Sample records for lake huron michigan

  1. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    USGS Publications Warehouse

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  2. Genetic diversity of lake whitefish in lakes Michigan and Huron: sampling, standardization, and research priorities

    USGS Publications Warehouse

    Stott, Wendylee; VanDeHey, Justin A.; Sloss, Brian L.

    2010-01-01

    We combined data from two laboratories to increase the spatial extent of a genetic data set for lake whitefish Coregonus clupeaformis from lakes Huron and Michigan and saw that genetic diversity was greatest between lakes, but that there was also structuring within lakes. Low diversity among stocks may be a reflection of relatively recent colonization of the Great Lakes, but other factors such as recent population fluctuation and localized stresses such as lamprey predation or heavy exploitation may also have a homogenizing effect. Our data suggested that there is asymmetrical movement of lake whitefish between Lake Huron and Lake Michigan; more genotypes associated with Lake Michigan were observed in Lake Huron. Adding additional collections to the calibrated set will allow further examination of diversity in other Great Lakes, answer questions regarding movement among lakes, and estimate contributions of stocks to commercial yields. As the picture of genetic diversity and population structure of lake whitefish in the Great Lakes region emerges, we need to develop methods to combine data types to help identify important areas for biodiversity and thus conservation. Adding genetic data to existing models will increase the precision of predictions of the impacts of new stresses and changes in existing pressures on an ecologically and commercially important species.

  3. 75 FR 33995 - Safety Zone; Michigan Orthopaedic Society 50th Anniversary Fireworks, Lake Huron, Mackinac Island...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ...-AA00 Safety Zone; Michigan Orthopaedic Society 50th Anniversary Fireworks, Lake Huron, Mackinac Island... from a portion of Lake Huron during the Michigan Orthopaedic Society 50th Anniversary Fireworks display... launching of fireworks in conjunction with the Michigan Orthopaedic Society 50th Anniversary Fireworks...

  4. Introduction and spread of the threespine stickleback (Gasterosteus aculeatus) in Lakes Huron and Michigan

    USGS Publications Warehouse

    Stedman, Ralph M.; Bowen, Charles A.

    1985-01-01

    The threespine stickleback (Gasterosteus aculeatus) was not known to occur in the Great Lakes above Niagara Falls until 1980, when it was collected in South Bay, Manitoulin Island, in the Lake Huron basin. By 1984 this species had been found in tributaries of Lakes Huron and Michigan, and in the open waters of both lakes. All specimens identified were the completely plated morph that is most prevalent in fresh water along the east coast of North America. The status of this species in Lakes Huron and Michigan appears to be “Possibly Established.” If threespine stickleback increase in abundance they may eventually provide additional forage for large salmonids.

  5. Changes in movements of Chinook Salmon between lakes Huron and Michigan after Alewife population collapse

    USGS Publications Warehouse

    Clark, Richard D.; Bence, James R.; Claramunt, Randall M.; Clevenger, John A.; Kornis, Matthew S.; Bronte, Charles R.; Madenjian, Charles P.; Roseman, Edward

    2017-01-01

    Alewives Alosa pseudoharengus are the preferred food of Chinook Salmon Oncorhynchus tshawytscha in the Laurentian Great Lakes. Alewife populations collapsed in Lake Huron in 2003 but remained comparatively abundant in Lake Michigan. We analyzed capture locations of coded-wire-tagged Chinook Salmon before, during, and after Alewife collapse (1993–2014). We contrasted the pattern of tag recoveries for Chinook Salmon released at the Swan River in northern Lake Huron and Medusa Creek in northern Lake Michigan. We examined patterns during April–July, when Chinook Salmon were primarily occupied by feeding, and August–October, when the salmon were primarily occupied by spawning. We found evidence that Swan River fish shifted their feeding location from Lake Huron to Lake Michigan after the collapse. Over years, proportions of Swan River Chinook Salmon captured in Lake Michigan increased in correspondence with the Alewife decline in Lake Huron. Mean proportions of Swan River fish captured in Lake Michigan were 0.13 (SD = 0.14) before collapse (1993–1997) and 0.82 (SD = 0.22) after collapse (2008–2014) and were significantly different. In contrast, proportions of Medusa Creek fish captured in Lake Michigan did not change; means were 0.98 (SD = 0.05) before collapse and 0.99 (SD = 0.01) after collapse. The mean distance to the center of the coastal distribution of Swan River fish during April–July shifted 357 km (SD = 169) from central Lake Huron before collapse to central Lake Michigan after collapse. The coastal distributions during August–October were centered on the respective sites of origin, suggesting that Chinook Salmon returned to release sites to spawn regardless of their feeding locations. Regarding the impact on Alewife populations, this shift in interlake movement would be equivalent to increasing the Chinook Salmon stocking rate within Lake Michigan by 30%. The primary management implication is that interlake coordination of Chinook Salmon

  6. Evidence of widespread natural reproduction by lake trout Salvelinus namaycush in the Michigan waters of Lake Huron

    USGS Publications Warehouse

    Riley, S.C.; He, J.X.; Johnson, J.E.; O'Brien, T. P.; Schaeffer, J.S.

    2007-01-01

    Localized natural reproduction of lake trout Salvelinus namaycush in Lake Huron has occurred since the 1980s near Thunder Bay, Michigan. During 2004–2006, USGS spring and fall bottom trawl surveys captured 63 wild juvenile lake trout at depths ranging from 37–73 m at four of five ports in the Michigan waters of the main basin of Lake Huron, more than five times the total number captured in the previous 30-year history of the surveys. Relatively high catches of wild juvenile lake trout in bottom trawls during 2004–2006 suggest that natural reproduction by lake trout has increased and occurred throughout the Michigan waters of the main basin. Increased catches of wild juvenile lake trout in the USGS fall bottom trawl survey were coincident with a drastic decline in alewife abundance, but data were insufficient to determine what mechanism may be responsible for increased natural reproduction by lake trout. We recommend further monitoring of juvenile lake trout abundance and research into early life history of lake trout in Lake Huron.

  7. Movement of parasitic-phase sea lampreys in Lakes Huron and Michigan

    USGS Publications Warehouse

    Smith, Bernard R.; Elliott, Oliver R.

    1953-01-01

    A program of tagging was carrie dout in the waters of northern Lake Huron during the fall and winter of 1951-52 in order to supplement the small amount of information available on movement of sea lampreys during their parasitic phase. A total of 219 parasitic-phase sea lampreys were tagged and released at three localities. Of this number 38 or 17.2 percent were recovered. One tag was recovered near North Manitou Island, Lake Michigan. The remaining 37 were take in Lake Huron or in streams tributary to that lake. The dispersal of tagged lampreys throughout Lake Huron was wide. Five marked individuals were taken in the southern part of the lake over 150 miles from the point of tagging; 4 of these 5 were captured in Canadian waters. The marked lampreys exhibited no distinct pattern of migration other than a tendency toward a general southeasterly movement in Lake Huron.

  8. Changes in consumption by alewives and lake whitefish after dreissenid mussel invasions in Lakes Michigan and Huron

    USGS Publications Warehouse

    Pothoven, S.A.; Madenjian, C.P.

    2008-01-01

    Growth of alewives Alosa pseudoharengus and lake whitefish Coregonus clupeaformis has declined since the arrival and spread of dreissenid mussels in Lakes Michigan and Huron. Alewives are the main forage for the salmonids in Lake Michigan, and lake whitefish are the most important commercial species in both lakes. Bioenergetics modeling was used to determine consumption by the average individual fish before and after the dreissenid invasion and to provide insight into the invasion's effects on fish growth and food web dynamics. Alewives feed on both Zooplankton and benthic macroinvertebrates, and lake whitefish are benthivores. Annual consumption of zooplankton by an average alewife in Lake Michigan was 37% lower and consumption of benthic macroinvertebrates (amphipods Diporeia spp., opossum shrimp Mysis relicta, and Chironomidae) was 19% lower during the postinvasion period (1995-2005) than during the preinvasion period (1983-1994). Reduced consumption by alewives corresponded with reduced alewife growth. In Lakes Michigan and Huron, consumption of nonmollusk macroinvertebrates (Diporeia spp., opossum shrimp, Chironomidae) by the average lake whitefish was 46-96% lower and consumption of mollusks (mainly dreissenids and gastropods) was 2-5 times greater during the postinvasion period than during the preinvasion period. Even though total food consumption by lake whitefish did not differ between the two periods in Lake Huron or the Southern Management Unit in Lake Michigan, postinvasion weight at age was at least 38% lower than preinvasion weight at age. Under the current postinvasion diet regime, consumption by lake whitefish would have to increase by up to 122% to achieve preinvasion growth rates. ?? Copyright by the American Fisheries Society 2008.

  9. Radiocarbon ages of pre-bomb clams and the hard-water effect in Lakes Michigan and Huron

    USGS Publications Warehouse

    Rea, David K.; Colman, Steven M.

    1995-01-01

    Five radiocarbon ages, all determined by accelerator mass spectrometry, have been obtained for two pre-bomb bivalves from Lake Michigan and one from Lake Huron. After correcting those ages for the fractionation of14C in calcite and for the radioactively inert CO2 in the atmosphere, we find residual ages, caused by the hard water effect, of about 250 years for Lake Michigan and 440 years for Lake Huron.

  10. Increasing thiamine concentrations in lake trout eggs from Lakes Huron and Michigan coincide with low alewife abundance

    USGS Publications Warehouse

    Riley, Stephen C.; Rinchard, Jacques; Honeyfield, Dale C.; Evans, Allison N.; Begnoche, Linda

    2011-01-01

    Lake trout Salvelinus namaycush in the Laurentian Great Lakes suffer from thiamine deficiency as a result of adult lake trout consuming prey containing thiaminase, a thiamine-degrading enzyme. Sufficiently low egg thiamine concentrations result in direct mortality of or sublethal effects on newly hatched lake trout fry. To determine the prevalence and severity of low thiamine in lake trout eggs, we monitored thiamine concentrations in lake trout eggs from 15 sites in Lakes Huron and Michigan from 2001 to 2009. Lake trout egg thiamine concentrations at most sites in both lakes were initially low and increased over time at 11 of 15 sites, and the proportion of females with egg thiamine concentrations lower than the recommended management objective of 4 nmol/g decreased over time at eight sites. Egg thiamine concentrations at five of six sites in Lakes Huron and Michigan were significantly inversely related to site-specific estimates of mean abundance of alewives Alosa pseudoharengus, and successful natural reproduction of lake trout has been observed in Lake Huron since the alewife population crashed. These results support the hypothesis that low egg thiamine in Great Lakes lake trout is associated with increased alewife abundance and that low alewife abundance may currently be a prerequisite for successful reproduction by lake trout in the Great Lakes.

  11. 46 CFR 401.410 - Basic rates and charges on Lakes Huron, Michigan and Superior and the St. Mary's River.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Superior and the St. Mary's River. 401.410 Section 401.410 Shipping COAST GUARD (GREAT LAKES PILOTAGE... Services § 401.410 Basic rates and charges on Lakes Huron, Michigan and Superior and the St. Mary's River... performed by U.S. registered pilots on Lakes Huron, Michigan, and Superior and the St. Mary's River. (a...

  12. Comparative recruitment dynamics of Alewife and Bloater in Lakes Michigan and Huron

    USGS Publications Warehouse

    Collingsworth, Paris D.; Bunnell, David B.; Madenjian, Charles P.; Riley, Stephen C.

    2014-01-01

    The predictive power of recruitment models often relies on the identification and quantification of external variables, in addition to stock size. In theory, the identification of climatic, biotic, or demographic influences on reproductive success assists fisheries management by identifying factors that have a direct and reproducible influence on the population dynamics of a target species. More often, models are constructed as one-time studies of a single population whose results are not revisited when further data become available. Here, we present results from stock recruitment models for Alewife Alosa pseudoharengus and Bloater Coregonus hoyi in Lakes Michigan and Huron. The factors that explain variation in Bloater recruitment were remarkably consistent across populations and with previous studies that found Bloater recruitment to be linked to population demographic patterns in Lake Michigan. Conversely, our models were poor predictors of Alewife recruitment in Lake Huron but did show some agreement with previously published models from Lake Michigan. Overall, our results suggest that external predictors of fish recruitment are difficult to discern using traditional fisheries models, and reproducing the results from previous studies may be difficult particularly at low population sizes.

  13. Relative importance of phosphorus, invasive mussels and climate for patterns in chlorophyll a and primary production in Lakes Michigan and Huron

    USGS Publications Warehouse

    Warner, David M.; Lesht, Barry M.

    2015-01-01

    1. Lakes Michigan and Huron, which are undergoing oligotrophication after reduction of phosphorus loading, invasion by dreissenid mussels and variation in climate, provide an opportunity to conduct large-scale evaluation of the relative importance of these changes for lake productivity. We used remote sensing, field data and an information-theoretic approach to identify factors that showed statistical relationships with observed changes in chlorophyll a (chla) and primary production (PP). 2. Spring phosphorus (TP), annual mean chla and PP have all declined significantly in both lakes since the late 1990s. Additionally, monthly mean values of chla have decreased in many but not all months, indicating altered seasonal patterns. The most striking change has been the decrease in chla concentration during the spring bloom. 3. Mean chlorophyll a concentration was 17% higher in Lake Michigan than in Lake Huron, and total production for 2008 in Lake Michigan (9.5 tg year 1 ) was 10% greater than in Lake Huron (7.8 tg year 1 ), even though Lake Michigan is slightly smaller (by 3%) than Lake Huron. Differences between the lakes in the early 1970s evidently persisted to 2008. 4. Invasive mussels influenced temporal trends in spring chla and annual primary production. However, TP had a greater effect on chla and primary production than did the mussels, and TP varied independently from them. Two climatic variables (precipitation and air temperature in the basins) influenced annual chla and annual PP, while the extent of ice cover influenced TP but not chla or primary production. Our results demonstrate that observed temporal patterns in chla and PP are the result of complex interactions of P, climate and invasive mussels.

  14. First evidence of successful natural reproduction by planted lake trout in Lake Huron

    USGS Publications Warehouse

    Nester, Robert T.; Poe, Thomas P.

    1984-01-01

    Twenty-two lake trout (Salvelinus namaycush) swim-up fry, 24-27 mm long, were captured with emergent fry traps and a tow net in northwestern Lake Huron on a small nearshore reef off Alpena, Michigan, between May 10 and June 1, 1982. These catches represent the first evidence of successful production of swim-up fry by planted, hatchery-reared lake trout in Lake Huron since the lake trout rehabilitation program began in 1973.

  15. Current and historical concentrations of poly and perfluorinated compounds in sediments of the northern Great Lakes - Superior, Huron, and Michigan.

    PubMed

    Codling, Garry; Hosseini, Soheil; Corcoran, Margaret B; Bonina, Solidea; Lin, Tian; Li, An; Sturchio, Neil C; Rockne, Karl J; Ji, Kyunghee; Peng, Hui; Giesy, John P

    2018-05-01

    Current and historical concentrations of 22 poly- and perfluorinated compounds (PFASs) in sediment collected from Lake Superior and northern Lake Michigan in 2011 and Lake Huron in 2012 are reported. The sampling was performed in two ways, Ponar grabs of surface sediments for current spatial distribution across the lake and dated cores for multi-decadal temporal trends. Mean concentrations of the sum of PFASs (∑PFASs) were 1.5, 4.6 and 3.1 ng g -1 dry mas (dm) in surface sediments for Lakes Superior, Michigan and Huron, respectively. Of the five Laurentian Lakes, the watersheds of Superior and Huron are the less densely populated by humans, and concentrations observed were typically less and from more diffuse sources, due to lesser urbanization and industrialization. However, some regions of greater concentrations were observed and might indicate more local, point sources. In core samples concentrations ranged from lakes with concentrations typically increasing with time. Distributions of PFASs within dated cores largely corresponded with increase in use of PFASs, but with physiochemical characteristics also affecting distribution. Perfluoroalkyl sulfonates (PFSAs) with chain lengths >7 that include perfluoro-n-octane sulfonate (PFOS) bind more strongly to sediment, which resulted in more accurate analyses of temporal trends. Shorter-chain PFASs, such as perfluoro-n-butanoic acid which is the primary replacement for C8 PFASs that have been phased out, are more soluble and were identified in some core layers at depths corresponding to pre-production periods. Thus, analyses of temporal trends of these more soluble compounds in cores of sediments were less accurate. Total elemental fluorine (TF) and extractable organic fluorine (EOF) indicated that identified PFASs were not a significant fraction of fluorine containing compounds in sediment (<0.01% in EOF). Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Environmental baseline study of the Huron River Watershed, Baraga and Marquette Counties, Michigan

    USGS Publications Warehouse

    Woodruff, Laurel G.; Weaver, Thomas L.; Cannon, William F.

    2010-01-01

    This report summarizes results of a study to establish water-quality and geochemical baseline conditions within a small watershed in the Lake Superior region. In 2008, the U.S. Geological Survey (USGS) completed a survey of water-quality parameters and soil and streambed sediment geochemistry of the 83 mi2 Huron River Watershed in the Upper Peninsula of Michigan. Streamflow was measured and water-quality samples collected at a range of flow conditions from six sites on the major tributaries of the Huron River. All water samples were analyzed for a suite of common ions, nutrients, and trace metals. In addition, water samples from each site were analyzed for unfiltered total and methylmercury once during summer low-flow conditions. Soil samples were collected from 31 sites, with up to 4 separate samples collected at each site, delineated by soil horizon. Streambed sediments were collected from 11 sites selected to cover most of the area drained by the Huron River system. USGS data were supplemented with ecological assessments completed in 2006 by the Michigan Department of Environmental Quality using a modified version of their Great Lakes Environmental Assessment Section procedure 51, and again during 2008 using volunteers under supervision of the Michigan Department of Natural Resources. Results from this study define a hydrological, geological, and environmental baseline for the Huron River Watershed prior to any significant mineral exploration or development. Results from the project also serve to refine the design of future regional environmental baseline studies in the Lake Superior Basin.

  17. Status and trends of pelagic prey fishes in Lake Huron, 2012

    USGS Publications Warehouse

    Warner, David M.; O'Brien, Timothy P.; Farha, Steve A.; Schaeffer, Jeff; Lenart, Stephen

    2012-01-01

    The USGS Great Lakes Science Center (GLSC) conducted acoustic/midwater trawl surveys of Lake Huron during 1997 and annually during 2004-2012. The 2012 survey was conducted during September and October, and included transects in Lake Huron’s Main Basin, Georgian Bay, and North Channel. Pelagic fish density (638 fish/ha) was lower in 2012 compared to 2011, with density in 2012 only 34% of 2011. Total biomass in 2012 was 74% of the 2011 value. Alewife Alosa pseudoharengus remained nearly absent, and only one cisco Coregonus artedi was captured. Rainbow smelt Osmerus mordax density was only 31% of the 2011 density. Bloater Coregonus hoyi density was less than half the 2011 density, mostly as a result of lower density of small bloater. Density and biomass of large bloater in 2012 were similar to 2011 levels. During 2012 we observed significantly higher fish biomass in North Channel than in the Main Basin or Georgian Bay. Prey availability during 2013 will likely be similar to 2012. Lake Huron now has pelagic fish biomass similar to that observed in recent lakewide acoustic surveys of Lake Michigan and Lake Superior, but species composition differs in the three lakes. There is an increasing diversity and prevalence of native species gradient from Lake Michigan to Lake Superior, with Lake Huron being intermediate in the prevalence of native fish species like coregonines and emerald shiner Notropis atherinoides.

  18. Status and trends of pelagic prey fishes in Lake Huron, 2012

    USGS Publications Warehouse

    Warner, David M.; O'Brien, Timothy P.; Farha, Steve A.; Schaeffer, Jeff; Lenart, Stephen

    2013-01-01

    The USGS Great Lakes Science Center (GLSC) conducted acoustic/midwater trawl surveys of Lake Huron during 1997 and annually during 2004-2012. The 2012 survey was conducted during September and October, and included transects in Lake Huron’s Main Basin, Georgian Bay, and North Channel. Pelagic fish density (638 fish/ha) was lower in 2012 compared to 2011, with density in 2012 only 34% of 2011. Total biomass in 2012 was 74% of the 2011 value. Alewife Alosa pseudoharengus remained nearly absent, and only one cisco Coregonus artedi was captured. Rainbow smelt Osmerus mordax density was only 31% of the 2011 density. Bloater Coregonus hoyi density was less than half the 2011 density, mostly as a result of lower density of small bloater. Density and biomass of large bloater in 2012 were similar to 2011 levels. During 2012 we observed significantly higher fish biomass in North Channel than in the Main Basin or Georgian Bay. Prey availability during 2013 will likely be similar to 2012. Lake Huron now has pelagic fish biomass similar to that observed in recent lakewide acoustic surveys of Lake Michigan and Lake Superior, but species composition differs in the three lakes. There is an increasing diversity and prevalence of native species gradient from Lake Michigan to Lake Superior, with Lake Huron being intermediate in the prevalence of native fish species like coregonines and emerald shiner Notropis atherinoides.

  19. Relationship between mid-water trawling effort and catch composition uncertainty in two large lakes (Huron and Michigan) dominated by alosines, osmerids, and coregonines

    USGS Publications Warehouse

    Warner, David M.; Claramunt, Randall M.; Schaeffer, Jeffrey S.; Yule, Daniel L.; Hrabik, Tom R.; Peintka, Bernie; Rudstam, Lars G.; Holuszko, Jeffrey D.; O'Brien, Timothy P.

    2012-01-01

    Because it is not possible to identify species with echosounders alone, trawling is widely used as a method for collecting species and size composition data for allocating acoustic fish density estimates to species or size groups. In the Laurentian Great Lakes, data from midwater trawls are commonly used for such allocations. However, there are no rules for how much midwater trawling effort is required to adequately describe species and size composition of the pelagic fish communities in these lakes, so the balance between acoustic sampling effort and trawling effort has been unguided. We used midwater trawl data collected between 1986 and 2008 in lakes Michigan and Huron and a variety of analytical techniques to develop guidance for appropriate levels of trawl effort. We used multivariate regression trees and re-sampling techniques to i. identify factors that influence species and size composition of the pelagic fish communities in these lakes, ii. identify stratification schemes for the two lakes, iii. determine if there was a relationship between uncertainty in catch composition and the number of tows made, and iv. predict the number of tows required to reach desired uncertainty targets. We found that depth occupied by fish below the surface was the most influential explanatory variable. Catch composition varied between lakes at depths <38.5 m below the surface, but not at depths ≥38.5 m below the surface. Year, latitude, and bottom depth influenced catch composition in the near-surface waters of Lake Michigan, while only year was important for Lake Huron surface waters. There was an inverse relationship between RSE [relative standard error = 100 × (SE/mean)] and the number of tows made for the proportions of the different size and species groups. We found for the fifth (Lake Huron) and sixth (Lake Michigan) largest lakes in the world, 15–35 tows were adequate to achieve target RSEs (15% and 30%) for ubiquitous species, but rarer species required much

  20. Yield and dynamics of destabilized chub (Coregonus spp.) populations in Lakes Michigan and Huron, 1950-84

    USGS Publications Warehouse

    Brown, Edward H.; Argyle, Ray L.; Payne, N. Robert; Holey, Mark E.

    1987-01-01

    Deepwater ciscoes (Coregonus spp.) or 'chubs' of Lake Michigan far surpassed those of Lake Huron in yield, population density, and resilience following severe depletion in the 1960s and 1970s, when the bloater (C. hoyi) composed more than 90% of the stocks. The population decline of bloaters in recent decades was mainly attributed to exploitation, to the depression of chub recruitment (e.g. from inferred predation on early life stage) by nonendemic alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax), and to complications arising from extreme female predominance that was best documented for Lake Michigan. The various interactions between bloaters and the nonendemic species, which were intensified after the loss of large predators to sea lamprey (Petromyzon marinus), would help to explain why a stock-recruitment relation was not shown for the Lake Michigan bloater. We hypothesize that reproductive inefficiency caused by a shift to strong female predominance in the bloater depresses recruitment and thus helps to regulate abundance. However, the low resilience that sex imbalance seems to impart makes the stock unstable when exploited. It should therefore be exploited conservatively during such periods. Also, the sex ratio and its direction of change appear to be important qualifiers when surplus production is estimated from stock size.

  1. The whitefish fishery of Lakes Huron and Michigan with special reference to the deep-trap-net fishery

    USGS Publications Warehouse

    Van Oosten, John; Hile, Ralph; Jobes, Frank W.

    1946-01-01

    This study of the whitefish fishery of Lakes Huron and Michigan includes: (1) a review of the available statistics of production, 1879-1942; (2) a detailed analysis of the annual fluctuations in the production and abundance of whitefish and in the intensity of the whitefish fishery in the State of Michigan waters of the lakes, 1929-1942, with special reference to the effects of fishing with deep trap nets; (3) an account of the bathymetric distribution and vertical movements of whitefish and certain other species; and (4) a report of field observations made in 1931 and 1932, as related particularly to the destruction of undersized whitefish by pound nets and deep trap nets. The main body of the manuscript and appendices A, B, and C, completed in March 1942, contain statistics through the year 1939. Since that time, records for the years 1940-1942 have become available. Because these additional data did not alter any of the conclusions of the manuscript but actually strengthened them, it was not deemed justifiable to expend the considerable amount of time and money that would be required to revise the study. The 1940-1942 records are therefore presented in appendix D. From a relatively high production in the earlier years of the period, 1879 to 1942, the yield of whitefish declined to a lower level about which the catch fluctuated until the late 1920's and early 1930's when a general increase in production occurred. This recent increase was higher and the subsequent decline more severe in the Michigan waters of Lake Huron than in other areas.

  2. Geomorphic and sedimentologic evidence for the separation of Lake Superior from Lake Michigan and Huron

    USGS Publications Warehouse

    Johnston, J.W.; Thompson, T.A.; Wilcox, D.A.; Baedke, S.J.

    2007-01-01

    A common break was recognized in four Lake Superior strandplain sequences using geomorphic and sedimentologic characteristics. Strandplains were divided into lakeward and landward sets of beach ridges using aerial photographs and topographic surveys to identify similar surficial features and core data to identify similar subsurface features. Cross-strandplain, elevation-trend changes from a lowering towards the lake in the landward set of beach ridges to a rise or reduction of slope towards the lake in the lakeward set of beach ridges indicates that the break is associated with an outlet change for Lake Superior. Correlation of this break between study sites and age model results for the strandplain sequences suggest that the outlet change occurred sometime after about 2,400 calendar years ago (after the Algoma phase). Age model results from one site (Grand Traverse Bay) suggest an alternate age closer to about 1,200 calendar years ago but age models need to be investigated further. The landward part of the strandplain was deposited when water levels were common in all three upper Great Lakes basins (Superior, Huron, and Michigan) and drained through the Port Huron/Sarnia outlet. The lakeward part was deposited after the Sault outlet started to help regulate water levels in the Lake Superior basin. The landward beach ridges are commonly better defined and continuous across the embayments, more numerous, larger in relief, wider, have greater vegetation density, and intervening swales contain more standing water and peat than the lakeward set. Changes in drainage patterns, foreshore sediment thickness and grain size help in identifying the break between sets in the strandplain sequences. Investigation of these breaks may help identify possible gaps in the record or missing ridges in strandplain sequences that may not be apparent when viewing age distributions and may justify the need for multiple age and glacial isostatic adjustment models. ?? 2006 Springer Science

  3. Water Quality and Plankton in the United States Nearshore Waters of Lake Huron

    EPA Science Inventory

    We conducted an intensive survey for the US nearshore of Lake Huron along a continuous segment (523 km) from Port Huron Michigan to Detour Passage. A depth contour of 20 m was towed with a CTD, fluorometer, transmissometer, and laser optical plankton counter (LOPC). The continu...

  4. Ground-water levels in Huron County, Michigan, 2004-05

    USGS Publications Warehouse

    Weaver, T.L.; Crowley, S.L.; Blumer, S.P.

    2006-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships retained continuous waterlevel recorders, while the wells in Grant and Bingham Townships reverted primarily to periodic or quarterly measurement status. USGS also has provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 25 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 25 periodically or quarterly-measured wells is summarized in an annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998). The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville or Harbor Beach, or both (National Oceanic and Atmospheric Administration, 2003-05), and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration, 2003-05). In March 2003, a new low-water level for the period from 1991 through 2005 was measured in Lake Huron

  5. A post-Calumet shoreline along southern Lake Michigan

    USGS Publications Warehouse

    Capps, D.K.; Thompson, T.A.; Booth, R.K.

    2007-01-01

    The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.

  6. Feeding ecology of pelagic larval Burbot in Northern Lake Huron, Michigan

    USGS Publications Warehouse

    George, Ellen M.; Roseman, Edward F.; Davis, Bruce M.; O'Brien, Timothy P.

    2013-01-01

    Burbot Lota lota are a key demersal piscivore across the Laurentian Great Lakes whose populations have declined by about 90% in recent decades. Larval Burbot typically hatch in the early spring and rely on abundant crustacean zooplankton prey. We examined the stomach contents of larval Burbot from inshore (≤15 m) and offshore sites (37 and 91 m) in northern Lake Huron, Michigan. Concurrent zooplankton vertical tows at the same sites showed that the prey community was dominated by calanoid copepods, dreissenid mussel veligers, and rotifers. Burbot consumed mostly cyclopoid copepods, followed by copepod nauplii and calanoid copepods. Chesson's index of selectivity was calculated and compared among sites and months for individual Burbot. According to this index, larval Burbot exhibited positive selection for cyclopoid copepods and copepod nauplii and negative selection for calanoid copepods, cladocerans, rotifers, and dreissenid veligers. This selectivity was consistent across sites and throughout the sampling period. Burbot displayed little variation in their prey preferences during the larval stage, which suggests that the recent shifts in zooplankton abundance due to the invasion of the predatory zooplankter Bythotrephes longimanus and competition from invasive Rainbow Smelt Osmerus mordax could negatively impact larval Burbot populations.

  7. Climate Factors Contributing to Streamflow Inputs and Extreme Water-level Deviations from Long-term Averages for Lakes Superior and Michigan-Huron

    NASA Astrophysics Data System (ADS)

    Anderson, M. T.; Stamm, J. F.

    2014-12-01

    The Great Lakes are a highly valued freshwater resource of the United States and Canada. The Lakes are the focus of a science-based restoration program, known as the Great Lakes Restoration Initiative (GLRI). Physical and chemical factors, such as inflows and nutrient loads to the Great Lakes can affect ecosystem function, contribute to the spread of invasive species and increase the occurrence of harmful algal blooms. Since about 1999, water levels in Lakes Superior and Michigan-Huron have been at or below the long-term average (1918 to present). Analyses of streamflow trends for the period 1960 to 2012 in watersheds draining into Lakes Superior and Michigan-Huron showed a long-term decline in average inflows, which helps to explain the persistently below-average lake levels. Recent climatic conditions of October 2013 to August 2014 have contributed to a rapid rise in lake levels, most notably in Lake Superior. Lake Superior recently reached an elevation of 602.56 feet above sea level in August 2014, which is the highest level in 17 years. Coincident with this recovery was the development of a large algal bloom in Lake Erie in August of 2014 that shut down the Toledo, Ohio municipal water supply. These anomalous, extreme deviations from long-term average lake levels will be examined to better understand the forcing factors that contributed to changes in inflow volumes and lake-levels. Particular focus will be given to the climatology of years when changes in lake levels are most pronounced, such as; the measured lake-level declines during 1964-1965 and 1998-2000; and lake-level rises during 1973-1974, 1987-1989, and 2013-2014. The climatology of years with periods of algal blooms will also be examined such as, 2003, 2008, 2011 and 2014.

  8. Spring-summer diet of lake trout on Six Fathom Bank and Yankee Reef in Lake Huron

    USGS Publications Warehouse

    Madenjian, C.P.; Holuszko, J.D.; Desorcie, T.J.

    2006-01-01

    We examined the stomach contents of 1,045 lake trout (Salvelinus namaycush) caught on Six Fathom Bank and Yankee Reef, two offshore reef complexes in Lake Huron, during late spring and early summer 1998-2003. Lake trout ranged in total length from 213 to 858 mm, and in age from 2 to 14 years. In total, 742 stomachs contained food. On a wet-weight basis, alewife (Alosa pseudoharengus) dominated the spring-summer diet of lake trout on both of these offshore reef complexes. Alewives accounted for 75 to 90% of lake trout diet, depending on the lake trout size category. Size of alewives found in lake trout stomachs increased with increasing lake trout size. Faster growth of juvenile lake trout on Six Fathom Bank and Yankee Reef than on Sheboygan Reef in Lake Michigan was attributed to greater availability of small alewives on the offshore reefs in Lake Huron. Our findings indicated that alewives inhabited Six Fathom Bank and Yankee Reef during spring and summer months. Thus, our study provided support for the contention that alewives may have interfered with natural reproduction by lake trout on these offshore reef complexes in Lake Huron.

  9. Ground-water levels in Huron County, Michigan, 2002-03

    USGS Publications Warehouse

    Weaver, T.L.; Blumer, S.P.; Crowley, S.L.

    2008-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to collect water-level altitudes (hereafter referred to as water levels) at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships will have continuous water-level recorders, while the wells in Grant and Bingham Townships will revert to quarterly measurement status. USGS has also provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 23 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 23 quarterly-measured wells is also summarized in the annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998).The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for groundwater levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville and Harbor Beach, and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration [NOAA], 2002-04; Danny Costello, NOAA hydrologist, written commun., 2003-04). In March 2003, a new low-water level for the period of this study was measured in

  10. Declines in deepwater sculpin Myoxocephalus thompsonii energy density associated with the disappearance of Diporeia spp. in lakes Huron and Michigan

    USGS Publications Warehouse

    Pothoven, S.A.; Hondorp, D.W.; Nalepa, T.F.

    2011-01-01

    The deepwater sculpin Myoxocephalus thompsonii is a glacial relict in the Laurentian Great Lakes that primarily consumes two glacial relict crustaceans, Mysis relicta and Diporeia spp. Deepwater sculpin were collected in Lake Michigan off Little Sable Point (in 2001) and Muskegon, Michigan (in 2001 and 2009), and in Lake Huron off Harbor Beach, Michigan (in 2007) for energy density and diet analyses. These sites and years represented differences in available prey. In Lake Michigan, energy densities of deepwater sculpin in 2001 were similar to those reported in 1969-1971. In contrast, energy content declined at least 26% at Muskegon between 2001 and 2009. Overall, energy density was 31-34% higher at a site with abundant Diporeia spp. compared with two sites without Diporeia spp. Deepwater sculpin diets consisted primarily of M. relicta at all sites, but included 10-17% (dry mass) Diporeia spp. at sites where this crustacean was still abundant. Food biomass in stomachs was higher at sites with abundant Diporeia spp. than at those without Diporeia spp. Deepwater sculpin energy density and food biomass in stomachs were similar between two sites without Diporeia spp. despite differences in abundance of remaining prey, M. relicta. Declines in deepwater sculpin energy density suggest the potential for further effects on other species and changes in the flow of energy through the food web of the Great Lakes. Published 2010. This article is a US Government work and is in the public domain in the USA.

  11. Lake trout rehabilitation in Lake Huron

    USGS Publications Warehouse

    Eshenroder, Randy L.; Payne, N. Robert; Johnson, James E.; Bowen, Charles; Ebener, Mark P.

    1995-01-01

    Efforts to restore lake trout (Salvelinus namaycush) in Lake Huron after their collapse in the 1940s were underway in the early 1970s with completion of the first round of lampricide applications in tributary streams and the stocking of several genotypes. We assess results of rehabilitation and establish a historical basis for comparison by quantifying the catch of spawning lake trout from Michigan waters in 1929-1932. Sixty-eight percent of this catch occurred in northern waters (MH-1) and most of the rest (15%) was from remote reefs in the middle of the main basin. Sea lampreys (Petromyzon marinus) increased in the early 1980s in the main basin and depressed spawning populations of lake trout. This increase was especially severe in northern waters and appeared to be associated with untreated populations in the St. Marys River. Excessive commercial fishing stemming from unresolved treaty rights also contributed to loss of spawning fish in northern Michigan waters. Seneca-strain lake trout did not appear to be attacked by sea lampreys until they reached a size > 532 mm. At sizes > 632 mm, Seneca trout were 40-fold more abundant than the Marquette strain in matched-planting experiments. Natural reproduction past the fry stage has occurred in Thunder Bay and South Bay, but prospects for self-sustaining populations of lake trout in the main basin are poor because sea lampreys are too abundant, only one side of the basin is stocked, and stocking is deferred to allow commercial gillnetting in areas where most of the spawning occurred historically. Backcross lake trout, a lake trout x splake (s. Fontinalis x s. Namaycush) hybrid, did not reproduce in Georgian Bay, but this genotype is being replaced with pure-strain lake trout, whose early performance appears promising.

  12. Ground-water levels in Huron County, Michigan, January 1995 through December 1995

    USGS Publications Warehouse

    Sweat, M.J.

    1996-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into an agreement to continue collecting water levels at selected wells throughout Huron County. As part of the agreement, the USGS has provided training and instrumentation for County personnel to measure, on a quarterly basis, the depth to water below the land surface in selected wells. The agreement includes the operation of continuous water-level recorders installed on four wells in Bingham, Fairhaven, Grant and Lake Townships (fig. 1). County personnel make quarterly water-level measurements of 22 other wells. Once each year, County personnel are accompanied by USGS personnel who provide a quality assurance/quality control check of all measurements being made.

  13. Reconnaissance Study for the Western Lake Huron Basin, Watershed Study, Michigan, Section 905(b)

    DTIC Science & Technology

    2012-05-01

    Isle, Alpena , Alcona, Iosco, Arenac, Bay, Tuscola, Huron, Sanilac, St. Clair, Midland, and Saginaw. With the exception of Midland and Saginaw Counties...Cheboygan, Presque Isle, Alpena , Alcona, Iosco, Arenac, Bay, Midland, Saginaw, Tuscola, Huron, Sanilac, and St. Clair. The study area includes the... Alpena Harbor. Alpena Harbor is at the mouth of the Thunder Bay River, which empties into Thunder Bay, Lake Huron. The harbor is 100 miles southeast of

  14. Hydraulic Model Study of Port Huron Ice Control Structure,

    DTIC Science & Technology

    1982-11-01

    thickness for Lake Huron, Alpena , M ichigan, data...measurements was Alpena , Michigan. The following table summarizes these monthly values in terms of degree days. The solid ice sheet thickness for a...ice thickness for Lake Huron, Alpena , Michigan, data. Freezing degree days Cumulative Ice thickness CDays FDys , ’C Day) E CF Day) () (ft) Jan 277

  15. Ground-Water Levels in Huron County, Michigan, 2004-05

    USGS Publications Warehouse

    Weaver, T.L.; Crowley, S.L.; Blumer, S.P.

    2006-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships retained continuous waterlevel recorders, while the wells in Grant and Bingham Townships reverted primarily to periodic or quarterly measurement status. USGS also has provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 25 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 25 periodically or quarterly-measured wells is summarized in an annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998).The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville or Harbor Beach, or both (National Oceanic and Atmospheric Administration, 2003-05), and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration, 2003-05). In March 2003, a new low-water level for the period from 1991 through 2005 was measured in Lake Huron

  16. 75 FR 38723 - Safety Zone; St. Ignace 4th of July Fireworks, East Moran Bay, Lake Huron, St. Ignace, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ...-AA00 Safety Zone; St. Ignace 4th of July Fireworks, East Moran Bay, Lake Huron, St. Ignace, MI AGENCY... safety zone on East Moran Bay, Lake Huron, St. Ignace, Michigan. This zone is intended to restrict vessels from a portion of East Moran Bay during the St. Ignace 4th of July Fireworks display, July 4, 2010...

  17. Resurgence of emerald shiners Notropis atherinoides in Lake Huron's main basin

    USGS Publications Warehouse

    Schaeffer, J.S.; Warner, D.M.; O'Brien, T. P.

    2008-01-01

    Emerald shiners Notropis atherinoides were formerly common in Lakes Huron and Michigan, but declined during the 1960s as the exotic alewife Alosa pseudoharengus proliferated. The Lake Huron emerald shiner population was chronically depressed through 2004; however, we detected resurgence in emerald shiner density and biomass in Lake Huron during acoustic and midwater trawl surveys conducted during 2004-2006. Emerald shiners were not found during 2004, but by 2006 main basin density exceeded 500 fish/ha, biomass estimates exceeded 0.5 kg/ha, and emerald shiners contributed more to pelagic biomass than alewives or rainbow smelt Osmerus mordax. Length frequency distributions suggested that increased density was the result of two consecutive strong year classes in 2005 and 2006. Emerald shiner distributions also expanded from a focus in western Lake Huron in 2005 to a lakewide distribution in 2006. Emerald shiners occurred offshore, but were nearly always associated with epilimnetic surface waters warmer than 19??C. Resurgence of emerald shiners was likely a consequence of reduced alewife abundance, as they declined concurrently with alewife proliferation during the early 1960s. Return of this species may benefit native nearshore piscivores; however, benefits to Pacific salmonids Oncorhynchus spp. are uncertain because emerald shiners are smaller and still less abundant than historically important prey species, and they may be thermally segregated from salmonines.

  18. Time trends (1983-1999) for organochlorines and polybrominated diphenyl ethers in rainbow smelt (Osmerus mordax) from Lakes Michigan, Huron and Superior, USA

    USGS Publications Warehouse

    Chernyak, Sergei M.; Rice, Clifford P.; Quintal, Richard T.; Begnoche, Linda J.; Hickey, James P.; Vinyard, Bryan T.

    2005-01-01

    The U.S. Geological Service Great Lakes Science Center has archived rainbow smelt (Osmerus mordax) collected from the early 1980s to the present. These fish were collected to provide time- and site-dependent contaminant residue data needed by researchers and managers to fill critical data gaps regarding trends and behavior of persistent organic contaminants in the Great Lakes ecosystem. In the present study, data are presented for concentrations of several organochlorine (OC) contaminants in the archived smelt, including DDT, polychlorinated biphenyls (PCBs), toxaphene, and chlordanes in Lakes Michigan and Huron (MI, USA) and in Lake Superior (MN, USA). The trends for all the OCs were declining as a first-order decay over the sampled time series (1983/1985–1993/1999) with the exception of toxaphene in Lake Superior and PCBs at the Charlevoix/Little Traverse Bay site in Lake Michigan. Concentration of the emerging contaminant, polybrominated diphenyl ethers (PBDEs), also was traced from its apparent entry into this ecosystem in approximately 1980 until 1999. Time trends for the PBDEs were increasing exponentially at all sites, with concentration-doubling times varying from 1.58 to 2.94 years.

  19. Lake Huron LAMPs

    EPA Pesticide Factsheets

    The approach in Lake Huron differs from the Lakewide Management Plans of the other Great Lakes: no formal binational designation of lakewide beneficial use impairments, nor extensive lakewide modeling of chemical loadings

  20. Ground-water levels in Huron County, Michigan, 2006-07

    USGS Publications Warehouse

    Weaver, T.L.; Blumer, S.P.; Fuller, L.M.

    2008-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS initially operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham (H5r), Fairhaven (H9r), Grant (H2r), and Lake Townships (H25Ar) and summarized the data collected in an annual or bi-annual report (fig. 1). The agreement was altered in 2003, and beginning January 1, 2004, only wells H9r and H25Ar retained continuous water-level recorders, while wells H2r and H5r reverted to quarterly or periodic measurement status due to budget constraints. The decision of which two wells to discontinue was based on an analysis of the intrinsic value to Huron County of data from each well. Well H2r was selected for periodic measurement at that time because it is completed in the glacial aquifer, which is absent in much of Huron County and well H5r, which is completed in the Marshall aquifer, was selected because the water level in the well is often perturbed as a result of pumpage from nearby production wells and does not always reflect baseline conditions within the aquifer. USGS also has provided training for County or Huron Conservation District personnel to measure the water level in 24 of the wells on a quarterly basis. USGS personnel accompany County or Huron Conservation District personnel on a semi-annual basis to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the wells is summarized in an annual or bi-annual report. The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for groundwater levels in Huron County. Figure 2 shows the meanmonthly water-level altitude of Lake Huron, averaged from

  1. Ground-water levels in Huron County, Michigan, March 1993 through December 1994

    USGS Publications Warehouse

    Sweat, M.J.

    1995-01-01

    In 1990, the U.S. Geological Survey completed a study of the hydrogeology of Huron County, Michigan. In 1993, Huron County and the USGS entered into an agreement to continue collecting water levels at selected wells throughout Huron County. As part of the agreement, the USGS provided training and instrumentation for County personnel to measure, on a quarterly basis, the depth to water below the land surface in selected wells. The program included the operation of continuous water-level recorders installed on four wells, in Bingham, Fairhaven, Grant and Lake townships (figure 1). County personnel make quarterly water-level measurements on 22 other wells (figure 1). Once each year, County personnel are accompanied by USGS personnel who provide a quality assurance/quality control check of all measurements being made.Two of the wells with recorders are completed in the Marshall aquifer (H5r and H25Ar), one is completed in the glacio-fluvial aquifer (H2r), and one is completed in the Saginaw aquifer (H9r). Hydrographs are presented for each of the four wells with water level recorders (figures 3, 4, 6, and 8). Hydrographs of quarterly water-level measurements and range of water levels during the period October, 1988 to January, 1990 (the original project period) are shown in figures 5, 7, 9, and 10 and quarterly water levels are presented in tables 1 through 4.Figure 2 shows the monthly-mean water-level elevation of Lake Huron, as measured at Harbor Beach and Essexville, and monthly-mean precipitation as recorded at Bad Axe, for the period October, 1988 through December, 1994. In general, Lake Huron water-level elevation were at or near record lows in late 1989, and near record highs in late 1993. Precipitation throughout the period was generally within the normal range.

  2. Evidence of offshore lake trout reproduction in Lake Huron

    USGS Publications Warehouse

    DeSorcie, Timothy J.; Bowen, Charles A.

    2003-01-01

    Six Fathom Bank-Yankee Reef, an offshore reef complex, was an historically important spawning area believed to represent some of the best habitat for the rehabilitation of lake trout Salvelinus namaycush in Lake Huron. Since 1986, lake trout have been stocked on these offshore reefs to reestablish self-sustaining populations. We sampled with beam trawls to determine the abundance of naturally reproduced age-0 lake trout on these offshore reefs during May-July in 1994-1998 and 2000-2002. In total, 123 naturally reproduced lake trout fry were caught at Six Fathom Bank, and 2 naturally reproduced lake trout fry were caught at nearby Yankee Reef. Our findings suggest that this region of Lake Huron contains suitable habitat for lake trout spawning and offers hope that lake trout rehabilitation can be achieved in the main basin of Lake Huron.

  3. Status and future of Lake Huron fish communities

    USGS Publications Warehouse

    Ebener, M.P.; Johnson, J.E.; Reid, D.M.; Payne, N.P.; Argyle, R.L.; Wright, G.M.; Krueger, K.; Baker, J.P.; Morse, T.; Weise, J.; Munawar, M.; Edsall, T.; Leach, J.

    1995-01-01

    In 1993, fishery management agencies with jurisdiction over Lake Huron fish populations developed draft fish community objectives in response to the Joint Strategic Plan for Management of Great Lakes Fisheries. The Joint Strategic Plan charged the Great Lakes Fishery Commission sponsored Lake Huron Committee to define objectives for what the fish community of Lake Huron should look like in the future, and to develop means for measuring progress toward the objectives. The overall management objective for Lake Huron is to 'over the next two decades restore an ecologically balanced fish community dominated by top predators and consisting largely of self-sustaining, indigenous and naturalized species and capable of sustaining annual harvests of 8.9 million kg'. This paper represents the first attempt at consolidating current biological information from different management agencies on a lake-wide basis for the purpose of assessing the current status and dynamics of Lake Huron fishes.

  4. Growth and survival of sea lampreys from metamorphosis to spawning in Lake Huron

    USGS Publications Warehouse

    Swink, William D.; Johnson, Nicholas S.

    2014-01-01

    Larval Sea Lampreys Petromyzon marinus live burrowed in stream bottoms and then metamorphose into their parasitic stage. Among larvae that metamorphose in a given year (i.e., parasitic cohort), autumn out-migrants (October–December) to the Laurentian Great Lakes can feed on fish for up to 6 months longer than spring outmigrants (March–May), which overwinter in streams without feeding. We evaluated whether the season of outmigration affected growth or survival of newlymetamorphosed Sea Lampreys in LakeHuron. Newlymetamorphosed individuals (n=2,718) from three parasitic cohorts were netted during their out-migration from BlackMallard Creek, Michigan, to LakeHuron during autumn 1997 through spring 2000; each out-migrant was injected with a sequentially numbered coded wire tag and was released back into the creek. After up to 18 months of feeding in the Great Lakes, 224 (8.2%) Sea Lampreys were recaptured (in 1999–2001) as upstream-migrating adults in tributaries to Lakes Huron and Michigan. Recovery rates of autumn and spring out-migrants as adults were 9.4% and 7.8%, respectively, and these rates did not significantly differ. Overwinter feeding (i.e., as parasites) by autumn out-migrants did not produce adult mean sizes greater than those of spring out-migrants. Because we detected no growth or survival differences between autumn and spring out-migrants, the capture of newly metamorphosed Sea Lampreys at any point during their out-migration should provide equal reductions in damage to Great Lakes fisheries. The absence of a difference in growth or survival between autumn and spring out-migrants is an aspect of Sea Lamprey life history that yields resiliency to this invasive parasite and complicates efforts for its control in the Great Lakes.

  5. Occurrence of Cyathocephalus truncatus (Cestoda) in fishes of the Great Lakes with emphasis on its occurrence in round gobies (Neogobius melanostomus) from Lake Huron

    USGS Publications Warehouse

    French, John R. P.; Muzzall, Patrick M.; Adams, Jean V.; Johnson, Kendra L.; Flores, Angela E.; Winkel, Andrea M.

    2005-01-01

    Cyathocephalus truncatus is a pathogenic cestode that is common in many Laurentian Great Lakes fish species, but the depth distribution of this cestode has not been studied. Cyathocephalus truncatus has been reported from 21 fish species and one hybrid representing seven orders and nine families in Lakes Superior, Michigan, Huron, and Ontario. We examined the intestinal contents of six species of fish collected in Michigan waters of Lake Huron, from DeTour to Harbor Beach, in 2001 to 2003 for the presence of this cestode species. Cyathocephalus truncatus was found in five native fish species and the exotic round goby. Prevalence (52%) and mean intensity (4.6 cestodes per infected fish) were highest in bloaters. This is the first reported occurrence of this cestode in round gobies from the Great Lakes. None of the gobies trawled from Lake Huron at depths of 27 to 46 m were infected, but prevalence and intensity of infection in round gobies increased significantly with depth from 55 to 73 m. Our diet study of round gobies indicated that they preyed heavily on amphipods (Diporeia hoyi) at depths of 55 to 73 m. Cyathocephalus truncatus was found in eight of 605 D. hoyi obtained by Ponar grab sampling. This suggests that C. truncatus eggs may be released from infected gobies and sink to deep basins with silt bottoms where D. hoyi occur.

  6. Late Holocene lake-level variation in southeastern Lake Superior: Tahquamenon Bay, Michigan

    USGS Publications Warehouse

    Johnston, John W.; Baedke, Steve J.; Booth, Robert K.; Thompson, Todd A.; Wilcox, Douglas A.

    2004-01-01

    Internal architecture and ages of 71 beach ridges in the Tahquamenon Bay embayment along the southeastern shore of Lake Superior on the Upper Peninsula of Michigan were studied to generate a late Holocene relative lake-level curve. Establishing a long-term framework is important to examine the context of historic events and help predict potential future changes critical for effective water resource management. Ridges in the embayment formed between about 4,200 and 2,100 calendar years before 1950 (cal. yrs. B.P.) and were created and preserved every 28 A? 4.8 years on average. Groups of three to six beach ridges coupled with inflections in the lake-level curve indicate a history of lake levels fluctuations and outlet changes. A rapid lake-level drop (approximately 4 m) from about 4,100 to 3,800 cal. yrs. B.P. was associated with a fall from the Nipissing II high-water-level phase. A change from a gradual fall to a slight rise was associated with an outlet change from Port Huron, Michigan/Sarnia, Ontario to Sault Ste. Marie, Michigan/Ontario. A complete outlet change occurred after the Algoma high-water-level phase (ca. 2,400 cal. yrs. B.P.). Preliminary rates of vertical ground movement calculated from the strandplain are much greater than rates calculated from historical and geologic data. High rates of vertical ground movement could have caused tectonism in the Whitefish Bay area, modifying the strandplain during the past 2,400 years. A tectonic event at or near the Sault outlet also may have been a factor in the outlet change from Port Huron/Sarnia to Sault Ste. Marie.

  7. Ground-water levels in Huron County, Michigan, January 1996 through December 1996

    USGS Publications Warehouse

    Sweat, M.J.

    1997-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into an agreement to continue collecting water levels at selected wells throughout Huron County. As part of the agreement, the USGS has provided training and instrumentation for County personnel to measure, on a quarterly basis, the depth to water below the land surface in selected wells. The agreement includes the operation of continuous water-level recorders installed on four wells in Bingham, Fairhaven, Grant and Lake Townships (fig. 1). County personnel make quarterly water-level measurements of 22 other wells. Once each year, County personnel are accompanied by USGS personnel who provide a quality assurance/quality control check of all measurements being made.Precipitation and the altitude of Lake Huron are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean monthly water-level altitude of Lake Huron, averaged from measurements made by U.S. Army Corps of Engineers at two sites, and mean monthly precipitation as recorded in Huron County, for the period October 1988 through December 1996. In general, Lake Huron water levels in 1996 were about the same as they were from 1992-94 (NOAA, 1988-96). Precipitation was generally within the normal range, but was lower than 1993 or 1994. Rainfall during May, June, and July was, cumulatively, about 8.5 inches less in 1995 than in 1994.Hydrographs are presented for each of four wells with water-level recorders. Quarterly water-level measurements and range of water levels during 1996 for the other 22 wells are shown graphically and tabulated.In general, water levels in the glaciofluvial aquifer reflect seasonal variations, with maximum depths to water occurring in late summer and early fall and minimum depths to water occurring in late winter and early

  8. A multiproxy environmental investigation of Holocene wood from a submerged conifer forest in Lake Huron, USA

    Treesearch

    R. Douglas Hunter; Irina P. Panyushkina; Steven W. Leavitt; Alex C. Wiedenhoeft; John Zawiskie

    2006-01-01

    Remains of a Holocene drowned forest in southern Lake Huron discovered in 12.5 m of water (164 m above sea level), 4.5 km east of Lexington, Michigan USA (Sanilac site), provided wood to investigate environment and lake history using several proxies. Macrofossil evidence indicates a forest comprised primarily of conifers equivalent to the modern “rich conifer swamp”...

  9. Wetland macroinvertebrates of Prentiss Bay, Lake Huron, Michigan: diversity and functional group composition

    USGS Publications Warehouse

    Merritt, R.W.; Benbow, M.E.; Hudson, P.L.

    2002-01-01

    The Great Lakes support many fish and waterbirds that depend directly or indirectly on coastal wetlands during some portion of their life cycle. It is known that macroinvertebrates make up an important part of wetland food webs and ecosystem function; however, our understanding of species distribution within and among wetlands has only recently received attention. We investigated the macroinvertebrates of a freshwater marsh (Prentiss Bay) in the Les Chenaux Island Area of Northern Lake Huron, Michigan. Macroinvertebrate taxa diversity and functional feeding group composition were compared between two habitats. A shallow depositional habitat with higher vegetation diversity and little wave action was compared to a deeper erosional habitat with fewer plant species and more wave action. A total of 83 taxa were collected over the summer of 1996, representing two phyla (Arthropoda and Mollusca) and five classes (Arachnida, Bivalvia, Malacostraca, Gastropoda and Insecta). A total of 79 genera were identified, with 92% being insects (39 families composed of at least 73 genera). Of the total, 42 insect genera were common to both habitats,while relatively fewer were collected exclusively from the erosional compared the depositional habitat. When habitats were pooled, predators comprised about 50% of the functional group taxa, while gathering collectors and shredders each were about 20%. Filtering collectors and scrapers each represented < 10%. When comparing habitats, there was a relatively higher percentage of predators and shredders in the depositional habitat, while all other functional groups were lower. These data suggest that vegetation diversity, depth and wave action affect taxa composition and functional group organization of the Prentiss Bay marsh.

  10. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie.

    PubMed

    Peat, Tyler B; Hayden, Todd A; Gutowsky, Lee F G; Vandergoot, Christopher S; Fielder, David G; Madenjian, Charles P; Murchie, Karen J; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2015-10-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie

    USGS Publications Warehouse

    Peat, Tyler B; Hayden, Todd A.; Gutowsky, Lee F G; Vandergoot, Christopher S.; Fielder, David G.; Madenjian, Charles P.; Murchie, Karen J; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2015-01-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses.

  12. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitor: (1) Channel 11 (156.55 mhz) between Lake Huron Cut Lighted Buoy 11 and Lake St. Clair Light; and (2) Channel 12 (156.60 mhz) between Lake St. Clair Light and Detroit River Light. (b) Radiotelephone... Cut Light “7” Lake Huron Cut Lighted Buoy “1” Report. Report St. Clair/Black River Junction Light...

  13. Helminths in an intensively stocked population of lake trout, Salvelinus namaycush, from Lake Huron

    USGS Publications Warehouse

    Muzzall, Patrick M.; Bowen, Charles A.

    2000-01-01

    Eighty stocked lake trout Salvelinus namaycush (Salmonidae), collected from 2 locations in Lake Huron in May 1995, were examined for parasites. The parasite fauna of this top predator in Lake Huron was characterized by only 6 helminth species. Echinorhynchus salmonis infected all lake trout with a mean intensity of 163.9. The intensity of this acanthocephalan species significantly increased with host length and weight. Eubothrium salvelini infected 78 lake trout with a maximum number of 81 scoleces counted. Diplostomum sp., Cyathocephalus truncatus, Capillaria salvelini, and Neoechinorhynchus sp. infrequently infected lake trout. The low parasite species richness in these lake trout is believed to be due to their large size at stocking and to the loss of historical enzootic host-parasite relationships that followed the absence of this fish species in Lake Huron for 26 yr.

  14. Increased piscivory by lake whitefish in Lake Huron

    USGS Publications Warehouse

    Pothoven, Steven A.; Madenjian, Charles P.

    2013-01-01

    We evaluated the diet of Lake Whitefish Coregonus clupeaformis in Lake Huron during 2002–2011 to determine the importance of Round Goby Neogobius melanostomus and other fish as prey items. Lake Whitefish that had reached approximately 400 mm in length incorporated fish into their diets. The overall percentage of adult Lake Whitefish in Lake Huron that had eaten fish increased from 10% in 2002–2006 to 20% in 2007–2011, with a corresponding decrease in the frequency of Lake Whitefish that ate Dreissena spp. from 52% to 33%. During 2002–2006, Round Goby (wet mass, 38%), sculpins (Cottidae) (34%), and Ninespine Stickleback Pungitius pungitius (18%) were the primary fish eaten, whereas Round Goby accounted for 92% of the fish eaten in 2007–2011. Overall, Round Goby were found in the fewest Lake Whitefish stomachs in the north region of Lake Huron (6%) and in the most in the central (23%) and south (19%) regions of the lake. In the central region, Round Goby were eaten during all seasons that were sampled (spring through fall). In the south region, Round Goby were eaten only in the winter and spring but not in the summer when Dreissena spp. and spiny water flea Bythotrephes longimanus dominated the diet. Based on the 2007–2011 diet composition, an individual Lake Whitefish would need to have increased their consumption relative to that in 1983–1994 by 6% in the north region, 12% in the central region, and 41% in the southern region in order to achieve the same growth that was observed before dreissenid mussels arrived. However, Lake Whitefish weight adjusted for length only increased by 2% between 2002–2006 and 2007–2011 in the central region, decreased by 4% in the northern region, and remained constant in the southern region. This suggests that a shift toward more frequent piscivory does not necessarily improve the condition of a generalist feeder like Lake Whitefish.

  15. Potential effects of climate change on the growth of fishes from different thermal guilds in Lakes Michigan and Huron

    USGS Publications Warehouse

    Kao, Yu-Chun; Madenjian, Charles P.; Bunnell, David B.; Lofgren, Brent M.; Perroud, Marjorie

    2015-01-01

    We used a bioenergetics modeling approach to investigate potential effects of climate change on the growth of two economically important native fishes: yellow perch (Perca flavescens), a cool-water fish, and lake whitefish (Coregonus clupeaformis), a cold-water fish, in deep and oligotrophic Lakes Michigan and Huron. For assessing potential changes in fish growth, we contrasted simulated fish growth in the projected future climate regime during the period 2043-2070 under different prey availability scenarios with the simulated growth during the baseline (historical reference) period 1964-1993. Results showed that effects of climate change on the growth of these two fishes are jointly controlled by behavioral thermoregulation and prey availability. With the ability of behavioral thermoregulation, temperatures experienced by yellow perch in the projected future climate regime increased more than those experienced by lake whitefish. Thus simulated future growth decreased more for yellow perch than for lake whitefish under scenarios where prey availability remains constant into the future. Under high prey availability scenarios, simulated future growth of these two fishes both increased but yellow perch could not maintain the baseline efficiency of converting prey consumption into body weight. We contended that thermal guild should not be the only factor used to predict effects of climate change on the growth of a fish, and that ecosystem responses to climate change should be also taken into account.

  16. A 9,000-year-old caribou hunting structure beneath Lake Huron.

    PubMed

    O'Shea, John M; Lemke, Ashley K; Sonnenburg, Elizabeth P; Reynolds, Robert G; Abbott, Brian D

    2014-05-13

    Some of the most pivotal questions in human history necessitate the investigation of archaeological sites that are now under water. Nine thousand years ago, the Alpena-Amberley Ridge (AAR) beneath modern Lake Huron was a dry land corridor that connected northeast Michigan to southern Ontario. The newly discovered Drop 45 Drive Lane is the most complex hunting structure found to date beneath the Great Lakes. The site and its associated artifacts provide unprecedented insight into the social and seasonal organization of prehistoric caribou hunting. When combined with environmental and simulation studies, it is suggested that distinctly different seasonal strategies were used by early hunters on the AAR, with autumn hunting being carried out by small groups, and spring hunts being conducted by larger groups of cooperating hunters.

  17. Energy density of bloaters in the upper Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Bunnell, David B.; Madenjian, Charles P.; Gorman, Owen T.; Roseman, Edward F.

    2012-01-01

    We evaluated the energy density of bloaters Coregonus hoyi as a function of fish size across Lakes Michigan, Huron, and Superior in 2008–2009 and assessed how differences in energy density are related to factors such as biomass density of bloaters and availability of prey. Additional objectives were to compare energy density between sexes and to compare energy densities of bloaters in Lake Michigan between two time periods (1998–2001 and 2008–2009). For the cross-lake comparisons in 2008, energy density increased with fish total length (TL) only in Lake Michigan. Mean energy density adjusted for fish size was 8% higher in bloaters from Lake Superior than in bloaters from Lake Huron. Relative to fish in these two lakes, small (175 mm TL) bloaters had higher energy density. In 2009, energy density increased with bloater size, and mean energy density adjusted for fish size was about 9% higher in Lake Michigan than in Lake Huron (Lake Superior was not sampled during 2009). Energy density of bloaters in Lake Huron was generally the lowest among lakes, reflecting the relatively low densities of opossum shrimp Mysis diluviana and the relatively high biomass of bloaters reported for that lake. Other factors, such as energy content of prey, growing season, or ontogenetic differences in energy use strategies, may also influence cross-lake variation in energy density. Mean energy density adjusted for length was 7% higher for female bloaters than for male bloaters in Lakes Michigan and Huron. In Lake Superior, energy density did not differ between males and females. Finally, energy density of bloaters in Lake Michigan was similar between the periods 2008–2009 and 1998–2001, possibly due to a low population abundance of bloaters, which could offset food availability changes linked to the loss of prey such as the amphipods Diporeia spp.

  18. Water-Quality Data, Huron County, Michigan 2004

    DTIC Science & Technology

    2005-01-01

    ecoregion VII, EPA 822-B-00-018: U.S. Environ - mental Protection Agency, 93 p. U.S. Environmental Protection Agency, Water Quality Crite- ria: U.S...U.S. Environmental Protection Agency, 2000a, and American Public Health Association, 1998, as well as the standard field procedures documented by the... environmental samples (Bird and others, 2001). Figure 1. Map showing surface-water and ground-water sampling locations in Huron County, Michigan KINDE ELKTON

  19. A 9,000-year-old caribou hunting structure beneath Lake Huron

    PubMed Central

    O’Shea, John M.; Lemke, Ashley K.; Sonnenburg, Elizabeth P.; Reynolds, Robert G.; Abbott, Brian D.

    2014-01-01

    Some of the most pivotal questions in human history necessitate the investigation of archaeological sites that are now under water. Nine thousand years ago, the Alpena-Amberley Ridge (AAR) beneath modern Lake Huron was a dry land corridor that connected northeast Michigan to southern Ontario. The newly discovered Drop 45 Drive Lane is the most complex hunting structure found to date beneath the Great Lakes. The site and its associated artifacts provide unprecedented insight into the social and seasonal organization of prehistoric caribou hunting. When combined with environmental and simulation studies, it is suggested that distinctly different seasonal strategies were used by early hunters on the AAR, with autumn hunting being carried out by small groups, and spring hunts being conducted by larger groups of cooperating hunters. PMID:24778246

  20. Temperature effects induced by climate change on the growth and consumption by salmonines in Lakes Michigan and Huron

    USGS Publications Warehouse

    Kao, Yu-Chun; Madenjian, Charles P.; Bunnell, David B.; Lofgren, Brent M.; Perroud, Marjorie

    2015-01-01

    We used bioenergetics models to investigate temperature effects induced by climate change on the growth and consumption by Chinook salmon Oncorhynchus tshawytscha, lake trout Salvelinus namaycush, and steelhead O. mykiss in Lakes Michigan and Huron. We updated biological inputs to account for recent changes in the food webs and used temperature inputs in response to regional climate observed in the baseline period (1964–1993) and projected in the future period (2043–2070).Bioenergetics simulations were run across multiple age-classes and across all four seasons in different scenarios of prey availability. Due to the increased capacity of prey consumption, future growth and consumption by these salmonines were projected to increase substantially when prey availability was not limited. When prey consumption remained constant, future growth of these salmonines was projected to decrease in most cases but increase in some cases where the increase in metabolic cost can be compensated by the decrease in waste (egestion and excretion) loss. Consumption by these salmonines was projected to increase the most during spring and fall when prey energy densities are relatively high. Such seasonality benefits their future growth through increasing annual gross energy intake. Our results indicated that lake trout and steelhead would be better adapted to the warming climate than Chinook salmon. To maintain baseline growth into the future, an increase of 10 % in baseline prey consumption was required for Chinook salmon but considerably smaller increases, or no increases, in prey consumption were needed by lake trout and steelhead.

  1. 76 FR 13508 - Ninth Coast Guard District Sector Realignment; Northern Lake Michigan and Lake Huron

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Station Alpena from Group Sault Ste. Marie to Sectors Lake Michigan and Detroit, respectively. That... boundary adjustment is that Stations Charlevoix and Alpena will be reassigned to Sector Sault Ste. Marie...

  2. Status of pelagic prey fishes in Lake Michigan, 2013

    USGS Publications Warehouse

    Warner, David M.; Farha, Steven A.; O'Brien, Timothy P.; Ogilvie, Lynn; Claramunt, Randall M.; Hanson, Dale

    2014-01-01

    Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2013 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys as well as target strength provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. The 2013 survey consisted of 27 acoustic transects (546 km total) and 31 midwater trawl tows. Mean prey fish biomass was 6.1 kg/ha (relative standard error, RSE = 11%) or 29.6 kilotonnes (kt = 1,000 metric tons), which was similar to the estimate in 2012 (31.1 kt) and 23.5% of the long-term (18 years) mean. The numeric density of the 2013 alewife year class was 6% of the time series average and this year-class contributed 4% of total alewife biomass (5.2 kg/ha, RSE = 12%). Alewife ≥age-1 comprised 96% of alewife biomass. In 2013, alewife comprised 86% of total prey fish biomass, while rainbow smelt and bloater were 4 and 10% of total biomass, respectively. Rainbow smelt biomass in 2013 (0.24 kg/ha, RSE = 17%) was essentially identical to the rainbow smelt biomass in 2012 and was 6% of the long term mean. Bloater biomass in 2013 was 0.6 kg/ha, only half the 2012 biomass, and 6% of the long term mean. Mean density of small bloater in 2013 (29 fish/ha, RSE = 29%) was lower than peak values observed in 2007-2009 and was 23% of the time series mean. In 2013, pelagic prey fish biomass in Lake Michigan was similar to Lake Huron, but pelagic community composition differs in the two lakes, with Lake Huron dominated by bloater.

  3. Field estimate of net trophic transfer efficiency of PCBs to Lake Michigan chinook salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Stewart, Donald J.; Miller, Michael A.; Masnado, Robert G.

    2002-01-01

    Chinook salmon (Oncorhynchus tshawytscha) has been the predominant piscivore in Lakes Michigan, Huron, and Ontario since the 1970s, and therefore accurate quantification of its energy budget is needed for effective management of Great Lakes fisheries. A new approach of evaluating a fish bioenergetics model in the field involves field estimation of the efficiency with which the fish retains PCBs from its food. We used diet information, PCB determinations in both chinook salmon and their prey, and bioenergetics modeling to generate a field estimate of the efficiency with which Lake Michigan chinook salmon retain PCBs from their food. Our field estimate is the most reliable field estimate to date because (a) the estimate was based on a relatively high number (N = 142) of PCB determinations for chinook salmon from Wisconsin waters of Lake Michigan in 1985, (b) a relatively long time series (1978−1988) of detailed observations on chinook salmon diet in Lake Michigan was available, and (c) the estimate incorporated new information from analyses of chinook salmon age and growth during the 1980s and 1990s in Lake Michigan. We estimated that chinook salmon from Lake Michigan retain 53% of the PCBs that are contained within their food.

  4. 77 FR 62440 - Safety Zone; Wounded Warriors Benefit, Lake Erie, Huron, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...-AA00 Safety Zone; Wounded Warriors Benefit, Lake Erie, Huron, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the waters of Lake Erie, East Huron, Ohio. This regulation is intended to restrict vessels from portions of Lake Erie...

  5. Analysis of modern and Pleistocene hydrologic exchange between Saginaw Bay (Lake Huron) and the Saginaw Lowlands area

    USGS Publications Warehouse

    Hoaglund, J. R.; Kolak, J.J.; Long, D.T.; Larson, G.J.

    2004-01-01

    Two numerical models, one simulating present groundwater flow conditions and one simulating ice-induced hydraulic loading from the Port Huron ice advance, were used to characterize both modern and Pleistocene groundwater exchange between the Michigan Basin and near-surface water systems of Saginaw Bay (Lake Huron) and the surrounding Saginaw Lowlands area. These models were further used to constrain the origin of saline, isotopically light groundwater, and porewater from the study area. Output from the groundwater-flow model indicates that, at present conditions, head in the Marshall aquifer beneath Saginaw Bay exceeds the modern lake elevation by as much as 21 m. Despite this potential for flow, simulated groundwater discharge through the Saginaw Bay floor constitutes only 0.028 m3 s-1 (???1 cfs). Bedrock lithology appears to regulate the rate of groundwater discharge, as the portion of the Saginaw Bay floor underlain by the Michigan confining unit exhibits an order of magnitude lower flux than the portion underlain by the Saginaw aquifer. The calculated shoreline discharge of groundwater to Saginaw Bay is also relatively small (1.13 m3 s-1 or ???40 cfs) because of low gradients across the Saginaw Lowlands area and the low hydraulic conductivities of lodgement tills and glacial-lake clays surrounding the bay. In contrast to the present groundwater flow conditions, the Port Huron ice-induced hydraulic-loading model generates a groundwater-flow reversal that is localized to the region of a Pleistocene ice sheet and proglacial lake. This area of reversed vertical gradient is largely commensurate with the distribution of isotopically light groundwater presently found in the study area. Mixing scenarios, constrained by chloride concentrations and ??18O values in porewater samples, demonstrate that a mixing event involving subglacial recharge could have produced the groundwater chemistry currently observed in the Saginaw Lowlands area. The combination of models and

  6. Progress toward lake trout restoration in Lake Michigan

    USGS Publications Warehouse

    Holey, Mark E.; Rybicki, Ronald W.; Eck, Gary W.; Brown, Edward H.; Marsden, J. Ellen; Lavis, Dennis S.; Toneys, Michael L.; Trudeau, Tom N.; Horrall, Ross M.

    1995-01-01

    hatchery. A recent increase in lamprey wounding rates in northern Lake Michigan appears to be related to the uncontrolled build-up of lampreys in the St. Marys River a tributary of Lake Huron. If left uncontrolled, further progress toward restoration in the Northern Refuge may be limited.

  7. Sanctuaries for lake trout in the Great Lakes

    USGS Publications Warehouse

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  8. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  9. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron.

    PubMed

    Hayden, Todd A; Holbrook, Christopher M; Fielder, David G; Vandergoot, Christopher S; Bergstedt, Roger A; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  10. Preliminary Results from a Benthic Video Survey of the Lake Huron Nearshore

    EPA Science Inventory

    We used down looking and oblique videography to examine benthic conditions in the Nearshore of Lake Huron in August 2017. Video was collected at multiple stations clustered at 8 general locations in Lake Huron: off the Thessalon River and the Spanish River in the North Channel; o...

  11. Estimation of a Trophic State Index for selected inland lakes in Michigan, 1999–2013

    USGS Publications Warehouse

    Fuller, Lori M.; Jodoin, Richard S.

    2016-03-11

    A 15-year estimated Trophic State Index (eTSI) for Michigan inland lakes is available, and it spans seven datasets, each representing 1 to 3 years of data from 1999 to 2013. On average, 3,000 inland lake eTSI values are represented in each of the datasets by a process that relates field-measured Secchi-disk transparency (SDT) to Landsat satellite imagery to provide eTSI values for unsampled inland lakes. The correlation between eTSI values and field-measured Trophic State Index (TSI) values from SDT was strong as shown by R2 values from 0.71 to 0.83. Mean eTSI values ranged from 42.7 to 46.8 units, which when converted to estimated SDT (eSDT) ranged from 8.9 to 12.5 feet for the datasets. Most eTSI values for Michigan inland lakes are in the mesotrophic TSI class. The Environmental Protection Agency (EPA) Level III Ecoregions were used to illustrate and compare the spatial distribution of eTSI classes for Michigan inland lakes. Lakes in the Northern Lakes and Forests, North Central Hardwood Forests, and Southern Michigan/Northern Indiana Drift Plains ecoregions are predominantly in the mesotrophic TSI class. The Huron/Erie Lake Plains and Eastern Corn Belt Plains ecoregions, had predominantly eutrophic class lakes and also the highest percent of hypereutrophic lakes than other ecoregions in the State. Data from multiple sampling programs—including data collected by volunteers with the Cooperative Lakes Monitoring Program (CLMP) through the Michigan Department of Environmental Quality (MDEQ), and the 2007 National Lakes Assessment (NLA)—were compiled to compare the distribution of lake TSI classes between each program. The seven eTSI datasets are available for viewing and download with eSDT from the Michigan Lake Water Clarity Interactive Map Viewer at http://mi.water.usgs.gov/projects/RemoteSensing/index.html.

  12. Movement patterns and spatial segregation of two populations of lake trout Salvelinus namaycush in Lake Huron

    USGS Publications Warehouse

    Binder, Thomas; Marsden, J. Ellen; Riley, Stephen; Johnson, James E.; Johnson, Nicholas; He, Ji; Ebener, Mark P.; Holbrook, Christopher; Bergstedt, Roger A.; Bronte, Charles R.; Hayden, Todd A.; Krueger, Charles C.

    2017-01-01

    Movement ecology is an important component of life history and population dynamics, and consequently its understanding can inform successful fishery management decision-making. While lake trout populations in Lake Huron have shown signs of recovery from near extinction in recent years, knowledge of their movement behavior remains incomplete. We used acoustic telemetry to describe and compare movement patterns of two Lake Huron lake trout populations: Drummond Island and Thunder Bay. Both populations showed high spawning site fidelity, with no evidence of co-mingling during non-spawning season. Detections between spawning periods were mainly limited to receivers within 100 km of spawning locations, and suggested that the two populations likely remained segregated throughout the year. Drummond Island fish, which spawn inside the Drummond Island Refuge, primarily dispersed east into Canadian waters of Lake Huron, with 79–92% of fish being detected annually on receivers outside the refuge. In contrast, Thunder Bay fish tended to disperse south towards Saginaw Bay. Large proportions (i.e., > 80%) of both populations were available to fisheries outside the management zone containing their spawning location. Thunder Bay fish moved relatively quickly to overwinter habitat after spawning, and tended to repeat the same post-spawning movement behavior each year. The consistent, predictable movement of both populations across management zones highlights the importance of understanding population dynamics to effective management of Lake Huron lake trout.

  13. Heritage strain and diet of wild young of year and yearling lake trout in the main basin of Lake Huron

    USGS Publications Warehouse

    Roseman, E.F.; Stott, W.; O'Brien, T. P.; Riley, S.C.; Schaeffer, J.S.

    2009-01-01

    Restoration of lake trout Salvelinus namaycush stocks in Lake Huron is a fish community objective developed to promote sustainable fish communities in the lake. Between 1985 and 2004, 12.65 million lake trout were stocked into Lake Huron representing eight different genetic strains. Collections of bona fide wild fish in USGS surveys have increased in recent years and this study examined the ancestry and diet of fish collected between 2004 and 2006 to explore the ecological role they occupy in Lake Huron. Analysis of microsatellite DNA revealed that both pure strain and inter-strain hybrids were observed, and the majority of fish were classified as Seneca Lake strain or Seneca Lake hybrids. Diets of 50 wild age-0 lake trout were examined. Mysis, chironomids, and zooplankton were common prey items of wild age-0 lake trout. These results indicate that stocked fish are successfully reproducing in Lake Huron indicating a level of restoration success. However, continued changes to the benthic macroinvertebrate community, particularly declines of Mysis, may limit growth and survival of wild fish and hinder restoration efforts.

  14. Optically stimulated luminescence dating of late Holocene raised strandplain sequences adjacent to Lakes Michigan and Superior, Upper Peninsula, Michigan, USA

    USGS Publications Warehouse

    Argyilan, Erin P.; Forman, Steven L.; Johnston, John W.; Wilcox, Douglas A.

    2005-01-01

    This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.

  15. 76 FR 65525 - Huron, Madison, and Sand Lake Wetland Management District; Comprehensive Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ...] Huron, Madison, and Sand Lake Wetland Management District; Comprehensive Conservation Plan AGENCY: Fish... (CCP) and environmental assessment (EA) for the Huron, Madison, and Sand Lake Wetland Management...), Madison Wetland Management District, and Sand Lake Wetland Management District are part of the National...

  16. Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron

    PubMed Central

    Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913

  17. 75 FR 34362 - Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...-AA00 Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI AGENCY... safety zone on East Moran Bay, Lake Huron, St. Ignace, MI. This zone is intended to restrict vessels from... portion of East Moran Bay, Lake Huron, St. Ignace, MI between 9 p.m. and 11 p.m. on June 26, July 10, July...

  18. First records of a European cladoceran, Bythotrephes cederstroemi, in Lakes Erie and Huron

    USGS Publications Warehouse

    Bur, Michael T.; Klarer, David M.; Krieger, Kenneth A.

    1986-01-01

    Adult forms of the cladoceran Bythotrephes cederstroemi Schoedler (Cercopagidae), a widespread European freshwater zooplankter, occurred in the stomachs of four common species of Lake Erie fish (yellow perch, Perca flavescens; white perch, Morone americana; white bass, M. chrysops; and walleye, Stizostedion vitreum vitreum) collected in early October 1985. The fish were collected at several stations in the nearshore open waters of the central basin between Ashtabula and Huron, Ohio. Other investigators have seen this species in other locations in Lake Erie and also in Lake Huron. The report of B. cederstroemi in Lake Huron in December 1984 appears to be the first record of this species in North America.

  19. Survival of lake trout eggs and fry reared in water from the upper Great Lakes

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol Cotant; Seelye, James G.

    1985-01-01

    As part of continuing studies of the reproductive failure of lake trout (Salvelinus namaycush) in Lake Michigan, we measured the survival of lake trout eggs and fry of different origins and reared in different environments. Eggs and milt were stripped from spawning lake trout collected in the fall of 1980 from southeastern Lake Michigan, northwestern Lake Huron, south central Lake Superior, and from hatchery brood stock. Eggs from all sources were incubated, and the newly hatched fry were reared for 139 days in lake water from each of the three upper Great Lakes and in well water. Survival of eggs to hatching at all sites was lowest for those from Lake Michigan (70% of fertilized eggs) and highest for eggs from Lake Superior (96%). Comparisons of incubation water from the different lakes indicated that hatching success of eggs from all sources was highest in Lake Huron water, and lowest in Lake Michigan water. The most notable finding was the nearly total mortality of fry from eggs of southeastern Lake Michigan lake trout. At all sites, the mean survival of Lake Michigan fry through 139 days after hatching was only 4% compared to near 50% for fry from the other three sources. In a comparison of the rearing sites, little influence of water quality on fry survival was found. Thus, the poor survival was associated with the source of eggs and sperm, not the water in which the fry were reared.

  20. Review of fish diversity in the Lake Huron basin

    USGS Publications Warehouse

    Roseman, E.F.; Schaeffer, J.S.; Steen, P.J.

    2009-01-01

    Lake Huron has a rich aquatic habitat diversity that includes shallow embayments, numerous tributaries, shallow mid-lake reef complexes, archipelagos, and profundal regions. These habitats provide support for warm, cool, and cold water fish communities. Diversity of fishes in Lake Huron reflects post-glaciation colonization events, current climate conditions, accidental and intentional introductions of non-indigenous species, and extinctions. Most extinction events have been largely associated with habitat alterations, exploitation of fisheries, and interactions with non-indigenous species. The most recent historical survey of extirpated and imperiled species conducted in the late 1970s identified 79 fish species in Lake Huron proper and about 50 additional species in tributaries. Of those 129 species, 20 are now considered extirpated or imperiled. Extirpated species include Arctic grayling, paddlefish, weed shiner, deepwater cisco, blackfin cisco, shortnose cisco, and kiyi. Six species have declined appreciably due to loss of clear-water stream habitat: the river redhorse, river darter, black redhorse, pugnose shiner, lake chubsucker, redside dace, eastern sand darter, and channel darter. While numerous agencies, universities, and other organizations routinely monitor nearshore and offshore fish distribution and abundance, there is a need for more rigorous examination of the distribution and abundance of less-common species to better understand their ecology. This information is critical to the development of management plans aimed at ecosystem remediation and restoration.

  1. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  2. Diet and habitat use by age-0 deepwater sculpins in northern Lake Huron, Michigan and the Detroit River

    USGS Publications Warehouse

    Roseman, Edward F.

    2014-01-01

    Deepwater sculpins (Myoxocephalus thompsonii) are an important link in deepwater benthic foodwebs of the Great Lakes. Little information exists about deepwater sculpin spawning habits and early life history ecology due to difficulty in sampling deep offshore habitats. Larval and age-0 deepwater sculpins collected in northern Lake Huron and the Detroit River during 2007 were used to improve our understanding of their habitat use, diet, age, and growth. Peak larval density reached 8.4/1000 m3 in the Detroit River during April and was higher than that in Lake Huron. Offshore bottom trawls at DeTour and Hammond Bay first collected benthic age-0 deepwater sculpins in early September when fish were ≥ 25 mm TL. Otolith analysis revealed that hatch dates for pelagic larvae occurred during late March and larvae remained pelagic for 40 to 60 days. Diet of pelagic larvae (10–21 mm TL) was dominated by calanoid copepods at all sample locations. Diets of benthic age-0 fish varied by location and depth: Mysis and chironomids were prevalent in fish from Hammond Bay and the 91 m site at DeTour, but only chironomids were found in fish from the 37 m DeTour site. This work showed that nearshore epilimnetic sites were important for pelagic larvae and an ontogenetic shift from pelagic planktivore to benthivore occurred at about 25 mm TL in late summer. Age analysis showed that larvae remained pelagic long enough to be transported through the St. Clair–Detroit River system, Lake Erie, and the Niagara River, potentially contributing to populations in Lake Ontario.

  3. Maximum length and age of round gobies (Apollonia melanostomus) in Lake Huron

    USGS Publications Warehouse

    French, John R. P.; Black, M. Glen

    2009-01-01

    The round goby (Apollonia [Neogobius] melanostomus,) an invasive species, is generally smaller and shorter-lived in the Great Lakes than it native range. We examined 30 large male round gobies from trawl samples taken in Lake Huron and used otoliths to determine their age and back-calculated growth. Standard lengths ranged from 76 to 97 mm, and the oldest fish were age-5. Low water temperatures in nearshore regions of Lake Huron might cause slow growth and late maturation.

  4. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... FXRS1265066CCP0] Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland... assessment (EA) involving Huron, Madison, and Sand Lake Wetland Management Districts (Districts). In this..., Madison Wetland Management District, Sand Lake Wetland Management District final CCP'' in the subject line...

  5. Lake level variability in Silver Lake, Michigan: a response to fluctuations in lake levels of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2004-01-01

    Sediment from Silver Lake, Michigan, can be used to constrain the timing and elevation of Lake Michigan during the Nipissing transgression. Silver Lake is separated from Lake Michigan by a barrier/dune complex and the Nipissing, Calumet, and Glenwood shorelines of Lake Michigan are expressed landward of this barrier. Two Vibracores were taken from the lake in February 2000 and contain pebbly sand, sand, buried soils, marl, peat, and sandy muck. It is suggested here that fluctuations in the level of Lake Michigan are reflected in Silver Lake since the Chippewa low phase, and possibly at the end of the Algonquin phase. An age of 12,490 B.P. (10,460±50 14C yrs B.P.) on wood from a buried Entisol may record the falling Algonquin phase as the North Bay outlet opened. A local perched water table is indicated by marl deposited before 7,800 B.P. and peat between 7,760-7,000 B.P. when Lake Michigan was at the low elevation Chippewa phase. Continued deepening of the lake is recorded by the transition from peat to sandy muck at 7,000 B.P. in the deeper core, and with the drowning of an Inceptisol nearly 3 m higher at 6,410 B.P. in the shallower core. A rising groundwater table responding to a rising Lake Michigan base level during the Nipissing transgression, rather than a response to mid-Holocene climate change, explains deepening of Silver Lake. Sandy muck was deposited continually in Silver Lake between Nipissing and modern time. Sand lenses within the muck are presumed to be eolian in origin, derived from sand dunes advancing into the lake on the western side of the basin.

  6. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    USGS Publications Warehouse

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  7. Biology and status of the shortnose cisco Coregonus reighardi Koelz in the Laurentian Great Lakes

    USGS Publications Warehouse

    Webb, Shane A.; Todd, Thomas N.

    1995-01-01

    The shortnose cisco, Coregonus reighardi, a member of the endemic species assemblage of Coregoninae in the Laurentian Great Lakes, was commercially important until overfishing and competition pressures from induced planktivores extirpated the species in Lakes Michigan and Ontario. Spawning shortnose ciscoes have been collected from Lake Huron and Georgian Bay of Lake Huron since 1956, however, no individuals have been collected from these habitats since 1985. Shortnose ciscoes were not collected during surveys of the cisco fishery of Georgian Bay during the summer of 1992 and spring of 1993. The lack of captures in the last eight years coupled with captures of only lone individuals in the last 16 years suggests the species may be extinct in all of the Laurentian system. The life history traits examined for Lake Huron shortnose ciscoes were similar to the conditions recorded for Lake Michigan and Ontario shortnose ciscoes, although Lake Huron fish were smaller.

  8. Fleet dynamics of the commercial lake trout fishery in Michigan waters of Lake Superior during 1929-1961

    USGS Publications Warehouse

    Wilberg, Michael J.; Bronte, Charles R.; Hansen, Michael J.

    2004-01-01

    Understanding fishing fleet dynamics is important when using fishery dependent data to infer the status of fish stocks. We analyzed data from mandatory catch reports from the commercial lake trout (Salvelinus namaycush) fishery in Michigan waters of Lake Superior during 1929-1961, a period when lake trout populations collapsed through the combined effects of overfishing and sea lamprey (Petromyzon marinus) predation. The number of full-time fishermen increased during 1933-1943 and then decreased during 1943-1957. Addition of new fishermen was related to past yield, market prices, World War II draft exemptions, and lost fishing opportunities in Lake Huron and Lake Michigan. Loss of existing fishermen was related to declining lake trout density. Large mesh (a?Y 114-mm stretch-measure) gill net effort increased during 1929-1951 because fishermen fished more net inshore as lake trout density declined, even though catch per effort (CPE) was often higher in deeper waters. The most common gill net mesh size increased from 114-mm to 120-mm stretch-measure during 1929-1957, as lake trout growth increased. More effort was fished inshore than offshore and the amount of inshore effort was less variable over time than offshore effort. Relatively stable yield was maintained by increasing gill net effort and by moving some effort to better grounds. Because fishing-up caused yield and CPE to remain high despite declining lake trout abundance, caution must be used when basing goals for lake trout restoration on historical fishery indices.

  9. Introduction to the Proceedings of the 1994 International Conference on Restoration of Lake Trout in the Laurentian Great Lakes

    USGS Publications Warehouse

    Selgeby, James H.

    1995-01-01

    Lake trout (Salvelinus namaycush) restoration in the Great Lakes began in the 1950s when stocking of artificially propagated lake trout was coupled with the first attempts at sea lamprey (Petromyzon marinus) control. A major milestone in the restoration process was recorded when a selective sea lamprey larvicide was identified in 1958 (Applegate et al. 1958) and then applied broad scale in Lake Superior in 1958-60 (Applegate et al. 1961). Other milestones include the expansion of the sea lamprey control programs into Lakes Michigan and Huron in 1960 (sustained usage in Lake Huron began in 1966, Smith and Tibbles 1980), Lake Ontario in 1971-72 (Elrod et al. 1995), and Lake Erie in 1986 (Cornelius et al. 1995). Following the collapse of lake trout in the Great Lakes and the implementation of massive stocking of hatchery-reared fish and effective sea lamprey control, the first documented evidence of nearshore natural reproduction of lake trout was in Lake Superior in 1965 (Dryer and King 1968), in Lake Michigan in 1980 (Jude et al. 1981), in Lake Huron in 1981-82 (Nester and Poe 1984), and in Lake Ontario in 1986 (Marsden et al. 1988).

  10. Isotopic structure of Lake Whitefish in Lake Huron: Evidence for regional and local populations based on resource use

    USGS Publications Warehouse

    Eberts, Rebecca L.; Wissel, Bjorn; Simpson, Gavin L.; Crawford, Stephen S.; Stott, Wendylee; Hanner, Robert H.; Manzon, Richard G.; Wilson, Joanna Y.; Boreham, Douglas R.; Somers, Christopher M.

    2017-01-01

    Lake Whitefish Coregonus clupeaformis is the most commercially valuable species in Lake Huron. The fishery for this species has historically been managed based on 25 management units (17 in Canada, 8 in the USA). However, congruence between the contemporary population structure of Lake Whitefish and management units is poorly understood. We used stable isotopes of carbon (δ13C) and nitrogen (δ15N), food web markers that reflect patterns in resource use (i.e., prey, location, habitat), to assess the population structure of spawning-phase Lake Whitefish collected from 32 sites (1,474 fish) across Lake Huron. We found large isotopic variation among fish from different sites (ranges: δ13C = 10.2‰, δ15N = 5.5‰) and variable niche size and levels of overlap (standard ellipse area = 1.0–4.3‰2). Lake Huron contained spawning-phase fish from four major isotopic clusters largely defined by extensive variation in δ13C, and the isotopic composition of fish sampled was spatially structured both within and between lake basins. Based on cluster compositions, we identified six putative regional groups, some of which represented sites of high diversity (three to four clusters) and others with less (one to two clusters). Analysis of isotopic values from Lake Whitefish collected from summer feeding locations and baseline prey items showed similar isotopic variation and established spatial linkage between spawning-phase and summer fish. Our results show that summer feeding location contributes strongly to the isotopic structure we observed in spawning-phase fish. One of the regional groups we identified in northern Georgian Bay is highly distinct based on isotopic composition and possibly ecologically unique within Lake Huron. Our findings are congruent with several previous studies using different markers (genetics, mark–recapture), and we conclude that current management units are generally too small and numerous to reflect the population structure of Lake Whitefish

  11. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  12. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  13. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  14. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...: There is an authorized anchorage in Canadian waters just above Fighting Island and an authorized...

  15. Sediment sequences and palynology of outer South Bay, Manitoulin Island, Ontario: Connections to Lake Huron paleohydrologic phases and upstream Lake Agassiz events

    NASA Astrophysics Data System (ADS)

    Lewis, C. F. M.; Anderson, T. W.

    2017-10-01

    South Bay on the southern coast of Manitoulin Island is a fjord-like embayment connected to Lake Huron by a natural narrow gap in the bay's outer sill 6.5-14 m above the lake. A seismic profile, pollen, plant macrofossil, grain size analyses, and other sediment properties of two piston cores from a shallow outer basin of the bay document a 9 m-thick sediment section comprising rhythmically laminated clay under silty clay containing zones with small molluscan shells and marsh detritus. A sandy pebbly layer under soft silty clay mud overlies these sediments. This stratigraphy represents inundation by deep glacial Lake Algonquin followed by the shallowing Post Algonquin series of lakes, and exposure in the early Holocene by 5 Lake Stanley lowstands in the Lake Huron basin separated by 4 Lake Mattawa highstands. Overflow from South Bay in the first lowstand is thought to have eroded the outer sill gap. Marsh environments are inferred to have formed in the bay during subsequent lowstands. The Lake Mattawa highstands are attributed to outburst floods mainly from glacial Lake Agassiz. Palynological evidence of increased spruce occurrence, an apparent regional climate reversal, during the dry pine period is attributed to cold northwest winds from the Lake Superior basin and a lake effect from the Mattawa highstands in the Lake Huron basin. Lake waters transgressed South Bay following the pine period to form the Nipissing shore on Manitoulin Island. Transfer of Lake Huron basin drainage to southern outlets and continued glacioisostatic uplift of the region led to the present configuration of South Bay and Lake Huron.

  16. Evaluation of ERTS data for certain oceanographic uses. [precipitation of calcium carbonate in Lake Michigan, Lake Erie, and Lake Ontario

    NASA Technical Reports Server (NTRS)

    Strong, A. E. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. According to Lake Michigan records, the pH levels have been steadily increasing as the lake becomes more eutrophic. Numerous upwellings during the summer of 1973, beginning with the late July event, appear to be triggering a chemical precipitation of calcium carbonate. The upwelling provides abundant carbon dioxide into the surface water and results in massive blooms of phytoplankton. As the CO2 is utilized by these microscopic plants the pH is increased (acidity decreases) and CaCO3 no longer is able to remain in solution. The precipitation takes place where the phytoplankton are living, near depths of 10 meters. Therefore, the whiting observed by ERTS-1 is only seen in the green band, as red cannot penetrate but a few meters. With these whitings, secci disc readings lower in July from 10-15 meters to 3-5 meters and green, milky water is observed by research vessels. It appears that whitings have been becoming more frequent since the middle 60's but until ERTS-1 the extent had never been realized. Calcium levels are too low, presently, for a similar precipitate in Lakes Huron or Superior. However, whitings have been seen by ERTS-1 in Lakes Erie and Ontario where the calcium ion and pH levels are more like those found in Lake Michigan.

  17. Hybridization of ciscoes (Coregonus spp.) in Lake Huron

    USGS Publications Warehouse

    Todd, Thomas N.; Stedman, Ralph M.

    1989-01-01

    Gill raker number and length were compared for lake herring, Coregonus artedii LeSueur, and bloater, Coregonus hoyi (Gill), collected in 1917, 1956, and 1984-1985 at four locations in western Lake Huron to examine the effects of suspected introgressive hybridization on these distinctive species characters. Gill raker length showed no change from 1917 to 1984-1985, but gill raker number became similar in the two species over that period. Between 1917 and 1984-1985, mean gill raker counts decreased from 48.0 to 45.8 in lake herring, but increased from 41.8 to 43.1 in bloaters. The modal count for both species was 43 in 1984-1985. Intermediate gill raker counts were consistent with the hypothesis of hybridization. Bloater abundance increased greatly in the 1980's, but lake herring remained scarce. Under these circumstances, the rare lake herring would be increasingly likely to encounter abundant ripe bloaters during the overlapping spawning seasons of these species, increasing the probability for hybridization. Basic biological differences between the species, such as lower vulnerability of bloaters to commercial harvest, better survival of bloater fry, or greater fecundity of bloaters, may have contributed to the substantially better success of bloaters. Cisco populations are fragile; only the bloater has ever made a strong and sustained recovery after a severe decline. Hybridization with bloaters may impede the recovery of lake herring in Lake Huron.

  18. Mid Holocene lake level and shoreline behavior during the Nipissing phase of the upper Great Lakes at Alpena, Michigan, USA

    USGS Publications Warehouse

    Thompson, T.A.; Lepper, K.; Endres, A.L.; Johnston, J.W.; Baedke, S.J.; Argyilan, E.P.; Booth, R.K.; Wilcox, D.A.

    2011-01-01

    The Nipissing phase was the last pre-modern high-water stage of the upper Great Lakes. Represented as either a one- or two-peak highstand, the Nipissing occurred following a long-term lake-level rise. This transgression was primarily an erosional event with only the final stage of the transgression preserved as barriers, spits, and strandplains of beach ridges. South of Alpena, Michigan, mid to late Holocene coastal deposits occur as a strandplain between Devils Lake and Lake Huron. The landward part of this strandplain is a higher elevation platform that formed during the final stage of lake-level rise to the Nipissing peak. The pre-Nipissing shoreline transgressed over Devils Lake lagoonal deposits from 6.4 to 6.1. ka. The first beach ridge formed ~ 6. ka, and then the shoreline advanced toward Lake Huron, producing beach ridges about every 70. years. This depositional regression produced a slightly thickening wedge of sediment during a lake-level rise that formed 20 beach ridges. The rise ended at 4.5. ka at the Nipissing peak. This peak was short-lived, as lake level fell > 4. m during the following 500. years. During this lake-level rise and subsequent fall, the shoreline underwent several forms of shoreline behavior, including erosional transgression, aggradation, depositional transgression, depositional regression, and forced regression. Other upper Great Lakes Nipissing platforms indicate that the lake-level change observed at Alpena of a rapid pre-Nipissing lake-level rise followed by a slower rise to the Nipissing peak, and a post-Nipissing rapid lake-level fall is representative of mid Holocene lake level in the upper Great Lakes. ?? 2011 Elsevier B.V.

  19. EPA Research Strengthens Great Lakes Restoration Initiative

    EPA Science Inventory

    As the largest group of freshwater lakes on Earth, the Great Lakes (Lakes Erie, Huron, Michigan, Ontario and Superior) are a source of economic prosperity, recreation and raw materials. Human activity, however, has resulted in pollution and other stressors. The Great Lakes curren...

  20. Lake-level history of Lake Michigan for the past 12,000 years: the record from deep lacustrine sediments

    USGS Publications Warehouse

    Colman, Steven M.; Forester, Richard M.; Reynolds, Richard L.; Sweetkind, Donald S.; King, John W.; Gangemi, Paul; Jones, Glenn A.; Keigwin, Loyd D.; Foster, David S.

    1994-01-01

    Collection and analysis of an extensive set of seismic-reflection profiles and cores from southern Lake Michigan have provided new data that document the history of the lake basin for the past 12,000 years. Analyses of the seismic data, together with radiocarbon dating, magnetic, sedimentologic, isotopic, and paleontologic studies of core samples, have allowed us to reconstruct lake-level changes during this recent part of the lake's history.The post-glacial history of lake-level changes in the Lake Michigan basin begins about 11.2 ka with the fall from the high Calumet level, caused by the retreat of the Two Rivers glacier, which had blocked the northern outlet of the lake. This lake-level fall was temporarily reversed by a major influx of water from glacial Lake Agassiz (about 10.6 ka), during which deposition of the distinctive gray Wilmette Bed of the Lake Michigan Formation interrupted deposition of red glaciolacustrine sediment. Lake level then continued to fall, culminating in the opening of the North Bay outlet at about 10.3 ka. During the resulting Chippewa low phase, lake level was about 80 m lower than it is today in the southern basin of Lake Michigan.The rise of the early Holocene lake level, controlled primarily by isostatic rebound of the North Bay outlet, resulted in a prominent, planar, transgressive unconformity that eroded most of the shoreline features below present lake level. Superimposed on this overall rise in lake level, a second influx of water from Lake Agassiz temporarily raised lake levels an unknown amount about 9.1 ka. At about 7 ka, lake level may have fallen below the level of the outlet because of sharply drier climate. Sometime between 6 and 5 ka, the character of the lake changed dramatically, probably due mostly to climatic causes, becoming highly undersaturated with respect to calcium carbonate and returning primary control of lake level to the isostatically rising North Bay outlet. Post-Nipissing (about 5 ka) lake level has

  1. Age and growth of round gobies in Lake Huron: Implications for food web dynamics

    USGS Publications Warehouse

    Duan, You J.; Madenjian, Charles P.; Xie, Cong X.; Diana, James S.; O'Brien, Timothy P.; Zhao, Ying M.; He, Ji X.; Farha, Steve A.; Huo, Bin

    2016-01-01

    Although the round goby (Neogobius melanostomus) has become established throughout the Laurentian Great Lakes, information is scarce on spatial variation in round goby growth between and within lakes. Based on a sample of 754 specimens captured in 2014, age, growth, and mortality of round gobies at four locations in Lake Huron were assessed via otolith analysis. Total length (TL) of round gobies ranged from 44 to 111 mm for Saginaw Bay, from 45 to 115 mm for Rockport, from 50 to 123 mm for Hammond Bay, and from 51 to 118 mm for Thunder Bay. Estimated ages of round gobies ranged from 2 to 5 years for Saginaw Bay, from 2 to 6 years for Rockport, and from 2 to 7 years for Hammond Bay and Thunder Bay. Sex-specific, body–otolith relationships were used to back-calculate total lengths at age, which were then fitted to von Bertalanffy growth models. For each sex, round goby growth showed significant spatial variation among the four locations within Lake Huron. At all four locations in Lake Huron, males grew significantly faster than females and attained a larger asymptotic length than females. Annual mortality rate estimates were high (62 to 85%), based on catch-curve analysis, suggesting that round gobies may be under predatory control in Lake Huron.

  2. Angler-caught piscivore diets reflect fish community changes in Lake Huron

    USGS Publications Warehouse

    Roseman, Edward F.; Schaeffer, Jeff; Bright, Ethan; Fielder, David G.

    2014-01-01

    Examination of angler-caught piscivore stomachs revealed that Lake Trout Salvelinus namaycush, Chinook Salmon Oncorhynchus tshawytscha, and Walleyes Sander vitreus altered theirdiets in response to unprecedented declines in Lake Huron's main-basin prey fish community.Diets varied by predator species, season, and location but were nearly always dominated numerically by some combination of Alewife Alosa pseudoharengus, Rainbow Smelt Osmerus mordax, Emerald Shiner Notropis atherinoides, Round Goby Neogobius melanostomus, or terrestrial insects. Rainbow Trout Oncorhynchus mykiss (steelhead), Coho Salmon Oncorhynchus kisutch, and Atlantic Salmon Salmo salar had varied diets that reflected higher contributions of insects. Compared with an earlier (1983–1986) examination of angler-caught predator fishes from Lake Huron, the contemporary results showed an increase in consumption of nontraditional prey (including conspecifics), use of smaller prey, and an increase in insects in the diet, suggesting that piscivores were faced with chronic prey limitation during this study. The management of all piscivores in Lake Huron will likely require consideration of the pervasive effects of changes in food webs, especially if prey fish remain at low levels.

  3. ATMOSPHERIC MERCURY DEPOSITION TO LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Study together w...

  4. 75 FR 34932 - Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN AGENCY: Coast... zone on Lake Michigan near Michigan City, Indiana. This zone is intended to restrict vessels from a... of proposed rulemaking (NPRM) entitled Safety Zone; Michigan City Super Boat Grand Prix, Lake...

  5. LINKING GREAT WATERSHEDS WITH LAKE MICHIGAN: THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance Study -- which is focusing on atrazine, PCBs, nutrients, suspended solids, trans-nonachlor, and mercury. The relative contribution of contaminants to Lake Michigan will be examined for all major watersheds in the basin. - - - Further ...

  6. Michigan: The Great Lakes State

    ERIC Educational Resources Information Center

    McKay, Sandra Lee; La Luzerne-Oi, Sally

    2009-01-01

    Although Michigan is often called the "Wolverine State," its more common nickname is the "Great Lakes State." This name comes from the fact that Michigan is the only state in the United States that borders four of the five Great Lakes. Also referred to as the "Water Wonderland," Michigan has 11,000 additional lakes,…

  7. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (2) Channel 12 (156.60 mhz) between Lake St. Clair Light and Detroit River Light. (b) Radiotelephone... Cut Light “7” Lake Huron Cut Lighted Buoy “1” Report. Report St. Clair/Black River Junction Light Report. Stag Island Upper Light Report. Report Marine City Salt Dock Light Report. Report Grande Pointe...

  8. Status and trends of the Lake Huron offshore demersal fish community, 1976-2012

    USGS Publications Warehouse

    Roseman, Edward F.; Riley, Stephen C.; Farha, Steve A.; Maitland, Bryan M.; Tucker, Taaja R.; Provo, Stacy A.; McLean, Matthew W.

    2015-01-01

    The USGS Great Lakes Science Center has conducted trawl surveys to assess annual changes in the offshore demersal fish community of Lake Huron since 1973. Sample sites include five ports in U.S. waters with less frequent sampling near Goderich, Ontario. The 2012 fall bottom trawl survey was carried out between 20 October – 5 November 2012 and included all U.S. ports as well as Goderich, ON. The 2012 main basin prey fish biomass estimate for Lake Huron was 97 kilotonnes, higher than the estimate in 2011 (63.2 Kt), approximately one third of the maximum estimate in the time series, and nearly 6 times higher than the minimum estimate in 2009. The biomass estimates for adult alewife in 2012 were higher than 2011, but remained much lower than observed before the crash in 2004, and populations were dominated by small fish. Estimated biomass of rainbow smelt also increased and was the highest observed since 2005. Estimated adult bloater biomass in Lake Huron has been increasing in recent years, and the 2012 biomass estimate was the third highest ever observed in the survey. Biomass estimates for trout-perch and ninespine stickleback were higher than in 2011 but still remained low compared to historic estimates. The estimated biomass of deepwater and slimy sculpins increased over 2011, and slimy sculpin in particular seem to be increasing in abundance. The 2012 biomass estimate for round goby was similar to that in 2011 and was the highest observed in the survey. Substantial numbers of wild juvenile lake trout were captured again in 2012, suggesting that natural reproduction by lake trout continues to occur. The 2012 Lake Huron bottom trawl survey results suggest that several species of offshore demersal fish are beginning to increase in abundance.

  9. Dreissenid mussels are not a "dead end" in Great Lakes food webs

    USGS Publications Warehouse

    Madenijan, Charles P.; Pothoven, Steven A.; Schneeberger, Philip J.; Ebener, Mark P.; Mohr, Lloyd C.; Nalepa, Thomas F.; Bence, James R.

    2010-01-01

    Dreissenid mussels have been regarded as a “dead end” in Great Lakes food webs because the degree of predation on dreissenid mussels, on a lakewide basis, is believed to be low. Waterfowl predation on dreissenid mussels in the Great Lakes has primarily been confined to bays, and therefore its effects on the dreissenid mussel population have been localized rather than operating on a lakewide level. Based on results from a previous study, annual consumption of dreissenid mussels by the round goby (Neogobius melanostomus) population in central Lake Erie averaged only 6 kilotonnes (kt; 1 kt = one thousand metric tons) during 1995–2002. In contrast, our coupling of lake whitefish (Coregonus clupeaformis) population models with a lake whitefish bioenergetics model revealed that lake whitefish populations in Lakes Michigan and Huron consumed 109 and 820 kt, respectively, of dreissenid mussels each year. Our results indicated that lake whitefish can be an important predator on dreissenid mussels in the Great Lakes, and that dreissenid mussels do not represent a “dead end” in Great Lakes food webs. The Lake Michigan dreissenid mussel population has been estimated to be growing more than three times faster than the Lake Huron dreissenid mussel population during the 2000s. One plausible explanation for the higher population growth rate in Lake Michigan would be the substantially higher predation rate by lake whitefish on dreissenid mussels in Lake Huron.

  10. Bathythermal habitat use by strains of Great Lakes- and Finger Lakes-origin lake trout in Lake Huron after a change in prey fish abundance and composition

    USGS Publications Warehouse

    Bergstedt, Roger A.; Argyle, Ray L.; Krueger, Charles C.; Taylor, William W.

    2012-01-01

    A study conducted in Lake Huron during October 1998–June 2001 found that strains of Great Lakes-origin (GLO) lake trout Salvelinus namaycush occupied significantly higher temperatures than did Finger Lakes-origin (FLO; New York) lake trout based on data from archival (or data storage) telemetry tags that recorded only temperature. During 2002 and 2003, we implanted archival tags that recorded depth as well as temperature in GLO and FLO lake trout in Lake Huron. Data subsequently recorded by those tags spanned 2002–2005. Based on those data, we examined whether temperatures and depths occupied by GLO and FLO lake trout differed during 2002–2005. Temperatures occupied during those years were also compared with occupied temperatures reported for 1998–2001, before a substantial decline in prey fish biomass. Temperatures occupied by GLO lake trout were again significantly higher than those occupied by FLO lake trout. This result supports the conclusion of the previous study. The GLO lake trout also occupied significantly shallower depths than FLO lake trout. In 2002–2005, both GLO and FLO lake trout occupied significantly lower temperatures than they did in 1998–2001. Aside from the sharp decline in prey fish biomass between study periods, the formerly abundant pelagic alewife Alosa pseudoharengus virtually disappeared and the demersal round goby Neogobius melanostomus invaded the lake and became locally abundant. The lower temperatures occupied by lake trout in Lake Huron during 2002–2005 may be attributable to changes in the composition of the prey fish community, food scarcity (i.e., a retreat to cooler water could increase conversion efficiency), or both.

  11. 2016 Lake Michigan Lake Trout Working Group Report

    USGS Publications Warehouse

    Madenjian, Charles P.; Breidert, Brian; Boyarski, David; Bronte, Charles R.; Dickinson, Ben; Donner, Kevin; Ebener, Mark P.; Gordon, Roger; Hanson, Dale; Holey, Mark; Janssen, John; Jonas, Jory; Kornis, Matthew; Olsen, Erik; Robillard, Steve; Treska, Ted; Weldon, Barry; Wright, Greg D.

    2017-01-01

    This report provides a review on the progression of lake trout rehabilitation towards meeting the Salmonine Fish Community Objectives (FCOs) for Lake Michigan (Eshenroder et. al. 1995) and the interim goal and evaluation objectives articulated in A Fisheries Management Implementation Strategy for the Rehabilitation of Lake Trout in Lake Michigan (Dexter et al. 2011); we also include data describing lake trout stocking and mortality to portray the present state of progress towards lake trout rehabilitation.

  12. 77 FR 47522 - Special Local Regulation; Port Huron Offshore Gran Prix, St. Clair River; Port Huron, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ...-AA08 Special Local Regulation; Port Huron Offshore Gran Prix, St. Clair River; Port Huron, MI AGENCY... regulation on the St. Clair River, Port Huron, Michigan. This action is necessary and intended to ensure... movement of, vessels in a portion of the St. Clair River. During the enforcement period, no person or...

  13. State and regional water-quality characteristics and trophic conditions of Michigan's inland lakes, 2001-2005

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2008-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality are jointly monitoring selected water-quality constituents of inland lakes through 2015 as part of Michigan’s Lake Water Quality Assessment program. During 2001–2005, 433 lake basins from 364 inland lakes were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of those monitored lake basins throughout the State. Regional variation of water quality in lake basins was examined by grouping on the basis of the five Omernik level III ecoregions within Michigan. Concentrations of most constituents measured were significantly different between ecoregions. Less regional variation of phosphorus concentrations was noted between Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions during summer possibly because water samples were collected when lake productivity was high; hence the utilization of the limited amount of phosphorus by algae and macrophytes may have resulted in the more uniform concentrations between these two ecoregions. Concentrations of common ions (calcium, magnesium, potassium, sodium, chloride, and sulfate) measured in the spring typically were higher in the Michigan southern Lower Peninsula in the Eastern Corn Belt Plains (55), Southern Michigan/Northern Indiana Drift Plains (56), and Huron/Erie Lake Plains (57) ecoregions. Most ions whose concentrations were less than the minimum reporting levels or were nondetectable were from lakes in the Michigan northern Lower Peninsula and the Upper Peninsula in the Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions. Chlorophyll a concentrations followed a similar distribution pattern. Measured properties such as pH and specific conductance (indicative of dissolved solids) also showed a regional relation. The lakes with the lowest pH and specific conductance were generally in the western

  14. 75 FR 34379 - Safety Zone; Mackinac Island 4th of July Fireworks, Lake Huron, Mackinac Island, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...-AA00 Safety Zone; Mackinac Island 4th of July Fireworks, Lake Huron, Mackinac Island, MI AGENCY: Coast... of Lake Huron during the Mackinac Island 4th of July Fireworks display on July 4, 2010. This... and vessels during the setup, and launching of fireworks in conjunction with the Mackinac Island 4th...

  15. 75 FR 22333 - Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-AA00 Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN AGENCY: Coast... temporary safety zone on Lake Michigan near Michigan City, Indiana. This zone is intended to restrict... ensure the safety of vessels from the hazards associated with the Michigan City Super Boat Grand Prix...

  16. Relationship between Secchi disc readings and light penetration in Lake Huron

    USGS Publications Warehouse

    Beeton, Alfred M.

    1958-01-01

    Fifty-seven paired photometer and Secchi disc measurements made at 18 stations in Saginaw Bay and Lake Huron support the view that a counter-clockwise current usually occurs in the Bay with more transparent Lake Huron water flowing in along the northwest shore and less transparent Bay water flowing out along the southeast shore. The average percentage transmission of surface light intensity, at the Secchi disc depth, was 14.7 percent. Discrepancies in the relationship of disc readings to percentage transmission of surface light are related to the condition of the sky and sea. It is suggested that these discrepancies can best be explained on the basis of the spectral sensitivity of the human eye and its response to surface glare.

  17. Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.

    2012-01-01

    We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.

  18. 33 CFR 165.901 - Great Lakes-regulated navigation areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waters of Lake Huron known as South Channel between Bois Blanc Island and Cheboygan, Michigan; bounded by a line north from Cheyboygan Crib Light (LL-1340) at 45°39′48″ N, 84°27′36″ W; to Bois Blanc Island... western tangent of Bois Blanc Island at 45°48′42″ N, 84°35′30″ W. (2) The waters of Lake Huron between...

  19. 33 CFR 165.901 - Great Lakes-regulated navigation areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waters of Lake Huron known as South Channel between Bois Blanc Island and Cheboygan, Michigan; bounded by a line north from Cheyboygan Crib Light (LL-1340) at 45°39′48″ N, 84°27′36″ W; to Bois Blanc Island... western tangent of Bois Blanc Island at 45°48′42″ N, 84°35′30″ W. (2) The waters of Lake Huron between...

  20. 33 CFR 165.901 - Great Lakes-regulated navigation areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waters of Lake Huron known as South Channel between Bois Blanc Island and Cheboygan, Michigan; bounded by a line north from Cheyboygan Crib Light (LL-1340) at 45°39′48″ N, 84°27′36″ W; to Bois Blanc Island... western tangent of Bois Blanc Island at 45°48′42″ N, 84°35′30″ W. (2) The waters of Lake Huron between...

  1. 33 CFR 165.901 - Great Lakes-regulated navigation areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waters of Lake Huron known as South Channel between Bois Blanc Island and Cheboygan, Michigan; bounded by a line north from Cheyboygan Crib Light (LL-1340) at 45°39′48″ N, 84°27′36″ W; to Bois Blanc Island... western tangent of Bois Blanc Island at 45°48′42″ N, 84°35′30″ W. (2) The waters of Lake Huron between...

  2. Fall diet and bathymetric distribution of deepwater sculpin (Myoxocephalus thompsonii) in Lake Huron

    USGS Publications Warehouse

    O'Brien, T. P.; Roseman, E.F.; Kiley, C.S.; Schaeffer, J.S.

    2009-01-01

    Deepwater sculpin Myoxocephalus thompsonii are an important component of Great Lake's offshore benthic food webs. Recent declines in deepwater sculpin abundance and changes in bathymetric distribution may be associated with changes in the deepwater food web of Lake Huron, particularly, decreased abundance of benthic invertebrates such as Diporeia. To assess how deepwater sculpins have responded to recent changes, we examined a fifteen-year time series of spatial and temporal patterns in abundance as well as the diets of fish collected in bottom trawls during fall of 2003, 2004, and 2005. During 1992-2007, deepwater sculpin abundance declined on a lake-wide scale but the decline in abundance at shallower depths and in the southern portion of Lake Huron was more pronounced. Of the 534 fish examined for diet analysis, 97% had food in the stomach. Mysis, Diporeia, and Chironomidae were consumed frequently, while sphaerid clams, ostracods, fish eggs, and small fish were found in only low numbers. We found an inverse relationship between prevalence of Mysis and Diporeia in diets that reflected geographic and temporal trends in abundance of these invertebrates in Lake Huron. Because deepwater sculpins are an important trophic link in offshore benthic food webs, declines in population abundance and changes in distribution may cascade throughout the food web and impede fish community restoration goals.

  3. Plastics Distribution and Degradation on Lake Huron Beaches

    NASA Astrophysics Data System (ADS)

    Zbyszewski, M.; Corcoran, P.

    2009-05-01

    The resistivity of plastic debris to chemical and mechanical weathering processes poses a serious threat to the environment. Numerous marine beaches are littered with plastic fragments that entangle and become ingested by organisms including birds, turtles and plankton. Although many studies have been conducted to determine the amount and effects of plastics pollution on marine organisms, relatively little is known about the distribution and quantity of polymer types along lacustrine beaches. Plastic particles sampled from selected beaches on Lake Huron were analyzed using Fourier Transform Infrared Spectroscopy (FTIR) to determine polymer composition. The majority of the plastic fragments are industrial pellets composed of polypropylene and polyethylene. Varying degrees of oxidation are indicated by multiple irregular peaks in the lower wavenumber region on the FTIR spectra. The oxidized pellets also represent the plastic particles with the most pronounced surface textures, as identified using Scanning Electron Microscopy (SEM). Crazes and flakey, fibrous, or granular textures are consistent with chemical weathering processes, whereas gauges and pits occur through abrasion during mechanical weathering. Further textural and compositional analysis will indicate which polymer types are more resistant to weathering processes. Additional investigation of the distribution of plastic debris along the beaches of Lake Huron will indicate the amount and primary transport directions of resistant plastic debris polluting one of Ontario's Great Lakes.

  4. Spatial distribution of pelagic fish larvae in the northern main basin of Lake Huron

    USGS Publications Warehouse

    Roseman, Edward F.; O'Brien, Timothy P.

    2013-01-01

    Larval fish occurrence in inshore and offshore zones in the northern main basin of Lake Huron was assessed during 2007 as part of a larger ecological examination of Lake Huron foodwebs and habitats. Day and night collections using neuston and conical nets at inshore (1.5–15 m depths) and offshore (37 and 91 m depths) locations at De Tour and Hammond Bay to assess the abundance, phenology, and spatial distribution of pelagic ichthyoplankton during spring and early summer were made. In general, densities of larval fishes were higher at De Tour than Hammond Bay during daytime neuston net collections, with the exception of Longnose Sucker, which were only collected at Hammond Bay. Lake Whitefish, Burbot, and Rainbow Smelt dominated inshore catches in early spring with Cisco, Deepwater Sculpin, Emerald Shiner, Bloater, Slimy Sculpin, Ninespine Stickleback, and Yellow Perch larvae also collected.Nighttime nearshore and offshore sampling revealed that Rainbow Smelt and Burbot larvae were present in relatively high abundances compared to inshore densities. Concentrations of larvae of deepwater demersal fishes such as Lake Whitefish and Deepwater Sculpin suggest that inshore zones in northern Lake Huron are important nursery habitats emphasizing a critical production and recruitment linkage between inshore and deepwater zones.

  5. A reactive nitrogen budget for Lake Michigan

    EPA Science Inventory

    The reactive nitrogen budget for Lake Michigan was reviewed and updated, making use of recent estimates of watershed and atmospheric nitrogen loads. The updated total N load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study ...

  6. Abundance and distribution of benthic macroinvertebrates in offshore soft sediments in Western Lake Huron, 2001-2007

    USGS Publications Warehouse

    French, J. R. P.; Schaeffer, J.S.; Roseman, E.F.; Kiley, C.S.; Fouilleroux, A.

    2009-01-01

    Invasive species have had major impacts on the Great Lakes. This is especially true of exotic dreissenid mussels which are associated with decreased abundance of native macroinvertebrates and changes in food availability for fish. Beginning in 2001, we added a benthic macroinvertebrate survey to the USGS-Great Lakes Science Center's annual fall prey fish assessment of Lake Huron to monitor abundance of macrobenthos. Mean abundance of Diporeia, the most abundant benthic taxon in Lake Huron reported by previous investigators, declined greatly between 2001 and 2007. Diporeia was virtually absent at 27-m sites by 2001, decreased and was lost completely from 46-m depths by 2006, but remained present at reduced densities at 73-m sites. Dreissenids in our samples were almost entirely quagga mussels Dreissena bugensis. Zebra mussels Dreissena polymorpha were virtually absent from our samples, suggesting that they were confined to nearshore areas shallower than we sampled. Loss of Diporeia at individual sites was associated with arrival of quagga mussels, even when mussel densities were low. Quagga mussel density peaked during 2002, then decreased thereafter. During the study quagga mussels became established at most 46-m sites, but remained rare at 73-m sites. Length frequency distributions suggest that initial widespread recruitment may have occurred during 2001-2002. Like other Great Lakes, Lake Huron quagga mussels were associated with decreased abundance of native taxa, but negative effects occurred even though dreissenid densities were much lower. Dreissenid effects may extend well into deep oligotrophic habitats of Lake Huron.

  7. Lake Michigan lake trout PCB model forecast post audit

    EPA Science Inventory

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  8. Quantitation of microorganic compounds in waters of the Great Lakes by adsorption on activated carbon

    USGS Publications Warehouse

    Daniels, Stacy L.; Kempe, Lloyd L.; Graham, E. S.; Beeton, Alfred M.

    1963-01-01

    Microorganic compounds in waters of Lakes Michigan and Huron have been sampled by adsorption on activated carbon in filters installed aboard the M/V Cisco and at the Hammond Bay Laboratory of the U.S. Bureau of Commercial Fisheries. The organic compounds were eluted from the carbon according to techniques developed at the U.S. Public Health Service. On the assumption that chloroform eluates represent less polar compounds from industrial sources and alcohol eluates the more polar varieties of natural origin, plots of chloroform eluates against alcohol eluates appear to be useful in judging water qualities. Based upon these criteria, the data in this paper indicate that both the waters of northern Lake Michigan and of Lake Huron, in the vicinity of Hammond Bay, Michigan, are relatively free from pollution. The limnetic waters of Lake Michigan showed a particularly high ratio of alcohol to chloroform eluates. Data for monthly samples indicated that this ratio fluctuated seasonally. The periodicity of the fluctuations was similar to those of lake levels and water temperatures.

  9. Status and trends of the Lake Huron offshore demersal fish community, 1976-2015

    USGS Publications Warehouse

    Roseman, Edward; Chriscinske, Margret Ann; Castle, Dana Kristina; Prichard, Carson G.

    2016-01-01

    The USGS Great Lakes Science Center has conducted trawl surveys to assess annual changes in the offshore demersal fish community of Lake Huron since 1973. Sample sites include five ports in U.S. waters with less frequent sampling near Goderich, Ontario. The 2015 fall bottom trawl survey was carried out between 14 and 28 October and included all U.S. ports, as well as Goderich, ON. The 2015 main basin prey fish biomass estimate for Lake Huron was 19.4 kilotonnes, a decline of about 50 percent from 2014. This estimate is the second lowest in the time series, and is approximately 5 percent of the maximum estimate in the time series observed in 1987. No adult alewife were collected in 2015 and YOY alewife was the second lowest in the time series, up slightly from the record low in 2014. The estimated biomass of yearling and older rainbow smelt also decreased and was the lowest observed in the time series. Estimated adult bloater biomass in Lake Huron declined to about half of the 2014 estimate. YOY alewife, rainbow smelt, and bloater abundance and biomass decreased over 2014. Biomass estimates for deepwater sculpins declined while trout-perch and ninespine stickleback increased over 2014 values, but all remained low compared to historic estimates. The 2014 biomass estimate for round goby increased from 2014 but remains at only 7 percent of the maximum observed in 2003. Wild juvenile lake trout were captured again in 2015, suggesting that natural reproduction by lake trout continues to occur.

  10. Updated polychlorinated biphenyl mass budget for Lake Michigan

    USGS Publications Warehouse

    Guo, Jiehong; Romanak, Kevin; Westenbroek, Stephen M.; Li, An; Kreis, Russell; Hites, Ronald A.; Venier, Marta

    2017-01-01

    This study revisits and updates the Lake Michigan Mass Balance Project (LMMBP) for polychlorinated biphenyls (PCBs) that was conducted in 1994–1995. This work uses recent concentrations of PCBs in tributary and open lake water, air, and sediment to calculate an updated mass budget. Five of the 11 LMMBP tributaries were revisited in 2015. In these five tributaries, the geometric mean concentrations of ∑PCBs (sum of 85 congeners) ranged from 1.52 to 22.4 ng L–1. The highest concentrations of PCBs were generally found in the Lower Fox River and in the Indiana Harbor and Ship Canal. The input flows of ∑PCBs from wet deposition, dry deposition, tributary loading, and air to water exchange, and the output flows due to sediment burial, volatilization from water to air, and transport to Lake Huron and through the Chicago Diversion were calculated, as well as flows related to the internal processes of settling, resuspension, and sediment–water diffusion. The net transfer of ∑PCBs is 1240 ± 531 kg yr–1 out of the lake. This net transfer is 46% lower than that estimated in 1994–1995. PCB concentrations in most matrices in the lake are decreasing, which drove the decline of all the individual input and output flows. Atmospheric deposition has become negligible, while volatilization from the water surface is still a major route of loss, releasing PCBs from the lake into the air. Large masses of PCBs remain in the water column and surface sediments and are likely to contribute to the future efflux of PCBs from the lake to the air.

  11. Visual observations of historical lake trout spawning grounds in western Lake Huron

    USGS Publications Warehouse

    Nester, Robert T.; Poe, Thomas P.

    1987-01-01

    Direct underwater video observations were made of the bottom substrates at 12 spawning grounds formerly used by lake trout Salvelinus namaycush in western Lake Huron to evaluate their present suitability for successful reproduction by lake trout. Nine locations examined north of Saginaw Bay in the northwestern end of the lake are thought to provide the best spawning habitat. The substrate at these sites consisted of angular rough cobble and rubble with relatively deep interstitial spaces (a?Y 0.5 m), small amounts of fine sediments, and little or no periphytic growth. Conditions at the three other sampling locations south of Saginaw Bay seemed much less suitable for successful reproduction based on the reduced area of high-quality substrate, shallow interstitial spaces, high infiltration of fine sediments, and greater periphytic growth.

  12. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    PubMed

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems. © 2015 SETAC.

  13. Status and trends of the Lake Huron deepwater demersal fish ommunity, 2008

    USGS Publications Warehouse

    Roseman, Edward F.; O'Brien, Timothy P.; Riley, Stephen C.; Farha, Steve A.; French, John R.

    2009-01-01

    The U.S.Geological Survey Great Lakes Science Center has conducted trawl surveys to assess annual changes in the deepwater demersal fish community of Lake Huron since 1973. Since 1992, surveys have been carried out using a 21 m wing trawl towed on-contour at depths ranging from 9 to 110 m on fixed transects. Sample sites include five ports in U.S. waters with less frequent sampling near Goderich, Ontario. The 2008 fall bottom trawl survey was carried out between October 24 and November 20, 2008 and sampled only the three northern U.S. ports at DeTour, Hammond Bay, and Alpena due to mechanical problems with the research vessel and prolonged periods of bad weather. Therefore, all data presented for 2008 are based on samples collected from these ports. Compared to previous years, alewife populations in Lake Huron remain at low levels after collapsing in 2004. Age-0 alewife density and biomass appears to have increased slightly but overall levels remain near the nadir observed in 2004. Density and biomass of adult and juvenile rainbow smelt showed a decrease from 2007 despite record-high abundance of juveniles observed in 2005, suggesting recruitment was low. Numbers of adult and juvenile bloater were low despite recent high year-classes. Abundances for most other prey species were similar to the low levels observed in 2005 - 2007. We captured one wild juvenile lake trout in 2008 representing the fifth consecutive year that wild lake trout were captured in the survey. Based on pairwise graphical comparisons and nonparametric correlation analyses, dynamics of prey abundance at the three northern ports followed lakewide trends since 1992. Density of benthic macroinvertebrates was at an all-time low in 2008 since sampling began in 2001. The decline in abundance was due to decreases in all taxonomic groups and a large reduction in recruitment of quagga mussels. Density of Diporeia at northern ports in 2008 was the lowest observed. Diporeia were found only at 73-m sites of

  14. Life history of the lake herring (Leucichthys artedi Le Sueur) of Lake Huron as revealed by its scales, with a critique of the scale method

    USGS Publications Warehouse

    Van Oosten, John

    1928-01-01

    This study shows that the structural characters of the scales of the coregonid fishes of Lake Huron are so clearly recognizable as to permit their use by the scale method. It shows, further, that the fundamental assumptions underlying the scale method are warranted in so far as they apply to the lake herring (Leucichthys artedi Le Sueur). The scale method is therefore valid when applied in a study fo the life history of the lake herring. The life history of the lake herring that occur in Lake Huron is described in detail in this paper for the first time.

  15. 33 CFR 165.T09-0452 - Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI. 165.T09-0452 Section 165.T09-0452... Celebration, East Moran Bay, Lake Huron, St. Ignace, MI. (a) Location. The following area is a temporary...

  16. Lake trout spawning habitat in the Six Fathom Bank-Yankee Reef lake trout sanctuary, Lake Huron

    USGS Publications Warehouse

    Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; Poe, Thomas P.

    1992-01-01

    Attempts to reestablish self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes, where the species was extinguished in the 1950s and 1960s, have been largely unsuccessful. To avoid many of the problems believed to be contributing to this failure, the fishery management community recently established several sanctuaries in the offshore waters of the Great Lakes where the development and protection of self-sustaining stocks of lake trout would be a primary management objective. One of these, the Six Fathom Bank-Yankee Reef sanctuary, was created in the south-central portion of Lake Huron. This sanctuary covers 168,000 ha and includes the shallower portions of the Six Fathom and Ipperwash scarps, which are major bathymetric features in the southern half of the lake. Historical accounts describe Six Fathom Bank as the most important lake trout spawning ground in the lake. Here we present the results of lake bed surveys conducted in the sanctuary with side-scan sonar, underwater videocamera systems, and a small research submarine. Our observations of the lake bed are consistent with what is known of the bedrock stratigraphy, glacial history, and karst geomorphology of the Lake Huron basin. Most of the loose rock we found seemed to be derived from local carbonate bedrock formations, although non-carbonate rock probably from Precambrian sources to the north was also present in some areas. Much of the bedrock and loose rock displayed karst solution features described for the Bruce Peninsula on the Ontario shoreline. Our surveys revealed substantial areas of lake bed at water depths of 20–36 m that resembled suitable spawning and fry production habitat for the shallow-water strains of lake trout that are the focus of the rehabilitation effort. Low mid-lake nutrient levels documented recently by others and the extremely high abundance of Mysis relicta (an important item in the diet of young lake trout) that we documented on Yankee Reef

  17. Michigan lakes: An assessment of water quality

    USGS Publications Warehouse

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  18. Lake trout status in the main basin of Lake Huron, 1973-2010

    USGS Publications Warehouse

    He, Ji X.; Ebener, Mark P.; Riley, Stephen C.; Cottrill, Adam; Kowalski, Adam; Koproski, Scott; Mohr, Lloyd; Johnson, James E.

    2012-01-01

    We developed indices of lake trout Salvelinus namaycush status in the main basin of Lake Huron (1973-2010) to understand increases in the relative abundance of wild year-classes during 1995-2010. Sea lamprey Petromyzon marinus wounds per 100 lake trout declined from 23.63 in 2000 to 5.86-10.64 in 2002-2010. The average age-7 lake trout catch per effort per recruitment (CPE/R; fish•305mof gill net-1•million stocked yearlings-1) increased from 0.56 for the 1973-1990 year-classes to 0.92 for the 1991-2001 year-classes. Total CPE (fish/305 m of gill net) declined from 16.4 fish in 1996 to 4.1 fish in 2010, but the percentage of age-5 and younger lake trout steadily decreased from more than 70% before 1996 to less than 10% by 2009. The modal age in gill-net catches increased from age 5 before 1996 to age 7 by 2005. The average adult CPE increased from 2.8 fish/305 m of gill net during 1978-1995 to 5.34 fish/305 m of gill net during 1996-2010. The 1995-2010 year-classes of wild fish weremore abundant than previous year-classes and were associated with the relatively high adult abundance during 1996-2010. Until the 2002 year-class, there was no decline in age-7 CPE/R; until 2008, there was no decline in adult CPE. Low survival of the 2002 and 2003 year-classes of stocked fish was related to the event of alewife Alosa pseudoharengus population collapse in 2003-2004. Lake trout in the main basin of Lake Huron are undergoing a transition from a hatchery stock to a wild stock, accompanied by an increased uncertainty in delayed recruitment. Future management should pay more attention to the protection of wild recruitment and the abundance of the spawning stock.

  19. Recent changes in Lake Michigan's fish community and their probable causes, with emphasis on the role of the alewife (Alosa pseudoharengus)

    USGS Publications Warehouse

    Eck, Gary W.; Wells, LaRue

    1987-01-01

    Deepwater ciscoes (Coregonus spp.) or "chubs" of Lake Michigan far surpassed those of Lake Huron in yield, population density, and resilience following severe depletion in the 1960s and 1970s, when the bloater (C. hoyi) composed more than 90% of the stocks. The population decline of bloaters in recent decades was mainly attributed to exploitation, to the depression of chub recruitment (e.g. from inferred predation on early life stages) by nonendemic alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax), and to complications arising from extreme female predominance that was best documented for Lake Michigan. The various interactions between bloaters and the nonendemic species, which were intensified after the loss of large predators to sea lamprey (Petromyzon marinus), would help to explain why a stock–recruitment relation was not shown for the Lake Michigan bloater. We hypothesize that reproductive inefficiency caused by a shift to strong female predominance in the bloater depresses recruitment and thus helps to regulate abundance. However, the low resilience that sex imbalance seems to impart makes the stock unstable when exploited. It should therefore be exploited conservatively during such periods. Also, the sex ratio and its direction of change appear to be important qualifiers when surplus production is estimated from stock size.

  20. Lake trout in northern Lake Huron spawn on submerged drumlins

    USGS Publications Warehouse

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  1. Status of the shortjaw cisco (Coregonus zenithicus) in Lake Superior

    USGS Publications Warehouse

    Hoff, Michael H.; Todd, Thomas N.

    2004-01-01

    The shortjaw cisco (Coregonus zenithicus) was historically found in Lakes Huron, Michigan, and Superior, but has been extirpated in Lakes Huron and Michigan apparently as the result of commercial overharvest. During 1999-2001, we conducted an assessment of shortjaw cisco abundance in five areas, spanning the U.S. waters of Lake Superior, and compared our results with the abundance measured at those areas in 1921-1922. The shortjaw cisco was found at four of the five areas sampled, but abundances were so low that they were not significantly different from zero. In the four areas where shortjaw ciscoes were found, abundance declined significantly by 99% from the 1920s to the present. To increase populations of this once economically and ecologically important species in Lake Superior, an interagency rehabilitation effort is needed. Population monitoring is recommended to assess population trends and to evaluate success of rehabilitation efforts.

  2. Status of lake trout rehabilitation on Six Fathom Bank and Yankee Reef in Lake Huron

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; McClain, Jerry R.; Woldt, Aaron P.; Holuszko, Jeffrey D.; Bowen, Charles A.

    2004-01-01

    Six Fathom Bank, an offshore reef in the central region of Lake Huron's main basin, was stocked annually with hatchery-reared lake trout Salvelinus namaycush during 1985–1998, and nearby Yankee Reef was stocked with hatchery-reared lake trout in 1992, 1997, and annually during 1999–2001. We conducted gill-net surveys during spring and fall to evaluate performances of each of the various strains of lake trout, as well as the performance of the entire lake trout population (all strains pooled), on these two offshore reefs during 1992–2000. Criteria to evaluate performance included the proportion of “wild” fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lamprey Petromyzon marinus. Although naturally reproduced age-0 lake trout fry were caught on Six Fathom Bank and Yankee Reef, wild lake trout did not recruit to the adult population to any detectable degree. The density of spawning lake trout on Six Fathom Bank (>100 fish/305 m of gill net) during 1995–1998 appeared to be sufficiently high to initiate a self-sustaining population. However, annual mortality estimates for all lake trout strains pooled from catch curve analyses ranged from 0.48 to 0.62, well exceeding the target level of 0.40 suggested for lake trout rehabilitation. Annual mortality rate for the Seneca Lake strain (0.34) was significantly lower than that for the Superior–Marquette (0.69) and Lewis Lake (0.69) strains. This disparity in survival among strains was probably attributable to the lower sea-lamprey-induced mortality experienced by the Seneca Lake strain. The relatively high mortality experienced by adult lake trout partly contributed to the lack of successful natural recruitment to the adult population on these offshore reefs, but other factors were probably also involved. We recommend that both stocking of the Seneca Lake strain and enhanced efforts to reduce sea lamprey abundance in Lake Huron be continued.

  3. Status of coregonine fishes in the Laurentian Great Lakes

    USGS Publications Warehouse

    Fleischer, Guy W.

    1992-01-01

    The post-glacial coregonine assemblage in the Great Lakes included several species of the genera Prosopium and Coregonus. Overfishing, habitat degradation, and competition with various exotic fish species severely reduced coregonine abundance and altered their distribution by the mid to latter part of the 20th century. Most of the original Coregonus species, some which were endemic to the Great Lakes, are now extinct or are extremely rare. The prevailing coregonines are mostly benthic and deep-water species, contrasted to the original assemblage dominated by pelagic, nearshore species. Lake whitefish (Coregonus clupeaformis) populations have recovered and now support record fisheries in Lakes Superior, Michigan, and Huron. Bloaters (C. hoyi) have recovered to dominate the planktivorous fish community in Lake Michigan and are rapidly increasing in Lake Huron. The recent resurgence in some coregonine populations are linked to declines in exotic fish populations and favorable climatic changes. The reduced diversity of the coregonines may explain the dominance of the remaining species. The stability of this simplified coregonine community is uncertain but the existing coregonines have demonstrated resiliency.

  4. Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J. A.; Elcock, D.; Gasper, J. R.

    2008-06-30

    BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, whichmore » is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.« less

  5. Whiting in Lake Michigan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Satellites provide a view from space of changes on the Earth's surface. This series of images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) aboard the Orbview-2 satellite shows the dramatic change in the color of Lake Michigan during the summer. The bright color that appears in late summer is probably caused by calcium carbonate-chalk-in the water. Lake Michigan always has a lot of calcium carbonate in it because the floor of the lake is limestone. During most of the year the calcium carbonate remains dissolved in the cold water, but at the end of summer the lake warms up, lowering the solubility of calcium carbonate. As a result, the calcium carbonate precipitates out of the water, forming clouds of very small solid particles that appear as bright swirls from above. The phenomenon is appropriately called a whiting event. A similar event occured in 1999, but appears to have started later and subsided earlier. It is also possible that a bloom of the algae Microcystis is responsible for the color change, but unlikely because of Lake Michigan's depth and size. Microcystis blooms have occured in other lakes in the region, however. On the shore of the lake it is possible to see the cities of Chicago, Illinois, and Milwaukee, Wisconsin. Both appear as clusters of gray-brown pixels. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  6. Status of Pelagic Prey Fishes in Lake Michigan, 2014

    USGS Publications Warehouse

    Warner, David M.; Farha, Steven A.; Claramunt, Randall M.; Hanson, Dale; O'Brien, Timothy P.

    2015-01-01

    Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2014 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys as well as target strength provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. The 2014 survey consisted of 27 acoustic transects (603 km total) and 31 midwater trawl tows. Four additional transects were sampled in Green Bay but were not included in lakewide estimates. Mean prey fish biomass was 6.5 kg/ha [31.7 kilotonnes (kt = 1,000 metric tons)], equivalent to 69.9 million pounds, which was similar to the estimate in 2013 (29.6 kt) and 25% of the long-term (19 years) mean. The numeric density of the 2014 alewife year-class was 3% of the time series average and was the lowest observed in the 19 years of sampling. This year-class contributed <1% of total alewife biomass (4.6 kg/ha). Alewife ≥age-1 comprised 99.5% of alewife biomass. Numeric density of alewife in Green Bay was more than three times that of the main lake. In 2014, alewife comprised 71% of total prey fish biomass, while rainbow smelt and bloater were 1% and 28% of total biomass, respectively. Rainbow smelt biomass in 2014 (0.08 kg/ha) was 66% lower than in 2013, 2% of the long-term mean, and lower than in any previous year. Bloater biomass in 2014 was 1.8 kg/ha, nearly three times more than the 2013 biomass, and 20% of the long-term mean. Mean density of small bloater in 2014 (122 fish/ha) was lower than peak values observed in 2007-2009 but was similar to the time series mean (124 fish/ha). In 2014, pelagic prey fish biomass in Lake Michigan was 71% of that in Lake Huron (all basins), where the community is dominated by bloater.

  7. Status of pelagic prey fishes in Lake Michigan, 2012

    USGS Publications Warehouse

    Warner, David M.; O'Brien, Timothy P.; Farha, Steve A.; Claramunt, Randall M.; Hanson, Dale

    2012-01-01

    Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2012 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys as well as target strength provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. The 2012 survey consisted of 26 acoustic transects (576 km total) and 31 midwater tows. Mean total prey fish biomass was 6.4 kg/ha (relative standard error, RSE = 15%) or 31 kilotonnes (kt = 1,000 metric tons), which was 1.5 times the estimate for 2011 and 22% of the long-term mean. The increase from 2011 resulted from increased biomass of age-0 alewife, age-1 or older alewife, and large bloater. The abundance of the 2012 alewife year class was similar to the average, and this year-class contributed 35% of total alewife biomass (4.9 kg/ha, RSE = 17%), while the 2010 alewife year-class contributed 58%. The 2010 year class made up 89% of age-1 or older alewife biomass. In 2012, alewife comprised 77% of total prey fish biomass, while rainbow smelt and bloater were 4 and 19% of total biomass, respectively. Rainbow smelt biomass in 2012 (0.25 kg/ha, RSE = 17%) was 40% of the rainbow smelt biomass in 2011 and 5% of the long term mean. Bloater biomass was much lower (1.2 kg/ha, RSE = 12%) than in the 1990s, and mean density of small bloater in 2012 (191 fish/ha, RSE = 24%) was lower than peak values observed in 2007-2009. In 2012, pelagic prey fish biomass in Lake Michigan was similar to Lake Superior and Lake Huron. Prey fish biomass remained well below the Fish Community Objectives target of 500-800 kt, and key native species remain absent or rare.

  8. Lake whitefish and Diporeia spp. in the Great lakes: an overview

    USGS Publications Warehouse

    Nalepa, Thomas F.; Mohr, Lloyd C.; Henderson, Bryan A.; Madenjian, Charles P.; Schneeberger, Philip J.

    2005-01-01

    Because of growing concern in the Great Lakes over declines in abundance and growth of lake whitefish (Coregonus clupeaformis) and declines in abundance of the benthic amphipod Diporeia spp., a workshop was held to examine past and current trends, to explore trophic links, and to discuss the latest research results and needs. The workshop was divided into sessions on the status of populations in each of the lakes, bioenergetics and trophic dynamics, and exploitation and management. Abundance, growth, and condition of whitefish populations in Lakes Superior and Erie are stable and within the range of historical means, but these variables are declining in Lakes Michigan and Ontario and parts of Lake Huron. The loss of Diporeia spp., a major food item of whitefish, has been a factor in observed declines, particularly in Lake Ontario, but density-dependent factors also likely played a role in Lakes Michigan and Huron. The loss of Diporeia spp. is temporally linked to the introduction and proliferation of dreissenid mussels, but a direct cause for the negative response of Diporeia spp. has not been established. Given changes in whitefish populations, age-structured models need to be re-evaluated. Other whitefish research needs to include a better understanding of what environmental conditions lead to strong year-classes, improved aging techniques, and better information on individual population (stock) structure. Further collaborations between assessment biologists and researchers studying the lower food web would enhance an understanding of links between trophic levels.

  9. Lake Michigan lake trout PCB model forecast post audit (oral presentation)

    EPA Science Inventory

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents an...

  10. Trends in the lake trout fishery of Lake Huron through 1946

    USGS Publications Warehouse

    Hile, Ralph

    1949-01-01

    The estimated abundance of lake trout in the United States waters of Lake Huron (all districts combined) had reached an extremely low level in 1946 (24 percent of the 1929–1943 average), and the complete collapse of the fishery in late years is a matter of record. The rate of decline in abundance, however, was much less rapid than the spectacular decreases in production might suggest. Although each year beginning with 1940 saw a new record low yield, the abundance was still 87 percent of average in 1942 and did not drop below 70 percent until 1944. This seeming paradox is explained by the fact that relative to average conditions, fishing intensity in 1941–1946 was lower and was decreasing much more rapidly than was abundance. PDF

  11. Two hermaphroditic alewives from Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Saxon, Margaret I.

    1968-01-01

    Hermaphroditism has been reported frequently among many of the Clupeidae, but only one account of hermaphroditism has been published for the alewife, Alosa pseudoharengus. Rothschild discovered four hermaphroditic alewives among 444 fish he examined from Cayuga Lake, New York. We recently collected two hermaphroditic alewives from Lake Michigan. Both fish were normal in external appearance but were easily identified as hermaphrodites by gross examination of their gonads. The first hermaphrodite (177 mm T.L.) was discovered among several hundred normal adult alewives captured in early July 1965 in the Kalamazoo River about one mile upstream from Lake Michigan. The second hermaphroditic alewife (152 mm T.L.) was obtained from a sample of 160 adult alewives captured in Lake Michigan near the mouth of the Kalamazoo River in mid-April 1966.

  12. Conservation and management of fisheries and aquatic communities in Great Lakes connecting channels

    USGS Publications Warehouse

    Roseman, Edward F.; Thompson, Patricia A.; Farrell, John M.; Mandrak, Nicholas E.; Stepien, Carol A.

    2014-01-01

    The North American Laurentian Great Lakes are linked by a unique series of riverine and lacustrine waters known as the Great Lakes connecting channels that are as integral to the basin's ecology and economies as the lakes themselves. The St. Marys River (SMR) is the northernmost channel and flows from Lake Superior to Lake Huron. Waters from the upper Great Lakes (Lakes Superior, Michigan, and Huron) empty from Lake Huron via the St. Clair–Detroit River system (SCDRS, also known as the Huron–Erie Corridor) into Lake Erie. The SCDRS is composed of the St. Clair River, Lake St. Clair, and the Detroit River. The Niagara River (NR) serves as the outflow from Lake Erie into Lake Ontario. The NR above Niagara Falls is bisected by Grand Island and contains several other islands and man-made embayments whereas the NR below the falls is more linear. The outflow from Lake Ontario, representing the natural outlet of all the Great Lakes, is the St. Lawrence River (SLR) which empties into the Gulf of St. Lawrence in the northwest Atlantic Ocean.

  13. Ecological factors affecting Rainbow Smelt recruitment in the main basin of Lake Huron, 1976-2010

    USGS Publications Warehouse

    O'Brien, Timothy P.; Taylor, William W.; Roseman, Edward F.; Madenjian, Charles P.; Riley, Stephen C.

    2014-01-01

    Rainbow Smelt Osmerus mordax are native to northeastern Atlantic and Pacific–Arctic drainages and have been widely introduced throughout North America. In the Great Lakes region, Rainbow Smelt are known predators and competitors of native fish and a primary prey species in pelagic food webs. Despite their widespread distribution, importance as a prey species, and potential to negatively interact with native fish species, there is limited information concerning stock–recruitment relationships for Rainbow Smelt. To better understand recruitment mechanisms, we evaluated potential ecological factors determining recruitment dynamics for Rainbow Smelt in Lake Huron using data from bottom trawl catches. We specifically evaluated influence of stock size, environmental factors (water temperature, lake levels, and precipitation), and salmonine predation on the production of age-0 recruits from 1976 to 2010. Rainbow Smelt recruitment was negatively related to stock size exceeding 10 kg/ha, indicating that compensatory, density-dependent mortality from cannibalism or intraspecific competition was an important factor related to the production of age-0 recruits. Recruitment was positively related to spring precipitation suggesting that the amount of stream-spawning habitat as determined by precipitation was important for the production of strong Rainbow Smelt recruitment. Additionally, density of age-0 Rainbow Smelt was positively related to Lake Trout Salvelinus namaycush abundance. However, spawning stock biomass of Rainbow Smelt, which declined substantially from 1989 to 2010, was negatively associated with Lake Trout catch per effort suggesting predation was an important factor related to the decline of age-2 and older Rainbow Smelt in Lake Huron. As such, we found that recruitment of Rainbow Smelt in Lake Huron was regulated by competition with or cannibalism by older conspecifics, spring precipitation influencing stream spawning habitats, and predation by Lake Trout on

  14. Spatial patterns in PCB concentrations of Lake Michigan lake trout

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; Stedman, Ralph M.; Brown, Edward H.; Eck, Gary W.; Schmidt, Larry J.; Hesselberg, Robert J.; Chernyak, Sergei M.; Passino-Reader, Dora R.

    1999-01-01

    Most of the PCB body burden in lake trout (Salvelinus namaycush) of the Great Lakes is from their food. PCB concentrations were determined in lake trout from three different locations in Lake Michigan during 1994–1995, and lake trout diets were analyzed at all three locations. The PCB concentrations were also determined in alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), and deepwater sculpin (Myoxocephalus thompsoni), five species of prey fish eaten by lake trout in Lake Michigan, at three nearshore sites in the lake. Despite the lack of significant differences in the PCB concentrations of alewife, rainbow smelt, bloater, slimy sculpin, and deepwater sculpin from the southeastern nearshore site near Saugatuck (Michigan) compared with the corresponding PCB concentrations from the northwestern nearshore site near Sturgeon Bay (Wisconsin), PCB concentrations in lake trout at Saugatuck were significantly higher than those at Sturgeon Bay. The difference in the lake trout PCB concentrations between Saugatuck and Sturgeon Bay could be explained by diet differences. The diet of lake trout at Saugatuck was more concentrated in PCBs than the diet of Sturgeon Bay lake trout, and therefore lake trout at Saugatuck were more contaminated in PCBs than Sturgeon Bay lake trout. These findings were useful in interpreting the long-term monitoring series for contaminants in lake trout at both Saugatuck and the Wisconsin side of the lake.

  15. Diets of aquatic birds reflect changes in the Lake Huron ecosystem

    USGS Publications Warehouse

    Hebert, Craig E.; Weseloh, D.V. Chip; Idrissi, Abode; Arts, Michael T.; Roseman, Edward F.

    2009-01-01

    Human activities have affected the Lake Huron ecosystem, in part, through alterations in the structure and function of its food webs. Insights into the nature of food web change and its ecological ramifications can be obtained through the monitoring of high trophic level predators such as aquatic birds. Often, food web change involves alterations in the relative abundance of constituent species and/or the introduction of new species (exotic invaders). Diet composition of aquatic birds is influenced, in part, by relative prey availability and therefore is a sensitive measure of food web structure. Using bird diet data to make inferences regarding food web change requires consistent measures of diet composition through time. This can be accomplished by measuring stable chemical and/or biochemical “ecological tracers” in archived avian samples. Such tracers provide insights into pathways of energy and nutrient transfer.In this study, we examine the utility of two groups of naturally-occurring intrinsic tracers (stable isotopes and fatty acids) to provide such information in a predatory seabird, the herring gull (Larus argentatus). Retrospective stable nitrogen and carbon isotope analysis of archived herring gull eggs identified declines in gull trophic position and shifts in food sources in Lake Huron over the last 25 years and changes in gull diet composition were inferred from egg fatty acid patterns. These independent groups of ecological tracers provided corroborating evidence of dietary change in this high trophic level predator. Gull dietary shifts were related to declines in prey fish abundance which suggests large-scale alterations to the Lake Huron ecosystem. Dietary shifts in herring gulls may be contributing to reductions in resources available for egg formation. Further research is required to evaluate how changes in resource availability may affect population sustainability in herring gulls and other waterbird species. Long-term biological monitoring

  16. Distribution and abundance of larval fish in the nearshore waters of western Lake Huron

    USGS Publications Warehouse

    O'Gorman, Robert

    1983-01-01

    Ichthyoplankton was collected at 17 nearshore (bottom depth ≥5 m but ≤10 m) sites in western Lake Huron during 1973–75 with a 0.5-m net of 351-micron mesh towed at 99 m/min. Larvae of rainbow smelt (Osmerus mordax) dominated late spring and early summer catches and larvae of alewives (Alosa pseudoharengus) the midsummer catches. Larval yellow perch (Perca flavescens) were caught in early summer but were rarely the dominant species. The time of spawning and hatching, and thus occurrence of larvae, differed between areas but was less variable for alewives than for yellow perch. The appearance of larvae in Saginaw Bay was followed successively by their appearance in southern, central, and northern Lake Huron. Rainbow smelt were most abundant in northern Lake Huron and yellow perch and alewives in inner Saginaw Bay. Densities of either rainbow smelt or alewives occasionally exceeded 1/m3, whereas those of yellow perch never exceeded 0.1/m3. Abundance of alewives was usually highest 1 to 3 m beneath the surface and that of rainbow smelt 2 to at least 6 m beneath the surface. Important nursery areas of rainbow smelt were in bays and off irregular coastlines and those of yellow perch were in bays. All nearshore waters seemed equally important as nursery areas of alewives.

  17. Species succession and fishery exploitation in the Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1968-01-01

    The species composition of fish in the Great Lakes has undergone continual change since the earliest records. Some changes were caused by enrichment of the environment, but others primarily by an intensive and selective fishery for certain species. Major changes related to the fishery were less frequent before the late 1930's than in recent years and involved few species. Lake sturgeon (Acipenser fulvescens) were overexploited knowingly during the late 1800's because they interfered with fishing for preferred species; sturgeon were greatly reduced in all lakes by the early 1900's. Heavy exploitation accompanied sharp declines of lake herring (Leucichthys artedi) in Lake Erie during the 1920's and lake whitefish (Coregonus clupeaformis) in Lake Huron during the 1930's. A rapid succession of fish species in Lakes Huron, Michigan, and Superior that started about 1940 has been caused by selective predation by the sea lamprey (Petromyzon marinus) on native predatory species, and the resultant shifting emphasis of the fishery and species interaction as various species declined. Lake trout (Salvelinus namaycush) and burbot (Lota lota), the deepwater predators, were depleted first; this favored their prey, the chubs (Leucichthys spp.). The seven species of chubs were influenced differently according to differences in size. Fishing emphasis and predation by sea lampreys were selective for the largest species of chubs as lake trout and burbot declined. A single slow-growing chub, the bloater, was favored and increased, but as the large chubs declined the bloater was exploited by a new trawl fishery. The growth rate and size of the bloater increased, making it more vulnerable to conventional gillnet fishery and lamprey predation. This situation in Lakes Michigan and Huron favored the small alewife (Alosa pseudoharengus) which had recently become established in the upper Great Lakes, and the alewife increased rapidly and dominated the fish stocks of the lakes. The successive

  18. Factors of ecologic succession in oligotrophic fish communities of the Laurentian Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1972-01-01

    Oligotrophic fish communities of the Great Lakes have undergone successive disruptions since the mid-1800s. Major contributing factors have been intensive selective fisheries, extreme modification of the drainage, invasion of marine species, and progressive physical–chemical changes of the lake environments. Lake Ontario was the first to be affected as its basin was settled and industrialized earliest, and it was the first to be connected by canals to the mid-Atlantic where the alewife (Alosa pseudoharengus) and sea lamprey (Petromyzon marinus) which ultimately became established in the Great Lakes were abundant. Oligotrophic fish communities were successively disrupted in Lakes Erie, Huron, Michigan, and Superior as the affects of population growth, industrialization, and marine invaders spread upward in the Laurentian drainage.The degree and sequence of response of families offish and species within families differed for each factor, but the sequence of change among families and species has been the same in response to each factor as it affected various lakes at different times. The ultimate result of the disruption of fish communities has been a reduction of productivity of oligotrophic species that ranges from extreme in Lake Ontario to moderate in Lake Superior, and which has reached a state of instability and rapid change in the upper three Great Lakes by the rnid-1900s similar to the situation in Lake Ontario in the mid-1800s. Since oligotrophic species (primarily salmonines, coregonines, and deepwater cottids) are the only kinds of fish that fully occupied the entire volume of the deepwater Great Lakes (Ontario, Huron, Michigan, and Superior), the fish biomass of these lakes has been reduced as various species declined or disappeared. In Lake Erie, which is shallow, and in the shallow bays of the deep lakes, oligotrophic species were replaced by mesotrophic species, primarily percids, which have successively increased and declined. All oligotrophic

  19. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    USGS Publications Warehouse

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    Lake Michigan. In general, trends in year-class strengths were less concordant across the basin and only coregonids showed statistical agreement across the upper Great Lakes. The appearance of strong and moderate year-classes of Bloater in Lake Huron in 2005- 2011 countered the trend of continuing weak year-classes of coregonids in Lakes Michigan and Superior. Not shown in our analysis is the appearance of the 2013 year-class of Bloater in Huron, the largest to date. There was no agreement in cross-basin trends in year-class strengths for Rainbow Smelt and Alewife, although there was agreement between pairs of lakes. Although there was statistical agreement in trends of age-0 and older Round Goby biomass among lakes where this species has successfully invaded (Michigan, Huron, Erie and Ontario), temporal patterns of biomass in each lake were different. Round Goby may be approaching equilibrium in Lake Erie, peaking in Lake Huron, and expanding in Lake Michigan. The trend in Lake Ontario remains unclear. Declining abundance in Lake Erie has corresponded with evidence that Round Goby have become increasingly incorporated into piscivore diets, e.g., Lake Trout, Walleye, Smallmouth Bass, Yellow Perch, and Burbot in Lakes Michigan, Huron, Erie, and Ontario. Round Goby continue to be absent from spring bottom trawl assessments in Lake Superior, but their presence in the harbors and embayments of Duluth and Thunder Bay (U.S. Geological Survey and Ontario Ministry of Natural Resources, unpublished data), suggests that there is potential for future colonization.

  20. 77 FR 47284 - Safety Zone; Dredge Arthur J, Lake Huron, Lakeport, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ...-AA00 Safety Zone; Dredge Arthur J, Lake Huron, Lakeport, MI AGENCY: Coast Guard, DHS. ACTION: Temporary... preparation for and salvage operations of the Arthur J. dredge vessel. This temporary safety zone is necessary... sinking of the dredge vessel Arthur J. precluded the Coast Guard from having sufficient time to publish an...

  1. Population synchrony of a native fish across three Laurentian Great Lakes: Evaluating the effects of dispersal and climate

    USGS Publications Warehouse

    Bunnell, D.B.; Adams, J.V.; Gorman, O.T.; Madenjian, C.P.; Riley, S.C.; Roseman, E.F.; Schaeffer, J.S.

    2010-01-01

    Climate and dispersal are the two most commonly cited mechanisms to explain spatial synchrony among time series of animal populations, and climate is typically most important for fishes. Using data from 1978-2006, we quantified the spatial synchrony in recruitment and population catch-per-unit-effort (CPUE) for bloater (Coregonus hoyi) populations across lakes Superior, Michigan, and Huron. In this natural field experiment, climate was highly synchronous across lakes but the likelihood of dispersal between lakes differed. When data from all lakes were pooled, modified correlograms revealed spatial synchrony to occur up to 800 km for long-term (data not detrended) trends and up to 600 km for short-term (data detrended by the annual rate of change) trends. This large spatial synchrony more than doubles the scale previously observed in freshwater fish populations, and exceeds the scale found in most marine or estuarine populations. When analyzing the data separately for within- and between-lake pairs, spatial synchrony was always observed within lakes, up to 400 or 600 km. Conversely, between-lake synchrony did not occur among short-term trends, and for long-term trends, the scale of synchrony was highly variable. For recruit CPUE, synchrony occurred up to 600 km between both lakes Michigan and Huron (where dispersal was most likely) and lakes Michigan and Superior (where dispersal was least likely), but failed to occur between lakes Huron and Superior (where dispersal likelihood was intermediate). When considering the scale of putative bloater dispersal and genetic information from previous studies, we concluded that dispersal was likely underlying within-lake synchrony but climate was more likely underlying between-lake synchrony. The broad scale of synchrony in Great Lakes bloater populations increases their probability of extirpation, a timely message for fishery managers given current low levels of bloater abundance. ?? Springer-Verlag 2009.

  2. Hatchery Contributions to Emerging Naturally Produced Lake Huron Lake Trout.

    PubMed

    Scribner, Kim; Tsehaye, Iyob; Brenden, Travis; Stott, Wendylee; Kanefsky, Jeannette; Bence, James

    2018-06-19

    Recent assessments indicate the emergence of naturally produced lake trout (Salvelinus namaycush) recruitment throughout Lake Huron in the North American Laurentian Great Lakes (>50% of fish <7 yrs). Because naturally produced fish derived from different stocked hatchery strains are unmarked, managers cannot distinguish strains contributing to natural recruitment. We used 15 microsatellite loci to identify strains of naturally produced lake trout (N=1567) collected in assessment fisheries during early (2002-2004) and late (2009-2012) sampling periods. Individuals from 13 American and Canadian hatchery strains (N=1143) were genotyped to develop standardized baseline information. Strain contributions were estimated using a Bayesian inferential approach. Deviance information criteria was used to compare models evaluating strain contributions at different spatial and temporal scales. The best performing models were the most complex models, suggesting that hatchery strain contributions to naturally produced lake trout varied spatially among management districts and temporally between time periods. Contributions of Seneca strain lake trout were consistently high across most management districts, with contributions increasing from early to late time periods (estimates ranged from 52-94% for the late period across eight of nine districts). Strain contributions deviated from expectations based on historical stocking levels, indicating strains differed with respect to survival, reproductive success, and/or dispersal. Knowledge of recruitment levels of strains stocked in different management districts, and how strain-specific recruitment varies temporally, spatially, and as a function of local or regional stocking is important to prioritize strains for future stocking and management of the transition process from primarily hatchery to naturally produced stocks.

  3. Large-scale changes in bloater growth and condition in Lake Huron

    USGS Publications Warehouse

    Prichard, Carson G.; Roseman, Edward F.; Keeler, Kevin M.; O'Brien, Timothy P.; Riley, Stephen C.

    2016-01-01

    Native Bloaters Coregonus hoyi have exhibited multiple strong year-classes since 2005 and now are the most abundant benthopelagic offshore prey fish in Lake Huron, following the crash of nonnative AlewivesAlosa pseudoharengus and substantial declines in nonnative Rainbow Smelt Osmerus mordax. Despite recent recoveries in Bloater abundance, marketable-size (>229 mm) Bloaters remain scarce. We used annual survey data to assess temporal and spatial dynamics of Bloater body condition and lengths at age in the main basin of Lake Huron from 1973 to 2014. Basinwide lengths at age were modeled by cohort for the 1973–2003 year-classes using a von Bertalanffy growth model with time-varying Brody growth coefficient (k) and asymptotic length () parameters. Median Bloater weights at selected lengths were estimated to assess changes in condition by modeling weight–length relations with an allometric growth model that allowed growth parameters to vary spatially and temporally. Estimated Bloater lengths at age declined 14–24% among ages 4–8 for all year-classes between 1973 and 2004. Estimates of  declined from a peak of 394 mm (1973 year-class) to a minimum of 238 mm (1998 year-class). Observed mean lengths at age in 2014 were at all-time lows, suggesting that year-classes comprising the current Bloater population would have to follow growth trajectories unlike those characterizing the 1973–2003 year-classes to attain marketable size. Furthermore, estimated weights of 250-mm Bloaters (i.e., a large, commercially valuable size-class) declined 17% among all regions from 1976 to 2007. Decreases in body condition of large Bloaters are associated with lower lipid content and may be linked to marked declines in abundance of the amphipodsDiporeia spp. in Lake Huron. We hypothesize that since at least 1976, large Bloaters have become more negatively buoyant and may have incurred an increasingly greater metabolic cost performing diel vertical migrations to prey upon the opossum

  4. New records of Ergasilus (Copepoda: Ergasilidae) in the Laurentian Great Lakes, including a lakewide review of records and host associations

    USGS Publications Warehouse

    Hudson, Patrick L.; Bowen, Charles A.; Stedman, Ralph M.

    1994-01-01

    Ergasilus nerkae was found infecting ninespine stickleback (Pungitius pungitius) in lakes Huron, Michigan, and Superior and threespine stickleback (Gasterosteus aculeatus) and round whitefish (Prosopium cylindraceum) in Lake Huron. Based upon the literature and study of archived material, we propose that E. nerkae is enzootic to the Great Lakes and that ninespine stickleback are a preferred host in Lake Huron. Prevalence of E. nerkae on ninespine stickleback increased from 17% in June to 68% in September, but mean intensity remained light. Prevalence and mean intensity increased with host length. Ergasilus luciopercarum is also reported on lake trout (Salvelinus namaycush) and largemouth bass (Micropterus salmoides) for the first time. Host-parasite records of Ergasilus spp. in North America are reviewed, biology and taxonomy are summarized, and a checklist of Great Lakes host-parasite-locality records is provided. At present, eight species of Ergasilus are known to infect 42 Great Lakes fish species.

  5. Continued feeding on Diporeia by deepwater sculpin in Lake Huron

    USGS Publications Warehouse

    Thompson, Patricia A.; Roseman, Edward F.; Keeler, Kevin M.; O'Brien, Timothy P.; Bowser, Dustin

    2017-01-01

    Monitoring changes in diets of fish is essential to understanding how food web dynamics respond to changes in native prey abundances. In the Great Lakes, Diporeia, a benthic macroinvertebrate and primary food of native benthivores, declined following the introduction of invasive Dreissena mussels and these changes were reflected in fish diets. We examined the diets of deepwater sculpin Myoxocephalus thompsonii collected in bottom trawls during 2010–2014 in the main basin of Lake Huron, and compared these results to an earlier diet study (2003–2005) to assess if their diets have continued to change after a prolonged period of Dreissena mussel invasion and declined Diporeia densities. Diporeia, Mysis, Bythotrephes, and Chironomidae were consumed regularly and other diet items included ostracods, copepods, sphaerid clams, and fish eggs. The prey-specific index of relative importance calculated for each prey group indicated that Mysis importance increased at shallow (≤55 m) and mid (64–73 m) depths, while Diporeia importance increased offshore (≥82 m). The average number of Diporeia consumed per fish increased by 10.0% and Mysis decreased by 7.5%, while the frequency of occurrence of Diporeia and Mysis remained comparable between time periods. The weight of adult deepwater sculpin (80 mm and 100 mm TL bins) increased between time periods; however, the change in weight was only significant for the 80 mm TL group (p < 0.01). Given the historical importance of Diporeia in the Great Lakes, the examination of deepwater sculpin diets provides unique insight into the trophic dynamics of the benthic community in Lake Huron.

  6. Mark-recapture population estimates of parasitic sea lampreys (Petromyzon marinus) in Lake Huron

    USGS Publications Warehouse

    Bergstedt, Roger A.; McDonald, Rodney B.; Mullett, Katherine M.; Wright, Gregory M.; Swink, William D.; Burnham, Kenneth P.

    2003-01-01

    Metamorphosed sea lampreys (Petromyzon marinus) were collected and marked at two points in their life cycle. Recently metamorphosed juveniles were collected from streams, marked with coded wire tags, and returned to migrate to the Great Lakes. Juveniles already in the lakes and feeding on teleost hosts were obtained from incidental catches by sport or commercial fisheries. Sea lampreys in the Great Lakes spend only 1 feeding year as parasites, and marked animals were recaptured during the spawning runs. For one marked group in each of four parasitic cohorts (feeding years 1991 to 1994) and two marked groups in each of three cohorts (feeding years 1998 to 2000) we recovered from 1.1 to 10.2 percent of marked animals. The number of metamorphosed animals present in autumn before migration to Lake Huron was estimated for five cohorts, with estimates ranging from 639 to 803 thousand. The number of feeding, parasitic animals present in Lake Huron in mid summer was estimated for five cohorts, with estimates ranging from 515,000 to 2,342,000. The larger estimates later in the parasitic year suggested that animals collected and marked from sport or commercial fisheries did not survive at the same rate as unmarked animals. It is recommended that only estimates from recaptures of animals marked in the streams before migration be used until it can be established why survival of juveniles obtained from sport or commercial fisheries might be affected.

  7. Evidence of sound production by spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain

    USGS Publications Warehouse

    Johnson, Nicholas S.; Higgs, Dennis; Binder, Thomas R.; Marsden, J. Ellen; Buchinger, Tyler John; Brege, Linnea; Bruning, Tyler; Farha, Steve A.; Krueger, Charles C.

    2018-01-01

    Two sounds associated with spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain were characterized by comparing sound recordings to behavioral data collected using acoustic telemetry and video. These sounds were named growls and snaps, and were heard on lake trout spawning reefs, but not on a non-spawning reef, and were more common at night than during the day. Growls also occurred more often during the spawning period than the pre-spawning period, while the trend for snaps was reversed. In a laboratory flume, sounds occurred when male lake trout were displaying spawning behaviors; growls when males were quivering and parallel swimming, and snaps when males moved their jaw. Combining our results with the observation of possible sound production by spawning splake (Salvelinus fontinalis × Salvelinus namaycush hybrid), provides rare evidence for spawning-related sound production by a salmonid, or any other fish in the superorder Protacanthopterygii. Further characterization of these sounds could be useful for lake trout assessment, restoration, and control.

  8. Ciscoes (Coregonus, subgenus Leucichthys) of the Laurentian Great Lakes and Lake Nipigon

    USGS Publications Warehouse

    Eshenroder, Randy L.; Vecsei, Paul; Gorman, Owen T.; Yule, Daniel; Pratt, Thomas C.; Mandrak, Nicholas E.; Bunnell, David B.; Muir, Andrew M.

    2016-01-01

    This study of the ciscoes (Coregonus, subgenus Leucichthys) of the Great Lakes and Lake Nipigon represents a furtherance through 2015 of field research initiated by Walter Koelz in 1917 and continued by Stanford Smith in the mid-1900s—a period spanning nearly a century. Like Koelz’s study, this work contains information on taxonomy, geographical distribution, ecology, and status of species (here considered forms). Of the seven currently recognized forms (C. artedi, C. hoyi, C. johannae, C. kiyi, C. nigripinnis, C. reighardi, and C. zenithicus) described by Koelz as major in his 1929 monograph, two (C. johannae and C. reighardi) are extinct. In addition, C. alpenae, described by Koelz but subsequently synonymized with C. zenithicus, although extinct, is recognized as valid making a total of eight major forms. Six of these forms, all but C. artedi and C. hoyi, have been lost from Lake Michigan, and seven have been lost from Lake Huron, leaving in Lake Huron only C. artedi and an introgressed deepwater form that we term a hybrid swarm. C. artedi appears, like its sister form C. alpenae, to have been lost from Lake Erie. Only C. artedi remains extant in Lake Ontario, its three sister forms (C. hoyi, C. kiyi, and C. reighardi) having disappeared long ago.Lakes Superior and Nipigon have retained their original species flocks consisting of four forms each: C. artedi, C. hoyi, and C. zenithicus in both lakes; C. kiyi in Lake Superior; and C. nigripinnis in Lake Nipigon. Morphological deviations from the morphotypes described by Koelz have been modest in contemporary samples. Overall, C. kiyi and C. artedi were the most morphologically stable forms while C. hoyi, C. nigripinnis, and C. zenithicus were the least stable. Although contemporary populations of C. artedi from Lakes Michigan and Huron are highly diverged from the morphotypes described by Koelz, the contemporary samples were of undescribed deep-bodied forms unlikely to have been sampled by Koelz because of

  9. Lake Michigan Offshore Wind Feasibility Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of futuremore » offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined

  10. Ecology of the Lake Huron fish community, 1970-1999

    USGS Publications Warehouse

    Dobiesz, Norine E.; McLeish, David A.; Eshenroder, Randy L.; Bence, James R.; Mohr, Lloyd C.; Ebener, Mark P.; Nalepa, Thomas F.; Woldt, Aaron P.; Johnson, James E.; Argyle, Ray L.; Makarewicz, Joseph C.

    2005-01-01

    We review the status of the Lake Huron fish community between 1970 and 1999 and explore the effects of key stressors. Offshore waters changed little in terms of nutrient enrichment, while phosphorus levels declined in inner Saginaw Bay. Introduced mussels (Dreissena spp.) proliferated and may have caused a decline in Diporeia spp. This introduction could have caused a decline in lake whitefish (Coregonus clupeaformis) growth and condition, with serious repercussions for commercial fisheries. Bythotrephes, an exotic predatory cladoceran, and other new exotics may be influencing the fish community. Sea lampreys (Petromyzon marinus) remained prevalent, but intensive control efforts on the St. Mary's River may reduce their predation on salmonines. Overfishing was less of a problem than in the past, although fishing continued to reduce the amount of lake trout (Salvelinus namaycush) spawning biomass resulting from hatchery-reared fish planted to rehabilitate this species. Massive stocking programs have increased the abundance of top predators, but lake trout were rehabilitated in only one area. Successful lake trout rehabilitation may require lower densities of introduced pelagic prey fish than were seen in the 1990s, along with continued stocking of hatchery-reared lake trout and control of sea lamprey. Such reductions in prey fish could limit Pacific salmon (Oncorhynchus spp.) fisheries.

  11. Synthetic musk fragrances in Lake Michigan.

    PubMed

    Peck, Aaron M; Hornbuckle, Keri C

    2004-01-15

    Synthetic musk fragrances are added to a wide variety of personal care and household products and are present in treated wastewater effluent. Here we report for the first time ambient air and water measurements of six polycyclic musks (AHTN, HHCB, ATII, ADBI, AHMI, and DPMI) and two nitro musks (musk xylene and musk ketone) in North America. The compounds were measured in the air and water of Lake Michigan and in the air of urban Milwaukee, WI. All of the compounds except DPMI were detected. HHCB and AHTN were found in the highest concentrations in all samples. Airborne concentrations of HHCB and AHTN average 4.6 and 2.9 ng/m3, respectively, in Milwaukee and 1.1 and 0.49 ng/m3 over the lake. The average water concentration of HHCB and AHTN in Lake Michigan was 4.7 and 1.0 ng/L, respectively. A lake-wide annual mass budget shows that wastewater treatment plant discharge is the major source (3470 kg/yr) of the synthetic musks while atmospheric deposition contributes less than 1%. Volatilization and outflow through the Straits of Mackinac are major loss mechanisms (2085 and 516 kg/yr for volatilization and outflow, respectively). Concentrations of HHCB are about one-half the predicted steady-state water concentrations in Lake Michigan.

  12. Coastal Changes, Eastern Lake Michigan, 1970-74.

    DTIC Science & Technology

    1981-01-01

    an effective shore protection agent during the stormiest months of January, February, and March. Till and mixed till bluffs tended to erode less than...final report of a 4-year study of 17 profile lines located along the eastern shore of Lake Michigan. The work v-as carried out under the coastal...26 5 Sediment statistics sum~mary, eastern Lake Michigan (October 1973 to December 1974

  13. Strand-plain evidence for late Holocene lake-level variations in Lake Michigan

    USGS Publications Warehouse

    Thompson, T.A.; Baedke, S.J.

    1997-01-01

    Lake level is a primary control on shoreline behavior in Lake Michigan. The historical record from lake-level gauges is the most accurate source of information on past lake levels, but the short duration of the record does not permit the recognition of long-term patterns of lake-level change (longer than a decade or two). To extend the record of lake-level change, the internal architecture and timing of development of five strand plains of late Holocene beach ridges along the Lake Michigan coastline were studied. Relative lake-level curves for each site were constructed by determining the elevation of foreshore (swash zone) sediments in the beach ridges and by dating basal wetland sediments in the swales between ridges. These curves detect long-term (30+ yr) lake-level variations and differential isostatic adjustments over the past 4700 yr at a greater resolution than achieved by other studies. The average timing of beach-ridge development for all sites is between 29 and 38 yr/ridge. This correspondence occurs in spite of the embayments containing the strand plains being different in size, orientation, hydrographic regime, and available sediment type and caliber. If not coincidental, all sites responded to a lake-level fluctuation of a little more than three decades in duration and a range of 0.5 to 0.6 m. Most pronounced in the relative lake-level curves is a fluctuation of 120-180 yr in duration. This ???150 yr variation is defined by groups of four to six ridges that show a rise and fall in foreshore elevations of 0.5 to 1.5 m within the group. The 150 yr variation can be correlated between sites in the Lake Michigan basin. The ???30 and 150 yr fluctuations are superimposed on a long-term loss of water to the Lake Michigan basin and differential rates of isostatic adjustment.

  14. Ninespine Stickleback Abundance in Lake Michigan Increases After Dreissenid Mussel Invasion

    USGS Publications Warehouse

    Madenjian, Charles P.; Bunnell, David B.; Gorman, Owen T.

    2010-01-01

    Based on data from our annual lakewide bottom trawl survey of Lake Michigan, we determined that density of ninespine sticklebacks Pungitius pungitius increased from an average of 0.234 kg/ha during 1973–1995 to an average of 1.318 kg/ha during 1996–2007. This greater-than-fivefold increase in density coincided with the dreissenid mussel invasion of Lake Michigan. Intervention analysis revealed that ninespine stickleback density in Lake Michigan significantly increased between the two time periods. In contrast, based on data from our annual bottom trawl survey of U.S. waters of Lake Superior, ninespine stickleback density decreased from an average of 0.133 kg/ha during 1978–1999 to an average of only 0.026 kg/ha during 2000–2007. This greater-than-fivefold density decrease, which was found to be significant via intervention analysis, coincided with population recovery for both lean and fat morphotypes of lake trout Salvelinus namaycush in Lake Superior. In contrast to Lake Michigan, dreissenid mussels have not invaded Lake Superior on a lakewide basis. Thus, a comparison of these two lakes indicated that the increase in ninespine stickleback abundance in Lake Michigan was most likely attributable to the dreissenid mussel invasion. In addition, based on our correlation analysis, alewives Alosa pseudoharengus did not have an adverse effect on ninespine stickleback abundance in Lake Michigan. Perhaps the recent increase in biomass of green algae Cladophora spp. associated with the dreissenid mussel invasion improved spawning habitat quality for ninespine sticklebacks and led to their stepwise abundance increase in Lake Michigan beginning in 1996

  15. St. Lawrence Seaway N.Y. Feasibility Study for Additional Locks and Other Navigation Improvements: Plan of Study. Revision.

    DTIC Science & Technology

    1979-11-01

    Ashland, WI Lake Huron Lake Michigan Ontonagon, MI Presque Isle, MI : Alpena , MI Oak Creek, WI Marquette, MI Cheboygan, MI Buffington, IN Keweenaw Waterway...State of Michigan include Calcite, Stoneport, Alpena , Alabasier, Bay City, Saginaw, and Port Huron. Other large harbors on Lake Michigan are Port...Joseph Alpena : Auglaize Tompkins Steuben : Arenac Crawford Wayne Bay Cayuga Wyoming Cheboygan Defiance Yates Clare Erie Crawford : Fulton Source

  16. DEPOSITION AND EMISSION OF GASEOUS MERCURY TO AND FROM LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY (JULY, 1994 - OCTOBER, 1995)

    EPA Science Inventory

    This paper presents measurements of dissolved gaseous mercury (DGM) concentrations in Lake Michigan and the application of a mechanistic approach to estimate deposition and emission fluxes of gaseous mercury (Hg2+ and Hg0) to and from Lake Michigan. Measurements of DGM concentr...

  17. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish

    USGS Publications Warehouse

    Bunnell, D.B.; Hunter, R. Douglas; Warner, D.M.; Chriscinske, M.A.; Roseman, E.F.

    2011-01-01

    Oligotrophic lakes are generally dominated by calanoid copepods because of their competitive advantage over cladocerans at low prey densities. Planktivory also can alter zooplankton community structure. We sought to understand the role of planktivory in driving recent changes to the zooplankton community of Lake Huron, a large oligotrophic lake on the border of Canada and the United States. We tested the hypothesis that excessive predation by fish (rainbow smelt Osmerus mordax, bloater Coregonus hoyi) and invertebrates (Mysis relicta, Bythotrephes longimanus) had driven observed declines in cladoceran and cyclopoid copepod biomass between 2002 and 2007. We used a field sampling and bioenergetics modelling approach to generate estimates of daily consumption by planktivores at two 91-m depth sites in northern Lake Huron, U.S.A., for each month, May-October 2007. Daily consumption was compared to daily zooplankton production. Bythotrephes was the dominant planktivore and estimated to have eaten 78% of all zooplankton consumed. Bythotrephes consumption exceeded total zooplankton production between July and October. Mysis consumed 19% of all the zooplankton consumed and exceeded zooplankton production in October. Consumption by fish was relatively unimportant - eating only 3% of all zooplankton consumed. Because Bythotrephes was so important, we explored other consumption estimation methods that predict lower Bythotrephes consumption. Under this scenario, Mysis was the most important planktivore, and Bythotrephes consumption exceeded zooplankton production only in August. Our results provide no support for the hypothesis that excessive fish consumption directly contributed to the decline of cladocerans and cyclopoid copepods in Lake Huron. Rather, they highlight the importance of invertebrate planktivores in structuring zooplankton communities, especially for those foods webs that have both Bythotrephes and Mysis. Together, these species occupy the epi-, meta- and

  18. Biotic and abiotic factors influencing zooplankton vertical distribution in Lake Huron

    USGS Publications Warehouse

    Nowicki, Carly J.; Bunnell, David B.; Armenio, Patricia M.; Warner, David M.; Vanderploeg, Henry A.; Cavaletto, Joann F.; Mayer, Christine M.; Adams, Jean V.

    2017-01-01

    The vertical distribution of zooplankton can have substantial influence on trophic structure in freshwater systems, particularly by determining spatial overlap for predator/prey dynamics and influencing energy transfer. The zooplankton community in some of the Laurentian Great Lakes has undergone changes in composition and declines in total biomass, especially after 2003. Mechanisms underlying these zooplankton changes remain poorly understood, in part, because few studies have described their vertical distributions during daytime and nighttime conditions or evaluated the extent to which predation, resources, or environmental conditions could explain their distribution patterns. Within multiple 24-h periods during July through October 2012 in Lake Huron, we conducted daytime and nighttime sampling of zooplankton, and measured food (chlorophyll-a), temperature, light (Secchi disk depth), and planktivory (biomass of Bythotrephes longimanus and Mysis diluviana). We used linear mixed models to determine whether the densities for 22 zooplankton taxa varied between day and night in the epi-, meta-, and hypolimnion. For eight taxa, higher epilimnetic densities were observed at night than during the day; general linear models revealed these patterns were best explained by Mysis diluviana (four taxa), Secchi disk depth (three taxa), epilimnetic water temperature (three taxa), chlorophyll (one taxon), and biomass of Bythotrephes longimanus (one taxon). By investigating the potential effects of both biotic and abiotic variables on the vertical distribution of crustacean zooplankton and rotifers, we provide descriptions of the Lake Huron zooplankton community and discuss how future changes in food web dynamics or climate change may alter zooplankton distribution in freshwater environments.

  19. Bed morphology, flow structure, and sediment transport at the outlet of Lake Huron and in the upper St. Clair River

    USGS Publications Warehouse

    Czuba, J.A.; Best, J.L.; Oberg, K.A.; Parsons, D.R.; Jackson, P.R.; Garcia, M.H.; Ashmore, P.

    2011-01-01

    An integrated multibeam echo sounder and acoustic Doppler current profiler field survey was conducted in July 2008 to investigate the morphodynamics of the St. Clair River at the outlet of Lake Huron. The principal morphological features of the upper St. Clair River included flow-transverse bedforms that appear weakly mobile, erosive bedforms in cohesive muds, thin non-cohesive veneers of weakly mobile sediment that cover an underlying cohesive (till or glacio-lacustrine) surface, and vegetation that covers the bed. The flow was characterized by acceleration as the banks constrict from Lake Huron into the St. Clair River, an approximately 1500-m long region of flow separation downstream from the Blue Water Bridge, and secondary flow connected to: i) channel curvature; ii) forcing of the flow by local bed topography, and iii) flow wakes in the lee side of ship wrecks. Nearshore, sand-sized, sediment from Lake Huron was capable of being transported into, and principally along, the banks of the upper St. Clair River by the measured flow. A comparison of bathymetric surveys conducted in 2007 and 2008 identifies that the gravel bed does undergo slow downstream movement, but that this movement does not appear to be generated by the mean flow, and could possibly be caused by ship-propeller-induced turbulence. The study results suggest that the measured mean flow and dredging within the channel have not produced major scour of the upper St. Clair River and that the recent fall in the level of Lake Huron is unlikely to have been caused by these mechanisms. ?? 2011.

  20. Role of lake-wide prey fish survey in understanding ecosystem dynamics and managing fisheries of Lake Michigan

    USGS Publications Warehouse

    Madenjian, Charles P.; Edsall, T.; Munawar, M.

    2005-01-01

    With this study, the role of this lake-wide prey fish survey in both understanding the dynamics of the Lake Michigan ecosystem and managing Lake Michigan fisheries was documented. The complexity of ecosystems is such that long-term study is required before the dynamics of the ecosystem can be understoond. Furthermore, long-term observation is needed before important or meaningful questions about ecosystem dynamics can be asked. My approach is to first illustrate, by example, the usefulness of the survey results in providing insights into the dynamics of the Lake Michigan ecosystem. Then, examples of direct application of the survey results toward Lake Michigan fisheries management are presented.

  1. Spawning site fidelity and apparent annual survival of walleye (Sander vitreus) differ between a Lake Huron and Lake Erie tributary

    USGS Publications Warehouse

    Hayden, Todd A.; Binder, Thomas; Holbrook, Christopher; Vandergoot, Christopher; Fielder, David G.; Cooke, Steven J.; Dettmers, John M.; Krueger, Charles C.

    2018-01-01

    Fidelity to spawning habitats can maximise reproductive success of fish by synchronising movements to sites of previous recruitment. To determine the role of reproductive fidelity in structuring walleye Sander vitreus populations in the Laurentian Great Lakes, we used acoustic telemetry combined with Cormack–Jolly–Seber capture–recapture models to estimate spawning site fidelity and apparent annual survival for the Tittabawassee River in Lake Huron and Maumee River in Lake Erie. Walleye in spawning condition were tagged from the Tittabawassee River in Lake Huron and Maumee River in Lake Erie in 2011–2012. Site fidelity and apparent annual survival were estimated from return of individuals to the stream where tagged. Site fidelity estimates were higher in the Tittabawassee River (95%) than the Maumee River (70%) and were not related to sex or fish length at tagging. Apparent annual survival of walleye tagged in the Tittabawassee did not differ among spawning seasons but was higher for female than male walleye and decreased linearly as fish length increased. Apparent annual survival of walleye tagged in the Maumee River did not differ among spawning seasons but was higher for female walleye than male walleye and increased linearly as fish length increased. Greater fidelity of walleye tagged in the Tittabawassee River than walleye tagged in the Maumee River may be related to the close proximity to the Maumee River of other spawning aggregations and multiple spawning sites in Lake Erie. As spawning site fidelity increases, management actions to conserve population structure require an increasing focus on individual stocks.

  2. Evidence of Lake Trout reproduction at Lake Michigan's mid-lake reef complex

    USGS Publications Warehouse

    Janssen, J.; Jude, D.J.; Edsall, T.A.; Paddock, R.W.; Wattrus, N.; Toneys, M.; McKee, P.

    2006-01-01

    The Mid-Lake Reef Complex (MLRC), a large area of deep (> 40 m) reefs, was a major site where indigenous lake trout (Salvelinus namaycush) in Lake Michigan aggregated during spawning. As part of an effort to restore Lake Michigan's lake trout, which were extirpated in the 1950s, yearling lake trout have been released over the MLRC since the mid-1980s and fall gill net censuses began to show large numbers of lake trout in spawning condition beginning about 1999. We report the first evidence of viable egg deposition and successful lake trout fry production at these deep reefs. Because the area's existing bathymetry and habitat were too poorly known for a priori selection of sampling sites, we used hydroacoustics to locate concentrations of large fish in the fall; fish were congregating around slopes and ridges. Subsequent observations via unmanned submersible confirmed the large fish to be lake trout. Our technological objectives were driven by biological objectives of locating where lake trout spawn, where lake trout fry were produced, and what fishes ate lake trout eggs and fry. The unmanned submersibles were equipped with a suction sampler and electroshocker to sample eggs deposited on the reef, draw out and occasionally catch emergent fry, and collect egg predators (slimy sculpin Cottus cognatus). We observed slimy sculpin to eat unusually high numbers of lake trout eggs. Our qualitative approaches are a first step toward quantitative assessments of the importance of lake trout spawning on the MLRC.

  3. Probability of acoustic transmitter detections by receiver lines in Lake Huron: results of multi-year field tests and simulations

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher M.; Binder, Thomas; Dettmers, John M.; Cooke, Steven J.; Vandergoot, Christopher S.; Krueger, Charles C.

    2016-01-01

    BackgroundAdvances in acoustic telemetry technology have led to an improved understanding of the spatial ecology of many freshwater and marine fish species. Understanding the performance of acoustic receivers is necessary to distinguish between tagged fish that may have been present but not detected and from those fish that were absent from the area. In this study, two stationary acoustic transmitters were deployed 250 m apart within each of four acoustic receiver lines each containing at least 10 receivers (i.e., eight acoustic transmitters) located in Saginaw Bay and central Lake Huron for nearly 2 years to determine whether the probability of detecting an acoustic transmission varied as a function of time (i.e., season), location, and distance between acoustic transmitter and receiver. Distances between acoustic transmitters and receivers ranged from 200 m to >10 km in each line. The daily observed probability of detecting an acoustic transmission was used in simulation models to estimate the probability of detecting a moving acoustic transmitter on a line of receivers.ResultsThe probability of detecting an acoustic transmitter on a receiver 1000 m away differed by month for different receiver lines in Lake Huron and Saginaw Bay but was similar for paired acoustic transmitters deployed 250 m apart within the same line. Mean probability of detecting an acoustic transmitter at 1000 m calculated over the study period varied among acoustic transmitters 250 m apart within a line and differed among receiver lines in Lake Huron and Saginaw Bay. The simulated probability of detecting a moving acoustic transmitter on a receiver line was characterized by short periods of time with decreased detection. Although increased receiver spacing and higher fish movement rates decreased simulated detection probability, the location of the simulated receiver line in Lake Huron had the strongest effect on simulated detection probability.ConclusionsPerformance of receiver

  4. Total and Methyl Mercury in 1994-5 Lake Michigan Lake Trout and Forage Fish

    EPA Science Inventory

    Total and methyl mercury were analyzed in Lake Michigan fish collected in 1994 and 1995 as part of the Lake Michigan Mass Balance project (LMMB). One predator fish species and five forage fish species were analyzed to determine the bioaccumulative nature of mercury. These data ...

  5. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee-Escanaba (Michigan)-Marinette (Wisconsin) Interstate Air Quality Control Region has been renamed the Lake Michigan Intrastate Air Quality Control Region (Wisconsin) and revised to consist of the territorial area...

  6. 77 FR 51552 - The Great Lakes Islands National Wildlife Refuges in Michigan and Wisconsin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Draft CCP/EA'' in the subject line of the message. Fax: [cir] Attention: Refuge Manager, Gravel/Green Bay NWRs, 920-387- 2973. [cir] Attention: Refuge Manager, Huron/Harbor Island/MI Islands (N) NWRs, 906-586-3800. [cir] Attention: Refuge Manager, Michigan Islands (S) NWR, 989-777- 9200. U.S. Mail: [cir...

  7. Historical evidence for discrete stocks of lake trout (Salvelinus namaycush) in Lake Michigan

    USGS Publications Warehouse

    Brown, Edward H.; Eck, G.W.; Foster, N.R.; Horrall, R.M.; Coberly, C.E.

    1981-01-01

    Although few biological data exist on the now extinct native lake trout, Salvelinus namaycush, of Lake Michigan, historical records and interviews with former commercial fishermen strongly suggest that this once widespread resource was composed of a number of discrete spawning populations or stocks. A natural division of the resource into distinct stocks is consistent with the size of Lake Michigan and its varied physiography. The native trout may have undergone subtle genetic changes over the millennia, although we cannot determine whether the physical and behavioral differences represented different genotypes or only temporary effects of the local environment. Because of physiographic similarities among the upper Great Lakes and probable interchanges of lake trout during the last glacial period, we recommend that progeny of extant wild stocks, particularly from Lake Superior, are genetically most suitable for recolonizing Lake Michigan. Moreover, the hatchery-held parents of such fish should be infused periodically with genes of the wild or feral donor populations. Despite the sound historical basis for these recommendations, we also recognize that sufficiently high stocking rates coupled with a reduction of heavy exploitation may be even more important than heritability in obtaining self-sustaining populations.

  8. The food of the lake trout (Cristivomer namaycush namaycush) and of the lawyer (Lota maculosa) of Lake Michigan

    USGS Publications Warehouse

    Van Oosten, John; Deason, Hilary J.

    1938-01-01

    This paper reports on a qualitative and quantitative analysis of the contents of 4,979 lake trout stomachs (593 examined in 1930 and 1,253 collected in 1931 from southern Lake Michigan, 1,446 from northern Lake Michigan and 1,687 from Green Bay in 1932), and of a total of 1,528 lawyer stomachs (172 examined in 1930 and 734 collected in 1931 from southern Lake Michigan, 612 from northern Lake Michigan and 10 from Green Bay in 1932). The food of the trout consisted of 98 per cent by volume of fish of which Cottidae and Coregonidae were the principal constituents. Cottidae were dominant in southern Lake Michigan (72 per cent by volume), Coregonidae in northern Lake Michigan (51 per cent) but the lake shiner, Notropis atherinides, was most important in Green Bay in the spring of the year (64 per cent). The lawyer food consisted of 74 per cent by volume of fish and 26 per cent invertebrates. Dominant items were Cottidae (76 per cent by volume) in southern Lake Michigan, Coregonidae (51 per cent) and Pontoporeia (37 per cent) in northern Lake Michigan, and Percopsis (34 per cent) and Mysis (26 per cent) in Green Bay. Data are also presented on the frequency of occurrence (number of stomachs) of the food items and its variation with the sizes of the trout and lawyers, depths of water, seasons, and localities; on the number of individual fish of each species destroyed by the trout and lawyers; and on the calculated volume of the food fishes preceding digestion. The lake trout and lawyer are competitors for the same food, are both predators of the commercially important Coregonidae, and the lawyer through its consumption of invertebrates is a food competitor of the Coregonidae.

  9. Characterization of Lake Michigan coastal lakes using zooplankton assemblages

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.

    2004-01-01

    Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.

  10. Lake Michigan: Nearshore Variability

    EPA Science Inventory

    We conducted a high-resolution survey in the nearshore of Lake Michigan at a 20 meter contour using towed electronic instrumentation. The nearly 1200 km survey was conducted Sep 8-15, 2010. We also conducted six cross-contour tows. Along the survey tracks we sampled fixed stat...

  11. LAKE MICHIGAN MASS BALANCE STUDY UPDATE

    EPA Science Inventory

    A 2005 field design of tributary and open Lake Michigan sampling will be discussed for the first time at this Council meeting. The sample design is expected to aid in determining whether or not contaminant loads and open lake concentrations have decreased over the past 10 years s...

  12. Earth observations taken from shuttle orbiter Atlantis during STS-84 mission

    NASA Image and Video Library

    1997-05-22

    STS084-710-098 (15-24 May 1997) --- A rare view of the Great Lakes captured in one frame. The Great Lakes region is home to 8.5 million Canadians and 32.5 million Americans. At center is Lake Huron and Georgian Bay. Above Lake Huron and towards the horizon is Lake Michigan, the only Great Lake to be located entirely within the United States. To the right of Lake Michigan, and partially under clouds, is Lake Superior the second largest lake in the world after the Caspian Sea. Lake Erie is located to the left of Lake Huron. Next to Lake Erie is Lake Ontario. According to geologists, the Great Lakes were created by glacial processes that began about 1,000,000 years ago.

  13. Evidence that sea lampreys (Petromyzon marinus) complete their life cycle within a tributary of the Laurentian Great Lakes by parasitizing fishes in inland lakes

    USGS Publications Warehouse

    Johnson, Nicholas; Twohey, Michael B.; Miehls, Scott M.; Cwalinski, Tim A; Godby, Neal A; Lochet, Aude; Slade, Jeffrey W.; Jubar, Aaron K.; Siefkes, Michael J.

    2016-01-01

    The sea lamprey (Petromyzon marinus) invaded the upper Laurentian Great Lakes and feeds on valued fish. The Cheboygan River, Michigan, USA, is a large sea lamprey producing tributary to Lake Huron and despite having a renovated dam 2 km from the river mouth that presumably blocks sea lamprey spawning migrations, the watershed upstream of the dam remains infested with larval sea lamprey. A navigational lock near the dam has been hypothesized as the means of escapement of adult sea lampreys from Lake Huron and source of the upper river population (H1). However, an alternative hypothesis (H2) is that some sea lampreys complete their life cycle upstream of the dam, without entering Lake Huron. To evaluate the alternative hypothesis, we gathered angler reports of lamprey wounds on game fishes upstream of the dam, and captured adult sea lampreys downstream and upstream of the dam to contrast abundance, run timing, size, and statolith microchemistry. Results indicate that a small population of adult sea lampreys (n < 200) completed their life cycle upstream of the dam during 2013 and 2014. This is the most comprehensive evidence that sea lampreys complete their life history within a tributary of the upper Great Lakes, and indicates that similar landlocked populations could occur in other watersheds. Because the adult sea lamprey population upstream of the dam is small, complete elimination of the already low adult escapement from Lake Huron might allow multiple control tactics such as lampricides, trapping, and sterile male release to eradicate the population.

  14. 33 CFR 334.820 - Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. 334.820 Section 334.820 Navigation and Navigable... REGULATIONS § 334.820 Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. (a...

  15. 33 CFR 334.820 - Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. 334.820 Section 334.820 Navigation and Navigable... REGULATIONS § 334.820 Lake Michigan; naval restricted area, U.S. Naval Training Center, Great Lakes, Ill. (a...

  16. 75 FR 34936 - Safety Zone; Chicago Tall Ships Fireworks, Lake Michigan, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zone; Chicago Tall Ships Fireworks, Lake Michigan, Chicago, IL AGENCY: Coast Guard, DHS... waters of Lake Michigan within Chicago Harbor, Chicago, Illinois. This zone is intended to restrict... CWO2 Jon Grob, U.S. Coast Guard, Sector Lake Michigan, telephone (414)747-7188, e-mail [email protected

  17. 78 FR 37712 - Safety Zone; Chicago Match Cup Race; Lake Michigan; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... Zone; Chicago Match Cup Race; Lake Michigan; Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone on Lake Michigan near Chicago... the Captain of the Port, Lake Michigan. DATES: This regulation will be enforced at the dates and times...

  18. MODELLING SEDIMENT TRANSPORT FOR THE LAKE MICHIGAN MASS BALANCE PROJECT

    EPA Science Inventory

    A sediment transport model is one component of the overall ensemble of models being developed for the Lake Michigan Mass Balance. The SEDZL model is being applied to simulate the fine-grained sediment transport in Lake Michigan for the 1982-1983 and 1994-1995 periods. Model perf...

  19. Increase in lake trout reproduction in Lake Huron following the collapse of alewife: Relief from thiamine deficiency or larval predation?

    USGS Publications Warehouse

    Fitzsimons, J.D.; Brown, S.; Brown, L.; Honeyfield, D.; He, J.; Johnson, J.E.

    2010-01-01

    In the Great Lakes there is still uncertainty as to the population level effects of a thiamine deficiency on salmonines caused by high consumption of alewives Alosa pseudoharengus. A resurgence of lake trout Salvelinus namaycush reproduction in Lake Huron following the crash of alewife stocks between 2002 and 2004 provided an opportunity to evaluate the relative effects of this crash on reproduction through relief from either alewife mediated thiamine deficiency or alewife predation on larval lake trout relative to possible changes in the size of the lake trout spawning stock. Changes in mean lake trout egg thiamine concentration post crash at one spawning reef in Parry Sound, where mean thiamine concentration increased by almost two-fold, were consistent with diet switching from alewives to rainbow smelt Osmerus mordax, the next most abundant prey fish in Lake Huron. Although thiamine levels for lake trout collected at a second reef in Parry Sound did not change post-crash, levels both pre- and post-crash were consistent with a rainbow smelt diet. A reef specific fry emergence index was found to be positively related to reef specific egg thiamine concentration but negatively related to reef specific occurrence of EMS, a thiamine deficiency related mortality syndrome. We found little evidence for overlap between the timing of spring shoreward migration of alewives and lake trout emergence, suggesting that relief from alewife predation effects had relatively little effect on the observed increase in lake trout recruitment. Numbers of spawners in the north, north-central, and southern zones of the lake increased from 2000 onwards. Overall the abundance post-2003 was higher than from pre-2004, suggesting that spawner abundance may also have contributed to increased lake trout reproduction. However, predicted numbers of spawners and measured abundance of wild recruits in assessment gear were poorly correlated suggesting that the increase in reproduction was not totally

  20. Acid rain stimulation of Lake Michigan phytoplankton growth

    USGS Publications Warehouse

    Manny, Bruce A.; Fahnenstiel, G.L.; Gardner, W.S.

    1987-01-01

    Three laboratory experiments demonstrated that additions of rainwater to epilimnetic lake water collected in southeastern Lake Michigan stimulated chlorophyll a production more than did additions of reagent-grade water during incubations of 12 to 20 d. Chlorophyll a production did not begin until 3–5 d after the rain and lake water were mixed. The stimulation caused by additions of rain acidified to pH 3.0 was greater than that caused by additions of untreated rain (pH 4.0–4.5). Our results support the following hypotheses: (1) Acid rain stimulates the growth of phytoplankton in lake water; (2) phosphorus in rain appears to be the factor causing this stimulation. We conclude that acid rain may accelerate the growth of epilimnetic phytoplankton in Lake Michigan (and other similar lakes) during stratification when other sources of bioavailable phosphorus to the epilimnion are limited

  1. Water quality of streams tributary to Lakes Superior and Michigan

    USGS Publications Warehouse

    Zimmerman, Jerome W.

    1968-01-01

    Water quality of streams tributary to Lakes Superior and Michigan was analyzed for 142 stations on 99 streams tributary to Lake Superior and 83 stations on 56 streams tributary to Lake Michigan during 1962-65. Concentrations of aluminum, copper, and iron were not affected greatly by flow or season. Magnesium, calcium, chlorides, total alkalinity, total hardness, and conductivity varied with the flow, temperature, and season; the lowest values were during the spring runoff and heavy rains, and the highest were during low water in late summer and the colder periods of winter. Concentrations of nitrate, silica, and sulfates were lowest in the spring and summer. Concentrations of tanninlike and ligninlike compounds were highest during the spring runoff and other high-water periods, and were lowest during freezeup when surface runoff was minimal. The pH values were highest from June to September and lowest during the spring runoff. Phenolphthalein alkalinity was detected primarily in the summer and coincided occasionally with low flows just before the spring thaw. Total hardness usually was lower in streams tributary to Lake Superior than in streams tributary to Lake Michigan. The total hardness was higher in the streams in Wisconsin than in the streams in Michigan along the west shore of Lake Michigan. It was lowest in the northernmost streams. The water quality of the streams in an area was related to the geological characteristics of the land.

  2. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    USGS Publications Warehouse

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  3. Spawning site fidelity of wild and hatchery lake trout (Salvelinus namaycush) in northern Lake Huron

    USGS Publications Warehouse

    Binder, Thomas; Riley, Stephen C.; Holbrook, Christopher; Hansen, Michael J.; Bergstedt, Roger A.; Bronte, Charles R.; He, Ji; Krueger, Charles C.

    2016-01-01

    Fidelity to high-quality spawning sites helps ensure that adults repeatedly spawn at sites that maximize reproductive success. Fidelity is also an important behavioural characteristic to consider when hatchery-reared individuals are stocked for species restoration, because artificial rearing environments may interfere with cues that guide appropriate spawning site selection. Acoustic telemetry was used in conjunction with Cormack–Jolly–Seber capture–recapture models to compare degree of spawning site fidelity of wild and hatchery-reared lake trout (Salvelinus namaycush) in northern Lake Huron. Annual survival was estimated to be between 77% and 81% and did not differ among wild and hatchery males and females. Site fidelity estimates were high in both wild and hatchery-reared lake trout (ranging from 0.78 to 0.94, depending on group and time filter), but were slightly lower in hatchery-reared fish than in wild fish. The ecological implication of the small difference in site fidelity between wild and hatchery-reared lake trout is unclear, but similarities in estimates suggest that many hatchery-reared fish use similar spawning sites to wild fish and that most return to those sites annually for spawning.

  4. Evaluation of potential impacts on Great Lakes water resources based on climate scenarios of two GCMs

    USGS Publications Warehouse

    Lofgren, B.M.; Quinn, F.H.; Clites, A.H.; Assel, R.A.; Eberhardt, A.J.; Luukkonen, C.L.

    2002-01-01

    The results of general circulation model predictions of the effects of climate change from the Canadian Centre for Climate Modeling and Analysis (model CGCM1) and the United Kingdom Meteorological Office's Hadley Centre (model HadCM2) have been used to derive potential impacts on the water resources of the Great Lakes basin. These impacts can influence the levels of the Great Lakes and the volumes of channel flow among them, thus affecting their value for interests such as riparians, shippers, recreational boaters, and natural ecosystems. On one hand, a hydrological modeling suite using input data from the CGCM1 predicts large drops in lake levels, up to a maximum of 1.38 m on Lakes Michigan and Huron by 2090. This is due to a combination of a decrease in precipitation and an increase in air temperature that leads to an increase in evaporation. On the other hand, using input from HadCM2, rises in lake levels are predicted, up to a maximum of 0.35 m on Lakes Michigan and Huron by 2090, due to increased precipitation and a reduced increase in air temperature. An interest satisfaction model shows sharp decreases in the satisfaction of the interests of commercial navigation, recreational boating, riparians, and hydropower due to lake level decreases. Most interest satisfaction scores are also reduced by lake level increases. Drastic reductions in ice cover also result from the temperature increases such that under the CGCM1 predictions, most of Lake Erie has 96% of its winters ice-free by 2090. Assessment is also made of impacts on the groundwater-dependent region of Lansing, Michigan.

  5. Biology, population structure, and estimated forage requirements of lake trout in Lake Michigan

    USGS Publications Warehouse

    Eck, Gary W.; Wells, LaRue

    1983-01-01

    Data collected during successive years (1971-79) of sampling lake trout (Salvelinus namaycush) in Lake Michigan were used to develop statistics on lake trout growth, maturity, and mortality, and to quantify seasonal lake trout food and food availability. These statistics were then combined with data on lake trout year-class strengths and age-specific food conversion efficiencies to compute production and forage fish consumption by lake trout in Lake Michigan during the 1979 growing season (i.e., 15 May-1 December). An estimated standing stock of 1,486 metric tons (t) at the beginning of the growing season produced an estimated 1,129 t of fish flesh during the period. The lake trout consumed an estimated 3,037 t of forage fish, to which alewives (Alosa pseudoharengus) contributed about 71%, rainbow smelt (Osmerus mordax) 18%, and slimy sculpins (Cottus cognatus) 11%. Seasonal changes in bathymetric distributions of lake trout with respect to those of forage fish of a suitable size for prey were major determinants of the size and species compositions of fish in the seasonal diet of lake trout.

  6. Detroit, MI, Toledo, OH and Lake Erie

    NASA Image and Video Library

    1973-06-22

    SL2-05-390 (22 June 1973) --- Greater Detroit (42.0N, 82.5W) is located at the southeastern border of Michigan on the Detroit River across from Windsor, Ontario, Canada and Lake Huron to the north. The river connecting Lake Erie is a channel left over from the Ice Age Glaciers. The land use pattern in this scene is typical of this part of the upper Midwest. The once extensive forests have been cleared for farmland and pasture, but narrow rows of trees still line farm boundaries. Photo credit: NASA

  7. Surficial geologic map of Berrien County, Michigan, and the adjacent offshore area of Lake Michigan

    USGS Publications Warehouse

    Stone, Byron D.; Kincare, Kevin A.; O'Leary, Dennis W.; Newell, Wayne L.; Taylor, Emily M.; Williams, Van S.; Lundstrom, Scott C.; Abraham, Jared E.; Powers, Michael H.

    2017-12-13

    The surficial geologic map of Berrien County, southwestern Michigan (sheet 1), shows the distribution of glacial and postglacial deposits at the land surface and in the adjacent offshore area of Lake Michigan. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics, stratigraphic relationships, and age. Drill-hole information correlated in cross sections provides details of typical stratigraphic sequences that compose one or more penetrated geologic map units. A new bedrock geologic map (on sheet 2) includes contours of the altitude of the eroded top of bedrock and shows the distribution of middle Paleozoic shale and carbonate units in the subcrop. A sediment thickness map (also on sheet 2) portrays the extent of as much as 150 meters of surficial materials that overlie the bedrock surface.The major physical features of the county are related principally to deposits of the last Laurentide ice sheet that advanced and then retreated back through the region from about 19,000 to 14,000 radiocarbon years before present. Glacial and postglacial deposits underlie the entire county; shale bedrock crops out only in the adjacent offshore area on the bottom of Lake Michigan. All glacial deposits and glacial meltwater deposits in Berrien County are related to the late Wisconsinan glacial advances of the Lake Michigan ice lobe and its three regional recessional moraines, which cross the county as three north-northeast-trending belts.From east to west (oldest to youngest), the three moraine belts are known as the Kalamazoo, Valparaiso, and Lake Border morainic systems. The till-ridge morainic systems (Lake Border and local Valparaiso morainic systems) consist of multiple, elongate moraine ridges separated by till plains and lake-bottom plains. Tills in ground and end moraines in Berrien County are distinguished as informal units, and are correlated with three proposed regional till units in southwestern Michigan

  8. Contaminants in fishes from great lakes-influenced sections and above dams of three Michigan Rivers: III. Implications for health of bald eagles

    USGS Publications Warehouse

    Giesy, J.P.; Bowerman, W.W.; Mora, M.A.; Verbrugge, D.A.; Othoudt, R. A.; Newsted, J.L.; Summer, C. L.; Aulerich, R.J.; Bursian, S.J.; Ludwig, J. P.; Dawson, G. A.; Kubiak, T.J.; Best, D. A.; Tillitt, D. E.

    1995-01-01

    Recently, there have been discussions of the relative merits of passage of fishes around hydroelectric dams on three rivers (Au Sable, Manistee, and Muskegon) in Michigan. A hazard assessment was conducted to determine the potential for adverse effects on bald eagles that could consume such fishes from above and below dams on the three primary rivers. The hazard assessments were verified by comparing the reproductive productivities of eagles nesting in areas where they ate primarily fish from either above or below dams on the three primary rivers, as well as on two additional rivers in Michigan, the Menominee and Thunder Bay. Concentrations of organochlorine insecticides (OCI), polychlorinated biphenyls (total PCBs), 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ), and total mercury (Hg) were measured in composite samples of fishes from above and below hydroelectric dams on the Manistee and Muskegon Rivers, which flow into Lake Michigan, and the Au Sable River, which flows into Lake Huron. Mean concentrations of OCI, total PCBs, and TCDD-EQ were all greater in fishes from below the dams than in those from above. The hazard assessment indicated that current concentrations of Hg and OCI other than DDT (DDT + DDE + DDD) in fish from neither above nor below dams would present a significant hazard to bald eagles (Haliaeetus leucocephalus). Both total PCBs and TCDD-EQ in fishes from below the dams currently present a significant hazard to bald eagles, since their mean hazard quotients (HQ) were all greater than one.

  9. Water-quality characteristics of Michigan's inland lakes, 2001-10

    USGS Publications Warehouse

    Fuller, L.M.; Taricska, C.K.

    2012-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality (MDEQ) jointly monitored for selected water-quality constituents and properties of inland lakes during 2001–10 as part of Michigan's Lake Water-Quality Assessment program. During 2001–10, 866 lake basins from 729 inland lakes greater than 25 acres were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of the monitored lakes throughout the State; the data include vertical-profile measurements, nutrient measurements at three discrete depths, Secchi-disk transparency (SDT) measurements, and chlorophyll a measurements for the spring and summer, with major ions and other chemical indicators measured during the spring at mid-depth and color during the summer from near-surface samples. In about 75 percent of inland lake deep basins (index stations), trophic characteristics were associated with oligotrophic or mesotrophic conditions; 5 percent or less were categorized as hypereutrophic, and 80 percent of hypereutrophic lakes had a maximum depth of 30 feet or less. Comparison of spring and summer measurements shows that water clarity based on SDT measurements were clearer in the spring than in the summer for 63 percent of lakes. For near-surface measurements made in spring, 97 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited; for summer measurements, 96 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited. Spatial patterns of major ions, alkalinity, and hardness measured in the spring at mid-depth all showed lower values in the Upper Peninsula of Michigan and a southward increase toward the southern areas of the Lower Peninsula, though the location of increase varied by constituent. A spatial analysis of the data based on U.S. Environmental Protection Agency Level III Ecoregions separated potassium

  10. Recent geologic development of Lake Michigan (U.S.A.)

    USGS Publications Warehouse

    Gross, D.L.; Cahill, R.A.

    1983-01-01

    The stresses placed on Lake Michigan since the advent of industrialization require knowledge of the sedimentology of the whole lake in order to make informed decisions for environmental planning. Sediment accumulation rates are low: areas of the lake receiving the most sediment average only 1 mm a-1; deep-water basins average 0.1 to 0.5 mm a-1; and large areas are not receiving any sediment. Sediment was deposited rapidly (typically 5 mm a-1), in the form of rock flour, during the deglaciation of both Lake Michigan and Lake Superior Basins. Then the rate of accumulation decreased by 80-90% and has remained relatively constant since final deglaciation. Because active sedimentation occurs mostly in the deep water areas of the lake, the sediment remains undisturbed and contains a record of the chemical history of the lake. ?? 1983 Dr W. Junk Publishers.

  11. Sediment Transforms Lake Michigan

    NASA Image and Video Library

    2011-01-11

    NASA image acquired December 17, 2010 In mid-December 2010, suspended sediments transformed the southern end of Lake Michigan. Ranging in color from brown to green, the sediment filled the surface waters along the southern coastline and formed a long, curving tendril extending toward the middle of the lake. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured these natural-color images on December 17, 2010 (top), and December 10, 2010 (bottom). Such sediment clouds are not uncommon in Lake Michigan, where winds influence lake circulation patterns. A scientificpaper published in 2007 described a model of the circulation, noting that while the suspended particles mostly arise from lake-bottom sediments along the western shoreline, they tend to accumulate on the eastern side. When northerly winds blow, two circulation gyres, rotating in opposite directions, transport sediment along the southern shoreline. As the northerly winds die down, the counterclockwise gyre predominates, and the smaller, clockwise gyre dissipates. Clear water—an apparent remnant of the small clockwise gyre—continues to interrupt the sediment plume. George Leshkevich, a researcher with the U.S. National Oceanic and Atmospheric Administration, explains that the wind-driven gyres erode lacustrine clay (very fine lakebed sediment) on the western shore before transporting it, along with re-suspended lake sediments, to the eastern shore. On the eastern side, the gyre encounters a shoreline bulge that pushes it toward the lake’s central southern basin, where it deposits the sediments. The sediment plume on December 17 followed a windy weather front in the region on December 16. NASA image courtesy MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Aqua - MODIS NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard

  12. Trends of brominated diphenyl ethers in fresh and archived Great Lakes fish (1979-2005)

    USGS Publications Warehouse

    Batterman, Stuart; Chernyak, Sergei; Gwynn, Erica; Cantonwine, David; Jia, Chunrong; Begnoche, Linda J.; Hickey, James P.

    2007-01-01

    While few environmental measurements of brominated diphenyl ethers (BDEs) were completed prior to the mid-1990s, analysis of appropriately archived samples might enable the determination of contaminant trends back to the introduction of these chemicals. In this paper, we first investigate the stability of BDEs in archived frozen and extracted fish samples, and then characterize trends of these chemicals in rainbow smelt (Osmerus mordax) and lake trout (Salvelinus namaycush) in each of the Great Lakes between 1979 and 2005. We focus on the four most common congeners (BDE-47, 100, 99 and 153) and use a change-point analysis to detect shifts in trends. Analyses of archived fish samples yielded precise BDE concentration measurements with only small losses (0.8% per year in frozen fish tissues, 2.2% per year in refrigerated extracts). Trends in fish from all Great Lakes showed large increases in BDE concentrations that started in the early to mid-1980s with fairly consistent doubling times (generally 2–4 years except in Lake Erie smelt where levels increased very slowly), though concentrations and trends show differences by congener, fish species and lake. The most recent data show that accumulation rates are slowing, and concentrations of penta- and hexa-congeners in trout from Lakes Ontario and Michigan and smelt from Lake Ontario started to decrease in the mid-1990s. Trends in smelt and trout are evolving somewhat differently, and trout concentrations in the five lakes are now ranked as Michigan > Superior = Ontario > Huron = Erie, and smelt concentrations as Michigan > Ontario > Huron > Superior > Erie. The analysis of properly archived samples permits the reconstruction of historical trends, congener distributions, biomagnification and other information that can aid the understanding and management of these contaminants.

  13. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Lake Michigan Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee...

  14. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Lake Michigan Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee...

  15. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Lake Michigan Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee...

  16. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Lake Michigan Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee...

  17. 76 FR 48751 - Security Zones; Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ...-AA87 Security Zones; Captain of the Port Lake Michigan Zone AGENCY: Coast Guard, DHS. ACTION: Notice of... in the Chicago area, the Captain of the Port Sector Lake Michigan has determined that to better... critical infrastructure in the Chicago area. Based on this review, the Captain of the Port Sector Lake...

  18. Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone

    USGS Publications Warehouse

    Carlson Mazur, Martha L.; Kowalski, Kurt P.; Galbraith, David

    2014-01-01

    In the Laurentian Great Lakes, the invasive form of Phragmites australis (common reed) poses a threat to highly productive coastal wetlands and shorelines by forming impenetrable stands that outcompete native plants. Large, dominant stands can derail efforts to restore wetland ecosystems degraded by other stressors. To be proactive, landscape-level management of Phragmites requires information on the current spatial distribution of the species and a characterization of areas suitable for future colonization. Using a recent basin-scale map of this invasive plant’s distribution in the U.S. coastal zone of the Great Lakes, environmental data (e.g., soils, nutrients, disturbance, climate, topography), and climate predictions, we performed analyses of current and predicted suitable coastal habitat using boosted regression trees, a type of species distribution modeling. We also investigated differential influences of environmental variables in the upper lakes (Lakes Superior, Michigan, and Huron) and lower lakes (Lakes St. Clair, Erie, and Ontario). Basin-wide results showed that the coastal areas most vulnerable to Phragmites expansion were in close proximity to developed lands and had minimal topographic relief, poorly drained soils, and dense road networks. Elevated nutrients and proximity to agriculture also influenced the distribution of Phragmites. Climate predictions indicated an increase in suitable habitat in coastal Lakes Huron and Michigan in particular. The results of this study, combined with a publicly available online decision support tool, will enable resource managers and restoration practitioners to target and prioritize Phragmites control efforts in the Great Lakes coastal zone.

  19. The occurrence of the longjaw cisco, Leucichthys alpenae, in Lake Erie

    USGS Publications Warehouse

    Scott, W.B.; Smith, Stanford H.

    1962-01-01

    The longjaw cisco, Leucichthys alpenae, is shown to be a species new to the Lake Erie fauna. The taxonomic work on Lake Erie ciscoes is reviewed. Thirty three specimens of L. alpenae taken in 1946, 1947 and 1957 are compared morphometrically with Leucichthys artedi of Lake Erie, the only other cisco species in the lake. L. alpenae has a longer and deeper head, longer maxillary and fewer gill rakers. L. alpenae is more distinct from L. artedi in Lake Huron than in Lake Erie. The rate of growth of L. alpenae in Lake Erie compares favourably with that in Lake Michigan.

  20. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill...

  1. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill...

  2. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill...

  3. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill...

  4. 33 CFR 334.830 - Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill...

  5. Lake fisheries need lamprey control and research

    USGS Publications Warehouse

    Moffett, James W.

    1953-01-01

    Since 1921, when the first sea lamprey was recorded from Lake Erie, concern about this parasite in the Great Lakes above Niagara Falls, where previously it had never occurred, grew successively. At first, the concern was shared only in scientific circles, but as the parasite continued its persistent and rapid spread throughout the upper Great Lakes this concern was voiced by state conservation departments, the U.S. Fish and Wildlife Service, and interested fishermen. Catches of lake trout especially, and other species secondarily, began to fall below anything representing normal fluctuations in abundance. The fishing industry on Lake Huron and Lake Michigan became extremely concerned due to the fact that income was diminishing greatly. Producers on Lake Superior were fearful that the same decline in production would soon characterize their fishery.

  6. A SCREENING-LEVEL MODEL EVALUATION OF ATRAZINE IN THE LAKE MICHIGAN BASIN

    EPA Science Inventory

    Atrazine, a widely used herbicide in the agricultural regions of the Lake Michigan basin, was selected as a priority toxic chemical study in the United States Environmental Protection Agency (U.S. EPA) - sponsored Lake Michigan Mass Balance Project.

  7. Chinook salmon foraging patterns in a changing Lake Michigan

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.

    2013-01-01

    Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.

  8. MICHTOX: A MASS BALANCE AND BIOACCUMULATION MODEL FOR TOXIC CHEMICALS IN LAKE MICHIGAN

    EPA Science Inventory

    MICHTOX is a toxic chemical mass balance and bioaccumulation model for Lake Michigan. It was developed for USEPA's Region V in support of the Lake Michigan Lake-wide Management Plan (LaMP) to provide guidance on expected water quality improvements in response to critical pollutan...

  9. Mixed stock analysis of Lake Michigan's Lake Whitefish Coregonus clupeaformis commercial fishery

    USGS Publications Warehouse

    Andvik, Ryan; Sloss, Brian L.; VanDeHey, Justin A.; Claramunt, Randall M.; Hansen, Scott P.; Isermann, Daniel A.

    2016-01-01

    Lake whitefish (Coregonus clupeaformis) support the primary commercial fishery in Lake Michigan. Discrete genetic stocks of lake whitefish have been identified and tagging data suggest stocks are mixed throughout much of the year. Our objectives were to determine if (1) differential stock harvest occurs in the commercial catch, (2) spatial differences in genetic composition of harvested fish were present, and (3) seasonal differences were present in the harvest by commercial fisheries that operate in management zones WI-2 and WFM-01 (Green Bay, Lake Michigan). Mixed stock analysis was conducted on 17 commercial harvest samples (n = 78–145/sample) collected from various ports lake-wide during 2009–2010. Results showed significant mixing with variability in stock composition across most samples. Samples consisted of two to four genetic stocks each accounting for ≥ 10% the catch. In 10 of 17 samples, the stock contributing the largest proportion made up < 60% of the harvest. In general, seasonal and annual differences existed in the proportional stock contribution at a single capture location. Samples from Wisconsin's primary commercial fishing management zone (WI-2) were composed predominately of fish from the Big Bay de Noc (Michigan) stock as opposed to the geographically proximate, North–Moonlight Bay (Wisconsin) stock. These findings have implications for management and allocation of fish to various quotas. Specifically, geographic location of harvest, the current means of allocating harvest quotas, is not the best predictor of genetic stock harvest.

  10. 78 FR 36426 - Safety Zone; Queen's Cup; Lake Michigan; Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ...-AA00 Safety Zone; Queen's Cup; Lake Michigan; Milwaukee, WI AGENCY: Coast Guard, DHS. ACTION: Temporary... Lake Michigan due to the 2013 Queen's Cup Race. This temporary safety zone is necessary to protect the... Queen's Cup Regatta. The Queen's Cup Regatta is a race from Milwaukee, WI to Ludington, MI that is...

  11. Lake trout population dynamics at Drummond Island Refuge in Lake Huron: Implications for future rehabilitation

    USGS Publications Warehouse

    Madenjian, C.P.; Ebener, M.P.; Desorcie, T.J.

    2008-01-01

    The Drummond Island Refuge (DIR) was established in 1985 as part of the rehabilitation effort for lake trout Salvelinus namaycush in Lake Huron. Since then, several strains of hatchery-reared lake trout have been stocked annually at the DIR. An intensive lampricide treatment of the St. Marys River during 1998-2001 was expected to lower the abundance of sea lamprey Petromyzon marinus within the DIR by 2000. We conducted annual gill-net surveys during spring and fall to evaluate the performance of each of the strains of lake trout as well as that of the entire lake trout population (all strains pooled) in the DIR during 1991-2005. The criteria to evaluate performance included the proportion of "wild" fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lampreys. Wild lake trout did not recruit to the adult population to any detectable degree. During 1991-2005, the average density of spawning lake trout appeared to be marginally sufficient to initiate a self-sustaining population. Survival of the Seneca Lake (SEN) strain of lake trout was significantly higher than that of the Superior-Marquette (SUP) strain, in part because of the higher sea-lamprey-induced mortality suffered by the SUP strain. However, other factors were also involved. Apparently SUP fish were more vulnerable to fishing conducted in waters near the refuge boundaries than SEN fish. The St. Marys River treatment appeared to be effective in reducing the sea lamprey wounding rate on SEN fish. We recommend that the stocking of SEN lake trout in the DIR, control of sea lampreys in the St. Marys River, and reduction of commercial fishery effort in waters near the DIR be maintained. ?? Copyright by the American Fisheries Society 2008.

  12. LAKE MICHIGAN MASS BALANCE PROJECT: ATRAZINE MODELLING RESULTS

    EPA Science Inventory

    The triazine herbicide, atrazine, is used worldwide to control broadleaf and grassy weeds in agricultural regions. Atrazine is extensively used for corn crops in the midwestern US, the Great Lakes region, and in the Lake Michigan basin and has been cited as an emerging pollutant ...

  13. Updated polychlorinated biphenyl mass budget for Lake Michigan

    EPA Science Inventory

    This study revisits and updates the Lake Michigan Mass Balance Project (LMMBP) for polychlorinated biphenyls (PCBs) that was conducted in 1994-1995. This work uses recent concentrations of PCBs in tributary and open lake water, air, and sediment to calculate an updated mass budg...

  14. 76 FR 32323 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ...-AA17 Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan AGENCY: Coast Guard... for certain river barges operating on Lake Michigan, as established in the final rule published on... in the Federal Register (75 FR 70595) (2010 final rule) that finalized the special Lake Michigan load...

  15. 78 FR 45059 - Safety Zone; Sherman Private Party Fireworks, Lake Michigan, Winnetka, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ...-AA00 Safety Zone; Sherman Private Party Fireworks, Lake Michigan, Winnetka, IL AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Michigan near Winnetka, IL. This safety zone is intended to restrict vessels from a portion of Lake...

  16. 137Cs as a tracer of recent sedimentary processes in Lake Michigan

    USGS Publications Warehouse

    Cahill, R.A.; Steele, J.D.

    1986-01-01

    To determine recent sediment movement, we measured the levels of 137Cs (an artificial radionuclide produced during nuclear weapons testing) of 118 southern Lake Michigan samples and 27 in Green Bay. These samples, taken from 286 grab samples of the upper 3 cm of sediment, were collected in 1975 as part of a systematic study of Lake Michigan sediment. 137Cs levels correlated well with concentrations of organic carbon, lead, and other anthropogenic trace metals in the sediment. 137Cs had a higher correlation with silt-sized than with clay-sized sediment (0.55 and 0.46, respectively). Atmospherically derived 137Cs and trace metals are being redistributed by sedimentary processes in Lake Michigan after being incorporated in suspended sediment. We determined a distribution pattern of 137Cs that represents areas of southern Lake Michigan where sediment deposition is occurring. ?? 1986 Dr W. Junk Publishers.

  17. Great Lakes water quality scenario models: Operational feasibility -Lake Michigan Mass Balance models

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance models were provided (eutrophication/nutrients, atrazine, mercury, and PCBs) with emphasis on the PCB model post-audit and forecast for Lake Trout. Provided were modeling construct, model description, and primary results. An assessm...

  18. Diet of lake trout and burbot in northern Lake Michigan during spring: Evidence of ecological interaction

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Holuszko, Jeffrey D.

    2010-01-01

    We used analyses of burbot (Lota lota) and lake trout (Salvelinus namaycush) diets taken during spring gill-net surveys in northern Lake Michigan in 2006-2008 to investigate the potential for competition and predator-prey interactions between these two species. We also compared our results to historical data from 1932. During 2006-2008, lake trout diet consisted mainly of alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax), whereas burbot utilized a much wider prey base including round goby (Neogobius melanostomus), rainbow smelt, alewives, and sculpins. Using the Schoener's diet overlap index, we found a higher potential for interspecific competition in 1932 than in 2006-2008, though diet overlap was not significant in either time period. No evidence of cannibalism by lake trout or lake trout predation on burbot was found in either time period. In 2006-2008, however, lake trout composed 5.4% (by weight) of burbot diet. To determine whether this predation could be having an impact on lake trout rehabilitation efforts in northern Lake Michigan, we developed a bioenergetic-based consumption estimate for burbot on Boulder Reef (a representative reef within the Northern Refuge) and found that burbot alone can consume a considerable proportion of the yearling lake trout stocked annually, depending on burbot density. Overall, we conclude that predation, rather than competition, is the more important ecological interaction between burbot and lake trout, and burbot predation may be contributing to the failed lake trout rehabilitation efforts in Lake Michigan.

  19. Growth of submersed macrophyte communities in the St. Clair - Detroit River system between Lake Huron and Lake Erie

    USGS Publications Warehouse

    Schloesser, Donald W.; Edsall, Thomas A.; Manny, Bruce A.

    1985-01-01

    Growth of submersed aquatic macrophytes was determined from observation and on the basis of biomass of samples collected from April to November 1978 at seven study sites in a major river system of the Great Lakes, the St. Clair – Detroit river system between Lake Huron and Lake Erie. Growth usually began between April and June, peaked between July and October, and decreased by late November. Maximum biomass at six of the seven sites (118–427 g dry weight m−2) was similar or greater than that reported in other rivers at similar latitudes. Seasonal growth of the abundant taxa followed one of three seasonal patterns at each study site: one dominant taxon grew alone; codominant taxa grew sympatrically without species succession; and codominant taxa grew sympatrically with species succession. Differences in growth and seasonal succession of some taxa were apparently caused by the presence or absence of overwintering plant material, competition, and life-cycle differences.

  20. Recruitment variability of alewives in Lake Michigan

    USGS Publications Warehouse

    Madenjian, C.P.; Hook, T.O.; Rutherford, E.S.; Mason, D.M.; Croley, T.E.; Szalai, E.B.; Bence, J.R.

    2005-01-01

    We used a long-term series of observations on alewife Alosa pseudoharengus abundance that was based on fall bottom-trawl catches to assess the importance of various abiotic and biotic factors on alewife recruitment in Lake Michigan during 1962–2002. We first fit a basic Ricker spawner–recruit model to the lakewide biomass estimates of age-3 recruits and the corresponding spawning stock size; we then fit models for all possible combinations of the following four external variables added to the basic model: an index of salmonine predation on an alewife year-class, an index for the spring–summer water temperatures experienced by alewives during their first year in the lake, an index of the severity of the first winter experienced by alewives in the lake, and an index of lake productivity during an alewife year-class's second year in the lake. Based on an information criterion, the best model for alewife recruitment included indices of salmonine predation and spring–summer water temperatures as external variables. Our analysis corroborated the contention that a decline in alewife abundance during the 1970s and early 1980s in Lake Michigan was driven by salmonine predation. Furthermore, our findings indicated that the extraordinarily warm water temperatures during the spring and summer of 1998 probably led to a moderately high recruitment of age-3 alewives in 2001, despite abundant salmonines.

  1. A short-term look at potential changes in Lake Michigan slimy sculpin diets

    USGS Publications Warehouse

    French, John R. P.; Stickel, Richard G.; Stockdale, Beth A.; Black, M. Glen

    2010-01-01

    Diporeia hoyi and Mysis relicta are the most important prey items of slimy sculpins (Cottus cognatus) in the Great Lakes. Slimy sculpins were collected from dreissenid-infested bottoms off seven Lake Michigan ports at depths of 27–73 m in fall 2003 to study their lake-wide diets. Relatively large dreissenid biomass occurred at depths of 37- and 46-m. Quagga mussels (Dreissena bugnesis) composed at least 50% of dreissenid biomass at Manistique, Saugatuck, and Sturgeon Bay. Mysis accounted for 82% of the sculpin diet by dry weight at eastern Lake Michigan while Diporeia composed 54–69% of the diet at western Lake Michigan and dominated the diets of slimy sculpins at all sites deeper than 46 m. In northern Lake Michigan, this diet study in new sites showed that slimy sculpin consumed more prey with low energy contents, especially chironomids, than Mysis and Diporeia in shallow sites (depth <55 m). We recommend diet studies on sedentary benthic fishes to be conducted along perimeters of the Great Lakes to observe changes in their diets that may be impacted by changing benthic macroinvertebrate communities.

  2. Biogeochemistry of a submerged groundwater seep ecosystem in Lake Huron near karst region of Alpena, MI

    NASA Astrophysics Data System (ADS)

    Kinsman-Costello, L. E.; Dick, G.; Sheik, C.; Burton, G. A.; Sheldon, N. D.

    2015-12-01

    Submerged groundwater seeps in Lake Huron establish ecosystems with distinctive geochemical conditions. In the Middle Island Sinkhole (MIS), a 23-m deep seep, groundwater seepage establishes low O2 (< 4 mg L-1), high sulfate (6 mM) conditions, in which a purple cyanobacteria-dominated mat thrives. The mat is capable of anoxygenic photosynthesis, oxygenic photosynthesis, and chemosynthesis. Within the top 3 cm of the mat-water interface, hydrogen sulfide concentrations increase to 1-7 mM. Little is known about the structure and function of microbes within organic-rich, high-sulfide sediments beneath the mat. Using pore water and sediment geochemical characterization along with microbial community analysis, we elucidated relationships between microbial community structure and ecosystem function along vertical gradients. In sediment pore waters, biologically reactive solutes (SO42-, NH4+, PO43-, and CH4) displayed steep vertical gradients, reflecting biological and geochemical functioning. In contrast, more conservative ions (Ca+2, Mg+2, Na+, and Cl-), did not change significantly with depth in MIS sediments, indicating groundwater influence in the sediment profile. MIS sediments contained more organic matter than typical Lake Huron sediments, and were generally higher in nutrients, metals, and sulfur (acid volatile sulfide). Using the Illumina MiSeq platform we detected 14,127 unique operational taxonomic units across sediment and surface mat samples. Microbial community composition in the MIS was distinctly different from non-groundwater affected areas at similar depth nearby in Lake Huron (ANOSIM, R= 0.74, p=0.002). MIS sediment communities were more diverse that MIS surface mat communities and changed with depth into sediments. MIS sediment community composition was related to several geochemical variables, including organic matter and multiple indicators of phosphorus availability. Elucidating the structure and function of microbial consortia in MIS, a highly

  3. Status of lake trout rehabilitation in the Northern Refuge of Lake Michigan

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.

    1999-01-01

    The Northern Refuge in Lake Michigan was established in 1985 as part of a rehabilitation program to stock yearling lake trout Salvelinus namaycush in areas with the best potential for success. Stocking of hatchery-reared lake trout within the refuge began in 1986 at three reefs: Boulder Reef, Gull Island Reef, and Richards Reef. On each reef from 1991 to 1997 we conducted gill-net surveys during the fall spawning season to evaluate performance of adult lake trout, and we conducted beam trawl surveys for naturally reproduced age-0 lake trout in the spring. Criteria to evaluate performance included spawner density, growth, maturity, and mortality. We found no evidence of natural reproduction by lake trout from our surveys. Nevertheless, density of spawning lake trout on Boulder Reef (69 fish/305 m of gill net/night) and Gull Island Reef (34 fish/305 m of gill net/night) appeared to be sufficiently high to initiate a self-sustaining population. Growth and maturity rates of lake trout in the Northern Refuge were similar to those for lake trout stocked in the nearshore region of Lake Michigan. In the Northern Refuge, growth rate for the Marquette strain of lake trout was slightly higher than for the Lewis Lake strain. Annual mortality estimates from catch curve analyses ranged from 0.46 to 0.41, and therefore, these estimates approached a level that was considered to be sufficiently low to allow for a self-sustaining population. Thus, it appeared that the lack of evidence for natural reproduction by lake trout in the Northern Refuge should not be attributed to inability of the population to attain a sufficiently large stock of spawners.

  4. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800

  5. Production of sea lamprey larvae from nests in two Lake Superior streams

    USGS Publications Warehouse

    Manion, Patrick J.

    1968-01-01

    The life history of the landlocked sea lamprey, Petromyzon marinus, has been described by several authors, the two most recent of which are Applegate and Wigley. The only information on the production of larvae from nests of the sea lamprey was reported by Applegate, who counted the larvae from three nests in the Ocqueoc River, a tributary of Lake Huron. The present report presents data on the hatching success of sea lamprey larvae from 19 nests in two small tributaries of southern Lake Superior and indicates greater production per nest than that recorded by Applegate. Studies were conducted by personnel of the U.S. Bureau of Commercial Fisheries on the Little Garlic River, Marquette County, Michigan, and on the Traverse River, Keweenaw County, Michigan.

  6. 33 CFR 162.120 - Harbors on Lake Michigan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... City, Indiana; St. Joseph, South Haven, Saugatuck, Holland (Lake Macatawa), Grand Haven, Muskegon... of Menominee, Michigan and Wisconsin; Algoma, Kewaunee, Two Rivers, Manitowac, Sheboygan, Port...

  7. Shell-free biomass and population dynamics of dreissenids in offshore Lake Michigan, 2001-2003

    USGS Publications Warehouse

    French, J. R. P.; Adams, J.V.; Craig, J.; Stickel, R.G.; Nichols, S.J.; Fleischer, G.W.

    2007-01-01

    The USGS-Great Lakes Science Center has collected dreissenid mussels annually from Lake Michigan since zebra mussels (Dreissena polymorpha) became a significant portion of the bottom-trawl catch in 1999. For this study, we investigated dreissenid distribution, body mass, and recruitment at different depths in Lake Michigan during 2001-2003. The highest densities of dreissenid biomass were observed from depths of 27 to 46 m. The biomass of quagga mussels (Dreissena bugensis) increased exponentially during 2001-2003, while that of zebra mussels did not change significantly. Body mass (standardized for a given shell length) of both species was lowest from depths of 27 to 37m, highest from 55 to 64 m, and declined linearly at deeper depths during 2001-2003. Recruitment in 2003, as characterized by the proportion of mussels < 11 mm in the catch, varied with depth and lake region. For quagga mussels, recruitment declined linearly with depth, and was highest in northern Lake Michigan. For zebra mussels, recruitment generally declined non-linearly with depth, although the pattern was different for north, mid, and southern Lake Michigan. Our analyses suggest that quagga mussels could overtake zebra mussels and become the most abundant mollusk in terms of biomass in Lake Michigan.

  8. Genetic structure of lake whitefish (Coregonus clupeaformis) in Lake Michigan

    USGS Publications Warehouse

    VanDeHey, J.A.; Sloss, Brian L.; Peeters, Paul J.; Sutton, T.M.

    2009-01-01

    Genetic relationships among lake whitefish (Coregonus clupeaformis) spawning aggregates in Lake Michigan were assessed and used to predict a stock or management unit (MU) model for the resource. We hypothesized that distinct spawning aggregates represented potential MUs and that differences at molecular markers underlie population differentiation. Genetic stock identification using 11 microsatellite loci indicated the presence of six genetic MUs. Resolved MUs corresponded to geographically proximate spawning aggregates clustering into genetic groups. Within MUs, analyses suggested that all but one delineated MU was a stable grouping (i.e., no between-population differences), with the exception being the Hog Island - Traverse Bay grouping. Elk Rapids was the most genetically divergent population within Lake Michigan. However, low F st values suggested that moderate to high levels of gene flow occur or have occurred in the past between MUs. Significant tests of isolation by distance and low pairwise Fst values potentially led to conflicting results between traditional analyses and a Bayesian approach. This data set could provide baseline data from which a comprehensive mixed-stock analysis could be performed, allowing for more efficient and effective management of this economically and socially important resource.

  9. Application of a Lower Food Resulting from Aquatic Invasive Species in Lake Michigan

    EPA Science Inventory

    Lake Michigan Ecosystem Model (LM-Eco) that includes a detailed description of trophic levels and their interactions was developed for Lake Michigan. The LM-Eco model construct has been applied in two phases to investigate ecosystem-level responses and effects corresponding with...

  10. Dynamics of the Lake Michigan food web, 1970-2000

    USGS Publications Warehouse

    Madenjian, Charles P.; Fahnenstiel, Gary L.; Johengen, Thomas H.; Nalepa, Thomas F.; Vanderploeg, Henry A.; Fleischer, Guy W.; Schneeberger, Philip J.; Benjamin, Darren M.; Smith, Emily B.; Bence, James R.; Rutherford, Edward S.; Lavis, Dennis S.; Robertson, Dale M.; Jude, David J.; Ebener, Mark P.

    2002-01-01

    Herein, we document changes in the Lake Michigan food web between 1970 and 2000 and identify the factors responsible for these changes. Control of sea lamprey (Petromyzon marinus) and alewife (Alosa pseudoharengus) populations in Lake Michigan, beginning in the 1950s and 1960s, had profound effects on the food web. Recoveries of lake whitefish (Coregonus clupeaformis) and burbot (Lota lota) populations, as well as the buildup of salmonine populations, were attributable, at least in part, to sea lamprey control. Based on our analyses, predation by salmonines was primarily responsible for the reduction in alewife abundance during the 1970s and early 1980s. In turn, the decrease in alewife abundance likely contributed to recoveries of deepwater sculpin (Myoxocephalus thompsoni), yellow perch (Perca flavescens), and burbot populations during the 1970s and 1980s. Decrease in the abundance of all three dominant benthic macroinvertebrate groups, including Diporeia, oligochaetes, and sphaeriids, during the 1980s in nearshore waters (50 m deep) of Lake Michigan, was attributable to a decrease in primary production linked to a decline in phosphorus loadings. Continued decrease in Diporeia abundance during the 1990s was associated with the zebra mussel (Dreissena polymorpha) invasion, but specific mechanisms for zebra mussels affecting Diporeia abundance remain unidentified.

  11. Post Audit of Lake Michigan Lake Trout PCB Model Forecasts

    EPA Science Inventory

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  12. A list of Michigan Corixidae (Hemiptera) with four new state records from the Great Lakes of Michigan

    USGS Publications Warehouse

    Chordas, Stephen W.; Hudson, Patrick L.

    1999-01-01

    Corisella tarsalis, Sigara lineata, Trichocorixa borealis, and Trichocorixa kanza were recently identified from Michigan and constitute new state records. These four species were collected from two of the Great Lakes or their connecting rivers and increase the number of corixids for Michigan to 47 species. We newly report the genus Corisella for Michigan. Although most abundant in the western United States and Canada, scattered Corisella records in the Midwest (Wisconsin, Ohio and Ontario, Canada) indicated there was a good probability of its occurrence in Michigan. Finally, we provide an updated list of Michigan Corixidae.

  13. Misapplied survey data and model uncertainty result in incorrect conclusions about the role of predation on alewife population dynamics in Lake Huron: a comment on He et al. (2015)

    USGS Publications Warehouse

    Riley, Stephen C.; Dunlop, Erin S.

    2016-01-01

    Drastic recent and ongoing changes to fish populations and food webs in the Great Lakes have been well-described (Riley et al. 2008; Barbiero et al. 2009; Nalepa et al. 2009; Fahnenstiel et al. 2010;Evans et al. 2011; Gobin et al. 2015), and uncertainty regarding their potential effects on fisheries has caused concern among scientists and fishery managers (e.g., Dettmers et al. 2012). In particular, the relative importance of “bottom-up” (e.g., lower trophic level changes) versus “top-down” (e.g., predation) factors to fish community changes in the Great Lakes have been widely debated (e.g.,Barbiero et al. 2011; Eshenroder and Lantry 2012; Bunnell et al. 2014). In Lake Huron, recent ecosystem changes have been particularly profound, and populations of alewife (Alosa pseudoharengus), an offshore pelagic prey fish, collapsed in 2003 and have yet to recover (Riley et al. 2008, 2014). He et al. (2015) recently used a series of linked ecological models to assess the role of predation in the dynamics of the offshore prey fish community in Lake Huron. While we believe that they provide a novel method for combining bioenergetics and stock assessment modeling, we question the validity of their conclusions because of the misapplication of survey data and the lack of critical interpretation of their modeling efforts. Here we describe how He et al. (2015) have misapplied bottom trawl data from Lake Huron, and we provide examples of how this has resulted in erroneous conclusions regarding the importance of predation to the population dynamics and collapse of alewife in Lake Huron.

  14. Changes in the Lake Michigan food web following dreissenid mussel invasions: A synthesis

    USGS Publications Warehouse

    Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Pothoven, Steven A.; Fahnenstiel, Gary L.; Nalepa, Thomas F.; Vanderploeg, Henry A.; Tsehaye, Iyob; Claramunt, Randall M.; Clark, Richard D

    2015-01-01

    Using various available time series for Lake Michigan, we examined changes in the Lake Michigan food web following the dreissenid mussel invasions and identified those changes most likely attributable to these invasions, thereby providing a synthesis. Expansion of the quagga mussel (Dreissena rostriformis bugensis) population into deeper waters, which began around 2004, appeared to have a substantial predatory effect on both phytoplankton abundance and primary production, with annual primary production in offshore (> 50 m deep) waters being reduced by about 35% by 2007. Primary production likely decreased in nearshore waters as well, primarily due to predatory effects exerted by the quagga mussel expansion. The drastic decline inDiporeia abundance in Lake Michigan during the 1990s and 2000s has been attributed to dreissenid mussel effects, but the exact mechanism by which the mussels were negatively affecting Diporeia abundance remains unknown. In turn, decreased Diporeiaabundance was associated with reduced condition, growth, and/or energy density in alewife (Alosa pseudoharengus), lake whitefish (Coregonus clupeaformis), deepwater sculpin (Myoxocephalus thompsonii), and bloater (Coregonus hoyi). However, lake-wide biomass of salmonines, top predators in the food web, remained high during the 2000s, and consumption of alewives by salmonines actually increased between the 1980–1995 and 1996–2011 time periods. Moreover, abundance of the lake whitefish population, which supports Lake Michigan's most valuable commercial fishery, remained at historically high levels during the 2000s. Apparently, counterbalancing mechanisms operating within the complex Lake Michigan food web have enabled salmonines and lake whitefish to retain relatively high abundances despite reduced primary production.

  15. Modeling of temporal patterns and sources of atmospherically transported and deposited pesticides in ecosystems of concern: A case study of toxaphene in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Li, Rong; Jin, Jiming

    2013-10-01

    have adverse effects on human health and the environment and can be transported through the atmosphere from application sites and deposited to sensitive ecosystems. This study applies a comprehensive multimedia regional pesticide fate and chemical transport modeling system that we developed to investigate the atmospheric transport and deposition of toxaphene to the Great Lakes. Simulated results predict a significant amount of toxaphene (~350 kg) being transported through the atmosphere and deposited into the Great Lakes in the simulation year. Results also show that U.S. residues and global background are major sources to toxaphene deposition into the Great Lakes and atmospheric concentrations in the region. While the U.S. residues are the dominant source in warm months, the background dominates during winter months. In addition, different sources have different influences on the individual Great Lakes due to their proximity and relative geographical positions to the sources; U.S. residues are the dominant source to Lakes Ontario, Erie, Huron, and Michigan, but they are a much less important source to Lake Superior. These results shed light on the mystery that observed toxaphene concentrations in Great Lakes' lake trout and smelt declined between 1982 and 1992 in four of the Great Lakes except Lake Superior. While monthly total depositions to Lakes Ontario, Erie, Huron, and Michigan have clear seasonal variability with much greater values in April, May, and June, monthly total depositions to Lake Superior are more uniformly distributed over the year with comparatively greater levels in cold months.

  16. Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design

    USGS Publications Warehouse

    Rennie, Michael D.; Weidel, Brian C.; Claramunt, Randall M.; Dunlob, Erin S.

    2015-01-01

    Understanding fish habitat use is important in determining conditions that ultimately affect fish energetics, growth and reproduction. Great Lakes lake whitefish (Coregonus clupeaformis) have demonstrated dramatic changes in growth and life history traits since the appearance of dreissenid mussels in the Great Lakes, but the role of habitat occupancy in driving these changes is poorly understood. To better understand temporal changes in lake whitefish depth of capture (Dw), we compiled a database of fishery-independent surveys representing multiple populations across all five Laurentian Great Lakes. By demonstrating the importance of survey design in estimating Dw, we describe a novel method for detecting survey-based bias in Dw and removing potentially biased data. Using unbiased Dw estimates, we show clear differences in the pattern and timing of changes in lake whitefish Dw between our reference sites (Lake Superior) and those that have experienced significant benthic food web changes (lakes Michigan, Huron, Erie and Ontario). Lake whitefish Dw in Lake Superior tended to gradually shift to shallower waters, but changed rapidly in other locations coincident with dreissenid establishment and declines in Diporeia densities. Almost all lake whitefish populations that were exposed to dreissenids demonstrated deeper Dw following benthic food web change, though a subset of these populations subsequently shifted to more shallow depths. In some cases in lakes Huron and Ontario, shifts towards more shallow Dw are occurring well after documented Diporeia collapse, suggesting the role of other drivers such as habitat availability or reliance on alternative prey sources.

  17. DEVELOPMENT, CALIBRATION AND APPLICATION OF A CONTAINMENT TRANSPORT AND FATE MASS BALANCE MODEL IN LAKE MICHIGAN, LM2

    EPA Science Inventory

    The Lake Michigan Mass Balance Project (LMMBP) was initiated to support the development of a Lake Wide Management Plan (LaMP) for Lake Michigan. As one of the models in the LMMBP modeling framework, the Level 2 Lake Michigan containment transport and fate (LM2) model has been dev...

  18. Mercury accumulation in sea lamprey (Petromyzon marinus) from Lake Huron

    USGS Publications Warehouse

    Madenjian, Charles P.; Johnson, Nicholas S.; Siefkes, Michael J.; Dettmers, John M.; Blum, Joel D.; Johnson, Marcus W.

    2014-01-01

    We determined whole-fish total mercury (Hg) concentrations of 40 male and 40 female adult sea lampreys (Petromyzon marinus) captured in the Cheboygan River, a tributary to Lake Huron, during May 2011. In addition, bioenergetics modeling was used to explore the effects of sex-related differences in activity and resting (standard) metabolic rate (SMR) on mercury accumulation. The grand mean for Hg concentrations was 519 ng/g (standard error of the mean = 46 ng/g). On average, males were 16% higher in Hg concentration than females. Bioenergetics modeling results indicated that 14% higher activity and SMR in males would account for this observed sex difference in Hg concentrations. We concluded that the higher Hg concentration in males was most likely due to higher rate of energy expenditure in males, stemming from greater activity and SMR. Our findings have implications for estimating the effects of sea lamprey populations on mercury cycling within ecosystems, as well as for the proposed opening of sea lamprey fisheries. Eventually, our results may prove useful in improving control of sea lamprey, a pest responsible for substantial damage to fisheries in lakes where it is not native.

  19. Sources of fatty acids in Lake Michigan surface microlayers and subsurface waters

    NASA Astrophysics Data System (ADS)

    Meyers, Philip A.; Owen, Robert M.

    1980-11-01

    Fatty acid and organic carbon contents have been measured in the particulate and dissolved phases of surface microlayer and subsurface water samples collected from Lake Michigan. Concentrations are highest close to fluvial sources and lowest in offshore areas, yet surface/subsurface fractionation is lowest near river mouths and highest in open lake locations. These gradients plus accompanying fatty acid compositional changes indicate that river-borne organic materials are important constituents of coastal Lake Michigan microlayers and that sinking and turbulent resuspension of particulates affect surface film characteristics. Lake neuston and plankton contribute organic components which partially replace potamic materials removed by sinking.

  20. An evaluation of lake trout reproductive habitat on Clay Banks Reef, northwestern Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Holey, Mark E.; Manny, Bruce A.; Kennedy, Gregory W.

    1995-01-01

    The extinction of the native populations of lake trout (Salvelinus namaycush) in Lake Michigan in about 1956 has been followed by a decades-long attempt to reestablish self-sustaining populations of this valuable species in habitats it formerly occupied throughout the lake. One of the most recent management strategies designed to facilitate recovery was to make a primary management objective the establishment of sanctuaries where stocked lake trout could be protected and self-sustaining populations reestablished. In the present study we employed habitat survey and mapping techniques, field and laboratory bioassays, egg traps, sediment traps, and gill nets to examine the potential for successful natural reproduction by stocked lake trout on Clay Banks Reef in the Door-Kewaunee sanctuary in Wisconsin waters of Lake Michigan. Our study revealed (1) there was suitable habitat on the reef to support the production of viable fry, (2) spawner abundance on the reef was the highest recorded in the great lakes, and (3) eggs taken from spawners on the reef and held on the reef in plexiglas incubators hatched and produced fry that survived through swim-up. We conclude that Clay Banks Reef has the potential to support successful natural reproduction by stocked lake trout.

  1. Introduction and summary: Chlorinated hydrocarbons as a factor in the reproduction and survival of lake trout (Salvelinus namaycush) in Lake Michigan

    USGS Publications Warehouse

    Willford, Wayne A.; Bergstedt, Roger A.; Berlin, William H.; Foster, Neal R.; Hesselberg, Robert J.; Mac, Michael J.; Passino, Dora R. May; Reinert, Robert E.; Rottiers, Donald V.

    1981-01-01

    Although lake trout (Salvelinus namaycush) were considered extinct in Lake Michigan by the mid 1950's, control of the parasitic sea lamprey (Petromyzon marinus) and extensive restocking resulted in an abundance of hatchery-produced lake trout in the lake by the early 1970's. However, no naturally produced yearling or older lake trout have been found in the lake during nearly a decade of assessment sampling. Among the numerous hypotheses proposed to account for this apparent reproductive failure of the planted lake trout, a frequently suggested cause is the well-documented contamination of the fish by toxic substances such as DDT and its metabolites, and polychlorinated biphenyls (PCB's) at concentrations reported as adversely affecting the hatching of eggs and survival of larval fish. However, manually stripped and fertilized eggs of Lake Michigan lake trout have hatched successfully and the fry have survived normally under a variety of hatchery conditions. This observation led to studies at the Great Lakes Fishery Laboratory on the performance and survival of fry hatched from eggs of Lake Michigan lake trout and exposed for 6 months to PCB's (Aroclor 1254) and DDE at concentrations similar to those present in offshore waters and zooplankton of Lake Michigan (10.0 ng/L PCB's and 1.0 ng/L DDE in water; 1.0 μg/g PCB's and 0.1 μg/g DDE in food), and at concentrations 5 and 25 times higher. Cumulative mortality of the fry exposed to simulated Lake Michigan levels of PCB's and DDE for 6 months was 40.7% — nearly twice that of unexposed (control) fry — and mortality at the highest exposure level was 46.5%. Evaluation of the growth, swimming performance, predator avoidance, temperature preference, and metabolism of the fry showed no significant effects attributable to exposure to PCB's and DDE, except for a lowering of preferred temperature at the highest (25x) exposures (the only concentration tested) to each contaminant and (additively) both contaminants combined

  2. Lake Michigan sediment lead storage and history of loads

    EPA Science Inventory

    Dated sediment box cores collected in 1994-1996 from 52 locations in Lake Michigan were analyzed for to access storage, trends, and loading history of lead. The results of this study provide information of historic lead loads to the lake for a time period for which no other info...

  3. Diet niches of major forage fish in Lake Michigan

    USGS Publications Warehouse

    Hunter, R. Douglas; Savino, J.F.; Ogilvie, L.M.; ,

    2007-01-01

    A large complex of coregonine species historically dominated the fish community of Lake Michigan. The current species complex is simplified with one remaining coregonine, bloater (Coregonus hoyi), deepwater sculpin (Myoxocephalus thompsoni), slimy sculpin (Cottus cognatus), and two dominant invaders, alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax). To better understand the diet relationships of the major offshore forage fishes now in Lake Michigan, diets of bloater, alewife, rainbow smelt, deepwater sculpin, and slimy sculpin were compared. The three sites, chosen to represent northern, central, and southern components of the lake, were sampled during spring, summer, and fall in 1994, and spring and fall in 1995. Forage fishes had diverse and variable diets, with niches differentiated by prey type or location. Diporeia hoyi, Mysis relicta, and zooplankton were the major diet items. The index of relative importance showed benthic (slimy and deepwater sculpins) and pelagic (alewife, rainbow smelt) feeding strategies with opportunistic bloaters incorporating both feeding strategies. Highest diet overlaps were between species of sculpin, and between large and small bloaters; both groups partitioned food by size. Though competition for food may be minimized by spatial segregation of potential competitors, the forage fish in Lake Michigan apparently partition food resources. Fishery management models incorporating food habits of pelagic forage fish would need to take into account diet variation associated with location and season. ?? 2007 E. Schweizerbart'sche Verlagsbuchhandlung.

  4. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds.

    PubMed

    Byappanahalli, Muruleedhara N; Sawdey, Richard; Ishii, Satoshi; Shively, Dawn A; Ferguson, John A; Whitman, Richard L; Sadowsky, Michael J

    2009-02-01

    The bacterial pathogens Shigella, Salmonella, Campylobacter, and shiga toxin-producing E. coli (STEC) were recently found to be associated with Cladophora growing in southern Lake Michigan. Preliminary results indicated that the Salmonella strains associated with Cladophora were genetically identical to each other. However, because of the small sample size (n=37 isolates) and a lack of information on spatial-temporal relationships, the nature of the association between Cladophora and Salmonella remained speculative. In this study, we investigated the population structure and genetic relatedness of a large number of Cladophora-borne Salmonella isolates from Lake Michigan (n=133), as well as those isolated from stream and lake water (n=31), aquatic plants (n=8), and beach sands and sediments (n=8) from adjacent watersheds. Salmonella isolates were collected during 2005-2007 between May and August from Lake Michigan beachsheds in Wisconsin, Illinois, and Indiana. The genetic relatedness of Salmonella isolates was examined by using the horizontal, fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting technique. While the Salmonella isolates associated with Cladophora exhibited a high degree of genetic relatedness (>or=92% similarity), the isolates were not all genetically identical. Spatial and temporal relationships were evident in the populations examined, with tight clustering of the isolates both by year and location. These findings suggest that the relationship between Salmonella and Cladophora is likely casual and is related to input sources (e.g. wastewater, runoff, birds) and the predominant Salmonella genotype surviving in the environment during a given season. Our studies indicate that Cladophora is likely an important reservoir for Salmonella and other enteric bacterial pathogens in Lake Michigan beachsheds, which in turn may influence nearshore water quality.

  5. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds

    USGS Publications Warehouse

    Byappanahalli, M.N.; Sawdey, R.; Ishii, S.; Shively, D.A.; Ferguson, J.A.; Whitman, R.L.; Sadowsky, M.J.

    2009-01-01

    The bacterial pathogens Shigella, Salmonella, Campylobacter, and shiga toxin-producing E. coli (STEC) were recently found to be associated with Cladophora growing in southern Lake Michigan. Preliminary results indicated that the Salmonella strains associated with Cladophora were genetically identical to each other. However, because of the small sample size (n = 37 isolates) and a lack of information on spatial-temporal relationships, the nature of the association between Cladophora and Salmonella remained speculative. In this study, we investigated the population structure and genetic relatedness of a large number of Cladophora-borne Salmonella isolates from Lake Michigan (n = 133), as well as those isolated from stream and lake water (n = 31), aquatic plants (n = 8), and beach sands and sediments (n = 8) from adjacent watersheds. Salmonella isolates were collected during 2005-2007 between May and August from Lake Michigan beachsheds in Wisconsin, Illinois, and Indiana. The genetic relatedness of Salmonella isolates was examined by using the horizontal, fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting technique. While the Salmonella isolates associated with Cladophora exhibited a high degree of genetic relatedness (???92% similarity), the isolates were not all genetically identical. Spatial and temporal relationships were evident in the populations examined, with tight clustering of the isolates both by year and location. These findings suggest that the relationship between Salmonella and Cladophora is likely casual and is related to input sources (e.g. wastewater, runoff, birds) and the predominant Salmonella genotype surviving in the environment during a given season. Our studies indicate that Cladophora is likely an important reservoir for Salmonella and other enteric bacterial pathogens in Lake Michigan beachsheds, which in turn may influence nearshore water quality. ?? 2008 Elsevier Ltd.

  6. Variation in Lake Michigan alewife (Alosa pseudoharengus) thiaminase and fatty acids composition

    USGS Publications Warehouse

    Honeyfield, D.C.; Tillitt, D.E.; Fitzsimons, J.D.; Brown, S.B.

    2010-01-01

    Thiaminase activity of alewife (Alosa pseudoharengus) is variable across Lake Michigan, yet factors that contribute to the variability in alewife thiaminase activity are unknown. The fatty acid content of Lake Michigan alewife has not been previously reported. Analysis of 53 Lake Michigan alewives found a positive correlation between thiaminase activity and the following fatty acid: C22:ln9, sum of omega-6 fatty acids (Sw6), and sum of the polyunsaturated fatty acids. Thiaminase activity was negatively correlated with C15:0, C16:0, C17:0, C18:0, C20:0, C22:0, C24:0, C18:ln9t, C20:3n3, C22:2, and the sum of all saturated fatty acids (SAFA). Multi-variant regression analysis resulted in three variables (C18:ln9t, Sw6, SAFA) that explained 71% (R2=0.71, P<0.0001) of the variation in thiaminase activity. Because the fatty acid content of an organism is related is food source, diet may be an important factor modulating alewife thiaminase activity. These data suggest there is an association between fatty acids and thiaminase activity in Lake Michigan alewife.

  7. Cisco (Coregonus artedii) mortalities in a southern Michigan lake, July 1968

    USGS Publications Warehouse

    Colby, Peter J.; Brooke, Larry T.

    1969-01-01

    Cisco die-offs are common in the summer in certain lakes of northern Indiana and southern Michigan, along the southern boundary of the national distribution of coregonine fishes. Although numerous cisco die-offs have been reported, few, if any, have been accompanied by environmental information at the time of the die-off. On 31 July and 1 August 1968, we investigated a cisco die-off on Halfmoon Lake, on the border of Washtenaw and Livingston Counties, Michigan.

  8. Examining Lake Michigan Spring Euphotic Depth (Zeu) Anomalies: Utilizing 10 Years of MODIS-Aqua Data at 4 Kilometer Resolution

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2013-01-01

    Examination of ten years of euphotic depth anomalies in Lake Michigan during the months of March-June indicates the following: The well-known and frequently observed occurrence of a turbidity feature in the southern part of Lake Michigan during the spring season has become less common during the period 2003-2012. Overall, the clarity of Lake Michigan water in the southern end of the lake appears to have increased spring season over the period 2003-2012. Euphotic depth can be used as a primary indicator of changes in Lake Michigan lacustrine optics, and for other large lakes. Unique events, such as the heavy rains in June 2008, can have a distinct signature in the euphotic depth anomaly distribution in Lake Michigan.

  9. Visualizing the geology of lake trout spawning sites, northern Lake Michigan

    USGS Publications Warehouse

    Dartnell, Peter; Barnes, Peter; Gardner, James V.; Lee, Kristen

    2004-01-01

    Geologists and biologists are working together to understand the links between lake floor geology (composition and shape) and the distribution of lake trout throughout their life cycle. Lake floor geology is one of the main factors determining where lake trout spawn, feed, and hide. In support of ongoing research to study Lake Michigan trout habitats, the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers mapped the morphology of principle lake trout spawning sites. Using the Army Corps of Engineer's SHOALS airborne lidar (Light Detection and Ranging) system we mapped six regions in Northern Lake Michigan in order to identify ideal spawning regions composed of shallow, clean, gravel/cobble substrate, adjacent to deeper water. Lidar mapping systems, which use laser pulses to measure water depths from an airplane, are now available to map the nearshore lake morphology at meter-scale detail. Maps generated from the bathymetric data are used to define regions with smooth homogeneous substrate, regions with higher relief, and mixed regions with both smooth and rough relief. This morphologic information combined with sediment samples and direct bottom observations enable geologists to map areas with rougher relief composed of rock outcrop, boulders, and cobbles, as well as smooth regions covered with sand or mud. This information helps biologists, fishery managers, and ecologists visualize the lake floor in significant detail which promotes better fishery management, species protection, and habitat identification. These maps present the maps and discuss the geology of the six lake trout spawning sites mapped by the lidar system. Where the mapping approached land, aerial photography of the land is combined with the bathymetric data to help visualize the scale of the offshore features. Map and perspective views of Boulder Reef, Hog Island Reef, and Little Traverse Bay are shown on sheet 1, whereas map and perspective views of Trout and High Island

  10. Visualizing the geology of lake trout spawning sites; northern Lake Michigan

    USGS Publications Warehouse

    Dartnell, Peter; Barnes, Peter; Gardner, James V.; Lee, Kristen

    2006-01-01

    Geologists and biologists are working together to understand the links between lake floor geology (composition and shape) and the distribution of lake trout throughout their life cycle. Lake floor geology is one of the main factors determining where lake trout spawn, feed, and hide. In support of ongoing research to study Lake Michigan trout habitats, the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers mapped the morphology of principle lake trout spawning sites. Using the Army Corps of Engineer's SHOALS airborne lidar (Light Detection and Ranging) system we mapped six regions in Northern Lake Michigan in order to identify ideal spawning regions composed of shallow, clean, gravel/cobble substrate, adjacent to deeper water. Lidar mapping systems, which use laser pulses to measure water depths from an airplane, are now available to map the nearshore lake morphology at meter-scale detail. Maps generated from the bathymetric data are used to define regions with smooth homogeneous substrate, regions with higher relief, and mixed regions with both smooth and rough relief. This morphologic information combined with sediment samples and direct bottom observations enable geologists to map areas with rougher relief composed of rock outcrop, boulders, and cobbles, as well as smooth regions covered with sand or mud. This information helps biologists, fishery managers, and ecologists visualize the lake floor in significant detail which promotes better fishery management, species protection, and habitat identification. These maps present the maps and discuss the geology of the six lake trout spawning sites mapped by the lidar system. Where the mapping approached land, aerial photography of the land is combined with the bathymetric data to help visualize the scale of the offshore features. Map and perspective views of Boulder Reef, Hog Island Reef, and Little Traverse Bay are shown on sheet 1, whereas map and perspective views of Trout and High Island

  11. Computer mapping of turbidity and circulation patterns in Saginaw Bay, Michigan from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Smith, V. E.

    1975-01-01

    The author has identified the following significant results. LANDSAT was used as a basis for producing geometrically-corrected, color-coded imagery of turbidity and circulation patterns in Saginaw Bay, Michigan (Lake Huron). This imagery shows nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. The categorized imagery provided an economical basis for extrapolating water quality parameters from point samples to unsample areas. LANDSAT furnished a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  12. 33 CFR 110.82a - Little Traverse Bay, Lake Michigan, Harbor Springs, Mich.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Little Traverse Bay, Lake Michigan, Harbor Springs, Mich. 110.82a Section 110.82a Navigation and Navigable Waters COAST GUARD... Traverse Bay, Lake Michigan, Harbor Springs, Mich. (a) Area 1. Beginning at latitude 45°25′42.2″ N...

  13. 33 CFR 110.82a - Little Traverse Bay, Lake Michigan, Harbor Springs, Mich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Little Traverse Bay, Lake Michigan, Harbor Springs, Mich. 110.82a Section 110.82a Navigation and Navigable Waters COAST GUARD... Traverse Bay, Lake Michigan, Harbor Springs, Mich. (a) Area 1. Beginning at latitude 45°25′42.2″ N...

  14. 33 CFR 110.82a - Little Traverse Bay, Lake Michigan, Harbor Springs, Mich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Little Traverse Bay, Lake Michigan, Harbor Springs, Mich. 110.82a Section 110.82a Navigation and Navigable Waters COAST GUARD... Traverse Bay, Lake Michigan, Harbor Springs, Mich. (a) Area 1. Beginning at latitude 45°25′42.2″ N...

  15. 33 CFR 110.82a - Little Traverse Bay, Lake Michigan, Harbor Springs, Mich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Little Traverse Bay, Lake Michigan, Harbor Springs, Mich. 110.82a Section 110.82a Navigation and Navigable Waters COAST GUARD... Traverse Bay, Lake Michigan, Harbor Springs, Mich. (a) Area 1. Beginning at latitude 45°25′42.2″ N...

  16. 33 CFR 110.82a - Little Traverse Bay, Lake Michigan, Harbor Springs, Mich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Little Traverse Bay, Lake Michigan, Harbor Springs, Mich. 110.82a Section 110.82a Navigation and Navigable Waters COAST GUARD... Traverse Bay, Lake Michigan, Harbor Springs, Mich. (a) Area 1. Beginning at latitude 45°25′42.2″ N...

  17. Are the Laurentian Great Lakes a CO2 Source or Sink?

    NASA Astrophysics Data System (ADS)

    Fernandez, J.; Townsend-Small, A.

    2016-12-01

    As concentrations of CO2 increase in our atmosphere, large bodies of water are prone to an accompanying increase in CO2. Accruing CO2 sinking into the Great Lakes can create more acidic waters, which is detrimental to the healthy growth of organisms producing calcium carbonate skeletons - a phenomenon that has been confirmed in modern oceans. Recent estimates suggests that Lake Huron, Lake Michigan, and Lake Superior are sources of atmospheric CO2, while Lake Erie and Lake Ontario are CO2 sinks, although this is based largely on water volume and little research has been done to validate these predictions. Water samples were collected aboard the University National Oceanographic Laboratory System RV Blue Heron and the Canadian Coast Guard RV Limnos from Lake Superior, Lake Michigan, and Lake Erie during the summer of 2016. Alkalinity and pCO2 were analyzed in lab to further calculate dissolved concentrations and fluxes of CO2, providing more information to resolve whether the Great Lakes are a CO2 source or sink. Additional work involves sampling all five of the Great lakes throughout the year to determine any seasonal trends in CO2. 13C-DIC will also be measured in order to differentiate methane oxidation and respiration to the CO2 pool.

  18. Contaminant trends in lake trout and walleye from the Laurentian Great Lakes

    USGS Publications Warehouse

    DeVault, David S.; Hesselberg, Robert J.; Rodgers, Paul W.; Feist, Timothy J.

    1996-01-01

    Trends in PCBs, DDT, and other contaminants have been monitored in Great Lakes lake trout and walleye since the 1970s using composite samples of whole fish. Dramatic declines have been observed in concentrations of PCB, ΣDDT, dieldrin, and oxychlordane, with declines initially following first order loss kinetics. Mean PCB concentrations in Lake Michigan lake trout increased from 13 μg/g in 1972 to 23 μg/g in 1974, then declined to 2.6 μg/g by 1986. Between 1986 and 1992 there was little change in concentration, with 3.5 μg/g observed in 1992. ΣDDT in Lake Michigan trout followed a similar trend, decreasing from 19.2 μg/g in 1970 to 1.1 μg/g in 1986, and 1.2 μg/g in 1992. Similar trends were observed for PCBs and ΣDDT in lake trout from Lakes Superior, Huron and Ontario. Concentrations of both PCB and ΣDDT in Lake Erie walleye declined between 1977 and 1982, after which concentrations were relatively constant through 1990. When originally implemented it was assumed that trends in the mean contaminant concentrations in open-lake fish would serve as cost effective surrogates to trends in the water column. While water column data are still extremely limited it appears that for PCBs in lakes Michigan and Superior, trends in lake trout do reasonably mimic those in the water column over the long term. Hypotheses to explain the trends in contaminant concentrations are briefly reviewed. The original first order loss kinetics used to describe the initial decline do not explain the more recent leveling off of contaminant concentrations. Recent theories have examined the possibilities of multiple contaminant pools. We suggest another hypothesis, that changes in the food web may have resulted in increased bioaccumulation. However, a preliminary exploration of this hypothesis using a change point analysis was inconclusive.

  19. 78 FR 49684 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

  20. Growth and condition of alewives in Lake Michigan, 1984-2001

    USGS Publications Warehouse

    Madenjian, Charles P.; Holuszko, Jeffrey D.; DeSorcie, Timothy J.

    2003-01-01

    Diets of salmonines in Lake Michigan have been dominated by alewives Alosa pseudoharengus since the 1960s, and information on alewife population dynamics is critical to the management of salmonine fisheries. We monitored alewife size at age and condition (K) at several different locations in Lake Michigan during fall 1984–2001. Alewives were aged by enumerating annuli on otoliths. The results indicated that alewife length at age did not trend upward or downward between 1984 and the late 1990s but decreased from the late 1990s to 2001. Alewife weight at age was relatively constant between 1984 and the mid-1990s but decreased from the mid-1990s to 2001. Mean condition for a given alewife age was, on average, 13.7% higher during 1984–1994 than during 1995–2001. This decline in alewife condition was not a density-dependent response by the alewife population because alewife abundance trended neither upward nor downward during 1984–2001. The decline in alewife condition was possibly due to the lakewide decrease in the abundance of Diporeia spp. during the 1990s. Apparently, the availability of the large-bodied invertebrates Diporeia and Mysis spp. was an important regulator of adult alewife growth because alewives attained a substantially larger size in Lake Michigan, where these invertebrates were relatively important constituents of the adult alewife diet, than in Lake Ontario, where these invertebrates were not readily eaten by adult alewives. For age-2 or older females, mean length was 2–9 mm greater than for males. Alewife size at age and condition were slightly higher on the eastern side of Lake Michigan than on the western side.

  1. Global and Local Contributions to Mercury Concentrations in Lake Michigan and Impact on Fish Consumption Advisories

    EPA Science Inventory

    LM2-Mercury, a mercury species mass balance model developed for Lake Michigan, was used to assess mercury cycling in Lake Michigan. A calibrated model (including a hindcast) was used to predict mercury concentrations in the lake based on various sensitivity and management scenari...

  2. 78 FR 36091 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

  3. 77 FR 65478 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River...

  4. 77 FR 60044 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River...

  5. 76 FR 65609 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal...

  6. 75 FR 64673 - Safety Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and... Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Ship and...: The Coast Guard will enforce Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des...

  7. 78 FR 65874 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including...

  8. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    PubMed

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  9. 76 FR 2829 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  10. 77 FR 20295 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  11. 78 FR 36092 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  12. 77 FR 35854 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  13. 75 FR 52462 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  14. 78 FR 40635 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  15. 75 FR 73966 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  16. Application of a Lower Food Web Ecosystem Productivity Model to Investigate Population Dynamics of Invasive Species in Lake Michigan

    EPA Science Inventory

    A Lake Michigan Ecosystem Model (LM-Eco) that includes a detailed description of trophic levels and their interactions was developed for Lake Michigan. The LM-Eco model constitutes a first step toward a comprehensive Lake Michigan ecosystem productivity model to investigate ecosy...

  17. Feeding ecology of the walleye (Percidae, Sander vitreus), a resurgent piscivore in Lake Huron (Laurentian Great Lakes) after shifts in the prey community

    USGS Publications Warehouse

    Pothoven, Steven A.; Madenjian, Charles P.; Höök, Tomas O.

    2017-01-01

    Recovering populations of piscivores can challenge understanding of ecosystem function due to impacts on prey and to potentially altered food webs supporting their production. Stocks of walleye (Percidae, Sander vitreus), an apex predator in the Laurentian Great Lakes, crashed in the mid‐1900s. Management efforts led to recovery by 2009, but recovery coincided with environmental and fish community changes that also had implications for the feeding ecology of walleye. To evaluate potential changes in feeding ecology for this apex predator, we assessed diets in the main basin of Lake Huron and in Saginaw Bay, a large embayment of Lake Huron, during 2009–2011. Walleye switched their diets differently in the main basin and Saginaw Bay, with non‐native round goby (Gobiidae, Neogobius melanostomus) and rainbow smelt (Osmeridae, Osmerus mordax) more prevalent in diets in the main basin, and invertebrates, yellow perch (Percidae,Perca flavescens) and gizzard shad (Clupeidae, Dorosoma cepedianum) more prevalent in diets in the bay. Feeding strategy plots indicated that there was a high degree of individual specialisation by walleye in the bay and the main basin. Bioenergetic simulations indicated that walleye in Saginaw Bay need to consume 10%–18% more food than a walleye that spends part or all of the year in the main basin, respectively, in order to achieve the same growth rate. The differences in diets between the bay and main basin highlight the flexibility of this apex predator in the face of environmental changes, but changes in diet can alter energy pathways supporting piscivore production.

  18. 76 FR 23524 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... safety zone from Brandon Road Lock and Dam to Lake Michigan. This proposed safety zone will cover 77.... This TIR established a 77 mile long safety zone from Brandon Road Lock to Lake Michigan in Chicago, IL...

  19. 77 FR 49349 - Safety Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL AGENCY: Coast Guard, DHS. ACTION... Water Show safety zone on Lake Michigan near Lincoln Park. This action is necessary to accurately reflect the enforcement dates and times for this safety zone due to changes made in this year's air show...

  20. Spatial Patterns Study for Sediments from Lake Michigan

    EPA Science Inventory

    Accurately understanding the distribution of sediment measurements within large water bodies such as Lake Michigan is critical for modeling and understanding of carbon, nitrogen, silica and phosphorus dynamics. Several water quality models have been formulated and applied to the ...

  1. 27 CFR 9.79 - Lake Michigan Shore.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Starting at the most northern point, the intersection the Kalamazoo River with Lake Michigan. (2) Then southeast along the winding course of the Kalamazoo River for approximately 35 miles until it intersects the Penn Central railroad line just south of the City of Otsego. (3) Then south along the Penn Central...

  2. Diseases and parasites of the sea lamprey, Petromyzon marinus, in the Lake Huron basin

    USGS Publications Warehouse

    McLain, Alberton L.

    1952-01-01

    Sea lampreys from the Lake Huron basin carried no external parasites and showed a fairly low degree of infection by internal parasites. The material examined represented three life-history stages of the sea lamprey. Recently transformed downstream migrants (215 specimens) harbored only nematodes belonging to the genus Camallanus. The percentage of infection was 2.3. Active feeders from the lake (29 lampreys) revealed the highest degree of parasitism (31.0 percent) with the following parasites present: Echinorhynchus coregoni Linkins; Triaenophorus crassus Forel; and Camallanus sp. Among the 257 sexually mature upstream migrants (14.8 percent infected) Echinorhynchus coregoni and E. leidyi Van Cleave were the most common. Only occasional nematodes and cestodes were found, which fact indicates a failure of the lamprey to carry these parasites to the end of its natural life. Of the parasites observed, only the nematodes gave evidence of serious damage to the host. The study suggests that the role played by parasites in the natural control of the sea lamprey in its new habitat in the upper Great Lakes is of minor importance.

  3. Sport fishing at a thermal discharge into Lake Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spigarelli, S.A.; Thommes, M.M.

    1976-07-01

    Sport fishing censuses were conducted during 1972 and 1973 at the Point Beach Nuclear Plant on Lake Michigan (Two Rivers, Wisconsin). The objectives of this study were to describe the fishery at a typical shoreline thermal discharge into the upper Great Lakes and to make comparisons with reference fisheries in unheated areas. Extensive sport fishing at this power plant resulted in a relatively large catch of trout (4 species) and sporadic catches of salmon and non-salmonid species. Species composition of the catch and catch-per-unit-effort varied daily and seasonally and generally reflected trends in reference fisheries. A comparison between years showedmore » increased fishing effort, total catch, and proportion of trout in 1973, while success (catch-per-unit-effort) decreased. Despite this heavy fishing pressure, catch-per-unit-effort was generally higher at Point Beach than in reference shoreline fisheries. The economic value of thermal discharge fisheries on Lake Michigan is estimated using available value and expenditure data.« less

  4. Linking egg thiamine and fatty acid concentrations of Lake Michigan lake trout with early life stage mortality.

    PubMed

    Czesny, Sergiusz; Dettmers, John M; Rinchard, Jacques; Dabrowski, Konrad

    2009-12-01

    The natural reproduction of lake trout Salvelinus namaycush in Lake Michigan is thought to be compromised by nutritional deficiency associated with inadequate levels of thiamine (vitamin B1) in their eggs. However, mortality driven by thiamine deficiency (commonly referred to as early mortality syndrome [EMS]) is not the only significant cause of low lake trout survival at early life stages. In this study, we sought to better understand the combined effects of variable levels of thiamine and fatty acids in lake trout eggs on prehatch, posthatch, and swim-up-stage mortality. We sampled the eggs of 29 lake trout females from southwestern Lake Michigan. The concentrations of free thiamine and its vitamers (e.g., thiamine monophosphate [TMP] and thiamine pyrophosphate [TPP]) as well as fatty acid profiles were determined in sampled eggs. Fertilized eggs and embryos were monitored through the advanced swim-up stage (1,000 degree-days). Three distinct periods of mortality were identified: prehatch (0-400 degree-days), immediately posthatch (401-600 degree-days), and swim-up (601-1,000 degree-days). Stepwise multiple regression analysis revealed (1) that cis-7-hexadecenoic acid in both neutral lipids (NL) and phospholipids (PL) correlated with prehatch mortality, (2) that docosapentaenoic acid in PL and docosahexaenoic acid in NL correlated with posthatch mortality, and (3) that total lipids, TPP, and palmitoleic acid in NL, linoleic acid, and palmitic acid in PL correlated with the frequency of EMS. These results indicate the complexity of early life stage mortality in lake trout and suggest that inadequate levels of key fatty acids in eggs, along with variable thiamine content, contribute to the low survival of lake trout progeny in Lake Michigan.

  5. MODELLING PHYTOPLANKTON IN LAKE MICHIGAN USING A HIGH RESULUTION CARBON-BASED FRAMEWORK

    EPA Science Inventory

    The Lake Michigan Mass Balance Project was initiated by the U.S. EPA Great Lakes National Program Office to determine strategies for managing toxic chemicals in the lake basin. The hydrophobicity of most of these chemicals necessitates a solid understanding of autochthonous produ...

  6. Factors associated with the deposition of Cladophora on Lake Michigan beaches in 2012

    USGS Publications Warehouse

    Riley, Stephen C.; Tucker, Taaja R.; Adams, Jean V.; Fogarty, Lisa R.; Lafrancois, Brenda Moraska

    2015-01-01

    Deposition of the macroalgae Cladophora spp. was monitored on 18 beaches around Lake Michigan during 2012 at a high temporal frequency. We observed a high degree of spatial variability in Cladophora deposition among beaches on Lake Michigan, even within local regions, with no clear regional pattern in the intensity of Cladophora deposition. A strong seasonal pattern in Cladophora deposition was observed, with the heaviest deposition occurring during mid-summer. Several beaches exhibited high temporal variability in Cladophora deposition over short time scales, suggesting that drifting algal mats may be extremely dynamic in nearshore environments of the Great Lakes. Cladophora deposition on Lake Michigan beaches was primarily related to the presence of nearshore structures, local population density, and nearshore bathymetry. There was relatively little evidence that waves, winds, or currents were associated with Cladophora deposition on beaches, but this may be due to the relatively poor resolution of existing nearshore hydrodynamic data. Developing a predictive understanding of beach-cast Cladophora dynamics in Great Lakes environments may require both intensive Cladophora monitoring and fine-scale local hydrodynamic modeling efforts.

  7. 75 FR 32664 - Safety Zone; Milwaukee Air and Water Show, Lake Michigan, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    .... ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone on Lake Michigan... of Lake Michigan due to a large-scale air show and a fireworks display. This temporary safety zone is... air show and fireworks display. DATES: This regulation is effective from 12:01 a.m. on June 10, 2010...

  8. Anchistropus spp. (Crustacea: Cladocera: Chydoridae): a new distribution record for Lake Erie

    USGS Publications Warehouse

    Evans, Marlene S.; Hiltunen, Jarl K.; Schloesser, Donald W.

    1990-01-01

    This note extends the known Great Lakes distribution of Anchistropus sp. from Lake Michigan, Huron, Superior, and St. Clair to Rondeau Harbor in Lake Erie. Anchistropus sp. was collected in benthic samples where it occurred as epibionts on hydra. Previous studies, which are briefly reviewed, have noted the parasitic nature of Anchistropus. Although only one species of Anchistropus (A. minor) is known from North America, our specimens cannot be positively identified as that species: the structure of the postabdomen and first leg differs from the original taxonomic description of A. minor. Others have noted differences between the original description of A. minor and the morphology of specimens collected over the succeeding years.

  9. Coastal response to the Port Sheldon jetties at Pigeon Lake, Michigan. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, M.; Underwood, S.G.

    1991-07-01

    The Consumers Powers Corp. constructed two jetties at Port Shelton, Michigan to maintain an open waterway into Pigeon Lake. These jetties are located at the entrance of Pigeon Lake in Port Shelton township, on the eastern shore of Lake Michigan. Originally, water was drawn from Lake Michigan via Pigeon Lake Inlet to cool a fossil fuel power plant. The inlet into Pigeon Lake was deepened and widened throughout the early history of the power plant. Adjacent shorelines have been modified directly by Consumers Power Corp. and indirectly by the natural littoral response to the jetties. This study sought to determinemore » the impact, if any, of these jetties at the entrance to Pigeon Lake on adjacent shorelines and nearshore zones. Analysis of historical shoreline position and bathymetry data in the vicinity of Port Sheldon indicates approximately 810,600 cu yd of material has been trapped by the jetties since construction in 1964. At present, it appears that the fillet areas adjacent to the jetties have volumetrically stabilized and that natural and bypassing may be occurring around the lakeward tips of the jetties. Results of this study identified a zone of slightly higher erosion 3,000 to 9,000 ft south of the jetties that may be related to jetty construction.« less

  10. Fine-scale acoustic telemetry reveals unexpected lake trout, Salvelinus namaycush, spawning habitats in northern Lake Huron, North America

    USGS Publications Warehouse

    Binder, Thomas; Farha, Steve A.; Thompson, Henry T.; Holbrook, Christopher; Bergstedt, Roger A.; Riley, Stephen; Bronte, Charles R.; He, Ji; Krueger, Charles C.

    2018-01-01

    Previous studies of lake trout, Salvelinus namaycush, spawning habitat in the Laurentian Great Lakes have used time- and labour-intensive survey methods and have focused on areas with historic observations of spawning aggregations and on habitats prejudged by researchers to be suitable for spawning. As an alternative, we used fine-scale acoustic telemetry to locate, describe and compare lake trout spawning habitats. Adult lake trout were implanted with acoustic transmitters and tracked during five consecutive spawning seasons in a 19–27 km2 region of the Drummond Island Refuge, Lake Huron, using the VEMCO Positioning System. Acoustic telemetry revealed discrete areas of aggregation on at least five reefs in the study area, subsequently confirmed by divers to contain deposited eggs. Notably, several identified spawning sites would likely not have been discovered using traditional methods because either they were too small and obscure to stand out on a bathymetric map or because they did not conform to the conceptual model of spawning habitat held by many biologists. Our most unique observation was egg deposition in gravel and rubble substrates located at the base of and beneath overhanging edges of large boulders. Spawning sites typically comprised <10% of the reef area and were used consistently over the 5-year study. Evaluation of habitat selection from the perspective of fish behaviour through use of acoustic transmitters offers potential to expand current conceptual models of critical spawning habitat.

  11. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    USGS Publications Warehouse

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  12. Phosphorus and Phytoplankton in Lake Michigan: Model Post-audit and Projections

    EPA Science Inventory

    The eutrophication model, LM3-Eutro, was developed in support of the Lake Michigan Mass Balance Project to simulate chlorophyll-a (phytoplankton), phosphorus and carbon concentrations in the lake. This high-resolution carbon-based model was developed and calibrated using extensi...

  13. Predicting lake trophic state by relating Secchi-disk transparency measurements to Landsat-satellite imagery for Michigan inland lakes, 2003-05 and 2007-08

    USGS Publications Warehouse

    Fuller, L.M.; Jodoin, R.S.; Minnerick, R.J.

    2011-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Natural Resources and Environment have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Sampling for this program began in 2001; by 2010, 730 of Michigan’s 11,000 inland lakes are expected to have been sampled once. Volunteers coordinated by the Michigan Department of Natural Resources and Environment began sampling lakes in 1974 and continue to sample (in 2010) approximately 250 inland lakes each year through the Michigan Cooperative Lakes Monitoring Program. Despite these sampling efforts, it still is impossible to physically collect measurements for all Michigan inland lakes; however, Landsat-satellite imagery has been used successfully in Minnesota, Wisconsin, Michigan, and elsewhere to predict the trophic state of unsampled inland lakes greater than 20 acres by producing regression equations relating in-place Secchi-disk measurements to Landsat bands. This study tested three alternatives to methods previously used in Michigan to improve results for predicted statewide Trophic State Index (TSI) computed from Secchi-disk transparency (TSI (SDT)). The alternative methods were used on 14 Landsat-satellite scenes with statewide TSI (SDT) for two time periods (2003– 05 and 2007–08). Specifically, the methods were (1) satellitedata processing techniques to remove areas affected by clouds, cloud shadows, haze, shoreline, and dense vegetation for inland lakes greater than 20 acres in Michigan; (2) comparison of the previous method for producing a single open-water predicted TSI (SDT) value (which was based on an area of interest (AOI) and lake-average approach) to an alternative Gethist method for identifying open-water areas in inland lakes (which follows the initial satellite-data processing and targets the darkest pixels, representing the deepest water

  14. Evidence that sea lamprey control led to recovery of the burbot population in Lake Erie

    USGS Publications Warehouse

    Stapanian, M.A.; Madenjian, C.P.; Witzel, L.D.

    2006-01-01

    Between 1987 and 2003, the abundance of burbot Lota lota in eastern Lake Erie increased significantly, especially in Ontario waters. We considered four hypotheses to explain this increase: (1) reduced competition with lake trout Salvelinus namaycush, the other major coldwater piscivore in Lake Erie; (2) increased abundance of the two main prey species, rainbow smelt Osmerus mordax and round goby Neogobius melanostomus; (3) reduced interference with burbot reproduction by alewives Alosa pseudoharengus; and (4) reduced predation by sea lampreys Petromyzon marinus on burbot. Species abundance data did not support the first three hypotheses. Our results suggested that the apparent recovery of the burbot population of Lake Erie was driven by effective sea lamprey control. Sea lamprey predation appeared to be the common factor affecting burbot abundance in Lakes Michigan, Huron, Erie, and Ontario. In addition, relatively high alewife density probably depressed burbot abundance in Lakes Ontario and Michigan. We propose that a healthy adult lake trout population may augment burbot recovery in some lakes by serving as a buffer against sea lamprey predation and will not negatively impact burbot through competition.

  15. A new species of Moraria (Crustacea: Copepoda: Harpacticoida) from the Laurentian Great Lakes

    USGS Publications Warehouse

    Reid, Janet W.; Lesko, Lynn T.

    2003-01-01

    Moraria hudsoni n. sp. is described from Trails End Bay in Lake Michigan and Prentiss Bay in Lake Huron, Michigan, USA. The new species differs from its congeners in chaetotaxy, body ornamentation, and other characters. We review published records of members of Moraria from North and Central America; no species is known from South America. Species of this genus have been found in the mountains of southern Mexico, Guatemala, and Honduras, but none of these has been validly described. In North America, eight species have been recorded from Alaska, Canada, and the conterminous USA as far south as North Carolina. We report new geographical records of M. affinis from Virginia, and of both M. cristata and M. virginiana from Maryland and Virginia. We provide a tabular key to aid in identification of the named species of Moraria in North America.

  16. Developing a Modeling Framework for Ecosystem Forecasting: The Lake Michigan Pilot

    EPA Science Inventory

    Recent multi-party efforts to coordinate modeling activities that support ecosystem management decision-making in the Great Lakes have resulted in the recommendation to convene an interagency working group that will develop a pilot approach for Lake Michigan. The process will br...

  17. Protocol to Reconstruct Historical Contaminant Loading to Large Lakes: The Lake Michigan Sediment Record of Mercury

    EPA Science Inventory

    Samples of opportunity from Pb-210 dated sediment cores collected from Lake Michigan between 1994 and 1996 were analyzed for mercury. The storage of both anthropogenic and total (post-1850) mercury in the lake was calculated to be 186 and 228 metric tons, respectively. By setti...

  18. Daytime distribution of Pontoporeia affinis off bottom in Lake Michigan

    USGS Publications Warehouse

    Wells, LaRue

    1968-01-01

    The vertical migration of the amphipod Pontoporeia affinis in Lake Michigan has been well documented by Wells, Marzolf, and McNaught and Hasler. Wells and Marzolf observed Pontoporeia off bottom only at night. McNaught and Hasler, however, found Pontoporeia above the bottom shortly after noon in a 24-hr study on 12 June 1965, and some individuals were taken just below the thermocline in all daylight hours in a similar study on 19-20 August. This paper presents evidence that Pontoporeia regularly were present above bottom during the day from April-August 1964. The data for this report were collected during a study of seasonal and depth distribution of larval bloaters (Coregonus hoyi) in Lake Michigan. Sampling was conducted from the U.S. Bureau of Commercial Fisheries RV Cisco off Saugatuck, Michigan, at intervals of about 10 days from 9 April to 14 August 1964. A few samples were taken on 22 August and 15 October.

  19. Spawning habitat unsuitability: an impediment to cisco rehabilitation in Lake Michigan?

    USGS Publications Warehouse

    Madenjian, Charles P.; Rutherford, Edward S.; Blouin, Marc A.; Sederberg, Bryan J.; Elliott, Jeff R.

    2011-01-01

    The cisco Coregonus artedi was one of the most important native prey fishes in Lake Michigan and in the other four Laurentian Great Lakes. Most of the cisco spawning in Lake Michigan was believed to have occurred in Green Bay. The cisco population in Lake Michigan collapsed during the 1950s, and the collapse was attributed in part to habitat degradation within Green Bay. Winter water quality surveys of lower Green Bay during the 1950s and 1960s indicated that the bottom dissolved oxygen (DO) concentration was less than 2 mg/L throughout much of the lower bay, and most cisco eggs would not successfully hatch at such low DO concentrations. To determine present-day spawning habitat suitability in lower Green Bay, we compared cisco egg survival in lower Green Bay with survival at a reference site (St. Marys River, Michigan–Ontario) during 2009. We also conducted winter water quality surveys in lower Green Bay and the St. Marys River during 2009 and 2010. Cisco egg survival in lower Green Bay averaged 65.3%, which was remarkably similar to and not significantly different from the mean at the St. Marys River site (64.0%). Moreover, the lowest bottom DO concentrations recorded during the winter surveys were 11.2 mg/L in lower Green Bay and 12.7 mg/L in the St. Marys River. These relatively high DO concentrations would not be expected to have any negative effect on cisco egg survival. We conclude that winter water quality conditions in lower Green Bay were suitable for successful hatching of cisco eggs and that water quality during the egg incubation period did not represent an impediment to cisco rehabilitation in Lake Michigan. Our approach to determining spawning habitat suitability for coregonids would be applicable to other aquatic systems.

  20. Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan

    USGS Publications Warehouse

    Bennett, J.P.; Jepsen, E.A.; Roth, J.A.

    2006-01-01

    Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed. Decreased cherry branch elongation, milkweed stem height and pod production, and foliar injury on both species occurred at sites around southern Lake Michigan at ozone exposures of 13 SUM06 ppm-h and 93a??98 ppb peak hourly.

  1. LAKE MICHIGAN MASS BALANCE STUDY: PROGNOSIS FOR PCBS

    EPA Science Inventory

    The Lake Michigan Mass Balance Study was conducted to measure and model nutrients, atrazine, PCBs, trans-nonachlor, and mercury to gain a better understanding of the transport and fate of these substances within the system and to aid managers in the environmental decision-making ...

  2. Waterbird mortality from botulism type E in Lake Michigan: An update

    USGS Publications Warehouse

    Brand, Christopher J.; Duncan, Ruth M.; Garrow, Scott P.; Olson, Dan; Schumann, Leonard E.

    1983-01-01

    Three outbreaks of botulism type E occurring in waterbirds on Lake Michigan since autumn 1976 are discussed. Natural ingestion of food containing type E toxin by Ring-billed Gulls (Larus delawarensis) and the presence of type E toxin in blood from moribund gulls were demonstrated. Concurrent presence of type C and type E botulinal toxins was found in a die-off of Common Loons (Gavia immer). In combination with previous reported outbreaks, these incidents suggest that this disease is geographically widespread in Lake Michigan, and that environmental conditions conducive to type E botulinal toxin production and consumption occur in both summer and autumn.

  3. Patterns of egg deposition by lake trout and lake whitefish at Tawas artificial Reef, Lake Huron, 1990-1993

    USGS Publications Warehouse

    Foster, N.R.; Kennedy, G.W.; Munawar, M.; Edsall, T.; Leach, J.

    1995-01-01

    In August 1987, the Michigan Department of Natural Resources (MDNR), with the help and co-sponsorship of Walleyes for Iosco County, constructed Tawas artificial reef to improve recreational fishing in Tawas Bay. Post-construction assessment in October, 1987, by the MDNR found twice as many adult lake trout in a gill net set on the reef as in a similar net set off the reef, indicating that lake trout already had begun to investigate this new habitat. Similar netting efforts in October 1989 caught three times as many adults on the reef as off it, even though the on-reef net was set for less than one third as long a period. Using a remotely operated vehicle (ROV), we detected prespawning aggregations of lake trout on the reef in fall 1989, and MDNR biologists set emergent fly traps on the reef in April-May 1990-1991. These fry traps captured several newly emerged lake trout and lake whitefish fry, demonstrating that eggs of both species has hatched successfully. Gill netting in 1992-1993 by U.S. Fish and Wildlife Service biologists netted large numbers of ripe lake trout in late October and ripe lake whitefish in early to mid-November. The purpose of this paper is to describe the relative quantities of eggs deposited and the spatial patterns of egg deposition by lake trout and lake whitefish at Tawas artificial reef during 1990-1993.

  4. National water-quality assessment of the Lake Erie-Lake St. Clair Basin, Michigan, Indiana, Ohio, Pennsylvania, and New York; environmental and hydrologic setting

    USGS Publications Warehouse

    Casey, G.D.; Myers, Donna N.; Finnegan, D.P.; ,

    1998-01-01

    the basin, whereas agriculture accounted for the least water-use withdrawals, at an estimated 38 Mgal/d. About 98 percent of the total water used in the basin was drawn from surface water; the remaining 2 percent was from ground water. Agricultural and urban land are the predominant land covers in the basin. Agriculture makes up approximately 74.7 percent of the total basin area; urban land use accounts for 11.2 percent; forested areas constitute 10.5 percent; and water, wetlands, rangeland, and barren land constitute less than 4.0 percent. The eight principal streams in the basin are the Clinton, Huron, and Raisin Rivers in Michigan, the Maumee, Sandusky, Cuyahoga, and Grand Rivers in Ohio, and Cattaraugus Creek in New York. The Maumee River, the largest stream in the basin, drains 6,609 mi? and discharges just under 24 percent of the streamflow from the basin into Lake Erie. Combined, the eight principal streams discharge approximately 54 percent of the surface water from the basin to the Lake Erie system per year. Average runoff increases from west to east in the basin. The glacial and recent deposits comprise the unconsolidated aquifers and confining units within the basin. Yields of wells completed in tills range from 0 to 20 gal/min (gallon per minute), but yields generally are near the lower part of this range. Fine-grained stratified deposits can be expected to yield from 0 to 3 gal/ min, and coarse-grained stratified deposits can yield 0.3 to 2,050 gal/min. Pennsylvanian sandstones can yield more than 25 gal/min, but they generally yield 10 to 25 gal/min. Mississippian sandstones in the basin generally yield 2 to 100 gal/min. The Mississippian and Devonian shales are considered to be confining units; in places, they produce small quantities of water from fractures at or near the bedrock surface. Wells completed in the Devonian and Silurian carbonates yield 25 to 500 gal/min, but higher yields have been reported in several zones.

  5. Age and growth of round gobies in Lake Michigan, with preliminary mortality estimation

    USGS Publications Warehouse

    Huo, Bin; Madenjian, Charles P.; Xie, Cong X.; Zhao, Yingming; O'Brien, Timothy P.; Czesny, Sergiusz J.

    2015-01-01

    The round goby (Neogobius melanostomus) is a prevalent invasive species throughout Lake Michigan, as well as other Laurentian Great Lakes, yet little information is available on spatial variation in round goby growth within one body of water. Age and growth of round goby at three areas of Lake Michigan were studied by otolith analysis from a sample of 659 specimens collected from 2008 to 2012. Total length (TL) ranged from 48 to 131 mm for Sturgeon Bay, from 50 to 125 mm for Waukegan, and from 54 to 129 mm for Sleeping Bear Dunes. Ages ranged from 2 to 7 years for Sturgeon Bay, from 2 to 5 years for Waukegan, and from 2 to 6 years for Sleeping Bear Dunes. Area-specific and sex-specific body–otolith relationships were used to back-calculate estimates of total length at age, which were fitted to von Bertalanffy models to estimate growth rates. For both sexes, round gobies at Sleeping Bear Dunes and Waukegan grew significantly faster than those at Sturgeon Bay. However, round goby growth did not significantly differ between Sleeping Bear Dunes and Waukegan for either sex. At all three areas of Lake Michigan, males grew significantly faster than females. Based on catch curve analysis, estimates of annual mortality rates ranged from 0.79 to 0.84. These relatively high mortality rates suggested that round gobies may be under predatory control in Lake Michigan.

  6. Application of a Lower Food Web Ecosystem Productivity Model for Investigating Dynamics of the Invasive Species Bythortrephes longimanus in Lake Michigan

    EPA Science Inventory

    A Lake Michigan Ecosystem Model (LM-Eco) that includes a detailed description of trophic levels and their interactions was developed for Lake Michigan. The LM-Eco model constitutes a first step toward a comprehensive Lake Michigan ecosystem productivity model to investigate ecos...

  7. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  8. Stakeholder views of management and decision support tools to integrate climate change into Great Lakes Lake Whitefish management

    USGS Publications Warehouse

    Lynch, Abigail J.; Taylor, William W.; McCright, Aaron M.

    2016-01-01

    Decision support tools can aid decision making by systematically incorporating information, accounting for uncertainties, and facilitating evaluation between alternatives. Without user buy-in, however, decision support tools can fail to influence decision-making processes. We surveyed fishery researchers, managers, and fishers affiliated with the Lake Whitefish Coregonus clupeaformis fishery in the 1836 Treaty Waters of Lakes Huron, Michigan, and Superior to assess opinions of current and future management needs to identify barriers to, and opportunities for, developing a decision support tool based on Lake Whitefish recruitment projections with climate change. Approximately 64% of 39 respondents were satisfied with current management, and nearly 85% agreed that science was well integrated into management programs. Though decision support tools can facilitate science integration into management, respondents suggest that they face significant implementation barriers, including lack of political will to change management and perceived uncertainty in decision support outputs. Recommendations from this survey can inform development of decision support tools for fishery management in the Great Lakes and other regions.

  9. Great Lakes Literacy Principles

    NASA Astrophysics Data System (ADS)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  10. Estimating parasitic sea lamprey abundance in Lake Huron from heterogenous data sources

    USGS Publications Warehouse

    Young, Robert J.; Jones, Michael L.; Bence, James R.; McDonald, Rodney B.; Mullett, Katherine M.; Bergstedt, Roger A.

    2003-01-01

    The Great Lakes Fishery Commission uses time series of transformer, parasitic, and spawning population estimates to evaluate the effectiveness of its sea lamprey (Petromyzon marinus) control program. This study used an inverse variance weighting method to integrate Lake Huron sea lamprey population estimates derived from two estimation procedures: 1) prediction of the lake-wide spawning population from a regression model based on stream size and, 2) whole-lake mark and recapture estimates. In addition, we used a re-sampling procedure to evaluate the effect of trading off sampling effort between the regression and mark-recapture models. Population estimates derived from the regression model ranged from 132,000 to 377,000 while mark-recapture estimates of marked recently metamorphosed juveniles and parasitic sea lampreys ranged from 536,000 to 634,000 and 484,000 to 1,608,000, respectively. The precision of the estimates varied greatly among estimation procedures and years. The integrated estimate of the mark-recapture and spawner regression procedures ranged from 252,000 to 702,000 transformers. The re-sampling procedure indicated that the regression model is more sensitive to reduction in sampling effort than the mark-recapture model. Reliance on either the regression or mark-recapture model alone could produce misleading estimates of abundance of sea lampreys and the effect of the control program on sea lamprey abundance. These analyses indicate that the precision of the lakewide population estimate can be maximized by re-allocating sampling effort from marking sea lampreys to trapping additional streams.

  11. FISH COMMUNITIES IN LAKE IN SUBREGION 2B (UPPER PENINSULA OF MICHIGAN) IN RELATION TO LAKE ACIDITY: VOLUME I

    EPA Science Inventory

    Surveys of fish community status were conducted in summer 1987 in 49 lakes in Subregion 20, the Upper Peninsula of Michigan, as part of Phase II of the Eastern Lake Survey. Lake selection involved a variable probability sampling design. Fish communities were surveyed using gill n...

  12. Links between type E botulism outbreaks, lake levels, and surface water temperatures in Lake Michigan, 1963-2008

    USGS Publications Warehouse

    Lafrancois, Brenda Moraska; Riley, Stephen C.; Blehert, David S.; Ballmann, Anne E.

    2011-01-01

    Relationships between large-scale environmental factors and the incidence of type E avian botulism outbreaks in Lake Michigan were examined from 1963 to 2008. Avian botulism outbreaks most frequently occurred in years with low mean annual water levels, and lake levels were significantly lower in outbreak years than in non-outbreak years. Mean surface water temperatures in northern Lake Michigan during the period when type E outbreaks tend to occur (July through September) were significantly higher in outbreak years than in non-outbreak years. Trends in fish populations did not strongly correlate with botulism outbreaks, although botulism outbreaks in the 1960s coincided with high alewife abundance, and recent botulism outbreaks coincided with rapidly increasing round goby abundance. Botulism outbreaks occurred cyclically, and the frequency of outbreaks did not increase over the period of record. Climate change scenarios for the Great Lakes predict lower water levels and warmer water temperatures. As a consequence, the frequency and magnitude of type E botulism outbreaks in the Great Lakes may increase.

  13. Global and regional contributions to total mercury concentrations in Lake Michigan water

    EPA Science Inventory

    A calibrated mercury component mass balance model, LM2-Mercury, was applied to Lake Michigan to predict mercury concentrations in the lake under different mercury loadings, mercury air concentrations, and management scenarios. Although post-audit data are few, model predictions (...

  14. A MODELLING FRAMEWORK FOR MERCURY CYCLING IN LAKE MICHIGAN

    EPA Science Inventory

    A time-dependent mercury model was developed to describe mercury cycling in Lake Michigan. The model addresses dynamic relationships between net mercury loadings and the resulting concentrations of mercury species in the water and sediment. The simplified predictive modeling fram...

  15. Modeling the Sensitivity of Primary Production in Lake Michigan to Nutrient Loads with and without Dreissenid Mussels

    EPA Science Inventory

    Dreissenid (quagga) mussels became established in large numbers in Lake Michigan beginning around 2004. Since then, significant changes have been observed in Lake Michigan open-water chlorophyll and nutrient concentrations, and in primary production. We updated the LM3-Eutro mode...

  16. 75 FR 78928 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan, Delay of Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Advisories may also be issued when lake ice exists that could be hazardous to small boats. Although river...-AA17 Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan, Delay of Effective... Lake Michigan. This rule finalized interim regulations that have been in effect since 2002, with some...

  17. 75 FR 26094 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... establishing a temporary safety zone from Brandon Road Lock and Dam to Lake Michigan. This temporary safety...

  18. Response of the St. Joseph River to lake level changes during the last 12,000 years in the Lake Michigan basin

    USGS Publications Warehouse

    Kincare, K.A.

    2007-01-01

    The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography

  19. Predicting water quality by relating secchi-disk transparency and chlorophyll a measurements to satellite imagery for Michigan Inland Lakes, August 2002

    USGS Publications Warehouse

    Fuller, L.M.; Aichele, Stephen S.; Minnerick, R.J.

    2004-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Environmental Quality have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Through this program, approximately 730 of Michigan's 11,000 inland lakes will be monitored once during this 15-year study. Targeted lakes will be sampled during spring turnover and again in late summer to characterize water quality. Because more extensive and more frequent sampling is not economically feasible in the Lake Water Quality Assessment program, the U.S. Geological Survey and Michigan Department of Environmental Quality investigate the use of satellite imagery as a means of estimating water quality in unsampled lakes. Satellite imagery has been successfully used in Minnesota, Wisconsin, and elsewhere to compute the trophic state of inland lakes from predicted secchi-disk measurements. Previous attempts of this kind in Michigan resulted in a poorer fit between observed and predicted data than was found for Minnesota or Wisconsin. This study tested whether estimates could be improved by using atmospherically corrected satellite imagery, whether a more appropriate regression model could be obtained for Michigan, and whether chlorophyll a concentrations could be reliably predicted from satellite imagery in order to compute trophic state of inland lakes. Although the atmospheric-correction did not significantly improve estimates of lake-water quality, a new regression equation was identified that consistently yielded better results than an equation obtained from the literature. A stepwise regression was used to determine an equation that accurately predicts chlorophyll a concentrations in northern Lower Michigan.

  20. Estimation of alewife biomass in Lake Michigan, 1967-1978

    USGS Publications Warehouse

    Hatch, Richard W.; Haack, Paul M.; Brown, Edward H.

    1981-01-01

    The buildup of salmonid populations in Lake Michigan through annual stockings of hatchery-reared fish may become limited by the quantity of forage fish, mainly alewives Alosa pseudoharengus, available for food. As a part of a continuing examination of salmonid predator-prey relations in Lake Michigan, we traced changes in alewife biomass estimated from bottom-trawl surveys conducted in late October and early November 1967–1978. Weight of adult alewives trawled per 0.5 hectare of bottom (10-minute drag) at 16 depths along eight transects between 1973 and 1977 formed a skewed distribution: 72 of 464 drags caught no alewives; 89 drags caught less than 1 kg; and 2 drags caught more than 100 kg (maximum 159 kg). Analysis of variance in normalized catch per tow indicated highly significant differences between the main effects of years and depths, and highly significant differences in the interactions of years and transects, years and depths, and transects and depths. Five geographic and depth strata, formed by combining parts of transects wherein mean catch rate did not differ significantly, were the basis for calculating annual estimates of adult alewife biomass (with 90% confidence intervals). Estimated biomass of alewives (±90% confidence limits) in Lake Michigan proper (Green Bay and Grand Traverse Bay excluded) rose gradually from 46,000 (±9,000) t in 1967 to 114,000 (±17,000) t in 1973, declined to 45,000 (±8,000) t in 1977, and rose to 77,000 (±19,000) t in 1978.

  1. Using bald eagles to track spatial (1999-2008) and temporal (1987-1992, 1999-2003, and 2004-2008) trends of contaminants in Michigan's aquatic ecosystems.

    PubMed

    Wierda, Michael R; Leith, Katherine F; Roe, Amy S; Grubb, Teryl G; Sikarskie, James G; Best, David A; Pittman, H Tyler; Fuentes, Latice; Simon, Kendall L; Bowerman, William

    2016-08-01

    The bald eagle (Haliaeetus leucocephalus) is an extensively researched tertiary predator. Studies have delineated information about its life history and the influences of various stressors on its reproduction. Due to the bald eagle's position at the top of the food web, it is susceptible to biomagnification of xenobiotics. The Michigan Department of Environmental Quality implemented a program in 1999 to monitor persistent chemicals including polychlorinated biphenols (PCBs) and dichlorodiphenyltrichloroethane (DDE). The objectives of the present study were to evaluate spatial and temporal trends of PCBs and organochlorine pesticides in nestling bald eagles of Michigan. The authors' study found that concentrations of PCBs and DDE were higher in Great Lakes areas with Lakes Michigan and Lake Huron having the highest concentrations of DDE and Lake Erie having the highest concentrations of PCBs. Temporally (1987-1992, 1999-2003, and 2004-2008) the present study found declines in PCB and DDE concentrations with a few exceptions. Continued monitoring of Michigan bald eagle populations is suggested for a couple of reasons. First, nestling blood contaminant levels are an appropriate method to monitor ecosystem contaminant levels. Second, from 1999 to 2008 PCB and DDE concentrations for 30% and 40%, respectively, of the nestling eagles sampled were above the no observable adverse effect level (NOAEL) for bald eagles. Lastly, with the continued development and deployment of new chemistries a continuous long term monitoring program is an invaluable resource. Environ Toxicol Chem 2016;35:1995-2002. © 2016 SETAC. © 2016 SETAC.

  2. Life history of the spottail shiner (Notropis hudsonius) in southeastern Lake Michigan, the Kalamazoo River, and western Lake Erie

    USGS Publications Warehouse

    Wells, LaRue; House, Robert

    1974-01-01

    Young shiners started growing earlier in the year than older ones in all three waters. Males and females of the same age resumed growth at about the same time. The growing season began as early as mid-May in the Kalamazoo River and continued as late as September or early October in the other two waters. Small spottail shiners in Lake Michigan and the Kalamazoo River weighed about the same at a given length, but at lengths greater than about 100 mm the lake fish were heavier. In all three waters, spottail shiners matured at about the same length, and males at a somewhat smaller size than females. Smallest mature fish were 65-69 mm long, and the largest immatures were 80-84 mm. In Lake Michigan about half and in Lake Erie about three-quarters of age-I fish were mature, as were all age-II fish in both lakes. In the Kalamazoo River a few fish of age II and all of age III were mature. The spawning season in Lake Michigan in 1964 was from late June or early July to late July, whereas in 1972, which had a colder spring, spawning occurred from mid-July to late August or early September. All shiners in the Kalamazoo River had spawned by the end of June if 1964. Lake Erie spottail shiners spawned during early June to early or mid-July in 1958. Spottail shiners 87-143 mm long from the different waters contained 915 to 8,898 mature eggs.

  3. MERCURY IN AND FLUXES TO LAKE MICHIGAN SURFICIAL SEDIMENTS

    EPA Science Inventory

    Sediment samples were collected from Lake Michigan between 1994 and 1996. One purpose of the coring was to define the horizontal distribution of mercury in the surficial 1 cm of sediment. When possible the sediments were box cored. Subcores for mercury analysis were sectioned at ...

  4. FISH COMMUNITIES IN LAKE IN SUBREGION 2B (UPPER PENINSULA OF MICHIGAN) IN RELATION TO LAKE ACIDITY: VOLUME II. APPENDICES

    EPA Science Inventory

    Surveys of fish community status were conducted in summer 1987 in 49 lakes in Subregion 20, the Upper Peninsula of Michigan, as part of Phase II of the Eastern Lake Survey. Lake selection involved a variable probability sampling design. Fish communities were surveyed using gill n...

  5. Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan.

    PubMed

    Bennett, J P; Jepsen, E A; Roth, J A

    2006-07-01

    Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed.

  6. Potential impacts of water diversion on fishery resources in the Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.

    1984-01-01

    Uses of Great Lakes water within the Great Lakes basin are steadily increasing, and critical water shortages elsewhere may add to the demands for diversions of water out of the basin in the near future. The impacts of such diversions on fish in the Great Lakes must be considered in the context of in-basin uses of the water, because in-basin uses already adversely affect the fishery resources. Temporary in-basin water withdrawals from Lake Michigan by industry in 1980 equaled 260% of the total volume of water between the shoreline and the 10-meter depth - the littoral waters most heavily used by fish as spawning and nursery grounds. Nearly 100% of the fish removed by these water withdrawals were killed. Enough young alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) in Lake Michigan and young yellow perch (Perca flavescens) in western Lake Erie have been removed at water intakes in recent years to reduce the productivity and biomass of adult fish stocks. Out-of-basin diversions of water at Chicago and at the Welland Canal, channel modifications in the St. Clair River, and in-basin consumptive water withdrawals have lowered the annual mean water level of Lakes Michigan and Huron by about 27 cm and that of Lake Erie by about 10 cm, dewatering wetlands that historically served as spawning and nursery habitat for many valuable fish species. The dollar value of fish lost to water diversions and withdrawals has not yet been estimated, but water withdrawals alone have already reduced the annual economic impact of the Great Lakes fisheries, which has been estimated to be 1.16 billion dollars.

  7. Nearshore Placement Techniques in Southern Lake Michigan

    DTIC Science & Technology

    2018-03-01

    ER D C /C HL T R- 18 -3 Regional Sediment Management (RSM) Program Nearshore Placement Techniques in Southern Lake Michigan Co as ta...online library at http://acwc.sdp.sirsi.net/client/default. Regional Sediment Management (RSM) Program ERDC/CHL TR-18-3 March 2018 Nearshore...This study was conducted for Headquarters, U.S. Army Corps of Engineers (HQUSACE), Washington, DC, under the USACE Regional Sediment Management

  8. River-Lake Mixing, Eutrophication, and Hypoxia in Green Bay, Lake Michigan

    NASA Astrophysics Data System (ADS)

    Klump, J. V.; LaBuhn, S.

    2014-12-01

    Despite being a freshwater system, Green Bay in Lake Michigan, has many estuarine-like characteristics, including water mass exchange and the mixing between riverine inflow and the open lake. The bay has experienced excessive nutrient loading for decades resulting in hyper-eutrophic conditions and extensive algal blooms. Combined with a restricted, estuarine like circulation, this has resulted in the reoccurrence of late summer "dead zones" and wide spread bottom water oxygen concentrations below water quality standards. The onset of hypoxia is clearly related to thermal stratification which, in Green Bay, arises both from direct atmospheric forcing, i.e. low winds, high air temperatures, and increased solar radiation, and from indirect atmospheric forcing that drives circulation patterns resulting in the southerly incursion of cooler Lake Michigan bottom waters onto highly reducing organic rich sediment deposits. This circulation pattern can re-stratify a well-mixed water column within hours, and can set up stable stratified water column conditions that persist for days to weeks during which time sediment oxygen demand rates are sufficient to completely deplete hypolimnetic oxygen. Modeling hypoxia, therefore, is somewhat more complex than in a system which is driven largely or solely by seasonal thermal fluctuations. Understanding both the general circulation and the onset and duration of stratification in the bay are essential to determining the potential for hypoxic conditions to improve or worsen, particularly in the face of climate change projections of warmer conditions, less ice cover, and an earlier summer. Using D and O-18 isotopes in water, Rn-222, and dissolved methane as tracers we examine the relationship between river/lake mixing, transport rates and oxygen depletion in an attempt to verify the spatial and temporal scales of hypoxia in the bay, and estimate the potential impact of future climate change projections.

  9. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Guo, Laodong

    2016-12-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  10. Comparison of catch and lake trout bycatch in commercial trap nets and gill nets targeting lake whitefish in northern Lake Huron

    USGS Publications Warehouse

    Johnson, James E.; Ebener, Mark P.; Gebhardt, Kenneth; Bergstedt, Roger

    2004-01-01

    We compared seasonal lake whitefish catch rates, lake trout bycatch, and gearinduced lake trout mortality between commercial trap nets and gill nets in north-central Lake Huron. Onboard monitors recorded catches from 260 gill net and 96 trap net lifts from October 1998 through December 1999. Catch rates for lake whitefish were highest in fall for both gear types, reflecting proximity of spawning sites to the study area. Lake whitefish catch rates were also relatively high in spring but low in both gear types in summer. Lake trout were the principal bycatch species in both gears. The lake trout bycatch was lowest in both gear types in fall, highest in gill nets in spring, and highest in trap nets in summer. The ratio of lake trout to legal whitefish (the target species) was highest in summer and lowest in fall in both gear types. The high lake trout ratio in summer was due principally to low catch rates of lake whitefish. All but 3 of 186 live lake trout removed from trap net pots survived for at least two days of observation in laboratory tanks. Therefore, we estimated that post-release survival of trap netted lake trout that had not been entangled in the mesh was 98.4%. In addition, we accounted for stress-induced mortality for lake trout that were live at capture but entangled in the mesh of either gear type. Resulting estimates of lake trout survival were higher in trap nets (87.8%) than in gill nets (39.6%). The number of lake trout killed per lift was highest during summer in trap nets and during spring in gill nets. In trap nets, 85% of dead lake trout were observed to be entangled in the mesh of the pot or tunnels. Survival rates of lake trout in gill nets were higher in our study than reported by others, probably because our nets were hand lifted in a small boat. Our trap net-induced mortality estimates on lake trout were higher than those reported by others because we adjusted our estimates to account for post-release mortality caused by handling and

  11. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    USGS Publications Warehouse

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  12. The Stratification Analysis of Sediment Data for Lake Michigan

    EPA Science Inventory

    This research paper describes the development of spatial statistical tools that are applied to investigate the spatial trends of sediment data sets for nutrients and carbon in Lake Michigan. All of the sediment data utilized in the present study was collected over a two year per...

  13. Relative abundance, site fidelity, and survival of adult lake trout in Lake Michigan from 1999 to 2001: Implications for future restoration strategies

    USGS Publications Warehouse

    Bronte, C.R.; Holey, M.E.; Madenjian, C.P.; Jonas, J.L.; Claramunt, R.M.; McKee, P.C.; Toneys, M.L.; Ebener, M.P.; Breidert, B.; Fleischer, G.W.; Hess, R.; Martell, A.W.; Olsen, E.J.

    2007-01-01

    We compared the relative abundance of lake trout Salvelinus namaycush spawners in gill nets during fall 1999–2001 in Lake Michigan at 19 stocked spawning sites with that at 25 unstocked sites to evaluate how effective site-specific stocking was in recolonizing historically important spawning reefs. The abundance of adult fish was higher at stocked onshore and offshore sites than at unstocked sites. This suggests that site-specific stocking is more effective at establishing spawning aggregations than relying on the ability of hatchery-reared lake trout to find spawning reefs, especially those offshore. Spawner densities were generally too low and too young at most sites to expect significant natural reproduction. However, densities were sufficiently high at some sites for reproduction to occur and therefore the lack of recruitment was attributable to other factors. Less than 3% of all spawners could have been wild fish, which indicates that little natural reproduction occurred in past years. Wounding by sea lamprey Petromyzon marinus was generally lower for Seneca Lake strain fish and highest for strains from Lake Superior. Fish captured at offshore sites in southern Lake Michigan had the lowest probability of wounding, while fish at onshore sites in northern Lake Michigan had the highest probability. The relative survival of the Seneca Lake strain was higher than that of the Lewis Lake or the Marquette strains for the older year-classes examined. Survival differences among strains were less evident for younger year-classes. Recaptures of coded-wire-tagged fish of five strains indicated that most fish returned to their stocking site or to a nearby site and that dispersal from stocking sites during spawning was about 100 km. Restoration strategies should rely on site-specific stocking of lake trout strains with good survival at selected historically important offshore spawning sites to increase egg deposition and the probability of natural reproduction in Lake

  14. Species interactions of the alewife in the Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1970-01-01

    The alewife (Alosa pseudoharengus) has caused serious problems in the Great Lakes for almost 100 years. It entered Lake Ontario in abundance via the Erie Canal during the 1860's when major piscivores were declining, and became the dominant species in the lake during the 1870's. The alewife subsequently spread throughout the Great Lakes and became the dominant species in Lakes Huron and Michigan as major piscivores declined. In lakes where it became extremely abundant, the shallow-water planktivores declined in the first decade after alewife establishment, the minor piscivores increased then declined in the second decade, and the deep-water planktivores declined in the third decade. The consequence has been a general reduction in fishery productivity. Rehabilitation will require extreme reduction of the alewife, and restoration of an interacting complex of deep- and shallow-water forage species, and minor and major piscivores, either by reestablishing species affected by the alewife, or by the introduction of new species that can thrive under the new ecological conditions of the lakes.

  15. Lake Michigan nearshore: How modeling scenarios can improve dialog between modelers and ecologists

    EPA Science Inventory

    The nearshore of Lake Michigan, similarly to the other Great Lakes, experiences environmental concerns due to excessive eutrophication. Assessing the nearshore is challenging because fluctuating nutrient loads, and ever-changing currents cause this area to exhibit large spatial a...

  16. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    USGS Publications Warehouse

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  17. Examining Ecological and Ecosystem Level Impacts of Aquatic Invasive Species in Lake Michigan Using An Ecosystem Productivity Model, LM-Eco

    EPA Science Inventory

    Ecological and ecosystem-level impacts of aquatic invasive species in Lake Michigan were examined using the Lake Michigan Ecosystem Model (LM-Eco). The LM-Eco model includes a detailed description of trophic levels and their interactions within the lower food web of Lake Michiga...

  18. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART I

    EPA Science Inventory

    The southern Lake Michigan aea continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues tothese sources and their contributions to urban polluti...

  19. The presence and near-shore transport of human fecal pollution in Lake Michigan beaches

    USGS Publications Warehouse

    Molloy, S.L.; Liu, L.B.; Phanikumar, M.S.; Jenkins, T.M.; Wong, M.V.; Rose, J.B.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.

    2005-01-01

    The Great Lakes are a source of water for municipal, agricultural and industrial use, and support significant recreation, commercial and sport fishing industries. Every year millions of people visit the 500 plus recreational beaches in the Great Lakes. An increasing public health risk has been suggested with increased evidence of fecal contamination at the shoreline. To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risk associated with swimming at these beaches, the near-shore waters of Mt Baldy Beach, Lake Michigan and Trail Creek, a tributary discharging into the lake were examined for fecal pollution indicators. A model of surf zone hydrodynamics coupled with a transport model with first-order inactivation of pollutant was used to understand the relative importance of different processes operating in the surf zone (e.g. physical versus biological processes). The Enterococcus human fecal pollution marker, which targets a putative virulence factor, the enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) from the tributaries draining into Lake Michigan and in 6/30 samples (20%) from Lake Michigan beaches. Preliminary analysis suggests that the majority of fecal indicator bactateria variation and water quality changes at the beaches can be explained by inputs from the influential stream and hydrometeorological conditions. Using modeling methods to predict impaired water quality may help reduce potential health threats to recreational visitors.

  20. Body burden levels of dioxin, furans, and PCBs among frequent consumers of Great Lakes sport fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, C.; Hanrahan, L.; Anderson, H.A.

    1999-02-01

    Dioxins, furans, and polychlorinated biphenyls (PCBs) are toxic, persist in the environment, and bioaccumulate to concentrations that can be harmful to humans. The Health Departments of five GL states, Wisconsin, Michigan, Ohio, Illinois, and Indiana, formed a consortium to study body burden levels of chemical residues in fish consumers of Lakes Michigan, Huron, and Erie. In Fall 1993, a telephone survey was administered to sport angler households to obtain fish consumption habits and demographics. A blood sample was obtained from a portion of the study subjects. One hundred serum samples were analyzed for 8 dioxin, 10 furan, and 4 coplanarmore » PCB congeners. Multiple linear regression was conducted to assess the predictability of the following covariates: GL sport fish species, age, BMI, gender, years sport fish consumed, and lake. Median total dioxin toxic equivalents (TEq), total furan TEq, and total coplanar PCB TEq were higher among all men than all women (P = 0.0001). Lake trout, salmon, age, BMI, and gender were significant regression predictors of log (total coplanar PCBs). Lake trout, age, gender, and lake were significant regression predictors of log (total furans). Age was the only significant predictor of total dioxin levels.« less

  1. DEVELOPMENT OF A CONTAMINANT TRANSPORT AND FATE MASS BALANCE CALIBRATION MODEL FOR LAKE MICHIGAN MASS BALANCE PROJECT (LMMBP)

    EPA Science Inventory

    Lake Michigan Mass Balance Project (LMMBP) was initiated to directly support the development of a lakewide management plan (LaMP) for Lake Michigan. A mass balance modeling approach is proposed for the project to addrss the realtionship between sources of toxic chemicals and thei...

  2. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART III

    EPA Science Inventory

    The southern Lake Michigan aea continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban polluti...

  3. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART II

    EPA Science Inventory

    The southern Lake Michigan area continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban pollut...

  4. Mercury mass balance in Lake Michigan--the knowns and unknowns

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  5. Stable isotope differences among the Lake Michigan 2015 CSMI transects

    EPA Science Inventory

    During the Lake Michigan 2015 Cooperative Science and Monitoring Initiative (CSMI), eight transects situated near tributaries that present a gradient of phosphorus loads were sampled from nearshore to offshore during May, July, and September. Our objective was to evaluate associa...

  6. Predicting water quality by relating secchi-disk transparency and chlorophyll a measurements to Landsat satellite imagery for Michigan inland lakes, 2001-2006

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2007-01-01

    The State of Michigan has more than 11,000 inland lakes; approximately 3,500 of these lakes are greater than 25 acres. The USGS, in cooperation with the Michigan Department of Environmental Quality (MDEQ), has been monitoring the quality of inland lakes in Michigan through the Lake Water Quality Assessment monitoring program. Approximately 100 inland lakes will be sampled per year from 2001 to 2015. Volunteers coordinated by MDEQ started sampling lakes in 1974, and continue to sample to date approximately 250 inland lakes each year through the Cooperative Lakes Monitoring Program (CLMP), Michigan’s volunteer lakes monitoring program. Despite this sampling effort, it is still impossible to physically collect the necessary water-quality measurements for all 3,500 Michigan inland lakes. Therefore, a technique was used by USGS, modeled after Olmanson and others (2001), in cooperation with MDEQ that uses satellite remote sensing to predict water quality in unsampled inland lakes greater than 25 acres. Water-quality characteristics that are associated with water clarity can be predicted for Michigan inland lakes by relating sampled measurements of secchi-disk transparency (SDT) and chlorophyll a concentrations (Chl-a), to satellite imagery. The trophic state index (TSI) which is an indicator of the biological productivity can be calculated based on SDT measurements, Chl-a concentrations, and total phosphorus (TP) concentrations measured near the lake’s surface. Through this process, unsampled inland lakes within the fourteen Landsat satellite scenes encompassing Michigan can be translated into estimated TSI from either predicted SDT or Chl-a (fig. 1).

  7. Novel Large Sulfur Bacteria in the Metagenomes of Groundwater-Fed Chemosynthetic Microbial Mats in the Lake Huron Basin

    PubMed Central

    Sharrar, Allison M.; Flood, Beverly E.; Bailey, Jake V.; Jones, Daniel S.; Biddanda, Bopaiah A.; Ruberg, Steven A.; Marcus, Daniel N.; Dick, Gregory J.

    2017-01-01

    Little is known about large sulfur bacteria (LSB) that inhabit sulfidic groundwater seeps in large lakes. To examine how geochemically relevant microbial metabolisms are partitioned among community members, we conducted metagenomic analysis of a chemosynthetic microbial mat in the Isolated Sinkhole, which is in a deep, aphotic environment of Lake Huron. For comparison, we also analyzed a white mat in an artesian fountain that is fed by groundwater similar to Isolated Sinkhole, but that sits in shallow water and is exposed to sunlight. De novo assembly and binning of metagenomic data from these two communities yielded near complete genomes and revealed representatives of two families of LSB. The Isolated Sinkhole community was dominated by novel members of the Beggiatoaceae that are phylogenetically intermediate between known freshwater and marine groups. Several of these Beggiatoaceae had 16S rRNA genes that contained introns previously observed only in marine taxa. The Alpena fountain was dominated by populations closely related to Thiothrix lacustris and an SM1 euryarchaeon known to live symbiotically with Thiothrix spp. The SM1 genomic bin contained evidence of H2-based lithoautotrophy. Genomic bins of both the Thiothrix and Beggiatoaceae contained genes for sulfur oxidation via the rDsr pathway, H2 oxidation via Ni-Fe hydrogenases, and the use of O2 and nitrate as electron acceptors. Mats at both sites also contained Deltaproteobacteria with genes for dissimilatory sulfate reduction (sat, apr, and dsr) and hydrogen oxidation (Ni-Fe hydrogenases). Overall, the microbial mats at the two sites held low-diversity microbial communities, displayed evidence of coupled sulfur cycling, and did not differ largely in their metabolic potentials, despite the environmental differences. These results show that groundwater-fed communities in an artesian fountain and in submerged sinkholes of Lake Huron are a rich source of novel LSB, associated heterotrophic and sulfate

  8. Novel Large Sulfur Bacteria in the Metagenomes of Groundwater-Fed Chemosynthetic Microbial Mats in the Lake Huron Basin.

    PubMed

    Sharrar, Allison M; Flood, Beverly E; Bailey, Jake V; Jones, Daniel S; Biddanda, Bopaiah A; Ruberg, Steven A; Marcus, Daniel N; Dick, Gregory J

    2017-01-01

    Little is known about large sulfur bacteria (LSB) that inhabit sulfidic groundwater seeps in large lakes. To examine how geochemically relevant microbial metabolisms are partitioned among community members, we conducted metagenomic analysis of a chemosynthetic microbial mat in the Isolated Sinkhole, which is in a deep, aphotic environment of Lake Huron. For comparison, we also analyzed a white mat in an artesian fountain that is fed by groundwater similar to Isolated Sinkhole, but that sits in shallow water and is exposed to sunlight. De novo assembly and binning of metagenomic data from these two communities yielded near complete genomes and revealed representatives of two families of LSB. The Isolated Sinkhole community was dominated by novel members of the Beggiatoaceae that are phylogenetically intermediate between known freshwater and marine groups. Several of these Beggiatoaceae had 16S rRNA genes that contained introns previously observed only in marine taxa. The Alpena fountain was dominated by populations closely related to Thiothrix lacustris and an SM1 euryarchaeon known to live symbiotically with Thiothrix spp. The SM1 genomic bin contained evidence of H 2 -based lithoautotrophy. Genomic bins of both the Thiothrix and Beggiatoaceae contained genes for sulfur oxidation via the rDsr pathway, H 2 oxidation via Ni-Fe hydrogenases, and the use of O 2 and nitrate as electron acceptors. Mats at both sites also contained Deltaproteobacteria with genes for dissimilatory sulfate reduction ( sat, apr , and dsr ) and hydrogen oxidation (Ni-Fe hydrogenases). Overall, the microbial mats at the two sites held low-diversity microbial communities, displayed evidence of coupled sulfur cycling, and did not differ largely in their metabolic potentials, despite the environmental differences. These results show that groundwater-fed communities in an artesian fountain and in submerged sinkholes of Lake Huron are a rich source of novel LSB, associated heterotrophic and sulfate

  9. Changes in stable isotope composition in Lake Michigan trout ...

    EPA Pesticide Factsheets

    Researchers have frequently sought to use environmental archives of sediment, peat and glacial ice to try and assess historical trends in atmospheric mercury (Hg) deposition to aquatic ecosystems. While this information is valuable in the context of identifying temporal source trends, these types of assessments cannot account for likely changes in bioavailability of Hg sources that are tied to the formation of methylmercury (MeHg) and accumulation in fish tissues. For this study we propose the use of long-term fish archives and Hg stable isotope determination as an improved means to relate temporal changes in fish Hg levels to varying Hg sources in the Great Lakes. For this study we acquired 180 archived fish composites from Lake Michigan over a 40-year time period (1975 to 2014) from the Great Lakes Fish Monitoring and Surveillance Program, which were analyzed for their total Hg content and Hg isotope abundances. The results reveal that Hg sources to Lake Michigan trout (Salvelinus namaycush) have encountered considerable changes as well as a large shift in the food web trophic position as a result of the introduction of several invasive species, especially the recent invasion of dreissenid mussels. Total Hg concentrations span a large range (1,600 to 150 ng g-1) and exhibit large variations from 1975 to 1985. Ä199Hg signatures similarly exhibit large variation (3.2 to 6.9‰) until 1985, followed by less variation through the end of the data record in 2014.

  10. 76 FR 63199 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... of Engineers' scheduled maintenance shutdown of Barrier IIB. During the enforcement period, entry...

  11. Side-scan sonar mapping of lake trout spawning habitat in northern Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Poe, Thomas P.; Nester, Robert T.; Brown, Charles L.

    1989-01-01

    Native stocks of lake trout Salvelinus namaycush were virtually or completely extirpated from the lower four Great Lakes by the early 1960s. The failure of early attempts to reestablish self-sustaining populations of lake trout was attributed partly to the practice of stocking hatcheryreared juveniles at locations and over substrates that had not been used in the past for spawning by native fish. Subsequent attempts to improve the selection of stocking locations were impeded by the lack of reliable information on the distribution of substrates on historical spawning grounds. Here we demonstrate the potential of side-scan sonar to substantially expand the data base needed to pinpoint the location of substrates where lake trout eggs, fry, or juveniles could be stocked to maximize survival and help ensure that survivors returning to spawn would encounter suitable substrates. We also describe the substrates and bathymetry of large areas on historical lake trout spawning grounds in the Fox Island Lake Trout Sanctuary in northern Lake Michigan. These areas could be used to support a contemporary self-sustaining lake trout population in the sanctuary and perhaps also in adjacent waters.

  12. Asynchrony in the inter-annual recruitment of lake whitefish Coregonus clupeaformis in the Great Lakes region

    USGS Publications Warehouse

    Zischke, Mitchell T.; Bunnell, David B.; Troy, Cary D.; Berglund, Eric K.; Caroffino, David C.; Ebener, Mark P.; He, Ji X.; Sitar, Shawn P.; Hook, Tomas O.

    2017-01-01

    Spatially separated fish populations may display synchrony in annual recruitment if the factors that drive recruitment success, particularly abiotic factors such as temperature, are synchronised across broad spatial scales. We examined inter-annual variation in recruitment among lake whitefish (Coregonus clupeaformis) populations in lakes Huron, Michigan and Superior using fishery-dependent and -independent data from 1971 to 2014. Relative year-class strength (RYCS) was calculated from catch-curve residuals for each year class across multiple sampling years. Pairwise comparison of RYCS among datasets revealed no significant associations either within or between lakes, suggesting that recruitment of lake whitefish is spatially asynchronous. There was no consistent correlation between pairwise agreement and the distance between datasets, and models to estimate the spatial scale of recruitment synchrony did not fit well to these data. This suggests that inter-annual recruitment variation of lake whitefish is asynchronous across broad spatial scales in the Great Lakes. While our method primarily evaluated year-to-year recruitment variation, it is plausible that recruitment of lake whitefish varies at coarser temporal scales (e.g. decadal). Nonetheless, our findings differ from research on some other Coregonus species and suggest that local biotic or density-dependent factors may contribute strongly to lake whitefish recruitment rather than inter-annual variability in broad-scale abiotic factors.

  13. Identifying the origin of waterbird carcasses in Lake Michigan using a neural network source tracking model

    USGS Publications Warehouse

    Kenow, Kevin P.; Ge, Zhongfu; Fara, Luke J.; Houdek, Steven C.; Lubinski, Brian R.

    2016-01-01

    Avian botulism type E is responsible for extensive waterbird mortality on the Great Lakes, yet the actual site of toxin exposure remains unclear. Beached carcasses are often used to describe the spatial aspects of botulism mortality outbreaks, but lack specificity of offshore toxin source locations. We detail methodology for developing a neural network model used for predicting waterbird carcass motions in response to wind, wave, and current forcing, in lieu of a complex analytical relationship. This empirically trained model uses current velocity, wind velocity, significant wave height, and wave peak period in Lake Michigan simulated by the Great Lakes Coastal Forecasting System. A detailed procedure is further developed to use the model for back-tracing waterbird carcasses found on beaches in various parts of Lake Michigan, which was validated using drift data for radiomarked common loon (Gavia immer) carcasses deployed at a variety of locations in northern Lake Michigan during September and October of 2013. The back-tracing model was further used on 22 non-radiomarked common loon carcasses found along the shoreline of northern Lake Michigan in October and November of 2012. The model-estimated origins of those cases pointed to some common source locations offshore that coincide with concentrations of common loons observed during aerial surveys. The neural network source tracking model provides a promising approach for identifying locations of botulinum neurotoxin type E intoxication and, in turn, contributes to developing an understanding of the dynamics of toxin production and possible trophic transfer pathways.

  14. Applications of agent-based modeling to nutrient movement Lake Michigan

    EPA Science Inventory

    As part of an ongoing project aiming to provide useful information for nearshore management (harmful algal blooms, nutrient loading), we explore the value of agent-based models in Lake Michigan. Agent-based models follow many individual “agents” moving through a simul...

  15. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders.

    PubMed

    Cuhel, Russell L; Aguilar, Carmen

    2013-01-01

    Lake Michigan, a 58,000-km(2) freshwater inland sea, is large enough to have persistent basin-scale circulation yet small enough to enable development of approximately balanced budgets for water, energy, and elements including carbon and silicon. Introduction of nonindigenous species-whether through invasion, intentional stocking, or accidental transplantation-has transformed the lake's ecosystem function and habitat structure. Of the 79 nonindigenous species known to have established reproductive populations in the lake, only a few have brought considerable ecological pressure to bear. Four of these were chosen for this review to exemplify top-down (sea lamprey, Petromyzon marinus), middle-out (alewife, Alosa pseudoharengus), and bottom-up (the dreissenid zebra and quagga mussels, Dreissena polymorpha and Dreissena rostriformis bugensis, respectively) transformations of Lake Michigan ecology, habitability, and ultimately physical environment. Lampreys attacked and extirpated indigenous lake trout, the top predator. Alewives outcompeted native planktivorous fish and curtailed invertebrate populations. Dreissenid mussels-especially quagga mussels, which have had a much greater impact than the preceding zebra mussels-moved ecosystem metabolism basin-wide from water column to bottom dominance and engineered structures throughout the lake. Each of these non indigenous species exerted devastating effects on commercial and sport fisheries through ecosystem structure modification.

  16. Lead in Lake Michigan and Green Bay Surficial Sediments

    EPA Science Inventory

    Sediment cores were collected in 1987-1989 in Green Bay using a box corer and in 1994-1996 in Lake Michigan using a box corer and a PONAR. Core samples were segmented and dated. Historic background lead concentrations were determined for Green Bay (range=1.8-39.3 mg/kg, mean=14...

  17. Substrate conditions and abundance of lake trout eggs in a traditional spawning area in southeastern Lake Michigan

    USGS Publications Warehouse

    Dorr, John A.; O'Connor, Daniel V.; Foster, Neal R.; Jude, David J.

    1981-01-01

    Spawning by planted lake trout (Salvelinus namaycush) was documented by sampling with a diver-assisted pump in a traditional spawning area in southeastern Lake Michigan near Saugatuck, Michigan in mid-November in 1978 and 1979. Bottom depths at the 11 locations sampled ranged from 3 to 12 m and substrate size from boulders to sand. Periphyton (Cladophora and associated biota) was several millimeters thick at most stations but sparse at the shallowest. The most eggs recovered from a single sample occurred at the shallowest depth (3 m). In both years, some of the small numbers of eggs collected (9 in 1978, 14 in 1979) were alive and fertilized. Laboratory incubation of viable eggs resulted in successful hatching of larvae. When compared with egg densities measured at spawning sites used by self-sustaining populations of lake trout in other lakes, densities in the study are (0-13/m2) appeared to be critically low. Insufficient numbers of eggs, combined with harsh incubation conditions (turbulence, ice scour, sedimentation), were implicated as prime causes for lake trout reproductive failure in the study area, although other factors, such as inappropriate spawning behavior (selection of suboptimal spawning location, depth, or substrate) also may have reduced survival of eggs and larvae.

  18. Thiamine and thiaminase status in forage fish of salmonines from Lake Michigan

    USGS Publications Warehouse

    Tillitt, D.E.; Zajicek, J.L.; Brown, S.B.; Brown, L.R.; Fitzsimons, J.D.; Honeyfield, D.C.; Holey, M.E.; Wright, G.M.

    2005-01-01

    Dietary sources of thiamine (vitamin B1) and thiamine-degrading enzymes (thiaminases) are thought to be primary factors in the development of thiamine deficiency among Great Lakes salmonines. We surveyed major forage fish species in Lake Michigan for their content of thiamine, thiamine vitamers, and thiaminase activity. Concentrations of total thiamine were similar (P ≤ 0.05) among most forage fishes (alewife Alosa pseudoharengus, bloater Coregonus hoyi, spottail shiner Notropis hudsonius, deepwater sculpin Myoxocephalus thompsonii, yellow perch Perca flavescens, ninespine stickleback Pungitius pungitius, and round goby Neogobius melanostomus) and slightly lower in rainbow smelt Osmerus mordax. Concentrations of total thiamine were all above the dietary requirements of coldwater fishes, suggesting the thiamine content of forage fish is not the critical factor in the development of thiamine deficiency in Lake Michigan salmonines. Thiamine pyrophosphate was the predominant form of thiamine in most species of forage fish, followed by free thiamine and thiamine monophosphate. Total thiamine was slightly greater in summer collections of alewife and rainbow smelt than in spring and fall collections, but the same was not true for bloater. Thiaminase activity varied among species and was greatest in gizzard shad Dorosoma cepedianum, spottail shiner, alewife, and rainbow smelt. Thiaminase activity in alewife varied among collection locations, season (greatest in spring), and size of the fish. Size and condition factors were positively correlated with both total thiamine and thiaminase activity in alewife. Thus, thiamine and thiaminase activity in forage fishes collected in Lake Michigan varied among species, seasons, year caught, and size (or condition). Therefore, multiple factors must be considered in the development of predictive models for the onset of thiamine deficiency in Great Lakes salmonines. Most importantly, thiaminase activity was great in alewives and

  19. 76 FR 78161 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... the U.S. Army Corps of Engineers' maintenance operations of dispersal barrier IIB. During these...

  20. 77 FR 25595 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Corps of Engineers' post-maintenance testing of Barrier IIA and IIB. During the enforcement period...

  1. 76 FR 35106 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago..., DHS. ACTION: Final rule. SUMMARY: The Coast Guard is establishing a permanent safety zone from Brandon... Safety Zones; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary...

  2. A decade of predatory control of zooplankton species composition of Lake Michigan

    USGS Publications Warehouse

    Makarewicz, Joseph C.; Bertram, Paul; Lewis, Theodore; Brown, Edward H.

    1995-01-01

    From 1983 to 1992, 71 species representing 38 genera from the Calanoida, Cladocera, Cyclopoida, Mysidacea, Rotifera, Mollusca and Harpacticoida comprised the offshore zooplankton community of Lake Michigan. Our data demonstrate that the composition and abundance of the calanoid community after 1983 is not unlike that of 1960s and that species diversity of the calanoid community is more diverse than the cladoceran community in the 1990s as compared to the early 1980s. Even though the relative biomass of the cladocerans has remained similar over the 1983-1993 period, the species diversity and evenness of the Cladocera community in the early 1990s is unlike anything that has been previously reported for Lake Michigan. Cladocera dominance is centered in one species, Daphnia galeata mendotae, and only three species of Cladocera were observed in the pelagic region of the lake in 1991 and 1992. Nutrient levels, phytoplankton biomass, and the abundance of planktivorous alewife and bloater chub and Bythotrephes are examined as possible causes of these changes in zooplankton species composition. The increase in Rotifera biomass, but not Crustacea, was correlated with an increase in relative biomass of unicellular algae. Food web models suggest Bythotrephes will cause Lake Michigan's plankton to return to a community similar to that of the 1970s; that is Diaptomus dominated. Such a change has occurred. However, correlational analysis suggest that alewife and bloater chubs (especially juveniles) are affecting size and biomass of larger species of zooplankton as well as Bythotrephes.

  3. Surface currents of Lake Michigan, 1931 and 1932

    USGS Publications Warehouse

    Van Oosten, John

    1963-01-01

    Seven hundred fourty-five bottles containing post cards for recording of information were released at stations in Lake Michigan; 283 were released June 17 to August 17, 1931, south of a line from Frankfort, Michigan, to Algoma, Wisconsin, and 462 during May 9 to August 25, 1932, both south and north of that line. One hundred eighty-six bottles or 65.7 percent of those released in 1931, 331 bottles or 71.6 percent of 1932 releases, and 517 bottles or 69.4 percent of releases in the 2 years were recovered. Recoveries of bottles from both years indicated that the surface currents were somewhat variable, but their general direction was from west to east and predominately northeast in 1931 and northeast and southeast in 1932.

  4. Two episodes of meltwater influx from glacial Lake Agassiz into the Lake Michigan basin and their climatic contrasts

    USGS Publications Warehouse

    Colman, Steven M.; Keigwin, L.D.; Forester, R.M.

    1994-01-01

    Two episodes of meltwater influx from glacial Lake Agassiz are recorded as prominent sedimentologic, isotopic, magnetic, and faunal signatures in southern Lake Michigan profundal sediments. As a tributary to the main path of eastward Lake Agassiz flow, southern Lake Michigan recorded only the largest, catastrophic discharges. The distinctive Wilmette Bed, a massive gray mud that interrrupts laminated red glaciolacustrine clays, marks the first episode, which occurred near the beginning of the Younger Dryas cooling events. The associated discharge may have played a role in the inception or severity of the Younger Dryas event. An oxygen isotope excursion in biogenic carbonate and changes in ostracode assemblages mark the second episode, which appears to have had at least two pulses, dated by accelerator mass spectrometer 14C ages on biogenic carbonate at about 8.9 and 8.6 ka. The second episode occurred during the early Holocene peak in global meltwater discharge and apparently had little widespread climatic or oceanographic effect. The contrast between the effects associated with these two episodes of meltwater discharge emphasizes the complexity of the ice sheet-ocean-climate system. -Authors

  5. Investigation of Total and Methyl Mercury in Fish and Sediment of Lake Michigan

    EPA Science Inventory

    Sediment cores and fish collected between 1994 and 1996 as part of the Lake Michigan Mass Balance Project were analyzed for total and methyl mercury. Results of the fish analyses are being used to describe total and methyl mercury concentrations in forage fish and lake trout, re...

  6. OVERVIEW AND STATUS OF LAKE MICHIGAN MASS BALANCE MODELLING PROJECT

    EPA Science Inventory

    With most of the data available from the Lake Michigan Mass Balance Project field program, the modeling efforts have begun in earnest. The tributary and atmospheric load estimates are or will be completed soon, so realistic simulations for calibration are beginning. A Quality Ass...

  7. Use of 87Sr/86Sr and δ11B to Identify Slag-Affected Sediment in Southern Lake Michigan

    USGS Publications Warehouse

    Bayless, E. Randall; Bullen, Thomas D.; Fitzpatrick, John A.

    2004-01-01

    Slag is a ubiquitous byproduct of the iron-smelting industry and influences geochemistry and water quality in adjacent geologic units, ground and surface water. Despite extensive slag deposition along the Indiana shoreline of Lake Michigan, definitive evidence that slag has affected lakebed sediments has not been established. Concerns for the protection of water and ecosystem resources in the Great Lakes motivated this study to determine if strontium and boron isotopes could be used to identify and delineate slag-affected bed sediment in Lake Michigan. Sixty-five samples of bed sediment were acquired from the southern lobe of Lake Michigan and analyzed for 87Sr/86Sr and ??11B. Samples immediately offshore from Indiana steel mills and slag-disposal sites contained higher median 87Sr/86Sr values (0.70881) than shoreline sediments collected elsewhere in the basin (0.70847) and uniquely decreased with increasing distance from the shoreline. The highest ??11B values occurred in sediments from the Indiana shoreline (+12.9 to 16.4???) but were also elevated in sediments collected offshore from three Lake Michigan cities (+11.7 to 12.7???). Contoured isotope data indicated that 82-154 km2 of bed sediment along the Indiana shoreline had elevated 87Sr/86Sr and ??11B values relative to shoreline sediments elsewhere in southern Lake Michigan.

  8. Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Elliott, Robert F.; Schmidt, Larry J.; DeSorcie, Timothy J.; Hesselberg, Robert J.; Quintal, Richard T.; Begnoche, Linda J.; Bouchard, Patrick M.; Holey, Mark E.

    1998-01-01

    Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. Our estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during our study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. We estimated that coho salmon from Lake Michigan retain 50% of the PCBs that are contained within their food.

  9. Satellite remote sensing for modeling and monitoring of water quality in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Coffield, S. R.; Crosson, W. L.; Al-Hamdan, M. Z.; Barik, M. G.

    2017-12-01

    Consistent and accurate monitoring of the Great Lakes is critical for protecting the freshwater ecosystems, quantifying the impacts of climate change, understanding harmful algal blooms, and safeguarding public health for the millions who rely on the Lakes for drinking water. While ground-based monitoring is often hampered by limited sampling resolution, satellite data provide surface reflectance measurements at much more complete spatial and temporal scales. In this study, we implemented NASA data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to build robust water quality models. We developed and validated models for chlorophyll-a, nitrogen, phosphorus, and turbidity based on combinations of the six MODIS Ocean Color bands (412, 443, 488, 531, 547, and 667nm) for 2003-2016. Second, we applied these models to quantify trends in water quality through time and in relation to changing land cover, runoff, and climate for six selected coastal areas in Lakes Michigan and Erie. We found strongest models for chlorophyll-a in Lake Huron (R2 = 0.75), nitrogen in Lake Ontario (R2=0.66), phosphorus in Lake Erie (R2=0.60), and turbidity in Lake Erie (R2=0.86). These offer improvements over previous efforts to model chlorophyll-a while adding nitrogen, phosphorus, and turbidity. Mapped water quality parameters showed high spatial variability, with nitrogen concentrated largely in Superior and coastal Michigan and high turbidity, phosphorus, and chlorophyll near urban and agricultural areas of Erie. Temporal analysis also showed concurrence of high runoff or precipitation and nitrogen in Lake Michigan offshore of wetlands, suggesting that water quality in these areas is sensitive to changes in climate.

  10. High-Level Data Fusion Software for SHOALS-1000TH FY07 Annual Report

    DTIC Science & Technology

    2007-01-01

    This survey covered the lakeside town of Alpena , Michigan, and the shoreline of Lake Huron. Additionally a small set of ground reflectance...Figure 2. SHOALS green laser reflectance image of the eastern part of Alpena , Michigan, and the shoreline of Thunder Bay

  11. Comparing seasonal dynamics of the Lake Huron zooplankton community between 1983-1984 and 2007 and revisiting the impact of Bythotrephes planktivory

    USGS Publications Warehouse

    Bunnell, David B.; Keeler, Kevin M.; Puchala, Elizabeth A.; Davis, Bruce M.; Pothoven, Steven A.

    2012-01-01

    Zooplankton community composition can be influenced by lake productivity as well as planktivory by fish or invertebrates. Previous analyses based on long-term Lake Huron zooplankton data from August reported a shift in community composition between the 1980s and 2000s: proportional biomass of calanoid copepods increased while that of cyclopoid copepods and herbivorous cladocerans decreased. Herein, we used seasonally collected data from Lake Huron in 1983–1984 and 2007 and reported similar shifts in proportional biomass. We also used a series of generalized additive models to explore differences in seasonal abundance by species and found that all three cyclopoid copepod species (Diacyclops thomasi, Mesocylops edax, Tropocyclops prasinus mexicanus) exhibited higher abundance in 1983–1984 than in 2007. Surprisingly, only one (Epischura lacustris) of seven calanoid species exhibited higher abundance in 2007. The results for cladocerans were also mixed with Bosmina spp. exhibiting higher abundance in 1983–1984, while Daphnia galeata mendotae reached a higher level of abundance in 2007. We used a subset of the 2007 data to estimate not only the vertical distribution of Bythotrephes longimanus and their prey, but also the consumption by Bythotrephes in the top 20 m of water. This epilimnetic layer was dominated by copepod copepodites and nauplii, and consumption either exceeded (Hammond Bay site) or equaled 65% (Detour site) of epilimnetic zooplankton production. The lack of spatial overlap between Bythotrephes and herbivorous cladocerans and cyclopoid copepod prey casts doubt on the hypothesis that Bythotrephes planktivory was the primary driver underlying the community composition changes in the 2000s.

  12. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  13. New data on mitochondrial diversity and origin of Hemimysis anomala in the Laurentian Great Lakes

    USGS Publications Warehouse

    Questel, Jennifer M.; Walsh, Maureen G.; Smith, Randall J.; Welsh, Amy B.

    2012-01-01

    The most recent Ponto-Caspian species to invade the Laurentian Great Lakes is the crustacean Hemimysis anomala, first reported in 2006. A previous study described three haplotype groups (A, B, C) of H. anomala in native and invaded areas within Europe, but only one haplotype (A1) in a sample from Lake Michigan. Our study expands these results to additional populations in the Great Lakes basin, and evaluates relationships among North American and European populations. A 549-bp fragment of themitochondrial cytochrome oxidase I (COI) gene was analyzed from populations of H. anomala in Lakes Ontario, Erie, Huron, and the St. Lawrence River.Two different haplotypes, A1 and B1,were observed in the sampled populations of H. anomala and in a previous analysis from H. anomala in Oneida Lake (New York). Our results, in contrast with a previous study, detect an additional haplotype in North America.

  14. Five-year evaluation of habitat remediation in Thunder Bay, Lake Huron: Comparison of constructed reef characteristics that attract spawning lake trout

    USGS Publications Warehouse

    Marsden, J. Ellen; Binder, Thomas R.; Johnson, James; He, Ji; Dingledine, Natalie; Adams, Janice; Johnson, Nicholas S.; Buchinger, Tyler J.; Krueger, Charles C.

    2016-01-01

    Degradation of aquatic habitats has motivated construction and research on the use of artificial reefs to enhance production of fish populations. However, reefs are often poorly planned, reef design characteristics are not evaluated, and reef assessments are short-term. We constructed 29 reefs in Thunder Bay, Lake Huron, in 2010 and 2011 to mitigate for degradation of a putative lake trout spawning reef. Reefs were designed to evaluate lake trout preferences for height, orientation, and size, and were compared with two degraded natural reefs and a high-quality natural reef (East Reef). Eggs and fry were sampled on each reef for five years post-construction, and movements of 40 tagged lake trout were tracked during three spawning seasons using acoustic telemetry. Numbers of adults and spawning on the constructed reefs were initially low, but increased significantly over the five years, while remaining consistent on East Reef. Adult density, egg deposition, and fry catch were not related to reef height or orientation of the constructed reefs, but were related to reef size and adjacency to East Reef. Adult lake trout visited and spawned on all except the smallest constructed reefs. Of the metrics used to evaluate the reefs, acoustic telemetry produced the most valuable and consistent data, including fine-scale examination of lake trout movements relative to individual reefs. Telemetry data, supplemented with diver observations, identified several previously unknown natural spawning sites, including the high-use portions of East Reef. Reef construction has increased the capacity for fry production in Thunder Bay without apparently decreasing the use of the natural reef. Results of this project emphasize the importance of multi-year reef assessment, use of multiple assessment methods, and comparison of reef characteristics when developing artificial reef projects. Specific guidelines for construction of reefs focused on enhancing lake trout spawning are suggested.

  15. Genetic strategies for lake trout rehabilitation: a synthesis

    USGS Publications Warehouse

    Burnham-Curtis, Mary K.; Krueger, Charles C.; Schreiner, Donald R.; Johnson, James E.; Stewart, Thomas J.; Horrall, Ross M.; MacCallum, Wayne R.; Kenyon, Roger; Lange, Robert E.

    1995-01-01

    The goal of lake trout rehabilitation efforts in the Great Lakes has been to reestablish inshore lake trout (Salvelinus namaycush) populations to self-sustaining levels. A combination of sea lamprey control, stocking of hatchery-reared lake trout, and catch restrictions were used to enhance remnant lake trout stocks in Lake Superior and reestablish lake trout in Lakes Michigan, Huron, Erie, and Ontario. Genetic diversity is important for the evolution and maintenance of successful adaptive strategies critical to population restoration. The loss of genetic diversity among wild lake trout stocks in the Great Lakes imposes a severe constraint on lake trout rehabilitation. The objective of this synthesis is to address whether the particular strain used for stocking combined with the choice of stocking location affects the success or failure of lake trout rehabilitation. Poor survival, low juvenile recruitment, and inefficient habitat use are three biological impediments to lake trout rehabilitation that can be influenced by genetic traits. Evidence supports the hypothesis that the choices of appropriate lake trout strain and stocking locations enhance the survival of lake trout stocked into the Great Lakes. Genetic strategies proposed for lake trout rehabilitation include conservation of genetic diversity in remnant stocks, matching of strains with target environments, stocking a greater variety of lake trout phenotypes, and rehabilitation of diversity at all trophic levels.

  16. Heterotrophic bacteria associated with the degradation of zooplankton fecal pellets in Lake Michigan. [Mysis relicta, pseudomonas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrante, J.G.; Ptak, D.J.

    1978-01-01

    Heterotrophic microbes decompose most of the calanoid copepod fecal pellets produced in Lake Michigan before they reach the sediment. Rod-shaped nonfermenters isolated from copepod and Mysis relicta fecal pellets were identified as Pseudomonas maltophilia and Pseudomonas fluorescens species. No enterobacteriaceae or fungal hyphae were found on or in any pellets. This investigation suggests that Pseudomonas species are attached to and may degrade Mysis relicta and calanoid copepod fecal pellets in the water column of Lake Michigan.

  17. Incidental oligotrophication of North American Great Lakes.

    PubMed

    Evans, Mary Anne; Fahnenstiel, Gary; Scavia, Donald

    2011-04-15

    Phytoplankton production is an important factor in determining both ecosystem stability and the provision of ecosystem goods and services. The expansive and economically important North American Great Lakes are subjected to multiple stressors and understanding their responses to those stresses is important for understanding system-wide ecological controls. Here we show gradual increases in spring silica concentration (an indicator of decreasing growth of the dominant diatoms) in all basins of Lakes Michigan and Huron (USA and Canadian waters) between 1983 and 2008. These changes indicate the lakes have undergone gradual oligotrophication coincident with and anticipated by nutrient management implementation. Slow declines in seasonal drawdown of silica (proxy for seasonal phytoplankton production) also occurred, until recent years, when lake-wide responses were punctuated by abrupt decreases, putting them in the range of oligotrophic Lake Superior. The timing of these dramatic production drops is coincident with expansion of populations of invasive dreissenid mussels, particularly quagga mussels, in each basin. The combined effect of nutrient mitigation and invasive species expansion demonstrates the challenges facing large-scale ecosystems and suggest the need for new management regimes for large ecosystems.

  18. Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan

    USGS Publications Warehouse

    Liu, L.; Phanikumar, M.S.; Molloy, S.L.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.; Schwab, D.J.; Rose, J.B.

    2006-01-01

    To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risks associated with swimming, the near-shore waters of Lake Michigan and two tributaries discharging into it were examined for bacterial indicators of human fecal pollution. The enterococcus human fecal pollution marker, which targets a putative virulence factorthe enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) in the tributaries draining into Lake Michigan and in 6/30 samples (20%) in Lake Michigan beaches. This was indicative of human fecal pollution being transported in the tributaries and occurrence at Lake Michigan beaches. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, E. coli and enterococci) was used. Enterococci appear to survive longer than E. coli, which was described using an overall first-order inactivation coefficient in the range 0.5−2.0 per day. Our analysis suggests that the majority of fecal indicator bacteria variation can be explained based on loadings from the tributaries. Sunlight is a major contributor to inactivation in the surf-zone and the formulation based on sunlight, temperature and sedimentation is preferred over the first-order inactivation formulation.

  19. Ozone distributions over southern Lake Michigan: comparisons between ferry-based observations, shoreline-based DOAS observations and model forecasts

    NASA Astrophysics Data System (ADS)

    Cleary, P. A.; Fuhrman, N.; Schulz, L.; Schafer, J.; Fillingham, J.; Bootsma, H.; McQueen, J.; Tang, Y.; Langel, T.; McKeen, S.; Williams, E. J.; Brown, S. S.

    2015-05-01

    Air quality forecast models typically predict large summertime ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline differential optical absorption spectroscopy (DOAS) observations in southeastern Wisconsin and as predicted by the Community Multiscale Air Quality (CMAQ) model. From 2008 to 2009 measurements of O3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008 to 2010 measurements of ambient ozone were conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI, and Muskegon, MI, up to six times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha, with little dependence on position of the ferry or temperature and with greatest differences during evening and night. Concurrent 1-48 h forecasts from the CMAQ model in the upper Midwestern region surrounding Lake Michigan were compared to ferry ozone measurements, shoreline DOAS measurements and Environmental Protection Agency (EPA) station measurements. The bias of the model O3 forecast was computed and evaluated with respect to ferry-based measurements. Trends in the bias with respect to location and time of day were explored showing non-uniformity in model bias over the lake. Model ozone bias was consistently high over the lake in comparison to land-based measurements, with highest biases for 25-48 h after initialization.

  20. Expansion of Dreissena into offshore waters of Lake Michigan and potential impacts on fish populations

    USGS Publications Warehouse

    Bunnell, D.B.; Madenjian, C.P.; Holuszko, J.D.; Adams, J.V.; French, J. R. P.

    2009-01-01

    Lake Michigan was invaded by zebra mussels (Dreissena polymorpha) in the late 1980s and then followed by quagga mussels (D. bugensis) around 1997. Through 2000, both species (herein Dreissena) were largely restricted to depths less than 50??m. Herein, we provide results of an annual lake-wide bottom trawl survey in Lake Michigan that reveal the relative biomass and depth distribution of Dreissena between 1999 and 2007 (although biomass estimates from a bottom trawl are biased low). Lake-wide mean biomass density (g/m2) and mean depth of collection revealed no trend between 1999 and 2003 (mean = 0.7??g/m2 and 37??m, respectively). Between 2004 and 2007, however, mean lake-wide biomass density increased from 0.8??g/m2 to 7.0??g/m2, because of increased density at depths between 30 and 110??m, and mean depth of collection increased from 42 to 77??m. This pattern was confirmed by a generalized additive model. Coincident with the Dreissena expansion that occurred beginning in 2004, fish biomass density (generally planktivores) declined 71% between 2003 and 2007. Current understanding of fish population dynamics, however, indicates that Dreissena expansion is not the primary explanation for the decline of fish, and we provide a species-specific account for more likely underlying factors. Nonetheless, future sampling and research may reveal a better understanding of the potential negative interactions between Dreissena and fish in Lake Michigan and elsewhere.

  1. Do we have the tools and the smarts to quantify near shore conditions in Lake Michigan?

    EPA Science Inventory

    The off-shore waters in Lake Michigan have been approaching the oligotrophic state, and the lake wide total phosphorus concentration has met the Great Lakes Water Quality Agreement (GLWQA) target since the early 1980s. However, environmental concerns in the near shore, such as ex...

  2. Assessment of Sediment Measurements in Lake Michigan as a Case Study: Implications for Monitoring and Modeling

    EPA Science Inventory

    Lake Michigan, the sixth largest freshwater lake in the world by surface area, was utilized as a water body for assessment within a case study. Field data collected at 116 sediment sampling sites throughout the lake in an intensive monitoring effort were utilized for assessment ...

  3. Nearshore coastal mapping. [in Lake Michigan and Puerto Rico

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Lyzenga, D. R.

    1975-01-01

    Two test sites of different water quality and bottom topography were used to test for maximum water depth penetration using the Skylab S-192 MSS for measurement of nearshore coastal bathymetry. Sites under investigation lie along the Lake Michigan coastline where littoral transport acts to erode sand bluffs and endangers developments along 1,200 miles of shore, and on the west coast of Puerto Rico where unreliable shoal location and depth information constitutes a safety hazard to navigation. The S-192 and S-190A and B provide data on underwater features because of water transparency in the blue/green portion of the spectrum. Depth of 20 meters were measured with the S-192 in the Puerto Rico test site. The S-190B photography with its improved spatial resolution clearly delineates the triple sand bar topography in the Lake Michigan test site. Several processing techniques were employed to test for maximum depth measurement with least error. The results are useful for helping to determine an optimum spectral bandwidth for future space sensors that will increase depth measurements for different water attenuation conditions where a bottom reflection is detectable.

  4. Model Construct and Calibration of an Integrated Water Quality Model (LM2-Toxic) for the Lake Michigan Mass Balance Project

    EPA Science Inventory

    The Lake Michigan Mass Balance Project (LMMBP) is a part of the Enhanced Monitoring Plan (EMP) for Lake Michigan (McCarty, et al., 2006). PCBs (polychlorinated biphenyls) were one of the targeted pollutants studied in the project. As one of the components in the overall LMMBP mod...

  5. Establishment of two invasive crustaceans (Copepoda: Harpacticoida) on the nearshore sands of Lake Michigan

    USGS Publications Warehouse

    Horvath, Thomas G.; Whitman, Richard L.; Last, Laurel L.

    2001-01-01

    Benthic copepods (Copepoda: Harpacticoida) in the nearshore sediments of southern Lake Michigan appear to be dominated by two new invasive species. We report the first occurrence in North America of Schizopera borutzkyi Montschenko, a native to the Danube River delta, and Heteropsyllus nr. nunni, likely a new species that is morphologically similar to the marine species Heteropsyllus nunni and represents the first occurrence of this genus in freshwater. Schizopera borutzkyi is a euryhaline species occurring in shallow sands in its native habitat and in deeper sands (6-15 m) in southern Lake Michigan. Based on the absence of these species from previous studies, we suggest that they are recent introductions. Heteropsyllus nr. nunni dominated (55-100%) the harpacticoid abundance to depths of 9 m, but S. borutzkyi comprised 75% of the harpacticoid abundance at 15 m. Native harpacticoids were always greatly outnumbered by invasive harpacticoids in our samples, which suggests that the natives are being replaced rapidly or that the invasive species are finding unused resources. The ecological implications of these introductions are not known, but these invasions may represent continued 'invasional meltdown' in Lake Michigan.

  6. Distribution, abundance, and resting microhabitat of burbot on Julian's Reef, southwestern Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Kennedy, Gregory W.; Horns, William H.

    1993-01-01

    We used a remotely operated submersible vehicle equipped with a color video camera to videotape the lake bed and document the distribution and abundance of burbot Lota lota on a 156-hectare portion of Julian's Reef in southwestern Lake Michigan. The substrates and bathymetry of the study area had been mapped recently by side-scan sonar. Burbot density determined from videotapes covering 6,900 m2 of lake bed at depths of 23-41 m averaged 139 individuals/ hectare (range, 0-571/hectare). This density was substantially higher than the highest burbot density (59-95/hectare) reported in the literature. Burbot were present on the lake bed at depths of 23-36 m, but were most abundant near the crest of the reef at 23-28 m, where the water temperature was 8-13°C, their preferred summer temperature range. Substrates in that temperature range on the reef were bedrock, bedrock ridges, and bedrock and rubble. Burbot were most abundant on the bedrock and rubble. Small fish and macroinvertebrates typically eaten by burbot elsewhere in western Lake Michigan were distributed on the reef according to their summer preferred temperatures and were not seen in abundance where burbot density was highest. We saw no lake trout Salvelinus namaycush on Julian's Reef, although large numbers of juvenile lake trout have been stocked there annually and temperatures on the reef were in the preferred summer temperature range for lake trout.

  7. Distribution, abundance, and resting microhabitat of burbot on Julian's Reef, southwestern Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Kennedy, Gregory W.; Horns, William H.

    1993-01-01

    We used a remotely operated submersible vehicle equipped with a color video camera to videotape the lake bed and document the distribution and abundance of burbot Lota lotaon a 156-hectare portion of Julian's Reef in southwestern Lake Michigan. The substrates and bathymetry of the study area had been mapped recently by side-scan sonar. Burbot density determined from videotapes covering 6,900 m2 of lake bed at depths of 23–41 m averaged 139 individuals/ hectare (range, 0–571/hectare). This density was substantially higher than the highest burbot density (59–95/hectare) reported in the literature. Burbot were present on the lake bed at depths of 23–36 m, but were most abundant near the crest of the reef at 23–28 m, where the water temperature was 8–13°C, their preferred summer temperature range. Substrates in that temperature range on the reef were bedrock, bedrock ridges, and bedrock and rubble. Burbot were most abundant on the bedrock and rubble. Small fish and macroinvertebrates typically eaten by burbot elsewhere in western Lake Michigan were distributed on the reef according to their summer preferred temperatures and were not seen in abundance where burbot density was highest. We saw no lake trout Salvelinus namaycush on Julian's Reef, although large numbers of juvenile lake trout have been stocked there annually and temperatures on the reef were in the preferred summer temperature range for lake trout.

  8. Spatial and Temporal Water Quality Patterns in Open-Water Lake Michigan from the 2015 CSMI

    EPA Science Inventory

    Water quality patterns in the Laurentian Great Lakes broadly reflect climate, surficial geography, and landuse but are also shaped by limnological and biological processes. Open-water sampling conducted as part of the 2015 Lake Michigan interagency coordinated science and monito...

  9. First report of Schistocephalus sp. (Cestoda: Pseudophyllidea) in slimy sculpin, Cottus cognatus Richardson, 1836, from Lake Michigan, U.S.A.

    USGS Publications Warehouse

    French, J. R. P.; Muzzall, P.M.

    2008-01-01

    Plerocercoids of Schistocephalus sp. (Diphyllobothriidae) were found in the body cavities of 2 (0.9%) of 209 slimy sculpins, Cottus cognatus, collected in September 2003 from Lake Michigan, south of Manistique, Michigan, U.S.A. Mean intensity was 1. The mean lengths and weights of these 2 thawed, relaxed plerocercoids were 67 and 72 mm and 427 and 554 mg, respectively. The number of segments in each plerocercoid was 113, and both plerocercoids showed upturned edges of the first segment. The identification of these plerocercoids to species is discussed, and the occurrence of Schistocephalus sp. in fish from the Great Lakes is summarized. This is the first report of Schistocephalus in slimy sculpin from Lake Michigan and the second report of Schistocephalus infecting fish from this lake.

  10. Distribution and foraging patterns of common loons on Lake Michigan with implications for exposure to type E avian botulism

    USGS Publications Warehouse

    Kenow, Kevin P.; Houdek, Steven C.; Fara, Luke; Gray, Brian R.; Lubinski, Brian R.; Heard, Darryl J.; Meyer, Michael W.; Fox, Timothy J.; Kratt, Robert

    2018-01-01

    Common loons (Gavia immer) staging on the Great Lakes during fall migration are at risk to episodic outbreaks of type E botulism. Information on distribution, foraging patterns, and exposure routes of loons are needed for understanding the physical and ecological factors that contribute to avian botulism outbreaks. Aerial surveys were conducted to document the spatiotemporal distribution of common loons on Lake Michigan during falls 2011–2013. In addition, satellite telemetry and archival geolocator tags were used to determine the distribution and foraging patterns of individual common loons while using Lake Michigan during fall migration. Common loon distribution observed during aerial surveys and movements of individual radiomarked and/or geotagged loons suggest a seasonal pattern of use, with early fall use of Green Bay and northern Lake Michigan followed by a shift in distribution to southern Lake Michigan before moving on to wintering areas. Common loons tended to occupy offshore areas of Lake Michigan and, on average, spent the majority of daylight hours foraging. Dive depths were as deep as 60 m and dive characteristics suggested that loons were primarily foraging on benthic prey. A recent study concluded that round gobies (Neogobius melanostomus) are an important prey item of common loons and may be involved in transmission of botulinum neurotoxin type E. Loon distribution coincides with the distribution of dreissenid mussel biomass, an important food resource for round gobies. Our observations support speculation that energy transfer to higher trophic levels via gobies may occur in deep-water habitats, along with transfer of botulinum neurotoxin.

  11. Water quality in the Western Lake Michigan Drainages, Wisconsin and Michigan, 1992-95

    USGS Publications Warehouse

    Peters, Charles A.; Robertson, Dale M.; Saad, David A.; Sullivan, Daniel J.; Scudder, Barbara C.; Fitzpatrick, Faith A.; Richards, Kevin D.; Stewart, Jana S.; Fitzgerald, Sharon A.; Lenz, Bernard N.

    1998-01-01

    This report is intended to summarize major findings that emerged between 1992 and 1995 from the water-quality assessment of the Western Lake Michigan Drainages Study Unit and torelate these findings to water-quality issues of regional and national concern. The information in primarily intended for those who are involved in water-resource management. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live.

  12. Results of the Lake Michigan Mass Balance Project: Atrazine Modeling Report

    EPA Science Inventory

    This report covers an overview of chemical properties, measurements in air and water, model construct and assumptions, and results of mathematical mass balance modeling of the herbicide atrazine in the Lake Michigan basin. Within the context of the mass balance, an overview of a...

  13. Measurement error associated with surveys of fish abundance in Lake Michigan

    USGS Publications Warehouse

    Krause, Ann E.; Hayes, Daniel B.; Bence, James R.; Madenjian, Charles P.; Stedman, Ralph M.

    2002-01-01

    In fisheries, imprecise measurements in catch data from surveys adds uncertainty to the results of fishery stock assessments. The USGS Great Lakes Science Center (GLSC) began to survey the fall fish community of Lake Michigan in 1962 with bottom trawls. The measurement error was evaluated at the level of individual tows for nine fish species collected in this survey by applying a measurement-error regression model to replicated trawl data. It was found that the estimates of measurement-error variance ranged from 0.37 (deepwater sculpin, Myoxocephalus thompsoni) to 1.23 (alewife, Alosa pseudoharengus) on a logarithmic scale corresponding to a coefficient of variation = 66% to 156%. The estimates appeared to increase with the range of temperature occupied by the fish species. This association may be a result of the variability in the fall thermal structure of the lake. The estimates may also be influenced by other factors, such as pelagic behavior and schooling. Measurement error might be reduced by surveying the fish community during other seasons and/or by using additional technologies, such as acoustics. Measurement-error estimates should be considered when interpreting results of assessments that use abundance information from USGS-GLSC surveys of Lake Michigan and could be used if the survey design was altered. This study is the first to report estimates of measurement-error variance associated with this survey.

  14. Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models

    USGS Publications Warehouse

    Langseth, Brian J.; Rogers, Mark; Zhang, Hongyan

    2012-01-01

    Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species

  15. 77 FR 47359 - Huron Manistee Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ...The Huron Manistee Resource Advisory Committee will meet in Mio, Michigan. The committee is authorized under the Secure Rural Schools and Community Self-Determination Act (Pub. L. 110-343) (the Act) and operates in compliance with the Federal Advisory Committee Act. The purpose of the committee is to improve collaborative relationships and to provide advice and recommendations to the Forest Service concerning projects and funding consistent with Title II of the Act. The meeting is open to the public. The purpose of the meeting is to conduct committee business, monitor progress on project implementation and to recommend proposed projects for Fiscal Year 2013.

  16. AN OVERVIEW OF THE LAKE MICHIGAN MASS BALANCE MODELING PROJECT: BACKGROUND, ACCOMPLISHMENTS, AND FUTURE WORK

    EPA Science Inventory

    Modeling associated with the Lake Michigan Mass Balance Project (LMMBP) is being conducted using WASP-type water quality models to gain a better understanding of the ecosystem transport and fate of polychlorinated biphenyls (PCBs), atrazine, mercury, and trans-nonachlor in Lake M...

  17. TESTING A BEACH BACTERIA MODEL IN LAKE MICHIGAN AND SOUTHERN CALIFORNIA

    EPA Science Inventory

    Beach closures due to high bacterial concentrations deprive the public and disrupt the tourist industry. Almost half the Lake Michigan beaches are closed more than 10% of the time. In 1999 the six-mile long beach in Huntington Beach, California was closed in July and August. Due ...

  18. Recent increases in the large glacial-relict calanoid Limnocalanus macrurus in Lake Michigan

    USGS Publications Warehouse

    Barbiero, R.P.; Bunnell, D.B.; Rockwell, D.C.; Tuchman, M.L.

    2009-01-01

    Since 2004, population density of the large hypolimnetic calanoid Limnocalanus macrurus Sars. has increased dramatically in Lake Michigan. The average summer biomass of this species between 2004 and 2006 was roughly three times that of the period 1984–2003, and at levels unprecedented in our 22-year dataset, making L. macrurus the dominant zooplankter in the lake in terms of biomass. These increases have been accentuated by coincident population declines of the main daphnid, Daphnia mendotae, in the lake with the result that in 2006, L. macrurus accounted for 75% and 50% of the large (> 0.9 mm) crustacean biomass in the northern and southern basins of Lake Michigan, respectively. The increases in L. macrurus populations have closely coincided with equally dramatic increases in summer water clarity. Recent extinction coefficients are among the lowest recorded for the lake, and deepening light penetration has permitted increases in the size of the deep chlorophyll layer. In addition, planktivorous fish populations have declined coincidently with the increases in L. macrurus. It seems likely that an increase in sub-epilimnetic production has resulted in increased food resources for the deep-living L. macrurus, while low planktivore abundances have reduced predation loss, permitting L. macrurus to respond to these increases in sub-epilimnetic production.

  19. Polychlorinated biphenyls in Great Lakes lake trout and their eggs: relations to survival and congener composition 1979-1988

    USGS Publications Warehouse

    Mac, Michael J.; Schwartz, Ted R.; Edsall, Carol C.; Frank, Anthony M.

    1993-01-01

    Eggs taken from lake trout (Salvelinus namaycush) captured from various Great Lakes between 1979 and 1988 were analyzed for individual polychlorinated biphenyl (PCB) congeners. Eggs from the same fish had been previously reared through hatching and early fry development to ascertain egg quality. Tissues from a subsample of the adult females that provided eggs were similarly analyzed. Significant relations were found between embryonic mortality (eggs dying between fertilization and hatch) and the concentrations of total PCBs in both the eggs and adults. PCB concentrations were also negatively correlated with the percentage of normal fry that successfully hatched, but no relation was found between PCB residues and fry mortality. Pattern recognition analysis indicated that the PCB congener fingerprint for eggs from Lake Superior was different than that of eggs from Lakes Michigan, Huron, and Ontario. A difference between PCB residue patterns was also identified between eggs and the parent fish. While this difference indicated some preferential deposition of congeners in the eggs, the difference was not attributed to the toxic AHH-active congeners. No difference in the PCB pattern was observed over the 10 years of sample collection, demonstrating that concentrations of individual congeners are declining at similar rates.

  20. Lake Michigan Mass Balance Study Post Audit: Integrated, Multi-media PCB Modeling and Forecasting for Lake Trout

    EPA Science Inventory

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  1. Sediment Budget on the Indiana Shore at Burns Harbor, Lake Michigan

    DTIC Science & Technology

    2015-05-15

    formation of the Indiana Dunes 146 20/03/2015 16 pp 3 National Lakeshore (Engel 1983, Franklin and Schaeffer 1983, Higgs 1995). The Harbor is a...shores of Lake Michigan,” University of Illinois Press, Urbana, IL, 278 p. Higgs , S. (1995). “Eternal Vigilance: Nine Tales of Environmental

  2. Status and trends of prey fish populations in Lake Michigan, 2012

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Desorcie, Timothy J.; Kostich, Melissa Jean; Smith, Kelley R.; Adams, Jean V.

    2012-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2012. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2012 was estimated at 9 kilotonnes (kt, 1 kt = 1000 metric tonnes), which continues the trend of unusually low alewife biomass since 2004 but represented a 20% increase from the 2011 estimate. The age distribution of alewives larger than 100 mm was dominated (i.e., 84%) by age-2. Record low biomass was observed for several species, including bloater (0.4 kt), rainbow smelt (0.1 kt), deepwater sculpin (1.5 kt), and ninespine stickleback (0.01 kt). Slimy sculpin lake-wide biomass was 0.73 kt in 2012, which was the third consecutive year revealing a decline. Estimated biomass of round goby increased by 79% to 3 kt. Burbot lake-wide biomass (0.5 kt in 2012) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., < 100 mm) was only 2 fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimates of dreissenid mussels have continued to increase from 2010, from 12 to 95 kt in 2012. Overall, the total lake-wide prey fish biomass estimate (sum of alewife, bloater, rainbow smelt, deepwater sculpin, slimy sculpin, round goby, and ninespine stickleback) in 2012 was 15 kt, which represented the

  3. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    USGS Publications Warehouse

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  4. INTERACTIONS BETWEEN BYTHOTREPHES CEDERSTROEMI AND LEPTODORA KINDTII INFERRED FROM SEASONAL POPULATION ABUNDANCE PATTERNS IN LAKE MICHIGAMME, MICHIGAN, USA

    EPA Science Inventory


    Bythotrephes cederstroemi is a non-indigenous predaceous zooplankter invading North American freshwater lakes in the Great Lakes region. We present seasonal population abundance values for both Bythotrephes and Leptodora kindtii from Lake Michigamme, Michigan for the years ...

  5. Estimate of net trophic transfer efficiency of PCBs to Lake Michigan lake trout from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Hesselberg, Robert J.; DeSorcie, Timothy J.; Schmidt, Larry J.; Stedman, Ralph M.; Quintal, Richard T.; Begnoche, Linda J.; Passino-Reader, Dora R.

    1998-01-01

    Most of the polychlorinated biphenyl (PCB) body burden accumulated by lake trout (Salvelinus namaycush) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both lake trout and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan lake trout retain PCBs from their food. Our estimates were the most reliable estimates to date because (a) the lake trout and prey fish sampled during our study were all from the same vicinity of the lake, (b) detailed measurements were made on the PCB concentrations of both lake trout and prey fish over wide ranges in fish size, and (c) lake trout diet was analyzed in detail over a wide range of lake trout size. Our estimates of net trophic transfer efficiency of PCBs to lake trout from their prey averaged from 0.73 to 0.89 for lake trout between the ages of 5 and 10 years old. There was no evidence of an upward or downward trend in our estimates of net trophic transfer efficiency for lake trout between the ages of 5 and 10 years old, and therefore this efficiency appeared to be constant over the duration of the lake trout's adult life in the lake. On the basis of our estimtes, lake trout retained 80% of the PCBs that are contained within their food.

  6. Visualization of a drifting buoy deployment on Lake St. Clair within the Great Lakes Waterway from August 12-15, 2002

    USGS Publications Warehouse

    Holtschlag, David J.; Syed, Atiq U.; Kennedy, Gregory W.

    2002-01-01

    Lake St. Clair is a 430 square mile lake between the state of Michigan and the province of Ontario, which forms part of the international boundary between the United States and Canada in the Great Lakes Basin. Lake St. Clair receives most of its inflow from Lake Huron through St. Clair River, which has an average flow of 182,000 cubic feet per second. The lake discharges to Detroit River, where it flows 32 miles to Lake Erie. Twelve drifting buoys were deployed on Lake St. Clair for 74 hours between August 12-15, 2002 to help investigate flow circulation patterns as part of a source water assessment study of the susceptibility of public water intakes. The buoys contained global positioning system (GPS) receivers to track their movements. Buoys were released in a transect between tethered buoys marking an 800-foot wide navigational channel in the north-central part of the lake just downstream of St. Clair River, and about 15.5 miles northeast of Detroit River. In addition, an acoustic Doppler current profiler (ADCP) was used to measure velocity profiles in a grid of 41 points that spanned the area through which the buoys drifted. Computer animations, which can be viewed through the Internet, were developed to help visualize the results of the buoy deployments and ADCP measurements.

  7. THE LAKE MICHIGAN MASS BALANCE PROJECT: QUALITY ASSURANCE PLAN FOR MATHEMATICAL MODELLING

    EPA Science Inventory

    This report documents the quality assurance process for the development and application of the Lake Michigan Mass Balance Models. The scope includes the overall modeling framework as well as the specific submodels that are linked to form a comprehensive synthesis of physical, che...

  8. Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jiang; Zhu, Weining; Tian, Yong Q.; Yu, Qian; Zheng, Yuhan; Huang, Litong

    2017-07-01

    Colored dissolved organic matter (CDOM) and chlorophyll-a (Chla) are important water quality parameters and play crucial roles in aquatic environment. Remote sensing of CDOM and Chla concentrations for inland lakes is often limited by low spatial resolution. The newly launched Sentinel-2 satellite is equipped with high spatial resolution (10, 20, and 60 m). Empirical band ratio models were developed to derive CDOM and Chla concentrations in Lake Huron. The leave-one-out cross-validation method was used for model calibration and validation. The best CDOM retrieval algorithm is a B3/B5 model with accuracy coefficient of determination (R2)=0.884, root-mean-squared error (RMSE)=0.731 m-1, relative root-mean-squared error (RRMSE)=28.02%, and bias=-0.1 m-1. The best Chla retrieval algorithm is a B5/B4 model with accuracy R2=0.49, RMSE=9.972 mg/m3, RRMSE=48.47%, and bias=-0.116 mg/m3. Neural network models were further implemented to improve inversion accuracy. The applications of the two best band ratio models to Sentinel-2 imagery with 10 m×10 m pixel size presented the high potential of the sensor for monitoring water quality of inland lakes.

  9. Avian botulism type E in waterbirds of Lake Michigan, 2010–2013

    USGS Publications Warehouse

    Chipault, Jennifer G.; White, C. LeAnn; Blehert, David S.; Jennings, Susan K.; Strom, Sean M.

    2015-01-01

    During 2010 to 2013, waterbird mortality surveillance programs used a shared protocol for shoreline walking surveys performed June to November at three areas in northern Lake Michigan. In 2010 and 2012, 1244 total carcasses (0.8 dead bird/km walked) and 2399 total carcasses (1.2 dead birds/km walked), respectively, were detected. Fewer carcasses were detected in 2011 (353 total carcasses, 0.2 dead bird/km walked) and 2013 (451 total carcasses, 0.3 dead bird/km walked). During 3 years, peak detection of carcasses occurred in October and involved primarily migratory diving and fish-eating birds, including long-tailed ducks (Clangula hyemalis; 2010), common loons (Gavia immer; 2012), and red-breasted mergansers (Mergus serrator; 2013). In 2011, peak detection of carcasses occurred in August and consisted primarily of summer residents such as gulls (Larus spp.) and double-crested cormorants (Phalacrocorax auritus). A subset of fresh carcasses was collected throughout each year of the study and tested for botulinum neurotoxin type E (BoNT/E). Sixty-one percent of carcasses (57/94) and 10 of 11 species collected throughout the sampling season tested positive for BoNT/E, suggesting avian botulism type E was a major cause of death for both resident and migratory birds in Lake Michigan. The variety of avian species affected by botulism type E throughout the summer and fall during all 4 years of coordinated surveillance also suggests multiple routes for bird exposure to BoNT/E in Lake Michigan.

  10. Spatially explicit measures of production of young alewives in Lake Michigan: Linkage between essential fish habitat and recruitment

    USGS Publications Warehouse

    Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.

    2003-01-01

    The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.

  11. Decreased mortality of Lake Michigan Chinook salmon after bacterial kidney disease challenge: evidence for pathogen-driven selection?

    PubMed

    Purcell, Maureen K; Murray, Anthony L; Elz, Anna; Park, Linda K; Marcquenski, Susan V; Winton, James R; Alcorn, Stewart W; Pascho, Ronald J; Elliott, Diane G

    2008-12-01

    In the late 1960s, Chinook salmon Oncorhynchus tshawytscha from the Green River, Washington, were successfully introduced into Lake Michigan. During spring from 1988 to 1992, large fish die-offs affecting Chinook salmon occurred in the lake. Multiple ecological factors probably contributed to the severity of the fish kills, but the only disease agent found regularly was Renibacterium salmoninarum, the causative agent of bacterial kidney disease. In this study, survival after challenge by R. salmoninarum was compared between two Chinook salmon stocks: a Lake Michigan stock from Wisconsin (WI) and the progenitor stock from the Green River. We found that the WI stock had significantly greater survival than the Green River stock. Next, the WI and Green River stocks were exposed to the marine pathogen Listonella anguillarum (formerly Vibrio anguillarum), one of the causative agents of vibriosis; survival after this challenge was significantly poorer for the WI stock than for the Green River stock. A close genetic relationship between the Green River and WI stocks was confirmed by analyzing 13 microsatellite loci. These results collectively suggest that disease susceptibility of Lake Michigan Chinook salmon has diverged from that of the source population, possibly in response to pathogen-driven selection.

  12. Lake Michigan: Nearshore variability and a nearshore-offshore distinction in water quality

    EPA Science Inventory

    We conducted a high-resolution survey of the Lake Michigan nearshore using towed electronic instrumentation and fixed station sampling (1049 km at the approximate 20-m depth contour and grab samples at 15 sites). The principal variability in the alongshore reach was generally re...

  13. Assessing prey fish populations in Lake Michigan: Comparison of simultaneous acoustic-midwater trawling with bottom trawling

    USGS Publications Warehouse

    Fabrizio, Mary C.; Adams, Jean V.; Curtis, Gary L.

    1997-01-01

    The Lake Michigan fish community has been monitored since the 1960s with bottom trawls, and since the late 1980s with acoustics and midwater trawls. These sampling tools are limited to different habitats: bottom trawls sample fish near bottom in areas with smooth substrates, and acoustic methods sample fish throughout the water column above all substrate types. We compared estimates of fish densities and species richness from daytime bottom trawling with those estimated from night-time acoustic and midwater trawling at a range of depths in northeastern Lake Michigan in summer 1995. We examined estimates of total fish density as well as densities of alewife Alosa pseudoharengus (Wilson), bloater Coregonus hoyi (Gill), and rainbow smelt Osmerus mordax (Mitchell) because these three species are the dominant forage of large piscivores in Lake Michigan. In shallow water (18 m), we detected more species but fewer fish (in fish/ha and kg/ha) with bottom trawls than with acoustic-midwater trawling. Large aggregations of rainbow smelt were detected by acoustic-midwater trawling at 18 m and contributed to the differences in total fish density estimates between gears at this depth. Numerical and biomass densitites of bloaters from all depths were significantly higher when based on bottom trawl samples than on acoustic-midwater trawling, and this probably contributed to the observed significant difference between methods for total fish densities (kg/ha) at 55 m. Significantly fewer alewives per ha were estimated from bottom trawling than from acoustics-midwater trawling at 55 m, and in deeper waters, no alewives were taken by bottom trawling. The differences detected between gears resulted from alewife, bloater, and rainbow smelt vertical distributions, which varied with lake depth and time of day. Because Lake Michigan fishes are both demersal and pelagic, a single sampling method cannot be used to completely describe characteristics of the fish community.

  14. Effects of alewife predation on zooplankton populations in Lake Michigan

    USGS Publications Warehouse

    Wells, LaRue

    1970-01-01

    The zooplankton populations in southeastern Lake Michigan underwent striking, size-related changes between 1954 and 1966. Forms that decline sharply were the largest cladocerans (Leptodora kindtii, Daphnia galeata, and D. retrocurva), the largest calanoid copepods (Limnocalanus macrurus, Epischura lacustris, and Diaptomus sicilis), and the largest cyclopoid copepod (Mesocyclops edax). Two of these, D. galeata and M. edax (both abundant in 1954), became extremely rare. Certain medium-sized or small species increased in numbers: Daphnia longiremis, Holopedium gibberum, Polyphemus pediculus, Bosmina longirostris, Bosmina coregoni, Ceriodaphnia sp., Cyclops bicuspidatus, Cyclops vernalis, and Diaptomus ashlandi. Evidence is strong that the changes were due to selective predation by alewives. The alewife was uncommon in southeastern Lake Michigan in 1954 but had increased to enormous proportions by 1966; there was a massive dieoff in spring 1967, and abundance remained relatively low in 1968. The composition of zooplankton populations in 1968 generally had shifted back toward that of 1954, although D. galeata and M. edax remained rare. The average size, and size at onset of maturity, of D. retrocurva decreased noticeably between 1954 and 1966 but increased between 1966 and 1968.

  15. The present status of the United States commercial fisheries of the Great Lakes

    USGS Publications Warehouse

    Van Oosten, John

    1949-01-01

    This review of the trends in production on the Great Lakes suggests that great biological changes have taken place. The general abundance of the choicer varieties, and of some of the less choice fishes, has been lowered considerably; and the prospects are that this level will fall still farther. In addition, the niches occupied by these finer species in the lakes have not been filled by coarser forms. Much of the reduced abundance in modern fishery must be attributed to overfishing or unwise fishing (cisco, whitefish, lake trout, chubs). Part of it we believe was caused by an infectious disease as was true for the smelt; part of it by the parasitic predator, the sea lamprey. Perhaps increased competition for space or food such as might have been brought about by the smelt in Lakes Huron and Michigan or the alewives in Lake Ontario may have played a role. Pollution, too, may have taken its toll. Often we have no better explanation to offer than to state that some unknown change in the environment was responsible.

  16. Lake Michigan Mass Balance Study Post Audit: Integrated, Multi-media PCB Modeling and Forecasting for Lake Trout, Presentation

    EPA Science Inventory

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  17. Estimation of groundwater use for a groundwater-flow model of the Lake Michigan Basin and adjacent areas, 1864-2005

    USGS Publications Warehouse

    Buchwald, Cheryl A.; Luukkonen, Carol L.; Rachol, Cynthia M.

    2010-01-01

    The U.S. Geological Survey, at the request of Congress, is assessing the availability and use of the Nation's water resources to help characterize how much water is available now, how water availability is changing, and how much water can be expected to be available in the future. The Great Lakes Basin Pilot project of the U.S. Geological Survey national assessment of water availability and use focused on the Great Lakes Basin and included detailed studies of the processes governing water availability in the Great Lakes Basin. One of these studies included the development of a groundwater-flow model of the Lake Michigan Basin. This report describes the compilation and estimation of the groundwater withdrawals in those areas in Wisconsin, Michigan, Indiana, and Illinois that were needed for the Lake Michigan Basin study groundwater-flow model. These data were aggregated for 12 model time intervals spanning 1864 to 2005 and were summarized by model area, model subregion, category of water use, aquifer system, aquifer type, and hydrogeologic unit model layer. The types and availability of information on groundwater withdrawals vary considerably among states because water-use programs often differ in the types of data collected and in the methods and frequency of data collection. As a consequence, the methods used to estimate and verify the data also vary. Additionally, because of the different sources of data and different terminologies applied for the purposes of this report, the water-use data published in this report may differ from water-use data presented in other reports. These data represent only a partial estimate of groundwater use in each state because estimates were compiled only for areas in Wisconsin, Michigan, Indiana, and Illinois within the Lake Michigan Basin model area. Groundwater-withdrawal data were compiled for both nearfield and farfield model areas in Wisconsin and Illinois, whereas these data were compiled primarily for the nearfield model

  18. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan.

    PubMed

    Whitman, Richard L; Shively, Dawn A; Pawlik, Heather; Nevers, Meredith B; Byappanahalli, Muruleedhara N

    2003-08-01

    Each summer, the nuisance green alga Cladophora (mostly Cladophora glomerata) amasses along Lake Michigan beaches, creating nearshore anoxia and unsightly, malodorous mats that can attract problem animals and detract from visitor enjoyment. Traditionally, elevated counts of Escherichia coli are presumed to indicate the presence of sewage, mostly derived from nearby point sources. The relationship between fecal indicator bacteria and Cladophora remains essentially unstudied. This investigation describes the local and regional density of Escherichia coli and enterococci in Cladophora mats along beaches in the four states (Wisconsin, Illinois, Indiana, and Michigan) bordering Lake Michigan. Samples of Cladophora strands collected from 10 beaches (n = 41) were assayed for concentrations of E. coli and enterococci during the summer of 2002. Both E. coli and enterococci were ubiquitous (up to 97% occurrence), with overall log mean densities (+/- standard errors) of 5.3 (+/- 4.8) and 4.8 (+/- 4.5) per g (dry weight). E. coli and enterococci were strongly correlated in southern Lake Michigan beaches (P < 0.001, R(2) = 0.73, n = 17) but not in northern beaches (P = 0.892, n = 16). Both E. coli and enterococci survived for over 6 months in sun-dried Cladophora mats stored at 4 degrees C; the residual bacteria in the dried alga readily grew upon rehydration. These findings suggest that Cladophora amassing along the beaches of Lake Michigan may be an important environmental source of indicator bacteria and call into question the reliability of E. coli and enterococci as indicators of water quality for freshwater recreational beaches.

  19. Occurrence of Escherichia coli and enterococci in Cladophora (Clorophyta) in nearshore water and beach sand of Lake Michigan

    USGS Publications Warehouse

    Whitman, Richard L.; Shively, Dawn A.; Pawlik, Heather; Nevers, Meredith B.; Byappanahalli, Muruleedhara N.

    2003-01-01

    Each summer, the nuisance green alga Cladophora (mostly Cladophora glomerata) amasses along Lake Michigan beaches, creating nearshore anoxia and unsightly, malodorous mats that can attract problem animals and detract from visitor enjoyment. Traditionally, elevated counts of Escherichia coli are presumed to indicate the presence of sewage, mostly derived from nearby point sources. The relationship between fecal indicator bacteria and Cladophora remains essentially unstudied. This investigation describes the local and regional density of Escherichia coli and enterococci in Cladophora mats along beaches in the four states (Wisconsin, Illinois, Indiana, and Michigan) bordering Lake Michigan. Samples of Cladophora strands collected from 10 beaches (n = 41) were assayed for concentrations of E. coli and enterococci during the summer of 2002. Both E. coli and enterococci were ubiquitous (up to 97% occurrence), with overall log mean densities (± standard errors) of 5.3 (± 4.8) and 4.8 (± 4.5) per g (dry weight). E. coli and enterococci were strongly correlated in southern Lake Michigan beaches (P R2 = 0.73, n = 17) but not in northern beaches (P = 0.892, n = 16). Both E. coli and enterococci survived for over 6 months in sun-dried Cladophora mats stored at 4°C; the residual bacteria in the dried alga readily grew upon rehydration. These findings suggest that Cladophora amassing along the beaches of Lake Michigan may be an important environmental source of indicator bacteria and call into question the reliability of E. coli and enterococci as indicators of water quality for freshwater recreational beaches.

  20. Status and trends of prey fish populations in Lake Michigan, 2013

    USGS Publications Warehouse

    Madenjian, Charles P.; Bunnell, David B.; Desorcie, Timothy J.; Kostich, Melissa Jean; Armenio, Patricia M.; Adams, Jean V.

    2015-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2013. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2013 was estimated at 29 kilotonnes (kt, 1 kt = 1000 metric tonnes), which was more than three times the 2012 estimate. However, the unusually high standard error associated with the 2013 estimate indicated no significant increase in lake-wide biomass between 2012 and 2013. Moreover, the age distribution of alewives remained truncated with no alewife exceeding an age of 5. The population of age-1 and older alewives was dominated (i.e., 88%) by the 2010 and 2012 year-classes. Record low biomass was observed for deepwater sculpin (1.3 kt) and ninespine stickleback (0.004 kt) in 2013, while bloater (1.6 kt) and rainbow smelt (0.2 kt) biomasses remained at low levels. Slimy sculpin lake-wide biomass was 0.32 kt in 2013, marking the fourth consecutive year of a decline. The 2013 biomass of round goby was estimated at 10.9 kt, which represented the peak estimate to date. Burbot lake-wide biomass (0.4 kt in 2013) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., < 100 mm) was only 1 fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimate of dreissenid mussels in 2013 was 23.2 kt

  1. Detection of Viral Hemorrhagic Septicemia Virus (VHSV) from Diporeia spp. (Pontoporeiidae, Amphipoda) in the Laurentian Great Lakes, USA

    PubMed Central

    2011-01-01

    The mode of viral hemorrhagic septicemia virus (VHSV) transmission in the Great Lakes basin is largely unknown. In order to assess the potential role of macroinvertebrates in VHSV transmission, Diporeia spp., a group of amphipods that are preyed upon by a number of susceptible Great Lakes fishes, were collected from seven locations in four of the Great Lakes and analyzed for the presence of VHSV. It was demonstrated that VHSV is present in some Diporeia spp. samples collected from lakes Ontario, Huron, and Michigan, but not from Lake Superior. Phylogenetic comparison of partial nucleoprotein (N) gene sequences (737 base pairs) of the five isolates to sequences of 13 other VHSV strains showed the clustering of Diporeia spp. isolates with the VHSV genotype IVb. This study reports the first incidence of a fish-pathogenic rhabdovirus being isolated from Diporeia, or any other crustacean and underscores the role macroinvertebrates may play in VHSV ecology. PMID:21210995

  2. Status and trends of prey fish populations in Lake Michigan, 2008

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Holuszko, Jeffrey D.; Desorcie, Timothy J.; Adams, Jean V.

    2009-01-01

    The Great Lakes Science Center (GLSC) has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2008. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2008 was estimated at 8.27 kilotonnes (kt) (1 kt = 1000 metric tons), which was the smallest biomass estimate in the entire time series and 29% lower than the 2007 estimate. Lake-wide biomass of bloater in 2008 was estimated at 3.33 kt, which was the lowest estimate since 1977 and 38% lower than the 2007 estimate. Rainbow smelt lake-wide biomass equaled 0.89 kt, which was only 0.01 kt higher than 2007, which is the lowest estimate in the time series. Deepwater sculpin lake-wide biomass equaled 5.23 kt, which is the fourth straight year of declining biomass. The 2008 estimate is the second smallest in the time series, and 39% lower than the 2007 estimate. Slimy sculpin lake-wide biomass remained relatively high in 2008 (2.75 kt), increasing 25% over 2007. Ninespine stickleback lake-wide biomass equaled only 0.50 kt in 2008, which was 79% lower than the 2007 estimate. The final prey fish, exotic round goby, increased two orders of magnitude between 2007 and 2008, from 0.02 to 4.65 kt. Round gobies now represent 18% of the prey fish biomass. Burbot lake-wide biomass (0.91 kt in 2008) has remained fairly constant since 2002. Numeric density of age-0 yellow perch (i

  3. Bird mortality during nocturnal migration over Lake Michigan: A case study

    USGS Publications Warehouse

    Diehl, Robert H.; Bates, John M.; Willard, David E.; Gnoske, Thomas P.

    2014-01-01

    Millions of birds die each year during migration. Most of this mortality goes unobserved and conditions surrounding the actual events are often not thoroughly documented. We present a case study of substantial migrant casualties along the shores of southwestern Lake Michigan during May 1996 when we found 2,981 dead birds of 114 species, mostly migrant passerines. An unusual sequence of events allowed us to document the circumstances surrounding this migratory bird kill. Bird carcasses appeared on the southwestern shores of Lake Michigan in the days following storm systems that produced high rain and in one case, hail. Encounters between birds and precipitation over open water were recorded by weather radar, and were followed by winds that drifted dead birds toward highly populated shorelines where the kill was observed and documented. Climatologically, May 1996 was exceptional for producing weather conditions that both killed birds en masse and allowed the mortality to be documented. As a result, this is one of the more thoroughly documented instances of a weather-related mass mortality event during migration.

  4. 75 FR 62751 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ..., Naples, FL 34112. Alpena County, Michigan (All Jurisdictions) Lake Huron From approximately 1.3 None +583 City of Alpena, miles northwest of the Township of Alpena. intersection of Rockport Road and Old Grade... and Brousseau Road. Long Lake Entire shoreline within None +651 Township of Alpena. Alpena County...

  5. Partitioning potential fish yields from the Great Lakes

    USGS Publications Warehouse

    Loftus, D.H.; Olver, C.H.; Brown, Edward H.; Colby, P.J.; Hartman, Wilbur L.; Schupp, D.H.

    1987-01-01

    We proposed and implemented procedures for partitioning future fish yields from the Great Lakes into taxonomic components. These projections are intended as guidelines for Great Lakes resource managers and scientists. Attainment of projected yields depends on restoration of stable fish communities containing some large piscivores that will use prey efficiently, continuation of control of the sea lamprey (Petromyzon marinus), and restoration of high-quality fish habitat. Because Great Lakes fish communities were harmonic before their collapse, we used their historic yield properties as part of the basis for projecting potential yields of rehabilitated communities. This use is qualified, however, because of possible inaccuracies in the wholly commercial yield data, the presence now of greatly expanded sport fisheries that affect yield composition and magnitude, and some possibly irreversible changes since the 1950s in the various fish communities themselves. We predict that total yields from Lakes Superior, Huron, and Ontario will be increased through rehabilitation, while those from Lakes Michigan and Erie will decline. Salmonines and coregonines will dominate future yields from the upper lakes. The Lake Erie fishery will continue to yield mostly rainbow smelt (Osmerus mordax), but the relative importance of percids, especially of walleye (Stizostedion vitreum vitreum) will increase. In Lake Ontario, yields of salmonines will be increased. Managers will have to apply the most rigorous management strictures to major predator species.

  6. 76 FR 63202 - Security Zones; Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...-AA87 Security Zones; Captain of the Port Lake Michigan Zone AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: Based on a review of safety and security zones around critical infrastructure in the... Chicago Harbor & Burnham Park Harbor--Safety and Security Zone regulation and the Security Zones; Captain...

  7. User evaluation of campgrounds on two Michigan National Forests.

    Treesearch

    Robert C. Lucas

    1970-01-01

    Campground use on the Huron and Manistee National Forests in Michigan was studied in relation to resource characteristics, location, facilities provided, and visitor attitudes about the environment. Four factors in combination accounted for 69% of a variation in campground use per unit. Resource quality ratings made earlier as part of a nationwide Forest Service...

  8. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem

    USGS Publications Warehouse

    Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, Dale M.

    2011-01-01

    The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.

  9. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  10. Decreased mortality of lake michigan chinook salmon after bacterial kidney disease challenge: Evidence for pathogen-driven selection?

    USGS Publications Warehouse

    Purcell, M.K.; Murray, A.L.; Elz, A.; Park, L.K.; Marcquenski, S.V.; Winton, J.R.; Alcorn, S.W.; Pascho, R.J.; Elliott, D.G.

    2008-01-01

    In the late 1960s, Chinook salmon Oncorhynchus tshawytscha from the Green River, Washington, were successfully introduced into Lake Michigan. During spring from1988 to 1992, large fish die-offs affecting Chinook salmon occurred in the lake. Multiple ecological factors probably contributed to the severity of the fish kills, but the only disease agent found regularly was Renibacterium salmoninarum, the causative agent of bacterial kidney disease. in this study, survival after challenge by R. salmoninarum was compared between two Chinook salmon stocks: a Lake Michigan stock from Wisconsin (WI) and the progenitor stock from the Green River. We found that the WI stock had significantly greater survival than the Green River stock. Next, the WI and Green River stocks were exposed to the marine pathogen Listonella anguillarum (formerly Vibrio anguillarum), one of the causative agents of vibriosis; survival after this challenge was significantly poorer for the WI stock than for the Green River stock. A close genetic relationship between the Green River and WI stocks was confirmed by analyzing 13 microsatellite loci. These results collectively suggest that disease susceptibility of Lake Michigan Chinook salmon has diverged from that of the source population, possibly in response to pathogen-driven selection. ?? Copyright by the American Fisheries Society 2008.

  11. LM-3: A High-resolution Lake Michigan Mass Balance Water Quality Model

    EPA Science Inventory

    This report is a user’s manual that describes the high-resolution mass balance model known as LM3. LM3 has been applied to Lake Michigan to describe the transport and fate of atrazine, PCB congeners, and chloride in that system. The model has also been used to model eutrophicat...

  12. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  13. Habitat used by juvenile lake sturgeon (Acipenser fulvescens) in the North Channel of the St. Clair River (Michigan, USA)

    USGS Publications Warehouse

    Boase, James C.; Manny, Bruce A.; Donald, Katherine A.L.; Kennedy, Gregory W.; Diana, James S.; Thomas, Michael V.; Chiotti, Justin A.

    2014-01-01

    Lake sturgeon (Acipenser fulvescens) occupy the St. Clair River, part of a channel connecting lakes Huron and Erie in the Laurentian Great Lakes. In the North Channel of the St. Clair River, juvenile lake sturgeon (3–7 years old and 582–793 mm in length) were studied to determine movement patterns and habitat usage. Fourteen juveniles were implanted with ultrasonic transmitters and tracked June–August of 2004, 2005 and 2006. Telemetry data, Geographic Information System software, side-scan sonar, video images of the river bottom, scuba diving, and benthic substrate samples were used to determine the extent and composition of habitats they occupied. Juvenile lake sturgeon habitat selection was strongly related to water depth. No fish were found in 700 mm in length selected sand and gravel areas mixed with zebra mussels and areas dominated by zebra mussels, while fish < 700 mm used these habitat types in proportion to their availability.

  14. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    USGS Publications Warehouse

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  15. PAHs (Polycyclic Aromatic Hydrocarbons), Nitro-PAHs, Hopanes and Steranes Biomarkers in Sediments of Southern Lake Michigan, USA

    PubMed Central

    Huang, Lei; Chernyak, Sergei M.; Batterman, Stuart A.

    2014-01-01

    PAHs in the Great Lakes basin are of concern due to their toxicity and persistence in bottom sediments. Their nitro derivatives, nitro-PAHs (NPAHs), which can have stronger carcinogenic and mutagenic activity than parent PAHs, may follow similar transport routes and also are accumulated in sediments. Limited information exists regarding the current distribution, trends and loadings of these compounds, especially NPAHs, in Lake Michigan sediments. This study characterizes PAHs, NPAHs, and biomarkers steranes and hopanes in surface sediments collected at 24 offshore sites in southern Lake Michigan. The ΣPAH14 (sum of 14 compounds) ranged from 213 to 1291 ng/g dry weight (dw) across the sites, levels that are 2 to 10 times lower than those reported 20 to 30 years earlier. Compared to consensus-based sediment quality guidelines, PAH concentrations suggest very low risk to benthic organisms. The ΣNPAH5 concentration ranged from 2.9 to 18.6 ng/g dw, and included carcinogenic compounds 1-nitropyrene and 6-nitrochrysene. ΣSterane6 and ΣHopane5 concentrations ranged from 6.2 to 36 and 98 to 355 ng/g dw, respectively. Based on these concentrations, Lake Michigan is approximately receiving 11, 0.16, 0.25 and 3.6 metric tons per year (t/yr) of ΣPAH14, ΣNPAH5, ΣSterane6 and ΣHopane5, respectively. Maps of OC-adjusted concentrations display that concentrations decline with increasing off-shore distance. The major sources of PAHs and NPAHs are pyrogenic in nature, based on diagnostic ratios. Using chemical mass balance models, sources were apportioned to emissions from diesel engines (56±18%), coal power plants (27±14%), coal-tar pavement sealants (16±11%), and coke ovens (7±12%). The biomarkers identify a combination of petrogenic and biogenic sources, with the southern end of the lake more impacted by petroleum. This first report of NPAHs levels in sediments of Lake Michigan reveals several carcinogenic compounds at modest concentrations, and a need for further work

  16. Acoustic estimates of abundance and distribution of spawning lake trout on Sheboygan Reef in Lake Michigan

    USGS Publications Warehouse

    Warner, D.M.; Claramunt, R.M.; Janssen, J.; Jude, D.J.; Wattrus, N.

    2009-01-01

    Efforts to restore self-sustaining lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes have had widespread success in Lake Superior; but in other Great Lakes, populations of lake trout are maintained by stocking. Recruitment bottlenecks may be present at a number of stages of the reproduction process. To study eggs and fry, it is necessary to identify spawning locations, which is difficult in deep water. Acoustic sampling can be used to rapidly locate aggregations of fish (like spawning lake trout), describe their distribution, and estimate their abundance. To assess these capabilities for application to lake trout, we conducted an acoustic survey covering 22 km2 at Sheboygan Reef, a deep reef (<40 m summit) in southern Lake Michigan during fall 2005. Data collected with remotely operated vehicles (ROV) confirmed that fish were large lake trout, that lake trout were 1–2 m above bottom, and that spawning took place over specific habitat. Lake trout density exhibited a high degree of spatial structure (autocorrelation) up to a range of ~190 m, and highest lake trout and egg densities occurred over rough substrates (rubble and cobble) at the shallowest depths sampled (36–42 m). Mean lake trout density in the area surveyed (~2190 ha) was 5.8 fish/ha and the area surveyed contained an estimated 9500–16,000 large lake trout. Spatial aggregation in lake trout densities, similarity of depths and substrates at which high lake trout and egg densities occurred, and relatively low uncertainty in the lake trout density estimate indicate that acoustic sampling can be a useful complement to other sampling tools used in lake trout restoration research.

  17. Population-level effects of egg predation on a native planktivore in a large freshwater lake

    USGS Publications Warehouse

    Bunnell, David B.; Mychek-Londer, Justin G.; Madenjian, Charles P.

    2014-01-01

    Using a 37-year recruitment time series, we uncovered a field pattern revealing a strong, inverse relationship between bloater Coregonus hoyi recruitment success and slimy sculpin Cottus cognatus biomass in Lake Michigan (United States), one of the largest freshwater lakes of the world. Given that slimy sculpins (and deepwater sculpin Myoxocephalus thompsonii) are known egg predators that spatiotemporally overlap with incubating bloater eggs, we used recently published data on sculpin diets and daily ration to model annual bloater egg consumption by sculpins for the 1973–2010 year-classes. Although several strong year-classes were produced in the late 1980s when the proportion of eggs consumed by slimy sculpins was extremely low (i.e., <0.001) and several weak year-classes were produced when the proportion of bloater eggs consumed was at its highest (i.e., >0.10–1.0), egg predation failed to explain why recruitment was weak for the 1995–2005 year-classes when the proportion consumed was also low (i.e., <0.02). We concluded that egg predation by slimy and deepwater sculpins could have limited bloater recruitment in some years, but that some undetermined factor was more important in many other years. Given that slimy sculpin densities are influenced by piscivorous lake trout Salvelinus namaycush, the restoration of which in Lake Michigan has lagged behind those in lakes Superior and Huron, our study highlights the importance of an ecosystem perspective when considering population dynamics of fishes.

  18. Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates. PMID:25373871

  19. First record of Neoergasilus japonicus (Poecilostomatoida: Ergasilidae), a parasitic copepod new to the Laurentian Great Lakes

    USGS Publications Warehouse

    Hudson, Patrick L.; Bowen, Charles A.

    2002-01-01

    The parasitic copepod Neoergasilus japonicus, native to eastern Asia, was first collected from 4 species of fish (fathead minnow, Pimephales promelas; largemouth bass, Micropterus salmoides; pumpkinseed sunfish, Lepomis gibbosus; and yellow perch, Perca flavescens) in July 1994 in Saginaw Bay, Lake Huron, Michigan. Further sampling in the bay in 2001 revealed infections on 7 additional species (bluegill, Lepomis macrochirus; carp, Cyprinus carpio; channel catfish, Ictalurus punctatus; goldfish, Carassius auratus; green sunfish, Lepomis cyanellus; rock bass, Ambloplites rupestris; and smallmouth bass, Micropterus dolomieu). An additional 21 species examined in 2001 were devoid of the parasite. A limited collection of fish from Lake Superior (n = 8) and Lake Michigan (n = 46) in 1994 showed no infection. Neoergasilus japonicus is most frequently found attached to the dorsal fin and, in decreasing frequency, on the anal, tail, pelvic, and pectoral fins. Prevalence generally ranged from 15 to 70 and intensity from 1 to 10. The greatest number of copepods on a single host was 44. The copepod Neoergasilus japonicus appears to disperse over long distances rather quickly, spreading across Europe in 20 yr and then moving on to North America over a span of 10 yr. Its main vehicle of transport and introduction into the Great Lakes is probably exotic fish hosts associated with the fish-culture industry.

  20. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan

    USGS Publications Warehouse

    Whitman, Richard L.; Shively, Dawn A.; Pawlik, Heather; Nevers, Meredith; Byappanahalli, Muruleedhara N.

    2003-01-01

    Each summer, the nuisance green alga Cladophora (mostly Cladophora glomerata) amasses along Lake Michigan beaches, creating nearshore anoxia and unsightly, malodorous mats that can attract problem animals and detract from visitor enjoyment. Traditionally, elevated counts of Escherichia coli are presumed to indicate the presence of sewage, mostly derived from nearby point sources. The relationship between fecal indicator bacteria and Cladophora remains essentially unstudied. This investigation describes the local and regional density ofEscherichia coli and enterococci in Cladophora mats along beaches in the four states (Wisconsin, Illinois, Indiana, and Michigan) bordering Lake Michigan. Samples of Cladophora strands collected from 10 beaches (n = 41) were assayed for concentrations of E. coli and enterococci during the summer of 2002. Both E. coli and enterococci were ubiquitous (up to 97% occurrence), with overall log mean densities (± standard errors) of 5.3 (± 4.8) and 4.8 (± 4.5) per g (dry weight). E. coli and enterococci were strongly correlated in southern Lake Michigan beaches (P< 0.001, R2 = 0.73, n = 17) but not in northern beaches (P = 0.892, n = 16). BothE. coli and enterococci survived for over 6 months in sun-dried Cladophora mats stored at 4°C; the residual bacteria in the dried alga readily grew upon rehydration. These findings suggest that Cladophora amassing along the beaches of Lake Michigan may be an important environmental source of indicator bacteria and call into question the reliability of E. coli and enterococci as indicators of water quality for freshwater recreational beaches.

  1. Lake Michigan: Man's effects on native fish stocks and other biota

    USGS Publications Warehouse

    Wells, LaRue; McLain, Alberton L.

    1973-01-01

    Exploitation was largely responsible for the changes in Lake Michigan fish stocks before the invasion of the smelt, and probably before the invasion of the sea lamprey. The lamprey and alewife, however, have exerted a greater impact than the fishery on native fish populations in recent decades. Accelerated eutrophication and other pollution, although important, have not equalled the other factors in causing changes in native fish populations.

  2. 77 FR 49351 - Safety Zone; Port Huron Float-Down, St. Clair River, Port Huron, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...-AA00 Safety Zone; Port Huron Float-Down, St. Clair River, Port Huron, MI AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the St. Clair River, Port Huron, MI. This zone is intended to restrict vessels from a portion of the St. Clair...

  3. ATMOSPHERIC MERCURY IN THE LAKE MICHIGAN BASIN: INFLUENCE OF THE CHICAGO/GARY URBAN AREA

    EPA Science Inventory

    The relative importance of the Chicago/Gay urban area was investigated to determine its impact on atmospheric mercury (Hg) concentrations and wet deposition in the Lake Michigan basin. Event wet-only precipitation, total particulate, and vapor phase samples were collected for ...

  4. A previously unrecognized path of early Holocene base flow and elevated discharge from Lake Minong to Lake Chippewa across eastern Upper Michigan

    USGS Publications Warehouse

    Loope, Walter L.; Jol, Harry M.; Fisher, Timothy G.; Blewett, William L.; Loope, Henry M.; Legg, Robert J.

    2014-01-01

    It has long been hypothesized that flux of fresh meltwater from glacial Lake Minong in North America's Superior Basin to the North Atlantic Ocean triggered rapid climatic shifts during the early Holocene. The spatial context of recent support for this idea demands a reevaluation of the exit point of meltwater from the Superior Basin. We used ground penetrating radar (GPR), foundation borings from six highway bridges, a GIS model of surface topography, geologic maps, U.S. Department of Agriculture–Natural Resources Conservation Service soils maps, and well logs to investigate the possible linkage of Lake Minong with Lake Chippewa in the Lake Michigan Basin across eastern Upper Michigan. GPR suggests that a connecting channel lies buried beneath the present interlake divide at Danaher. A single optical age hints that the channel aggraded to 225 m as elevated receipt of Lake Agassiz meltwater in the Superior Basin began to wane <10.6 ka. The large supply of sediment required to accommodate aggradation was immediately available at the channel's edge in the littoral shelves of abandoned Lake Algonquin and in distal parts of post-Algonquin fans. As discharge decreased further, the aggraded channel floor was quickly breached and interbasin flow to Lake Chippewa was restored. Basal radiocarbon ages on wood from small lakes along the discharge path and a GIS model of Minong's shoreline are consistent with another transgression of Minong after ca. 9.5 ka. At the peak of the latter transgression, the southeastern rim of the Superior Basin (Nadoway Drift Barrier) failed, ending Lake Minong. Upon Minong's final drop, aggradational sediments were deposited at Danaher, infilling the prior breach.

  5. Genetic assessment of strain-specific sources of lake trout recruitment in the Great Lakes

    USGS Publications Warehouse

    Page, Kevin S.; Scribner, Kim T.; Bennett, Kristine R.; Garzel, Laura M.; Burnham-Curtis, Mary K.

    2003-01-01

    Populations of wild lake trout Salvelinus namaycush have been extirpated from nearly all their historical habitats across the Great Lakes. Efforts to restore self-sustaining lake trout populations in U.S. waters have emphasized the stocking of coded-wire-tagged juveniles from six hatchery strains (Seneca Lake, Lewis Lake, Green Lake, Apostle Islands, Isle Royale, and Marquette) into vacant habitats. Strain-specific stocking success has historically been based on estimates of the survival and catch rates of coded-wire-tagged adults returning to spawning sites. However, traditional marking methods and estimates of relative strain abundance provide no means of assessing strain fitness (i.e., the realized contributions to natural recruitment) except by assuming that young-of-the-year production is proportional to adult spawner abundance. We used microsatellite genetic data collected from six hatchery strains with likelihood-based individual assignment tests (IA) and mixed-stock analysis (MSA) to identify the strain composition of young of the year recruited each year. We show that strain classifications based on IA and MSA were concordant and that the accuracy of both methods varied based on strain composition. Analyses of young-of-the-year lake trout samples from Little Traverse Bay (Lake Michigan) and Six Fathom Bank (Lake Huron) revealed that strain contributions differed significantly from estimates of the strain composition of adults returning to spawning reefs. The Seneca Lake strain contributed the majority of juveniles produced on Six Fathom Bank and more young of the year than expected within Little Traverse Bay. Microsatellite markers provided a method for accurately classifying the lake trout hatchery strains used for restoration efforts in the Great Lakes and for assessment of strain-specific reproductive success.

  6. IMPORTANCE OF TEMPERATURE IN MODELLING PCB BIOACCUMULATION IN THE LAKE MICHIGAN FOOD WEB

    EPA Science Inventory

    In most food web models, the exposure temperature of a food web is typically defined using a single spatial compartment. This essentially assumes that the predator and prey are exposed to the same temperature. However, in a large water body such as Lake Michigan, due to the spati...

  7. Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling

    USGS Publications Warehouse

    Liu, Xiaofeng; Parker, Gary; Czuba, Jonathan A.; Oberg, Kevin; Mier, Jose M.; Best, James L.; Parsons, Daniel R.; Ashmore, Peter; Krishnappan, Bommanna G.; Garcia, Marcelo H.

    2012-01-01

    The lake levels in Lake Michigan-Huron have recently fallen to near historical lows, as has the elevation difference between Lake Michigan-Huron compared to Lake Erie. This decline in lake levels has the potential to cause detrimental impacts on the lake ecosystems, together with social and economic impacts on communities in the entire Great Lakes region. Results from past work suggest that morphological changes in the St Clair River, which is the only natural outlet for Lake Michigan-Huron, could be an appreciable factor in the recent trends of lake level decline. A key research question is whether bed erosion within the river has caused an increase in water conveyance, therefore, contributed to the falling lake level. In this paper, a numerical modeling approach with field data is used to investigate the possibility of sediment movement in the St Clair River and assess the likelihood of morphological change under the current flow regime. A two-dimensional numerical model was used to study flow structure, bed shear stress, and sediment mobility/armoring over a range of flow discharges. Boundary conditions for the numerical model were provided by detailed field measurements that included high-resolution bathymetry and three-dimensional flow velocities. The results indicate that, without considering other effects, under the current range of flow conditions, the shear stresses produced by the river flow are too low to transport most of the coarse bed sediment within the reach and are too low to cause substantial bed erosion or bed scour. However, the detailed maps of the bed show mobile bedforms in the upper St Clair River that are indicative of sediment transport. Relatively high shear stresses near a constriction at the upstream end of the river and at channel bends could cause local scour and deposition. Ship-induced propeller wake erosion also is a likely cause of sediment movement in the entire reach. Other factors that may promote sediment movement, such as ice

  8. Morphometric variation among spawning cisco aggregations in the Laurentian Great Lakes: are historic forms still present?

    USGS Publications Warehouse

    Yule, Daniel L.; Moore, Seth A.; Ebener, Mark P.; Claramunt, Randall M.; Pratt, Thomas C.; Salawater, Lorrie L.; Connerton, Michael J.

    2013-01-01

    Cisco (Coregonus artedi Leseur, formerly lake herring Leucichthys artedi Leseur) populations in each of the Laurentian Great Lakes collapsed between the late 1920s and early 1960s following a multitude of stressors, and never recovered in Lakes Michigan, Erie and Ontario. Prior to their collapse, Koelz (1929) studied Leucichthys spp. in the Great Lakes basin and provided a description of their diversity. Three cisco morphotypes were described; a ‘slim terete’morphotype (L. artedi artedi), a ‘deep compressed’ morphotype (L. artedi albus), and a deep-bodied form resembling tullibee in western Canadian lakes (L. artedi manitoulinus). Based on body measurements of 159 individuals (Koelz 1929), we used discriminant function analysis (DFA) to discriminate historic morphotypes. Shapes of historic morphotypes were found to vary significantly (Pillai’s trace = 1.16, P < 0.0001). The final DFA model used nine body measurements and correctly classified 90% of the historic cisco. Important discriminating measurements included body depth, eye diameter, and dorsal fin base and height. Between October-November of 2007-2011, we sampled cisco from 16 Great Lakes sites collecting digital photographs of over 1, 700 individuals. We applied the DFA model to their body measurements and classified each individual to a morphotype. Contemporary cisco from Lakes Superior, Ontario and Michigan were predominantly classified as artedi, while the most common classifications from northern Lake Huron were albus and manitoulinus. Finding historic morphotypes is encouraging because it suggests that the morphological variation present prior to their collapse still exists. We conclude that contemporary cisco having shapes matching the missing historic morphotypes in the lower lakes warrant special consideration as potential donor populations in reestablishment efforts.

  9. Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes

    USGS Publications Warehouse

    Lynch, Abigail J.; Taylor, William W.; Beard, T. Douglas; Lofgren, Brent M.

    2015-01-01

    Lake whitefish (Coregonus clupeaformis) is an ecologically, culturally, and economically important species in the Laurentian Great Lakes. Lake whitefish have been a staple food source for thousands of years and, since 1980, have supported the most economically valuable (annual catch value ≈ US$16.6 million) and productive (annual harvest ≈ 7 million kg) commercial fishery in the upper Great Lakes (Lakes Huron, Michigan, and Superior). Climate changes, specifically changes in temperature, wind, and ice cover, are expected to impact the ecology, production dynamics, and value of this fishery because the success of recruitment to the fishery has been linked with these climatic variables. We used linear regression to determine the relationship between fall and spring air temperature indices, fall wind speed, winter ice cover, and lake whitefish recruitment in 13 management units located in the 1836 Treaty Waters of the Upper Great Lakes ceded by the Ottawa and Chippewa nations, a culturally and commercially important region for the lake whitefish fishery. In eight of the 13 management units evaluated, models including one or more climate variables (temperature, wind, ice cover) explained significantly more variation in recruitment than models with only the stock–recruitment relationship, using corrected Akaike's Information Criterion comparisons (ΔAICc > 3). Isolating the climate–recruitment relationship and projecting recruitment with the Coupled Hydrosphere-Atmosphere Research Model (CHARM) indicated the potential for increased lake whitefish recruitment in the majority of the 1836 Treaty Waters management units. These results can inform adaptive management strategies by providing anticipated implications of climate on lake whitefish recruitment.

  10. Environmental setting of fixed sites in the western Lake Michigan drainages, Michigan and Wisconsin

    USGS Publications Warehouse

    Sullivan, D.J.; Peterson, E.M.; Richards, K.D.

    1995-01-01

    This report describes selected environmental- setting features for 11 fixed surface-water sites in the Western Lake Michigan Drainages study unit of the National Water-Quality Assessment Pro- gram. The study unit, which includes 10 major river systems draining to Lake Michigan, is bounded on the south by the Illinois State line and extends north to about 31 miles north of Escanaba, Mich. The fixed sites are on the following streams: Peshekee River, Popple River, Menominee River, Pensaukee River, Duck Creek, Tomorrow River, East River, Fox River, North Branch Milwaukee River, Lincoln Creek, and Milwaukee River. Drainage basins above these sites receive runoff from land uses and land covers, bedrock types, and surficial deposits representative of the main types of each of these characteristics in the study unit. Data types collected at the fixed sites include water chemistry; organic compounds and trace elements in streambed sediment and biological tissues; algal, benthic-invertebrate, and fish communities; and aquatic habitat. Field measurements include water temperature, pH, specific conductance, alkalinity, and dissolved oxygen. Results of water- quality field measurements indicate little variation in temperature among the fixed sites. Specific conductance and alkalinity were generally higher at sites underlain by carbonate bedrock than at sites underlain by igneous/metamorphic bedrock. Differences in pH among the fixed sites were less than those for specific conductance and alkalinity, but pH seemed to increase slightly from north to south. Dissolved-oxygen concentration varied more at agricultural sites than at forested and urban sites, perhaps because of higher nutrient inputs at agricultural sites. The information included in this report has been assembled as reference material for ongoing studies at the fixed sites.

  11. Use of stable isotope signatures to determine mercury sources in the Great Lakes

    USGS Publications Warehouse

    Lepak, Ryan F.; Yin, Runsheng; Krabbenhoft, David P.; Ogorek, Jacob M.; DeWild, John F.; Holsen, Thomas M.; Hurley, James P.

    2015-01-01

    Sources of mercury (Hg) in Great Lakes sediments were assessed with stable Hg isotope ratios using multicollector inductively coupled plasma mass spectrometry. An isotopic mixing model based on mass-dependent (MDF) and mass-independent fractionation (MIF) (δ202Hg and Δ199Hg) identified three primary Hg sources for sediments: atmospheric, industrial, and watershed-derived. Results indicate atmospheric sources dominate in Lakes Huron, Superior, and Michigan sediments while watershed-derived and industrial sources dominate in Lakes Erie and Ontario sediments. Anomalous Δ200Hg signatures, also apparent in sediments, provided independent validation of the model. Comparison of Δ200Hg signatures in predatory fish from three lakes reveals that bioaccumulated Hg is more isotopically similar to atmospherically derived Hg than a lake’s sediment. Previous research suggests Δ200Hg is conserved during biogeochemical processing and odd mass-independent fractionation (MIF) is conserved during metabolic processing, so it is suspected even is similarly conserved. Given these assumptions, our data suggest that in some cases, atmospherically derived Hg may be a more important source of MeHg to higher trophic levels than legacy sediments in the Great Lakes.

  12. Chronological framework for the deglaciation of the Lake Michigan lobe of the Laurentide ice sheet from ice-walled lake deposits

    USGS Publications Warehouse

    Curry, B.; Petras, J.

    2011-01-01

    A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south-central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low-relief ice-walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice-walled lake deposit. The semi-circular basin is about 0.72km wide and formed of a 4- to 16-m-thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270??50 14C a BP (21 810cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil-bearing horizon was 17 770??40 14C a BP (21 180cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice-walled lake succession persisted for between 210 and 860cal. a (modal value: 610cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice-walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice-walled lake sedimentation. ?? 2011 John Wiley & Sons, Ltd.

  13. 76 FR 69665 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    .... Alpena County, Michigan (All Jurisdictions) Docket No.: FEMA-B-1151 Lake Huron From approximately 1.3 + 583 City of Alpena, Township miles northwest of the of Alpena. intersection of Rockport Road and Old... Road and Brousseau Road. [[Page 69669

  14. Divergent life histories of invasive round gobies (Neogobius melanostomus) in Lake Michigan and its tributaries

    USGS Publications Warehouse

    Kornis, Matthew; Weidel, Brian C.; Vander Zanden, M. Jake

    2017-01-01

    Round gobies (Neogobius melanostomus) have invaded benthic habitats of the Laurentian Great Lakes and connected tributary streams. Although connected, these two systems generally differ in temperature (Great Lakes are typically colder), food availability (Dreissenid mussels are more prevalent in Great Lakes), and system size and openness. Here, we compare round goby life histories from inshore Lake Michigan and adjacent tributary systems—an uncommon case study of life-history differences between connected systems. Tributary round gobies grew much faster (average length-at-age of 122.3 vs. 65.7 mm for Age 2 +  round gobies), appeared to have shorter life spans (maximum observed age of 2 vs. 5) and had lower age-at-50% maturity (1.6 vs. 2.4 years; females only) compared to gobies from Lake Michigan. In addition, tributary gobies had greater fecundity at Ages 1–2 than lake gobies, but had fewer eggs for a given body size prior to the first spawning event of the summer. We were not able to determine the cause of the observed life-history differences. Nonetheless, the observed differences in growth, maturation and longevity were consistent with known effects of water temperature, as well as predictions of life-history theory for animals at invasion fronts exposed to novel environmental conditions. The high degree of phenotypic plasticity in connected populations of this invasive species has implications for our understanding of invasive species impacts in different habitats.

  15. Arsenic in ground water in Tuscola County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  16. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    USGS Publications Warehouse

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  17. Current-use flame retardants in the water of Lake Michigan tributaries

    USGS Publications Warehouse

    Guo, Jiehong; Romanak, Kevin; Westenbroek, Stephen M.; Hites, Ronald A.; Venier, Marta

    2017-01-01

    In this study, we measured the concentrations of 65 flame retardants in water samples from five Lake Michigan tributaries. These flame retardants included organophosphate esters (OPEs), brominated flame retardants (BFRs), and Dechlorane-related compounds. A total of 59 samples, including both the particulate and the dissolved phases, were collected from the Grand, Kalamazoo, Saint Joseph, and Lower Fox rivers and from the Indiana Harbor and Ship Canal (IHSC) in 2015. OPEs were the most abundant among the targeted compounds with geometric mean concentrations ranging from 20 to 54 ng/L; OPE concentrations were comparable among the five tributaries. BFR concentrations were about 1 ng/L, and the most-abundant compounds were bis(2-ethylhexyl) tetrabromophthalate, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate, and decabromodiphenyl ether. The highest BFR concentrations were measured in either the IHSC or the Saint Joseph River. The dechlorane-related compounds were detected at low concentrations (<1 pg/L). The fraction of target compounds in the particulate phase relative to the dissolved phase varied by chemical and tended to increase with their octanol–water partition coefficient. The chemical loading from all the five tributaries into Lake Michigan were <10 kg/year for the BFRs and about 500 kg/year for the OPEs.

  18. Concentrations and estimated loads of nutrients, mercury, and polychlorinated biphenyls in selected tributaries to Lake Michigan, 2005-6

    USGS Publications Warehouse

    Westenbroek, Stephen M.

    2010-01-01

    The Lake Michigan Mass Balance Project (LMMBP) measured and modeled the concentrations of environmentally persistent contaminants in air, river and lake water, sediment, and fish and bird tissues in and around Lake Michigan for an 18-month period spanning 1994-95. Tributary loads were calculated as part of the LMMBP. The work described in this report was designed to provide updated concentration data and load estimates for 5 nutrients, total mercury, and total polychlorinated biphenyl (PCB) at 5 of the original 11 LMMBP sampling sites. Samples were collected at five Lake Michigan tributary monitoring sites during 2005 and 2006. Annual loads calculated for the 2005-6 sampling period are as much as 50 percent lower relative to the 1994-95 time period. Differences between the loads calculated for the two time periods are likely related to a combination of (1) biases introduced by a reduced level of sampling effort, (2) differences in hydrological characteristics, and (3) actual environmental change. Estimated annual total mercury loads during 2005-6 ranged from 51 kilograms per year (kg/yr) in the Fox River to 2.2 kg/yr in the Indiana Harbor and Ship Canal. Estimated annual total PCB loads during 2005-6 ranged from 132 kg/yr in the Fox River to 6.2 kg/yr in the Grand River.

  19. Three-year progression of emerald ash borer-induced decline and mortality in southeastern Michigan

    Treesearch

    Kamal J.K. Gandhi; Annemarie Smith; Robert P. Long; Robin A.J. Taylor; Daniel A. Herms

    2008-01-01

    We monitored the progression of ash (Fraxinus spp.) decline and mortality due to emerald ash borer (EAB), Agrilus planipennis, in 38 forest stands in the upper Huron River watershed region of southeastern Michigan from 2004-2007. Black ash (F. nigra), green ash (F. pennsylvanica), and white ash...

  20. 33 CFR 334.840 - Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone adjacent to airport on... Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone...

  1. 33 CFR 334.840 - Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone adjacent to airport on... Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone...

  2. Lake Michigan offshore ecosystem structure and food web changes from 1987 to 2008

    USGS Publications Warehouse

    Rogers, Mark W.; Bunnell, David B.; Madenjian, Charles P.; Warner, David M.

    2014-01-01

    Ecosystems undergo dynamic changes owing to species invasions, fisheries management decisions, landscape modifications, and nutrient inputs. At Lake Michigan, new invaders (e.g., dreissenid mussels (Dreissena spp.), spiny water flea (Bythotrephes longimanus), round goby (Neogobius melanostomus)) have proliferated and altered energy transfer pathways, while nutrient concentrations and stocking rates to support fisheries have changed. We developed an ecosystem model to describe food web structure in 1987 and ran simulations through 2008 to evaluate changes in biomass of functional groups, predator consumption, and effects of recently invading species. Keystone functional groups from 1987 were identified as Mysis, burbot (Lota lota), phytoplankton, alewife (Alosa pseudoharengus), nonpredatory cladocerans, and Chinook salmon (Oncorhynchus tshawytscha). Simulations predicted biomass reductions across all trophic levels and predicted biomasses fit observed trends for most functional groups. The effects of invasive species (e.g., dreissenid grazing) increased across simulation years, but were difficult to disentangle from other changes (e.g., declining offshore nutrient concentrations). In total, our model effectively represented recent changes to the Lake Michigan ecosystem and provides an ecosystem-based tool for exploring future resource management scenarios.

  3. Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure

    USGS Publications Warehouse

    Turschak, Benjamin A; Bunnell, David B.; Czesny, Sergiusz J.; Höök, Tomas O.; Janssen, John; Warner, David M.; Bootsma, Harvey A

    2014-01-01

    Aquatic food webs that incorporate multiple energy channels (e.g. nearshore benthic or pelagic) with varying productivity and turnover rates convey stability to biological communities by providing multiple independent energy sources. Within the Lake Michigan food web, invasive dreissenid mussels have caused rapid changes to food web structure and potentially altered the channels through which consumers acquire energy. We used stable C and N isotopes to determine how Lake Michigan food web structure has changed in the past decade, coincident with the expansion of dreissenid mussels, decreased pelagic phytoplankton production and increased nearshore benthic algal production. Fish and invertebrate samples collected from sites around Lake Michigan were analyzed to determine taxa-specific 13C:12C (delta 13C) and 15N:14N (delta 15N) ratios. Sampling took place during two distinct periods, 2002-2003 and 2010-2012, that spanned the period of dreissenid expansion, and included nearshore, pelagic and profundal fish and invertebrate taxa. Magnitude and direction of the 13C shift indicated significantly greater reliance upon nearshore benthic energy sources among nearly all fish taxa as well as profundal invertebrates. Although the mechanisms underlying this 13C shift likely varied among species, possible causes include the transport of benthic algal production to offshore waters and an increased reliance on nearshore prey items. Delta 15N shifts were more variable and of smaller magnitude across taxa although declines in delta 15N among some pelagic fishes may indicate a shift to alternative prey resources. Lake Michigan fishes and invertebrates appear to have responded to dreissenid induced changes in nutrient and energy pathways by switching from pelagic to alternative nearshore energy subsidies. Although large shifts in energy allocation (i.e. pelagic to nearshore benthic) resulting from invasive species appear to have affected total production at upper trophic

  4. Estimation of a Historic Mercury Load Function for Lake Michigan using Dated Sediment Cores

    EPA Science Inventory

    Box cores collected between 1994 and 1996 were used to estimate historic mercury loads to Lake Michigan. Based on a kriging spatial interpolation of 54 Pb-210 dated cores, 228 metric tons of mercury are stored in the lake’s sediments (excluding Green Bay). To estimate the time ...

  5. Observations of cocooned Hydrobaenus (Diptera: Chironomidae) larvae in Lake Michigan

    USGS Publications Warehouse

    Tucker, Taaja R.; Hudson, Patrick L.; Riley, Stephen

    2016-01-01

    Larvae of the family Chironomidae have developed a variety of ways to tolerate environmental stress, including the formation of cocoons, which allows larvae to avoid unfavorable temperature conditions, drought, or competition with other chironomids. Summer cocoon formation by younger instars of the genus Hydrobaenus Fries allows persistence through increased temperatures and/or intermittent dry periods in arid regions or temporary habitats, but this behavior was not observed in the Great Lakes until the current study. Cocoon-aestivating Hydrobaenus sp. larvae were found in benthic grab samples collected in 2010–2013 near Sleeping Bear Dunes National Lakeshore in northern Lake Michigan with densities up to 7329/m2. The aestivating species was identified as Hydrobaenus johannseni (Sublette, 1967), and the associated chironomid community was typical for an oligotrophic nearshore system. Hydrobaenus cocoon formation in the Great Lakes was likely previously unnoticed due to the discrepancies between the genus' life history and typical benthos sampling procedures which has consequences for describing chironomid communities where Hydrobaenus is present.

  6. Bioaccumulation and Spatiotemporal Trends of Polyhalogenated Carbazoles in Great Lakes Fish from 2004 to 2016.

    PubMed

    Wu, Yan; Tan, Hongli; Zhou, Chuanlong; Crimmins, Bernard S; Holsen, Thomas M; Chen, Da

    2018-04-17

    Polyhalogenated carbazoles (PHCZs) were recently discovered in Great Lakes sediment and other aquatic systems. However, knowledge about their bioaccumulation and potential risks to fish and wildlife remains very limited. The present study investigated PHCZs in Great Lakes lake trout ( Salvelinus namaycush) and walleye ( Sander vitreus; Lake Erie only) composites collected between 2004 and 2016. Median concentrations of ∑PHCZs by lake ranged from 54.7 to 154 ng/g lipid weight or lw (6.8-28.0 ng/g wet weight). Dominant congeners included 3,6-dichlorocarbazole, 1,3,6-tribromocarbazole, and 1,3,6,8-tetrachlorocarbazole. The highest ∑PHCZs concentrations were found in Lakes Michigan and Ontario fish, followed by Lake Huron, whereas Lakes Erie and Superior fish contained the lowest concentrations. Congener profiles of PHCZs also exhibited spatial variations. After age normalization to minimize fish age influence on bioaccumulation rates, fish ∑PHCZs' concentrations declined significantly over time in all lakes except Lake Erie, with slopes ranging from -10.24% to -3.85% per year. The median toxic equivalent (TEQ) of PHCZs due to their dioxin-like activity was determined to range from 8.7 to 25.7 pg/g lw in Great Lakes fish. This study provides the first insight into the bioaccumulation and spatiotemporal trends of PHCZs in Great Lakes and suggests the need for further research on this group of chemicals.

  7. Evidence for early hunters beneath the Great Lakes.

    PubMed

    O'Shea, John M; Meadows, Guy A

    2009-06-23

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000-7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron.

  8. Evidence for early hunters beneath the Great Lakes

    PubMed Central

    O'Shea, John M.; Meadows, Guy A.

    2009-01-01

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000–7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron. PMID:19506245

  9. 78 FR 37963 - Safety Zone; Chicago to Mackinac Race; Lake Michigan; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Zone; Chicago to Mackinac Race; Lake Michigan; Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of..., Illinois for the 105th Race to Mackinac. This zone will be enforced from 2 p.m. until 4:30 p.m. on July 12... of life on the navigable waters during the 105th Race to Mackinac. During the aforementioned periods...

  10. Lipid concentrations in Lake Michigan fishes: Seasonal, spatial, ontogenetic, and long-term trends

    USGS Publications Warehouse

    Madenjian, Charles P.; Elliott, Robert F.; DeSorcie, Timothy J.; Stedman, Ralph M.; O'Connor, Daniel V.; Rottiers, Donald V.

    2000-01-01

    Lipid concentrations were measured in seven species of fish from several locations in Lake Michigan during spring, summer, and fall in 1994 to 1995. Adult alewife (Alosa pseudoharengus) and age-2 coho salmon (Oncorhynchus kisutch) exhibited pronounced seasonal changes in lipid content. Adult alewives averaged 7.4% lipid, on a wet weight basis, during spring (May), 2.6% in summer (July), and 12.2% in fall (late September through October). Spring lipid concentration was low in age-2 coho salmon, averaging only 1.9%, then increased to 7.8% during summer and decreased to 4.5% by fall. In contrast, lipid content in adult bloater (Coregonus hoyi) was relatively constant with respect to season, ranging between 10.6% and 12.4% during the year. Lipid concentration increased with fish size for all species except rainbow smelt (Osmerus mordax). Although deepwater sculpin (Myoxocephalus thompsoni) were considerably larger than slimy sculpin (Cottus cognatus) (mean total length of 117 mm vs 68 mm), mean lipid content of deepwater sculpin (7.6%) was only slightly higher than that for slimy sculpin (6.6%). Comparison of lipid concentrations from this study with previous studies indicated that lipid concentration in lake trout (Salvelinus namaycush) and alewives in Lake Michigan did not change significantly from 1969–1971 to 1994–1995. Lipid concentration in large (about 250 mm total length) adult bloaters near Saugatuck (along the southeastern shore of the lake) decreased from 23.3% in 1980 to 11.9% in 1986, but showed no significant change between 1986 and 1994–1995.

  11. An aquarium experiment on the American eel as a predator on larval lampreys

    USGS Publications Warehouse

    Perlmutter, Alfred

    1951-01-01

    The parasitic sea lamprey, Petromyzon marinus, has in recent years spread throughout Lakes Huron and Michigan and is now firmly established in these waters (Applegate, 1949, Mich. Cons., 18 (4): 13-15). Coincident with their spread, the abundance of lake trout, Salvelinus namaycush, has declined in both lakes (Hile, 1949, Trans. Amer. Fish. Soc., 76 (1946): 121-147) and the lake trout as well as other species of fishes are showing an increase in scarring from lamprey attacks. For Lake Michigan the analysis of fishermen's questionnaires gave an increase in percentage by weight of lamprey-scarred lake trout from 31 percent in 1947 to 41 percent in 1948. The sea lamprey is now spreading through Lake Superior, the last of the Great Lakes containing a large population of lake trout.

  12. SEASONAL VARIATION IN THE BIOGEOCHEMICAL CYCLING OF SESTON IN GRAND TRAVERSE BAY, LAKE MICHIGAN. (R825151)

    EPA Science Inventory

    This study describes the biogeochemical cycling of seston in Grand Traverse Bay, Lake Michigan. Seston was characterized by carbon and nitrogen elemental and isotopic abundances. Fluorescence, temperature, light transmittance, and concentrations of dissolved inorganic nitrogen we...

  13. 33 CFR 334.840 - Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone... the center line of the runway at the south end of the air strip on Northerly Island; thence 183°, 500... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Waters of Lake Michigan south of...

  14. 33 CFR 334.840 - Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone... the center line of the runway at the south end of the air strip on Northerly Island; thence 183°, 500... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Waters of Lake Michigan south of...

  15. 33 CFR 334.840 - Waters of Lake Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone... the center line of the runway at the south end of the air strip on Northerly Island; thence 183°, 500... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Waters of Lake Michigan south of...

  16. Age, growth, spawning season, and fecundity of the trout-perch (Percopsis omiscomaycus) in southeastern Lake Michigan

    USGS Publications Warehouse

    House, Robert; Wells, LaRue

    1973-01-01

    Growth of trout-perch (Percopsis omiscomaycus) in the first 2 years of life was somewhat slower in southeastern Lake Michigan (average length at end of second year, 83 mm) than in Lower Red Lake, Minnesota (90 mm), but considerably faster than in Lake Superior (58 mm); size differences in later years were slightly less pronounced. Young fish began growing earlier in the year (some before June 20) than older ones (as late as August). Females tended to live longer than males, as they do in Lower Red Lake and Lake Superior. Trout-perch spawned from late June or early July until late September, somewhat later than in Lower Red Lake (May to August) or Lake Erie (June to August). Fecundity was similar to that in Lake Erie; mature females 94-146 mm long contained from 126 to 1329 yolked eggs.

  17. Using water quality to assess ecological condition in the St. Marys River and Huron-Erie Corridor

    EPA Science Inventory

    The St. Marys River and Huron-Erie-Corridor were assessed by EPA for the first time in 2014-2016 as part of the National Coastal Condition Assessment (NCCA). NCCA uses a probabilistic survey design to allow unbiased assessment of ecological condition across the entire Great Lakes...

  18. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Lake Trout Spawning Habitat Mapping in the Drummond Island Refuge, northern Lake Huron

    NASA Astrophysics Data System (ADS)

    Wattrus, N. J.; Binder, T.

    2012-12-01

    Until the 1950s, lake trout supported a valuable commercial fishery in the Great Lakes. The introduction of sea lamprey into the Great Lakes and overfishing resulted in the loss of most populations. Despite consistent stocking efforts since the 1960s, restoration of these populations has been slow. The reasons are numerous, but may be related to differences in the spawning behavior between hatchery and wild trout. A four-year study initiated in 2010, utilizes acoustic telemetry to characterize and compare the spawning behaviors of hatchery and wild lake trout in the Drummond Island Refuge in northern Lake Huron. In this project, the movement of tagged fish are monitored by an array of over 125 lake floor hydrophones during the fall spawning period. Fish behavior is overlaid over detailed bathymetric and substrate data and compared with environmental variables (e.g. water temperature, wind speed and direction, and wave height and direction) to develop a conceptual behavioral model. Sites suspected of being spawning sites based upon telemetry data are verified through the use of divers and trapping eggs and fry. Prior to this study, the factors that influenced how the spawning fish utilize the lake floor shoals have been poorly understood. Among the factors thought to impact spawning success were: bathymetry and substrate composition. Diver and telemetry data suggest that the fish(both hatchery raised and wild) are particularly attracted to rocky substrates and that fragment size is important. High resolution multibeam bathymetric surveys conducted in 2010 and 2011 have been used to characterize the shape and composition of the lake floor in the study area. Classification of the substrate is a labor intensive process requiring divers, drop cameras and sediment sampling. To improve this, the traditional approach has been to use supervised and unsupervised classification techniques that are based upon measured acoustic backscatter from an echosounder or sidescan sonar

  19. Influence of near-surface stratigraphy on coastal landslides at Sleeping Bear Dunes National Lakeshore, Lake Michigan, USA

    USGS Publications Warehouse

    Barnhardt, W.A.; Jaffe, B.E.; Kayen, R.E.; Cochrane, G.R.

    2004-01-01

    Lake-level change and landslides are primary controls on the development of coastal environments along the coast of northeastern Lake Michigan. The late Quaternary geology of Sleeping Bear Dunes National Lakeshore was examined with high-resolution seismic reflection profiles, ground-penetrating radar (GPR), and boreholes. Based on sequence-stratigraphic principles, this study recognizes ten stratigraphic units and three major unconformities that were formed by late Pleistocene glaciation and postglacial lake-level changes. Locally high sediment supply, and reworking by two regressions and a transgression have produced a complex stratigraphy that is prone to episodic failure. In 1995, a large landslide deposited approximately 1 million m3 of sediment on the lake floor. The highly deformed landslide deposits, up to 18 m thick, extend 3-4 km offshore and unconformably overlie well-stratified glacial and lacustrine sediment. The landslide-prone bluff is underlain by channel-fill deposits that are oriented nearly perpendicular to the shoreline. The paleochannels are at least 10 m deep and 400 m wide and probably represent stream incision during a lake-level lowstand about 10.3 ka B.P. The channels filled with sediment during the subsequent transgression and lake-level highstand, which climaxed about 4.5 ka B.P. As lake level fell from the highstand, the formation of beach ridges and sand dunes sealed off the channel and isolated a small inland lake (Glen Lake), which lies 5 m above the level of Lake Michigan and may be a source of piped groundwater. Our hypothesis is that the paleochannels act as conduits for pore water flow, and thereby locally reduce soil strength and promote slope failure.

  20. Groundwater flux and nutrient loading in the northeast section of Bear Lake, Muskegon County, Michigan, 2015

    USGS Publications Warehouse

    Totten, Alexander R.; Maurer, Jessica A.; Duris, Joseph W.

    2017-11-30

    Bear Lake in North Muskegon, Michigan, is listed as part of the Muskegon Lake area of concern as designated by the U.S. Environmental Protection Agency. This area of concern was designated as a result of eutrophication and beneficial use impairments. On the northeast end of Bear Lake, two man-made retention ponds (Willbrandt Pond East and Willbrandt Pond West), formerly used for celery farming, may contribute nutrients to Bear Lake. Willbrandt Ponds (East and West) were previously muck fields that were actively used for celery farming from the early 1900s until 2002. The restoration and reconnection of the Willbrandt Ponds into Bear Lake prompted concerns of groundwater nutrient loading into Bear Lake. Studies done by the State of Michigan and Grand Valley State University revised initial internal phosphorus load estimates and indicated an imbalance in the phosphorus budget in Bear Lake. From June through November 2015, the U.S. Geological Survey (USGS) did an investigative study to quantify the load of nutrients from shallow groundwater around the Willbrandt Ponds in an effort to update the phosphorus budget to Bear Lake. Seven sampling locations were established, including five shallow groundwater wells and two surface-water sites, in the Willbrandt pond study area and Bear Lake. A total of 12 nutrient samples and discrete water-level measurements were collected from each site from June through November 2015. Continuous water-level data were recorded for both surface-water monitoring locations for the entire sampling period.Water-level data indicated that Willbrandt Pond West had the highest average water-level elevation of all sites monitored, which indicated the general direction of flux is from Willbrandt Pond West to Bear Lake. Nutrient and chloride loading from Willbrandt Pond West to Bear Lake was calculated using two distinct methods: Dupuit and direct seepage methods. Shallow groundwater loading calculations were determined by using groundwater levels to