W.; O'Gorman, Robert; Howell, Todd; Roseman, Edward F.; Raths, Melinda K.

    1999-01-01

    A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreissenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.

  17. Does behavioural thermoregulation underlie seasonal movements in Lake Erie walleye?

    USGS Publications Warehouse

    Raby, Graham D.; Vandergoot, Christopher; Hayden, Todd A.; Faust, Matthew D.; Kraus, Richard T.; Dettmers, John M.; Cooke, Steven J.; Zhao, Yingming; Fisk, Aaron T.; Krueger, Charles C.

    2018-01-01

    Thermoregulation is presumed to be a widespread determinant of behaviour in fishes, but has not often been investigated as a mechanism shaping long-distance migrations. We used acoustic telemetry and animal-borne thermal loggers to test the hypothesis that seasonal migration in adult walleye (Sander vitreus) in Lake Erie is size- and (or) sex-specific and related to behavioural thermoregulation. Female walleye migrated out of the warm, shallow western basin earlier than did males and were 1.8 times more likely to be detected on acoustic receivers in the deeper and cooler eastern basin. The few fish that remained in the western basin were restricted to a smaller range of higher temperatures (≥20 °C) than those that migrated to the central and eastern basins (∼16–21 °C). However, temperature records from walleye in the central basin were nearly indistinguishable from those in the eastern basin, suggesting thermal preferences alone could not explain migration to the eastern basin. As such, our effort to understand the mechanisms that cause migratory behaviours has generated mixed evidence on the role of temperature and that factors like foraging opportunities may have synergistic roles in the migration.

  18. A description of the nearshore fish communities in the Huron-Erie Corridor using multiple gear types

    USGS Publications Warehouse

    Francis, James T.; Chiotti, Justin A.; Boase, James C.; Thomas, Mike V.; Manny, Bruce A.; Roseman, Edward F.

    2013-01-01

    Great Lakes coastal wetlands provide a critical habitat for many fish species throughout their life cycles. Once home to one of the largest wetland complexes in the Great Lakes, coastal wetlands in the Huron–Erie Corridor (HEC) have decreased dramatically since the early 1900s. We characterized the nearshore fish communities at three different wetland complexes in the HEC using electrofishing, seines, and fyke nets. Species richness was highest in the Detroit River (63), followed by the St. Clair Delta (56), and Western Lake Erie (47). The nearshore fish communities in the Detroit River and St. Clair Delta consisted primarily of shiners, bluntnose minnow, centrarchids, and brook silverside, while the Western Lake Erie sites consisted of high proportions of non-native taxa including common carp, gizzard shad, goldfish, and white perch. Species richness estimates using individual-based rarefaction curves were higher when using electrofishing data compared to fyke nets or seine hauls at each wetland. Twelve fish species were captured exclusively during electrofishing assessments, while one species was captured exclusively in fyke nets, and none exclusively during seine hauls. Western Lake Erie wetlands were more indicative of degraded systems with lower species richness, lower proportion of turbidity intolerant species, and increased abundance of non-native taxa. This work highlights the importance of coastal wetlands in the HEC by capturing 69 different fish species utilizing these wetlands to fulfill life history requirements and provides insight when selecting gears to sample nearshore littoral areas.

  19. Distribution and abundance of burrowing mayflies (Hexagenia spp.) in Lake Erie, 1997-2005

    USGS Publications Warehouse

    Krieger, K.A.; Bur, M.T.; Ciborowski, J.J.H.; Barton, D.R.; Schloesser, D.W.

    2007-01-01

    Burrowing mayflies (Hexagenia limbata and H. rigida) recolonized sediments of the western basin of Lake Erie in the 1990s following decades of pollution abatement. We predicted that Hexageniawould also disperse eastward or expand from existing localized populations and colonize large regions of the other basins. We sampled zoobenthos in parts of the western and central basins yearly from 1997–2005, along the north shore of the eastern basin in 2001–2002, and throughout the lake in 2004. In the island area of the western basin, Hexagenia was present at densities ≤1,278 nymphs/m2and exhibited higher densities in odd years than even years. By contrast, Hexagenia became more widespread in the central basin from 1997–2000 at densities ≤48 nymphs/m2 but was mostly absent from 2001–2005. Nymphs were found along an eastern basin transect at densities ≤382/m2 in 2001 and 2002. During the 2004 lake-wide survey, Hexagenia was found at 63 of 89 stations situated throughout the western basin (≤1,636 nymphs/m2, mean = 195 nymphs/m2, SE = 32, N = 89) but at only 7 of 112 central basin stations, all near the western edge of the basin (≤708 nymphs/m2), and was not found in the eastern basin. Hexagenia was found at 2 of 62 stations (≤91 nymphs/m2) in harbors, marinas, and tributaries along the south shore of the central basin in 2005. Oxygen depletion at the sediment-water interface and cool temperatures in the hypolimnion are probably the primary factors preventing successful establishment throughout much of the central basin. Hexagenia can be a useful indicator of lake quality where its distribution and abundance are limited by anthropogenic causes.

  20. Areal distribution and concentrations of contaminants of concern in surficial streambed and lakebed sediments, Lake Erie-Lake Saint Clair Drainages, 1990-97

    USGS Publications Warehouse

    Rheaume, S.J.; Button, D.T.; Myers, Donna N.; Hubbell, D.L.

    2001-01-01

    Concerns about elevated concentrations of contaminants such as polychlorinated biphenyls and mercury in aquatic bed sediments throughout the Great Lakes Basin have resulted in a need for better understanding of the scope and severity of the problem. Various organochlorine pesticides, polychlorinated biphenyls, trace metals, and polycyclic aromatic hydrocarbons are a concern because of their ability to persist and accumulate in aquatic sediments and their association with adverse aquatic biological effects. The areal distribution and concentrations in surficial bed sediments of 20 contaminants of concern with established bed-sediment-toxicity guidelines were examined in relation to their potential effects on freshwater aquatic biota. Contaminants at more than 800 sampling locations are characterized in this report. Surficial bed-sediment-quality data collected from 1990 to 1997 in the Lake Erie?Lake Saint Clair Drainages were evaluated to reflect recent conditions. In descending order, concentrations of total polycyclic aromatic hydrocarbons, phenanthrene, total polychlorinated biphenyls, chrysene, benz[a]anthracene, benzo[a]pyrene, cadmium, lead, zinc, arsenic, and mercury were the contaminants that most commonly exceeded levels associated with probable adverse effects on aquatic benthic organisms. The highest concentrations of most of these contaminants in aquatic bed sediments are confined to the 12 specific geographic Areas of Concern identified in the 1987 Revisions to the Great Lakes Water Quality Agreement of 1972. An exception is arsenic, which was detected at concentrations exceeding threshold effect levels at many locations outside Areas of Concern.

  1. Double-Crested Cormorant ( Phalacrocorax auritus) Nesting Effects on Understory Composition and Diversity on Island Ecosystems in Lake Erie

    NASA Astrophysics Data System (ADS)

    McGrath, Darby M.; Murphy, Stephen D.

    2012-08-01

    The context for this study is the management concerns over the severity and extent of the impact of cormorants on island flora in the recent past on Lake Erie islands. Accordingly, this study sought to quantify the nesting colonies' influence on coarse woody litter and how nest densities and litter depth may influence the herbaceous layer, the seed bank composition and viability across the extent of three Lake Erie islands. The data for this study were collected from 2004 to 2008 on East Sister Island and Middle Island using two main strategies. First, herbaceous layer surveys, cormorant nest counts, soil seed bank cores, and litter depth measurements were executed using a plotless-point quarter method to test island-wide impacts from nesting activities (data were also collected on a third island, West Sister Island as a reference for the other two islands). Secondly, a sub-sample of the entire plot set was examined in particularly high nesting density areas for two islands (Middle Island and East Sister Island). Kruskal-Wallis tests indicated that there are subtle changes in the herbaceous diversity (total, native and exotic) and seed bank composition across the islands. The sub sample set of the plots demonstrated that Phalacrocorax auritus nest density does influence litter depth, herbaceous species abundance and diversity. Cormorant nesting pressures are restricted to areas of high nesting pressures and competition. However, there remains a risk to the interior herbaceous layer of the island if the effects of nesting pressures at the edges advance inward from this perimeter.

  2. Using Watershed Models and Human Behavioral Analyses to identify Management Options to Reduce Lake Erie's Harmful Algal Blooms

    NASA Astrophysics Data System (ADS)

    Martin, J.; Wilson, R. S.; Aloysius, N.; Kalcic, M. M.; Roe, B.; Howard, G.; Irwin, E.; Zhang, W.; Liu, H.

    2017-12-01

    In early 2016, the United States and Canada formally agreed to reduce phosphorus inputs to Lake Erie by 40% to reduce the severity of annual Harmful Algal Blooms (HABs). These blooms have become more severe, with record events occurring in 2011 and 2015, and have compromised public safety, shut down drinking water supplies, and negatively impacted the economy of the western Lake Erie basin. Now, a key question is what management options should be pursued to reach the 40% reduction. This presentation will highlight interdisciplinary research to compare the amount and types of practices needed for this reduction to the current and projected levels of adoption. Multiple models of the Maumee watershed identified management plans and adoption rates needed to reach the reduction targets. For example, one successful scenario estimated necessary adoption rates of 50% for subsurface application of fertilizer on row crops, 58% for cover crops, and 78% for buffer strips. Current adoption is below these levels, but future projections based on farmer surveys shows these levels are possible. This information was then used to guide another round of watershed modeling analysis to evaluate scenarios that represented more realistic scenarios based on potential levels of management adoption. In general, these results show that accelerated adoption of management plans is needed compared to past adoption rates, and that some of these greater adoption levels are possible based on likely adoption rates. Increasing the perceived efficacy of the practices is one method that will support greater voluntary rates of adoption.

  3. Polychlorinated biphenyl concentrations, congener profiles, and ratios in the fat tissue, eggs, and plasma of snapping turtles (Chelydra s. serpentina) from the Ohio Basin of Lake Erie, USA.

    PubMed

    Dabrowska, H; Fisher, S W; Estenik, J; Kidekhel, R; Stromberg, P

    2006-08-01

    Concentrations and profiles of polychlorinated biphenyls (PCBs) were determined in three tissues of adult snapping turtles (Chelydra serpentina serpentina) from six locations in the Ohio Basin of Lake Erie to characterize tissue variation and geographic trends. The locations included the Ohio Areas of Concern, i.e., the Ashtabula, Black, and Maumee Rivers; the Ottawa River near Toledo; and two reference sites. Mean total PCBs were greatest in turtles from the Ottawa River followed by the Maumee, Ashtabula, and Black Rivers. All three types of samples-fat tissue (FT), eggs, and plasma-showed the same geographic trend in PCB levels. On a wet-weight basis, mean concentrations ranged from 2,148 to 18,669 ng/g in FT, from 183 to 3,683 ng/g in eggs, and from 18 to 201 ng/g in plasma. Across all sites, total PCB concentrations between the tissues were significantly correlated (0.001 < p < 0.005; Pearson correlation coefficient (r ( P )) was between 0.720 and 0.954). Two distinctly different profiles with respect to relative congener and homologue concentrations were found among the sites. One that included four of the six sites examined was characterized by hexa-chlorobiphenyl (hexa-CB) dominance followed by hepta-CBs, with PCBs no. 138 + 163, 153 + 132 + 105, and 180 being the most abundant congeners. The second profile, specific for turtles from the Ottawa River, was different from the first in that tetra-CBs were the most abundant congeners followed by hexa-CBs. Analysis of variance (ANOVA) indicated significant intertissue differences in the PCB homologue profiles, i.e., FT had a higher percentage of hepta-, octa-, and nona-CBs compared with eggs and plasma, whereas eggs showed a higher percentage of hexa-CBs. At any listed location, FT, eggs, and plasma had the same congener profile. An intertissue distribution of lipid-normalized individual congener concentrations examined by regression analyses revealed significant egg-FT, egg-plasma, and FT-plasma relations for

  4. Land use mapping in Erie County, Pennsylvania: A pilot study

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); May, G. A.

    1974-01-01

    The author has identified the following significant results. A pilot study was conducted to determine the feasibility of mapping land use in the Great Lakes Basin area utilizing ERTS-1 data. Small streams were clearly defined by the presence of trees along their length in predominantly agricultural country. Field patterns were easily differentiated from forested areas; dairy and beef farms were differentiated from other farmlands, but no attempt was made to identify crops. Large railroad lines and major highway systems were identified. The city of Erie and several smaller towns were identified, as well as residential areas between these towns, and docks along the shoreline in Erie. Marshes, forests, and beaches within Presque Isle State Park were correctly identified, using the DCLUS program. Bay water was differentiated from lake water, with a small amount of misclassification.

  5. Species density of waterbirds in offshore habitats in western Lake Erie

    USGS Publications Warehouse

    Stapanian, M.A.; Waite, Thomas A.

    2003-01-01

    Offshore censuses of birds are lacking for inland seas, such as the Laurentian Great Lakes, but may provide valuable information for managing species that are in conflict with human interests. Birds were counted along 31 established transects in four habitats in western Lake Erie: offshore of waterbird refuges, offshore of beaches with human development, on reefs and shoals, and in open water. A total of 161 10-min counts were conducted between 24 April and 1 September 2000. The mean number of aquatic bird species/kmA? (species density) was greater offshore of refuges than on open water. For all habitats combined, species density increased over time. This was mainly due to the arrival of Bonaparte's Gulls (Larus philadelphia) and Great Black-backed Gulls (L. marinus), two fall and winter residents that do not breed in the study area, and increased use of open water and reefs and shoals by Herring Gulls (L argentatus) and Ring-billed Gulls (L delawarensis) after the nesting season. Species density was not strongly spatially autocorrelated, either for all species or for only those species that were floating on the water when recorded. Neither Double-crested Cormorants (Phalacrocorax auritus) nor Herring Gulls exhibited spatial autocorrelation. In contrast, Bonaparte's and Ring-billed gulls exhibited positive spatial autocorrelations. Unlike marine studies, species density was only weakly associated with water depth. This result was due mainly to Double-crested Cormorants, the only diving bird species that lived year-round in the area, which preferred reefs and shoals (depth 3-6 m) over open water (10 m). The results suggest that offshore habitat influences species density in this area during the breeding and immediate post-breeding seasons.

  6. Life history of the gizzard shad, Dorosoma cepedianum (Le Sueur), in western Lake Erie

    USGS Publications Warehouse

    Bodola, Anthony

    1966-01-01

    The rapid increase in the stocks of gizzard shad in Lake Erie since 1950 unquestionably had an important effect on the ecology of the lake. The present study, based on almost 24,000 fish collected by various means in 1952-55 in or near the island area of western Lake Erie was undertaken to provide information on the role of shad in the bionomics of the region. The annulus of the gizzard shad scale is a valid year-mark. It is laid down in May-July, a little later in the older than in the younger fish. The body-scale relation is linear with an intercept of 22.1 mm. on the axis of standard length. Age-groups 0, I, and II were abundantly represented in the samples. Age-group III was much less well represented, and older fish were extremely scarce. The oldest shad seen belonged to the VI-group. The seasonal growth was most rapid in July-August and growth was much reduced or nil in January-April. Males attained the following average standard lengths (in millimeters) at the end of the indicated years of life: 1-141; 2-273; 3-313; 4-343; 5-349. For females these values were 1-140; 2-285; 3-335; 4-364; 5-386. The weight of the gizzard shad increased as the 3.07053 power of the length. The length-weight relation varied seasonally, annually, and, near the spawning season, according to sex and state of gonads. Only a few precocious male and female gizzard shad attain sexual maturity as age-group I. Almost all males and a good percentage of females mature at age II and only rarely are III-group shad immature. Development of the egg and seasonal changes of the ovary are described. Egg production is highest in the II group-average of 378,900 per individual and 689 per gram of body weight. Spawning takes place from early June into July and is most intensive near mid-June. Heaviest spawning is at water temperatures of 67A?F. or more. Early development to the attainment of the adult shape is described; particular attention is given to the development of the alimentary tract. The

  7. 78 FR 41993 - Ann Arbor Railroad, Inc.-Lease Exemption-Norfolk Southern Railway Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... number of carloads interchanged with NSR in a given year.\\1\\ AARR states that the interchange commitment..., Canadian National Railway Company (CN), CSX Transportation, Inc., and Wheeling & Lake Erie Railway in Toledo; the Indiana and Ohio Railway and CN in Diann, Mich.; NSR in Milan, Mich.; and Great Lakes Central...

  8. Changes in growth and maturity of walleyes associated with stock rehabilitation in western Lake Erie, 1964-1983

    USGS Publications Warehouse

    Muth, Kenneth M.; Wolfert, David R.

    1986-01-01

    The precipitous decline in abundance of walleyes (Stizostedion vitreum vitreum) in western Lake Erie during the 1960s caused major concerns for the future of this resource. Mercury contamination in walleyes in 1970 resulted in a moratorium on commercial fishing in United States and Canadian waters. The opportunity arose for resource agencies to develop a plan for rehabilitation of the walleye stocks, and quota management for walleyes was begun in 1976. After 8 years, the resource had recovered dramatically and the estimated standing stock in 1983 was more than three times that in 1976. In the mid-1970s, however, certain detrimental changes suggested that self-regulatory mechanisms were occurring. The growth rate declined gradually but rather consistently. Growth changes were most evident for young-of-the-year (YOY), yearlings, and 2-year-old fish, which usually constituted more than 80% of the standing stock in 1976-1983. Average lengths of YOY fish decreased by nearly 50 mm (from about 240 mm in 1961 to 190 mm in 1983). Average lengths and weights of yearling and older fish began to decline after 1975 and decreased markedly after 1980. Historically, growth of walleyes in western Lake Erie exceeded that reported for many walleye populations in other waters. Another sign of self-regulation was an increasing delay in the onset of maturity. Most (usually more than 90%) of the yearling males were sexually mature each fall before 1979, but this percentage decreased to only 32 by fall 1983. Usually 80% or more of the age-II females were mature each fall during the 1960s and early 1970s, but this percentage decreased rapidly to only 7 by fall 1983. Prey fish populations declined somewhat in the early 1980s, and their ability to sustain the high abundance of walleyes is a great concern to resource managers.

  9. Temporal changes and sexual differences in spatial distribution of Burbot in Lake Erie

    USGS Publications Warehouse

    Stapanian, Martin A.; Witzel, Larry D.; Cook, Andy

    2013-01-01

    We used GIS mapping techniques to examine capture data for Burbot Lota lota from annual gill-net surveys in Canadian waters of Lake Erie during late August and September 1994–2011. Adult males were captured over a larger area (3–17% for ≥20% maximum yearly catch [MYC]) than adult females. More males than females were caught in the gill nets in 14 of the 15 study years. Collectively, these results support a hypothesis of greater activity by adult males during summer, when Burbot are actively feeding. The area of capture contracted by more than 60% (for ≥20% MYC) for both sexes during the time period, which is consistent with the documented decrease of the Burbot population in the lake. The sex ratio (females: males) varied over the time series but declined steadily from 0.97 in 2001 to 0.59 in 2011. The overlap in the capture areas of adult males and females was scale dependent. The depth distribution at which adult Burbot were caught did not change over the time series, and there was no difference in the median depths (about 30 m) at which adult male and female Burbot were caught. The last results are consistent with the Burbot's reliance on coldwater habitats. Additional research is recommended, including telemetry to describe daily and seasonal movements and assessment of gender bias in active and passive capture gear.

  10. Body burden levels of dioxin, furans, and PCBs among frequent consumers of Great Lakes sport fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, C.; Hanrahan, L.; Anderson, H.A.

    1999-02-01

    Dioxins, furans, and polychlorinated biphenyls (PCBs) are toxic, persist in the environment, and bioaccumulate to concentrations that can be harmful to humans. The Health Departments of five GL states, Wisconsin, Michigan, Ohio, Illinois, and Indiana, formed a consortium to study body burden levels of chemical residues in fish consumers of Lakes Michigan, Huron, and Erie. In Fall 1993, a telephone survey was administered to sport angler households to obtain fish consumption habits and demographics. A blood sample was obtained from a portion of the study subjects. One hundred serum samples were analyzed for 8 dioxin, 10 furan, and 4 coplanarmore » PCB congeners. Multiple linear regression was conducted to assess the predictability of the following covariates: GL sport fish species, age, BMI, gender, years sport fish consumed, and lake. Median total dioxin toxic equivalents (TEq), total furan TEq, and total coplanar PCB TEq were higher among all men than all women (P = 0.0001). Lake trout, salmon, age, BMI, and gender were significant regression predictors of log (total coplanar PCBs). Lake trout, age, gender, and lake were significant regression predictors of log (total furans). Age was the only significant predictor of total dioxin levels.« less

  11. Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.

    2012-01-01

    We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.

  12. Conservation and management of fisheries and aquatic communities in Great Lakes connecting channels

    USGS Publications Warehouse

    Roseman, Edward F.; Thompson, Patricia A.; Farrell, John M.; Mandrak, Nicholas E.; Stepien, Carol A.

    2014-01-01

    The North American Laurentian Great Lakes are linked by a unique series of riverine and lacustrine waters known as the Great Lakes connecting channels that are as integral to the basin's ecology and economies as the lakes themselves. The St. Marys River (SMR) is the northernmost channel and flows from Lake Superior to Lake Huron. Waters from the upper Great Lakes (Lakes Superior, Michigan, and Huron) empty from Lake Huron via the St. Clair–Detroit River system (SCDRS, also known as the Huron–Erie Corridor) into Lake Erie. The SCDRS is composed of the St. Clair River, Lake St. Clair, and the Detroit River. The Niagara River (NR) serves as the outflow from Lake Erie into Lake Ontario. The NR above Niagara Falls is bisected by Grand Island and contains several other islands and man-made embayments whereas the NR below the falls is more linear. The outflow from Lake Ontario, representing the natural outlet of all the Great Lakes, is the St. Lawrence River (SLR) which empties into the Gulf of St. Lawrence in the northwest Atlantic Ocean.

  13. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2016

    USGS Publications Warehouse

    Bodamer Scarbro, Betsy L.; Kraus, Richard T.; Kocovsky, Patrick; Vandergoot, Christopher

    2017-01-01

    We conducted a biomass-based assessment of the Lake Erie Western Basin fish community using data collected from 2013-2016 Western Basin (spring and autumn) bottom trawl surveys. Biomass of total catch per hectare has decreased 75 percent since 2013. Declines were observed across all functional groups, but most notable was the decline of Emerald Shiner, which decreased from 25.3 kg/ha in spring 2013 to <0.01 kg/ha by autumn 2013. The four primary predator species – Walleye, Yellow Perch, White Perch, and White Bass – all decreased from 2013 to 2015. In 2016, White Bass and Yellow Perch (all lifestages combined) continued to decline, while Walleye and White Perch (all ages combined) increased slightly from 5.6 kg/ha and 3.4 kg/ha to 9.0 kg/ha and 5.0 kg/ha, respectively (autumn catches). Despite decreasing trends in biomass, there was little change in biodiversity. Declines in forage biomass, i.e. Emerald Shiner and age-0 White Perch, resulted in an increased mean trophic level of catches. Forage fish to piscivore ratios reflected marked shifts in species composition toward greater forage in 2014 and 2016.

  14. Recruitment of burbot (Lota lota L.) in Lake Erie: An empirical modelling approach

    USGS Publications Warehouse

    Stapanian, M.A.; Witzel, L.D.; Cook, A.

    2010-01-01

    World-wide, many burbot Lota lota (L.) populations have been extirpated or are otherwise in need of conservation measures. By contrast, burbot made a dramatic recovery in Lake Erie during 1993-2001 but declined during 2002-2007, due in part to a sharp decrease in recruitment. We used Akaike's Information Criterion to evaluate 129 linear regression models that included all combinations of one to seven ecological indices as predictors of burbot recruitment. Two models were substantially supported by the data: (i) the number of days in which water temperatures were within optimal ranges for burbot spawning and development combined with biomass of yearling and older (YAO) yellow perch Perca flavescens (Mitchill); and (ii) biomass of YAO yellow perch. Warmer winter water temperatures and increases in yellow perch biomass were associated with decreases in burbot recruitment. Continued warm winter water temperatures could result in declines in burbot recruitment, particularly in the southern part of the species' range. Published 2010. This article is a US Government work and is in the public domain in the USA.

  15. Environmental Statement, Lake City Station, Unit One.

    DTIC Science & Technology

    1973-09-17

    quality, ecological effects, energy demand, entrainment, environmental effects, fish and wildlife values, Lake Erie, pollution control, social and...Creek on the northern part of the site. That portion of the site, adjacent to Lake Erie and Elk Creek, is wooded with the remaining portions being...loam to loanm, fine sand (Reference 2-1). 2-1 - - i Approximately 60 percent of the area is covered with mixed hard woods and conifers, however, the

  16. EPA Research Strengthens Great Lakes Restoration Initiative

    EPA Science Inventory

    As the largest group of freshwater lakes on Earth, the Great Lakes (Lakes Erie, Huron, Michigan, Ontario and Superior) are a source of economic prosperity, recreation and raw materials. Human activity, however, has resulted in pollution and other stressors. The Great Lakes curren...

  17. Larval dispersal underlies demographically important inter-system connectivity in a Great Lakes yellow perch (Perca flavescens) population

    USGS Publications Warehouse

    Brodnik, Reed M.; Fraker, Michael E.; Anderson, Eric J.; Carreon-Martinez, Lucia; DeVanna, Kristen M.; Heath, Dan D.; Reichert, Julie M.; Roseman, Edward F.; Ludsin, Stuart A.

    2016-01-01

    Ability to quantify connectivity among spawning subpopulations and their relative contribution of recruits to the broader population is a critical fisheries management need. By combining microsatellite and age information from larval yellow perch (Perca flavescens) collected in the Lake St. Clair – Detroit River system (SC-DRS) and western Lake Erie with a hydrodynamic backtracking approach, we quantified subpopulation structure, connectivity, and contributions of recruits to the juvenile stage in western Lake Erie during 2006-2007. After finding weak (yet stable) genetic structure between the SC-DRS and two western Lake Erie subpopulations, microsatellites also revealed measurable recruitment of SC-DRS larvae to the juvenile stage in western Lake Erie (17-21% during 2006-2007). Consideration of pre-collection larval dispersal trajectories, using hydrodynamic backtracking, increased estimated contributions to 65% in 2006 and 57% in 2007. Our findings highlight the value of complementing subpopulation discrimination methods with hydrodynamic predictions of larval dispersal by revealing the SC-DRS as a source of recruits to western Lake Erie and also showing that connectivity through larval dispersal can affect the structure and dynamics of large-lake fish populations.

  18. AmeriFlux US-OWC Old Woman Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohrer, Gil

    This is the AmeriFlux version of the carbon flux data for the site US-OWC Old Woman Creek. Site Description - Old Woman Creek is a natural freshwater estuary connected to Lake Erie in northern Ohio. It is one of few natuaral estuary systems left in Ohio. The site is permanently flooded and contains a mixture of wetland vegetation, open water, and mud flats.

  19. Phylogenies of Microcystin-Producing Cyanobacteria in the Lower Laurentian Great Lakes Suggest Extensive Genetic Connectivity

    PubMed Central

    Davis, Timothy W.; Watson, Susan B.; Rozmarynowycz, Mark J.; Ciborowski, Jan J. H.; McKay, Robert Michael; Bullerjahn, George S.

    2014-01-01

    Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit River and represent an overlooked source of potentially toxic Microcystis biomass to the western basin of Lake Erie. We conducted a seasonally and spatially resolved study carried out in the summer of 2013. Our goals were to: 1) track the development of the 2013 summer south-east shore bloom 2) conduct a spatial survey to characterize the extent of toxicity, taxonomic diversity of the total phytoplankton population and the phylogenetic diversity of potential MC-producing cyanobacteria (Microcystis, Planktothrix and Anabaena) during a high biomass event, and 3) compare the strains of potential MC-producers in Lake St. Clair with strains from Lake Erie and Lake Ontario. Our results demonstrated a clear predominance of cyanobacteria during a late August bloom event, primarily dominated by Microcystis, which we traced along the Lake St. Clair coastline downstream to the Detroit River's outflow at Lake Erie. Microcystin levels exceeded the Province of Ontario Drinking Water Quality Standard (1.5 µg L−1) for safe drinking water at most sites, reaching up to five times this level in some areas. Microcystis was the predominant microcystin producer, and all toxic Microcystis strains found in Lake St. Clair were genetically similar to toxic Microcystis strains found in lakes Erie and Ontario. These findings suggest extensive genetic connectivity among the three systems. PMID:25207941

  20. Elemental contaminants in livers of mute swans on lakes Erie and St. Clair.

    PubMed

    Schummer, Michael L; Petrie, Scott A; Badzinski, Shannon S; Deming, Misty; Chen, Yu-Wei; Belzile, Nelson

    2011-11-01

    Contaminant inputs to the lower Great Lakes (LGL) have decreased since the 1960s and 1970s, but elemental contaminants continue to enter the LGL watershed at levels that are potentially deleterious to migratory waterfowl. Mute swans (Cygnus olor) using the LGL primarily eat plants, are essentially nonmigratory, forage exclusively in aquatic systems, and have increased substantially in number in the last few decades. Therefore, mute swans are an ideal sentinel species for monitoring elemental contaminants available to herbivorous and omnivorous waterfowl that use the LGL. We investigated hepatic concentrations, seasonal dynamics, and correlations of elements in mute swans (n = 50) collected at Long Point, Lake Erie, and Lake St. Clair from 2001 to 2004. Elements detected in liver at levels potentially harmful to waterfowl were copper (Cu) [range 60.3 to 6063.0 μg g(-1) dry weight (dw)] and selenium (SE; range 1.6 to 37.3 μg g(-1) dw). Decreases in aluminum, Se, and mercury (Hg) concentrations were detected from spring (nesting) through winter (nonbreeding). Elemental contaminants may be more available to waterfowl during spring than fall and winter, but study of seasonal availability of elements within LGL aquatic systems is necessary. From April to June, 68% of mute swans had Se levels >10 μg g(-1), whereas only 18% of swans contained these elevated levels of Se from July to March. An increase in the number of mute swans at the LGL despite elevated levels of Cu and Se suggests that these burdens do not substantially limit their reproduction or survival. Se was correlated with Cu (r = 0.85, p < 0.01) and Hg (r = 0.65, p < 0.01), which might indicate interaction between these elements. Some element interactions decrease the toxicity of both elements involved in the interaction. We recommend continued research of elemental contaminant concentrations, including detailed analyses of biological pathways and element forms (e.g., methylmercury) in LGL waterfowl to help

  1. Movements of brown bullheads in Presque Isle Bay, Lake Erie, Pennsylvania

    USGS Publications Warehouse

    Millard, M.J.; Smith, D.R.; Obert, E.; Grazio, J.; Bartron, M.L.; Wellington, C.; Grise, S.; Rafferty, S.; Wellington, R.; Julian, S.

    2009-01-01

    Presque Isle Bay, Lake Erie, was listed as an Area of Concern (AOC) by the International Joint Commission in part because of the high incidence of external tumor in brown bullheads. Verifying the source of the possible contaminant exposure is critical to addressing the AOC designation. We used telemetry tracking (n = 49 fish) to test the hypothesis that adult bullheads captured within the bay during spawning season do not exit the bay during the post-spawning summer and fall months. We analyzed genetic variation at 15 microsatellite loci for 112 adult fish from 5 locations, 4 inside the bay and 1 outside, in order to test for possible differences. Data from fixed-station receivers suggested fish did not leave Presque Isle Bay during the study period. Predicted locations outside Presque Isle Bay were only 0.1% of all predicted locations and were below the 0.2% error rate based on known manual relocations. However, there was evidence for movement within Presque Isle Bay. Most movement was between Misery Bay or Lagoons and the open bay area. Whereas telemetry results showed tendency for adult site fidelity, genetic results showed no differences among locations, indicating that there is a single panmictic population. Our telemetry data suggest that brown bullheads are likely a useful indicator species for environmental conditions in Presque Isle Bay, since adults likely are retained in the system.

  2. Population Diversity and Dispersal of Two Species of Stoneflies (Order Plecoptera) Within Four Watersheds of Northeastern Ohio.

    NASA Astrophysics Data System (ADS)

    Yasick, A. L.; Wolin, J. A.; Krebs, R. A.

    2005-05-01

    This study investigates two species of stoneflies with potentially opposing dispersal capabilities and genetic structure within four watersheds in the Lake Erie drainage system of Northeast Ohio. This research is two fold; it provides information on genetic variation of two understudied aquatic invertebrate species and the impact of human land-use practices on this variation. Populations of Allocapnia recta, a winter emerging stonefly are predicted to have the least genetic variation within the four watersheds and most differences among sites due to its rudimentary wing structure and winter emergence. Leuctra tenuis is predicted to have greater genetic variability within sites and fewer differences among sites because of its higher migration potential. In both species, models of isolation by distance will be tested. Distinct polymorphisms exist within the 16s rRNA region of A. recta suggesting that this fragment has sufficient variation to address these questions.

  3. NASA S-3 Viking Aircraft

    NASA Image and Video Library

    2010-04-07

    This photo shows NASA Glenn’s S-3 Viking Aircraft flying over downtown Cleveland, Ohio. The S-3 continues to conduct important research including regular flights over Lake Erie and other waterways to image algal blooms that have plagued the area’s waters.

  4. West Harbor, Ohio Recreational Navigation Improvement. Revision.

    DTIC Science & Technology

    1979-03-01

    small flowering plants such as mallow (Malva sp.) exist throughout this area (see page 123). 2.29 The presence of trees close to the Lake Erie shoreline...occidentalis L. common Houstonia nigricans (Lam.) Fern. common -aprifoliaceae Sambucus canadensis L. common Cucurbitaceae Echinocystis lobata (Michx

  5. Interpretation of Landscape Scale SWAT Model Outputs in the Western Lake Erie Basin: Potential Implications for Conservation Decision-Making

    NASA Astrophysics Data System (ADS)

    Johnson, M. V. V.; Behrman, K. D.; Atwood, J. D.; White, M. J.; Norfleet, M. L.

    2017-12-01

    There is substantial interest in understanding how conservation practices and agricultural management impact water quality, particularly phosphorus dynamics, in the Western Lake Erie Basin (WLEB). In 2016, the US and Canada accepted total phosphorus (TP) load targets recommended by the Great Lakes Water Quality Agreement Annex 4 Objectives and Targets Task Team; these were 6,000 MTA delivered to Lake Erie and 3,660 MTA delivered to WLEB. Outstanding challenges include development of metrics to determine achievement of these goals, establishment of sufficient monitoring capacity to assess progress, and identification of appropriate conservation practices to achieve the most cost-effective results. Process-based modeling can help inform decisions to address these challenges more quickly than can system observation. As part of the NRCS-led Conservation Effects Assessment Project (CEAP), the Soil Water Assessment Tool (SWAT) was used to predict impacts of conservation practice adoption reported by farmers on TP loss and load delivery dynamics in WLEB. SWAT results suggest that once the conservation practices in place in 2003-06 and 2012 are fully functional, TP loads delivered to WLEB will average 3,175 MTA and 3,084 MTA, respectively. In other words, SWAT predicts that currently adopted practices are sufficient to meet Annex 4 TP load targets. Yet, WLEB gauging stations show Annex 4 goals are unmet. There are several reasons the model predictions and current monitoring efforts are not in agreement: 1. SWAT assumes full functionality of simulated conservation practices; 2. SWAT does not simulate changing management over time, nor impacts of past management on legacy loads; 3. SWAT assumes WLEB hydrological system equilibrium under simulated management. The SWAT model runs used to construct the scenarios that informed the Annex 4 targets were similarly constrained by model assumptions. It takes time for a system to achieve equilibrium when management changes and it

  6. Dechlorane plus, a chlorinated flame retardant, in the Great Lakes.

    PubMed

    Hoh, Eunha; Zhu, Lingyan; Hites, Ronald A

    2006-02-15

    A highly chlorinated flame retardant, Dechlorane Plus (DP), was detected and identified in ambient air, fish, and sediment samples from the Great Lakes region. The identity of this compound was confirmed by comparing its gas chromatographic retention times and mass spectra with those of authentic material. This compound exists as two gas chromatographically separable stereoisomers (syn and anti), the structures of which were characterized by one- and two-dimensional proton nuclear magnetic resonance. DP was detected in most air samples, even at remote sites. The atmospheric DP concentrations were higher at the eastern Great Lakes sites (Sturgeon Point, NY, and Cleveland, OH) than those at the western Great Lakes sites (Eagle Harbor, MI, Chicago, IL, and Sleeping Bear Dunes, MI). Atthe Sturgeon Point site, DP concentrations once reached 490 pg/m3. DP atmospheric concentrations were comparable to those of BDE-209 at the eastern Great Lakes sites. DP was also found in sediment cores from Lakes Michigan and Erie. The peak DP concentrations were comparable to BDE-209 concentrations in the sediment core from Lake Erie butwere about 30 times lower than BDE-209 concentrations in the core from Lake Michigan. In the sediment cores, the DP concentrations peaked around 1975-1980, and the surficial concentrations were 10-80% of peak concentrations. Higher DP concentrations in air samples from Sturgeon Point, NY, and in the sediment core from Lake Erie suggest that DP's manufacturing facility in Niagara Falls, NY, may be a source. DP was also detected in archived fish (walleye) from Lake Erie, suggesting that this compound is, at least partially, bioavailable.

  7. Predation on walleye eggs by fish on reefs in western Lake Erie

    USGS Publications Warehouse

    Roseman, E.F.; Taylor, W.W.; Hayes, D.B.; Jones, A.L.; Francis, J.T.

    2006-01-01

    We examined diets of fishes from gillnet and egg pump collections conducted on reefs in western Lake Erie during walleye (Sander vitreus) egg incubation periods from 1994–1999 and 2004 to assess incidence of walleye eggs in fish diets. We collected no potential egg predators in samples taken in 1994 but from 1995–1999 and in 2004 we caught 22 different species of fish on reefs in addition to spawning walleye. In most years, white perch (Morone americana) stomachs contained more walleye eggs than any other species on the reefs averaging 253 eggs per stomach. We also found lower numbers of walleye eggs in the stomachs of channel catfish (Ictalurus punctatus; 53 eggs/stomach), johnny darter (Etheostoma nigrum; 2 eggs/stomach), logperch (Percina caprodes; 10 eggs/stomach), quillback (Carpiodes cyprinus; 184 eggs/stomach), rock bass (Ambloplites rupestris; 3 eggs/stomach), round goby (Neogobius melanostomus; 4 eggs/stomach), sculpin (Cottidae; 21 eggs/stomach), silver chub (Macrhybopsis storeriana; 3 eggs/stomach), spottail shiner (Notropis hudsonius; 14 eggs/stomach), trout-perch (Percopsis omiscomaycus; 30 eggs/stomach), white sucker (Catastomus commersonii; 20 eggs/stomach), and yellow perch (Perca flavescens; 181 eggs/stomach). Similar to other studies of predation on walleye eggs, our results indicate that prolonged incubation periods increase the potential for egg loss due to predation.

  8. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  9. The MTA UXO Survey and Target Recovery on Lake Erie at the Former Erie Army Depot

    DTIC Science & Technology

    2009-12-01

    MTA Demonstration Front Matter ii FIGURES 1. Firing fans and target locations for Erie Army Depot in 1965...triangles at the base of the image show the locations of the 15 fixed firing positions that were used for proof firing projectiles...the marshland adjacent to the firing ranges, and along beaches fronting the former Depot, (Reference 2, Appendices B and J).3-5 The impact areas

  10. Cambrian-Ordovician Knox production in Ohio: Three case studies of structural-stratigraphic traps

    USGS Publications Warehouse

    Riley, R.A.; Wicks, J.; Thomas, Joan

    2002-01-01

    The Knox Dolomite (Cambrian-Ordovician) in Ohio consists of a mixed carbonate-siliciclastic sequence deposited in a tidal-flat to shallow-marine environment along a broad continental shelf. Knox hydrocarbon production occurs in porous sandstone and dolomite reservoirs in the Copper Ridge dolomite, Rose Run sandstone, and Beekmantown dolomite. In Ohio, historical Knox exploration and development have been focused on paleogeomorphic traps within the prolific Morrow Consolidated field, and more recently, within and adjacent to the Rose Run subcrop. Although these paleogeomorphic traps have yielded significant Knox production, structural and stratigraphic traps are being largely ignored. Three Knox-producing pools demonstrate structural and stratigraphic traps: the Birmingham-Erie pool in southern Erie and southwestern Lorain counties, the South Canaan pool in northern Wayne County, and the East Randolph pool in south-central Portage County. Enhanced porosity and permeability from fractures, as evident in the East Randolph pool, are also an underexplored mechanism for Knox hydrocarbon accumulation. An estimated 800 bcf of gas from undiscovered Knox resources makes the Knox one of the most attractive plays in the Appalachian basin.

  11. 76 FR 50713 - 2012 Rates for Pilotage on the Great Lakes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ...,389 x 0.972 = 2,231 Southeast Shoal & Southeast Shoal.... Toledo or any point on Lake Erie W. of 3,102 x 0.972 = 3,014 Southeast Shoal & Detroit River...... Toledo or any point on Lake Erie W. of 2,389 x...,372 Detroit, Windsor, or Detroit River & 2,389 x 0.972 = 2,321 Southeast Shoal Detroit, Windsor, or...

  12. Lake Chad, Chad, Africa

    NASA Image and Video Library

    1990-04-29

    Africa's Lake Chad where the borders of Chad, Niger, Nigeria and Cameroon merge (13.0N, 14.0E) has been undergoing change for the past 25 to 30 years when it was first noticed that the lake is drying up. Since then, astronauts have been photographing it on a regular basis to record the diminishing lake bed. This lake was once the aproximate size of Lake Erie but is now only about half that size and is still receeding.

  13. Relevance of ERTS-1 to the State of Ohio. [agriculture, forestry, land use, mining, and environmental quality management

    NASA Technical Reports Server (NTRS)

    Sweet, D. C.; Pincura, P. G.; Wukelic, G. E. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. During the first year of project effort the ability of ERTS-1 imagery to be used for mapping and inventorying strip-mined areas in south eastern Ohio, the potential of using ERTS-1 imagery in water quality and coastal zone management in the Lake Erie region, and the extent that ERTS-1 imagery could contribute to localized (metropolitan/urban), multicounty, and overall state land use needs were experimentally demonstrated and reported as significant project results. Significant research accomplishments were achieved in the technological development of manual and computerized methods to extract multi-feature information as well as singular feature information from ERTS-1 data as is exemplified by the forestry transparency overlay. Fabrication of an image transfer device to superimpose ERTS-1 data onto existing maps and other data sources was also a significant analytical accomplishment.

  14. Patterns of in-soil methane production and atmospheric emission among different land covers of a Lake Erie estuarine wetland

    NASA Astrophysics Data System (ADS)

    Rey Sanchez, C.; Morin, T. H.; Stefanik, K. C.; Angle, J.; Wrighton, K. C.; Bohrer, G.

    2017-12-01

    Wetland soils store a great amount of carbon, but also accumulate and emit methane (CH4), a powerful greenhouse gas. To better understand the vertical and horizontal spatial variability of CH4 emissions, we monitored production and fluxes of CH4 in Old Woman Creek, an estuarine wetland of Lake Erie, Ohio, during the growing seasons of 2015 and 2016. Our combined observation methods targeted three different scales: 1) the eddy covariance technique provided continuous high frequency observations integrated over a large spatial footprint; 2) monthly chamber measurements provided sparse point measurements of fluxes in four distinct land-cover types in the wetland: open water, emergent vegetation (Typha spp.), floating vegetation (Nelumbo spp.) and mud flats; and 3) in-situ porewater dialysis samplers, "peepers", provided vertical CH4 concentration data in the soil at the same locations and temporal time steps as the chambers. In addition, we studied gene transcripts to quantify methanogenesis activity along the vertical soil profile. Using integrated chamber and EC measurements, we found an average surface emission rate from Typha, the most abundant vegetated land cover, of 219.4 g CH4-C m-2 y-1, which was much higher than rates reported in similar emergent vegetation types in other wetlands. There was large spatial variation of flux rates, with mud flats having the highest rates of CH4 emission, followed by Nelumbo and Typha patches, and with open water having the lowest emissions. Within the soil column, we applied a numerical model to convert soil methane concentrations to emissions rates. We found that, contrary to current ideas of methane production, most methane was being produced in the well-oxygenated surface soils, probably in anoxic microsites within the oxic layer. Our metatranscriptomic data supported these findings, clearly showing nine times greater methanogenic activity in oxic surface soils relative to deeper anoxic soils. Combined, our results provide

  15. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.L. Shindel; J.H. Klingler; J.P. Mangus

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of themore » National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)« less

  16. Survey of larval fish in the Michigan waters of Lake Erie, 1975 and 1976. Final report, 1975-1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waybrant, R.C.; Shauver, J.M.

    1979-08-01

    Surveys in 1975 and 1976 in the Michigan waters of Lake Erie assessed the relative abundance and distribution of larval fish. Seasonal fluctuations, patterns of distribution, and depth preferences were noted for the 24 larval fish taxa identified. Special emphasis was placed on four target species, walleye (Stizostedion vitreum), yellow perch (Perca flavescens), white bass (Morone chrysops) and channel catfish (Ictalurus punctatus). Of these 4 species only yellow perch and white bass were found more than occasionally. Of the remaining 20 species collected during the study only 5 were regularly captured. The northern and southern extremes of the study areamore » held many more fish than the central portion. The 0- to 12-ft depth zone had the largest concentrations of larval fish and concentrations gradually decreased as the depth increased.« less

  17. Water and bed-sediment quality in the vicinity of Berlin Lake, Ohio, 2001

    USGS Publications Warehouse

    Darner, Robert A.

    2002-01-01

    Berlin Lake, in northeast Ohio, was created by the U.S. Army Corps of Engineers in 1943 and is used primarily for flood control for the upper reaches of the Mahoning River. The area surrounding and under the lake has been tapped for oil and natural gas production. One of the by-products of oil and gas production is concentrated salt water or brine, which might have an effect on the chemical quality of area potable-water sources. This report presents the results of a U.S. Geological Survey baseline study to collect current (2001) water and sediment-quality data and to characterize water quality in the Berlin Lake watershed. Chloride-to-bromide ratios were used to detect the presence of brine in water samples and to indicate possible adverse effects on water quality. Analyses of ground-water samples from domestic wells in the area indicate a source of chloride and bromide, but defining the source would require more data collection. Analyses of specific conductance and dissolved solids indicate that 78 percent (14 of 18) of the ground-water samples exceeded the Secondary Maximum Contaminant Level for dissolved solids in public water supplies of 500 milligrams per liter (mg/L), compared to 6 percent of samples exceeding 500 mg/L in two nearby studies. Surface water was analyzed twice, once each during low-flow and surface runoff conditions. A comparison of the 2001 data to historical chloride concentrations, accounting for seasonal changes, does not indicate an increase in chloride loads for surface water in the area of Berlin Lake. Polycyclic aromatic hydrocarbons were found in bed-sediment samples collected from the mouths of major tributaries to Berlin Lake. Polycyclic aromatic hydrocarbons are produced during the incomplete combustion of organic carbon materials such as wood and fossil fuels, and they are components of petroleum products.

  18. NONPOINT SOURCE MODEL CALIBRATION IN HONEY CREEK WATERSHED

    EPA Science Inventory

    The U.S. EPA Non-Point Source Model has been applied and calibrated to a fairly large (187 sq. mi.) agricultural watershed in the Lake Erie Drainage basin of north central Ohio. Hydrologic and chemical routing algorithms have been developed. The model is evaluated for suitability...

  19. Factors of ecologic succession in oligotrophic fish communities of the Laurentian Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1972-01-01

    Oligotrophic fish communities of the Great Lakes have undergone successive disruptions since the mid-1800s. Major contributing factors have been intensive selective fisheries, extreme modification of the drainage, invasion of marine species, and progressive physical–chemical changes of the lake environments. Lake Ontario was the first to be affected as its basin was settled and industrialized earliest, and it was the first to be connected by canals to the mid-Atlantic where the alewife (Alosa pseudoharengus) and sea lamprey (Petromyzon marinus) which ultimately became established in the Great Lakes were abundant. Oligotrophic fish communities were successively disrupted in Lakes Erie, Huron, Michigan, and Superior as the affects of population growth, industrialization, and marine invaders spread upward in the Laurentian drainage.The degree and sequence of response of families offish and species within families differed for each factor, but the sequence of change among families and species has been the same in response to each factor as it affected various lakes at different times. The ultimate result of the disruption of fish communities has been a reduction of productivity of oligotrophic species that ranges from extreme in Lake Ontario to moderate in Lake Superior, and which has reached a state of instability and rapid change in the upper three Great Lakes by the rnid-1900s similar to the situation in Lake Ontario in the mid-1800s. Since oligotrophic species (primarily salmonines, coregonines, and deepwater cottids) are the only kinds of fish that fully occupied the entire volume of the deepwater Great Lakes (Ontario, Huron, Michigan, and Superior), the fish biomass of these lakes has been reduced as various species declined or disappeared. In Lake Erie, which is shallow, and in the shallow bays of the deep lakes, oligotrophic species were replaced by mesotrophic species, primarily percids, which have successively increased and declined. All oligotrophic

  20. Monitoring and modeling to predict Escherichia coli at Presque Isle Beach 2, City of Erie, Erie County, Pennsylvania

    USGS Publications Warehouse

    Zimmerman, Tammy M.

    2006-01-01

    The Lake Erie shoreline in Pennsylvania spans nearly 40 miles and is a valuable recreational resource for Erie County. Nearly 7 miles of the Lake Erie shoreline lies within Presque Isle State Park in Erie, Pa. Concentrations of Escherichia coli (E. coli) bacteria at permitted Presque Isle beaches occasionally exceed the single-sample bathing-water standard, resulting in unsafe swimming conditions and closure of the beaches. E. coli concentrations and other water-quality and environmental data collected at Presque Isle Beach 2 during the 2004 and 2005 recreational seasons were used to develop models using tobit regression analyses to predict E. coli concentrations. All variables statistically related to E. coli concentrations were included in the initial regression analyses, and after several iterations, only those explanatory variables that made the models significantly better at predicting E. coli concentrations were included in the final models. Regression models were developed using data from 2004, 2005, and the combined 2-year dataset. Variables in the 2004 model and the combined 2004-2005 model were log10 turbidity, rain weight, wave height (calculated), and wind direction. Variables in the 2005 model were log10 turbidity and wind direction. Explanatory variables not included in the final models were water temperature, streamflow, wind speed, and current speed; model results indicated these variables did not meet significance criteria at the 95-percent confidence level (probabilities were greater than 0.05). The predicted E. coli concentrations produced by the models were used to develop probabilities that concentrations would exceed the single-sample bathing-water standard for E. coli of 235 colonies per 100 milliliters. Analysis of the exceedence probabilities helped determine a threshold probability for each model, chosen such that the correct number of exceedences and nonexceedences was maximized and the number of false positives and false negatives was

  1. Investigations into the sources and removal of taste and odor compounds at two treatment facilities on Eastern Lake Erie and Niagara River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittmeyer, S.; Cap, R.; Lange, C.

    1996-11-01

    Taste and odor problems in drinking water supplies have been a topic of research since the early 1900`s. Studies have identified various taste and odor compounds, including methyl-iso-borneol (MIB), geosmin, trichloranisole, and their potential sources, to include the phytoplankton genera Aphanizomenon, Anabaena, Microcystis, and Dinobryon. Many methods of treatment have been investigated to mitigate taste and odors, including the addition of copper sulfate and various chemical oxidants, as well as the introduction of bacteria capable of metabolizing oil-like organic compounds. Taste and odor problems associated with drinking water supplies have become increasingly important, in part because public awareness of watermore » quality issues such as chlorine and associated disinfection byproducts, and the perception that malodorous water may be associated with pathogens such as the infectious Cryptosporidium parvum. Due to marked increases in customer complaints beginning in 1993, and elevated levels of the taste and odor compounds. MIB and geosmin, in eastern Lake Erie and the Niagara River, the Erie County Water Authority (ECWA) initiated an investigation into the impact of MIB and geosmin on water quality, assessment of various means of effective removal, and potential sources.« less

  2. Quaternary geologic map of the Lake Erie 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    Fullerton, David S.; Richmond, Gerald M.; state compilations by Fullerton, David S.; Cowan, W.R.; Sevon, W.D.; Goldthwait, R.P.; Farrand, W.R.; Muller, E.H.; Behling, R.E.; Stravers, J.A.; edited and integrated by Fullerton, David S.; Richmond, Gerald Martin

    1991-01-01

    The Quaternary Geologic Map of the Lake Erie 4? x 6? Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale.

  3. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements.

    PubMed

    Chaffin, Justin D; Kane, Douglas D; Stanislawczyk, Keara; Parker, Eric M

    2018-06-25

    Microcystin (MCY)-producing harmful cyanobacterial blooms (cHABs) are an annual occurrence in Lake Erie, and buoys equipped with water quality sondes have been deployed to help researchers and resource managers track cHABs. The objective of this study was to determine how well water quality sondes attached to buoys measure total algae and cyanobacterial biomass and water turbidity. Water samples were collected next to two data buoys in western Lake Erie (near Gibraltar Island and in the Sandusky subbasin) throughout summers 2015, 2016, and 2017 to determine correlations between buoy sonde data and water sample data. MCY and nutrient concentrations were also measured. Significant (P < 0.001) linear relationships (R 2  > 0.75) occurred between cyanobacteria buoy and water sample data at the Gibraltar buoy, but not at the Sandusky buoy; however, the coefficients at the Gibraltar buoy differed significantly across years. There was a significant correlation between buoy and water sample total chlorophyll data at both buoys, but the coefficient varied considerably between buoys and among years. Total MCY concentrations at the Gibraltar buoy followed similar temporal patterns as buoy and water sample cyanobacterial biomass data, and the ratio of MCY to cyanobacteria-chlorophyll decreased with decreased ambient nitrate concentrations. These results suggest that buoy data are difficult to compare across time and space. Additionally, the inclusion of nitrate concentration data can lead to more robust predictions on the relative toxicity of blooms. Overall, deployed buoys with sondes that are routinely cleaned and calibrated can track relative cyanobacteria abundance and be used as an early warning system for potentially toxic blooms.

  4. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  5. UXO Detection and Characterization in the Marine Environment

    DTIC Science & Technology

    2009-07-01

    Leatherback Sea Turtle, the Humpback Whale , the Southern Killer Whale , the Bull Trout, and the Bald Eagle.23 5.3 Ostrich Bay and the Sound...contamination impacting the Toussaint River area along the southern shore of Lake Erie in Ohio. This was the site of the Former Erie Army Depot where for 50...supported an MTA survey of the Bahia Salinas del Sur on the southern coast. The details of these activities are described in after action reports by NOAA

  6. Freshwater polychaetes (Manayunkia speciosa) near the Detroit River, western Lake Erie: Abundance and life‐history characteristics

    USGS Publications Warehouse

    Schloesser, Donald W.; Malakauskas, David M.; Malakauskas, Sarah J.

    2016-01-01

    Freshwater polychaetes are relatively rare and little-studied members of the benthos of lakes and rivers. We studied one polychaete species (Manayunkia speciosa) in Lake Erie near the mouth of the Detroit River. Abundances at one site were determined between 1961 and 2013 and life‐history characteristics at two sites were determined seasonally (March–November) in 2009–2010 and 2012–2013. Life‐history characteristics included abundances, length‐frequency distributions, presence/absence of constructed tubes, sexual maturity, and number and maturation of young of year (YOY) in tubes. Long-term abundances decreased in successive time periods between 1961 and 2003 (mean range = 57,570 to 2583/m2) but few changes occurred between 2003 and 2013 (mean = 5007/m2; range/y = 2355–8216/m2). Seasonal abundances varied substantially between sites and years, but overall, abundances were low in March–April, high in May–August, and low in September–November. Although reproduction was continuous throughout warmer months, en masse recruitment, as revealed by length–frequency distributions, occurred in a brief period late‐June to mid-July, and possibly in early-September. All life history characteristics, including tube construction, were dependent on water temperatures (> 5 °C in spring and < 15 °C in fall). These results generally agree with and complement laboratory studies of M. speciosa in the Pacific Northwest where M. speciosa hosts parasites that cause substantial fish mortalities. Although abundance ofM. speciosa near the mouth of the Detroit River was 33-fold lower in 2013 than it was in 1961, this population has persisted for five decades and, therefore, has the potential to harbor parasites that may cause fish mortalities in the Great Lakes.

  7. Use of historical and geospatial data to guide the restoration of a Lake Erie coastal marsh

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wilcox, Douglas A.

    1999-01-01

    Historical and geospatial data were used to identify the relationships between water levels, wetland vegetation, littoral drift of sediments, and the condition of a protective barrier beach at Metzger Marsh, a coastal wetland in western Lake Erie, to enhance and guide a joint federal and state wetland restoration project. Eleven sets of large-scale aerial photographs dating from 1940 through 1994 were interpreted to delineate major vegetation types and boundaries of the barrier beach. A geographic information system (GIS) was then used to digitize the data and calculate the vegetated area and length of barrier beach. Supplemented by paleoecological and sedimentological analyses, aerial photographic interpretation revealed that Metzger Marsh was once a drowned-river-mouth wetland dominated by sedges and protected by a sand barrier beach. Extremely high water levels, storm events, and reduction of sediments in the littoral drift contributed to the complete destruction of the barrier beach in 1973 and prevented its recovery. The extent of wetland vegetation, correlated to water levels and condition of the barrier beach, decreased from a high of 108 ha in 1940 to a low of 33 ha in 1994. The lack of an adequate sediment supply and low probability of a period of extremely low lake levels in the near future made natural reestablishment of the barrier beach and wetland vegetation unlikely. Therefore, the federal and state managers chose to construct a dike to replace the protective barrier beach. Recommendations stemming from this historical analysis, however, resulted in the incorporation of a water-control structure in the dike that will retain a hydrologic connection between wetland and lake. Management of the wetland will seek to mimic processes natural to the wetland type identified by this analysis.

  8. Great Lakes/St. Lawrence Seaway Regional Transportation Study; Great Lakes Area Industries.

    DTIC Science & Technology

    1981-11-01

    integrated mill at Nanticoke on Lake Erie , directly north of Erie , Pennsylvania . Almost all iron ore is received at these plants by water. 111-23II Ia...Generating Co. Decker, MT 613 Presque Isle Plant (MI) Absaloka, MT 307 Roseloud, MT 307 Pevler, KY 301 Wolverine, KY 192 All Sources 2120 Note...Pub. Works Holland, MI 160 Grand Haven Bd. of L&P Grand Haven, MI 90 Marquette Bd. of L&P Marquette, MI 125 Upper Penin. Gen. Co. Presque Isle

  9. 78 FR 30270 - Foreign-Trade Zone 247-Erie, Pennsylvania; Application for Subzone; GE Transportation, Lawrence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ..., Pennsylvania; Application for Subzone; GE Transportation, Lawrence Park Township, Pennsylvania An application... Transportation, located in Lawrence Park Township, Pennsylvania. The application was submitted pursuant to the... located at 2901 East Lake Road, Lawrence Park Township, Erie County, Pennsylvania. No production activity...

  10. 76 FR 27253 - Safety Zone; Catawba Island Club Fireworks, Catawba Island Club, Port Clinton, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ...-AA00 Safety Zone; Catawba Island Club Fireworks, Catawba Island Club, Port Clinton, OH AGENCY: Coast... zone in the Captain of the Port Detroit Zone on Lake Erie, Port Clinton, Ohio. This zone is intended to... temporary safety zone is necessary to protect spectators and vessels from the hazards associated with...

  11. Great Lakes/St. Lawrence Seaway Regional Transportation Study for U.S. Army Corps of Engineers.

    DTIC Science & Technology

    1982-04-01

    LAKE HURON Two Harbors, MN Saginaw, MI Duluth-Superior, MN-WI St. Clair River, MI, St. Clair Presque Isle , MI Port of Detroit, MI Marquette, MI Detroit...Port Dolomite, MI Green Bay, WI LAKE ERIE Milwaukee, WI Chicago, IL Toledo, OH Calumet Harbor, IN-IL Sandusky, OH Lake Calumet Huron, OH Indiana Harbor...IN Lorain, OH Burns Waterway, IN Cleveland, OH Muskegon, MI Ashtabula, OH Gary, IN Conneaut, OH Escanaba, MI Erie , PA Grand Haven, MI Port of Buffalo

  12. Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?

    PubMed

    Jarvie, Helen P; Johnson, Laura T; Sharpley, Andrew N; Smith, Douglas R; Baker, David B; Bruulsema, Tom W; Confesor, Remegio

    2017-01-01

    Cumulative daily load time series show that the early 2000s marked a step-change increase in riverine soluble reactive phosphorus (SRP) loads entering the Western Lake Erie Basin from three major tributaries: the Maumee, Sandusky, and Raisin Rivers. These elevated SRP loads have been sustained over the last 12 yr. Empirical regression models were used to estimate the contributions from (i) increased runoff from changing weather and precipitation patterns and (ii) increased SRP delivery (the combined effects of increased source availability and/or increased transport efficiency of labile phosphorus [P] fractions). Approximately 65% of the SRP load increase after 2002 was attributable to increased SRP delivery, with higher runoff volumes accounting for the remaining 35%. Increased SRP delivery occurred concomitantly with declining watershed P budgets. However, within these watersheds, there have been long-term, largescale changes in land management: reduced tillage to minimize erosion and particulate P loss, and increased tile drainage to improve field operations and profitability. These practices can inadvertently increase labile P fractions at the soil surface and transmission of soluble P via subsurface drainage. Our findings suggest that changes in agricultural practices, including some conservation practices designed to reduce erosion and particulate P transport, may have had unintended, cumulative, and converging impacts contributing to the increased SRP loads, reaching a critical threshold around 2002. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. List of Publications of the US Army Engineer Waterways Experiment Station. Volume 1.

    DTIC Science & Technology

    1986-12-01

    Leo R 3-06 Feb 1960 Factors Affectin6 Beach Nourishment Requirements, AD 631 520 Presque Isle Peninsula, Erie , Pennsylvania , by D. W. Berg H 4-66 Jun...962 Pressures TM 3-377 Jan 1954 Heat and Blast Effects on Tar and Tar-Rubber Pavements, AD 030 247 Presque Isle Air Force Base, Maine TM 3-379...G. Aubrev, and J. Karpen MR 80-10 Nov 1980 Sand Resources of Southern Lake Erie , Conneaut to AD A097 984 Toledo, Ohio - A Seismic Reflection and

  14. Low Cost, Low Tech, Low Brow Technology: A Plan for Campus Communication.

    ERIC Educational Resources Information Center

    Bernardo, Kurt E.

    This paper describes Lake Erie College's (Ohio) economical solution to providing electronic communication for faculty on its campus. The college first assessed its existing computer capabilities to determine its needs. The college wanted to increase the total number of users on the local area network in order to better utilize the existing network…

  15. Bioaccumulation and Spatiotemporal Trends of Polyhalogenated Carbazoles in Great Lakes Fish from 2004 to 2016.

    PubMed

    Wu, Yan; Tan, Hongli; Zhou, Chuanlong; Crimmins, Bernard S; Holsen, Thomas M; Chen, Da

    2018-04-17

    Polyhalogenated carbazoles (PHCZs) were recently discovered in Great Lakes sediment and other aquatic systems. However, knowledge about their bioaccumulation and potential risks to fish and wildlife remains very limited. The present study investigated PHCZs in Great Lakes lake trout ( Salvelinus namaycush) and walleye ( Sander vitreus; Lake Erie only) composites collected between 2004 and 2016. Median concentrations of ∑PHCZs by lake ranged from 54.7 to 154 ng/g lipid weight or lw (6.8-28.0 ng/g wet weight). Dominant congeners included 3,6-dichlorocarbazole, 1,3,6-tribromocarbazole, and 1,3,6,8-tetrachlorocarbazole. The highest ∑PHCZs concentrations were found in Lakes Michigan and Ontario fish, followed by Lake Huron, whereas Lakes Erie and Superior fish contained the lowest concentrations. Congener profiles of PHCZs also exhibited spatial variations. After age normalization to minimize fish age influence on bioaccumulation rates, fish ∑PHCZs' concentrations declined significantly over time in all lakes except Lake Erie, with slopes ranging from -10.24% to -3.85% per year. The median toxic equivalent (TEQ) of PHCZs due to their dioxin-like activity was determined to range from 8.7 to 25.7 pg/g lw in Great Lakes fish. This study provides the first insight into the bioaccumulation and spatiotemporal trends of PHCZs in Great Lakes and suggests the need for further research on this group of chemicals.

  16. Satellite remote sensing for modeling and monitoring of water quality in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Coffield, S. R.; Crosson, W. L.; Al-Hamdan, M. Z.; Barik, M. G.

    2017-12-01

    Consistent and accurate monitoring of the Great Lakes is critical for protecting the freshwater ecosystems, quantifying the impacts of climate change, understanding harmful algal blooms, and safeguarding public health for the millions who rely on the Lakes for drinking water. While ground-based monitoring is often hampered by limited sampling resolution, satellite data provide surface reflectance measurements at much more complete spatial and temporal scales. In this study, we implemented NASA data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to build robust water quality models. We developed and validated models for chlorophyll-a, nitrogen, phosphorus, and turbidity based on combinations of the six MODIS Ocean Color bands (412, 443, 488, 531, 547, and 667nm) for 2003-2016. Second, we applied these models to quantify trends in water quality through time and in relation to changing land cover, runoff, and climate for six selected coastal areas in Lakes Michigan and Erie. We found strongest models for chlorophyll-a in Lake Huron (R2 = 0.75), nitrogen in Lake Ontario (R2=0.66), phosphorus in Lake Erie (R2=0.60), and turbidity in Lake Erie (R2=0.86). These offer improvements over previous efforts to model chlorophyll-a while adding nitrogen, phosphorus, and turbidity. Mapped water quality parameters showed high spatial variability, with nitrogen concentrated largely in Superior and coastal Michigan and high turbidity, phosphorus, and chlorophyll near urban and agricultural areas of Erie. Temporal analysis also showed concurrence of high runoff or precipitation and nitrogen in Lake Michigan offshore of wetlands, suggesting that water quality in these areas is sensitive to changes in climate.

  17. Pesticides and pesticide degradates in the East Fork Little Miami River and William H. Harsha Lake, southwestern Ohio, 1999-2000

    USGS Publications Warehouse

    Funk, Jason M.; Reutter, David C.; Rowe, Gary L.

    2003-01-01

    In 1999 and 2000, the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program conducted a national pilot study of pesticides and degradates in drinking-water supplies, in cooperation with the U.S. Environmental Protection Agency (USEPA). William H. Harsha Lake, which provides drinking water for several thousand people in southwestern Ohio, was selected as one of the drinking-water supplies for this study. East Fork Little Miami River is the main source of water to Harsha Lake and drains a predominantly agricultural basin. Samples were collected from the East Fork Little Miami River upstream from Harsha Lake, at the drinking-water intake at Harsha Lake, at the outfall just below Harsha Lake, and from treated water at the Bob McEwen Treatment Plant. These samples were analyzed using standardized methods developed for the NAWQA Program. In all, 42 pesticide compounds (24 herbicides, 4 insecticides, 1 fungicide, and 13 degradates) were detected at least once in samples collected during this study. No compound in the treated water samples exceeded any drinking-water standard, although atrazine concentrations in untreated water exceeded the USEPA Maximum Contaminant Level (MCL) for drinking water (3 ?g/L) on four occasions. At least eight compounds were detected with greater than 60 percent frequency at each sampling location. Herbicides, such as atrazine, alachlor, acetochlor, cyanazine, metolachlor, and simazine, were detected most frequently. Rainfall affected the pesticide concentrations in surface waters of the East Fork Little Miami River Basin. Drought conditions from May through November 1999 led to lower streamflow and pesticide concentrations throughout southwestern Ohio. More normal climate conditions during 2000 resulted in higher streamflows and seasonally higher concentrations in the East Fork Little Miami River and Harsha Lake for some pesticides Comparison of pesticide concentrations in untreated lake water and treated drinking water

  18. Escherichia coli at Ohio Bathing Beaches--Distribution, Sources, Wastewater Indicators, and Predictive Modeling

    USGS Publications Warehouse

    Francy, Donna S.; Gifford, Amie M.; Darner, Robert A.

    2003-01-01

    Results of studies during the recreational seasons of 2000 and 2001 strengthen the science that supports monitoring of our Nation?s beaches. Water and sediment samples were collected and analyzed for concentrations of Escherichia coli (E. coli). Ancillary water-quality and environmental data were collected or compiled to determine their relation to E. coli concentrations. Data were collected at three Lake Erie urban beaches (Edgewater, Villa Angela, and Huntington), two Lake Erie beaches in a less populated area (Mentor Headlands and Fairport Harbor), and one inland-lake beach (Mosquito Lake). The distribution of E. coli in water and sediments within the bathing area, outside the bathing area, and near the swash zone was investigated at the three Lake Erie urban beaches and at Mosquito Lake. (The swash zone is the zone that is alternately covered and exposed by waves.) Lake-bottom sediments from outside the bathing area were not significant deposition areas for E. coli. In contrast, interstitial water and subsurface sediments from near the swash zone were enriched with E. coli. For example, E. coli concentrations were as high as 100,000 colonies per 100 milliliters in some interstitial waters. Although there are no standards for E. coli in swash-zone materials, the high concentrations found at some locations warrant concern for public health. Studies were done at Mosquito Lake to identify sources of fecal contamination to the lake and bathing beach. Escherichia coli concentrations decreased with distance from a suspected source of fecal contamination that is north of the beach but increased at the bathing beach. This evidence indicated that elevated E. coli concentrations at the bathing beach are of local origin rather than from transport of bacteria from sites to the north. Samples collected from the three Lake Erie urban beaches and Mosquito Lake were analyzed to determine whether wastewater indicators could be used as surrogates for E. coli at bathing beaches

  19. Drainage water phosphorus losses in the great lakes basin

    USDA-ARS?s Scientific Manuscript database

    The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...

  20. Coastal Ohio Wind Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbinesmore » to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of

  1. Abundance, composition, and distribution of crustacean zooplankton in relation to hypolimnetic oxygen depletion in west-central Lake Erie

    USGS Publications Warehouse

    Heberger, Roy F.; Reynolds, James B.

    1977-01-01

    Samples of crustacean zooplankton were collected monthly in west-central Lake Erie in April and June to October 1968, and in July and August 1970, before and during periods of hypolimnetic dissolved oxygen (DO) depletion. The water column at offshore stations was thermally stratified from June through September 1968, and the hypolimnion contained no DO in mid-August of 1968 or 1970. Composition, abundance, and vertical distribution of crustacean zooplankton changed coincidentally with oxygen depletion. From July to early August, zooplankton abundance dropped 79% in 1968 and 50% in 1970. The declines were attributed largely to a sharp decrease in abundance of planktonic Cyclops bicuspidatus thomasi. Zooplankton composition shifted from mainly cyclopoid copepods in July to mainly cladocerans and copepod nauplii in middle to late August. We believe that mortality of adults and dormancy of copepodites in response to anoxia was the probable reason for the late summer decline in planktonic C. b. thomasi.

  2. Maumee Bay State Park, Ohio. Shoreline Erosion Beach Restoration Study. Final Feasibility Report and Final Environmental Impact Statement. Interim to Western Lake Erie Shore Study. Volume 2. Appendices. Revised.

    DTIC Science & Technology

    1983-12-01

    The vegetation is typified by a variety of vines and shrubs , including dogwood, sumac, wild plum, honeysuckle, wild grape, blackberry, honey locust...demand analysis. The SCORP studies for Ohio, Indiana , and Michigan were reviewed since most of *the Maumee Bay visitation was expected to originate...Bay State Park by State, by Zone :Distance: Zone:In Miles: Ohio Michigan : Indiana :Pennsylvania: Canada 1 : 0-25 :Lucas :Monroe :None :None :None

  3. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  4. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitor: (1) Channel 11 (156.55 mhz) between Lake Huron Cut Lighted Buoy 11 and Lake St. Clair Light; and (2) Channel 12 (156.60 mhz) between Lake St. Clair Light and Detroit River Light. (b) Radiotelephone... Cut Light “7” Lake Huron Cut Lighted Buoy “1” Report. Report St. Clair/Black River Junction Light...

  5. Life history characteristics of a recovering lake whitefish Coregonus clupeaformis stock in the Detroit River, North America

    USGS Publications Warehouse

    Roseman, Edward F.; Kennedy, Gregory W.; Manny, Bruce A.; Boase, James; McFee, James; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth

    2012-01-01

    The Detroit River is part of a channel connecting Lakes Huron and Erie and was once a prolific spawning area for lake whitefish, Coregonus clupeaformis. Large numbers of lake whitefish migrated into the river to spawn where they were harvested by commercial fisheries and for fish culture operations. Prior to our study, the last lake whitefish was landed from the Detroit River in 1925. Loss of spawning habitat during shipping channel construction and over-fishing, likely reduced lake whitefish spawning runs. Because lake whitefish are recovering in Lake Erie, and spawning in the western basin, we suspected they may also be spawning in the Detroit River. We sampled in the Detroit River for lake whitefish adults and eggs in October–December 2005–07 and for larvae during March–May 2006–08. A total of 15 spawning-ready lake whitefish from 4 to 18 years old, were collected. Viable eggs were collected during mid-November 2006–07; highest egg densities were found mid-river. Sac-fry whitefish larvae were collected in the river and near the river mouth. No whitefish larvae were retained in the river. Because high numbers of larvae were collected from mid- and downstream river sites, reproduction of lake whitefish in the Detroit River could contribute substantially to the Lake Erie lake whitefish metapopulation.

  6. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-05-28

    ISS013-E-27870 (28 May 2006) --- Considerable sunglint emphasizes features on Lake Erie in this image photographed by an Expedition 13 crewmember on the International Space Station. This detailed, south-looking image shows features on the surface of Lake Erie, about 30 miles west of Cleveland, Ohio. This view shows tight-V-shaped wakes of small craft. It also shows broad patterns of larger craft, probably large freighters carrying cargo that displace and disturb more water during passage. These larger wakes are aligned with the direct course between Detroit (out of frame) and Cleveland (out of frame). Some of the broad, ill-defined swaths of light and dark are streaks of wind-roughened water, which reflect the Sun differently.

  7. We have Met the Enemy. Student Guide and Teacher Guide. OEAGLS Investigation 13.

    ERIC Educational Resources Information Center

    Briss, Dorothy; Mayer, Victor J.

    Students investigate several aspects of the War of 1812, especially those which pertain to Lake Erie and Ohio, in this unit. The first activity is a simulation of various battles and maneuvers. In parts B and C, students use information from the simulation and from documents of the era to explain the war's causes and outcomes. A student's guide…

  8. Using water quality to assess ecological condition in the St. Marys River and Huron-Erie Corridor

    EPA Science Inventory

    The St. Marys River and Huron-Erie-Corridor were assessed by EPA for the first time in 2014-2016 as part of the National Coastal Condition Assessment (NCCA). NCCA uses a probabilistic survey design to allow unbiased assessment of ecological condition across the entire Great Lakes...

  9. Changes in the bottom fauna of western Lake Erie from 1930 to 1961

    USGS Publications Warehouse

    Carr, John F.; Hiltunen, Jarl K.

    1965-01-01

    Samples were collected at 40 stations in western Lake Erie in 1961 to determine the species composition, distribution, and abundance of macrobenthonic organisms and to document changes since 1930, when a similar survey was made. The fauna in 1961 was composed principally of Oligochaeta, Tendipedidae (7 genera), Sphaeriidae (15 species), and Gastropoda (at least 8 species). Stations with a high density of Oligochaeta were near the principal sources of pollution (Maumee, Raisin, and Detroit rivers). Stations with fewer Oligochaeta and a more diverse fauna were farthest from the river mouths. The population density of the burrowing mayfly, Hexagenia spp., was reduced from an average of 139/m2 in 1930 to less than 1/m2 in 1961. Organisms more abundant near the sources of pollution than in other areas were, in addition to Oligochaeta: the midge, Procladius; the fingernail clam, Sphaerium transversum; and the snail, Valvata sincera (sens. lat.). Organisms sensitive to pollution, such as amphipods, mayfly nymphs, caddisfly larvae, and naiad clams, were scarce and usually at the more lakeward stations. The most important changes in fauna during the 31-year period were: ninefold increase in Oligochaeta; fourfold increase in Tendipedidae; twofold increase in Sphaeriidae; sixfold increase in Gastropoda; and a reduction of Hexagenia to less than 1% of former abundance. The area of pollution (as judged from the abundance of Oligochaeta) increased from 263 km2 in 1930 to 1,020 km2 in 1961.

  10. Selective food preferences of walleyes of the 1959 year class in Lake Erie

    USGS Publications Warehouse

    Parsons, John W.

    1971-01-01

    Stomachs were examined from 1,473 walleyes (Stizostedion vitreum vitreum) of the 1959 year class collected in western Lake Erie from June 1959 to October 1960. In the same period, the relative abundance and lengths of potential forage species were determined from trawl catches. The walleye fed almost entirely on fish. In 1959 the food was dominated first (in June and July) by yellow perch (Perca flavescens) and then, in sequence, by spottail shiners (Notropis hudsonius) and emerald shiners (Notropis atherinoides). In 1960, the walleyes fed mostly on yearling spottail shiners and emerald shiners in the spring and summer but young alewives (Alosa pseudoharengus) became the dominant food in the fall. The length of forage fish increased with the length of walleyes and walleyes of a given length usually ate forage fish within a restricted range of lengths. This size preference was shown by walleyes of the same length in the same and different months. The increased in length of forage fish with length of walleye was not proportionate. Walleyes 2.5 inches long ate forage fish 0.44 times their length whereas walleyes 15.5 inches long ate forage fish only 0.28 times their length. The diet of the walleyes changed according to species and lengths of forage fish available. Since young of several species hatched in different months and grew at different rates, abundance and suitability as forage sometimes changed rapidly.

  11. Halogenated Flame Retardants in Predator and Prey Fish From the Laurentian Great Lakes: Age-Dependent Accumulation and Trophic Transfer.

    PubMed

    Su, Guanyong; Letcher, Robert J; McGoldrick, Daryl J; Backus, Sean M

    2017-08-01

    The identification, persistence, accumulation and trophic transfer of 25 polybrominated diphenyl ether (PBDE) congeners, 23 non-PBDE halogenated flame retardants (NPHFRs), 4 polybrominated-diphenoxybenzenes (PB-DiPhOBzs) and 6 methoxylated (MeO-) PB-DiPhOBzs were investigated in predator and prey fish collected in 2010 from sites in the North American Great Lakes of Ontario (n = 26) and Erie (n = 39). Regardless of locations or species, 20 PBDEs and 12 NPHFRs were quantifiable in at least one of the 65 analyzed samples, and polybrominated-1,4-diphenoxybenzenes (PB-DiPhOBzs) and MeO-PB-DiPhOBzs were not detectable in any of analyzed samples. Among the FRs, the greatest concentrations were the ∑PBDE, ranging from 1.06 (Rainbow Smelt, Lake Erie) to 162 (Lake Trout, Lake Ontario) ng/g wet weight (ww), which was followed by mean HBCDD concentrations ranging ND to 17.3 (Lake Trout, Lake Ontario) ng/g ww. The remaining FRs were generally not detectable or at sub-ppb levels. In most of cases, FR concentrations in samples from Lake Ontario were greater than those from Lake Erie. Strong and significant positive linear relationships occurred between log-normalized FR concentrations (ww or lipid weight (lw)) and ages of the top predator Lake Trout (n = 16, from Lake Ontario), and the estimated FR doubling ages (T 2 ) were 2.9-6.4 years. For Walleye from Lake Erie, significantly positive linear relationships were also observed for some FRs, but the linear relationships generally became negative after FR concentrations were normalized with lipid weight. This study provides novel information on FR accumulation in aquatic organisms, and for the first time, significant positive linear relationships are reported between log-normalized FR concentrations (lw or ww) and ages of Lake Trout from the Great Lakes.

  12. Age, growth, spawning season, and fecundity of the trout-perch (Percopsis omiscomaycus) in southeastern Lake Michigan

    USGS Publications Warehouse

    House, Robert; Wells, LaRue

    1973-01-01

    Growth of trout-perch (Percopsis omiscomaycus) in the first 2 years of life was somewhat slower in southeastern Lake Michigan (average length at end of second year, 83 mm) than in Lower Red Lake, Minnesota (90 mm), but considerably faster than in Lake Superior (58 mm); size differences in later years were slightly less pronounced. Young fish began growing earlier in the year (some before June 20) than older ones (as late as August). Females tended to live longer than males, as they do in Lower Red Lake and Lake Superior. Trout-perch spawned from late June or early July until late September, somewhat later than in Lower Red Lake (May to August) or Lake Erie (June to August). Fecundity was similar to that in Lake Erie; mature females 94-146 mm long contained from 126 to 1329 yolked eggs.

  13. Human-mediated and natural dispersal of an invasive fish in the eastern Great Lakes.

    PubMed

    Johansson, Mattias L; Dufour, Bradley A; Wellband, Kyle W; Corkum, Lynda D; MacIsaac, Hugh J; Heath, Daniel D

    2018-06-01

    The globally invasive Round Goby (Neogobius melanostomus) was introduced to the Great Lakes around 1990, spreading widely and becoming the dominant benthic fish in many areas. The speed and scope of this invasion is remarkable and calls into question conventional secondary spread models and scenarios. We utilized nine microsatellites to identify large-scale genetic structure in Round Goby populations in the eastern Great Lakes, and assessed the role of colonization vs. secondary transport and dispersal in developing this structure. We identified three clusters, corresponding with Lake Huron, eastern Lake Erie, and western Lake Erie plus eastern Lake Ontario, along with three highly divergent populations. Bottleneck analysis identified founder effects in two divergent populations. Regression analyses of isolation by distance and allelic richness vs. distance from the initial invasion site were consistent with limited migration. However, some populations in eastern Lake Erie and Lake Ontario showed anomalously low genetic distance from the original site of colonization, consistent with secondary transport of large numbers of individuals via ballast water. We conclude that genetic structure of Round Goby in the Great Lakes principally resulted from long-distance secondary transport via ballast water with additional movement of individual via bait buckets and natural dispersal. The success of Round Gobies represents an interesting model for colonization characterization; however, those same attributes present significant challenges for conservation and fisheries management. Current management likely prevents many new species from arriving in the Great Lakes, but fails to address the transport of species within the lakes after they arrive; this is an issue of clear and pressing importance.

  14. Different psychometric properties of the Emotional Reaction Instrument-English (ERI-E) between hospitalized African American and Caucasian children.

    PubMed

    Kim, Kye-Ha; Foster, Roxie L; Park, Jeong-Hwan

    2017-04-01

    To demonstrate the psychometric properties of the Emotional Reactions Instrument-English (ERI-E) between hospitalized African American and Caucasian children aged 7-12 years. A methodological study was conducted to examine validity and reliability of the ERI-E with 230 hospitalized African American and Caucasian children. Data were collected with sociodemographic and clinical forms, and using the ERI-E, and the Facial Affective Scale (FAS). Different factor structures were found between hospitalized African American and Caucasian children. In psychometric testing of the ERI-E with African American children, four items, alone, lonely, shy, and bored, were removed from the original 16-item ERI-E after exploratory factor analysis. Three factors, including Fear, Anxiety, and Distress, were identified explaining 60.71% of the total variance. Cronbach's alpha coefficient for the revised 12-item scale was 0.85. Six items, happy, sad, afraid, frightened, hurt, and uncomfortable, in the ERI-E were significantly correlated with the FAS (r = 0.20-0.59) as evidence of concurrent validity. In the sample with hospitalized Caucasian children, two items, bored and uncomfortable, were eliminated from the original ERI-E after exploratory factor analysis. Four factors including Fear, Anxiety, Distress, and Loneliness were extracted with 62.61% of total variance. Cronbach's alpha coefficient for the revised 14-item in the ERI-E was 0.84 for hospitalized Caucasian children. As evidence of concurrent validity, 10 items, happy, sad, afraid, frightened, bad, lonely, scary, bored, hurt, and uncomfortable, in the ERI-E were significantly correlated with the FAS (r = 0.20-0.69). Because children with different cultural backgrounds understand or use words differently, healthcare providers should assess the cultural norms of pediatric patients and ensure steps have been taken to ensure clear, effective communication with pediatric patients. In addition, healthcare providers should evaluate the

  15. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches.

    PubMed

    Lee, Cheonghoon; Marion, Jason W; Cheung, Melissa; Lee, Chang Soo; Lee, Jiyoung

    2015-09-11

    Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS) and the microcystin-producing (mcyA) gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01), suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001), which was higher at Euclid (p < 0.05), possibly contributing to higher microcystin concentrations at Euclid.

  16. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches

    PubMed Central

    Lee, Cheonghoon; Marion, Jason W.; Cheung, Melissa; Lee, Chang Soo; Lee, Jiyoung

    2015-01-01

    Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS) and the microcystin-producing (mcyA) gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01), suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001), which was higher at Euclid (p < 0.05), possibly contributing to higher microcystin concentrations at Euclid. PMID:26378564

  17. Spatial and temporal patterns in the seasonal distribution of toxic cyanobacteria in Western Lake Erie from 2002-2014.

    PubMed

    Wynne, Timothy T; Stumpf, Richard P

    2015-05-12

    Lake Erie, the world's tenth largest freshwater lake by area, has had recurring blooms of toxic cyanobacteria for the past two decades. These blooms pose potential health risks for recreation, and impact the treatment of drinking water. Understanding the timing and distribution of the blooms may aid in planning by local communities and resources managers. Satellite data provides a means of examining spatial patterns of the blooms. Data sets from MERIS (2002-2012) and MODIS (2012-2014) were analyzed to evaluate bloom patterns and frequencies. The blooms were identified using previously published algorithms to detect cyanobacteria (~25,000 cells mL-1), as well as a variation of these algorithms to account for the saturation of the MODIS ocean color bands. Images were binned into 10-day composites to reduce cloud and mixing artifacts. The 13 years of composites were used to determine frequency of presence of both detectable cyanobacteria and high risk (>100,000 cells mL-1) blooms. The bloom season according to the satellite observations falls within June 1 and October 31. Maps show the pattern of development and areas most commonly impacted during all years (with minor and severe blooms). Frequencies during years with just severe blooms (minor bloom years were not included in the analysis) were examined in the same fashion. With the annual forecasts of bloom severity, these frequency maps can provide public water suppliers and health departments with guidance on the timing of potential risk.

  18. Gaseous and Freely-Dissolved PCBs in the Lower Great Lakes Based on Passive Sampling: Spatial Trends and Air-Water Exchange.

    PubMed

    Liu, Ying; Wang, Siyao; McDonough, Carrie A; Khairy, Mohammed; Muir, Derek C G; Helm, Paul A; Lohmann, Rainer

    2016-05-17

    Polyethylene passive sampling was performed to quantify gaseous and freely dissolved polychlorinated biphenyls (PCBs) in the air and water of Lakes Erie and Ontario during 2011-2012. In view of differing physical characteristics and the impacts of historical contamination by PCBs within these lakes, spatial variation of PCB concentrations and air-water exchange across these lakes may be expected. Both lakes displayed statistically similar aqueous and atmospheric PCB concentrations. Total aqueous concentrations of 29 PCBs ranged from 1.5 pg L(-1) in the open lake of Lake Erie (site E02) in 2011 spring to 105 pg L(-1) in Niagara (site On05) in 2012 summer, while total atmospheric concentrations were 7.7-634 pg m(-3) across both lakes. A west-to-east gradient was observed for aqueous PCBs in Lake Erie. River discharge and localized influences (e.g., sediment resuspension and regional alongshore transport) likely dominated spatial trends of aqueous PCBs in both lakes. Air-water exchange fluxes of Σ7PCBs ranged from -2.4 (±1.9) ng m(-2) day(-1) (deposition) in Sheffield (site E03) to 9.0 (±3.1) ng m(-2) day(-1) (volatilization) in Niagara (site On05). Net volatilization of PCBs was the primary trend across most sites and periods. Almost half of variation in air-water exchange fluxes was attributed to the difference in aqueous concentrations of PCBs. Uncertainty analysis in fugacity ratios and mass fluxes in air-water exchange of PCBs indicated that PCBs have reached or approached equilibrium only at the eastern Lake Erie and along the Canadian shore of Lake Ontario sites, where air-water exchange fluxes dominated atmospheric concentrations.

  19. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Watermore » Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.« less

  20. Are the Laurentian Great Lakes a CO2 Source or Sink?

    NASA Astrophysics Data System (ADS)

    Fernandez, J.; Townsend-Small, A.

    2016-12-01

    As concentrations of CO2 increase in our atmosphere, large bodies of water are prone to an accompanying increase in CO2. Accruing CO2 sinking into the Great Lakes can create more acidic waters, which is detrimental to the healthy growth of organisms producing calcium carbonate skeletons - a phenomenon that has been confirmed in modern oceans. Recent estimates suggests that Lake Huron, Lake Michigan, and Lake Superior are sources of atmospheric CO2, while Lake Erie and Lake Ontario are CO2 sinks, although this is based largely on water volume and little research has been done to validate these predictions. Water samples were collected aboard the University National Oceanographic Laboratory System RV Blue Heron and the Canadian Coast Guard RV Limnos from Lake Superior, Lake Michigan, and Lake Erie during the summer of 2016. Alkalinity and pCO2 were analyzed in lab to further calculate dissolved concentrations and fluxes of CO2, providing more information to resolve whether the Great Lakes are a CO2 source or sink. Additional work involves sampling all five of the Great lakes throughout the year to determine any seasonal trends in CO2. 13C-DIC will also be measured in order to differentiate methane oxidation and respiration to the CO2 pool.

  1. Partitioning potential fish yields from the Great Lakes

    USGS Publications Warehouse

    Loftus, D.H.; Olver, C.H.; Brown, Edward H.; Colby, P.J.; Hartman, Wilbur L.; Schupp, D.H.

    1987-01-01

    We proposed and implemented procedures for partitioning future fish yields from the Great Lakes into taxonomic components. These projections are intended as guidelines for Great Lakes resource managers and scientists. Attainment of projected yields depends on restoration of stable fish communities containing some large piscivores that will use prey efficiently, continuation of control of the sea lamprey (Petromyzon marinus), and restoration of high-quality fish habitat. Because Great Lakes fish communities were harmonic before their collapse, we used their historic yield properties as part of the basis for projecting potential yields of rehabilitated communities. This use is qualified, however, because of possible inaccuracies in the wholly commercial yield data, the presence now of greatly expanded sport fisheries that affect yield composition and magnitude, and some possibly irreversible changes since the 1950s in the various fish communities themselves. We predict that total yields from Lakes Superior, Huron, and Ontario will be increased through rehabilitation, while those from Lakes Michigan and Erie will decline. Salmonines and coregonines will dominate future yields from the upper lakes. The Lake Erie fishery will continue to yield mostly rainbow smelt (Osmerus mordax), but the relative importance of percids, especially of walleye (Stizostedion vitreum vitreum) will increase. In Lake Ontario, yields of salmonines will be increased. Managers will have to apply the most rigorous management strictures to major predator species.

  2. Ohio Department of Natural Resources

    Science.gov Websites

    Safety Tick & Tick Bite Prevention Outdoor Safety Tips Firewise Algae Advisories Swim Safe OhioMeansJobs Your Next Trail Adventure ODNR, working with multiple partners, has created a new trails website Ohioans to be Safe This Summer Posted on 5/25/2018 by East End of Buckeye Lake to be Dredged Posted on 5

  3. Climate Factors Contributing to Streamflow Inputs and Extreme Water-level Deviations from Long-term Averages for Lakes Superior and Michigan-Huron

    NASA Astrophysics Data System (ADS)

    Anderson, M. T.; Stamm, J. F.

    2014-12-01

    The Great Lakes are a highly valued freshwater resource of the United States and Canada. The Lakes are the focus of a science-based restoration program, known as the Great Lakes Restoration Initiative (GLRI). Physical and chemical factors, such as inflows and nutrient loads to the Great Lakes can affect ecosystem function, contribute to the spread of invasive species and increase the occurrence of harmful algal blooms. Since about 1999, water levels in Lakes Superior and Michigan-Huron have been at or below the long-term average (1918 to present). Analyses of streamflow trends for the period 1960 to 2012 in watersheds draining into Lakes Superior and Michigan-Huron showed a long-term decline in average inflows, which helps to explain the persistently below-average lake levels. Recent climatic conditions of October 2013 to August 2014 have contributed to a rapid rise in lake levels, most notably in Lake Superior. Lake Superior recently reached an elevation of 602.56 feet above sea level in August 2014, which is the highest level in 17 years. Coincident with this recovery was the development of a large algal bloom in Lake Erie in August of 2014 that shut down the Toledo, Ohio municipal water supply. These anomalous, extreme deviations from long-term average lake levels will be examined to better understand the forcing factors that contributed to changes in inflow volumes and lake-levels. Particular focus will be given to the climatology of years when changes in lake levels are most pronounced, such as; the measured lake-level declines during 1964-1965 and 1998-2000; and lake-level rises during 1973-1974, 1987-1989, and 2013-2014. The climatology of years with periods of algal blooms will also be examined such as, 2003, 2008, 2011 and 2014.

  4. Binational ecological risk assessment of bigheaded carps (Hypophthalmichthys spp.) for the Great Lakes Basin.

    USGS Publications Warehouse

    Cudmore, Becky; Mandrak, Nicholas E.; Dettmers, John M.; Chapman, Duane C.; Kolar, Cynthia S.

    2012-01-01

    Bigheaded carps (Bighead and Silver carps) are considered a potential threat to the Great Lakes basin. A binational ecological risk assessment was conducted to provide scientifically defensible advice for managers and decision-makers in Canada and the United States. This risk assessment looked at the likelihood of arrival, survival, establishment, and spread of bigheaded carps to obtain an overall probability of introduction. Arrival routes assessed were physical connections and human-mediated releases. The risk assessment ranked physical connections (specifically the Chicago Area Waterway System) as the most likely route for arrival into the Great Lakes basin. Results of the risk assessment show that there is enough food and habitat for bigheaded carp survival in the Great Lakes, especially in Lake Erie and productive embayments in the other lakes. Analyses of tributaries around the Canadian Great Lakes and the American waters of Lake Erie indicate that there are many suitable tributaries for bigheaded carp spawning. Should bigheaded carps establish in the Great Lakes, their spread would not likely be limited and several ecological consequences can be expected to occur. These consequences include competition for planktonic food leading to reduced growth rates, recruitment and abundance of planktivores. Subsequently this would lead to reduced stocks of piscivores and abundance of fishes with pelagic, early life stages. Overall risk is highest for lakes Michigan, Huron, and Erie, followed by Lake Ontario then Lake Superior. To avoid the trajectory of the invasion process and prevent or minimize anticipated consequences, it is important to continue to focus efforts on reducing the probability of introduction of these species at either the arrival, survival, establishment, or spread stage (depending on location).

  5. Benefits of Turbid River Plume Habitat for Lake Erie Yellow Perch (Perca flavescens) Recruitment Determined by Juvenile to Larval Genotype Assignment

    PubMed Central

    Carreon-Martinez, Lucia B.; Walter, Ryan P.; Johnson, Timothy B.; Ludsin, Stuart A.; Heath, Daniel D.

    2015-01-01

    Nutrient-rich, turbid river plumes that are common to large lakes and coastal marine ecosystems have been hypothesized to benefit survival of fish during early life stages by increasing food availability and (or) reducing vulnerability to visual predators. However, evidence that river plumes truly benefit the recruitment process remains meager for both freshwater and marine fishes. Here, we use genotype assignment between juvenile and larval yellow perch (Perca flavescens) from western Lake Erie to estimate and compare recruitment to the age-0 juvenile stage for larvae residing inside the highly turbid, south-shore Maumee River plume versus those occupying the less turbid, more northerly Detroit River plume. Bayesian genotype assignment of a mixed assemblage of juvenile (age-0) yellow perch to putative larval source populations established that recruitment of larvae was higher from the turbid Maumee River plume than for the less turbid Detroit River plume during 2006 and 2007, but not in 2008. Our findings add to the growing evidence that turbid river plumes can indeed enhance survival of fish larvae to recruited life stages, and also demonstrate how novel population genetic analyses of early life stages can contribute to determining critical early life stage processes in the fish recruitment process. PMID:25954968

  6. Factors affecting Escherichia coli concentrations at Lake Erie public bathing beaches

    USGS Publications Warehouse

    Francy, Donna S.; Darner, Robert A.

    1998-01-01

    The environmental and water-quality factors that affect concentrations of Escherichia coli (E. coli) in water and sediment were investigated at three public bathing beachesEdgewater Park, Villa Angela, and Sims Parkin the Cleveland, Ohio metropolitan area. This study was done to aid in the determination of safe recreational use and to help water- resource managers assess more quickly and accurately the degradation of recreational water quality. Water and lake-bottom sediments were collected and ancillary environmental data were compiled for 41 days from May through September 1997. Water samples were analyzed for E. coli concentrations, suspended sediment concentrations, and turbidity. Lake- bottom sediment samples from the beach area were analyzed for E. coli concentrations and percent dry weight. Concentrations of E. coli were higher and more variable at Sims Park than at Villa Angela or Edgewater Park; concentrations were lowest at Edgewater Park. Time-series plots showed that short-term storage (less than one week) of E. coli in lake-bottom sediments may have occurred, although no evidence for long-term storage was found during the sampling period. E. coli concentrations in water were found to increase with increasing wave height, but the resuspension of E. coli from lake-bottom sediments by wave action could not be adequately assessed; higherwave heights were often associated with the discharge of sewage containing E. coli during or after a rainfall and wastewater-treatment plant overflow. Multiple linear regression (MLR) was used to develop models to predict recreational water quality at the in water. The related variables included turbidity, antecedent rainfall, antecedent weighted rainfall, volumes of wastewater-treatment plant overflows and metered outfalls (composed of storm-water runoff and combined-sewer overflows), a resuspension index, and wave heights. For the beaches in this study, wind speed, wind direction, water temperature, and the prswimmers

  7. Sex difference in polychlorinated biphenyl concentrations of burbot Lota lota from Lake Erie

    USGS Publications Warehouse

    Madenjian, C.P.; Stapanian, M.A.; Rediske, R.R.; O’Keefe, J. P.

    2013-01-01

    Whole-fish polychlorinated biphenyl (PCB) concentrations were determined for 25 female and 25 male burbot Lota lota from Lake Erie. Bioenergetics modeling was used to investigate whether the sex difference in growth rate resulted in a difference in gross growth efficiency (GGE) between the sexes. For ages 6–13 years, male burbot averaged 28 % greater PCB concentrations than female burbot. The sex difference in PCB concentrations widened for ages 14–17 years, with male burbot having, on average, 71 % greater PCB concentrations than female burbot. Bioenergetics modeling results showed that the faster growth rate exhibited by female burbot did not lead to greater GGE in female individuals of the younger burbot and that the faster growth by female fish led to female GGE being only 2 % greater than male GGE in older burbot. Although our bioenergetics modeling could not explain the observed sex difference in PCB concentrations, we concluded that a sex difference in GGE was the most plausible explanation for the sex difference in PCB concentrations of burbot ages 6–13 years. Not only are male fish likely to be more active than female fish, but the resting metabolic rate of male fish may be greater than that of female fish. We also concluded that the widening of the sex difference in PCB concentrations for the older burbot may be due to many of the older male burbot spending a substantial amount of time in the vicinity of mouths of rivers contaminated with PCBs.

  8. Heterozygosity and fitness: No strong association in Great Lakes populations of the zebra mussel, Dreissena Polymorpha (Pallas)

    USGS Publications Warehouse

    Lewis, K.M.; Feder, J.L.; Horvath, T.G.; Lamberti, G.A.

    2000-01-01

    A number of studies have found positive associations between allozyme heterozygosity and fitness surrogates (e.g., body size and growth rate) for marine molluscs. We investigated whether similar relationships exist for freshwater populations of the zebra mussel, Dreissena polymorpha. Only one significant correlation between multi-locus heterozygosity and shell length was observed for a total of 22 D. polymorpha populations surveyed from midwestern U.S.A. lakes and streams, and the result was not significant on a table-wide basis. Meta-analysis revealed a significant common correlation coefficient (effect magnitude) between multi-locus heterozygosity and shell length across all 22 sites (rc = 0.052, P = 0.019, 1557 df). However, the variance in shell length explained by multi-locus heterozygosity was small (rc2 = 0.0027), implying a weak causal relationship if any. Also, we saw no relationship between heterozygosity and growth rate in a one-year field enclosure experiment. A significant heterozygosity-shell length correlation previously reported for a zebra mussel population at Put-in-Bay, Lake Erie, Ohio, may have been the product of unique population dynamics, rather than natural selection. Similar demographic considerations may contribute to inconsistencies in heterozygosity-fitness correlations seen for other molluscs.

  9. OHIO RIVER BASIN - FORMULATING CLIMATE CHANGE MITIGATION/ADAPTATION STRATEGIES THROUGH REGIONAL COLLABORATION WITH THE ORB ALLIANCE

    EPA Science Inventory

    The Huntington District of the U.S. Army Corps of Engineers, in collaboration with the Ohio River Basin Alliance, the Institute for Water Resources, the Great Lakes and Ohio River Division, and numerous other Federal agencies, non-governmental organizations, research institutions...

  10. Annotated Bibliography for Lake Erie. Volume III. Engineering,

    DTIC Science & Technology

    1974-10-01

    686, 17 17 II.ABSTRACTS Abbott, W. L. -See: Clifford Risley , Jr., No. 485. 1. Abu-Shumays, I. K., D. L. Phillips and S. M. Prastein. 1971. Thermal...zone. J. Physical Oceanog. 1(4):263-270. The typical spring thermal regime of Lake Ontario shows a thermocline surface of either a " wedge " or of a...Great Lakes. The current patterns observed suggest that the "thermal bar" is actually a thermal plume with an overriding wedge of stable water. 213

  11. Water quality study of the Riley Creek (Blanchard River, Ottawa, Ohio)

    NASA Astrophysics Data System (ADS)

    Spiese, C. E.; Berry, J. M.

    2012-12-01

    Riley Creek in northwest central Ohio is one of the most heavily impacted tributaries in the Blanchard River watershed. Anthropogenic inputs of phosphorus and nitrogen from agriculture have led to heavy eutrophication over the past decades. Because the Blanchard River is part of the Lake Erie basin, controls on phosphorus and nitrogen, among other inputs, are critical for restoration of ecosystem health in Lake Erie. A previous study in the Riley Creek watershed has shown high historical loadings of both nitrogen and phosphorus. Additionally, bacterial impairment has been noted in the watershed, from both municipal sources and failing septic tanks. This study is the most recent data detailing water quality parameters both chemical and microbiological in Riley Creek. This is also the first data set in Riley Creek examining the spectral characteristics of dissolved organic matter (DOM). From May to August, 2012, dissolved oxygen concentrations at six sites in the watershed declined from a maximum of 13.2 mg/L (154% O2 saturation) to 1.1 mg/L (12.9%). Median dissolved oxygen during the same period was 5.96 mg/L. Water pH was relatively steady, ranging from 8.6 to 7.9, with values generally declining with time. All six sites were found to have nitrate concentrations above the enforcement target (1 mg/L NO3--N) at various times, with four out of 73 samples falling below this value. Dissolved reactive phosphorus was generally low, with concentrations ranging from 0.074 mg P/L to below detection limits (<0.005 mg P/L). Dissolved organic matter concentrations (measured as mg C/L, potassium hydrogen phthalate equivalent) ranged from 24.1 to 3.5 mg C/L (mean = 9.8 ± 3.8 mg C/L), with no apparent temporal trends. Spectral slope ratios, a proxy for molecular mass, were relatively constant at 0.9 ± 0.2, with only intermittent excursions. No correlation to either flow or time was observed. Tests for fecal coliform bacteria were almost universally positive at all sites, with 10

  12. Biliary PAH metabolites and the hepatosomatic index of brown bullheads from Lake Erie tributaries

    USGS Publications Warehouse

    Yang, X.; Baumann, P.C.

    2006-01-01

    In studies designed to investigate the environmental exposure of fish in Lake Erie tributaries, a benthic fish, the brown bullhead (Ameiurus nebulosus), was collected from the industrially contaminated Detroit River, Ottawa River, Black River, Cuyahoga River-harbor and -upstream, Ashtabula River, Buffalo River, and Niagara River, and the non-industrialized Old Woman Creek during 1997-2000. Biliary benzo[a]pyrene (B[a]P)- and naphthalene (NAPH)-type metabolites and the hepatosomatic index (HSI) were measured in fish and compared between different sites. Fish from all of the contaminated sites except Niagara River had significantly higher concentrations of both types of polycyclic aromatic hydrocarbon (PAH) metabolites than fish from the Old Woman Creek. Concentrations of PAH metabolites in bile of fish were positively associated with concentrations of PAHs in sediments, supporting the use of bile metabolites as a measure of PAH exposure. Relatively low concentrations of PAHs detected in fish bile and sediments of the Niagara River, which had undergone extensive remediation, suggested a lowered PAH exposure for fish at this site. No apparent trend was observed in HSI between the industrialized and non-industrialized sites. This study demonstrates that biliary PAH metabolites are an effective indicator of exposure of fish to PAHs. However, because factors other than contamination could also affect the liver size of wild fish, HSI alone may be not a reliable biomarker for assessing contaminant stress. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Contribution of Lake-Effect Snow to the Catskill Mountains Snowpack

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Digirolamo, Nicolo E.; Frei, Allan

    2017-01-01

    Meltwater from snow that falls in the Catskill Mountains in southern New York contributes to reservoirs that supply drinking water to approximately nine million people in New York City. Using the NOAA National Ice Centers Interactive Multisensor Snow and Ice Mapping System (IMS) 4km snow maps, we have identified at least 32 lake-effect (LE) storms emanating from Lake Erie andor Lake Ontario that deposited snow in the CatskillDelaware Watershed in the Catskill Mountains of southern New York State between 2004 and 2017. This represents a large underestimate of the contribution of LE snow to the Catskills snowpack because many of the LE snowstorms are not visible in the IMS snow maps when they travel over snow-covered terrain. Most of the LE snowstorms that we identified originate from Lake Ontario but quite a few originate from both Erie and Ontario, and a few from Lake Erie alone. Using satellite, meteorological and reanalysis data we identify conditions that contributed to LE snowfall in the Catskills. Clear skies following some of the storms permitted measurement of the extent of snow cover in the watershed using multiple satellite sensors. IMS maps tend to overestimate the extent of snow compared to MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat-derived snow-cover extent maps. Using this combination of satellite and meteorological data, we can begin to quantify the important contribution of LE snow to the Catskills Mountain snowpack. Changes that are predicted in LE snowfall from the Great Lakes could impact the distribution of rain vs snow in the Catskills which may affect future reservoir operations in the NYC Water Supply System.

  14. Water use in Ohio, 1975

    USGS Publications Warehouse

    Hathaway, R. Michael; Eberle, Michael

    1981-01-01

    The estimated water use in Ohio for all purposes in 1975 was 16 ,431 million gallons per day. Of this total, 15,321 were taken from surface water while the remaining 1,110 represent ground-water withdrawals. Totals by category are as follows (in million gallons per day): Thermoelectric power generation, 12 ,404; self-supplied industrial use, 2,362: public water supplies , 1,423; rural domestic and livestock, 201; and irrigation, 40. Per capita water use was calculated to be 1,528 gallons per day for an Ohio population of 10,751,000 in 1975. Jefferson County led all Ohio counties in total water use with 3,447 million gallons per day. This was nearly three times the usage of second-ranking Gallia County where withdrawals were 1,242 million gallons per day. The heavy water use in both of these Ohio River counties is due to large withdrawals for thermoelectic power generation. Cuyahoga, Lorain, and Lake Counties, all in the Cleveland metropolitan area, rank third, fourth, and fifth in the State with respective totals of 1,061, 1,047, and 1,030 million gallons per day. Water use is more diverse in this area, with public supplies, industrial use, and thermoelectric power all making significant impacts. (USGS)

  15. Glacial geology and stratigraphy of Western New York Nuclear Service Center and vicinity, Cattaraugus and Erie Counties, New York

    USGS Publications Warehouse

    LaFleur, Robert G.

    1979-01-01

    A detailed glacial geologic map at a scale of 1:24,000, embracing a 165 square-mile area in Erie and Cattaraugus Counties, NY, shows 27 mapping units, including the till complex in which the West Valley radioactive-waste burial site is located. Stratigraphic relationships at 24 boreholes at the burial site and 6 newly described exposures indicate the age of the till complex to be early late Woodfordian (post-Kent, pre-Lake Escarpment, Valley Heads), equivalent to the Lavery glacial advance. Correlations of mapping units and measured sections with Woodfordian and older glacial and deglacial episodes are proposed. The Lavery till is confined to the valleys of Cattaraugus Creek and its major tributaries. At the waste-burial site in Buttermilk Creek Valley, the Lavery is an interfingering complex of clayey-silt till and thinner beds of deformed, poorly stratified lacustrine clay and silt. Ice readvance after the Kent glacial recession and Erie Interstade erosion imponded proglacial lake water in Buttermilk Creek Valley and covered post-Kent kame deltas and Erie channel gravels with as much as 130 feet of till. The Lavery till thins southward to a thickness of 80 feet at the waste-burial site and to less than 16 feet near the hamlet of West Valley. Water from the Lavery till may flow through subjacent Erie channel gravel and Kent-recessional kame delta sand to the bluffs along Buttermilk Creek, where discharge of water from these exposed pervious deposits appears to cause major slumps. (USGS)

  16. Evaluating the power to detect temporal trends in fishery independent surveys: A case study based on Gillnets Set in the Ohio waters of Lake Erie for walleye

    USGS Publications Warehouse

    Wagner, Tyler; Vandergoot, Christopher S.; Tyson, Jeff

    2009-01-01

    Fishery-independent (FI) surveys provide critical information used for the sustainable management and conservation of fish populations. Because fisheries management often requires the effects of management actions to be evaluated and detected within a relatively short time frame, it is important that research be directed toward FI survey evaluation, especially with respect to the ability to detect temporal trends. Using annual FI gill-net survey data for Lake Erie walleyes Sander vitreus collected from 1978 to 2006 as a case study, our goals were to (1) highlight the usefulness of hierarchical models for estimating spatial and temporal sources of variation in catch per effort (CPE); (2) demonstrate how the resulting variance estimates can be used to examine the statistical power to detect temporal trends in CPE in relation to sample size, duration of sampling, and decisions regarding what data are most appropriate for analysis; and (3) discuss recommendations for evaluating FI surveys and analyzing the resulting data to support fisheries management. This case study illustrated that the statistical power to detect temporal trends was low over relatively short sampling periods (e.g., 5–10 years) unless the annual decline in CPE reached 10–20%. For example, if 50 sites were sampled each year, a 10% annual decline in CPE would not be detected with more than 0.80 power until 15 years of sampling, and a 5% annual decline would not be detected with more than 0.8 power for approximately 22 years. Because the evaluation of FI surveys is essential for ensuring that trends in fish populations can be detected over management-relevant time periods, we suggest using a meta-analysis–type approach across systems to quantify sources of spatial and temporal variation. This approach can be used to evaluate and identify sampling designs that increase the ability of managers to make inferences about trends in fish stocks.

  17. Polychlorinated biphenyl concentrations of burbot Lota lota from Great Slave Lake are very low but vary by sex

    USGS Publications Warehouse

    Madenjian, Charles P.; Stapanian, Martin A.; Cott, Peter A.; Rediske, Richard R.; O'Keefe, James P.

    2014-01-01

    Total polychlorinated biphenyl concentrations (ΣPCBs) in whole fish were determined for 18 ripe female burbot Lota lota and 14 ripe male burbot from Great Slave Lake, a lake with no known point sources of PCBs. In addition, ΣPCBs were determined both in the somatic tissue and in the gonads for a randomly selected subset of five females and five males. Mean ΣPCBs for females and males were 2.89 and 3.76 ng/g, respectively. Thus, males were 30 % greater in ΣPCB than females. Based on ΣPCB determinations for somatic tissue and gonads, ΣPCBs of females and males would be expected to decrease by 18 % and increase by 6 %, respectively, immediately after spawning due to release of gametes. Results from a previous study in eastern Lake Erie indicated that males were 28 and 71 % greater in ΣPCB than females from populations of younger (ages 6-13) and older (ages 14-17) burbot, respectively. Thus, although younger burbot from Lake Erie were about 50 times greater in ΣPCB than Great Slave Lake burbot, the relative difference in ΣPCBs between the sexes was remarkably similar across both populations. Our results supported the contention that the widening of the difference in ΣPCBs between the sexes in older burbot from Lake Erie was attributable to a “hot spot” effect operating on older burbot, as Lake Erie has received PCB point source loadings. Our results also supported the contention that male fish expend energy at a rate between 15 and 30 % greater than that of females. Eventually, these results will be useful in developing sex-specific bioenergetics models for fish.

  18. Paleoenvironmental records of water level and climatic changes from the middle to late Holocene at a Lake Erie coastal wetland, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Finkelstein, Sarah A.; Davis, Anthony M.

    2006-01-01

    Pollen and diatom assemblages, and peat stratigraphies, from a coastal wetland on the northern shore of Lake Erie were used to analyze water level and climatic changes since the middle Holocene and their effects on wetland plant communities. Peat deposition began 4700 cal yr B.P. during the Nipissing II transgression, which was driven by isostatic rebound. At that time, a diatom-rich wild rice marsh existed at the site. Water level dropped at the end of the Nipissing rise at least 2 m within 200 yr, leading to the development of shallower-water plant communities and an environment too dry for most diatoms to persist. The sharp decline in water level was probably driven primarily by outlet incision, but climate likely played some role. The paleoecological records provide evidence for post-Nipissing century-scale transgressions occurring around 2300, 1160, 700 and 450 cal yr B.P. The chronology for these transgressions correlates with other studies from the region and implies climatic forcing. Peat inception in shallow sloughs across part of the study area around 700 cal yr B.P. coincides with the Little Ice Age. These records, considered alongside others from the region, suggest that the Little Ice Age may have resulted in a wetter climate across the eastern Great Lakes region.

  19. 75 FR 51379 - Safety Zone; Celebrate Erie, Presque Isle Bay, Erie, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... display. DATES: This rule is effective from 9:30 p.m. until 10:30 p.m. on August 22, 2010. ADDRESSES...: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Presque Isle Bay... Presque Isle Bay in Erie, PA during the Celebrate Erie fireworks display, August 22, 2010. This temporary...

  20. Fish community responses to submerged aquatic vegetation in Maumee Bay, Western Lake Erie

    USGS Publications Warehouse

    Miller, Jacob; Kocovsky, Patrick; Wiegmann, Daniel; Miner, Jeffery G.

    2018-01-01

    Submerged aquatic vegetation (SAV) in clearwater systems simultaneously provides habitat for invertebrate prey and acts as refugia for small fishes. Many fishes in Lake Erie rely on shallow, heavily vegetated bays as spawning grounds and the loss or absence of which is known to reduce recruitment in other systems. The Maumee River and Maumee Bay, which once had abundant macrophyte beds, have experienced a decline of SAV and an increase in suspended solids (turbidity) over the last century due to numerous causes. To compare fish communities in open‐water (turbid) and in SAV (clearer water) habitats in this region, which is designated by the U.S. Environmental Protection Agency as an Area of Concern, and to indicate community changes that could occur with expansion of SAV habitat, we sampled a 300‐ha sector of northern Maumee Bay that contained both habitats. Using towed neuston nets through patches of each habitat, we determined that areas of SAV contained more species and a different species complex (based on the Jaccard index and the wetland fish index), than did the open‐water habitat (averaging 8.6 versus 5 species per net trawl). The SAV habitat was dominated by centrarchids, namely Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, and Black Crappie Pomoxis nigromaculatus. Open‐water habitat was dominated by Spottail Shiner Notropis hudsonius, Gizzard Shad Dorosoma cepedianum, and White Perch Morone americana, an invasive species. These results indicate that restoration efforts aimed at decreasing turbidity and increasing the distribution of SAV could cause substantive shifts in the fish community and address important metrics for assessing the beneficial use impairments in this Area of Concern.

  1. The screech owl: Its life history and population ecology in northern Ohio

    USGS Publications Warehouse

    VanCamp, Laurel F.; Henny, Charles J.

    1975-01-01

    The screech owl (Otus asio) is native to North America and breeds throughout the United States and in portions of Canada and Mexico. It is a small owl, 20 cm (8 in) in length from the tip of the bill to the tip of the tail, with a wing span of 56 cm (22 in); it has yellow eyes and prominent ear tufts (see Frontispiece). Although the species is common throughout much of North America, it has not been studied intensively, particularly over a long period. The published literature is concerned mostly with food habits, color phase, taxonomy, and miscellaneous observations. Breeding biology and population dynamics have received little attention. This report presents the basic life history and population information about screech owls in northern Ohio over a 30-yr period. The owls studied were nesting in boxes (Fig. 1) established for wood ducks (Aix sponsa) along rivers, creeks, and marshes in a four-county area (Ottawa, Sandusky, Wood, and Lucas Counties) near Lake Erie (Fig. 2). No special trapping techniques were required as the screech owls readily used these nesting boxes and could be easily captured while in them. More than 3,000 owls were captured and banded; 500 were recaptured after the initial banding, some 10 or 15 times. This process provided a large quanity of basic information for this report.

  2. Developing fish trophic interaction indicators of climate change for the Great Lakes

    USGS Publications Warehouse

    Kraus, Richard T.; Knight, Carey T.; Gorman, Ann Marie; Kocovsky, Patrick M.; Weidel, Brian C.; Rogers, Mark W.

    2016-01-01

    This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport study area), and low nutrient levels (oligotrophic, Erie study area). This multi-year database (2011-2013) provides the ability to contrast years with wide variation in rainfall, winter ice-cover, and thermal stratification. In addition, multiple indicators of dietary and distributional responses to environmental variability will allow resource managers to select the most informative approach for addressing specific climate change questions. Our results support the incorporation of some relatively simple and cost-efficient approaches into existing agency monitoring programs to track the near-term condition status of fish and fish community composition by functional groupings. Other metrics appear better suited for understanding longer-term changes, and may take more resources to implement on an ongoing basis. Although we hypothesized that dietary overlap and similarity in selected species would be sharply different during thermal stratification and hypoxic episodes, we found little evidence of this. Instead, to our surprise, this study found that fish tended to aggregate at the edges of hypoxia, highlighting potential spatial changes in catch efficiency of the fishery. This work has had several positive impacts on a wide range of resource management and

  3. Environmental factors affecting the strength of walleye (Stizostedion vitreum vitreum) year-classes in western Lake Erie, 1960-70

    USGS Publications Warehouse

    Busch, Wolf-Dieter N.; Scholl, Russell L.; Hartman, Wilbur L.

    1975-01-01

    Commercial production of walleyes (Stizostedion vitreum vitreum) from western Lake Erie declined from 5.9 million pounds in 1956 to 140,000 pounds by 1969. Since 1956, marked irregularity in year-class success has developed. Only four year-classes were considered good during 1959–70. The rate and regularity of water warming during the spring spawning and incubation periods in 1960–70 had a positive effect on the density of egg deposits and the resulting year-class strength. Rates of warming were not themselves detrimental, but rather the extended length of the incubation period in cool springs increased the exposure of eggs to such negative influences as dislodgment from the spawning reefs by strong current action generated by spring storms, or siltation and low oxygen tensions. The annual brood stock size had much less influence on year-class strength than did water temperature. Reproductive success was unrelated to fluctuations in size of suitable reef spawning area caused by changes in water level. Apparently the usable spawning area at any water level is more than adequate to serve the limited walleye brood stocks.

  4. Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears

    USGS Publications Warehouse

    Kraus, Richard T.; Knight, Carey T.; Farmer, Troy M.; Gorman, Ann Marie; Collingsworth, Paris D.; Warren, Glenn J.; Kocovsky, Patrick M.; Conroy, Joseph D.

    2015-01-01

    Seasonal degradation of aquatic habitats from hypoxia occurs in numerous freshwater and coastal marine systems and can result in direct mortality or displacement of fish. Yet, fishery landings from these systems are frequently unresponsive to changes in the severity and extent of hypoxia, and population-scale effects have been difficult to measure except in extreme hypoxic conditions with hypoxia-sensitive species. We investigated fine-scale temporal and spatial variability in dissolved oxygen in Lake Erie as it related to fish distribution and catch efficiencies of both active (bottom trawls) and passive (trap nets) fishing gears. Temperature and dissolved oxygen loggers placed near the edge of the hypolimnion exhibited much higher than expected variability. Hypoxic episodes of variable durations were frequently punctuated by periods of normoxia, consistent with high-frequency internal waves. High-resolution interpolations of water quality and hydroacoustic surveys suggest that fish habitat is compressed during hypoxic episodes, resulting in higher fish densities near the edges of hypoxia. At fixed locations with passive commercial fishing gear, catches with the highest values occurred when bottom waters were hypoxic for intermediate proportions of time. Proximity to hypoxia explained significant variation in bottom trawl catches, with higher catch rates near the edge of hypoxia. These results emphasize how hypoxia may elevate catch rates in various types of fishing gears, leading to a lack of association between indices of hypoxia and fishery landings. Increased catch rates of fish at the edges of hypoxia have important implications for stock assessment models that assume catchability is spatially homogeneous.

  5. Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio.

    PubMed

    Mishra, Shruti K; Hitzhusen, Frederick J; Sohngen, Brent L; Guldmann, Jean-Michel

    2012-06-15

    Two hundred years of coal mining in Ohio have degraded land and water resources, imposing social costs on its citizens. An interdisciplinary approach employing hydrology, geographic information systems, and a recreation visitation function model, is used to estimate the damages from upstream coal mining to lakes in Ohio. The estimated recreational damages to five of the coal-mining-impacted lakes, using dissolved sulfate as coal-mining-impact indicator, amount to $21 Million per year. Post-reclamation recreational benefits from reducing sulfate concentrations by 6.5% and 15% in the five impacted lakes were estimated to range from $1.89 to $4.92 Million per year, with a net present value ranging from $14.56 Million to $37.79 Million. A benefit costs analysis (BCA) of recreational benefits and coal mine reclamation costs provides some evidence for potential Pareto improvement by investing limited resources in reclamation projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Residues of DDT in lake trout (Salvelinus namaycush) and coho salmon (Oncorhynchus kisutch) from the Great Lakes

    USGS Publications Warehouse

    Reinert, Robert E.; Bergman, Harold L.

    1974-01-01

    Concentrations of DDT residues were higher in lake trout (Salvelinus namaycush) from southern Lake Michigan in 1966–70 (average 18.1 ppm in fish 558–684 mm long) than in lake trout of the same size-class from Lake Superior in 1968–69 (4.4 ppm), and higher in adult coho salmon (Oncorhynchus kisutch) from Lake Michigan in 1968–71 (averages for different year-classes, 9.9–14.0 ppm) than in those from Lake Erie in 1969 (2.2 ppm). Residues were significantly higher in lake trout from southern Lake Michigan than in those from the northern part of the lake. In lakes Michigan and Superior, the levels increased with length of fish and percentage oil. In Lake Michigan coho salmon, the residues remained nearly stable (2–4 ppm) from September of the 1st yr of lake residence through May or early June of the 2nd yr, but increased three to four times in the next 3 mo. Residues in Lake Erie coho salmon did not increase during this period, which preceded the spawning season. Although the concentrations of total residues in whole, maturing Lake Michigan coho salmon remained unchanged from August 1968 until near the end of the spawning season in January 1969, the residues were redistributed in the tissues of the spawning-run fish; concentrations in the loin and brain were markedly higher in January than in August. This relocation of DDT residues accompanied a marked decrease in the percentage of oil in the fish, from 13.2 in August to 2.8 in January. Concentrations of residues were relatively high in eggs of both lake trout (4.6 ppm) and coho salmon (7.4–10.2 ppm) from Lake Michigan. The percentage composition of the residues (p,p′DDE, o,p′/DDT, p,p′DDT, and p,p′DDT) did not differ significantly with life stage, size, age, or locality, or date of collection of lake trout or coho salmon.

  7. Great Lakes, No Clouds

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 28, 2010 Late August 2010 provided a rare satellite view of a cloudless summer day over the entire Great Lakes region. North Americans trying to sneak in a Labor Day weekend getaway on the lakes were hoping for more of the same. The Great Lakes comprise the largest collective body of fresh water on the planet, containing roughly 18 percent of Earth's supply. Only the polar ice caps contain more fresh water. The region around the Great Lakes basin is home to more than 10 percent of the population of the United States and 25 percent of the population of Canada. Many of those people have tried to escape record heat this summer by visiting the lakes. What they found, according to The Hamilton Spectator, was record-breaking water temperatures fueled by record-breaking air temperatures in the spring and summer. By mid-August, the waters of Lake Superior were 6 to 8°C (11 to 14°F) above normal. Lake Michigan set records at about 4°C (7°F) above normal. The other three Great Lakes – Huron, Erie, and Ontario -- were above normal temperatures, though no records were set. The image was gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite at 1:30 p.m. Central Daylight Time (18:30 UTC) on August 28. Open water appears blue or nearly black. The pale blue and green swirls near the coasts are likely caused by algae or phytoplankton blooms, or by calcium carbonate (chalk) from the lake floor. The sweltering summer temperatures have produced an unprecedented bloom of toxic blue-green algae in western Lake Erie, according to the Cleveland Plain Dealer. NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Mike Carlowicz. Instrument: Aqua - MODIS Click here to see more images from NASA Goddard’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft

  8. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (2) Channel 12 (156.60 mhz) between Lake St. Clair Light and Detroit River Light. (b) Radiotelephone... Cut Light “7” Lake Huron Cut Lighted Buoy “1” Report. Report St. Clair/Black River Junction Light Report. Stag Island Upper Light Report. Report Marine City Salt Dock Light Report. Report Grande Pointe...

  9. Lake fisheries need lamprey control and research

    USGS Publications Warehouse

    Moffett, James W.

    1953-01-01

    Since 1921, when the first sea lamprey was recorded from Lake Erie, concern about this parasite in the Great Lakes above Niagara Falls, where previously it had never occurred, grew successively. At first, the concern was shared only in scientific circles, but as the parasite continued its persistent and rapid spread throughout the upper Great Lakes this concern was voiced by state conservation departments, the U.S. Fish and Wildlife Service, and interested fishermen. Catches of lake trout especially, and other species secondarily, began to fall below anything representing normal fluctuations in abundance. The fishing industry on Lake Huron and Lake Michigan became extremely concerned due to the fact that income was diminishing greatly. Producers on Lake Superior were fearful that the same decline in production would soon characterize their fishery.

  10. Changes in Rates of Shore Retreat, Lake Michigan, 1967-1976.

    DTIC Science & Technology

    1979-12-01

    D.C., Apr. 1946. BERG, D.W., "Factors Affecting Beach Nourishment at Presque Isle Peninsula, Erie , Pennsylvania ," Proceedings of the Ninth Conference on...concern the behavior of beach fill at Presque Isle Peninsula on Lake Erie . Guidelines for moni- toring the effect of shore protection works in the Great...NTIS AD 631 520). BERG, D.W., and DUANE, D.B., "Effects of Particle Size and Distribution on Stability of Artificially Filled Beach, Presque Isle

  11. Water resources data, Ohio, water year 2003 : Volume 1. Ohio River basin excluding project data

    USGS Publications Warehouse

    Shindel, H.L.; Mangus, J.P.; Frum, S.R.

    2004-01-01

    Water-resources data for the 2003 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 138 gaging stations and various partial-record sites; water levels at 217 observation wells and 35 crest-stage gages; and water quality at 30 gaging stations, 34 observation wells, and no partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.

  12. INTERACTION AND IMPACTS OF THE DETROIT RIVER ON LAKE ERIE

    EPA Science Inventory

    This preliminary modeling effort synthesizes information collected by the US EPA Great Lakes National Program Office project and collaborators over the past 4 years and is pursuant to the Clean Water Act and the US-Canada Great Lakes Water Quality Agreement. Although these are p...

  13. Trends of brominated diphenyl ethers in fresh and archived Great Lakes fish (1979-2005)

    USGS Publications Warehouse

    Batterman, Stuart; Chernyak, Sergei; Gwynn, Erica; Cantonwine, David; Jia, Chunrong; Begnoche, Linda J.; Hickey, James P.

    2007-01-01

    While few environmental measurements of brominated diphenyl ethers (BDEs) were completed prior to the mid-1990s, analysis of appropriately archived samples might enable the determination of contaminant trends back to the introduction of these chemicals. In this paper, we first investigate the stability of BDEs in archived frozen and extracted fish samples, and then characterize trends of these chemicals in rainbow smelt (Osmerus mordax) and lake trout (Salvelinus namaycush) in each of the Great Lakes between 1979 and 2005. We focus on the four most common congeners (BDE-47, 100, 99 and 153) and use a change-point analysis to detect shifts in trends. Analyses of archived fish samples yielded precise BDE concentration measurements with only small losses (0.8% per year in frozen fish tissues, 2.2% per year in refrigerated extracts). Trends in fish from all Great Lakes showed large increases in BDE concentrations that started in the early to mid-1980s with fairly consistent doubling times (generally 2–4 years except in Lake Erie smelt where levels increased very slowly), though concentrations and trends show differences by congener, fish species and lake. The most recent data show that accumulation rates are slowing, and concentrations of penta- and hexa-congeners in trout from Lakes Ontario and Michigan and smelt from Lake Ontario started to decrease in the mid-1990s. Trends in smelt and trout are evolving somewhat differently, and trout concentrations in the five lakes are now ranked as Michigan > Superior = Ontario > Huron = Erie, and smelt concentrations as Michigan > Ontario > Huron > Superior > Erie. The analysis of properly archived samples permits the reconstruction of historical trends, congener distributions, biomagnification and other information that can aid the understanding and management of these contaminants.

  14. Genetic effects of habitat restoration in the Laurentian Great Lakes: an assessment of lake sturgeon origin and genetic diversity

    USGS Publications Warehouse

    Jamie Marie Marranca,; Amy Welsh,; Roseman, Edward F.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron-Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron-Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.

  15. Bioacoustic monitoring of nocturnal songbird migration in a southern great lakes ecosystem

    NASA Astrophysics Data System (ADS)

    Sanders, Claire Elizabeth

    Many species of birds produce short vocalizations during nocturnal migration. My thesis uses bioacoustic monitoring of these night flight calls to study bird migration through a southern Great Lakes ecosystem. I deployed recording devices around western Lake Erie during spring and fall migrations. Analysis of thousands of hours of recordings revealed that night flight calls accurately predicted both the magnitude of migration, as well as the timing of migrant passage, as assessed by banding. The first arrival dates for 48 species of migratory birds were significantly earlier on Pelee Island than on mainland Ontario in the spring. More flight calls were detected over Pelee Island than over mainland comparison sites. These results suggest that many birds cross Lake Erie in spring and fall, and that islands are important for migratory birds. This research provides insight into the use of acoustics for monitoring birds in active migration.

  16. Increasingly, Data Availability Limits Model Predictive Capacity: the Western Lake Erie Basin, a Case Study

    NASA Astrophysics Data System (ADS)

    Behrman, K. D.; Johnson, M. V. V.; Atwood, J. D.; Norfleet, M. L.

    2016-12-01

    Recent algal blooms in Western Lake Erie Basin (WLEB) have renewed scientific community's interest in developing process based models to better understand and predict the drivers of eutrophic conditions in the lake. At the same time, in order to prevent future blooms, farmers, local communities and policy makers are interested in developing spatially explicit nutrient and sediment management plans at various scales, from field to watershed. These interests have fueled several modeling exercises intended to locate "hotspots" in the basin where targeted adoption of additional agricultural conservation practices could provide the most benefit to water quality. The models have also been used to simulate various scenarios representing potential agricultural solutions. The Soil and Water Assessment Tool (SWAT) and its sister model, the Agricultural Policy Environmental eXtender (APEX), have been used to simulate hydrology of interacting land uses in thousands of scientific studies around the world. High performance computing allows SWAT and APEX users to continue to improve and refine the model specificity to make predictions at small-spatial scales. Consequently, data inputs and calibration/validation data are now becoming the limiting factor to model performance. Water quality data for the tributaries and rivers that flow through WLEB is spatially and temporally limited. Land management data, including conservation practice and nutrient management data, are not publicly available at fine spatial and temporal scales. Here we show the data uncertainties associated with modeling WLEB croplands at a relatively large spatial scale (HUC-4) using site management data from over 1,000 farms collected by the Conservation Effects Assessment Project (CEAP). The error associated with downscaling this data to the HUC-8 and HUC-12 scale is shown. Simulations of spatially explicit dynamics can be very informative, but care must be taken when policy decisions are made based on models

  17. Bacterial and archaeal phylogenetic diversity of a cold sulfur-rich spring on the shoreline of Lake Erie, Michigan

    USGS Publications Warehouse

    Chaudhary, A.; Haack, S.K.; Duris, J.W.; Marsh, T.L.

    2009-01-01

    Studies of sulfidic springs have provided new insights into microbial metabolism, groundwater biogeochemistry, and geologic processes. We investigated Great Sulphur Spring on the western shore of Lake Erie and evaluated the phylogenetic affiliations of 189 bacterial and 77 archaeal 16S rRNA gene sequences from three habitats: the spring origin (11-m depth), bacterial-algal mats on the spring pond surface, and whitish filamentous materials from the spring drain. Water from the spring origin water was cold, pH 6.3, and anoxic (H2, 5.4 nM; CH4, 2.70 ??M) with concentrations of S2- (0.03 mM), SO42- (14.8 mM), Ca2+ (15.7 mM), and HCO3- (4.1 mM) similar to those in groundwater from the local aquifer. No archaeal and few bacterial sequences were >95% similar to sequences of cultivated organisms. Bacterial sequences were largely affiliated with sulfur-metabolizing or chemolithotrophic taxa in Beta-, Gamma-, Delta-, and Epsilonproteobacteria. Epsilonproteobacteria sequences similar to those obtained from other sulfidic environments and a new clade of Cyanobacteria sequences were particularly abundant (16% and 40%, respectively) in the spring origin clone library. Crenarchaeota sequences associated with archaeal-bacterial consortia in whitish filaments at a German sulfidic spring were detected only in a similar habitat at Great Sulphur Spring. This study expands the geographic distribution of many uncultured Archaea and Bacteria sequences to the Laurentian Great Lakes, indicates possible roles for epsilonproteobacteria in local aquifer chemistry and karst formation, documents new oscillatorioid Cyanobacteria lineages, and shows that uncultured, cold-adapted Crenarchaeota sequences may comprise a significant part of the microbial community of some sulfidic environments. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  18. Predictive spatial dynamics and strategic planning for raccoon rabies emergence in Ohio.

    PubMed

    Russell, Colin A; Smith, David L; Childs, James E; Real, Leslie A

    2005-03-01

    Rabies is an important public health concern in North America because of recent epidemics of a rabies virus variant associated with raccoons. The costs associated with surveillance, diagnostic testing, and post-exposure treatment of humans exposed to rabies have fostered coordinated efforts to control rabies spread by distributing an oral rabies vaccine to wild raccoons. Authorities have tried to contain westward expansion of the epidemic front of raccoon-associated rabies via a vaccine corridor established in counties of eastern Ohio, western Pennsylvania, and West Virginia. Although sporadic cases of rabies have been identified in Ohio since oral rabies vaccine distribution in 1998, the first evidence of a significant breach in this vaccine corridor was not detected until 2004 in Lake County, Ohio. Herein, we forecast the spatial spread of rabies in Ohio from this breach using a stochastic spatial model that was first developed for exploratory data analysis in Connecticut and next used to successfully hind-cast wave-front dynamics of rabies spread across New York. The projections, based on expansion from the Lake County breach, are strongly affected by the spread of rabies by rare, but unpredictable long-distance translocation of rabid raccoons; rabies may traverse central Ohio at a rate 2.5-fold greater than previously analyzed wildlife epidemics. Using prior estimates of the impact of local heterogeneities on wave-front propagation and of the time lag between surveillance-based detection of an initial rabies case to full-blown epidemic, specific regions within the state are identified for vaccine delivery and expanded surveillance effort.

  19. Evaluating the power to detect temporal trends in fishery-independent time surveys: A case study based on gill nets set in the Ohio waters of Lake Erie for walleyes

    USGS Publications Warehouse

    Wagner, Tyler; Vandergoot, Christopher S.; Tyson, Jeff

    2011-01-01

    Fishery-independent (FI) surveys provide critical information used for the sustainable management and conservation of fish populations. Because fisheries management often requires the effects of management actions to be evaluated and detected within a relatively short time frame, it is important that research be directed toward FI survey evaluation, especially with respect to the ability to detect temporal trends. Using annual FI gill-net survey data for Lake Erie walleyes Sander vitreus collected from 1978 to 2006 as a case study, our goals were to (1) highlight the usefulness of hierarchical models for estimating spatial and temporal sources of variation in catch per effort (CPE); (2) demonstrate how the resulting variance estimates can be used to examine the statistical power to detect temporal trends in CPE in relation to sample size, duration of sampling, and decisions regarding what data are most appropriate for analysis; and (3) discuss recommendations for evaluating FI surveys and analyzing the resulting data to support fisheries management. This case study illustrated that the statistical power to detect temporal trends was low over relatively short sampling periods (e.g., 5–10 years) unless the annual decline in CPE reached 10–20%. For example, if 50 sites were sampled each year, a 10% annual decline in CPE would not be detected with more than 0.80 power until 15 years of sampling, and a 5% annual decline would not be detected with more than 0.8 power for approximately 22 years. Because the evaluation of FI surveys is essential for ensuring that trends in fish populations can be detected over management-relevant time periods, we suggest using a meta-analysis–type approach across systems to quantify sources of spatial and temporal variation. This approach can be used to evaluate and identify sampling designs that increase the ability of managers to make inferences about trends in fish stocks.

  20. EAST ELEVATION OF ERIE PUBLIC LIBRARY. NOTE THE CONNECTING GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF ERIE PUBLIC LIBRARY. NOTE THE CONNECTING GLASS ATRIUM JOINING THE FORMER LIBRARY WITH THE FEDERAL COURTHOUSE AND BAKER BUILDING, CREATING THE NEW ERIE FEDERAL COMPLEX IN 2003-2004. - Erie Public Library, 3 Park Row, Erie, Erie County, PA

  1. Terrestrial sensitivity to abrupt cooling recorded by aeolian activity in northwest Ohio, USA

    USGS Publications Warehouse

    Campbell, M.C.; Fisher, T.G.; Goble, R.J.

    2011-01-01

    Optically stimulated luminescence dated sand dunes and Pleistocene beach ridges in northwest Ohio are used to reconstruct landscape modification more than 5000. yr after deglaciation. Four of the OSL ages (13.3-11.1. ka) cluster around the Younger Dryas cold event, five ages (10.8-8.2. ka) cluster around the Preboreal, one young age (0.9-0.7. ka) records more recent aeolian activity, and one age of 15.1-13.1. ka dates a barrier spit in Lake Warren. In northwest Ohio, both landscape instability recorded by aeolian activity and a vegetation response recorded by pollen are coeval with the Younger Dryas. However, the climate conditions during the Preboreal resulting in aeolian activity are not recorded in the available pollen records. From this, we conclude that aeolian dunes and surfaces susceptible to deflation are sensitive to cooler, drier episodes of climate and can complement pollen data. Younger Dryas and Preboreal aged aeolian activity in northwestern Ohio coincides with aeolian records elsewhere in the Great Lakes region east of the prairie-forest ecotone. ?? 2011 University of Washington.

  2. 33 CFR 334.850 - Lake Erie, west end, north of Erie Ordnance Depot, Lacarne, Ohio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... firing into Area I, red flags will be flown from the safety tower at Camp Perry, and from flag poles in... fish will be discharged into the waters of the areas. (i) The regulations in this section shall be...

  3. Status of Lake Erie phosphorus loads and concentrations

    EPA Science Inventory

    Under the Great Lakes Water Quality Protocol of 2012, nutrient loading and nutrient concentrations for open and nearshore waters must be re-evaluated for Substance Objectives that are consistent with overall Ecosystem Objectives. One of the primary driving nutrients of interest ...

  4. Ribosomal DNA identification of Nosema/Vairimorpha in freshwater polychaete, Manayunkia speciosa, from Oregon/California and the Laurentian Great Lakes

    USGS Publications Warehouse

    Malakauskas, David M.; Altman, Emory C.; Malakauskas, Sarah J.; Thiem, Suzanne M.; Schloesser, Donald W.

    2015-01-01

    We examined Manayunkia speciosa individuals from the Klamath River, Oregon/California and Lake Erie, Michigan, USA for the presence of Microsporidia. We identified microsporidian spores and sequenced their SSU, ITS, and part of the LSU rDNA. Phylogenetic analysis of SSU rDNA indicated spores from both populations belonged to the Nosema/Vairimorpha clade. PCR showed an infection prevalence in Lake Erie M. speciosa of 0.6% (95% CI = 0.5%, 0.7%). This represents the first known example of molecularly characterized Nosema/Vairimorpha isolates infecting a non-arthropod host.

  5. Managing Environmental Stress: An Evaluation of Environmental Management of the Long Point Sandy Barrier, Lake Erie, Canada.

    PubMed

    Kreutzwiser; Gabriel

    2000-01-01

    / This paper assesses the extent to which key geomorphic components, processes, and stresses have been reflected in the management of a coastal sandy barrier environment. The management policies and practices of selected agencies responsible for Long Point, a World Biosphere Reserve along Lake Erie, Canada, were evaluated for consistency with these principles of environmental management for sandy barriers: maintaining natural stresses essential to sandy barrier development and maintenance;protecting sediment sources, transfers, and storage; recognizing spatial variability and cyclicity of natural stresses, such as barrier overwash events; and accepting and planning for long-term evolutionary changes in the sandy barrier environment. Generally, management policies and practices have not respected the dynamic and sensitive environment of Long Point because of limited mandates of the agencies involved, inconsistent policies, and failure to apply or enforce existing policies. This is particularly evident with local municipalities and less so for the Canadian Wildlife Service, the federal agency responsible for managing National Wildlife Areas at the point. In the developed areas of Long Point, landward sediment transfers and sediment storage in dunes have been impacted by cottage development, shore protection, and maintenance of roads and parking lots. Additionally, agencies responsible for managing Long Point have no jurisdiction over sediment sources as far as 95 km away. Evolutionary change of sandy barriers poses the greatest challenge to environmental managers.

  6. Temporal trends in and influence of wind on PAH concentrations measured near the Great Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortes, D.R.; Basu, I.; Sweet, C.W.

    2000-02-01

    This paper reports on temporal trends in gas- and particle-phase PAH concentrations measured at three sites in the Great Lakes' Integrated Atmospheric Deposition Network: Eagle Harbor, near Lake Superior, Sleeping Bear Dunes, near Lake Michigan, and Sturgeon Point, near Lake Erie. While gas-phase concentrations have been decreasing since 1991 at all sites, particle-phase concentrations have been decreasing only at Sleeping Bear Dunes. To determine whether these results represent trends in background levels or regional emissions, the average concentrations are compared to those found in urban and rural studies. In addition, the influence of local wind direction on PAH concentrations ismore » investigated, with the assumption that dependence on wind direction implies regional sources. Using these two methods, it is found that PAH concentrations at Eagle Harbor and Sleeping Bear Dunes represent regional background levels but that PAH from the Buffalo Region intrude on the background levels measured at the Sturgeon Point site. At this site, wind from over Lake Erie reduces local PAH concentrations.« less

  7. Water Quality, Cyanobacteria, and Environmental Factors and Their Relations to Microcystin Concentrations for Use in Predictive Models at Ohio Lake Erie and Inland Lake Recreational Sites, 2013-14

    USGS Publications Warehouse

    Francy, Donna S.; Graham, Jennifer L.; Stelzer, Erin A.; Ecker, Christopher D.; Brady, Amie M. G.; Pam Struffolino,; Loftin, Keith A.

    2015-11-06

    The results of this study showed that water-quality and environmental variables are promising for use in site-specific daily or long-term predictive models. In order to develop more accurate models to predict toxin concentrations at freshwater lake sites, data need to be collected more frequently and for consecutive days in future studies.

  8. Lake trout rehabilitation in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Eckert, Thomas H.; Schaner, Ted; Bowlby, James N.; Schleen, Larry P.

    1995-01-01

    Attempts to maintain the native lake trout (Salvelinus namaycush) population in Lake Ontario by stocking fry failed and the species was extirpated by the 1950s. Hatchery fish stocked in the 1960s did not live to maturity because of sea lamprey (Petromyzon marinus) predation and incidental commercial harvest. Suppression of sea lampreys began with larvicide treatments of Lake Ontario tributaries in 1971 and was enhanced when the tributaries of Oneida Lake and Lake Erie were treated in the 1980s. Annual stocking of hatchery fish was resumed with the 1972 year class and peaked at about 1.8 million yearlings and 0.3 million fingerlings from the 1985–1990 year classes. Survival of stocked yearlings declined over 50% in the 1980 s and was negatively correlated with the abundance of lake trout > 550 mm long (r = −0.91, P < 0.01, n = 12). A slot length limit imposed by the State of New York for the 1988 fishing season reduced angler harvest. Angler harvest in Canadian waters was 3 times higher in eastern Lake Ontario than in western Lake Ontario. For the 1977–1984 year classes, mean annual survival rate of lake trout age 6 and older was 0.45 (range: 0.35–0.56). In U.S. waters during 1985–1992, the total number of lake trout harvested by anglers was about 2.4 times greater than that killed by sea lampreys. The number of unmarked lake trout < 250 mm long in trawl catches in 1978–1992 was not different from that expected due to loss of marks and failure to apply marks at the hatchery, and suggested that recruitment of naturally-produced fish was nil. However, many of the obstacles which may have impeded lake trout rehabilitation in Lake Ontario during the 1980s are slowly being removed, and there are signs of a general ecosystem recovery. Significant recruitment of naturally produced lake trout by the year 2000, one interim objective of the rehabilitation plan for the Lake, may be achieved.

  9. Geohydrology and quality of water in aquifers in Lucas, Sandusky, and Wood counties, northwestern Ohio

    USGS Publications Warehouse

    Breen, K.J.; Dumouchelle, D.H.

    1991-01-01

    some water-bearing zones. The carbonate aquifer is part of a regional ground-water-flow system; however, subsystems such as the eastern karst and central outcrops are locally important. The potentiometric surface indicates that recharge from areas south and west of the study area flows toward discharge areas along major rivers (Maumee, Portage, and Sandusky) , to a buried bedrock valley in central Sandusky County, and to springs and flowing wells. The potentiometric surface flattens markedly near the southern shore of Lake Erie, where ground-water levels approximate those of the lake, indicating a hydraulic connection between the lake and the aquifer. Hydrogeologic characteristics and water-quality data indicate that Lake Erie is not a major source of recharge to the aquifer. Ground-water ages inferred from tritium concentrations and potentiometric-surface maps indicate that recharge from precipitation enters the aquifer by subsurface drainage in karstified strata in eastern Sandusky County and by infiltration in shallow bedrock areas where drift is less than 20 ft. thick. The quality of water in the carbonate aquifer is described with reference to 52 properties and constituents that characterize chemical, radiochemical, bacteriologic, and physical conditions. Ground-water samples from 135 wells and 11 springs are used in the characterization. On the basis of these data, water from the aquifer is generally suitable for drinking and for most domestic purposes. The most areally widespread aesthtic factors limiting the use of ground water are hardness, concentrations of dissolved solids, sulfate and iron, and the presence of hydrogen sulfide. Selected bacteria are commonly present and may compromise the potability of water from the aquifer. Coliform bacteria from surface sources were found in 47 of 143 water samples. Analyses for total coliform bacteria indicate that 36 of the 125 samples from wells maintained for potable supply have bacteria counts of 4

  10. Development of a flood-warning system and flood-inundation mapping in Licking County, Ohio

    USGS Publications Warehouse

    Ostheimer, Chad J.

    2012-01-01

    Digital flood-inundation maps for selected reaches of South Fork Licking River, Raccoon Creek, North Fork Licking River, and the Licking River in Licking County, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with the Ohio Department of Transportation; U.S. Department of Transportation, Federal Highway Administration; Muskingum Watershed Conservancy District; U.S. Department of Agriculture, Natural Resources Conservation Service; and the City of Newark and Village of Granville, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the following USGS streamgages: South Fork Licking River at Heath, Ohio (03145173); Raccoon Creek below Wilson Street at Newark, Ohio (03145534); North Fork Licking River at East Main Street at Newark, Ohio (03146402); and Licking River near Newark, Ohio (03146500). The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. As part of the flood-warning streamflow network, the USGS re-installed one streamgage on North Fork Licking River, and added three new streamgages, one each on North Fork Licking River, South Fork Licking River, and Raccoon Creek. Additionally, the USGS upgraded a lake-level gage on Buckeye Lake. Data from the streamgages and lake-level gage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected, established streamgage rating curves. The step-backwater models then were used to determine water-surface-elevation profiles for up to 10 flood stages at a streamgage with corresponding streamflows ranging from approximately

  11. 78 FR 45911 - Foreign-Trade Zone 247-Erie, Pennsylvania, Application for Subzone, Hardinger Transfer Co., Erie...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ..., Pennsylvania, Application for Subzone, Hardinger Transfer Co., Erie and Grove City, Pennsylvania An application has been submitted to the Foreign-Trade Zones (FTZ) Board by the Erie-Western Pennsylvania Port..., Pennsylvania. The application was submitted pursuant to the provisions of the Foreign- Trade Zones Act, as...

  12. Changes in the deep-water benthos of eastern Lake Erie between 1979 and 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dermott, R.; Kerec, D.

    1995-06-01

    In order to examine changes of the benthic community and benthic biomass as a result of mussel colonization, a survey of the deep-water benthic fauna in eastern Lake Erie was repeated in 1993 using the same sites and methods as in a 1979 survey. During 1979, the community beyond 30 m was dominated by oligochaete worms and the burrowing amphipod Diporeia, which represented 50 and 40% of the total benthic biomass respectively. By 1993, quagga mussels (Dreissena bugensis) formed over 90% of the benthic biomass. Mussels were present at all 13 sites. Densities of individuals >2 mm in length averagedmore » 3,241 mussels m{sup -2}. Of these mussels, 97% were quagga mussels. Total density of all sizes retained on a 180 {mu}m sieve averaged 34,800 mussels m{sup -2} but total biomass decreased from 1.58 to 0.98 g m{sup -2}. The density of the amphipod Diporeia was reduced from 1,844 in 1979 to 218 m{sup -2} in 1993. While present at all sites during 1979, Diporeia remained common only at two sites and were absent at 8 of the 13 sites in 1993. The native fingernail clams, Pisidium spp., were reduced from 327 to 82 m{sup -2}. No significant reduction occurred in the worm and chironomid populations, however the dry biomass of the chironomids was reduced from 0.07 to 0.0008 g m{sup -2}. These reductions may be due to competition with the mussels for freshly settling algae. The meiofauna, which included small nematodes, ostracods, and harpacticoids retained on a 180 {mu}m sieve, all increased in density. Perhaps they benefited from an increase in the detritus deposited as pseudofeces around the mussels.« less

  13. Great Lakes Literacy Principles

    NASA Astrophysics Data System (ADS)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  14. Impact of Harmful Algal Blooms on Several Lake Erie Drinking Water Treatment Plants

    EPA Science Inventory

    Recent events in Ohio have demonstrated the challenge treatment facilities face in providing safe drinking water when encountering extreme harmful algal bloom (HAB) events. Over the last two years the impact of HAB-related microcystins on several drinking water treatment facilit...

  15. Overlap in offshore habitat use by double-crested cormorants and boaters in western Lake Erie

    USGS Publications Warehouse

    Stapanian, Martin A.; Bur, Michael T.

    2002-01-01

    Double-crested cormorants (Phalacrocorax auritus) and boats of 2 length classes (≤ 8 m and > 8 m) were counted from a boat along 31 established strip transects in western Lake Erie from 24 April to 1 September 2000. Each transect included only one of the following habitats: (1) offshore of a breeding island or roosting/loafing area for cormorants (“refuge”), (2) reefs or shoals, (3) open water, or (4) offshore of an island shoreline that had evidence of development by humans. Foraging cormorants were recorded most often offshore of refuges and least often on open water. There was no difference between the numbers of foraging cormorants/km2 recorded offshore of developed shorelines and on reefs and shoals. More than half of all boats recorded were on transects that were within 1 km of developed shorelines. Among those transects > 1 km from developed shorelines, there were no differences among the habitats for the number of boats of either length class. The respective ranks of the 31 transect means of the numbers of cormorants/km2 and the numbers of boats/km2 in either length class were uncorrelated. The results suggest that (1) cormorants select foraging habitats based mainly on shoreline type, distance from shoreline, and depth, and (2) the amount of boat traffic is influenced by proximity to port and trip objectives, including sport angling and recreational boating. Although there is overlap in habitat use by cormorants and humans, this overlap is not complete. The perception of cormorants as a threat to fish populations may in part be due to this overlap.

  16. Introduction to the Proceedings of the 1994 International Conference on Restoration of Lake Trout in the Laurentian Great Lakes

    USGS Publications Warehouse

    Selgeby, James H.

    1995-01-01

    Lake trout (Salvelinus namaycush) restoration in the Great Lakes began in the 1950s when stocking of artificially propagated lake trout was coupled with the first attempts at sea lamprey (Petromyzon marinus) control. A major milestone in the restoration process was recorded when a selective sea lamprey larvicide was identified in 1958 (Applegate et al. 1958) and then applied broad scale in Lake Superior in 1958-60 (Applegate et al. 1961). Other milestones include the expansion of the sea lamprey control programs into Lakes Michigan and Huron in 1960 (sustained usage in Lake Huron began in 1966, Smith and Tibbles 1980), Lake Ontario in 1971-72 (Elrod et al. 1995), and Lake Erie in 1986 (Cornelius et al. 1995). Following the collapse of lake trout in the Great Lakes and the implementation of massive stocking of hatchery-reared fish and effective sea lamprey control, the first documented evidence of nearshore natural reproduction of lake trout was in Lake Superior in 1965 (Dryer and King 1968), in Lake Michigan in 1980 (Jude et al. 1981), in Lake Huron in 1981-82 (Nester and Poe 1984), and in Lake Ontario in 1986 (Marsden et al. 1988).

  17. Flood of July 27-31, 2006, on the Grand River near Painesville, Ohio

    USGS Publications Warehouse

    Ebner, Andrew D.; Sherwood, James M.; Astifan, Brian; Lombardy, Kirk

    2007-01-01

    Two separate weather systems produced storms resulting in more than 11 inches of rain in parts of Lake County, Ohio, on July 27-28, 2006. As a result of the storms and ensuing flooding caused by the weather systems, the counties of Lake, Geauga, and Ashtabula were declared Federal and State disaster areas, with damages estimated at $30 million and one fatality in Lake County. About 600 people were evacuated in Lake County. The U.S. Geological Survey streamflow-gaging station at Grand River near Painesville, Ohio (station 04212100), had a record peak stage of 19.35 feet (elevation, 614.94 feet), with a record peak streamflow of 35,000 cubic feet per second, and an estimated recurrence interval of approximately 500 years. This report describes the meteorological factors that resulted in severe flooding on the Grand River near Painesville from July 27 to July 31, 2006, and addresses the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for the Grand River near Painesville. A plot of high-water marks is also presented for the Grand River in a reach that includes the City of Painesville, Painesville Township, the Village of Fairport Harbor, and the Village of Grand River.

  18. Preferred temperatures of juvenile lake whitefish

    USGS Publications Warehouse

    Edsall, Thomas A.

    1999-01-01

    Lake whitefish (Coregonus clupeaformis) supported valuable commercial fisheries in all of the Great Lakes until the 1950s to 1960s when their populations collapsed due to overfishing, pollution, and predation by the exotic sea lamprey (Petromyzon marinus). Reduction of these population stresses has permitted significant recovery of the lake whitefish in the upper three Great Lakes since the 1980s, and limited but encouraging recovery is now apparent in Lakes Erie and Ontario. In the present study the thermal preferences of age-0 and age-1 lake whitefish were measured in the laboratory to provide a basis for determining thermal habitat use by juvenile lake whitefish and thermal niche overlap with exotic fishes that might prey on them. Final thermal preferenda of young lake whitefish varied inversely with fish size ranging from 16.8°C for fish averaging 1.9 g to 15.6°C for age-1 fish averaging 3.9 g. Final thermal preferenda were in agreement with the limited published information on temperature selection of juvenile lake whitefish in the laboratory and on thermal habitat use by wild, free-ranging populations in the Great Lakes.

  19. Sampling little fish in big rivers: Larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices

    USGS Publications Warehouse

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.

    2014-01-01

    Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.

  20. An ecological basis for future fish habitat restoration efforts in the Huron-Erie Corridor

    USGS Publications Warehouse

    Hondorp, Darryl W.; Roseman, Edward F.; Manny, Bruce A.

    2014-01-01

    This perspective describes the major natural and anthropogenic forces driving change in the abundance and quality of fish habitats in the Huron-Erie Corridor (HEC), the Great Lakes connecting channel comprised of the St. Clair River, the Lake St. Clair, and the Detroit River. Channels connecting the Laurentian Great Lakes discharge large volumes of water equal to or greater than most other large rivers in the world that is of consistent high quality and volume, all year. Owing to creation of the St. Lawrence Seaway through the Great Lakes, the connecting channels have been modified by dredging over 200 km of deep-draft shipping lanes with a maintained depth of no less than 8.2 m. Combined with modification of their shorelines for housing and industries, use of the connecting channels for discharges of industrial and municipal wastes and shipping has resulted in numerous beneficial use impairments, such as restrictions on fish and wildlife consumption, degradation of fish and wildlife populations, and losses of fish and wildlife habitat. Various options for remediation of native fish populations and their habitats in the Great Lakes connecting channels, including construction of spawning habitat for threatened and high-value food fishes, such as lake sturgeon (Acipenser fulvescens), walleye (Sander vitreus), and lake whitefish (Coregonus clupeaformis), have been implemented successfully in two of the channels, and form the basis for further recommended research described in this article.

  1. The Great Lake Erie: A Reference Text for Educators and Communicators.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W., Ed.; Mayer, Victor J., Ed.

    This volume of 16 chapters by 15 contributing authors was conceived as a means of drawing together a body of basic information about the Great Lakes that is up to date, based on sound research, and interpreted by experts in the scientific, historical, environmental and political value of the Great Lakes to North America and the world. Chapters…

  2. Investigation of Breakwater Stability at Presque Isle Peninsula Erie, Pennsylvania

    DTIC Science & Technology

    1989-05-01

    PRESQUE ISLE PENINSULA AD-A208 528 ERIE , PENNSYLVANIA by Peter J. Grace...STABILITY AT PRESQUE ISLE PENINSULA, ERIE . PENNSYLVANIA PART I: INTRODUCTION The Prototype 1. Harbor facilities at Erie , Pennsylvania , are protected...at Presque Isle Beaches, Erie , Pennsylvania ," Technical Report HL-83-15, US Army Engineer Waterways Experiment Station, Vicksburg, MS. Stevens, J.

  3. Collective Bargaining Agreement By and Between the County of Erie and the Faculty Federation of Erie Community College.

    ERIC Educational Resources Information Center

    Erie Community Coll., Buffalo, NY.

    This document presents the collective bargaining agreement by and between the County of Erie and the Faculty Federation of Erie Community College. The agreement encompasses a statement of purpose; legislative review; recognition; definition; position definitions; management rights; federations-administration relations; dues checkoff and…

  4. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afjeh, Abdollah A.; Windpower, Nautica; Marrone, Joseph

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in themore » study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a

  5. Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes

    NASA Astrophysics Data System (ADS)

    Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.

    2014-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (

  6. Potential impacts of water diversion on fishery resources in the Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.

    1984-01-01

    Uses of Great Lakes water within the Great Lakes basin are steadily increasing, and critical water shortages elsewhere may add to the demands for diversions of water out of the basin in the near future. The impacts of such diversions on fish in the Great Lakes must be considered in the context of in-basin uses of the water, because in-basin uses already adversely affect the fishery resources. Temporary in-basin water withdrawals from Lake Michigan by industry in 1980 equaled 260% of the total volume of water between the shoreline and the 10-meter depth - the littoral waters most heavily used by fish as spawning and nursery grounds. Nearly 100% of the fish removed by these water withdrawals were killed. Enough young alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) in Lake Michigan and young yellow perch (Perca flavescens) in western Lake Erie have been removed at water intakes in recent years to reduce the productivity and biomass of adult fish stocks. Out-of-basin diversions of water at Chicago and at the Welland Canal, channel modifications in the St. Clair River, and in-basin consumptive water withdrawals have lowered the annual mean water level of Lakes Michigan and Huron by about 27 cm and that of Lake Erie by about 10 cm, dewatering wetlands that historically served as spawning and nursery habitat for many valuable fish species. The dollar value of fish lost to water diversions and withdrawals has not yet been estimated, but water withdrawals alone have already reduced the annual economic impact of the Great Lakes fisheries, which has been estimated to be 1.16 billion dollars.

  7. Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.

    PubMed

    McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer

    2016-09-06

    Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study.

  8. Trends in phosphorus loading to the western basin of Lake ...

    EPA Pesticide Factsheets

    Dave Dolan spent much of his career computing and compiling phosphorus loads to the Great Lakes. None of his work in this area has been more valuable than his continued load estimates to Lake Erie, which has allowed us to unambiguously interpret the cyanobacteria blooms and hypoxia development in the lake. To help understand the re-occurrence of cyanobacteria blooms in the Western Basin of Lake Erie, we have examined the phosphorus loading to the Western Basin over the past 15 years. Furthermore, we have examined the relative contributions from various tributaries and the Detroit River. On an annual basis the total phosphorus load has not exhibited a trend, other than being well correlated with flow from major tributaries. However, the dissolved reactive phosphorus (DRP) load has trended upward, returning to levels observed in the mid-1970s. This increase has largely been attributed to the increase in flow-weighted DRP concentration in the Maumee River. Over the period, about half of the phosphorus load comes from the Maumee River with the other half coming from the Detroit River; other tributaries contribute much small amounts to the load. Seasonal analysis shows the highest percentage of the load occurs in the spring during high flow events. We are very grateful to our friend Dave for making this type of analysis possible not applicable

  9. Achieving Long-Term Protection of Water Quality of Grand Lake St. Marys Through Implementation of Conservation Practices and Control of Phosphorus Input from Agricultural Drainage

    EPA Science Inventory

    Grand Lake St. Marys (GLSM), a 13,000 acre lake in northwestern Ohio, is experiencing toxic levels of algal blooms resulting primarily from phosphorus input from agricultural runoff. The algal blooms are so severe that the Ohio Department of Natural Resources advised against any...

  10. Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes.

    PubMed

    Blukacz-Richards, E Agnes; Visha, Ariola; Graham, Matthew L; McGoldrick, Daryl L; de Solla, Shane R; Moore, David J; Arhonditsis, George B

    2017-04-01

    Total mercury levels in aquatic birds and fish communities have been monitored across the Canadian Great Lakes by Environment and Climate Change Canada (ECCC) for the past 42 years (1974-2015). These data (22 sites) were used to examine spatio-temporal variability of mercury levels in herring gull (Larus argentatus) eggs, lake trout (Salvelinus namaycush), walleye (Sander vitreus), and rainbow smelt (Osmerus mordax). Trends were quantified with dynamic linear models, which provided time-variant rates of change of mercury concentrations. Lipid content (in both fish and eggs) and length in fish were used as covariates in all models. For the first three decades, mercury levels in gull eggs and fish declined at all stations. In the 2000s, trends for herring gull eggs reversed at two sites in Lake Erie and two sites in Lake Ontario. Similar trend reversals in the 2000s were observed for lake trout in Lake Superior and at a single station in Lake Ontario. Mercury levels in lake trout continued to slowly decline at all of the remaining stations, except for Lake Huron, where the levels remained stable. A post-hoc Bayesian regression analysis suggests strong trophic interactions between herring gulls and rainbow smelt in Lake Superior and Lake Ontario, but also pinpoints the likelihood of a trophic decoupling in Lake Huron and Lake Erie. Continued monitoring of mercury levels in herring gulls and fish is required to consolidate these trophic shifts and further evaluate their broader implications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. Lake whitefish and Diporeia spp. in the Great lakes: an overview

    USGS Publications Warehouse

    Nalepa, Thomas F.; Mohr, Lloyd C.; Henderson, Bryan A.; Madenjian, Charles P.; Schneeberger, Philip J.

    2005-01-01

    Because of growing concern in the Great Lakes over declines in abundance and growth of lake whitefish (Coregonus clupeaformis) and declines in abundance of the benthic amphipod Diporeia spp., a workshop was held to examine past and current trends, to explore trophic links, and to discuss the latest research results and needs. The workshop was divided into sessions on the status of populations in each of the lakes, bioenergetics and trophic dynamics, and exploitation and management. Abundance, growth, and condition of whitefish populations in Lakes Superior and Erie are stable and within the range of historical means, but these variables are declining in Lakes Michigan and Ontario and parts of Lake Huron. The loss of Diporeia spp., a major food item of whitefish, has been a factor in observed declines, particularly in Lake Ontario, but density-dependent factors also likely played a role in Lakes Michigan and Huron. The loss of Diporeia spp. is temporally linked to the introduction and proliferation of dreissenid mussels, but a direct cause for the negative response of Diporeia spp. has not been established. Given changes in whitefish populations, age-structured models need to be re-evaluated. Other whitefish research needs to include a better understanding of what environmental conditions lead to strong year-classes, improved aging techniques, and better information on individual population (stock) structure. Further collaborations between assessment biologists and researchers studying the lower food web would enhance an understanding of links between trophic levels.

  12. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    years ago. Within that record is a quasi-periodic rise and fall of about 160 ? 40 years in duration and a shorter fluctuation of 32 ? 6 years that is superimposed on the 160-year fluctuation. Recorded lake-level history from 1860 to the present falls within the longer-term pattern and appears to be a single 160-year quasi-periodic fluctuation. Independent investigations of past climate change in the basin over the long-term period of record confirm that most of these changes in lake level were responses to climatically driven changes in water balance, including lake-level highstands commonly associated with cooler climatic conditions and lows with warm climate periods. The mechanisms underlying these large hydroclimatic anomalies are not clear, but they may be related to internal dynamics of the ocean-atmosphere system or dynamical responses of the ocean-atmosphere system to variability in solar radiation or volcanic activity. The large capacities of the Great Lakes allow them to store great volumes of water. As calculated at chart datum, Lake Superior stores more water (2,900 mi3) than all the other lakes combined (2,539 mi3). Lake Michigan's storage is 1,180 mi3; Lake Huron's, 850 mi3; Lake Ontario's, 393 mi3; and Lake Erie's, 116 mi3. Seasonal lake-level changes alter storage by as much as 6 mi3 in Lake Superior and as little as 2.1 mi3 in Lake Erie. The extreme high and low lake levels measured in recorded lake-level history have altered storage by as much as 31 mi3 in Lake Michigan-Huron and as little as 9 mi3 in Lake Ontario. Diversions of water into and out of the lakes are very small compared to the total volume of water stored in the lakes. The water level of Lake Superior has been regulated since about 1914 and levels of Lake Ontario since about 1960. The range of Lake Superior water-level fluctuations and storage has not been altered greatly by regulation. However, fluctuations on Lake Ontario have been reduced from 6.6 ft preregulation

  13. Wave Action and Breakwater Location, Taconite Harbor (Two Islands), Lake Superior, Minnesota: Hydraulic Model Investigation

    DTIC Science & Technology

    1955-05-01

    president, Taconite Contractors, Erie. Mining Company, Duluth, Minnesota The model study was conducted in the Hydraulics Division of the Waterways...CORPS OF ENGINEERS. U. S. ARMY WAVE ACTION AND BREAKWATER LOCATION TACONITE HARBOR (TWO ISLANDS) LAKE SUPERIOR, MINNESOTA ARIIIY-MRC VICKSBURG...Breakwater Location, Taconite Harbor (Two Islands), Lake Superior, Minnesota : Hydraulic Model Investigation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  14. Comparison of 5 benthic samplers to collect burrowing mayfly nymphs (Hexagenia spp.:Ephemeroptera:Ephemeridae) in sediments of the Laurentian Great Lakes

    USGS Publications Warehouse

    Schloesser, Don W.; Nalepa, Thomas F.

    2002-01-01

    The recent return of burrowing mayfly nymphs (Hexagenia spp.) to western Lake Erie of the Laurentian Great Lakes has prompted a need to find a sampler to obtain the most accurate (i.e., highest mean density) and precise (i.e., lowest mean variance) abundance estimates of nymphs. The abundance of burrowing nymphs is important because it is being used as a measure of ecosystem health to determine management goals for fisheries and pollution abatement programs for waters in both North America and Europe. We compared efficiencies of 5 benthic grab samplers (Ponar, Ekman, petite Ponar, Petersen, and orange-peel) to collect nymphs from sediments of western Lake Erie and Lake St. Clair. Samplers were used at one site with soft substrates in both lakes in 1997 (Ponar, Ekman, petite Ponar, and Petersen) and 1998 (Ponar and Ekman), and at one site with soft and one site with hard substrates in Lake St. Clair in 1999 (Ponar and orange-peel). In addition, the Ponar, Ekman, and Petersen samplers were used at one site with soft substrates of western Lake Erie in 2000 to examine the causes of differences among samplers. The Ponar was more accurate than the other samplers; it collected the highest densities of nymphs for 31 of 32 date and site comparisons. In soft substrates, the order of decreasing overall densities was: Ponar>Petersen>petite Ponar>Ekman in western Lake Erie and Ponar>Petersen> Ekman>petite Ponar in Lake St. Clair in 1997, Ponar>Ekman in both lakes in 1998, and Ponar>orange-peel in Lake St. Clair in 1999. In hard substrates, the Ponar was more accurate than the orange-peel in Lake St. Clair in 1999. Precision of the Ponar was generally greater than the Ekman, petite Ponar, and Petersen but similar to the orange-peel. Higher densities of nymphs obtained with the Ponar than other grabs are attributed to its relatively heavy weight, which allows it to sample deeper in sediments than the Ekman and petite Ponar. Also, the Ponar has a screened top, which allows it to

  15. Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin

    NASA Astrophysics Data System (ADS)

    Williams, Mark R.; Livingston, Stanley J.; Penn, Chad J.; Smith, Douglas R.; King, Kevin W.; Huang, Chi-hua

    2018-04-01

    Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key components driving nutrient delivery processes during storm events in four nested agricultural watersheds (298-19,341 ha) in the western Lake Erie basin with poorly drained soils and an extensive artificial drainage network typical of the Midwestern U.S. Concentration-discharge hysteresis patterns of nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP) occurring during 47 storm events over a 6 year period (2004-2009) were evaluated. An assessment of the factors producing nutrient hysteresis was completed following a factor analysis on a suite of measured environmental variables representing the fluvial and wider watershed conditions prior to, and during the monitored storm events. Results showed the artificial drainage network (i.e., surface tile inlets and subsurface tile drains) in these watersheds was the primary flow pathway for nutrient delivery to streams, but nutrient behavior and export during storm events was regulated by the flow paths to and the intensity of the drainage network, the availability of nutrients, and the relative contributions of upland and in-stream nutrient sources. Potential sources and flow pathways for transport varied among NO3-N, PP, and DRP with results underscoring the challenge of mitigating nutrient loss in these watersheds. Conservation practices addressing both nutrient management and hydrologic connectivity will likely be required to decrease nutrient loss in artificially drained landscapes.

  16. Modeling to Predict Escherichia coli at Presque Isle Beach 2, City of Erie, Erie County, Pennsylvania

    USGS Publications Warehouse

    Zimmerman, Tammy M.

    2008-01-01

    The Lake Erie beaches in Pennsylvania are a valuable recreational resource for Erie County. Concentrations of Escherichia coli (E. coli) at monitored beaches in Presque Isle State Park in Erie, Pa., occasionally exceed the single-sample bathing-water standard of 235 colonies per 100 milliliters resulting in potentially unsafe swimming conditions and prompting beach managers to post public advisories or to close beaches to recreation. To supplement the current method for assessing recreational water quality (E. coli concentrations from the previous day), a predictive regression model for E. coli concentrations at Presque Isle Beach 2 was developed from data collected during the 2004 and 2005 recreational seasons. Model output included predicted E. coli concentrations and exceedance probabilities--the probability that E. coli concentrations would exceed the standard. For this study, E. coli concentrations and other water-quality and environmental data were collected during the 2006 recreational season at Presque Isle Beach 2. The data from 2006, an independent year, were used to test (validate) the 2004-2005 predictive regression model and compare the model performance to the current method. Using 2006 data, the 2004-2005 model yielded more correct responses and better predicted exceedances of the standard than the use of E. coli concentrations from the previous day. The differences were not pronounced, however, and more data are needed. For example, the model correctly predicted exceedances of the standard 11 percent of the time (1 out of 9 exceedances that occurred in 2006) whereas using the E. coli concentrations from the previous day did not result in any correctly predicted exceedances. After validation, new models were developed by adding the 2006 data to the 2004-2005 dataset and by analyzing the data in 2- and 3-year combinations. Results showed that excluding the 2004 data (using 2005 and 2006 data only) yielded the best model. Explanatory variables in the

  17. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in ourmore » laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.« less

  18. ERIS: preliminary design phase overview

    NASA Astrophysics Data System (ADS)

    Kuntschner, Harald; Jochum, Lieselotte; Amico, Paola; Dekker, Johannes K.; Kerber, Florian; Marchetti, Enrico; Accardo, Matteo; Brast, Roland; Brinkmann, Martin; Conzelmann, Ralf D.; Delabre, Bernard A.; Duchateau, Michel; Fedrigo, Enrico; Finger, Gert; Frank, Christoph; Rodriguez, Fernando G.; Klein, Barbara; Knudstrup, Jens; Le Louarn, Miska; Lundin, Lars; Modigliani, Andrea; Müller, Michael; Neeser, Mark; Tordo, Sebastien; Valenti, Elena; Eisenhauer, Frank; Sturm, Eckhard; Feuchtgruber, Helmut; George, Elisabeth M.; Hartl, Michael; Hofmann, Reiner; Huber, Heinrich; Plattner, Markus P.; Schubert, Josef; Tarantik, Karl; Wiezorrek, Erich; Meyer, Michael R.; Quanz, Sascha P.; Glauser, Adrian M.; Weisz, Harald; Esposito, Simone; Xompero, Marco; Agapito, Guido; Antichi, Jacopo; Biliotti, Valdemaro; Bonaglia, Marco; Briguglio, Runa; Carbonaro, Luca; Cresci, Giovanni; Fini, Luca; Pinna, Enrico; Puglisi, Alfio T.; Quirós-Pacheco, Fernando; Riccardi, Armando; Di Rico, Gianluca; Arcidiacono, Carmelo; Dolci, Mauro

    2014-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation adaptive optics near-IR imager and spectrograph for the Cassegrain focus of the Very Large Telescope (VLT) Unit Telescope 4, which will soon make full use of the Adaptive Optics Facility (AOF). It is a high-Strehl AO-assisted instrument that will use the Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). The project has been approved for construction and has entered its preliminary design phase. ERIS will be constructed in a collaboration including the Max- Planck Institut für Extraterrestrische Physik, the Eidgenössische Technische Hochschule Zürich and the Osservatorio Astrofisico di Arcetri and will offer 1 - 5 μm imaging and 1 - 2.5 μm integral field spectroscopic capabilities with a high Strehl performance. Wavefront sensing can be carried out with an optical high-order NGS Pyramid wavefront sensor, or with a single laser in either an optical low-order NGS mode, or with a near-IR low-order mode sensor. Due to its highly sensitive visible wavefront sensor, and separate near-IR low-order mode, ERIS provides a large sky coverage with its 1' patrol field radius that can even include AO stars embedded in dust-enshrouded environments. As such it will replace, with a much improved single conjugated AO correction, the most scientifically important imaging modes offered by NACO (diffraction limited imaging in the J to M bands, Sparse Aperture Masking and Apodizing Phase Plate (APP) coronagraphy) and the integral field spectroscopy modes of SINFONI, whose instrumental module, SPIFFI, will be upgraded and re-used in ERIS. As part of the SPIFFI upgrade a new higher resolution grating and a science detector replacement are envisaged, as well as PLC driven motors. To accommodate ERIS at the Cassegrain focus, an extension of the telescope back focal length is required, with modifications of the guider arm assembly. In this paper we report on the status of the

  19. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    USGS Publications Warehouse

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    Lake Michigan. In general, trends in year-class strengths were less concordant across the basin and only coregonids showed statistical agreement across the upper Great Lakes. The appearance of strong and moderate year-classes of Bloater in Lake Huron in 2005- 2011 countered the trend of continuing weak year-classes of coregonids in Lakes Michigan and Superior. Not shown in our analysis is the appearance of the 2013 year-class of Bloater in Huron, the largest to date. There was no agreement in cross-basin trends in year-class strengths for Rainbow Smelt and Alewife, although there was agreement between pairs of lakes. Although there was statistical agreement in trends of age-0 and older Round Goby biomass among lakes where this species has successfully invaded (Michigan, Huron, Erie and Ontario), temporal patterns of biomass in each lake were different. Round Goby may be approaching equilibrium in Lake Erie, peaking in Lake Huron, and expanding in Lake Michigan. The trend in Lake Ontario remains unclear. Declining abundance in Lake Erie has corresponded with evidence that Round Goby have become increasingly incorporated into piscivore diets, e.g., Lake Trout, Walleye, Smallmouth Bass, Yellow Perch, and Burbot in Lakes Michigan, Huron, Erie, and Ontario. Round Goby continue to be absent from spring bottom trawl assessments in Lake Superior, but their presence in the harbors and embayments of Duluth and Thunder Bay (U.S. Geological Survey and Ontario Ministry of Natural Resources, unpublished data), suggests that there is potential for future colonization.

  20. Genetic strategies for lake trout rehabilitation: a synthesis

    USGS Publications Warehouse

    Burnham-Curtis, Mary K.; Krueger, Charles C.; Schreiner, Donald R.; Johnson, James E.; Stewart, Thomas J.; Horrall, Ross M.; MacCallum, Wayne R.; Kenyon, Roger; Lange, Robert E.

    1995-01-01

    The goal of lake trout rehabilitation efforts in the Great Lakes has been to reestablish inshore lake trout (Salvelinus namaycush) populations to self-sustaining levels. A combination of sea lamprey control, stocking of hatchery-reared lake trout, and catch restrictions were used to enhance remnant lake trout stocks in Lake Superior and reestablish lake trout in Lakes Michigan, Huron, Erie, and Ontario. Genetic diversity is important for the evolution and maintenance of successful adaptive strategies critical to population restoration. The loss of genetic diversity among wild lake trout stocks in the Great Lakes imposes a severe constraint on lake trout rehabilitation. The objective of this synthesis is to address whether the particular strain used for stocking combined with the choice of stocking location affects the success or failure of lake trout rehabilitation. Poor survival, low juvenile recruitment, and inefficient habitat use are three biological impediments to lake trout rehabilitation that can be influenced by genetic traits. Evidence supports the hypothesis that the choices of appropriate lake trout strain and stocking locations enhance the survival of lake trout stocked into the Great Lakes. Genetic strategies proposed for lake trout rehabilitation include conservation of genetic diversity in remnant stocks, matching of strains with target environments, stocking a greater variety of lake trout phenotypes, and rehabilitation of diversity at all trophic levels.

  1. Large-scale Watershed Modeling: NHDPlus Resolution with Achievable Conservation Scenarios in the Western Lake Erie Basin

    NASA Astrophysics Data System (ADS)

    Yen, H.; White, M. J.; Arnold, J. G.; Keitzer, S. C.; Johnson, M. V. V.; Atwood, J. D.; Daggupati, P.; Herbert, M. E.; Sowa, S. P.; Ludsin, S.; Robertson, D. M.; Srinivasan, R.; Rewa, C. A.

    2016-12-01

    By the substantial improvement of computer technology, large-scale watershed modeling has become practically feasible in conducting detailed investigations of hydrologic, sediment, and nutrient processes. In the Western Lake Erie Basin (WLEB), water quality issues caused by anthropogenic activities are not just interesting research subjects but, have implications related to human health and welfare, as well as ecological integrity, resistance, and resilience. In this study, the Soil and Water Assessment Tool (SWAT) and the finest resolution stream network, NHDPlus, were implemented on the WLEB to examine the interactions between achievable conservation scenarios with corresponding additional projected costs. During the calibration/validation processes, both hard (temporal) and soft (non-temporal) data were used to ensure the modeling outputs are coherent with actual watershed behavior. The results showed that widespread adoption of conservation practices intended to provide erosion control could deliver average reductions of sediment and nutrients without additional nutrient management changes. On the other hand, responses of nitrate (NO3) and dissolved inorganic phosphorus (DIP) dynamics may be different than responses of total nitrogen and total phosphorus dynamics under the same conservation practice. Model results also implied that fewer financial resources are required to achieve conservation goals if the goal is to achieve reductions in targeted watershed outputs (ex. NO3 or DIP) rather than aggregated outputs (ex. total nitrogen or total phosphorus). In addition, it was found that the model's capacity to simulate seasonal effects and responses to changing conservation adoption on a seasonal basis could provide a useful index to help alleviate additional cost through temporal targeting of conservation practices. Scientists, engineers, and stakeholders can take advantage of the work performed in this study as essential information while conducting policy

  2. Evidence of lake whitefish spawning in the Detroit River: Implications for habitat and population recovery

    USGS Publications Warehouse

    Roseman, E.F.; Kennedy, G.W.; Boase, J.; Manny, B.A.; Todd, T.N.; Stott, W.

    2007-01-01

    Historic reports imply that the lower Detroit River was once a prolific spawning area for lake whitefish (Coregonus clupeaformis) prior to the construction of the Livingstone shipping channel in 1911. Large numbers of lake whitefish migrated into the river in fall where they spawned on expansive limestone bedrock and gravel bars. Lake whitefish were harvested in the river during this time by commercial fisheries and for fish culture operations. The last reported landing of lake whitefish from the Detroit River was in 1925. Loss of suitable spawning habitat during the construction of the shipping channels as well as the effects of over-fishing, sea lamprey (Petromyzon marinus) predation, loss of riparian wetlands, and other perturbations to riverine habitat are associated with the disappearance of lake whitefish spawning runs. Because lake whitefish are recovering in Lake Erie with substantial spawning occurring in the western basin, we suspected they may once again be using the Detroit River to spawn. We sampled in the Detroit River for lake whitefish adults and eggs in late fall of 2005 and for lake whitefish eggs and fish larvae in 2006 to assess the extent of reproduction in the river. A spawning-ready male lake whitefish was collected in gillnets and several dozen viable lake whitefish eggs were collected with a pump in the Detroit River in November and December 2005. No lake whitefish eggs were found at lower river sites in March of 2006, but viable lake whitefish eggs were found at Belle Isle in the upper river in early April. Several hundred lake whitefish larvae were collected in the river during March through early May 2006. Peak larval densities (30 fish/1,000 m3 of water) were observed during the week of 3 April. Because high numbers of lake whitefish larvae were collected from mid- and downstream sample sites in the river, we believe that production of lake whitefish in the Detroit River may be a substantial contribution to the lake whitefish population

  3. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    USGS Publications Warehouse

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  4. Presque Isle Peninsula, Erie, Pennsylvania. Volume I. Main Report. Revised.

    DTIC Science & Technology

    1980-11-01

    PRESQUE ISLE PENINSULA, ERIE , PENNSYLVANIA . Memorandum includimg~nviron- 1.6... Pennsylvania THE SECRETARY OF THE ARMY 1. I submit for transmission to Congress my report on Presque Isle Peninsula, Erie , Pennsylvania . It is...advanced engineering and design of the project for beach erosion control for Presque Isle Peninsula at Erie , Pennsylvania . 2. The District and

  5. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios.

    PubMed

    Yen, Haw; White, Michael J; Arnold, Jeffrey G; Keitzer, S Conor; Johnson, Mari-Vaughn V; Atwood, Jay D; Daggupati, Prasad; Herbert, Matthew E; Sowa, Scott P; Ludsin, Stuart A; Robertson, Dale M; Srinivasan, Raghavan; Rewa, Charles A

    2016-11-01

    Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relationships between land use and water, nutrient, and sediment dynamics. This manuscript evaluated the capacity of the current Soil and Water Assessment Tool (SWAT) to predict hydrological and water quality processes within WLEB at the finest resolution watershed boundary unit (NHDPlus) along with the current conditions and conservation scenarios. The process based SWAT model was capable of the fine-scale computation and complex routing used in this project, as indicated by measured data at five gaging stations. The level of detail required for fine-scale spatial simulation made the use of both hard and soft data necessary in model calibration, alongside other model adaptations. Limitations to the model's predictive capacity were due to a paucity of data in the region at the NHDPlus scale rather than due to SWAT functionality. Results of treatment scenarios demonstrate variable effects of structural practices and nutrient management on sediment and nutrient loss dynamics. Targeting treatment to acres with critical outstanding conservation needs provides the largest return on investment in terms of nutrient loss reduction per dollar spent, relative to treating acres with lower inherent nutrient loss vulnerabilities. Importantly, this research raises considerations about use of models to guide land management decisions at very fine spatial scales. Decision makers using these results should be aware of data limitations that hinder fine-scale model interpretation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios

    USGS Publications Warehouse

    Yen, Haw; White, Michael J.; Arnold, Jeffrey G.; Keitzer, S. Conor; Johnson, Mari-Vaughn V; Atwood, Jay D.; Daggupati, Prasad; Herbert, Matthew E.; Sowa, Scott P.; Ludsin, Stuart A.; Robertson, Dale M.; Srinivasan, Raghavan; Rewa, Charles A.

    2016-01-01

    Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relationships between land use and water, nutrient, and sediment dynamics. This manuscript evaluated the capacity of the current Soil and Water Assessment Tool (SWAT2012) to predict hydrological and water quality processes within WLEB at the finest resolution watershed boundary unit (NHDPlus) along with the current conditions and conservation scenarios. The process based SWAT model was capable of the fine-scale computation and complex routing used in this project, as indicated by measured data at five gaging stations. The level of detail required for fine-scale spatial simulation made the use of both hard and soft data necessary in model calibration, alongside other model adaptations. Limitations to the model's predictive capacity were due to a paucity of data in the region at the NHDPlus scale rather than due to SWAT functionality. Results of treatment scenarios demonstrate variable effects of structural practices and nutrient management on sediment and nutrient loss dynamics. Targeting treatment to acres with critical outstanding conservation needs provides the largest return on investment in terms of nutrient loss reduction per dollar spent, relative to treating acres with lower inherent nutrient loss vulnerabilities. Importantly, this research raises considerations about use of models to guide land management decisions at very fine spatial scales. Decision makers using these results should be aware of data limitations that hinder fine-scale model interpretation.

  7. The first US National Coastal Condition Assessment survey in the Great Lakes: Development of the GIS frame and exploration of spatial variation in nearshore water quality results

    EPA Science Inventory

    A comprehensive approach to assess conditions in the Great Lakes nearshore zone has been lacking for decades. We had the opportunity to conduct a pilot survey in Lake Erie (45 sites) in summer 2009 and to develop a full survey across the 5 lakes (~400 sites) as part of the US N...

  8. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    NASA Technical Reports Server (NTRS)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  9. Drilling history and stratigraphic correlation of Rose Run sandstone of northeastern Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, C.C.

    1988-08-01

    To date, 40 known tests have penetrated the Knox unconformity in Ashtabula, Lake, Trumbull, Geauga, and Portage Counties, Ohio. Prior to 1980, there were only 22 tests. Of these, only 10 penetrated and logged rocks older than the Rose Run sandstone. In the period 1980-1986, two Rose Run discoveries were drilled, one in New Lyme Township of Ashtabula County and one in Burton Township of Geauga County. Both discovery wells have been offset. Attempts have been made to correlate these two areas with older tests in northeastern Ohio and with the Rose Run sandstones of Coshocton County. In northeastern Ohio,more » preliminary studies indicate a Rose Run sandstone and/or dolomite interval approximately 100 ft thick. The upper 50 ft is predominantly sandstone and the lower 50 ft changes locally from sandstone to dolomite. The upper sandy member can be correlated to the A, B, and C sandstone units of Coshocton County.« less

  10. Sediment and Water Quality Insights from the Great Lakes Connecting Channels NCCA Surveys

    EPA Science Inventory

    Probability-based surveys of the U.S. Great Lakes coastal waters (excluding connecting channels) were conducted in 2010 and 2015 as part of EPA’s National Coastal Condition Assessment (NCCA). Research on the Huron-Erie corridor (HEC; 2014, 2015) and the St. Marys River (SMR; 2015...

  11. Species interactions of the alewife in the Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1970-01-01

    The alewife (Alosa pseudoharengus) has caused serious problems in the Great Lakes for almost 100 years. It entered Lake Ontario in abundance via the Erie Canal during the 1860's when major piscivores were declining, and became the dominant species in the lake during the 1870's. The alewife subsequently spread throughout the Great Lakes and became the dominant species in Lakes Huron and Michigan as major piscivores declined. In lakes where it became extremely abundant, the shallow-water planktivores declined in the first decade after alewife establishment, the minor piscivores increased then declined in the second decade, and the deep-water planktivores declined in the third decade. The consequence has been a general reduction in fishery productivity. Rehabilitation will require extreme reduction of the alewife, and restoration of an interacting complex of deep- and shallow-water forage species, and minor and major piscivores, either by reestablishing species affected by the alewife, or by the introduction of new species that can thrive under the new ecological conditions of the lakes.

  12. Lake Erie Water Level Study. Appendix F. Environmental Effects.

    DTIC Science & Technology

    1981-07-01

    were reevaluated with weight being placed on the most recent data. The wetland area in Pennsylvania was limited to that area on and around Presque Isle ...and East Harbor, Sandusky Bay, Northeast Yacht Club, Mentor Harbor, Presque Isle Bay, Port Dover, and Sturgeon Creek. In Lake Ontario the regulation...valued at close to 4 million dollars (Melski 1973), and the winter ice fishery was valued at 1.1 million dollars. Presque Isle Bay (which is on the

  13. Earth observations taken from Space Shuttle Columbia during STS-78 mission

    NASA Image and Video Library

    1996-06-26

    STS078-726-000A (20 June - 7 July 1996) --- Though the Space Shuttle program has been ongoing since 1981, few pictures have been taken from Earth-orbit that show the Toledo area featured in this 70mm frame from the STS-78/LMS-1 mission. The muddy Maumee River flows through Toledo into the west end of Lake Erie. Toledo is the seat (1835) of Lucas county, northwestern Ohio, and is a principal Great Lakes port, being the hub of a metropolitan complex that includes Ottawa Hills, Maumee, Oregon, Sylvania, Perrysburg, and Rossford. Fort Industry (1803-05) was located at the mouth of Swan Creek (now downtown Toledo), where permanent settlement was made after the War of 1812. Two villages, Port Lawrence (1817) and Vistula (1832), were consolidated in 1833 and named for Toledo, Spain. The united community was incorporated as a city in 1837. Its population in 1990 was 332,943. There are many smaller Ohio cities in the photo including Bowling Green, Findlay, Tiffin, Fremont, Fostoria, and Sandusky (right edge).

  14. Mercury, selenium and neurochemical biomarkers in different brain regions of migrating common loons from Lake Erie, Canada.

    PubMed

    Hamilton, Melanie; Scheuhammer, Anton; Basu, Niladri

    2011-10-01

    Common loons (Gavia immer) can be exposed to relatively high levels of dietary methylmercury (MeHg) through fish consumption, and several studies have documented MeHg-associated health effects in this species. To further study the neurological risks of MeHg accumulation, migrating loons dying of Type E botulism were collected opportunistically from the Lake Erie shore at Long Point (Ontario, Canada) and relationships between total mercury (THg), selenium (Se), and selected neurochemical receptors and brain enzymes were investigated. THg concentrations were 1-78 μg/g in liver; and 0.3-4 μg/g in the brain (all concentrations reported on a dry weight basis). A significant (p < 0.05) positive correlation was found between THg in liver and THg in 3 subregions of the brain (cerebral cortex: r = 0.433; cerebellum: r = 0.293; brain stem: r = 0.405). THg varied significantly among different brain regions, with the cortex having the highest concentrations. Se levels in the cortex and cerebellum were 1-29 and 1-10 μg/g, respectively, with no significant differences between regions. Se was not measured in brain stem due to insufficient tissue mass. There were molar excesses of Se over mercury (Hg) in both cortex and cerebellum at all Hg concentrations, and a significant positive relationship between THg and the Hg:Se molar ratio (cortex: r = 0.63; cerebellum: r = 0.47). No significant associations were observed between brain THg and the N-methyl-D-aspartic acid (NMDA) receptor concentration, nor between THg and muscarinic cholinergic (mACh) receptor concentration; however, brain THg levels were lower than in previous studies that reported significant Hg-associated changes in neuroreceptor densities. Together with previous studies, the current findings add to our understanding of Hg distribution in the brain of common loons, and the associations between Hg and sub-lethal neurochemical changes in fish-eating wildlife.

  15. Dynamics of suspended sediment plumes in Lake Ontario

    NASA Technical Reports Server (NTRS)

    Pluhowski, E. J. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Although turbidity plumes in Lake Ontario are usually not visible during the winter, meteorologic and hydrologic events may combine to ensure their detection. The clearly defined Niagara River plume of January 25, 1974, was the result of turbid water entering the river at its source near the eastern end of Lake Erie. A persistent southwest wind mild temperature resulted in a pile-up of ice free but turbid water at the source of the Niagara River where the highly colored water entered the river. Upon discharge into Lake Ontario, the Niagara River water appears several shades lighter in tone than the ambient lake water. On February 12, 1974, eastward moving ice floes along the Ontario shoreline were forced to move around the hydraulic barrier created by the Niagara River jet. As a result the Niagara River plume was clearly portrayed by a halo-like band of slush ice borne by wind-driven nearshore currents.

  16. Modeling of temporal patterns and sources of atmospherically transported and deposited pesticides in ecosystems of concern: A case study of toxaphene in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Li, Rong; Jin, Jiming

    2013-10-01

    have adverse effects on human health and the environment and can be transported through the atmosphere from application sites and deposited to sensitive ecosystems. This study applies a comprehensive multimedia regional pesticide fate and chemical transport modeling system that we developed to investigate the atmospheric transport and deposition of toxaphene to the Great Lakes. Simulated results predict a significant amount of toxaphene (~350 kg) being transported through the atmosphere and deposited into the Great Lakes in the simulation year. Results also show that U.S. residues and global background are major sources to toxaphene deposition into the Great Lakes and atmospheric concentrations in the region. While the U.S. residues are the dominant source in warm months, the background dominates during winter months. In addition, different sources have different influences on the individual Great Lakes due to their proximity and relative geographical positions to the sources; U.S. residues are the dominant source to Lakes Ontario, Erie, Huron, and Michigan, but they are a much less important source to Lake Superior. These results shed light on the mystery that observed toxaphene concentrations in Great Lakes' lake trout and smelt declined between 1982 and 1992 in four of the Great Lakes except Lake Superior. While monthly total depositions to Lakes Ontario, Erie, Huron, and Michigan have clear seasonal variability with much greater values in April, May, and June, monthly total depositions to Lake Superior are more uniformly distributed over the year with comparatively greater levels in cold months.

  17. 4. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. - Erie Railway, Parallel French Creek Bridges, 100 feet South of Millers Station Road, 0.4 mile Northeast of State Route 408, 0.9 mile East of Cambridge Springs, Cambridge Springs, Crawford County, PA

  18. 2. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. - Erie Railway, Parallel French Creek Bridges, 100 feet South of Millers Station Road, 0.4 mile Northeast of State Route 408, 0.9 mile East of Cambridge Springs, Cambridge Springs, Crawford County, PA

  19. 3. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. - Erie Railway, Parallel French Creek Bridges, 100 feet South of Millers Station Road, 0.4 mile Northeast of State Route 408, 0.9 mile East of Cambridge Springs, Cambridge Springs, Crawford County, PA

  20. 1. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. - Erie Railway, Parallel French Creek Bridges, 100 feet South of Millers Station Road, 0.4 mile Northeast of State Route 408, 0.9 mile East of Cambridge Springs, Cambridge Springs, Crawford County, PA

  1. Overview of landslide problems, research, and mitigation, Cincinnati, Ohio, area

    USGS Publications Warehouse

    Baum, Rex L.; Johnson, Arvid M.

    1996-01-01

    Landslides cause much damage to property throughout the metropolitan area of Cincinnati, Ohio. Most landslides occur in unconsolidated deposits, including colluvium, till, glacial lake clays, and man-made fill derived from colluvium and glacial deposits. Landslides in thin colluvium are widespread on steeper slopes that wall the valleys of the Ohio River and its tributaries. Abundant landslides also form in thick colluvium on flatter slopes, especially where the colluvium has been disturbed by earthwork. Unusual block glides and block-extrusion glides form where till rests on lake clay. Through the years, knowledge of the distribution and causes of landslides has increased as a result of many investigations. This knowledge became part of the basis for landslide mitigation programs adopted by the City of Cincinnati and Hamilton County, Ohio. In 1974 the Cincinnati City Council passed an excavation and fill ordinance to help reduce landslide damage in areas of new construction. In 1989 following much additional study, Cincinnati created a geotechnical office within its Department of Public Works. The office, which is staffed by a geotechnical engineer, an engineering geologist, and two technicians, carries out a mitigation program. Since 1989, members of the geotechnical staff have worked in several ways to reduce landslide damage in the city; their work includes engineering-geologic mapping of selected parts of the city, inspection of retaining walls that impact public right-of-way, review of proposed construction in hillside areas, inspecting and arranging for repair of landslide areas that affect city property, and compiling geologic and geotechnical data on landslide areas within the city. In 1990, Hamilton County also adopted an excavation and fill ordinance to help reduce the damage due to landslides in areas of new construction.

  2. Divergent migration within lake sturgeon (Acipenser fulvescens) populations: Multiple distinct patterns exist across an unrestricted migration corridor.

    PubMed

    Kessel, Steven T; Hondorp, Darryl W; Holbrook, Christopher M; Boase, James C; Chiotti, Justin A; Thomas, Michael V; Wills, Todd C; Roseman, Edward F; Drouin, Richard; Krueger, Charles C

    2018-01-01

    Population structure, distribution, abundance and dispersal arguably underpin the entire field of animal ecology, with consequences for regional species persistence, and provision of ecosystem services. Divergent migration behaviours among individuals or among populations are an important aspect of the ecology of highly mobile animals, allowing populations to exploit spatially or temporally distributed food and space resources. This study investigated the spatial ecology of lake sturgeon (Acipenser fulvescens) within the barrier free Huron-Erie Corridor (HEC), which connects Lake Huron and Lake Erie of the North American Laurentian Great Lakes. Over 6 years (2011-2016), movements of 268 lake sturgeon in the HEC were continuously monitored across the Great Lakes using acoustic telemetry (10 years battery life acoustic transmitters). Five distinct migration behaviours were identified with hierarchical cluster analysis, based on the phenology and duration of river and lake use. Lake sturgeon in the HEC were found to contain a high level of intraspecific divergent migration, including partial migration with the existence of residents. Specific behaviours included year-round river residency and multiple lake-migrant behaviours that involved movements between lakes and rivers. Over 85% of individuals were assigned to migration behaviours as movements were consistently repeated over the study, which suggested migration behaviours were consistent and persistent in lake sturgeon. Differential use of specific rivers or lakes by acoustic-tagged lake sturgeon further subdivided individuals into 14 "contingents" (spatiotemporally segregated subgroups). Contingents associated with one river (Detroit or St. Clair) were rarely detected in the other river, which confirmed that lake sturgeon in the Detroit and St. Clair represent two semi-independent populations that could require separate management consideration for their conservation. The distribution of migration behaviours

  3. Divergent migration within lake sturgeon (Acipenser fulvescens) populations: Multiple distinct patterns exist across an unrestricted migration corridor

    USGS Publications Warehouse

    Kessel, Steven T.; Hondorp, Darryl W.; Holbrook, Christopher; Boase, James C.; Chiotti, Justin A.; Thomas, Michael V.; Wills, Todd C.; Roseman, Edward; Drouin, Richard; Krueger, Charles C.

    2018-01-01

    Population structure, distribution, abundance, and dispersal arguably underpin the entire field of animal ecology, with consequences for regional species persistence, and provision of ecosystem services. Divergent migration behaviours among individuals or among populations is an important aspect of the ecology of highly-mobile animals, allowing populations to exploit spatially- or temporally-distributed food and space resources.This study investigated the spatial ecology of lake sturgeon (Acipenser fulvescens) within the barrier free Huron-Erie Corridor (HEC), which connects Lake Huron and Lake Erie of the North American Laurentian Great Lakes.Over six years (2011 – 2016), movements of 268 lake sturgeon in the HEC were continuously monitored across the Great Lakes using acoustic telemetry (10 yr battery life acoustic transmitters). Five distinct migration behaviours were identified with hierarchical cluster analysis, based on the phenology and duration of river and lake use.Lake sturgeon in the HEC were found to contain a high level of intraspecific divergent migration, including partial migration with the existence of residents. Specific behaviours included year-round river residency and multiple lake-migrant behaviours that involved movements between lakes and rivers. Over 85% of individuals were assign to migration behaviours as movements were consistently repeated over the study, which suggested migration behaviours were consistent and persistent in lake sturgeon. Differential use of specific rivers or lakes by acoustic-tagged lake sturgeon further subdivided individuals into 14 “contingents” (spatiotemporally segregated subgroups).Contingents associated with one river (Detroit or St. Clair) were rarely detected in the other river, which confirmed that lake sturgeon in the Detroit and St. Clair represent two semi-independent populations that could require separate management consideration for their conservation. The distribution of migration behaviours

  4. Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design

    USGS Publications Warehouse

    Rennie, Michael D.; Weidel, Brian C.; Claramunt, Randall M.; Dunlob, Erin S.

    2015-01-01

    Understanding fish habitat use is important in determining conditions that ultimately affect fish energetics, growth and reproduction. Great Lakes lake whitefish (Coregonus clupeaformis) have demonstrated dramatic changes in growth and life history traits since the appearance of dreissenid mussels in the Great Lakes, but the role of habitat occupancy in driving these changes is poorly understood. To better understand temporal changes in lake whitefish depth of capture (Dw), we compiled a database of fishery-independent surveys representing multiple populations across all five Laurentian Great Lakes. By demonstrating the importance of survey design in estimating Dw, we describe a novel method for detecting survey-based bias in Dw and removing potentially biased data. Using unbiased Dw estimates, we show clear differences in the pattern and timing of changes in lake whitefish Dw between our reference sites (Lake Superior) and those that have experienced significant benthic food web changes (lakes Michigan, Huron, Erie and Ontario). Lake whitefish Dw in Lake Superior tended to gradually shift to shallower waters, but changed rapidly in other locations coincident with dreissenid establishment and declines in Diporeia densities. Almost all lake whitefish populations that were exposed to dreissenids demonstrated deeper Dw following benthic food web change, though a subset of these populations subsequently shifted to more shallow depths. In some cases in lakes Huron and Ontario, shifts towards more shallow Dw are occurring well after documented Diporeia collapse, suggesting the role of other drivers such as habitat availability or reliance on alternative prey sources.

  5. Levels, patterns, trends and significance of polychlorinated naphthalenes (PCNs) in Great Lakes fish.

    PubMed

    Gewurtz, Sarah B; Gandhi, Nilima; Drouillard, Ken G; Kolic, Terry; MacPherson, Karen; Reiner, Eric J; Bhavsar, Satyendra P

    2018-05-15

    Polychlorinated naphthalenes (PCNs) were introduced to market about a century ago and their production is thought to have ceased by the early 1980s. However, relatively limited knowledge exists on their abundance in the edible portion of a variety of Great Lakes fish to aid in understanding their potential risk to human consumers. We studied levels, patterns, trends and significance of PCNs in a total 470 fillet samples of 18 fish species collected from the Canadian waters of the Great Lakes between 2006 and 2013. A limited comparison of fillet and wholebody concentrations in Carp and Bullhead was also conducted. The ∑PCN ranged from 0.006-6.7ng/g wet weight (ww) and 0.15-190ng/g lipid weight (lw) with the dominant congeners being PCN-52/60 (34%), -42 (21%) and -66/67 (15%). The concentrations spatially varied in the order of the Detroit River>Lakes Erie>Ontario>Huron>Superior. PCN-66/67 was the dominating congener contributing on average 76-80% of toxic equivalent concentration (TEQ PCN ). Contribution of TEQ PCN to TEQ Total (TEQ Dioxins+Furans+dioxin-likePCBs+PCNs ) was mostly <15%, especially at higher TEQ Total, and PCB-126 remains the major congener contributing to TEQ Total . The congener pattern suggests that impurities in PCB formulations and thereby historical PCB contamination, instead of unintentional releases from industrial thermal processes, could be an important source of PCNs in Great Lakes fish. A limited temporal change analysis indicated declines in the levels of PCN-66/67 between 2006 and 2012, complemented by previously reported decrease in PCNs in Lake Ontario Lake Trout between 1979 and 2004. The whole body concentrations were 1.4-3.2 fold higher than the corresponding fillets of Carp and Bullhead. Overall, the study results suggest that only targeted monitoring of PCNs in Great Lakes fish, especially at the Detroit River, Lake Erie and Lake Ontario, is necessary to assess continued future improvements of this group of contaminants of

  6. An analysis of potential water availability from the Atwood, Leesville, and Tappan Lakes in the Muskingum River Watershed, Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2013-01-01

    This report presents the results of a study to assess potential water availability from the Atwood, Leesville, and Tappan Lakes, located within the Muskingum River Watershed, Ohio. The assessment was based on the criterion that water withdrawals should not appreciably affect maintenance of recreation-season pool levels in current use. To facilitate and simplify the assessment, it was assumed that historical lake operations were successful in maintaining seasonal pool levels, and that any discharges from lakes constituted either water that was discharged to prevent exceeding seasonal pool levels or discharges intended to meet minimum in-stream flow targets downstream from the lakes. It further was assumed that the volume of water discharged in excess of the minimum in-stream flow target is available for use without negatively impacting seasonal pool levels or downstream water uses and that all or part of it is subject to withdrawal. Historical daily outflow data for the lakes were used to determine the quantity of water that potentially could be withdrawn and the resulting quantity of water that would flow downstream (referred to as “flow-by”) on a daily basis as a function of all combinations of three hypothetical target minimum flow-by amounts (1, 2, and 3 times current minimum in-stream flow targets) and three pumping capacities (1, 2, and 3 million gallons per day). Using both U.S. Geological Survey streamgage data and lake-outflow data provided by the U.S. Army Corps of Engineers resulted in analytical periods ranging from 51 calendar years for the Atwood Lake to 73 calendar years for the Leesville and Tappan Lakes. The observed outflow time series and the computed time series of daily flow-by amounts and potential withdrawals were analyzed to compute and report order statistics (95th, 75th, 50th, 25th, 10th, and 5th percentiles) and means for the analytical period, in aggregate, and broken down by calendar month. In addition, surplus-water mass curve data

  7. Wind-driven currents in a shallow lake or sea

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Gedney, R. T.

    1971-01-01

    For shallow lakes and seas such as the great lakes (especially Lake Erie) where the depth is not much greater than the Ekman depth, the usual Ekman dynamics cannot be used to predict the wind driven currents. The necessary extension to include shallow bodies of water, given by Welander, leads to a partial differential equation for the surface displacement which in turn determines all other flow quantities. A technique for obtaining exact analytical solutions to Welander's equation for bodies of water with large class of bottom topographies which may or may not contain islands is given. It involves applying conformal mapping methods to an extension of Welander's equation into the complex plane. When the wind stress is constant (which is the usual assumption for lakes) the method leads to general solutions which hold for bodies of water of arbitrary shape (the shape appears in the solutions through a set of constants which are the coefficients in the Laurent expansion of a mapping of the particular lake geometry). The method is applied to an elliptically shaped lake and a circular lake containing an eccentrically located circular island.

  8. Visualization of a drifting buoy deployment on Lake St. Clair within the Great Lakes Waterway from August 12-15, 2002

    USGS Publications Warehouse

    Holtschlag, David J.; Syed, Atiq U.; Kennedy, Gregory W.

    2002-01-01

    Lake St. Clair is a 430 square mile lake between the state of Michigan and the province of Ontario, which forms part of the international boundary between the United States and Canada in the Great Lakes Basin. Lake St. Clair receives most of its inflow from Lake Huron through St. Clair River, which has an average flow of 182,000 cubic feet per second. The lake discharges to Detroit River, where it flows 32 miles to Lake Erie. Twelve drifting buoys were deployed on Lake St. Clair for 74 hours between August 12-15, 2002 to help investigate flow circulation patterns as part of a source water assessment study of the susceptibility of public water intakes. The buoys contained global positioning system (GPS) receivers to track their movements. Buoys were released in a transect between tethered buoys marking an 800-foot wide navigational channel in the north-central part of the lake just downstream of St. Clair River, and about 15.5 miles northeast of Detroit River. In addition, an acoustic Doppler current profiler (ADCP) was used to measure velocity profiles in a grid of 41 points that spanned the area through which the buoys drifted. Computer animations, which can be viewed through the Internet, were developed to help visualize the results of the buoy deployments and ADCP measurements.

  9. 78 FR 58334 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    .... Upper Great Miami, Indiana, Ohio Watershed Shelby County, Ohio, and Incorporated Areas Maps Available... De Tour Village Hall, 260 South Superior Street, De Tour Village, MI 49725. Erie County, Ohio, and... Watershed Lawrence County, Ohio, and Incorporated Areas Maps Available for Inspection Online at: www.fema...

  10. Archaeological Reconnaissance of the Lower Ohio River Navigation Area, Illinois and Kentucky

    DTIC Science & Technology

    1981-01-01

    Pulaski Counties, Illinois. O.L. Baskins and Company, Historical Publishers: Chicago, IL. Robbins , Chandles S., Bertel Brunn, and Herbert S. Zim 196b...woodpecker (Campephllus principalis) ( Robbins et^ al . 1966). Faunal resources available from the Ohio River, the levee flank lakes, and the backwater...the area, occasional raids occurred (Müller and Davy 1977:31). These Indian raids were often bloody and cruel ( Baskin 1883:536-537) as rage and

  11. Cyanobacteria Toxin and Cell Propagation through Lake Erie Treatment Facilities - proceedings

    EPA Science Inventory

    Harmful algal blooms (HABs), and their associated toxins, in fresh water lakes and reservoirs are drawing the attention of utilities and state regulators nation-wide. Recognizing the potential health and economic consequences, the US Environmental Protection Agency, in partnersh...

  12. Contaminant trends in lake trout and walleye from the Laurentian Great Lakes

    USGS Publications Warehouse

    DeVault, David S.; Hesselberg, Robert J.; Rodgers, Paul W.; Feist, Timothy J.

    1996-01-01

    Trends in PCBs, DDT, and other contaminants have been monitored in Great Lakes lake trout and walleye since the 1970s using composite samples of whole fish. Dramatic declines have been observed in concentrations of PCB, ΣDDT, dieldrin, and oxychlordane, with declines initially following first order loss kinetics. Mean PCB concentrations in Lake Michigan lake trout increased from 13 μg/g in 1972 to 23 μg/g in 1974, then declined to 2.6 μg/g by 1986. Between 1986 and 1992 there was little change in concentration, with 3.5 μg/g observed in 1992. ΣDDT in Lake Michigan trout followed a similar trend, decreasing from 19.2 μg/g in 1970 to 1.1 μg/g in 1986, and 1.2 μg/g in 1992. Similar trends were observed for PCBs and ΣDDT in lake trout from Lakes Superior, Huron and Ontario. Concentrations of both PCB and ΣDDT in Lake Erie walleye declined between 1977 and 1982, after which concentrations were relatively constant through 1990. When originally implemented it was assumed that trends in the mean contaminant concentrations in open-lake fish would serve as cost effective surrogates to trends in the water column. While water column data are still extremely limited it appears that for PCBs in lakes Michigan and Superior, trends in lake trout do reasonably mimic those in the water column over the long term. Hypotheses to explain the trends in contaminant concentrations are briefly reviewed. The original first order loss kinetics used to describe the initial decline do not explain the more recent leveling off of contaminant concentrations. Recent theories have examined the possibilities of multiple contaminant pools. We suggest another hypothesis, that changes in the food web may have resulted in increased bioaccumulation. However, a preliminary exploration of this hypothesis using a change point analysis was inconclusive.

  13. Economic effects of Ohio's smoke-free law on Kentucky and Ohio border counties.

    PubMed

    Pyles, Mark K; Hahn, Ellen J

    2011-01-01

    To determine if the Ohio statewide smoke-free law is associated with economic activity in Ohio or Kentucky counties that lie on the border between the two states. In November 2006, Ohio implemented a comprehensive statewide smoke-free law for all indoor workplaces. A feasible generalised least squares (FLGS) time series design to estimate the impact of the Ohio smoke-free law on Kentucky and Ohio border counties. Six Kentucky and six Ohio counties that lie on the border between the two states. All reporting hospitality and accommodation establishments in all Kentucky and Ohio counties including but not limited to food and drinking establishments, hotels and casinos. Total number of employees, total wages paid and number of reported establishments in all hospitality and accommodation services, 6 years before Ohio's law and 1 year after. There is no evidence of a disproportionate change in economic activity in Ohio or Kentucky border counties relative to their non-border counterparts. There was no evidence of a relation between Ohio's smoke-free law and economic activity in Kentucky border counties. The law generated a positive influence on wages and number of establishments in Ohio border counties. The null result cannot be explained by low test power, as minimum changes necessary in the dependent variables to detect a significant influence are very reasonable in size. Our data add to the large body of evidence that smoke-free laws are neutral with respect to the hospitality business across jurisdictions with and without laws.

  14. Lorain Harbor, Ohio. Preliminary Feasibility Study (Stage 2). Review of Reports. Volume II. Appendices.

    DTIC Science & Technology

    1980-10-01

    looked all the way from the west to all the way down to Erie , Pennsylvania . We made some initial cuts and got it down to five different ports...Harbor, MN Presque Isle :Two Harbors, MN :Gary, IN 1,721,920 25 (Litton Great Lakes):Two Harbors, MN :Calumet Harbor, IN 178,080 3 :Two Harbors, MN...WI : 2 :11 : 0: 0 : 0: 2: 3 Silver Bay, MN : 82 :67 : 96 :87 : 85 : 88: 89 Taconite, MN : 0 : 0 : 0: 0 : 0: 4: 0 Presque Isle , MI : 6 2 : 1 0.5: 2 1

  15. Global Change in the Great Lakes: Scenarios.

    ERIC Educational Resources Information Center

    Garrison, Barbara K., Ed.; Rosser, Arrye R., Ed.

    The Ohio Sea Grant Education Program has produced this series of publications designed to help people understand how global change may affect the Great Lakes region. The possible implications of global change for this region of the world are explained in the hope that policymakers and individuals will be more inclined to make responsible decisions…

  16. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards... apply to Ohio's SIP. Incorporating the air quality standards into Ohio's SIP helps assure that...

  17. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin

    to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands School’s wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0°C and -20°C and wind speeds up to 40 miles per hour in the tunnel’s test section. The tunnel’s cooling unit maintained the tunnel temperature within ±0.2°C. The coatings evaluated in the study were Boyd Coatings Research Company’s CRC6040R3, MicroPhase Coatings Inc.’s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test

  18. Stimulating a Great Lakes coastal wetland seed bank using portable cofferdams: implications for habitat rehabilitation

    USGS Publications Warehouse

    Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.

    2009-01-01

    Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.

  19. The Great Lakes Water Quality Agreement with an emphasis on annex 4 nutrients -and Lake Erie

    EPA Science Inventory

    Presented will be an overview of the Great Lakes Water Quality Act of 2012 including a general description of the Annexes and the new Binational Governance. The talk will focus on the Annex 4 Nutrients Subcommittee and the Objectives and Targets Task Team efforts that have been ...

  20. Geohydrology and water quality of the unconsolidated deposits in Erie County, Pennsylvania

    USGS Publications Warehouse

    Buckwalter, T.F.; Schreffler, C.L.; Gleichsner, R.E.

    1996-01-01

    Water in unconsolidated deposits is used for the water supplies of homes, farms, municipalities, and industries in Erie County. The unconsolidated deposits cover most of the bedrock of Erie County. Thickness of the unconsolidated deposits ranged from 60 to 400 feet at 30 sites surveyed by seismic refraction and reflection methods. Water wells, mostly in the unconsolidated deposits, provide adequate domestic supplies. Wells in fractured bedrock can generally provide small domestic supplies; however, droughts can affect some of the domestic water wells. Ground-water withdrawals accounted for 10 million gallons per day of the water used in Erie County in 1984. Mean annual precipitation ranged from 42 to 47 inches per year in Erie County from 1961 through 1990; the southeastern region of the county generally receives more precipitation than the lake shore region to the north. Overland runoff to three segments of the French Creek watershed in the upland area ranged from about 13 to 19 in. per year and base flow ranged from 14 to about 18 in. per year from 1975 to 1992. Evapotranspiration ranged from about 13 to 16 in. per year for those segments. Beach and outwash deposits generally provide the largest supplies of water to wells in Erie County. A median specific capacity of 17 (gal/min)/ft (gallons per minute per foot) of drawdown was determined from records of nondomestic wells in beach deposits and 9 (gal/min)/ft of drawdown in outwash. Mean specific capacity for wells in till deposits was 1.5 (gal/min)/ft. The range in yield and specific capacity, however, was great for the unconsolidated deposits and high yielding outwash deposits are sometimes difficult to locate beneath till and valley-fill deposits. Hydraulic conductivities from three aquifer tests of outwash deposits (sand and gravel) at separate sites ranged from 110 to 2,030 ft/d (feet per day). Hydraulic conductivities from another aquifer test of sand and silt in the water table at Presque Isle ranged from

  1. History Untold: Celebrating Ohio History Through ABLE Students. Ohio History Project.

    ERIC Educational Resources Information Center

    Kent State Univ., OH. Ohio Literacy Resource Center.

    This document is a compilation of 33 pieces of writing presenting Ohio adult basic and literacy education (ABLE) students' perspectives of community and personal history. The items included in the compilation were written by ABLE students across Ohio in celebration of Ohio History Day. The compilation is organized in five sections as follows: (1)…

  2. ROV dives under Great Lakes ice

    USGS Publications Warehouse

    Bolsenga, S.J.; Gannon, John E.; Kennedy, Gregory; Norton, D.C.; Herdendorf, Charles E.

    1989-01-01

    Observations of the underside of ice have a wide variety of applications. Severe under-ice roughness can affect ice movements, rough under-ice surfaces can scour the bottom disturbing biota and man-made structures such as pipelines, and the flow rate of rivers is often affected by under-ice roughness. A few reported observations of the underside of an ice cover have been made, usually by cutting a large block of ice and overturning it, by extensive boring, or by remote sensing. Such operations are extremely labor-intensive and, in some cases, prone to inaccuracies. Remotely operated vehicles (ROV) can partially solve these problems. In this note, we describe the use, performance in a hostile environment, and results of a study in which a ROV was deployed under the ice in Lake Erie (North American Great Lakes).

  3. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour.

    PubMed

    de Solla, Shane R; Fernie, Kimberly J

    2004-11-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites.

  4. Erie Community College. Report.

    ERIC Educational Resources Information Center

    Barber, Jerry

    This document presents the findings of the Office of the State Comptroller of New York regarding the audit of the records and procedures used in administering the Tuition Assistance Program (TAP) and Supplemental Tuition Assistance Program (STAP) at Erie Community College. TAP is an entitlement program designed to provide tuition aid to eligible…

  5. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... the Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under the Clean Air Act. On April 8, 2009, and...

  6. Carbon fluxes in a heterogeneous estuarine wetland in Northern Ohio. Comparing eddy covariance and chamber measurements

    NASA Astrophysics Data System (ADS)

    Rey Sanchez, C.; Morin, T. H.; Stefanik, K. C.; Wrighton, K. C.; Bohrer, G.

    2016-12-01

    Wetlands are important carbon dioxide (CO2) sinks but also the largest source of methane (CH4), a powerful greenhouse gas. Wetlands are often heterogeneous landscapes with highly diverse land covers and different paths of CH4 release and CO2 uptake. Understanding the ecosystem level greenhouse gas budget of a wetland involves understanding several carbon fluxes associated with each of the different land cover patches. We studied CO2 and CH4 fluxes from different land cover types at the Old Woman Creek (OWC) National Estuarine Research Reserve, at the Lake Erie shore in Northern Ohio. OWC is composed of four main types of land cover: open water, emergent cattail vegetation (Typha spp), floating vegetation (Nelimbo spp), and mud flats. CH4 and CO2 gas exchange was measured in each patch type using enclosed chambers monthly during the growing seasons of 2015 and 2016. During the same period of time, an eddy covariance tower was deployed in a representative section of the wetland to measure continuous site-level CO2 and CH4 fluxes. A footprint model was used to account for the relative contributions of each patch type to the flux measured by the tower. The chamber measurements were used to constrain the contributions of each patch within the flux tower footprint, and to correct the flux measurements to the whole-wetland total flux. We analyzed the spatial and temporal variability of methane and carbon dioxide and related this variation to some of the most important environmental drivers at the site. We used these data to analyze the implications of different arrangements of land cover types on the carbon balance and greenhouse-gas budget in wetlands.

  7. Ciscoes (Coregonus, subgenus Leucichthys) of the Laurentian Great Lakes and Lake Nipigon

    USGS Publications Warehouse

    Eshenroder, Randy L.; Vecsei, Paul; Gorman, Owen T.; Yule, Daniel; Pratt, Thomas C.; Mandrak, Nicholas E.; Bunnell, David B.; Muir, Andrew M.

    2016-01-01

    This study of the ciscoes (Coregonus, subgenus Leucichthys) of the Great Lakes and Lake Nipigon represents a furtherance through 2015 of field research initiated by Walter Koelz in 1917 and continued by Stanford Smith in the mid-1900s—a period spanning nearly a century. Like Koelz’s study, this work contains information on taxonomy, geographical distribution, ecology, and status of species (here considered forms). Of the seven currently recognized forms (C. artedi, C. hoyi, C. johannae, C. kiyi, C. nigripinnis, C. reighardi, and C. zenithicus) described by Koelz as major in his 1929 monograph, two (C. johannae and C. reighardi) are extinct. In addition, C. alpenae, described by Koelz but subsequently synonymized with C. zenithicus, although extinct, is recognized as valid making a total of eight major forms. Six of these forms, all but C. artedi and C. hoyi, have been lost from Lake Michigan, and seven have been lost from Lake Huron, leaving in Lake Huron only C. artedi and an introgressed deepwater form that we term a hybrid swarm. C. artedi appears, like its sister form C. alpenae, to have been lost from Lake Erie. Only C. artedi remains extant in Lake Ontario, its three sister forms (C. hoyi, C. kiyi, and C. reighardi) having disappeared long ago.Lakes Superior and Nipigon have retained their original species flocks consisting of four forms each: C. artedi, C. hoyi, and C. zenithicus in both lakes; C. kiyi in Lake Superior; and C. nigripinnis in Lake Nipigon. Morphological deviations from the morphotypes described by Koelz have been modest in contemporary samples. Overall, C. kiyi and C. artedi were the most morphologically stable forms while C. hoyi, C. nigripinnis, and C. zenithicus were the least stable. Although contemporary populations of C. artedi from Lakes Michigan and Huron are highly diverged from the morphotypes described by Koelz, the contemporary samples were of undescribed deep-bodied forms unlikely to have been sampled by Koelz because of

  8. USGS capabilities for interdisciplinary investigations in coastal and nearshore ecosystems of the Great Lakes

    USGS Publications Warehouse

    Myers, Donna N.

    2002-01-01

    People choose to reside, work, and vacation in coastal areas of the Great Lakes because of the lakes' scenic beauty and their historic and cultural features. Great Lakes nearshore areas also constitute a valuable economic resource. Two million anglers added \\$1 billion to the region's economy in 1996. More than 300 million tons of goods were transported out of major Great Lakes ports at a value of \\$3 billion in 1996. A 1998 survey of Lake Erie beaches estimated contributions of $5 million per year to each local economy with a public beach. More than 70 million people yearly visit national, state and provincial parks in the Great Lakes area. Uncontrolled land development, recreational development, invasive species, climate change, water availability, and water-level changes and fluctuations lead a long list of current and potential issues in coastal and nearshore areas. To be effectively addressed, these complex issues require an interdisciplinary approach.

  9. The Great Lake Erie. A Reference Text for Educators and Communicators.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W., Ed.; Mayer, Victor J., Ed.

    The purpose of this volume is to present a body of basic information about the Great Lakes that is current and based on sound research. Such information is frequently difficult to locate, especially in one reference, and equally difficult to decipher and evaluate. The 16 essays contained in this book deal with a variety of topics including the…

  10. A Multi-Phased Evaluation of the Impact of a Non-School Science Exhibition.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    The impact of "The Great Lake Erie," an outreach program that aimed to improve visitor knowledge and attitudes about Lake Erie, is discussed in this evaluative study. "The Great Lake Erie" was presented as a two-part program consisting of a lecture and demonstration stage presentation and a series of exhibits. The program was…

  11. The OhioView Project

    USGS Publications Warehouse

    1998-01-01

    The Ohio View Consortium is a group of universities, colleges, K-12 schools, libraries, and local and State government agencies in the State of Ohio working with the USGS and NASA to provide affordable, integrated access to and delivery of U.S. Government satellite and geospatial data. The Ohio View Project is a pilot project that combines the USGS activities in providing an integrated information access and delivery capability with the activities of the Ohio View Consortium 

  12. Risk Assessment and Mapping of Fecal Contamination in the Ohio River Basin

    NASA Astrophysics Data System (ADS)

    Cabezas, A.; Morehead, D.; Teklitz, A.; Yeghiazarian, L.

    2014-12-01

    Decisions in many problems in engineering planning are invariably made under conditions of uncertainty imposed by the inherent randomness of natural phenomena. Water quality is one such problem. For example, the leading cause of surface-water impairment in the US is fecal microbial contamination, which can potentially trigger massive outbreaks of gastrointestinal disease. It is well known that the difficulty in prediction of water contamination is rooted in the stochastic variability of microbes in the environment, and in the complexity of environmental systems.To address these issues, we employ a risk-based design format to compute the variability in microbial concentrations and the probability of exceeding the E. Coli target in the Ohio River Basin (ORB). This probability is then mapped onto the basin's stream network within the ArcGIS environment. We demonstrate how spatial risk maps can be used in support of watershed management decisions, in particular in the assessment of best management practices for reduction of E. Coli load in surface water. The modeling environment selected for the analysis is the Schematic Processor (SP), a suite of geoprocessing ArcGIS tools. SP operates on a schematic, link-and-node network model of the watershed. The National Hydrography Dataset (NHD) is used as the basis for this representation, as it provides the stream network, lakes, and catchment definitions. Given the schematic network of the watershed, SP adds the capability to perform mathematical computations along the links and at the nodes. This enables modeling fate and transport of any entity over the network. Data from various sources have been integrated for this analysis. Catchment boundaries, lake locations, the stream network and flow data have been retrieved from the NHDPlus. Land use data come from the National Land Cover Database (NLCD), and microbial observations data from the Ohio River Sanitation Committee. The latter dataset is a result of a 2003

  13. Inventory and transport of plastic debris in the Laurentian Great Lakes.

    PubMed

    Hoffman, Matthew J; Hittinger, Eric

    2017-02-15

    Plastic pollution in the world's oceans has received much attention, but there has been increasing concern about the high concentrations of plastic debris in the Laurentian Great Lakes. Using census data and methodologies used to study ocean debris we derive a first estimate of 9887 metric tonnes per year of plastic debris entering the Great Lakes. These estimates are translated into population-dependent particle inputs which are advected using currents from a hydrodynamic model to map the spatial distribution of plastic debris in the Great Lakes. Model results compare favorably with previously published sampling data. The samples are used to calibrate the model to derive surface microplastic mass estimates of 0.0211 metric tonnes in Lake Superior, 1.44 metric tonnes in Huron, and 4.41 metric tonnes in Erie. These results have many applications, including informing cleanup efforts, helping target pollution prevention, and understanding the inter-state or international flows of plastic pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Utilization of legacy P in soils, a strategic approach meeting the 40% loading reduction goal while sustaining agricultural production in the Lake Erie basin?

    NASA Astrophysics Data System (ADS)

    Zhang, Tiequan; Tan, Chin, S.; Wang, Yutao; Welacky, Tom

    2017-04-01

    Legacy phosphorus (P) in agricultural lands has been deemed the major source contributing to eutrophication of the Lake Erie. Canada and USA bilateral governments have set up a goal of 40% P loading reduction by 2025. Soil P draw-down (PDD) is a potential beneficial management practice for high P soils to overcome legacy P effect and mitigate soil P loss. A field experiment was conducted to assess the effects of PDD on crop yields, soil test P change, and soil P losses in both surface runoff and tile drainage under a corn-soybean rotation in a Brookston clay loam soil in a 9-year period from 2008 to 2016. Both yields of corn and soybean with PDD were highly identical to those with continuous P addition (CPA). Soil Olsen P with PDD declined with time at about 2.3 mg P kg-1 year-1, while with CPA it remained unchanged. Relative to CPA, PDD significantly decreased dissolved P and particular P losses, eventually the total P loss by 36%. In addition, farmers' production profitability increased by 15% through savings in investment for P fertilizer. The results indicate that utilization of soil legacy P can be an effective approach that enables us to reach the agri-P loading reduction goal, while improving production profitability and conserving world P resource.

  15. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada.

    PubMed

    Metcalfe, Chris D; Miao, Xiu-Sheng; Koenig, Brenda G; Struger, John

    2003-12-01

    Prescription and nonprescription drugs have been detected in rivers and streams in Europe and the United States. Sewage treatment plants (STPs) are an important source of these contaminants, but few data exist on the spatial distribution of drugs in surface waters near STPs. Samples of surface water were collected in the summer and fall of 2000 at open-water sites in the lower Great Lakes (Lake Ontario and Lake Erie), at sites near the two STPs for the city of Windsor (ON, Canada), and at sites in Hamilton Harbour (ON, Canada), an embayment of western Lake Ontario that receives discharges from several STPs. In a follow-up study in the summer of 2002, samples of surface water and final effluent from adjacent STPs were collected from sites in Hamilton Harbour and Windsor. In addition, surface water and STP effluent samples were collected in Peterborough (ON, Canada). All samples of surface water and STP effluents were analyzed for selected acidic and neutral drugs. In the survey of Hamilton Harbour and Windsor conducted in 2000, acidic drugs and the antiepileptic drug carbamazepine were detected at ng/L concentrations at sites that were up to 500 m away from the STP, but the hydrological conditions of the receiving waters strongly influenced the spatial distribution of these compounds. Drugs were not detected at open-water locations in western Lake Erie or in the Niagara River near the municipality of Niagara-on-the-Lake (ON, Canada). However, clofibric acid, ketoprofen, fenoprofen, and carbamazepine were detected in samples collected in the summer of 2000 at sites in Lake Ontario and at a site in the Niagara River (Fort Erie, ON, Canada) that were relatively remote from STP discharges. Follow-up studies in the summer of 2002 indicated that concentrations of acidic and neutral drugs in surface waters near the point of sewage discharge into the Little River (ON, Canada) STP were approximately equal to the concentrations in the final effluent from the STP. Caffeine and

  16. Discovery of ammocrypta clara (western sand darter) in the Upper Ohio River of West Virginia

    USGS Publications Warehouse

    Cincotta, Dan A.; Welsh, Stuart A.

    2010-01-01

    Ammocrypta clara Jordan and Meek (western sand darter) occurs primarily in the western portions of Mississippi River system, but also has been reported from a Lake Michigan drainage and a few eastern Texas Gulf Slope rivers. Additional range records depict a semi-disjunct distribution within the Ohio River drainage, including collections from Wabash River in Indiana, the Cumberland, Green, Kentucky and Big Sandy rivers of Kentucky, and the upper Tennessee River in Tennessee and Virginia. This paper documents the occurrence of A. clara from the upper Ohio River drainage within the lower Elk River, West Virginia, based on collections from 1986, 1991, 1995, 2005 and 2006. The Elk River population, consistent with those of other Ohio River drainages, has slightly higher counts for numbers of dorsal-fin rays, scales below lateral line and lateral line scales when compared to data from populations outside of the Ohio River drainage. Modal counts of meristic characters are similar among populations, except for higher modal counts of lateral line scales in the Ohio River population. The discovery of the Elk River population extends the range distribution of A. clara in the Eastern Highlands region, documents wide distributional overlap and additional sympatry with its sister species,A. pellucida (eastern sand darter), and softens support for an east-west Central Highlands vicariance hypothesis for the present distribution of A. clara and A. pellucida.

  17. African Americans in Ohio

    Science.gov Websites

    Blackboard Mailing Founding Documents Buckeye Council for History Education Ohio History Central Local Various manuscripts, picture mediums, poems, and records from multiple contributors. Ohio History Central Ohio Historical Society Visit Get Involved About Us Teacher History Geek Kid Family Museums &

  18. New data on mitochondrial diversity and origin of Hemimysis anomala in the Laurentian Great Lakes

    USGS Publications Warehouse

    Questel, Jennifer M.; Walsh, Maureen G.; Smith, Randall J.; Welsh, Amy B.

    2012-01-01

    The most recent Ponto-Caspian species to invade the Laurentian Great Lakes is the crustacean Hemimysis anomala, first reported in 2006. A previous study described three haplotype groups (A, B, C) of H. anomala in native and invaded areas within Europe, but only one haplotype (A1) in a sample from Lake Michigan. Our study expands these results to additional populations in the Great Lakes basin, and evaluates relationships among North American and European populations. A 549-bp fragment of themitochondrial cytochrome oxidase I (COI) gene was analyzed from populations of H. anomala in Lakes Ontario, Erie, Huron, and the St. Lawrence River.Two different haplotypes, A1 and B1,were observed in the sampled populations of H. anomala and in a previous analysis from H. anomala in Oneida Lake (New York). Our results, in contrast with a previous study, detect an additional haplotype in North America.

  19. Concentrations of trace elements in Great Lakes fishes

    USGS Publications Warehouse

    Lucas, Henry F.; Edgington, David N.; Colby, Peter J.

    1970-01-01

    The concentration of 15 trace elements was determined by activation analysis of samples of whole fish and fish livers from three of the Great Lakes: Michigan, Superior, and Erie. The average concentrations of 7 elements in 19 whole fish from 3 species were as follows: uranium, 3 ppb (parts per billion); thorium, 6 ppb; cobalt, 28 ppb; cadmium, 94 ppb; arsenic, 16 ppb; chromium, 1 ppm; and copper, 1.3 ppm. The average concentrations of 8 elements in 40 liver samples from 10 species of fish were as follows: uranium, ~ 2 ppb; thorium, a?? 2 ppb; cobalt, 40 ppb; copper, 9 ppm; zinc, 30 ppm; bromine, 0.4 ppm; arsenic, 30 ppb; and cadmium, 0.4 ppm. Other elements observed in most of the samples were: antimony, 5-100 ppb; gold, 2-5 ppb; lanthanum, 1-20 ppb; rhenium, 0.5-5 ppb; rubidium, 0.06-4 ppm; and selenium, 0.1-2 ppb. Trace element concentrations varied with species and lake. Uranium and thorium varied with species, but not for the same species from different lakes. The levels of copper, cobalt, zinc, and bromine varied little between species and lakes. The concentration of cadmium, arsenic, and chromium varied between species and with species between lakes.

  20. BOOK REVIEW "LAKE ERIE REHABILITATED: CONTROLLING CULTURAL EUTROPHICATION, 1960S - 1990S"

    EPA Science Inventory

    This well written, well researched and informative book recounts the sudden appearance of cultural eutrophication in the Great Lakes after adoption of phosphorous as the main active ingredient in detergents toward the end of World War II. For the most part, McGucken, a historian,...