Sample records for lake level dropped

  1. Coupled Atmosphere-Surface Modeling of Lake Levels of the North American Great Lakes under Climate Change

    NASA Astrophysics Data System (ADS)

    Lofgren, B. M.; Xiao, C.

    2016-12-01

    The influence of projected climate change on the water levels of the Great Lakes is subject to considerable uncertainty, and methods that have long been used to determine this sensitivity have been discredited. A strong candidate, albeit expensive, to replace problematic methods is to use outputs that result from dynamical downscaling of future climate simulations, focused on the hydroclimate of the Great Lakes basin. We have produced initial estimates of Great Lakes water levels in the mid- and late 21st century using the Weather Research and Forecasting (WRF) model, including its lake module, driven by lateral boundary conditions from the Geophysical Fluid Dynamics Lab Climate Model version 3.0 (GFDL CM3), under RCP4.5 and 8.5 scenarios. Future lake levels are influenced by the balance between projected general increases in precipitation and increases in evapotranspiration from both land and lake in the basin, driven primarily by the surface radiative energy budget and secondarily by air temperature. The net result was drops in lake level of up to 15 cm, in contrast to the results from much-used older methods, which often projected drops exceeding 1 m. Future plans include increased detail in the simulation of water flow overland and in river channels using WRF-Hydro, and full coupling of regional atmospheric systems with 3-dimensional dynamical lake implementation of the Finite Volume Community Ocean Model (FVCOM).

  2. Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA

    USGS Publications Warehouse

    Bacon, S.N.; Burke, R.M.; Pezzopane, S.K.; Jayko, A.S.

    2006-01-01

    Stratigraphic investigations of fluvio-deltaic and lacustrine sediments exposed in stream cuts, quarry walls, and deep trenches east of the Sierra Nevada in Owens Valley near Lone Pine, California have enabled the reconstruction of pluvial Owens Lake level oscillations. Age control for these sediments is from 22 radiocarbon (14C) dates and the identification and stratigraphic correlation of a tephra, which when plotted as a function of age versus altitude, define numerous oscillations in the level of pluvial Owens Lake during the latest Pleistocene and early Holocene. We have constructed a lake-level altitude curve for the time interval ???27,000 cal yr BP to present that is based on the integration of this new stratigraphic analysis with published surface stratigraphic data and subsurface core data. Pluvial Owens Lake regressed from its latest Pleistocene highstands from ???27,000 to ???15,300 cal yr BP, as recorded by ???15 m of down cutting of the sill from the altitudes of ???1160 to 1145 m. By ???11,600 cal yr BP, the lake had dropped ???45 m from the 1145 m sill. This lowstand was followed by an early Holocene transgression that attained a highstand near 1135 m before dropping to 1120 m at 7860-7650 cal yr BP that had not been recognized in earlier studies. The lake then lowered another ???30 m to shallow and near desiccation levels between ???6850 and 4300 cal yr BP. Fluvial cut-and-fill relations north of Lone Pine and well-preserved shoreline features at ???1108 m indicate a minor lake-level rise after 4300 cal yr BP, followed by alkaline and shallow conditions during the latest Holocene. The new latest Quaternary lake-level record of pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra Nevada and will assist regional paleoclimatic models for the western Basin and Range. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Hydrogeochemical and lake level changes in the Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Alemayehu, Tamiru; Ayenew, Tenalem; Kebede, Seifu

    2006-01-01

    The Ethiopian Rift is characterized by a chain of lakes varying in size, hydrological and hydrogeological settings. The rift lakes and feeder rivers are used for irrigation, soda extraction, commercial fish farming and recreation, and support a wide variety of endemic birds and wild animals. The level of some lakes shows dramatic changes in the last few decades. Lakes Abiyata and Beseka, both heavily impacted by human activities, show contrasting lake level trends: the level of Abiyata has dropped by about 5 m over three decades while Beseka has expanded from an area of 2.5-40 km 2 over the same span of time. Changes in lake levels are accompanied by dilution in ionic concentration of lake Beseka and increase in salinity of lake Abiyata. Although the principal hydrogeochemical process in the rift lakes is controlled by the input and output conditions and carbonate precipitation, anthropogenic factors such as water diversion for irrigation and soda ash extraction played important role. The recent changes appear to have grave environmental consequences on the fragile rift ecosystem, which demands an integrated basin-wide water management practice. This paper demonstrates the drastic changes of lake levels and associated changes in lake chemistry of the two studied lakes. It also gives the regional hydrogeochemical picture of the other rift lakes that do not show significant response due to climate change and human impact.

  4. Holocene depositional environments and surface-level changes at Lake Fryxell, Antarctica

    USGS Publications Warehouse

    Whittaker, T.E.; Hall, B.L.; Hendy, C.H.; Spaulding, S.A.

    2008-01-01

    We report on Holocene surface-level variations of Lake Fryxell, Antarctica, as determined from multi-proxy analyses of 18 sediment cores. During this time accumulating sediments were predominantly aeolian sand with algal and carbonate laminae. Based on stratigraphy, mineralogy and diatom assemblages we suggest some carbonate laminae were deposited when lake level dropped, leading to concentration and subsequent precipitation of salts. Although lake level appears to have remained relatively stable throughout the Holocene, minor (<4.5 m below present) lowstands occurred at approximately 6400, 4700, 3800 and ??? 1600 cal. yr BP. The stability of Lake Fryxell during the Holocene contrasts with large-scale variability at other Dry Valleys lakes (eg, Lake Vanda) and with suggestions from chemical diffusion models of a near-desiccation at ???1200 cal. yr BP. The reason for the comparative stability of Lake Fryxell is uncertain, but may be the result of basin morphology and the number, aspect and proximity of meltwater sources. ?? 2008 SAGE Publications.

  5. Late Holocene lake-level variation in southeastern Lake Superior: Tahquamenon Bay, Michigan

    USGS Publications Warehouse

    Johnston, John W.; Baedke, Steve J.; Booth, Robert K.; Thompson, Todd A.; Wilcox, Douglas A.

    2004-01-01

    Internal architecture and ages of 71 beach ridges in the Tahquamenon Bay embayment along the southeastern shore of Lake Superior on the Upper Peninsula of Michigan were studied to generate a late Holocene relative lake-level curve. Establishing a long-term framework is important to examine the context of historic events and help predict potential future changes critical for effective water resource management. Ridges in the embayment formed between about 4,200 and 2,100 calendar years before 1950 (cal. yrs. B.P.) and were created and preserved every 28 A? 4.8 years on average. Groups of three to six beach ridges coupled with inflections in the lake-level curve indicate a history of lake levels fluctuations and outlet changes. A rapid lake-level drop (approximately 4 m) from about 4,100 to 3,800 cal. yrs. B.P. was associated with a fall from the Nipissing II high-water-level phase. A change from a gradual fall to a slight rise was associated with an outlet change from Port Huron, Michigan/Sarnia, Ontario to Sault Ste. Marie, Michigan/Ontario. A complete outlet change occurred after the Algoma high-water-level phase (ca. 2,400 cal. yrs. B.P.). Preliminary rates of vertical ground movement calculated from the strandplain are much greater than rates calculated from historical and geologic data. High rates of vertical ground movement could have caused tectonism in the Whitefish Bay area, modifying the strandplain during the past 2,400 years. A tectonic event at or near the Sault outlet also may have been a factor in the outlet change from Port Huron/Sarnia to Sault Ste. Marie.

  6. Wet trend continues for lakes

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    About 20% of the United States, including the regions of the Great Lakes and the Great Salt Lake, has entered a fourth year of record and near-record streamflow and lake levels, according to the U.S. Geological Survey (USGS). From June 3 until June 8, 1986, the Great Salt Lake stood at 1283.77 m above sea level, 0.076 m above the previous record, which was set in 1873. (Records have been kept for the lake since 1847.) On June 8, a dike south of the lake gave way during a windstorm, causing flooding of evaporation ponds used for mineral recovery.As a result of the breach, the lake's level dropped to 1283.65 m above sea level by June 10 but rose to 1283.68 m by June 20. The latest official reading, made on June 30, showed that the lake's level had dropped to 1283.63 m above sea level. According to Tom Ross, chief of the Current Water Conditions Group at the USGS National Center in Reston, Va., this drop represents “a normal seasonal decline brought on by evaporation.”

  7. Lake Level Changes in the Mono Basin During the Last Deglacial Period

    NASA Astrophysics Data System (ADS)

    Wang, X.; Ali, G.; Hemming, S. R.; Zimmerman, S. R. H.; Stine, S. W.; Hemming, G.

    2014-12-01

    Mono Basin, located in the southwestern corner of the US Great Basin, has long been known to have experienced large lake level changes, particularly during the last deglaciation. But until recently it was not possible to establish a reliable lake level time series. We discovered many visually clean, white, shiny, dense calcite samples in the basin, associated with tufa deposits from high terraces. Their low thorium, but high uranium contents allow precise and reproducible U/Th age determinations. A highly resolved history of a minimum lake level through the last deglaciation can therefore be inferred based on sample locations and their ages. We found that the lake level reached ~2030 m asl at ~20.4 ka, evidenced by calcite coatings on a tufa mound at the upper Wilson Creek. The lake then rose to ~2075 m by ~19.1 ka, shown by calcite cements on conglomerates from the Hansen Cut terrace. The lake climbed to at least ~2140 m at ~15.9 ka, indicated by beach calcites from the east Sierra slope. Such timing of the highest lake stand, occurring within Heinrich Stadial 1, is reinforced by U/Th dates on calcite coatings from widespread locations in the basin, including the Bodie Hills and Cowtrack Mountains. The lake then dropped rapidly to ~2075 m at ~14.5 ka. It stood near this height over the next ~300 years, evidenced by a few-centimeter thick, laminated calcite rims on the Goat Ranch tufa mounds. It subsequently plunged to ~2007 m at ~13.8 ka, indicated by calcite coatings from cemetery road tufa mounds. The lake level came back to ~2030 m at ~12.9 ka, as seen in upper Wilson Creek tufa mounds. The lake level had a few fluctuations within the Younger Dryas, and even shot up to ~2075 m at ~12.0 ka. It then fell to levels in accord with Holocene climatic conditions. Relative to the present lake level of ~1950 m, Mono Lake broadly stood high during Heinrich Stadial 1 and Younger Dryas, when the climate was extremely cold over the North Atlantic, and the Asian monsoon was

  8. Dramatic water-level fluctuations in lakes under intense human impact: modelling the effect of vegetation, climate and hydrogeology

    NASA Astrophysics Data System (ADS)

    Vainu, M.

    2012-04-01

    Lakes form a highly important ecosystem in the glacial terrain of northern Europe and America, but their hydrology remains understudied. When the water-level of a lake drops significantly and rises again in a time span of half a century and the widespread explanation of the fluctuations seems insufficient, then it raises a question: how do different anthropogenic and natural processes actually affect the formation of a lakes' water body. The abovementioned scenario applies to three small closed-basin Estonian lakes (L. Ahnejärv, L. Kuradijärv and L. Martiska) analysed in the current study. These lakes suffered a major water-level drop (up to 3.8 m) between 1946 and 1987 and a major rise between 1987 and 2010, from 1 m (L. Ahnejärv) to 2.5 m (L. Kuradijärv). Decreasing and increasing groundwater abstraction near the lakes has been widely considered to be the only reason for the fluctuations. It is true that the most severe drop in the lake levels did occur after 1972 when groundwater abstraction for drinking water started in the vicinity of the lakes. However, the lake levels started to fall before the groundwater abstraction began and for the time being the lake levels have risen to a higher level than in the 1970s when the quantity of annually abstracted groundwater was similar to nowadays. Therefore the processes affecting the formation of the lakes' water body prove to be more complex than purely the hydrogeological change caused by groundwater abstraction. A new deterministic water balance model (where the evaporation from the lake surface was calculated by Penman equation and the catchment runoff by Thornthwaite-Mather soil-moisture model), compiled for the study, coupled with LiDAR-based GIS-modelling of the catchments was used to identify the different factors influencing the lakes' water level. The modelling results reveal that the moderate drop in lake water levels before the beginning of groundwater abstraction was probably caused by the growth of a

  9. A 50-years record of dichloro-diphenyl-trichloroethanes and hexachlorocyclohexanes in lake sediments and penguin droppings on King George Island, Maritime Antarctic.

    PubMed

    Sun, Li-guang; Yin, Xue-bin; Pan, Can-ping; Wang, Yu-hong

    2005-01-01

    Since the ban on the use of organochlorine pesticides (OCPs) such as dichloro-diphenyl-trichloroethane (DDT) and hexachlorocyclohexane(HCH) in agriculture, their levels have generally dropped. In a number of cases, however, the levels of these OCPs were found to be unchanging or even increasing after the ban. With the aim to unveil the possible causes of these exceptions, we collected two lake cores from King George Island, West Antarctica, and determined their accumulation flux profiles and temporal trends of these OCPs. In the lake core sediments with glacier meltwater input, the accumulation flux of DDT shows an abnormal peak around 1980s in addition to the expected one in 1960s. In the lake core sediments without glacier meltwater input, the accumulation flux of DDT shows a gradual decline trend after the peak in 1960s. This striking difference in the DDT flux profiles between the two lake cores is most likely caused by the regional climate warming and the resulted discharge of the DDT stored in the Antarctic ice cap into the lakes in the Antarctic glacier frontier. Furthermore, to investigate the change of OCPs loadings in the Antarctic coastal ecosystem, we reconstructed the HCH and DDT concentration profiles in penguin droppings and observed a gradual increase for the former and a continuous decrease for the latter during the past 50 years. The increase of HCH seems to be due to the regional warming from the early 1970s and the resulted HCH discharge to the coastal ecosystem by glaciers' meltwater and the illegal use of HCH in the Southern Hemisphere in the recent decade. Thedifferent temporal trends of HCH and DDT accumulation rate in the lake core with glacier meltwater input and the aged penguin droppings can be explained by their different water-soluble property.

  10. La Gocciolina (The Little Drop of Water).

    ERIC Educational Resources Information Center

    Palandra, Maria

    This primary level reader in Italian intended for use in a bilingual education setting, is about the life cycle of a drop of water. The drop of water is personified and the story tells of its adventures as it travels from the top of the lake to the bottom, its meeting with the inhabitants of the lake, and its trip to the clouds. After deciding not…

  11. Controls on lava lake level at Halema`uma`u Crater, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.

    2013-12-01

    Lava level is a fundamental measure of lava lake activity, but very little continuous long-term data exist worldwide to explore this aspect of lava lake behavior. The ongoing summit eruption at Kilauea Volcano began in 2008 and is characterized by an active lava lake within the eruptive vent. Lava level has been measured nearly continuously at Kilauea for several years using a combination of webcam images, laser rangefinder, and terrestrial LIDAR. Fluctuations in lava level have been a common aspect of the eruption and occur over several timescales. At the shortest timescale, the lava lake level can change over seconds to hours owing to two observed shallow gas-related processes. First, gas pistoning is common and is driven by episodic gas accumulation and release from the surface of the lava lake, causing the lava level to rise and fall by up to 20 m. Second, rockfalls into the lake trigger abrupt gas release, and lava level may drop as much as 10 m as a result. Over days, cyclic changes in lava level closely track cycles of deflation-inflation (DI) deformation events at the summit, leading to level changes up to 50 m. Rift zone intrusions have caused large (up to 140 m) drops in lava level over several days. On the timescale of weeks to months, the lava level follows the long-term inflation and deflation of the summit region, resulting in level changes up to 140 m. The remarkable correlation between lava level and deflation-inflation cycles, as well as the long-term deformation of the summit region, indicates that the lava lake acts as a reliable 'piezometer' (a measure of liquid pressure in the magma plumbing system); therefore, assessments of summit pressurization (and rift zone eruption potential) can now be carried out with the naked eye. The summit lava lake level is closely mirrored by the lava level within Pu`u `O`o crater, the vent area for the 30-year-long eruption on Kilauea's east rift zone, which is 20 km downrift of the summit. The coupling of these

  12. Late Pleistocene to Holocene lake levels of Lake Warner, Oregon (USA) and their effect on archaeological site distribution patterns

    NASA Astrophysics Data System (ADS)

    Wriston, T.; Smith, G. M.

    2017-12-01

    Few chronological controls are available for the rise and fall of small pluvial lake systems in the Northwestern Great Basin. Within Warner Basin this control was necessary for interpretation of known archaeological sites and for predicting where evidence of its earliest inhabitants might be expected. We trenched along relic beach ridges of Lake Warner, surveyed a stratified sample of the area for archaeological sites, and excavated some sites and a nearby rockshelter. These efforts produced new ages that we used to construct a lake level curve for Lake Warner. We found that the lake filled the valley floor between ca. 30,000 cal yr BP and ca. 10,300 cal yr BP. In nearby basins, several oscillations are evident before ca. 21,100 cal yr BP, but a steep rise to the LGM maximum occurred between 21,000 and 20,000 cal yr BP. Lake Warner likely mirrored these changes, dropped to the valley floor ca. 18,340 cal yr BP, and then rose to its maximum highstand when its waters briefly reached 1454 m asl. After this highstand the lake receded to moderately high levels. Following ca. 14,385 cal yr BP, the lake oscillated between moderate to moderately-high levels through the Bolling-Allerod interstadials and into the Younger Dryas stadial. The basin's first occupants arrived along its shore around this time, while the lake still filled the valley floor. These earliest people carried either Western Stemmed or Clovis projectile points, both of which are found along the lake margin. The lake receded into the valley floor ca. 10,300 cal yr BP and dune development began, ringing wetlands and small lakes that persisted in the footprint of the once large lake. By the time Mazama tephra fell 7,600 cal yr BP it blanketed pre-existing dunes and marsh peats. Our Lake Warner lake level curve facilitates interdisciplinary testing and refinement of it and similar curves throughout the region while helping us understand the history of lake and the people who lived along its shores.

  13. Lake-level frequency analysis for Devils Lake, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  14. Lake-level frequency analysis for Devils Lake, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, Aldo V.

    1995-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow.Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lake-volume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lakevolume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines.The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  15. Modeling level change in Lake Urmia using hybrid artificial intelligence approaches

    NASA Astrophysics Data System (ADS)

    Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali

    2017-06-01

    The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.

  16. Lake level variability in Silver Lake, Michigan: a response to fluctuations in lake levels of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2004-01-01

    Sediment from Silver Lake, Michigan, can be used to constrain the timing and elevation of Lake Michigan during the Nipissing transgression. Silver Lake is separated from Lake Michigan by a barrier/dune complex and the Nipissing, Calumet, and Glenwood shorelines of Lake Michigan are expressed landward of this barrier. Two Vibracores were taken from the lake in February 2000 and contain pebbly sand, sand, buried soils, marl, peat, and sandy muck. It is suggested here that fluctuations in the level of Lake Michigan are reflected in Silver Lake since the Chippewa low phase, and possibly at the end of the Algonquin phase. An age of 12,490 B.P. (10,460±50 14C yrs B.P.) on wood from a buried Entisol may record the falling Algonquin phase as the North Bay outlet opened. A local perched water table is indicated by marl deposited before 7,800 B.P. and peat between 7,760-7,000 B.P. when Lake Michigan was at the low elevation Chippewa phase. Continued deepening of the lake is recorded by the transition from peat to sandy muck at 7,000 B.P. in the deeper core, and with the drowning of an Inceptisol nearly 3 m higher at 6,410 B.P. in the shallower core. A rising groundwater table responding to a rising Lake Michigan base level during the Nipissing transgression, rather than a response to mid-Holocene climate change, explains deepening of Silver Lake. Sandy muck was deposited continually in Silver Lake between Nipissing and modern time. Sand lenses within the muck are presumed to be eolian in origin, derived from sand dunes advancing into the lake on the western side of the basin.

  17. Evaluating the Impact of Gilgel Gibe Dam on the Lake Turkana Water Levels: An Illustration from an Endorheic Lake in Africa

    NASA Astrophysics Data System (ADS)

    Velpuri, N.; Senay, G. B.

    2010-12-01

    Lake Turkana is one of the lakes in the Great Rift Valley, Africa. This lake has no outlet hence it is considered as closed or endorheic lake. To meet the demand of electricity in the east African region, Ethiopia is currently building Gilgel Gibe-III dam on the Omo River, which supplies up to 80% of the inflows to the Lake Turkana. On completion, this dam would be the tallest dam in Africa with a height of 241 m. As Lake Turkana is highly dependent on the inflows from the Omo River, the construction of this dam could potentially pose a threat to the downstream river valley and to Lake Turkana. This hydroelectric project is arguably one of the most controversial projects in the region. The impact of the dam on the lake is evaluated using Remote Sensing datasets and hydrologic modeling. First, lake water levels (1998-2007) were estimated using the Simplified Lake Water Balance (SLAB) approach which takes in satellite based rainfall estimates, modeled runoff and evapotranspiration data over the Turkana basin. Modeled lake levels were validated against TOPEX/POSIEDON/Jason-1 satellite altimeter data. Validation results showed that the model could capture observed trends and seasonal variations in lake levels. The fact that the lake is endorheic makes it easy to model the lake levels. Using satellite based estimates for the years 1998-2009, future scenarios for rainfall and evapotranspiration were generated using the Monte Carlo simulation approach and the impact of Gilgel Gibe-III dam on the Lake Turkana water levels is evaluated using SLAB approach. Preliminary results indicate that the impact of the dam on the lake would vary with the initial water level in the lake at the time of dam commissioning. It was found that during the initial period of dam/reservoir filling the lake level would drop up to 2-3 m (95% confidence interval). However, on average the lake would stabilize within 10 years from the date of commissioning. The variability within the lake levels due

  18. Hydrogeologic Controls on Lake Level at Mountain Lake, Virginia

    NASA Astrophysics Data System (ADS)

    Roningen, J. M.; Burbey, T. J.

    2011-12-01

    Mountain Lake in Giles County, Virginia has a documented history of severe natural lake-level changes involving groundwater seepage that extend over the past 4200 years. Featured in the 1986 movie Dirty Dancing, the natural lake dried up completely in September 2008 and levels have not yet recovered. A hydrogeologic investigation was undertaken in an effort to determine the factors influencing lake level changes. A daily water balance, dipole-dipole electrical resistivity surveying, well logging and chemical sampling have shed light on: 1) the influence of a fault not previously discussed in literature regarding the lake, 2) the seasonal response to precipitation of a forested first-order drainage system in fractured rock, and 3) the possibility of flow pathways related to karst features. Geologic controls on lake level were investigated using several techniques. Geophysical surveys using dipole-dipole resistivity located possible subsurface flowpaths both to and from the lake. Well logs, lineament analysis, and joint sampling were used to assess structural controls on lake hydrology. Major ions were sampled at wells, springs, streams, and the lake to evaluate possible mixing of different sources of water in the lake. Groundwater levels were monitored for correlation to lake levels, rainfall events, and possible seismic effects. The hydrology of the lake was quantified with a water balance on a daily time step. Results from the water balance indicate steady net drainage and significant recharge when vegetation is dormant, particularly during rain-on-snow melt events. The resistivity survey reveals discrete areas that represent flow pathways from the lake, as well as flowpaths to springs upgradient of the lake located in the vicinity of the fault. The survey also suggests that some flowpaths may originate outside of the topographic watershed of the lake. Chemical evidence indicates karst may underlie the lakebed. Historical data suggest that artificial intervention

  19. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    USGS Publications Warehouse

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ???2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  20. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    NASA Astrophysics Data System (ADS)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  1. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800

  2. Quantitative assessment of glacial fluctuations in the level of Lake Lisan, Dead Sea rift

    NASA Astrophysics Data System (ADS)

    Rohling, Eelco J.

    2013-06-01

    A quantitative understanding of climatic variations in the Levant during the last glacial cycle is needed to support archaeologists in assessing the drivers behind hominin migrations and cultural developments in this key region at the intersection between Africa and Europe. It will also foster a better understanding of the region's natural variability as context to projections of modern climate change. Detailed documentation of variations in the level of Lake Lisan - the lake that occupied the Dead Sea rift during the last glacial cycle - provides crucial climatic information for this region. Existing reconstructions suggest that Lake Lisan highstands during cold intervals of the last glacial cycle represent relatively humid conditions in the region, but these interpretations have remained predominantly qualitative. Here, I evaluate realistic ranges of the key climatological parameters that controlled lake level, based on the observed timing and amplitudes of lake-level variability. I infer that a mean precipitation rate over the wider catchment area of about 500 mm y-1, as proposed in the literature, would be consistent with observed lake levels if there was a concomitant 15-50% increase in wind speed during cold glacial stadials. This lends quantitative support to previous inferences of a notable increase in the intensity of Mediterranean (winter) storms during glacial periods, which tracked eastward into the Levant. In contrast to highstands during ‘regular’ stadials, lake level dropped during Heinrich Events. I demonstrate that this likely indicates a further intensification of the winds during those times.

  3. Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California

    NASA Astrophysics Data System (ADS)

    Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.

    2009-12-01

    Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty

  4. Lake-level stratigraphy and geochronology revisited at Lago (Lake) Cardiel, Argentina, and changes in the Southern Hemispheric Westerlies over the last 25 ka

    NASA Astrophysics Data System (ADS)

    Quade, J.; Kaplan, M. R.

    2017-12-01

    Paleoshorelines around Lago (Lake) Cardiel in southern Argentina (S48.9°, W71.3°; ∼275 m) record substantial changes in lake area over the past 25 ka. Our results combined with previous research show that during the last glacial maximum (or LGM, 23-21 ka), the lake stood at near modern levels, but had nearly dried up by ∼13 ka. Between 11.3 and 10.1 ka the lake reached its highest point (+54-58 m) and greatest extent in at least the last 40 ka. Lake levels dropped thereafter and experienced two lower-lake periods: 8.5-7.5 ka and 5-3.3 ka; and two higher-lake periods: 7.4-6 and ∼5.2 ka. In the last 3.5 ka, the lake has remained generally near or slightly above its present level. The depth and surface area of Lago Cardiel are controlled mainly by precipitation onto the lake and surrounding catchment, air and water temperature, and wind-speed related to local strength of the Southern Hemispheric Westerlies (SHW). Our lake-level reconstruction combined with evidence from other studies suggest that on average the core of the SHW was located well to the north (<45°S) of the Cardiel basin during the deep lake phase associated with the LGM, and was well to the south (>55°S?) during the hydrologic maximum of Cardiel in the early Holocene. The lower phases of the lake at 20.0-11.5, 8.5-7.5, and 5.0-3.3 ka generally correspond to cold conditions in other records, when we infer that the SHW were strongly focused around the latitudes of Cardiel at 49°S.

  5. Terrestrial laser scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Jones, Laura K.; Kyle, Philip R.; Oppenheimer, Clive; Frechette, Jedediah D.; Okal, Marianne H.

    2015-03-01

    A Terrestrial Laser Scanning (TLS) instrument was used to image the topography of the Main Crater at Erebus volcano each December in 2008, 2009, and 2010. Our high-spatial resolution TLS scans provide unique insights into annual and decadal scale geomorphic evolution of the summit area when integrated with comparable data collected by an airborne instrument in 2001. We observe both a pattern of subsidence within the Inner Crater of the volcano and an ~ 3 m per-year drop in the lava lake level over the same time period that are suggestive of decreasing overpressure in an underlying magma reservoir. We also scanned the active phonolite lava lake hosted within the Inner Crater, and recorded rapid cyclic fluctuations in the level of the lake. These were sporadically interrupted by minor explosions by bursting gas bubbles at the lake surface. The TLS data permit calculation of lake level rise and fall speeds and associated rates of volumetric change within the lake. These new observations, when considered with prior determinations of rates of lake surface motion and gas output, are indicative of unsteady magma flow in the conduit and its associated variability in gas volume fraction.

  6. Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Goldstein, Steven L.; Garcia-Veigas, Javier; Levy, Elan; Kushnir, Yochanan; Stein, Mordechai; Lazar, Boaz

    2017-04-01

    Thick halite intervals recovered by the Dead Sea Deep Drilling Project cores show evidence for severely arid climatic conditions in the eastern Mediterranean during the last three interglacials. In particular, the core interval corresponding to the peak of the last interglacial (Marine Isotope Stage 5e or MIS 5e) contains ∼30 m of salt over 85 m of core length, making this the driest known period in that region during the late Quaternary. This study reconstructs Dead Sea lake levels during the salt deposition intervals, based on water and salt budgets derived from the Dead Sea brine composition and the amount of salt in the core. Modern water and salt budgets indicate that halite precipitates only during declining lake levels, while the amount of dissolved Na+ and Cl- accumulates during wetter intervals. Based on the compositions of Dead Sea brines from pore waters and halite fluid inclusions, we estimate that ∼12-16 cm of halite precipitated per meter of lake-level drop. During periods of halite precipitation, the Mg2+ concentration increases and the Na+/Cl- ratio decreases in the lake. Our calculations indicate major lake-level drops of ∼170 m from lake levels of 320 and 310 m below sea level (mbsl) down to lake levels of ∼490 and ∼480 mbsl, during MIS 5e and the Holocene, respectively. These lake levels are much lower than typical interglacial lake levels of around 400 mbsl. These lake-level drops occurred as a result of major decreases in average fresh water runoff, to ∼40% of the modern value (pre-1964, before major fresh water diversions), reflecting severe droughts during which annual precipitation in Jerusalem was lower than 350 mm/y, compared to ∼600 mm/y today. Nevertheless, even during salt intervals, the changes in halite facies and the occurrence of alternating periods of halite and detritus in the Dead Sea core stratigraphy reflect fluctuations between drier and wetter conditions around our estimated average. The halite intervals include

  7. Lake Level Variation in Small Lakes: Not a Clear Picture

    NASA Astrophysics Data System (ADS)

    Starratt, S.

    2017-12-01

    Lake level is a useful tool for identifying regional changes in precipitation and evaporation. Due to the volume of water in large lakes, they may only record large-scale changes in water balance, while smaller lakes may record more subtle variations. However, the record of water level in small lakes is affected by a number of factors including elevation, bathymetry, nutrient load, and aquatic macrophyte abundance. The latest Quaternary diatom records from three small lakes with areas of <10 ha (Hobart Lake, OR, 1458 masl; Swamp Lake, CA, 1554 masl; Favre Lake, NV, 2899 masl) and a larger lake (Medicine Lake, CA, 2036 masl, 154 ha) were compared in this study. All the lakes have a deep central basin (>10 m) surrounded by a shallow (1-2 m) shelf. Changes in the abundance of diatoms representing different life habits (benthic, tychoplanktic, planktic) were used to identify lake level variation. Benthic taxa dominate the assemblage when only the central basin is occupied. As the shallow shelf is flooded, the abundance of tychoplanktic taxa increases. Planktic taxa increase with the establishment of stratification. Favre Lake presents the clearest indication of initial lake level rise (7600-5750 cal yr BP) and intermittent flooding of the shelf for the remainder of the record. Stratification appears to become established only in the last few hundred years. Higher nutrient levels in the early part of the Hobart Lake record lead to a nearly monotypic planktic assemblage which is replaced by a tychoplanktic-dominated assemblage as the lake floods the shelf at about 3500 cal yr BP. The last 500 years is dominated by benthic taxa associated with aquatic macrophytes. The consistent presence of planktic taxa in the Swamp Lake record suggests that the lake was stratified during most of its history, although slight variations in the relative abundances of planktic and tychoplanktic groups occur. The Medicine Lake record shows a gradual increase in planktic species between 11

  8. Response of the St. Joseph River to lake level changes during the last 12,000 years in the Lake Michigan basin

    USGS Publications Warehouse

    Kincare, K.A.

    2007-01-01

    The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography

  9. Late Holocene lake-level fluctuations in Walker Lake, Nevada, USA

    USGS Publications Warehouse

    Yuan, F.; Linsley, B.K.; Howe, S.S.; Lund, S.P.; McGeehin, J.P.

    2006-01-01

    Walker Lake, a hydrologically closed, saline, and alkaline lake, is situated along the western margin of the Great Basin in Nevada of the western United States. Analyses of the magnetic susceptibility (??), total inorganic carbon (TIC), and oxygen isotopic composition (??18O) of carbonate sediments including ostracode shells (Limnocythere ceriotuberosa) from Walker Lake allow us to extend the sediment record of lake-level fluctuations back to 2700??years B.P. There are approximately five major stages over the course of the late Holocene hydrologic evolution in Walker Lake: an early lowstand (> 2400??years B.P.), a lake-filling period (??? 2400 to ??? 1000??years B.P.), a lake-level lowering period during the Medieval Warm Period (MWP) (??? 1000 to ??? 600??years B.P.), a relatively wet period (??? 600 to ??? 100??years B.P.), and the anthropogenically induced lake-level lowering period (< 100??years B.P.). The most pronounced lowstand of Walker Lake occurred at ??? 2400??years B.P., as indicated by the relatively high values of ??18O. This is generally in agreement with the previous lower resolution paleoclimate results from Walker Lake, but contrasts with the sediment records from adjacent Pyramid Lake and Siesta Lake. The pronounced lowstand suggests that the Walker River that fills Walker Lake may have partially diverted into the Carson Sink through the Adrian paleochannel between 2700 to 1400??years B.P. ?? 2006 Elsevier B.V. All rights reserved.

  10. Strand-plain evidence for late Holocene lake-level variations in Lake Michigan

    USGS Publications Warehouse

    Thompson, T.A.; Baedke, S.J.

    1997-01-01

    Lake level is a primary control on shoreline behavior in Lake Michigan. The historical record from lake-level gauges is the most accurate source of information on past lake levels, but the short duration of the record does not permit the recognition of long-term patterns of lake-level change (longer than a decade or two). To extend the record of lake-level change, the internal architecture and timing of development of five strand plains of late Holocene beach ridges along the Lake Michigan coastline were studied. Relative lake-level curves for each site were constructed by determining the elevation of foreshore (swash zone) sediments in the beach ridges and by dating basal wetland sediments in the swales between ridges. These curves detect long-term (30+ yr) lake-level variations and differential isostatic adjustments over the past 4700 yr at a greater resolution than achieved by other studies. The average timing of beach-ridge development for all sites is between 29 and 38 yr/ridge. This correspondence occurs in spite of the embayments containing the strand plains being different in size, orientation, hydrographic regime, and available sediment type and caliber. If not coincidental, all sites responded to a lake-level fluctuation of a little more than three decades in duration and a range of 0.5 to 0.6 m. Most pronounced in the relative lake-level curves is a fluctuation of 120-180 yr in duration. This ???150 yr variation is defined by groups of four to six ridges that show a rise and fall in foreshore elevations of 0.5 to 1.5 m within the group. The 150 yr variation can be correlated between sites in the Lake Michigan basin. The ???30 and 150 yr fluctuations are superimposed on a long-term loss of water to the Lake Michigan basin and differential rates of isostatic adjustment.

  11. Late Quaternary sedimentary features of Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Smoot, J.P.

    2009-01-01

    Bear Lake sediments were predominantly aragonite for most of the Holocene, reflecting a hydrologically closed lake fed by groundwater and small streams. During the late Pleistocene, the Bear River flowed into Bear Lake and the lake waters spilled back into the Bear River drainage. At that time, sediment deposition was dominated by siliciclastic sediment and calcite. Lake-level fluctuation during the Holocene and late Pleistocene produced three types of aragonite deposits in the central lake area that are differentiated primarily by grain size, sorting, and diatom assemblage. Lake-margin deposits during this period consisted of sandy deposits including well-developed shoreface deposits on margins adjacent to relatively steep gradient lake floors and thin, graded shell gravel on margins adjacent to very low gradient lake-floor areas. Throughout the period of aragonite deposition, episodic drops in lake level resulted in erosion of shallow-water deposits, which were redeposited into the deeper lake. These sediment-focusing episodes are recognized by mixing of different mineralogies and crystal habits and mixing of a range of diatom fauna into poorly sorted mud layers. Lake-level drops are also indicated by erosional gaps in the shallow-water records and the occurrence of shoreline deposits in areas now covered by as much as 30 m of water. Calcite precipitation occurred for a short interval of time during the Holocene in response to an influx of Bear River water ca. 8 ka. The Pleistocene sedimentary record of Bear Lake until ca. 18 ka is dominated by siliciclastic glacial fl our derived from glaciers in the Uinta Mountains. The Bear Lake deep-water siliciclastic deposits are thoroughly bioturbated, whereas shallow-water deposits transitional to deltas in the northern part of the basin are upward-coarsening sequences of laminated mud, silt, and sand. A major drop in lake level occurred ca. 18 ka, resulting in subaerial exposure of the lake floor in areas now covered by

  12. Sedimentary constraints on late Quaternary lake-level fluctuations at Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Smoot, J.P.; Rosenbaum, J.G.

    2009-01-01

    A variety of sedimentological evidence was used to construct the lake-level history for Bear Lake, Utah and Idaho, for the past ???25,000 years. Shorelines provide evidence of precise lake levels, but they are infrequently preserved and are poorly dated. For cored sediment similar to that in the modern lake, grain-size distributions provide estimates of past lake depths. Sedimentary textures provide a highly sensitive, continuous record of lake-level changes, but the modern distribution of fabrics is poorly constrained, and many ancient features have no modern analog. Combining the three types of data yields a more robust lake-level history than can be obtained from any one type alone. When smooth age-depth models are used, lake-level curves from multiple cores contain inconsistent intervals (i.e., one record indicates a rising lake level while another record indicates a falling lake level). These discrepancies were removed and the multiple records were combined into a single lake-level curve by developing age-depth relations that contain changes in deposition rate (i.e., gaps) where indicated by sedimentological evidence. The resultant curve shows that, prior to 18 ka, lake level was stable near the modern level, probably because the lake was overflowing. Between ca. 17.5 and 15.5 ka, lake level was ???40 m below the modern level, then fluctuated rapidly throughout the post-glacial interval. Following a brief rise centered ca. 15 ka ( = Raspberry Square phase), lake level lowered again to 15-20 m below modern from ca. 14.8-11.8 ka. This regression culminated in a lowstand to 40 m below modern ca. 12.5 ka, before a rapid rise to levels above modern ca. 11.5 ka. Lake level was typically lower than present throughout the Holocene, with pronounced lowstands 15-20 m below the modern level ca. 10-9, 7.0, 6.5-4.5, 3.5, 3.0-2.5, 2.0, and 1.5 ka. High lake levels near or above the modern lake occurred ca. 8.5-8.0, 7.0-6.5, 4.5-3.5, 2.5, and 0.7 ka. This lake-level history

  13. Dissolved Oxygen Levels in Lake Chabot

    NASA Astrophysics Data System (ADS)

    Sharma, D.; Pica, R.

    2014-12-01

    Dissolved oxygen levels are crucial in every aquatic ecosystem; it allows for the fish to breathe and it is the best indicator of water quality. Lake Chabot is the main backup water source for Castro Valley, making it crucial that the lake stays in good health. Last year, research determined that the water in Lake Chabot was of good quality and not eutrophic. This year, an experiment was conducted using Lake Chabot's dissolved oxygen levels to ensure the quality of the water and to support the findings of the previous team. After testing three specifically chosen sites at the lake using a dissolved oxygen meter, results showed that the oxygen levels in the lake were within the healthy range. It was then determined that Lake Chabot is a suitable backup water source and it continues to remain a healthy habitat.

  14. Lake levels, streamflow, and surface-water quality in the Devils Lake area, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.

    1996-01-01

    The Devils Lake Basin is a 3,810-square-mile (mi2) closed basin (fig. 1) in the Red River of the North Basin. About 3,320 mi2 of the total 3,810 mi2 is tributary to Devils Lake; the remainder is tributary to Stump Lake.Since glaciation, the lake level of Devils Lake has fluctuated from about 1,457 feet (ft) above sea level (asl), the natural spill elevation of the lake to the Sheyenne River, to 1,400 ft asl (Aronow, 1957). Although no documented records of lake levels are available before 1867, Upham (1895, p. 595), on the basis of tree-ring chronology, indicated that the lake level was 1,441 ft asl in 1830. Lake levels were recorded sporadically from 1867 to 1901 when the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 to the present (1996), the lake level has fluctuated between a maximum of 1,438.4 ft asl in 1867 and a minimum of 1,400.9 ft asl in 1940 (fig. 2). On July 31, 1996, the lake level was 1,437.8 ft asl, about 15.2 ft higher than the level recorded in February 1993 and the highest level in about 120 years.Since 1993, the lake level of Devils Lake (fig. 2) has risen rapidly in response to above-normal precipitation from the summer of 1993 to the present, and 30,000 acres of land around the lake have been flooded. The above-normal precipitation also has caused flooding elsewhere in the Devils Lake Basin. State highways near Devils Lake are being raised, and some local roads have been closed because of flooding.In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) solutions to reduce the effects of high lake levels. In addition to various planning studies being conducted by Federal agencies, the North Dakota State Water Commission has implemented a project to store water on small tracts of land and in the chain of lakes (Sweetwater Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake

  15. Porewater salinity reveals past lake-level changes in Lake Van, the Earth's largest soda lake.

    PubMed

    Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Kwiecien, Olga; Randlett, Marie-Ève; Stockhecke, Mona; Unwin, Katie; Anselmetti, Flavio S; Beer, Jürg; Haug, Gerald H; Schubert, Carsten J; Sturm, Mike; Kipfer, Rolf

    2017-03-22

    In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about -200 m at about 30 ka BP during the last ice age.

  16. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    USGS Publications Warehouse

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  17. Dendrochronology and lakes: using tree-rings of alder to reconstruct lake levels

    NASA Astrophysics Data System (ADS)

    van der Maaten, Ernst; Buras, Allan; Scharnweber, Tobias; Simard, Sonia; Kaiser, Knut; Lorenz, Sebastian; van der Maaten-Theunissen, Marieke; Wilmking, Martin

    2014-05-01

    Climate change is considered a major threat for ecosystems around the world. Assessing its effects is challenging, amongst others, as we are unsure how ecosystems may respond to climate conditions they were not exposed to before. However, increased insight may be obtained by analyzing responses of ecosystems to past climate variability. In this respect, lake ecosystems appear as valuable sentinels, because they provide direct and indirect indicators of change through effects of climate. Lake-level fluctuations of closed catchments, for example, reflect a dynamic water balance, provide detailed insight in past moisture variations, and thereby allow for assessments of effects of anticipated climate change. Up to now, lake-level data are mostly obtained from gauging records and reconstructions from sediments and landforms. However, these records are in many cases only available over relatively short time periods, and, since geoscientific work is highly demanding, lake-level reconstructions are lacking for many regions. Here, we present and discuss an alternative method to reconstruct lake levels, which is based on tree-ring data of black alder (Alnus glutinosa L.). This tree species tolerates permanently waterlogged and temporally flooded conditions (i.e. riparian vegetation), and is often found along lakeshores. As the yearly growth of trees varies depending upon the experienced environmental conditions, annual rings of black alder from lakeshore vegetation likely capture information on variations in water table, and may therefore be used to reconstruct lake levels. Although alder is a relatively short-lived tree species, the frequent use of its' decay-resistant wood in foundations of historical buildings offers the possibility of extending living tree-chronologies back in time for several centuries. In this study, the potential to reconstruct lake-level fluctuations from tree-ring chronologies of black alder is explored for three lake ecosystems in the Mecklenburg

  18. Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika.

    PubMed

    Koblmüller, Stephan; Salzburger, Walter; Obermüller, Beate; Eigner, Eva; Sturmbauer, Christian; Sefc, Kristina M

    2011-06-01

    The conditions of phenotypic and genetic population differentiation allow inferences about the evolution, preservation and loss of biological diversity. In Lake Tanganyika, water level fluctuations are assumed to have had a major impact on the evolution of stenotopic littoral species, though this hypothesis has not been specifically examined so far. The present study investigates whether subtly differentiated colour patterns of adjacent Tropheus moorii populations are maintained in isolation or in the face of continuous gene flow, and whether the presumed influence of water level fluctuations on lacustrine cichlids can be demonstrated in the small-scale population structure of the strictly stenotopic, littoral Tropheus. Distinct population differentiation was found even across short geographic distances and minor habitat barriers. Population splitting chronology and demographic histories comply with our expectation of old and rather stable populations on steeper sloping shore, and more recently established populations in a shallower region. Moreover, population expansions seem to coincide with lake level rises in the wake of Late Pleistocene megadroughts ~100 KYA. The imprint of hydrologic events on current population structure in the absence of ongoing gene flow suggests that phenotypic differentiation among proximate Tropheus populations evolves and persists in genetic isolation. Sporadic gene flow is effected by lake level fluctuations following climate changes and controlled by the persistence of habitat barriers during lake level changes. Since similar demographic patterns were previously reported for Lake Malawi cichlids, our data furthermore strengthen the hypothesis that major climatic events synchronized facets of cichlid evolution across the East African Great Lakes. © 2011 Blackwell Publishing Ltd.

  19. On Evaluating circulation and temperature stratification under changing water levels in Lake Mead with a 3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Li, Y.; Acharya, K.; Chen, D.; Stone, M.; Yu, Z.; Young, M.; Zhu, J.; Shafer, D. S.; Warwick, J. J.

    2009-12-01

    Sustained drought in the western United States since 2000 has led to a significant drop (about 35 meters) in the water level of Lake Mead, the largest reservoir by volume in United States. The drought combined with rapid urban development in southern Nevada and emergence of invasive species has threatened the water quality and ecological processes in Lake Mead. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was applied to investigate lake circulation and temperature stratification in parts of Lake Mead (Las Vegas Bay and Boulder Basin) under changing water levels. Besides the inflow from Las Vegas Wash and the Colorado River, the model considered atmospheric changes as well as the boundary conditions restricted by the operation of Hoover Dam. The model was calibrated and verified by using observed data including water level, velocity, and temperature from 2003 and 2005. The model was applied to study the hydrodynamic processes at water level 366.8 m (year 2000) and at water level 338.2 m (year 2008). The high-stage simulation described the pre-drought lake hydrodynamic processes while the low-stage simulation highlighted the drawdown impact on such processes. The results showed that both inflow and wind-driven mixing process played major roles in the thermal stratification and lake circulation in both cases. However, the atmospheric boundary played a more important role than inflow temperature on thermal stratification of Lake Mead during water level decline. Further, the thermal stratification regime and flow circulation pattern in shallow lake regions (e.g.., the Boulder Basin area) were most impacted. The temperature of the lake at the high-stage was more sensitive to inflow temperatures than at low-stage. Furthermore, flow velocities decreased with the decreasing water level due to reduction in wind impacts, particularly in shallow areas of the lake. Such changes in temperature and lake current due to present drought have a

  20. Stratigraphic framework and lake level history of Lake Kivu, East African Rift

    NASA Astrophysics Data System (ADS)

    Wood, Douglas A.; Scholz, Christopher A.

    2017-10-01

    Sediment cores and seismic reflection data acquired from the eastern basin of Lake Kivu, Rwanda reveal extensive limnologic variations due to changes in regional climate and basin structure. The eastern basin of the lake contains a sedimentary wedge which is > 1.5 km in thickness on its western side, and basal sediments are estimated to be at least 1.5 million years old. Sediments are likely to be thicker and older than this in the northern, Congolese basin of the lake. Above the ∼300 m iosbath only a thin layer of Holocene sediments are observed indication that this may have been the lake's high stand prior to that time. There are at least three erosional unconformities interpreted as desiccation or near-desiccation events which are estimated to have occurred at ∼475 ka, ∼100 ka, and ∼20 ka; the two most recent of these low stages likely developed during the African Megadrought and Last Glacial Maximum (LGM) periods. Following the LGM, the water levels rose to form a ∼100 m deep lake with its surface ∼370 m below the current lake level. The lake remained near that level for several thousand years and during this time the Virunga Volcanic Province expanded. At ∼12.2 ka a change to wetter climate conditions rapidly filled the lake to spill out of the Bukavu Bay basin southward toward Lake Tanganyika. Tephra sampled from the cores show that there have been at least 24 large local volcanic events since the early Holocene lake transgression.

  1. Genetic diversity of Diporeia in the Great Lakes: comparison of Lake Superior to the other Great Lakes

    EPA Science Inventory

    Abundances of Diporeia have dropped drastically in the Great Lakes, except in Lake Superior, where data suggest that population counts actually have risen. Various ecological, environmental, or geographic hypotheses have been proposed to explain the greater abundance of Lake Supe...

  2. Satellite-based Paleo and Recent Lake Changes across the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Luo, J.; Shah, C. A.; Kroll, C. N.; Li, X.; Yao, T.; Wu, Y.

    2007-12-01

    The Tibetan Plateau, home to the world's largest high-altitude lake group, is experiencing significant climate change with a pronounced temperature rise of 0.16°C per decade. Tibetan lakes have been impacted greatly, and in return they serve as a sensitive indicator of regional and global climate and water cycle variability. Past lake dynamics is essential for us to better understand the current and inferred future lake changes. Owing to fact that paleo lake shores have been extensively preserved on this remote plateau, paleo lake change since the late Pleistocene (about 25 ka BP) can be inferred with the assistance of digital elevation models from paleo shorelines visible on high-resolution imagery. We have recovered the lake extent more than 650 major contemporary lakes occupying a total area of 21,613 km2, and it turns out that these lakes were broken from original 173 late Pleistocene mega lakes. The total lake area shrinkage and water loss are conservatively estimated at 42,109 km2 and 2,936 km3 respectively. Nearly two-thirds of late Pleistocene lake area has disappeared. More recent lake dynamics over the past 30 years is monitored using archived satellite data, and only minor changes are found in most areas. The detected paleo and recent lake changes exhibit strong spatial patterns. Three distinct zones of paleo changes can be identified trending in the northeast to the southwest direction. Lakes in the first zone have only minor water-level drops (less than 20 meters). The second zone is the moderate zone, with 20-60 meter water level drops. Lakes in the third zone have the greatest water-level drop, up to 285 meters. Paleo shorelines are found extensively in this zone. The spatial distribution of the zones is found highly related to the Quaternary glaciation patterns. Glacial dynamics and stream network changes and other factors may explain the detected recent lake changes. It is found that glacial dynamics has the greatest impact on the detected paleo

  3. Annual maximum and minimum lake levels for Indiana, 1942-85

    USGS Publications Warehouse

    Fowler, Kathleen K.

    1988-01-01

    Indiana has many natural and manmade lakes. Lake-level data are available for 217 lakes. These data were collected during water years 1942-85 by use of staff gages and, more recently, continuous recorders. The period of record at each site ranges from 1 to 43 years. Data from the lake stations have been compiled, and maximum and minimum lake levels for each year of record are reported. In addition to annual maximum and minimum lake levels, each lake station is described by gage location, surface area, drainage area, period of record, datum of gage, gage type, established legal level, lake level control, inlets and outlets, and extremes for the period of record. 

  4. Lake-level history of Lake Michigan for the past 12,000 years: the record from deep lacustrine sediments

    USGS Publications Warehouse

    Colman, Steven M.; Forester, Richard M.; Reynolds, Richard L.; Sweetkind, Donald S.; King, John W.; Gangemi, Paul; Jones, Glenn A.; Keigwin, Loyd D.; Foster, David S.

    1994-01-01

    Collection and analysis of an extensive set of seismic-reflection profiles and cores from southern Lake Michigan have provided new data that document the history of the lake basin for the past 12,000 years. Analyses of the seismic data, together with radiocarbon dating, magnetic, sedimentologic, isotopic, and paleontologic studies of core samples, have allowed us to reconstruct lake-level changes during this recent part of the lake's history.The post-glacial history of lake-level changes in the Lake Michigan basin begins about 11.2 ka with the fall from the high Calumet level, caused by the retreat of the Two Rivers glacier, which had blocked the northern outlet of the lake. This lake-level fall was temporarily reversed by a major influx of water from glacial Lake Agassiz (about 10.6 ka), during which deposition of the distinctive gray Wilmette Bed of the Lake Michigan Formation interrupted deposition of red glaciolacustrine sediment. Lake level then continued to fall, culminating in the opening of the North Bay outlet at about 10.3 ka. During the resulting Chippewa low phase, lake level was about 80 m lower than it is today in the southern basin of Lake Michigan.The rise of the early Holocene lake level, controlled primarily by isostatic rebound of the North Bay outlet, resulted in a prominent, planar, transgressive unconformity that eroded most of the shoreline features below present lake level. Superimposed on this overall rise in lake level, a second influx of water from Lake Agassiz temporarily raised lake levels an unknown amount about 9.1 ka. At about 7 ka, lake level may have fallen below the level of the outlet because of sharply drier climate. Sometime between 6 and 5 ka, the character of the lake changed dramatically, probably due mostly to climatic causes, becoming highly undersaturated with respect to calcium carbonate and returning primary control of lake level to the isostatically rising North Bay outlet. Post-Nipissing (about 5 ka) lake level has

  5. Lake Erie Water Level Study. Main Report.

    DTIC Science & Technology

    1981-07-01

    of recreational beach activities. Examples include: Rondeau, Long Point and Sandbanks in Canada and Hamlin (New York), Presque Isle ( Pennsylvania ...be most affected by lake level changes. Long Point, Rondeau, Sandusky, and Presque Isle Bays are, due to their shallow nature and sand spit formation...AD-AI14 582 INTERNATIONAL LAKE ERIE REGULATION STUDY BOARD F/9 13/2 LAKE ERIE WATER LEVEL STUDY. MAIN REPORT.(U) UNCLASSIFIED N1.3 iE~hE

  6. Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America

    NASA Astrophysics Data System (ADS)

    Rowe, H. D.; Dunbar, R. B.

    2004-09-01

    A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (˜85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.

  7. Lake level fluctuations boost toxic cyanobacterial "oligotrophic blooms".

    PubMed

    Callieri, Cristiana; Bertoni, Roberto; Contesini, Mario; Bertoni, Filippo

    2014-01-01

    Global warming has been shown to strongly influence inland water systems, producing noticeable increases in water temperatures. Rising temperatures, especially when combined with widespread nutrient pollution, directly favour the growth of toxic cyanobacteria. Climate changes have also altered natural water level fluctuations increasing the probability of extreme events as dry periods followed by heavy rains. The massive appearance of Dolichospermum lemmermannii ( = planktonic Anabaena), a toxic species absent from the pelagic zone of the subalpine oligotrophic Lake Maggiore before 2005, could be a consequence of the unusual fluctuations of lake level in recent years. We hypothesized that these fluctuations may favour the cyanobacterium as result of nutrient pulses from the biofilms formed in the littoral zone when the lake level is high. To help verify this, we exposed artificial substrates in the lake, and evaluated their nutrient enrichment and release after desiccation, together with measurements of fluctuations in lake level, precipitation and D. lemmermannii population. The highest percentage of P release and the lowest C:P molar ratio of released nutrients coincided with the summer appearance of the D. lemmermannii bloom. The P pulse indicates that fluctuations in level counteract nutrient limitation in this lake and it is suggested that this may apply more widely to other oligotrophic lakes. In view of the predicted increase in water level fluctuations due to climate change, it is important to try to minimize such fluctuations in order to mitigate the occurrence of cyanobacterial blooms.

  8. Crater Lake Controls on Volcano Stability: Insights From White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hamling, Ian J.

    2017-11-01

    Many volcanoes around the world host summit crater lakes but their influence on the overall stability of the edifice remains poorly understood. Here I use satellite radar data acquired by TerraSAR-X from early 2015 to July 2017 over White Island, New Zealand, to investigate the interaction of the crater lake and deformation of the surrounding edifice. An eruption in April 2016 was preceded by a period of uplift within the crater floor and drop in the lake level. Modeling of the uplift indicates a shallow source located at ˜100 m depth in the vicinity of the crater lake, likely coinciding with the shallow hydrothermal system. In addition to the drop in the lake level, stress changes induced by the inflation suggest that the pressurization of the shallow hydrothermal system helped promote failure along the edge of the crater lake which collapsed during the eruption. After the eruption, and almost complete removal of the crater lake, large areas of the crater wall and lake edge began moving downslope at rates approaching 400 mm/yr. The coincidence between the rapid increase in the displacement rates and removal of the crater lake suggests that the lake provides a physical control on the stability of the surrounding edifice.

  9. Seismic Data Reveal Lake-Level Changes in Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Spiess, V.; Keil, H.; Sauermilch, I.; Oberhänsli, H.; Abdrakhmatov, K.; De Batist, M. A.; Naudts, L.; De Mol, L.

    2013-12-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan, Kyrgyzstan, Central Asia, at 1607 m above sea level. It has formed in a tectonically active region with W-E striking major thrust zones both N and S of the lake. The lake is elongated with 180 km in W-E and 60 km in S-N direction and a water depth of roughly 670 m at its central plain. With a surface area of 6232 km2 and a total water colume of around 1736 km3, Lake Issyk-Kul is the second largest lake in the higher altitudes (De Batist et al., 2002). Two large delta areas have formed at the E and W end. Steep slopes at both the N and S shore separate rather narrow, shallow shelf areas from the central deeper plain. First seismic data of lake Issyk-Kul were acquired in 1982 by the Moscow University with a total of 31 profiles across the lake. In 1997 and 2001, a second and third seismic survey of the lake were carried out by the group of Marc De Batist (Ghent, Belgium) in cooperation with the Royal Museum of Central Africa (Tervuren, Belgium) and the SBRAS (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia) using a sparker system with a single-channel streamer. These surveys were recently completed by a fourth expedition carried out by the University of Bremen in April 2013. During this expedition, 33 additional profiles were acquired with an airgun and a multi-channel streamer. The sparker surveys mostly cover the delta and shelf areas in high detail, while the airgun survey covers the deeper parts of the lake with penetration beyond the first multiple. Bathymetry data reveal that at the delta areas, the shelf is divided into two parts. The shallower comprises the part down to 110 m water depth with an average inclination of 0.5°, while the deeper part reaches from 110 m to 300 m water depth with an average slope inclination of 1°. Incised paleo-river channels of up to 2-3 km width and 50 m depth are visible both on the eastern and western shelf, but are limited to the

  10. Hydrologic factors affecting lake-level fluctuations in the Big Marine Lake, Washington County, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1985-01-01

    Long-term trends in cumulative departure from mean annual precipitation suggest that recharge to the drift aquifer in the area has been increasing since the 1940's. The increase in precipitation and recharge corresponds to the observed rise in lake level since 1965 when regular lake-level measurements began. Fluctuations in lake level in the future will depend on changes in recharge to the drift and bedrock aquifers, which is directly related to changes in long-term precipitation patterns.

  11. Quaternary base-level drops and trigger mechanisms in a closed basin: Geomorphic and sedimentological studies of the Gastre Basin, Argentina

    NASA Astrophysics Data System (ADS)

    Bilmes, Andrés; Veiga, Gonzalo D.; Ariztegui, Daniel; Castelltort, Sébastien; D'Elia, Leandro; Franzese, Juan R.

    2017-04-01

    Evaluating the role of tectonics and climate as possible triggering mechanisms of landscape reconfigurations is essential for paleoenvironmental and paleoclimatic reconstructions. In this study an exceptional receptive closed Quaternary system of Patagonia (the Gastre Basin) is described, and examined in order to analyze factors triggering base-level drops. Based on a geomorphological approach, which includes new tectonic geomorphology investigations combined with sedimentological and stratigraphic analysis, three large-scale geomorphological systems were identified, described and linked to two major lake-level highstands preserved in the basin. The results indicate magnitudes of base-level drops that are several orders of magnitude greater than present-day water-level fluctuations, suggesting a triggering mechanism not observed in recent times. Direct observations indicating the occurrence of Quaternary faults were not recorded in the region. In addition, morphometric analyses that included mountain front sinuosity, valley width-height ratio, and fan apex position dismiss tectonic fault activity in the Gastre Basin during the middle Pleistocene-Holocene. Therefore, we suggest here that upper Pleistocene climate changes may have been the main triggering mechanism of base-level falls in the Gastre Basin as it is observed in other closed basins of central Patagonia (i.e., Carri Laufquen Basin).

  12. Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data

    USGS Publications Warehouse

    Velpuri, Naga Manohar; Senay, Gabriel B.

    2012-01-01

    Lake Turkana, the largest desert lake in the world, is fed by ungauged or poorly gauged river systems. To meet the demand of electricity in the East African region, Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies more than 80% of the inflows to Lake Turkana. On completion, the Gibe III dam will be the tallest dam in Africa with a height of 241 m. However, the nature of interactions and potential impacts of regulated inflows to Lake Turkana are not well understood due to its remote location and unavailability of reliable in-situ datasets. In this study, we used 12 years (1998–2009) of existing multi-source satellite and model-assimilated global weather data. We use calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model evaluates the impact of Gibe III dam using three different approaches such as (a historical approach, a knowledge-based approach, and a nonparametric bootstrap resampling approach) to generate rainfall-runoff scenarios. All the approaches provided comparable and consistent results. Model results indicated that the hydrological impact of the dam on Lake Turkana would vary with the magnitude and distribution of rainfall post-dam commencement. On average, the reservoir would take up to 8–10 months, after commencement, to reach a minimum operation level of 201 m depth of water. During the dam filling period, the lake level would drop up to 2 m (95% confidence) compared to the lake level modelled without the dam. The lake level variability caused by regulated inflows after the dam commissioning were found to be within the natural variability of the lake of 4.8 m. Moreover, modelling results indicated that the hydrological impact of the Gibe III dam would depend on the initial lake level at the time of

  13. Monitoring Lake and Reservoir Level: Satellite Observations, Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Ricko, M.; Birkett, C. M.; Adler, R. F.; Carton, J.

    2013-12-01

    Satellite measurements of lake and reservoir water levels complement in situ observations by providing stage information for un-gauged basins and by filling data gaps in gauge records. However, different satellite radar altimeter-derived continental water level products may differ significantly owing to choice of satellites and data processing methods. To explore the impacts of these differences, a direct comparison between three different altimeter-based surface water level estimates (USDA/NASA GRLM, LEGOS and ESA-DMU) will be presented and products validated with lake level gauge time series for lakes and reservoirs of a variety of sizes and conditions. The availability of satellite-based rainfall (i.e., TRMM and GPCP) and satellite-based lake/reservoir levels offers exciting opportunities to estimate and monitor the hydrologic properties of the lake systems. Here, a simple water balance model is utilized to relate net freshwater flux on a catchment basin to lake/reservoir level. Focused on tropical lakes and reservoirs it allows a comparison of the flux to altimetric lake level estimates. The combined use of model, satellite-based rainfall, evaporation information and reanalysis products, can be used to output water-level hindcasts and seasonal future forecasts. Such a tool is fundamental for understanding present-day and future variations in lake/reservoir levels and enabling a better understand of climatic variations on inter-annual to inter-decadal time-scales. New model-derived water level estimates of lakes and reservoirs, on regional to global scales, would assist communities with interests in climate studies focusing on extreme events, such as floods and droughts, and be important for water resources management.

  14. Forecasting daily lake levels using artificial intelligence approaches

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Shiri, Jalal; Nikoofar, Bagher

    2012-04-01

    Accurate prediction of lake-level variations is important for planning, design, construction, and operation of lakeshore structures and also in the management of freshwater lakes for water supply purposes. In the present paper, three artificial intelligence approaches, namely artificial neural networks (ANNs), adaptive-neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP), were applied to forecast daily lake-level variations up to 3-day ahead time intervals. The measurements at the Lake Iznik in Western Turkey, for the period of January 1961-December 1982, were used for training, testing, and validating the employed models. The results obtained by the GEP approach indicated that it performs better than ANFIS and ANNs in predicting lake-level variations. A comparison was also made between these artificial intelligence approaches and convenient autoregressive moving average (ARMA) models, which demonstrated the superiority of GEP, ANFIS, and ANN models over ARMA models.

  15. Computational Fluid Dynamics simulations of the Late Pleistocene Lake Bonneville Flood

    NASA Astrophysics Data System (ADS)

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-06-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s-1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y-1 Pa-1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the outflow to grow from 10

  16. Computational fluid dynamics simulations of the Late Pleistocene Lake Bonneville flood

    USGS Publications Warehouse

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-01-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s−1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y−1 Pa−1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the

  17. High levels of MHC class II allelic diversity in lake trout from Lake Superior

    USGS Publications Warehouse

    Dorschner, M.O.; Duris, T.; Bronte, C.R.; Burnham-Curtis, M. K.; Phillips, R.B.

    2000-01-01

    Sequence variation in a 216 bp portion of the major histocompatibility complex (MHC) II B1 domain was examined in 74 individual lake trout (Salvelinus namaycush) from different locations in Lake Superior. Forty-three alleles were obtained which encoded 71-72 amino acids of the mature protein. These sequences were compared with previous data obtained from five Pacific salmon species and Atlantic salmon using the same primers. Although all of the lake trout alleles clustered together in the neighbor-joining analysis of amino acid sequences, one amino acid allelic lineage was shared with Atlantic salmon (Salmo salar), a species in another genus which probably diverged from Salvelinus more than 10-20 million years ago. As shown previously in other salmonids, the level of nonsynonymous nucleotide substitution (d(N)) exceeded the level of synonymous substitution (d(S)). The level of nucleotide diversity at the MHC class II B1 locus was considerably higher in lake trout than in the Pacific salmon (genus Oncorhynchus). These results are consistent with the hypothesis that lake trout colonized Lake Superior from more than one refuge following the Wisconsin glaciation. Recent population bottlenecks may have reduced nucleotide diversity in Pacific salmon populations.

  18. Status of Lake Superior’s lower trophic levels

    EPA Science Inventory

    To meet the Fish Community Objectives set for Lake Superior by the Great Lakes Fishery Commission, a key factor is the condition of the lower food web that supports productivity of fisheries. To assess the condition of lower trophic levels and inform the Lake Superior Technical C...

  19. Lake States Pulpwood Production Plummets 413,000 Cords, 1968

    Treesearch

    James E. Blyth

    1969-01-01

    This twenty-third annual report shows that the 1968 Lake States pulpwood output dropped to about 3 1/2 million cords from about 4 million cords in 1967. Michigan's roundwood harvest dropped 198,000 cords in 1968, while the Wisconsin and Minnesota harvests each fell more than 125,000 cords. Pulpwood receipts fell 1/2 million cords below the 1967 level in...

  20. Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America

    NASA Astrophysics Data System (ADS)

    Rowe, Harold D.; Guilderson, Thomas P.; Dunbar, Robert B.; Southon, John R.; Seltzer, Geoffrey O.; Mucciarone, David A.; Fritz, Sherilyn C.; Baker, Paul A.

    2003-09-01

    developed for the Lake Titicaca sequence using different organic fractions, mobile organic sub-fractions and fractions containing mobile sub-fractions should generally be avoided in geochronology studies. Consequently, we believe humin and/or bulk decalcified ages provide the most consistent chronologies for the post-13,500 yr BP interval, and humin ages provide the most representative ages for sedimentation prior to 13,500 yr BP interval. Using the age model derived from the deep water core site and a previously published isotope-based lake-level reconstruction, we present a qualitative record of lake level in the context of several ice-core records from the western hemisphere. We find the latest Pleistocene lake-level response to changing insolation began during or just prior to the Bølling/Allerød period. Using the isotope-based lake-level reconstruction, we also find the 85-m drop in lake level that occurred during the mid-Holocene was synchronous with an increase in the variability of ice-core δ18O from a nearby icecap, but was not reflected in any of the polar ice-core records recovered from the interior of Antarctica and Greenland.

  1. Mid Holocene lake level and shoreline behavior during the Nipissing phase of the upper Great Lakes at Alpena, Michigan, USA

    USGS Publications Warehouse

    Thompson, T.A.; Lepper, K.; Endres, A.L.; Johnston, J.W.; Baedke, S.J.; Argyilan, E.P.; Booth, R.K.; Wilcox, D.A.

    2011-01-01

    The Nipissing phase was the last pre-modern high-water stage of the upper Great Lakes. Represented as either a one- or two-peak highstand, the Nipissing occurred following a long-term lake-level rise. This transgression was primarily an erosional event with only the final stage of the transgression preserved as barriers, spits, and strandplains of beach ridges. South of Alpena, Michigan, mid to late Holocene coastal deposits occur as a strandplain between Devils Lake and Lake Huron. The landward part of this strandplain is a higher elevation platform that formed during the final stage of lake-level rise to the Nipissing peak. The pre-Nipissing shoreline transgressed over Devils Lake lagoonal deposits from 6.4 to 6.1. ka. The first beach ridge formed ~ 6. ka, and then the shoreline advanced toward Lake Huron, producing beach ridges about every 70. years. This depositional regression produced a slightly thickening wedge of sediment during a lake-level rise that formed 20 beach ridges. The rise ended at 4.5. ka at the Nipissing peak. This peak was short-lived, as lake level fell > 4. m during the following 500. years. During this lake-level rise and subsequent fall, the shoreline underwent several forms of shoreline behavior, including erosional transgression, aggradation, depositional transgression, depositional regression, and forced regression. Other upper Great Lakes Nipissing platforms indicate that the lake-level change observed at Alpena of a rapid pre-Nipissing lake-level rise followed by a slower rise to the Nipissing peak, and a post-Nipissing rapid lake-level fall is representative of mid Holocene lake level in the upper Great Lakes. ?? 2011 Elsevier B.V.

  2. Directly dated MIS 3 lake-level record from Lake Manix, Mojave Desert, California, USA

    USGS Publications Warehouse

    Reheis, Marith; Miller, David M.; McGeehin, John P.; Redwine, Joanna R.; Oviatt, Charles G.; Bright, Jordon E.

    2015-01-01

    An outcrop-based lake-level curve, constrained by ~ 70 calibrated 14C ages on Anodonta shells, indicates at least 8 highstands between 45 and 25 cal ka BP within 10 m of the 543-m upper threshold of Lake Manix in the Mojave Desert of southern California. Correlations of Manix highstands with ice, marine, and speleothem records suggest that at least the youngest three highstands coincide with Dansgaard–Oeschger (D–O) stadials and Heinrich events 3 and 4. The lake-level record is consistent with results from speleothem studies in the Southwest that indicate cool wet conditions during D–O stadials. Notably, highstands between 43 and 25 ka apparently occurred at times of generally low levels of pluvial lakes farther north as interpreted from core-based proxies. Mojave lakes may have been supported by tropical moisture sources during oxygen-isotope stage 3, perhaps controlled by southerly deflection of Pacific storm tracks due to weakening of the sea-surface temperature gradient in response to North Atlantic climate perturbations.

  3. The effects of water levels on Two Lake Ontario Wetlands

    USGS Publications Warehouse

    Busch, Wolf-Dieter N.; Osborn, Ronald G.; Auble, Gregor T.

    1990-01-01

    Lake Ontario's water levels have been regulated since 1959, after the completion of the St. Lawrence River navigation and hydropower development project. The plan used to guide the regulation (1958-D) has been in effect since 1963 (Bryce, 1982). The purpose of the regulation was to prevent extreme high-water levels which increased erosion on the south shore of Lake Ontario, while protecting the interests of commercial navigation and hydropower production in the St. Lawrence River (T. Brown, personal communication, member of the Board of Control). Major user groups have sought further reductions in the range of lake level fluctuations. However, the biological resources, especially the lake influenced wetlands, benefit from the waterlevel fluctuations. Great Lakes wetlands are the most important habitat for wildlife of the region (Tilton and Schwegler, 1978). We provide information here on the responses of wetland plant communities in two wetlands to changes in lake levels over time.

  4. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    NASA Astrophysics Data System (ADS)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake-level

  5. Late quaternary lake level changes of Taro Co and neighbouring lakes, southwestern Tibetan Plateau, based on OSL dating and ostracod analysis

    NASA Astrophysics Data System (ADS)

    Alivernini, Mauro; Lai, Zhongping; Frenzel, Peter; Fürstenberg, Sascha; Wang, Junbo; Guo, Yun; Peng, Ping; Haberzettl, Torsten; Börner, Nicole; Mischke, Steffen

    2018-07-01

    The Late Quaternary lake history of Taro Co and three neighbouring lakes was investigated to reconstruct local hydrological conditions and the regional moisture availability. Ostracod-based water depth and habitat reconstructions combined with OSL and radiocarbon dating are performed to better understand the Taro Co lake system evolution during the Late Quaternary. A high-stand is observed at 36.1 ka before present which represents the highest lake level since then related to a wet stage and resulting in a merging of Taro Co and its neighbouring lakes Zabuye and Lagkor Co this time. The lake level then decreased and reached its minimum around 30 ka. After c. 20 ka, the lake rose above the present day level. A minor low-stand, with colder and drier conditions, is documented at 12.5 cal. ka BP. Taro Co Zabuye and Lagkor Co formed one large lake with a corresponding high-stand during the early Holocene (11.2-9.7 cal. ka BP). After this Holocene lake level maximum, all three lakes shrank, probably related to drier conditions, and Lagkor Co became separated from the Taro Co-Zabuye system at c.7 ka. Subsequently, the lake levels decreased further about 30 m and Taro Co began to separate from Zabuye Lake at around 3.5 ka. The accelerating lake-level decrease of Taro Co was interrupted by a short-term lake level rise after 2 ka BP, probably related to minor variations of the monsoonal components. A last minor high-stand occurred at about 0.8 ka before today and subsequently the lake level of Taro Co registers a slight increase in recent years.

  6. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data

    NASA Astrophysics Data System (ADS)

    Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.

    2017-12-01

    Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.

  7. A Foamy Lava Lake at Kilauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Carbone, D.

    2012-12-01

    Kilauea Volcano, in Hawai`i, is currently erupting from two locations simultaneously: along the east rift zone and at the summit. The east rift zone eruption began in 1983 and is characterized by lava effusion from the Pu`u `O`o and nearby vents, while the summit eruptive vent, which opened in 2008, persistently emits gas and small amounts of ash while hosting a lava lake. On March 5, 2011, a dike initiated from the east rift zone magma conduit and reached the surface, resulting in the 4.5-day-long Kamoamoa fissure eruption just uprift of Pu`u `O`o. The eruption was accompanied by summit deflation as magma withdrew from subsurface reservoirs to feed the fissure eruption. The level of the summit lava lake dropped as the summit deflated. A continuously recording gravimeter located at Kilauea's summit (about 150 m east of the center of the summit eruptive vent, 80 m above the vent rim, and about 140 m above the highest level reached by the lava lake) measured a gravity decrease of about 150 μGal during the lava level drop, after taking into account corrections for the solid Earth tide. The gravity signal is caused by a combination of three processes. First, subsidence of 15 cm due to summit deflation moved the gravimeter closer to the center of the Earth, resulting in a gravity increase. Second, mass removal from the subsurface magma reservoir at a depth of 1.4 km (based on a model from GPS and InSAR data) caused a gravity decrease. Third, the drop in the level of the lava lake, which reached a maximum of about 150 m, led to a gravity decrease. Assuming a simple point source of pressure change and a typical density for basaltic magma (2.3-2.7 g/cm3), the first two processes can only explain a small percent of the observed gravity decrease, which must therefore be mainly due to the drop in the level of the lava lake. We developed a numerical model of the summit eruptive vent that takes into account its complex geometry (as deduced from geological observations). Using

  8. Hydrologic conditions and lake-level fluctuations at Long Lost Lake, 1939-2004, White Earth Indian Reservation, Clearwater County, Minnesota

    USGS Publications Warehouse

    Christensen, Victoria G.; Bergman, Andrea L.

    2005-01-01

    Aerial photography and a geographic information system were used to construct a historical lake record from 1939 to 2001. Lake-level increases match similar increases in precipitation, indicating a strong link between the two. Results show that lake-level increases in Long Lost Lake appear to primarily be due to natural rather than anthropogenic effects.

  9. New applications for helicopter based high impact weight drops

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Neuberg, J.; Jousset, P. G.; Chardot, L.; Fournier, N.; Scott, B.; Sherburn, S.

    2012-12-01

    A high impact weight drop method has been successfully completed at White Island volcano, New Zealand, yielding new estimates for the shallow seismic velocity and attenuation. Such estimates are useful for many practical applications including refinement of earthquake locations and understanding variations of sub-surface structural relationships. Beyond these important sub-surface parameters, the method has the potential for understanding the dynamics of surface and near surface source processes including hazardous eruptive impulses through volcanic lakes, pyroclastic flows, lahars and rockfalls. We conducted the initial mass drop experiment at White Island volcano on 23 September 2011, during the final stage of a 6 month deployment of 14 broadband seismometers. Three drops were carried out, two at either end of a 6 station linear array within the crater floor, and the third within the volcano's shallow active acid crater lake. Bags were dropped from ~400 m height and contained ~700 kg of fine beach sand held within tarpaulin sacks having a volume capacity of ~2.0 m3. The impact velocity was estimated at ~70 m/s yielding a kinetic energy of about 106 to 107 Nm. The source position was established by GPS on the resulting impact crater and was accurate to within ~10 m. The lake drop position was estimated from video footage relative to known ground features and was accurate to ~30 m. Impact timing was achieved by drop placement close to, but not on, the nearby seismometer recording systems. For the crater floor drops the timing was constrained to within ~0.05 s based on distance from the closest stations. The kinetic energy allowed strong first-P arrivals to penetrate beyond ~1 km of the impact position. We obtained a rough velocity estimate of about 1.0-1.5 km/s for the unconsolidated crater floor and a velocity of ~1.5-2.0 km/s for P-waves traversing mostly through the consolidated rocks comprising the crater walls. Attenuation was found to be generally very strong

  10. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  11. Monitoring lake level changes by altimetry in the arid region of Central Asia

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Liao, J. J.; Shen, G. Z.; Zhang, X. L.

    2017-07-01

    The study of lake level changes in arid region of Central Asia not only has important significance for the management and sustainable development of inland water resources, but also provides the basis for further study on the response of lakes to climate change and human activities. Therefore, in this paper, eleven typical lakes in Central Asia were observed. The lake edges were obtained through image interpretation using the quasi-synchronous MODIS image, and then water level information with long period (2002-2015) was acquired using ENVISAT/RA-2 and Cryosat-2 satellite borne radar altimeter data. The results show that these 11 lakes all have obvious seasonal changes of water level in a year with a high peak at different month. During 2002 - 2015, their water levels present decreased trend generally except Sarygamysh Lake, Alakol Lake and North Aral Sea. The alpine lakes are most stables, while open lakes’ levels change the most violently and closed lakes change diversely among different lakes.

  12. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    USGS Publications Warehouse

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  13. Disentangling Holocene lake level changes with a transect of lake sediment cores - a case study from Lake Fürstenseer See, northeastern Germany

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Slowinski, Michal; Kienel, Ulrike; Zawiska, Izabela; Brauer, Achim

    2014-05-01

    Deciphering the main processes contributing to lake and landscape evolution in the northern central European lowlands on different temporal scales is one of the main targets of the Virtual Institute of Integrated Climate and Landscape Evolution Analysis (ICLEA) of the Helmholtz Association. In the context of future climatic changes especially the hydrological system is a vulnerable landscape component that showed considerably large changes in the recent past. The analysis of lake sediment archives can help to infer long-term dynamics of regional lake and groundwater levels, although available proxy information needs to be studied carefully, as water level changes are only one trigger. Lake Fürstenseer See (53°19'N, 13°12'E, lake level in 2009: 63.3 m a.s.l.) formed after the retreat of the Weichselian ice sheet in a subglacial channel in the direct forefront of the Pommerian ice margin. The ~2 km2 large lake (zmax = 24.5 m) has a (sub-) surficial catchment area of ~(20) 40 km2 including other smaller lakes and peatlands. In the past, the lake system was artificially dammed for the operation of water mills. Located within the well-drained sandur substrate, the lake levels vary with groundwater levels in response to hydrological and catchment-related groundwater recharge. Detrital matter input from fluvial activity can be excluded. Lake sediment cores at four sites along a transect down to 23 m water depth show distinct sediment facies patterns. Stratigraphic descriptions and non-destructive continuous micro-XRF scanning allowed the differentiation of the main sediment facies, which were microscopically described using thin sections. Quantification of total organic and inorganic matter (TOC, TIC, C/N-composition) and discontinuous macrorest, diatom and Cladocera analysis helped to approach the sedimentation history. Stable isotopes of (delta-180, delta-13C) were used for characterization of carbonates. A high amount of non-reworked terrestrial plant remains from

  14. Late-glacial and early Holocene changes in vegetation and lake-level at Hauterive/Rouges-Terres, Lake Neuchâtel (Switzerland)

    NASA Astrophysics Data System (ADS)

    Magny, Michel; Thew, Nigel; Hadorn, Philippe

    2003-01-01

    Palynological and sedimentological analyses of a sedimentary sequence sampled at Hauterive/Rouges-Terres, Lake Neuchâtel (Switzerland) provide documentation of changes in vegetation and lake-level during the Bølling, Younger Dryas and Preboreal pollen zones, and have allowed a comparison with sequences covering the same period from other sites located in the western part of the Swiss Plateau. The Juniperus-Hippophaë zone (regional pollen assemblage zone (RPAZ) CHb-2, first part of the Bølling, ca. 14 650-14 450 cal. yr BP) was characterised by a generally low lake-level. A weak rise occurred during this zone. The Juniperus-Hippophaë to Betula zone transition coincided with a lake-level lowering, interrupted by a short-lived but marked phase of higher lake-level recorded at the neighbouring site of Hauterive-Champréveyres, but not present at Hauterive/Rouges-Terres owing to an erosion surface. Shortly after the beginning of the Betula zone (RPAZ CHb-3, second part of the Bølling, ca 14 450-14 000 cal. yr BP), a marked rise in lake-level occurred. It was composed of two successive periods of higher level, coinciding with high values of Betula, separated by a short episode of relatively lower lake-level associated with raised values in Artemisia and other non-arboreal pollen. The last part of RPAZ CHb-3 saw a fall in lake-level. The lower lake-levels during RPAZ CHb-2 to early RPAZ CHb-3 can be correlated with the abrupt warming at the beginning of the Greenland Interstadial (GI) 1e thermal maximum. The successive episodes of higher lake-level punctuating the GI 1e might be linked to the so-called Intra-Bølling Cold Oscillations identified from several palaeoclimatic records in the North Atlantic area, and also documented in oxygen-isotope data sets from Swiss Plateau lakes. The Hauterive/Rouges-Terres lake-level record provides evidence for marked climatic drying through the second part of the Younger Dryas event (GS1), during the GS1-Preboreal (RPAZ CHb-4b-4

  15. The Economic Costs of a Shrinking Lake Mead: a Spatial Hedonic Analysis

    NASA Astrophysics Data System (ADS)

    Singh, A.; Saphores, J. D.

    2017-12-01

    Persistent arid conditions and population growth in the Southwest have taken a toll on the Colorado River. This has led to substantial drawdowns of many water reservoirs around the Southwest, and especially of Lake Mead, which is Las Vegas' main source of drinking water. Due to its importance, Lake Mead has received a great deal of media attention about its "bathtub ring" and the exposure of rock that used to be underwater. Drops in water levels have caused some local marinas to close, thereby affecting the aesthetic and recreational value of Lake Mead, which is located in the country's largest National Recreation Area (NRA), and surrounded by protected land. Although a rich literature analyzes how water quality impacts real estate values, relatively few studies have examined how dropping water levels are capitalized in surrounding residential properties. In this context, the goal of this study is to quantify how Lake Mead's water level changes are reflected in changes in local property values, an important source of tax income for any community. Since Lake Mead is the primary attraction within its recreation area, we are also concerned with how this recreation area, which is a few miles southeast of Las Vegas, is capitalized in real estate values of the Las Vegas metropolitan area as few valuation studies have examined how proximity to national parks influences residential property value. We estimate spatial hedonic and geographically weighted regression models of single family residences to delineate the value of proximity to the Lake Mead NRA and to understand how this value changed with Lake Mead's water levels. Our explanatory variables include common structural characteristics, fixed effects to account for unobserved locally constant characteristics, and specific variables such as distance to the Las Vegas strip and to downtown casinos. Because the sharpest declines in Lake Mead water levels happened in 2010 (NASA, 2010) and winter 2016 saw an unexpected

  16. Using multi-source satellite data for lake level modelling in ungauged basins: A case study for Lake Turkana, East Africa

    USGS Publications Warehouse

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2011-01-01

    Managing limited surface water resources is a great challenge in areas where ground-based data are either limited or unavailable. Direct or indirect measurements of surface water resources through remote sensing offer several advantages of monitoring in ungauged basins. A physical based hydrologic technique to monitor lake water levels in ungauged basins using multi-source satellite data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, a digital elevation model, and other data is presented. This approach is applied to model Lake Turkana water levels from 1998 to 2009. Modelling results showed that the model can reasonably capture all the patterns and seasonal variations of the lake water level fluctuations. A composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data is used for model calibration (1998-2000) and model validation (2001-2009). Validation results showed that model-based lake levels are in good agreement with observed satellite altimetry data. Compared to satellite altimetry data, the Pearson's correlation coefficient was found to be 0.81 during the validation period. The model efficiency estimated using NSCE is found to be 0.93, 0.55 and 0.66 for calibration, validation and combined periods, respectively. Further, the model-based estimates showed a root mean square error of 0.62 m and mean absolute error of 0.46 m with a positive mean bias error of 0.36 m for the validation period (2001-2009). These error estimates were found to be less than 15 % of the natural variability of the lake, thus giving high confidence on the modelled lake level estimates. The approach presented in this paper can be used to (a) simulate patterns of lake water level variations in data scarce regions, (b) operationally monitor lake water levels in ungauged basins, (c) derive historical lake level information using satellite rainfall and evapotranspiration data, and (d) augment the information provided by the

  17. Lake-level variation in the Lahontan basin for the past 50,000 years

    USGS Publications Warehouse

    Benson, L.V.; Thompson, R.S.

    1987-01-01

    Selected radiocarbon data on surficial materials from the Lahontan basin, Nevada and California, provide a chronology of lake-level variation for the past 50,000 yr. A moderate-sized lake connected three western Lahontan subbasins (the Smoke Creek-Black Rock Desert subbasin, the Pyramid Lake subbasin, and the Winnemucca Dry Lake subbasin) from about 45,000 to 16,500 yr B.P. Between 50,000 and 45,000 yr B.P., Walker Lake rose to its sill level in Adrian Valley and spilled to the Carson Desert subbasin. By 20,000 yr B.P., lake level in the western Lahontan subbasins had risen to about 1265 m above sea level, where it remained for 3500 yr. By 16,000 yr B.P., lake level in the western Lahontan subbasins had fallen to 1240 m. This recession appears synchronous with a desiccation of Walker Lake; however, whether the Walker Lake desiccation resulted from climate change or from diversion of the Walker River is not known. From about 15,000 to 13,500 yr B.P., lake level rapidly rose, so that Lake Lahontan was a single body of water by 14,000 yr B.P. The lake appears to have reached a maximum highstand altitude of 1330 m by 13,500 yr B.P., a condition that persisted until about 12,500 yr B.P., at which time lake level fell ???100 m. No data exist that indicate the level of lakes in the various subbasins between 12,000 and 10,000 yr B.P. During the Holocene, the Lahontan basin was the site of shallow lakes, with many subbasins being the site of one or more periods of desiccation. The shape of the lake-level curve for the three western subbasins indicates that past changes in the hydrologic balance (and hence climate) of the Lahontan basin were large in magnitude and took place in a rapid step-like manner. The rapid changes in lake level are hypothesized to have resulted from changes in the mean position of the jet stream, as it was forced north or south by the changing size and shape of the continental ice sheet. ?? 1987.

  18. What caused the decline of China's largest freshwater lake? Attribution analysis on Poyang Lake water level variations in recent years

    NASA Astrophysics Data System (ADS)

    Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi

    2017-04-01

    In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.

  19. Water Level Monitoring on Tibetan Lakes Based on Icesat and Envisat Data Series

    NASA Astrophysics Data System (ADS)

    Li, H. W.; Qiao, G.; Wu, Y. J.; Cao, Y. J.; Mi, H.

    2017-09-01

    Satellite altimetry technique is an effective method to monitor the water level of lakes in a wide range, especially in sparsely populated areas, such as the Tibet Plateau (TP). To provide high quality data for time-series change detection of lake water level, an automatic and efficient algorithm for lake water footprint (LWF) detection in a wide range is used. Based on ICESat GLA14 Release634 data and ENVISat GDR 1Hz data, water level of 167 lakes were obtained from ICESat data series, and water level of 120 lakes were obtained from ENVISat data series. Among them, 67 lakes contained two data series. Mean standard deviation of all lakes is 0.088 meters (ICESat), 0.339 meters (ENVISat). Combination of multi-source altimetry data is helpful for us to get longer and more dense periods cover water level, study the lake level changes, manage water resources and understand the impacts of climate change better. In addition, the standard deviation of LWF elevation used to calculate the water level were analyzed by month. Based on lake data set for the TP from the 1960s, 2005, and 2014 in Scientific Data, it is found that the water level changes in the TP have a strong spatial correlation with the area changes.

  20. Drastic lake level changes of Lake Van (eastern Turkey) during the past ca. 600 ka: climatic, volcanic and tectonic control

    NASA Astrophysics Data System (ADS)

    Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.

    2013-12-01

    Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers

  1. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Sun, A.; Save, H.; Mueller Schmied, H.; Wada, Y.; Doll, P. M.; Eisner, S.

    2016-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  2. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  3. The Water Level Fall of Lake Megali Prespa (N Greece): an Indicator of Regional Water Stress Driven by Climate Change and Amplified by Water Extraction?

    NASA Astrophysics Data System (ADS)

    van der Schriek, Tim; Giannakopoulos, Christos

    2014-05-01

    The Mediterranean stands out globally due to its sensitivity to (future) climate change, with future projections predicting an increase in excessive drought events and declining rainfall. Regional freshwater ecosystems are particularly threatened: precipitation decreases, while extreme droughts increase and human impacts intensify (e.g. water extraction, drainage, pollution and dam-building). Many Mediterranean lake-wetland systems have shrunk or disappeared over the past two decades. Protecting the remaining systems is extremely important for supporting global biodiversity and for ensuring sustainable water availability. This protection should be based on a clear understanding of lake-wetland hydrological responses to natural and human-induced changes, which is currently lacking in many parts of the Mediterranean. The interconnected Prespa-Ohrid Lake system is a global hotspot of biodiversity and endemism. The unprecedented fall in water level (~8m) of Lake Megali Prespa threatens this system, but causes remain debated. Modelling suggests that the S Balkan will experience rainfall and runoff decreases of ~30% by 2050. However, projections revealing the potential impact of these changes on future lake level are unavailable as lake regime is not understood. A further drop in lake level may have serious consequences. The Prespa Lakes contribute ~25% of the total inflow into Lake Ohrid through underground karst channels; falling lake levels decrease this discharge. Lake Ohrid, in turn, feeds the Drim River. This entire catchment may therefore be affected by falling lake levels; its water resources are of great importance for Greece, Albania, FYROM and Montenegro (e.g. tourism, agriculture, hydro-energy, urban & industrial use). This new work proves that annual water level fluctuations of Lake Megali Prespa are predominantly related to precipitation during the first 7 months (Oct-Apr) of the hydrological year (Oct-Sep). Lake level is very sensitive to regional and

  4. Relation between selected water-quality variables and lake level in Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Fuhrer, Gregory J.; Morace, Jennifer L.

    1996-01-01

    Based on the analysis of data that they have been collecting for several years, the Klamath Tribes recently recommended that the Bureau of Reclamation (Reclamation) modify the operating plan for the dam to make the minimum lake levels for the June-August period more closely resemble pre-dam conditions (Jacob Kann, written commun., 1995). The U.S. Geological Survey (USGS) was asked to analyze the available data for the lake and to assess whether the evidence exists to conclude that year-to-year differences in certain lake water-quality variables are related to year-to-year differences in lake level. The results of the analysis will be used as scientific input in the process of developing an operating plan for the Link River Dam.

  5. Measuring historic water levels of Lake Balaton and tributary wetlands using georeferenced maps

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.

    2009-04-01

    Lake Balaton is a large and relatively shallow lake located in western Hungary. The lake is joined by small wetlands on the north shore and larger water-filled valleys on the south separated by and elevated sand bar. These wetlands are assumed to have been connected with Lake Balaton before the water level was artificially lowered in 1893. No regular measurements of the water level of the lake or these wetlands were carried out before the draining of the lake. Most of the wetlands were completely isolated from the water system of the lake after the water level change as roads, railway and holiday homes were built. The low valleys of the southern shore still hold many fishponds, swamps and wet meadows, which are important sanctuaries for rare wetland species, and are often less disturbed than the lake, which is a popular holiday resort. Hydrologic restoration of these wetlands is only possible if accurate information exists on the original, natural state. The 1776 Krieger-map and the first military survey (1782-1785) are the most accurate known maps of the original state of the Lake Balaton area. These maps were surveyed using triangulation and leveling, and are accurate enough to be compared with the present-day situation. Some of the depicted buildings and landmarks still survive and can be used as control points for georeferencing and correcting these maps. Since the bathymetry of the lake and the topography of the surrounding countryside have hardly changed, existing digital elevation models of the present-day relief could be compared to these georeferenced maps. The elevation profile of the lake shore and wetland borders can be calculated by tracing these lines on a Digital Elevation Model. The shore area of Lake Balaton has been filled in and changed, so present-day land topography can not be used to estimate the water level from the elevation profile of the shore line. However, the Krieger-map also shows bathymetric contours, and previous studies have shown

  6. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.

    2017-05-01

    Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.

  7. Lake-level increasing under the climate cryoaridization conditions during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amosov, Mikhail; Strelkov, Ivan

    2017-04-01

    A lake genesis and lake-level increasing during the Last Glacial Maximum (LGM) are the paramount issues in paleoclimatology. Investigating these problems reveals the regularities of lake development and figures out an arid territory conditions at the LGM stage. Pluvial theory is the most prevalent conception of lake formation during the LGM. This theory is based on a fact that the water bodies emerged and their level increased due to torrential rainfalls. In this study, it is paid attention to an alternative assumption of lake genesis at the LGM stage, which is called climate cryoaridization. In accordance with this hypothesis, the endorheic water basins had their level enlarged because of a simultaneous climate aridity and temperature decrease. In this research, a lake-level increasing in endorheic regions of Central Asia and South American Altiplano of the Andes is described. The lake investigation is related to its conditions during the LGM. The study also includes a lake catalogue clearly presenting the basin conditions at the LGM stage and nowadays. The data compilation partly consists of information from an earlier work of Mikhail Amosov, Lake-levels, Vegetation And Climate In Central Asia During The Last Glacial Maximum (EGU2014-3015). According to the investigation, a lake catalogue on 27 lakes showed that most of the water bodies had higher level. This feature could be mentioned for the biggest lakes of the Aral Sea, Lake Balkhash, Issyk-Kul etc. and for the small ones located in the mountains, such as Pamir, Tian-Shan and Tibet. Yet some lakes that are situated in Central Asian periphery (Lake Qinghai and lakes in Inner Mongolia) used to be lower than nowadays. Also, the lake-level increasing of Altiplano turned to be a significant feature during the LGM in accordance with the data of 5 lakes, such as Titicaca, Coipasa-Uyuni, Lejia, Miscanti and Santa-Maria. Most of the current endorheic basins at the LGM stage were filled with water due to abundant

  8. Trends in the lake trout fishery of Lake Huron through 1946

    USGS Publications Warehouse

    Hile, Ralph

    1949-01-01

    The estimated abundance of lake trout in the United States waters of Lake Huron (all districts combined) had reached an extremely low level in 1946 (24 percent of the 1929–1943 average), and the complete collapse of the fishery in late years is a matter of record. The rate of decline in abundance, however, was much less rapid than the spectacular decreases in production might suggest. Although each year beginning with 1940 saw a new record low yield, the abundance was still 87 percent of average in 1942 and did not drop below 70 percent until 1944. This seeming paradox is explained by the fact that relative to average conditions, fishing intensity in 1941–1946 was lower and was decreasing much more rapidly than was abundance. PDF

  9. Links between type E botulism outbreaks, lake levels, and surface water temperatures in Lake Michigan, 1963-2008

    USGS Publications Warehouse

    Lafrancois, Brenda Moraska; Riley, Stephen C.; Blehert, David S.; Ballmann, Anne E.

    2011-01-01

    Relationships between large-scale environmental factors and the incidence of type E avian botulism outbreaks in Lake Michigan were examined from 1963 to 2008. Avian botulism outbreaks most frequently occurred in years with low mean annual water levels, and lake levels were significantly lower in outbreak years than in non-outbreak years. Mean surface water temperatures in northern Lake Michigan during the period when type E outbreaks tend to occur (July through September) were significantly higher in outbreak years than in non-outbreak years. Trends in fish populations did not strongly correlate with botulism outbreaks, although botulism outbreaks in the 1960s coincided with high alewife abundance, and recent botulism outbreaks coincided with rapidly increasing round goby abundance. Botulism outbreaks occurred cyclically, and the frequency of outbreaks did not increase over the period of record. Climate change scenarios for the Great Lakes predict lower water levels and warmer water temperatures. As a consequence, the frequency and magnitude of type E botulism outbreaks in the Great Lakes may increase.

  10. Lake water levels across the U.S.: What are the spatial patterns and drivers of water level change?

    EPA Science Inventory

    Background Lake water-level changes affect the physical, chemical, and biological condition of lakes; and we expect that disturbances such as land use conversion, water withdrawal, and climate change may alter water-level regimes and impact lake integrity. However, we have a poor...

  11. Water level management of lakes connected to regulated rivers: An integrated modeling and analytical methodology

    NASA Astrophysics Data System (ADS)

    Hu, Tengfei; Mao, Jingqiao; Pan, Shunqi; Dai, Lingquan; Zhang, Peipei; Xu, Diandian; Dai, Huichao

    2018-07-01

    Reservoir operations significantly alter the hydrological regime of the downstream river and river-connected lake, which has far-reaching impacts on the lake ecosystem. To facilitate the management of lakes connected to regulated rivers, the following information must be provided: (1) the response of lake water levels to reservoir operation schedules in the near future and (2) the importance of different rivers in terms of affecting the water levels in different lake regions of interest. We develop an integrated modeling and analytical methodology for the water level management of such lakes. The data-driven method is used to model the lake level as it has the potential of producing quick and accurate predictions. A new genetic algorithm-based synchronized search is proposed to optimize input variable time lags and data-driven model parameters simultaneously. The methodology also involves the orthogonal design and range analysis for extracting the influence of an individual river from that of all the rivers. The integrated methodology is applied to the second largest freshwater lake in China, the Dongting Lake. The results show that: (1) the antecedent lake levels are of crucial importance for the current lake level prediction; (2) the selected river discharge time lags reflect the spatial heterogeneity of the rivers' impacts on lake level changes; (3) the predicted lake levels are in very good agreement with the observed data (RMSE ≤ 0.091 m; R2 ≥ 0.9986). This study demonstrates the practical potential of the integrated methodology, which can provide both the lake level responses to future dam releases and the relative contributions of different rivers to lake level changes.

  12. Holocene lake level changes at a lowland lake in northeastern Germany inferred from acoustic sub-bottom profiling and a transect of sediment cores

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Zawiska, Izabela; Słowiński, Michał; Brauer, Achim

    2015-04-01

    Holocene lake level changes were studied at Lake Fürstenseer See, a typical lake with complex basin morphology in northeastern German sandur area. An acoustic sub-bottom profile and a transect of four long sediment cores in the deepest lake sub-basin were analyzed. The cores were dated with AMS-14C and correlated with multiple proxies (sediment facies, μ-XRF, macrofossils, subfossil Cladocera, carbonate isotopes). At sites in 10 and 15 m water depth, shifts in the sand-mud boundary, i.e. sediment limit sensu Digerfeldt (1986), allowed quantitative estimates of the absolute amplitude of lake level changes. At sites in 20 and 23 m water depth, the negative correlation of Ca and Ti reflect lake level changes qualitatively. During high lake stands massive organic muds were deposited. Lower lake levels isolated the lake sub-basins which reduced the overall water circulation and lead to the deposition of Ti-poor carbonate muds. Furthermore, macrofossil and subfossil Cladocera analyses were used as proxies for the intense reworking at the slope and for the trophic state of the lake, respectively. Lake levels were up to 4 m higher, e.g. around 5000 cal. yrs BP and during the Medieval time period (see also Kaiser et al., 2014). During the early to mid-Holocene (between 9400 and 6400 cal. yrs BP), Lake Fürstenseer See fluctuated at an at least 3-m lower level. Further water level changes can be related to known climatic events and regional human impact. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology: 127-144. John Wiley & Sons, New York. Kaiser, K., Küster, M., Fülling, A., Theuerkauf, M., Dietze, E., Graventein, H., Koch, P.J., Bens, O., Brauer, A., 2014. Littoral landforms and pedosedimentary sequences indicating late Holocene lake-level changes in northern central Europe ' A case study from northeastern Germany. Geomorphology 216, 58-78.

  13. Can We Use Tree Rings of Black Alder to Reconstruct Lake Levels? A Case Study for the Mecklenburg Lake District, Northeastern Germany

    PubMed Central

    van der Maaten, Ernst; van der Maaten-Theunissen, Marieke; Buras, Allan; Scharnweber, Tobias; Simard, Sonia; Kaiser, Knut; Lorenz, Sebastian; Wilmking, Martin

    2015-01-01

    In this study, we explore the potential to reconstruct lake-level (and groundwater) fluctuations from tree-ring chronologies of black alder (Alnus glutinosa L.) for three study lakes in the Mecklenburg Lake District, northeastern Germany. As gauging records for lakes in this region are generally short, long-term reconstructions of lake-level fluctuations could provide valuable information on past hydrological conditions, which, in turn, are useful to assess dynamics of climate and landscape evolution. We selected black alder as our study species as alder typically thrives as riparian vegetation along lakeshores. For the study lakes, we tested whether a regional signal in lake-level fluctuations and in the growth of alder exists that could be used for long-term regional hydrological reconstructions, but found that local (i.e. site-specific) signals in lake level and tree-ring chronologies prevailed. Hence, we built lake/groundwater-level reconstruction models for the three study lakes individually. Two sets of models were considered based on (1) local tree-ring series of black alder, and (2) site-specific Standardized Precipitation Evapotranspiration Indices (SPEI). Although the SPEI-based models performed statistically well, we critically reflect on the reliability of these reconstructions, as SPEI cannot account for human influence. Tree-ring based reconstruction models, on the other hand, performed poor. Combined, our results suggest that, for our study area, long-term regional reconstructions of lake-level fluctuations that consider both recent and ancient (e.g., archaeological) wood of black alder seem extremely challenging, if not impossible. PMID:26317768

  14. Lake-levels, vegetation and climate in Central Asia during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amosov, Mikhail

    2014-05-01

    Central Asian region is bounded in the east corner of the Greater Khingan Range and the Loess Plateau, and to the west - the Caspian Sea. This representation of region boundaries is based on classical works of A.Humboldt and V.Obruchev. Three typical features of Central Asia nature are: climate aridity, extensive inland drainage basins with numerous lakes and mountain systems with developed glaciation. Nowadays the extensive data is accumulated about lake-levels during the Last Glacial Maximum (LGM) in Central Asia. Data compilation on 20 depressions, where lakes exist now or where they existed during LGM, shows that most of them had usually higher lake-level than at present time. This regularity could be mentioned for the biggest lakes (the Aral Sea, the Balkhash, the Ysyk-Kol etc.) and for small ones that located in the mountains (Tien Shan, Pamir and Tibet). All of these lake basins get the precipitation due to westerlies. On the other hand lakes, which are located in region's east rimland (Lake Qinghai and lakes in Inner Mongolia) and get the precipitation due to summer East Asian monsoons, do not comply with the proposed regularity. During LGM these lake-levels were lower than nowadays. Another exception is Lake Manas, its lake-level was also lowered. Lake Manas is situated at the bottom of Junggar Basin. There are many small rivers, which come from the ranges and suffer the violent fluctuation in the position of its lower channel. It is possible to assume that some of its runoff did not get to Lake Manas during LGM. Mentioned facts suggest that levels of the most Central Asian lakes were higher during LGM comparing to their current situation. However, at that period vegetation was more xerophytic than now. Pollen data confirm this information for Tibet, Pamir and Tien Shan. Climate aridization of Central Asia can be proved by data about the intensity of loess accumulation during LGM. This evidence received for the east part of region (the Loess Plateau) and

  15. Lake level fluctuations and catchment dynamics at Lake Ohrid (Macedonia, Albania) during MIS6 and MIS5

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Just, Janna; Sadori, Laura; Masi, Alessia; Vogel, Hendrik; Lindhorst, Katja; Krastel, Sebastian; Dosseto, Anthony; Rothacker, Leo; Leicher, Niklas; Gromig, Raphael

    2016-04-01

    Lake Ohrid, presumably the oldest lake of Europe located at the border of Macedonia and Albania, is about 30 km long, 15 km wide, and up to 290 m deep. In 2013, an ICDP deep drilling campaign was carried out under the umbrella of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. At the main drill site (DEEP) in the central part of Lake Ohrid, the uppermost 568 m from a total sediment fill of ca. 700 m were recovered. Initial data from core catcher material indicate that the sediment sequence covers more than 1.2 million years. An age model, which is based on 11 tephrostratigragphic tie points and on tuning of biogeochemical proxy data versus orbital parameters reveals that that the upper 247 m of the DEEP site sequence cover the time period between 637 ka (MIS16) and the present. Inhere, we present sedimentological, (bio-)geochemical, environmental magnetic, and pollen data for the time period between MIS6 (191 ka) and MIS5 (71 ka). The data imply that MIS6 was one of the most severe glacial periods, while MIS5 was likely one of the more pronounced interglacial during the past 637 kyrs. The repercussions of these high amplitude climatic and environmental variations during this period are recorded in the sedimentological archive of Lake Ohrid. Previous studies based on hydro-acoustic and sediment core data from the northeastern part of the lake basin have shown that the lake level of Lake Ohrid was likely 60 m lower during MIS6. The ˜60 m lower lake level at Lake Ohrid during MIS6 can at least partly be explained by the ongoing subsidence, which persists in the basin until today. However, in the DEEP site sediments, the MIS6/MIS5 transition occurs at ca. 50 m sediment depth. This implies that climate-induced lake level fluctuation at Lake Ohrid are less severe compared for example to Lake Van (Turkey), were a 260 m lower lake level has been reported for the Younger Dryas. The imprint of the environmental variations between

  16. Surficial Geology of the Floor of Lake Mead (Arizona and Nevada) as Defined by Sidescan-Sonar Imagery, Lake-Floor Topography, and Post-Impoundment Sediment Thickness

    USGS Publications Warehouse

    Twichell, D.C.; Cross, V.A.

    2009-01-01

    Sidescan-sonar imagery collected in Lake Mead during 1999-2001, a period of high lake level, has been used to map the surficial geology of the floor of this large reservoir that formed upon completion of the Hoover Dam in 1935. Four surficial geologic units were identified and mapped: rock exposures and alluvial deposits that existed prior to the formation of the lake and thin post-impoundment sediments ( 1 m) deposited since the lake formed. Exposures of rock are most extensive in the narrow, steep-sided sections of the lake, while alluvial deposits are most extensive on the gentle flanks of the broader basin sections of the lake. Post-impoundment sediment is restricted to the floors of the original river valleys that now lie below lake level. These sediments are thickest in the deltas that form at the mouths of the Colorado River and its tributaries, but cover the entire length of the valley floors of the lake. This sediment distribution is consistent with deposition from turbidity currents. Lake level has dropped more than 30 m between collection of the sidescan imagery and publication of this report. During this time, thick delta deposits have been eroded and redistributed to deeper parts of the lake by turbidity currents. While present-day post-impoundment sediment distribution should be similar to what it was in 2001, the thickness may be greater in some of the deeper parts of the lake now.

  17. δ18O and Carbonate Clumped Isotopes as Proxies of Lake Level Change: Mono Lake Modern Sediments Inform Pleistocene Interpretations

    NASA Astrophysics Data System (ADS)

    Westacott, S.; Ingalls, M.; Meixnerova, J.; Betts, M.; Lloyd, M. K.; Miller, L. G.; Sessions, A. L.; Trower, L.; Geobiology Course, A.

    2017-12-01

    In 1941 LA County began diverting water from the Mono Lake basin, causing lake level to fall dramatically until 1994 when diversion was substantially discontinued. High sedimentation rate (0.7 cm/yr) in combination with rapid, well-documented environmental change offers a unique opportunity to investigate the isotopic fingerprint of lake level change at a much finer scale than is typically accessible in the geologic record. δ18Ocarb can record lake level in a closed-basin system, but relies on knowing the relative contributions from carbonate precipitated from lake water and from authigenic carbonates, both of which are expected to exist in alkaline lake sediments. Here, we combine δ18Ocarb with clumped isotope thermometry (T(Δ47)) on a 70 cm sediment core to "unmix" the carbonate sources and reconstruct δ18Owater of Mono Lake over the past 116 years. Carbonate from the upper 10 cm of the sediment core yields a T(Δ47) of 26°C, reflecting surface water carbonate precipitation during late summer. Carbonates from sediment depths greater than 10cm yield a consistent T(Δ47) of 9.6°C, warmer than today's bottom waters, suggesting dissolution and reprecipitation of originally "warm" carbonate deposited from the water column alongside "cold" water of a different δ18Ow than Mono Lake surface water. A clumped isotope mixing model (Defliese & Lohmann, 2015) used to calculate the relative contributions of the two carbonate precipitates, corroborated by mirrored shifts in δ13Corg and δ13Ccarb down-core, suggests that about half of the carbonate found in the lower 60 cm of the sediment core is authigenic. As an example of how this strategy can be applied to older strata with looser constraints on primary composition, we also analysed the Pleistocene Wilson Creek Formation—lake sediments from Mono Lake's predecessor, Lake Russell. Although Pleistocene Lake Russell should have been cooler than modern Mono Lake, T(Δ47) values were similar to those of modern sediments

  18. Lake Erie Water Level Study. Appendix G. Recreational Beaches and Boating.

    DTIC Science & Technology

    1981-07-01

    economic impact analysis). G-44 I There are two separate phases associated with the development of bene- fits generated at the various water levels in...moorings. The growth factors for the small boat harbor formula (MRI Technical Report No. 5, Economic Impacts of Lake Level Regulation) were developed by...Lakes-St. Lawrence River system. This evaluation was limited to Lakes Erie and Ontario and part of the St. Lawrence River where the

  19. Pleistocene lake level changes in Western Mongolia

    NASA Astrophysics Data System (ADS)

    Borodavko, P. S.

    2009-04-01

    Global cooling in the Early Pleistocene caused extensive continental glaciation in the northern hemisphere including the arid areas of Central Asia. The reduction of temperatures (particularly summer temperatures) reduced evaporation and strengthened the importance of precipitation. The simultaneity of "lakes periods" (pluvials) and stages of glaciation is established experience confirmed by investigations in the west of North America and Russia. In the Mongolian Great Lakes Depression new evidence for similar conditions is found. The Great Lakes Depression is one of the largest in Central Asia, and is divided into 2 main Lakes basins: Hyargas Lake Basin and Uvs Lake Basin. The basin is 600-650 km in length with a width of 200-250 km in the north and 60-100 km in the south. Total catchment area is about 186600 km2. The elevation of the basin floor is from 1700 m a.s.l. to 760 m a.s.l., decreasing to the north and south-east. The depression extends south-north and is bounded by mountains: Tannu-Ola to the north, Hangai to the east; Gobi Altai to the south and Mongolian Altay to the west. The maximum elevation of the mountains is 4000 m a.s.l. There are some mountains with an elevation between 2000 and 3000 m a.s.l in the lake catchment. These mountains are not glaciated today. The geological record [1] suggests the Great Lakes Depression already existed in the Mesozoic, but assumed its modern form only during the Pliocene-Quaternary when tectonic movements caused the uplift of the surrounding mountains. A phase of tectonic stability occurred during the Late Quaternary. The depression is filled by Quaternary fluvial, aeolian and lacustrine deposits (e.g. sand, pebbles). The Neogene deposits are represented by coloured clay, marl, sand and sandstone [1]. Hyargas Lake is the end base level of erosion of the lake group consisting of the Hara-Us Nur, Dorgon, Hara Nur and Airag lakes. Hyargas is one of the largest lakes in Mongolia, with a water surface of 1,407 km2. The

  20. Analysis of water-level fluctuations of Lakes Winona and Winnemissett-- two landlocked lakes in a karst terrane in Volusia County, Florida

    USGS Publications Warehouse

    Hughes, G.H.

    1979-01-01

    The water levels of Lakes Winona and Winnemissett in Volusia County, Fla., correlate reasonably well during dry spells but only poorly during wet spells. Disparities develop mostly at times when the lake levels rise abruptly owing to rainstorms passing over the lake basins. The lack of correlation is attributed to the uneven distribution of the storm rainfall, even though the average annual rainfall at National Weather Service gages in the general area of the lakes is about the same. Analyses of the monthly rainfall data show that the rainfall variability between gages is sufficient to account for most of the disparity between monthly changes in the levels of the two lakes. The total annual rainfall at times may differ between rainfall gages by as much as 15 to 20 inches. Such differences tend to balance over the long term but may persist in the same direction for two or more years, causing apparent anomalies in lake-level fluctuations. (Woodard-USGS)

  1. Monitoring the water balance of Lake Victoria, East Africa, from space

    NASA Astrophysics Data System (ADS)

    Swenson, Sean; Wahr, John

    2009-05-01

    SummaryUsing satellite gravimetric and altimetric data, we examine trends in water storage and lake levels of multiple lakes in the Great Rift Valley region of East Africa for the years 2003-2008. GRACE total water storage estimates reveal that water storage declined in much of East Africa, by as much as 60 {mm}/{year}, while altimetric data show that lake levels in some large lakes dropped by as much as 1-2 m. The largest declines occurred in Lake Victoria, the Earth's second largest freshwater body. Because the discharge from the outlet of Lake Victoria is used to generate hydroelectric power, the role of human management in the lake's decline has been questioned. By comparing catchment water storage trends to lake level trends, we confirm that climatic forcing explains only about 50decline. This analysis provides an independent means of assessing the relative impacts of climate and human management on the water balance of Lake Victoria that does not depend on observations of dam discharge, which may not be publically available. In the second part of the study, the individual components of the lake water balance are estimated. Satellite estimates of changes in lake level, precipitation, and evaporation are used with observed lake discharge to develop a parameterization for estimating subsurface inflows due to changes in groundwater storage estimated from satellite gravimetry. At seasonal timescales, this approach provides closure to Lake Victoria's water balance to within 17 {mm}/{month}. The third part of this study uses the water balance of a downstream water body, Lake Kyoga, to estimate the outflow from Lake Victoria remotely. Because Lake Kyoga is roughly 20 times smaller in area than Lake Victoria, its water balance is strongly influenced by inflow from Lake Victoria. Lake Kyoga has been shown to act as a linear reservoir, where its outflow is proportional to the height of the lake. This model can be used with satellite altimetric lake levels to estimate a

  2. Mercury levels, reproduction, and hematology in western grebes from three California Lakes, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elbert, R.A.; Anderson, D.W.

    1998-02-01

    Twenty-three healthy adult western and Clark`s grebes (Aechmorphorus occidentalis and Aechmorphorus clarkii) were collected at three study sites in California, USA, in 1992: Clear Lake, Lake County; Eagle Lake, Lassen County; and Tule Lake, Siskiyou County. Liver, kidney, breast muscle, and brain were analyzed for total mercury (Hg) concentration (ppm wet weight), and blood was analyzed for various blood parameters. Clear Lake birds had greater Hg concentrations in kidney, breast muscle, and brain than birds from the other two lakes whereas liver concentrations were not statistically different. Average concentrations for Clear Lake birds were 2.74 ppm for liver, 2.06 ppmmore » for kidney, 1.06 ppm for breast muscle, and 0.28 ppm for brain. The tissue levels of kidney, breast muscle, and brain at the other two study sites were one half the levels found at Clear Lake. These mean tissue levels were near, but below, those known to cause adverse effects. When data from all sites were merged, kidney, breast muscle, and brain concentrations are positively correlated to each other. Liver concentrations were not correlated to any other value. Brain Hg concentrations were also negatively correlated to blood potassium and blood phosphorus levels. Kidney Hg levels were positively correlated to percent blood heterophils and negatively correlated to percent eosinophils, suggesting that mercury levels might be affecting immune function. These biomarkers could not be related to any obvious ecological effects.« less

  3. Stable isotope ratios in swale sequences of Lake Superior as indicators of climate and lake level fluctuations during the Late Holocene

    USGS Publications Warehouse

    Sharma, Shruti; Mora, G.; Johnston, J.W.; Thompson, T.A.

    2005-01-01

    Beach ridges along the coastline of Lake Superior provide a long-term and detailed record of lake level fluctuations for the past 4000 cal BP. Although climate change has been invoked to explain these fluctuations, its role is still in debate. Here, we reconstruct water balance by employing peat samples collected from swale deposits present between beach ridge sequences at two locations along the coastline of Lake Superior. Carbon isotope ratios for Sphagnum remains from these peat deposits are used as a proxy for water balance because the presence or absence of water films on Sphagnum controls the overall isotope discrimination effects. Consequently, increased average water content in Sphagnum produces elevated ??13C values. Two maxima of Sphagnum ??13C values interpreted to reflect wetter conditions prevailed from 3400 to 2400 cal BP and from about 1900 to 1400 cal BP. There are two relatively short drier periods as inferred from low Sphagnum ??13C values: one is centered at about 2300 cal BP, and one begins at 1400 cal BP. A good covariance was found between Sphagnum ??13C values and reconstructed lake-levels for Lake Michigan in which elevated carbon isotope values correlate well with higher lake levels. Based on this covariance, we conclude that climate exerts a strong influence on lake levels in Lake Superior for the past 4000 cal BP. ?? 2005 Elsevier Ltd. All rights reserved.

  4. Meteorological factors affecting the sudden decline in Lake Urmia's water level

    NASA Astrophysics Data System (ADS)

    Arkian, Foroozan; Nicholson, Sharon E.; Ziaie, Bahareh

    2018-01-01

    Lake Urmia, in northwest Iran, is the second most saline lake in the world. During the past two decades, the level of water has markedly decreased. In this paper, climate of the lake region is investigated by using data from four meteorological stations near the lake. The data include climatic parameters such as temperature, precipitation, humidity, wind speed, sunshine hours, number of rain days, and evaporation. Climate around the lake is examined by way of climate classification in the periods before and after the reduction in water level. Rainfall in the lake catchment is also evaluated using both gauge and satellite data. The results show a significant decreasing trend in mean annual precipitation and wind speed and an increasing trend in annual average temperature and sunshine hours at the four stations. Precipitation and wind speed have decreased by 37 mm and 2.7 m/s, respectively, and the mean annual temperature and sunshine hours have increased by 1.4 °C and 41.6 days, respectively, over these six decades. Only the climate of the Tabriz region is seen to have significantly changed, going from semiarid to arid. Gauge records and satellite data show a large-scale decreasing trend in rainfall since 1995. The correlation between rainfall and year-to-year changes in lake level is 0.69 over the period 1965 to 2010. The relationship is particularly strong from the early 1990s to 2005. This suggests that precipitation has played an important role in the documented decline of the lake.

  5. Settlement on the Shores of Lake Lisan and adjacent swamps: Hindered aridization

    NASA Astrophysics Data System (ADS)

    Agnon, A.; Goring-Morris, N.

    2014-12-01

    Increased rainfall/evaporation ratio had merged the Dead Sea and Sea of Galilee basins to a 260 km long Lake Lisan during the Last Glacial Maximum, 160 m below current mean sea level (mbsl). The timing of the natural drop to the 400 mbsl (Dead Sea level) has been precisely determined to 25-11 ka. Human settlements had initiated near the retreating shorelines at 21 ka. However, rather than following the dropping level, the subsequent settlement took advantage of swamps perched above 240 mbsl.Along with an increased number of persons in the communities that left artefacts in the lacustrine and shore sediments, the technologies for exploiting the environment for survival had evolved. Some of the finds attest to activities that were not tied immediately to physical survival. The development of art and of social behaviour raises fascinating issues regarding our perception of the capabilities and motives of Mankind during the change from hunter-gatherer subsistence to one based on cultivation of plants and livestock associated with settlement.The changes in the lifestyle are likely related to the environmental changes, some of which can be reconstructed by modern geological tools. On the other hand, some of the findings of the archaeological studies can help resolve geological issues, such as aridization around 9 ka, attested by initiation of gully washers that form boulder deposits over Netiv Hagdud site. The aridization is hindered relatively to lake level drop, presumably due to evolving spatial distribution of rainfall, where the rift shoulders still receive rain, while lake decline reflects aridization in the southern drainage, namely the Negev. This observation accords with speleothem studies from the rift shoulders.

  6. Digital Bathymetric Model of Mono Lake, California

    USGS Publications Warehouse

    Raumann, Christian G.; Stine, Scott; Evans, Alexander; Wilson, Jerry

    2002-01-01

    In 1986 and 1987, Pelagos Corporation of San Diego (now Racal Pelagos) undertook a bathymetric survey of Mono Lake in eastern California for the Los Angeles Department of Water and Power (DWP). The result of that survey was a series of maps at various scales and contour intervals. From these maps, the DWP hoped to predict consequences of the drop in lake level that resulted from their diversion of streams in the Mono Basin. No digital models, including shaded-relief and perspective-view renderings, were made from the data collected during the survey. With the permission of Pelagos Corporation and DWP, these data are used to produce a digital model of the floor of Mono Lake. The model was created using a geographic information system (GIS) to incorporate these data with new observations and measurements made in the field. This model should prove to be a valuable tool for enhanced visualization and analyses of the floor of Mono Lake.

  7. Extreme events in the sedimentary record of maar Lake Pavin: Implications for natural hazards assessment in the French Massif Central

    NASA Astrophysics Data System (ADS)

    Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel

    2016-06-01

    A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.

  8. 2. DETAIL VIEW SHOWING WOODEN CRIBBING WITH LOWERED LAKE LEVEL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL VIEW SHOWING WOODEN CRIBBING WITH LOWERED LAKE LEVEL, EAST DAM, LOOKING NORTHEAST (View is middle of the perimeter showing in MT-88-A-1 above.) - Three Bears Lake & Dams, East Dam, North of Marias Pass, East Glacier Park, Glacier County, MT

  9. Buried soils in a perched dunefield as indicators of late holecene lake-level change in the Lake Superior basin

    USGS Publications Warehouse

    Anderton, John B.; Loope, Walter L.

    1995-01-01

    A stratigraphic analysis of buried soils within the Grand Sable Dunes, a dune field perched 90 m above the southern shore of Lake Superior, reveals a history of eolian activity apparently linked with lake-level fluctuations over the last 5500 yr. A relative rise in the water plane of the Nipissing Great Lakes initially destabilized the lakeward bluff face of the Grand Sable plateau between 5400 and 4600 14C yr B.P. This led to the burial of the Sable Creek soil by eolian sediments derived from the bluff face. Subsequent episodes of eolian activity appear to be tied to similar destabilizing events; high lake levels may have initiated at least four and perhaps eleven episodes of dune building as expressed by soil burials within the dunes. Intervening low lake levels probably correlate with soil profile development, which varies from the well-developed Sable Creek Spodosol catena to thin organic layers containing in-place stumps and tree trunks. Paleoecological reconstructions available for the area do not imply enough climatic change to account for the episodic dune activity. Burial of soils by fine-fraction sediments links dune-building episodes with destabilization of the lower lake-facing bluff, which is rich in fines.

  10. Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught.

    PubMed

    Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael

    2013-10-01

    The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO 3  > CO 3  > Cl > F > SO 4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33-0.45.

  11. Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught

    PubMed Central

    Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael

    2013-01-01

    The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45. PMID:25843965

  12. Tracking Dramatic Changes at Hawaii's Only Alpine Lake

    NASA Astrophysics Data System (ADS)

    Patrick, Matthew R.; Delparte, Donna

    2014-04-01

    Lake Waiau is a small lake (normally 100 meters in diameter) just below the summit of Mauna Kea Volcano (elevation of 4207 meters) on the island of Hawaii. The only alpine lake in the Hawaiian Islands, it is fed mainly by sporadic winter storms that drop snow in the otherwise arid summit region.

  13. Kinetic and kinematic adjustments during perturbed walking across visible and camouflaged drops in ground level.

    PubMed

    Müller, Roy; Tschiesche, Kevin; Blickhan, Reinhard

    2014-07-18

    Walking in even the most familiar environment posesses a challenge to humans due to continuously changing surface conditions such as compliance, slip, or level. These changes can be visible or invisible due to camouflage. In order to prevent falling, camouflaged changes in the ground level in particular require a quick response of the locomotor system. For ten subjects we investigated kinematics and ground reaction forces of two consecutive contacts while they were walking across visible (drops of 0, -5 and -10 cm at second contact) and camouflaged (drops of 0 or -5 cm, and drops of 0 or -10 cm at second contact) changes in the ground level. For both situations we found significant kinetic and kinematic adjustments during the perturbed second contact but also one step earlier, in the preparatory first contact. During walking across visible changes in the ground level, second peak ground reaction force at first contact decreased whereas the drop height increased at the second contact. In addition, at the end of this first contact the ankle and knee were more flexed and the trunk was more erect compared to level walking. During the perturbed second contact, first peak ground reaction force increased with drop height, whereas kinematic adjustments at touchdown were less. The visual perception of the perturbation facilitated prior adaptations. During walking across camouflaged changes in ground level such a visually guided preadaptation was not possible and the adaptations prior to the perturbation were less than those observed during walking across visible changes in the ground. However, when stepping into a camouflaged drop, the kinetic and kinematic adjustments became more obvious and they increased with increasing camouflaged drop height. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Is the water level during dry season in Poyang Lake really lower than before?

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolong; Yu, Meixiu; Shi, Yong; Luan, Zhenyu; Fu, Dafang

    2017-04-01

    The Poyang Lake, the largest freshwater lake in China, has attracted world widely attentions in recent years due to it being dammed or not at the Lake's outlet. It was reported that the Poyang Lake water levels have been declining significantly in dry seasons, which resulted in severe water supply, irrigation and ecological flow requirement problems. The purpose of the study was to answer the question that the water level of the Poyang Lake during dry season is really lower than before or not. Based on topographical data, and long-term hydrological and meteorological data from 1950 to 2016, the relationship between the Poyang Lake and the Yangtze River before and after the completion of the Three Gorges Dam, the relationship between the Poyang Lake and its Five major tributaries (Ganjiang River, Fuhe River, Xinjiang River, Raohe River and Xiushui River), and as well as sand mining contributions to the water level in dry seasons of the Poyang Lake were investigated respectively.

  15. Mercury and water level fluctuations in lakes of northern Minnesota

    USGS Publications Warehouse

    Larson, James H.; Maki, Ryan P; Christensen, Victoria G.; Sandheinrich, Mark B.; LeDuc, Jaime F.; Kissane, Claire; Knights, Brent C.

    2017-01-01

    Large lake ecosystems support a variety of ecosystem services in surrounding communities, including recreational and commercial fishing. However, many northern temperate fisheries are contaminated by mercury. Annual variation in mercury accumulation in fish has previously been linked to water level (WL) fluctuations, opening the possibility of regulating water levels in a manner that minimizes or reduces mercury contamination in fisheries. Here, we compiled a long-term dataset (1997-2015) of mercury content in young-of-year Yellow Perch (Perca flavescens) from six lakes on the border between the U.S. and Canada and examined whether mercury content appeared to be related to several metrics of WL fluctuation (e.g., spring WL rise, annual maximum WL, and year-to-year change in maximum WL). Using simple correlation analysis, several WL metrics appear to be strongly correlated to Yellow Perch mercury content, although the strength of these correlations varies by lake. We also used many WL metrics, water quality measurements, temperature and annual deposition data to build predictive models using partial least squared regression (PLSR) analysis for each lake. These PLSR models showed some variation among lakes, but also supported strong associations between WL fluctuations and annual variation in Yellow Perch mercury content. The study lakes underwent a modest change in WL management in 2000, when winter WL minimums were increased by about 1 m in five of the six study lakes. Using the PLSR models, we estimated how this change in WL management would have affected Yellow Perch mercury content. For four of the study lakes, the change in WL management that occurred in 2000 likely reduced Yellow Perch mercury content, relative to the previous WL management regime.

  16. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    NASA Astrophysics Data System (ADS)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  17. Combined Effect of El Nino Southern Oscillation and Atlantic Multidecadal Oscillation on Lake Chad Level Variability Region

    NASA Technical Reports Server (NTRS)

    Okonkwo, Churchill; Demoz, Belay; Sakai, Ricardo; Ichoku, Charles; Anarado, Chigozie; Adegoke, Jimmy; Amadou, Angelina; Abdullahi, Sanusu Imran

    2015-01-01

    In this study, the combined effect of the Atlantic Multidecadal Oscillation (AMO) and El Niño Southern Oscillation (ENSO) on the Lake Chad (LC) level variability is explored. Our results show that the lake level at the Bol monitoring station has a statistically significant correlation with precipitation (R2 = 0.6, at the 99.5% confidence level). The period between the late 1960s and early 1970s marked a turning point in the response of the regional rainfall to climatic drivers, thereby severely affecting the LC level. Our results also suggest that the negative impact of the cold phase of AMO on Sahel precipitation masks and supersedes the positive effect of La Niña in the early the 1970s. The drop in the size of LC level from 282.5 m in the early 1960s to about 278.1 m in 1983/1984 was the largest to occur within the period of study (1900-2010) and coincides with the combined cold phase of AMO and strong El Niño phase of ENSO. Further analyses show that the current warm phase of AMO and increasing La Niña episodes appear to be playing a major role in the increased precipitation in the Sahel region. The LC level is responding to this increase in precipitation by a gradual recovery, though it is still below the levels of the 1960s. This understanding of the AMO-ENSO-rainfall-LC level association will help in forecasting the impacts of similar combined episodes in the future. These findings also have implications for long-term water resources management in the LC region.

  18. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Stein, Mordechai; Enzel, Yehouda

    2013-06-01

    A new, detailed lake level curve for Lake Lisan (the Last Glacial Dead Sea) reveals a high frequency of abrupt fluctuations during Marine Isotope Stage 3 (MIS3) compared to the relatively high stand characterizing MIS2, and the significantly lower Holocene lake. The lake level fluctuations reflect the hydrological conditions in the large watershed of the lake, which in turn reflects the hydro-climatic conditions in the central Levant region. The new curve shows that the fluctuations coincide on millennial timescales with temperature variations recorded in Greenland. Four patterns of correlation are observed through the last ice age: (1) maximum lake elevations were reached during MIS2, the coldest interval; (2) abrupt lake level drops to the lowest elevations coincided with the occurrence of Heinrich (H) events; (3) the lake returned to higher-stand conditions along with warming in Greenland that followed H-events; (4) significant lake level fluctuations coincided with virtually every Greenland stadial-interstadial cycle. Over glacial-interglacial time-scales, Northern Hemisphere glacial cooling induces extreme wetness in the Levant, with high lake levels reaching ˜160 m below mean sea level (mbmsl), approximately 240 m above typical Holocene levels of ˜400 mbmsl. These orbital time-scale shifts are driven by expansions of the European ice sheet, which deflect westerly storm tracks southward to the Eastern Mediterranean, resulting in increased sea-air temperature gradients that invoke increased cyclogenesis, and enhanced moisture delivery to the Levant. The millennial-scale lake level drops associated with Greenland stadials are most extreme during Heinrich stadials and reflect abrupt cooling of the Eastern Mediterranean atmosphere and sea-surface, which weaken the cyclogenic rain engine and cause extreme Levant droughts. During the recovery from the effect of Heinrich stadials, the regional climate configuration resumed typical glacial conditions, with enhanced

  19. Fluctuation history of Great Salt Lake, Utah, during the last 13,000 years, part 2

    NASA Technical Reports Server (NTRS)

    Murchison, Stuart B.

    1989-01-01

    Great Salt Lake level fluctuations from 13,000 yr B.P. to the present were interpreted by examination of shoreline geomorphic features, shoreline deposits, archeologic sites, isotopic data, and palynologic data. After the conclusion of the Bonneville paleolake cycle, between 13,000 and 12,000 yr B.P. the lake regressed to levels low enough to deposit a littoral oxidized red bed stratum and a pelagic Glauber's salt layer. A late Pleistocene lake cycle occurred between 12,000 and 10,000 yr B.P. depositing several beaches, the highest reaching an altitude of about 4250 ft (1295.3 m). The lake regressed after 10,000 yr B.P., only to rise to 4230 ft (1289.2 m) between 9700 and 9400 yr B.P. and then gradually lower at least 15 ft (4.5 m) or more. Lake levels fluctuated between 4212 and 4180 ft (1284 and 1274 m) for the next 4000 years. A late Holocene lake cycle, constrained by radiocarbon ages between 3440 and 1400 yr B.P., is reported at a highest static level of 4221 ft (1286.5 m). After a lake level drop to altitudes ranging between 4210 and 4205 ft (1283.2 and 1281.6 m), a 4217 ft (1285.7 m) level was reached after 400 yr B.P. This level lowered to 4214 ft (1284.4 m) in the mid to late 1700 s A.D. The lake levels have since stabilized aroung a 4200 ft (1280 m) mean.

  20. Impact of Groundwater-Lake Interaction on Levels of E. coli in Near-Shore Swimming Waters at Beaches of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Crowe, A. S.

    2009-12-01

    Beaches throughout the Great Lakes frequently are under health advisories for swimming due to elevated levels of E. coli. Many studies have shown that there are several potential sources of this E. coli (e.g., livestock, sewage treatment facilities, gulls and geese), and several mechanisms for delivering E. coli to the shoreline (e.g., rivers, creeks, storm water drains, currents, waves). But, groundwater is a mechanism for E. coli transport to the shoreline that is typically overlooked. Field studies undertaken at beaches throughout the Great lakes have measured levels of E. coli in the groundwater and sand at the groundwater-lake interface that are commonly over a 1000 times above Recreational Water Quality Guidelines, and that these high levels of E. coli are restricted to a zone below the beach adjacent to and within a few metres of the lake. Groundwater flow below beaches is always towards the shoreline with almost all groundwater discharge occurring at the groundwater-lake interface (i.e., not several or a few metres off-shore). Thus, groundwater discharge of the E. coli from zone represents a substantial and long-term reservoir for E. coli loading to the near shore recreational waters, and presents a potential health risk to swimmers. The high levels of E. coli in the sand and groundwater adjacent to the lake is also due to groundwater-lake interaction. During storms, wave runup and subsequent infiltration of lake water containing E. coli at the swash zone is the primary mechanism for delivering E. coli to the groundwater and sand adjacent to the lake. Field and modeling experiments show that storm events as short as a few hours can introduce substantial levels of E. coli to the groundwater because of the high inward groundwater velocities. However, its migration into the beach away from the shoreline is restricted to a few metres beyond the maximum extent of wave runup because groundwater flow below the beach continues to flow towards the shoreline creating

  1. Tree-Ring Dating of Extreme Lake Levels at the Subarctic?Boreal Interface

    NASA Astrophysics Data System (ADS)

    Bégin, Yves

    2001-03-01

    The dates of extreme water levels of two large lakes in northern Quebec have been recorded over the last century by ice scars on shoreline trees and sequences of reaction wood in shore trees tilted by wave erosion. Ice-scar chronologies indicate high water levels in spring, whereas tree-tilting by waves is caused by summer high waters. A major increase in both the amplitude and frequency of ice floods occurred in the 1930s. No such change was indicated by the tree-tilting chronologies, but wave erosion occurred in exceptionally rainy years. According to the modern record, spring lake-level rise is due to increased snowfalls since the 1930s. However, the absence of erosional marks in a large number of years since 1930 suggests a high frequency of low-water-level years resulting from dry conditions. Intercalary years with very large numbers of marked trees (e.g., 1935) indicate that the interannual range of summer lake levels has increased since the 1930s. Increased lake-flood frequency is postulated to be related to a slower expansion of arctic anticyclones, favoring the passage of cyclonic air masses over the area and resulting in abundant snowfall in early winter. Conditions in summer are due to the rate of weakening of the anticyclones controlling the position of the arctic front in summer. This position influences the path of the cyclonic air masses, which control summer precipitation and, consequently, summer lake levels in the area.

  2. Verrucomicrobia are prevalent in north-temperate freshwater lakes and display class-level preferences between lake habitats

    PubMed Central

    Chiang, Edna; Schmidt, Marian L.; Berry, Michelle A.; Biddanda, Bopaiah A.; Burtner, Ashley; Johengen, Thomas H.; Palladino, Danna

    2018-01-01

    The bacterial phylum Verrucomicrobia was formally described two decades ago and originally believed to be a minor member of many ecosystems; however, it is now recognized as ubiquitous and abundant in both soil and aquatic systems. Nevertheless, knowledge of the drivers of its relative abundance and within-phylum habitat preferences remains sparse, especially in lake systems. Here, we documented the distribution of Verrucomicrobia in 12 inland lakes in Southeastern Michigan, a Laurentian Great Lake (Lake Michigan), and a freshwater estuary, which span a gradient in lake sizes, depths, residence times, and trophic states. A wide range of physical and geochemical parameters was covered by sampling seasonally from the surface and bottom of each lake, and by separating samples into particle-associated and free-living fractions. On average, Verrucomicrobia was the 4th most abundant phylum (range 1.7–41.7%). Fraction, season, station, and depth explained up to 70% of the variance in Verrucomicrobia community composition and preference for these habitats was phylogenetically conserved at the class-level. When relative abundance was linearly modeled against environmental data, Verrucomicrobia and non-Verrucomicrobia bacterial community composition correlated to similar quantitative environmental parameters, although there were lake system-dependent differences and > 55% of the variance remained unexplained. A majority of the phylum exhibited preference for the particle-associated fraction and two classes (Opitutae and Verrucomicrobiae) were identified to be more abundant during the spring season. This study highlights the high relative abundance of Verrucomicrobia in north temperate lake systems and expands insights into drivers of within-phylum habitat preferences of the Verrucomicrobia. PMID:29590198

  3. Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey

    NASA Astrophysics Data System (ADS)

    Çağatay, M. N.; Öğretmen, N.; Damcı, E.; Stockhecke, M.; Sancar, Ü.; Eriş, K. K.; Özeren, S.

    2014-11-01

    Sedimentary, geochemical and mineralogical analyses of the ICDP cores recovered from the Northern Basin (NB) of Lake Van provide evidence of lake level and climatic changes related to orbital and North Atlantic climate system over the last 90 ka. High lake levels are generally observed during the interglacial and interstadial periods, which are marked by deposition of varved sediments with high total organic carbon (TOC), total inorganic carbon (TIC), low detrital influx (high Ca/F) and high δ18O and δ13C values of authigenic carbonate. During the glacial and stadial periods of 71-58 ka BP (Marine Isotope Stage 4, MIS4) and end of last glaciation-deglaciation (30-14.5 ka BP; MIS3) relatively low lake levels prevailed, and grey homogeneous to faintly laminated clayey silts were deposited at high sedimentation and low organic productivity rates. Millennial-scale variability of the proxies during 60-30 ka BP (MIS3 is correlated with the Dansgaard-Oeschger (D-O)) and Holocene abrupt climate events in the Atlantic. These events are characterized by laminated sediments, with high TOC, TIC, Ca/Fe, δ18O and δ13C values. The Lake Van NB records correlate well in the region with the climate records from the lakes Zeribar and Urmia in Iran and the Sofular Cave in NW Anatolia, but are in general in anti-phase to those from the Dead Sea Basin (Lake Lisan) in the Levant. The relatively higher δ18O values (0 to -0.4‰) for the interglacial and interstadial periods in the Lake Van NB section are due to the higher temperature and seasonality of precipitation and higher evaporation, whereas the lower values (-0.8 to -2‰) during the glacial and stadial periods are caused mainly by relative decrease in both temperature and seasonality of precipitation. The high δ18O values (up to 4.2‰) during the Younger Dryas, together with the presence of dolomite and low TOC contents, supports evaporative conditions and low lake level. A gradual decrease in the δ18O values from an

  4. The changes in the frequency of daily precipitation in Urmia Lake basin, Iran

    NASA Astrophysics Data System (ADS)

    Salehi Bavil, Sepideh; Zeinalzadeh, Kamran; Hessari, Behzad

    2017-06-01

    Urmia Lake, as one of the most valuable saline ecosystems in the world, has faced a sharp drop in the water level in recent years. The trend studies of climatic parameters can be effective in identifying the responsible factors and managing this crisis. This research investigated the frequency trend of daily precipitation in the ranges of less than 5 mm, 5-10 mm, 10-15 mm, 15-20 mm, and more than 20 mm in the Urmia Lake basin. The trend was assessed using Mann-Kendall, Spearman Rho and linear regression tests on 60 stations during a period of 30 years (1981 to 2011). The results showed that in all the three tests, the frequency of daily precipitation of less than 5 mm had a significant increase at 1% level. The 5-10 mm range displayed no significant trend, while the 10-15 mm range showed a significantly decreasing trend. The frequency in the 15-20 mm and above 20 mm ranges showed an insignificant falling trend. The analysis also indicated jumps in 1996 and 1999 (almost coinciding with the sharp drop in the lake's water level). In other words, the frequency trends of daily precipitation with small amounts (as a result, high evapotranspiration loss) were increasing and with large amounts were decreasing. This can be a contributor to reduced run-off and, hence, decreased water entering the lake. The results emphasize the need for changes in the management and consumption of water resources in the basin, in order to adapt to the climatic change.

  5. Lake States Pulpwood Production Drops Seven Percent, 1967

    Treesearch

    James E. Blyth

    1968-01-01

    This twenty-second annual report shows the Lake States pulpwood harvest decreased to about 4 million cords from a record high of 4 1/2 million cords in 1966. Pulpwood receipts remained high in Wisconsin but decreased in Michigan and Minnesota. Minnesota shipped 106,000 cords more to Wisconsin than in 1966. As a result, only Minnesota's 1967 pulpwood production...

  6. Rapid rise of water level for Tibetan lakes: an analysis of the relation with climate

    NASA Astrophysics Data System (ADS)

    Song, C.; Huang, B.

    2013-12-01

    The Tibetan Plateau (TP) has a large number of alpine lakes, which are sensitive indicators of climate variability due to minimal disturbances from human activities. Although earlier work has examined lake area and water level changes on the TP in the past several decades, so far, the climate-driven mechanism of lake variations is still not clear. In particular, it is uncertain which climatic factor (increased glacial meltwater caused by climate warming, or precipitation changes, etc.) induced the acceleration of lake growth since mid-1990s. This study examines water level changes of lakes during1990s~2011 by combining satellite Laser altimetry (covering small lakes due to finer footprints, but only during 2003~2009) and Radar altimetry (since 1990s, but only for a few large lakes due to coarse footprints). The precipitation and evaporation changes are also analyzed based on the GPCP data and station observations, which reveal that precipitation on the inner and northeast TP has experienced a significant increase of 2~8 mm/yr since mid-1990s and evaporation of most stations has showed an upward tendency. Two main findings of analyses on the relation of lake expansion and climate variability are summarized as follows: (1) The ICESat altimetry data during 2003~2009 shows that there is no significant difference between the change rates of water level of the 56 glacier-fed lakes and other 40 lakes without glacial meltwater supply, which implies that glacier melting induced by climate warming is probably not the dominating factor of rapid lake expansion. Six pairs of adjacent lakes with and without glacier supply (each pair is assumed under similar climate conditions) in different geographical regions (near the Nyainqêntanglha Mts., east Gangdise Mts., southeast Karakorum Mts., the Kunlun Mts., and the HolXil) were selected to further examine the impact of the glacier melting on lake expansions. Results show that some lakes without glacier supply even have higher

  7. The Impact of Meteorology on Ozone Levels in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Theiss, Sandra

    The Lake Tahoe Basin is located on the California-Nevada border and occasionally experiences elevated levels of ozone exceeding the 70 ppb California Air Resources Board (CARB) ambient air quality standard (8-hour average). Previous studies indicate that both the local generation of ozone in the Basin and long-range transport from out-of-Basin sources are important in contributing to ozone exceedances, but little is known about the impact of meteorology on the distribution of ozone source regions. In order to develop a better understanding of the factors affecting ozone levels and sources in the Lake Tahoe Basin, this study combines observational data from a 2010 and 2012 summer field campaigns, HYSPLIT back trajectories, and WRF model output to examine the meteorological influences of ozone transport in the topographically complex Lake Tahoe Basin. Findings from the field work portions of this study include enhanced background ozone levels at higher elevations, the local circulation pattern of lake breezes occurring at Lake level sites, and an indication that ozone precursors are coming off the Lake. Our analysis also showed that if transport of ozone does occur, it is more likely to come from the San Joaquin Valley to the south rather than originate in the large cities to the west, such as Sacramento and San Francisco. Analysis of modeled PBL schemes as compared with observational data showed that the ACM2 PBL scheme best represented the geographical domain. The ACM2 PBL scheme was then used to show wind circulation patterns in the Lake Tahoe Basin and concluded that there is decent vertical mixing over the Basin and no indication of ozone transport from the west however some indication of transport from the east. Overall this study concludes that transport from the west is less significant than transport from the south and east, and that transport only influences ozone values at higher elevations. Within the Basin itself (at lower elevations), local factors

  8. Modeling waves and circulation in Lake Pontchartrain, Louisiana

    USGS Publications Warehouse

    Signell, Richard P.; List, Jeffrey H.

    1997-01-01

    The U.S. Geological Survey is conducting a study of storm-driven sediment resuspension and transport in Lake Pontchartrain, Louisiana. Two critical processes related to sediment transport in the lake are (1) the resuspension of sediments due to wind-generated storm waves and (2) the movement of resuspended material by lake currents during storm wind events. The potential for sediment resuspension is being studied with the wave prediction model which simulates local generation of waves by wind and shallow-water effects on waves (refraction, shoaling, bottom friction, and breaking). Long-term wind measurements are then used to determine the regional "climate" of bottom orbital velocity (showing the spatial and temporal variability of wave-induced currents at the bottom). The circulation of the lake is being studied with a three-dimensional hydrodynamic model. Results of the modeling effort indicate that remote forcing due to water levels in Mississippi Sound dominate the circulation near the passes in the eastern end of the lake, while local wind forcing dominates water movement in the western end. During typical storms with winds from the north-northeast or the south-southeast, currents along the south coast near New Orleans generally transport material westward, while material in the central region moves against the wind. When periods of sustained winds are followed by a drop in coastal sea level, a large amount of suspended sediment can be flushed from the lake.

  9. Mercury in the pelagic food web of Lake Champlain.

    PubMed

    Miller, Eric K; Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2012-04-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.

  10. Mercury in the Pelagic Food Web of Lake Champlain

    PubMed Central

    Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2013-01-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25 to 75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 µg g−1 in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury. PMID:22193540

  11. Repeated sedimentation and exposure of glacial Lake Missoula sediments: A lake-level history at Garden Gulch, Montana, USA

    NASA Astrophysics Data System (ADS)

    Smith, Larry N.

    2017-01-01

    Glaciolacustrine sediments record lake transgression, regression, and subaerial modification of the silty lake-bottom of glacial Lake Missoula in the Clark Fork River valley. The sequence preserved at Garden Gulch, MT documents lake-level fluctuations at >65% of its full-pool volume. Twelve sedimentary cycles fine upwards from (1) very fine-grained sandy silt to (2) silt with climbing ripples to (3) rhythmically laminated silt and some clay. The cycles are fine-grained turbidites capped locally by thin layers of angular gravel derived from local bedrock outcrops. The gravels appear to be the toes of mass wasting lobes carried onto the exposed lakebed surface during repeated lake-level lowerings. Periglacial wedges, small rotational faults, involutions, and clastic dikes deform the tops of eleven cycles. The wedges are 10-30 cm wide, penetrate 30-70 cm deep, are spaced <1 m apart, and contain vertically oriented gravel and massive to laminated sediment. Wedges split and taper in plan view. A few thin silt-filled dikes, which branch and taper downwards from wedges, are interpreted as filled frost cracks. One 10-20 cm-wide sand-filled dike protrudes upward from a sand bed; it is interpreted as a liquefaction feature consistent with a filling and draining lake. The deformed cycle tops preserve evidence of periglacial cold, subaerial exposure, seasonal frost heave, and the incipient formation of sorted polygons. The lowest five cycles are thicker and display more periglacial modification at their tops than the upper seven cycles. The Garden Gulch section may represent as few as seven and as many as twelve substantial fillings and partial to complete drainings of glacial Lake Missoula.

  12. Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes.

    PubMed

    Blukacz-Richards, E Agnes; Visha, Ariola; Graham, Matthew L; McGoldrick, Daryl L; de Solla, Shane R; Moore, David J; Arhonditsis, George B

    2017-04-01

    Total mercury levels in aquatic birds and fish communities have been monitored across the Canadian Great Lakes by Environment and Climate Change Canada (ECCC) for the past 42 years (1974-2015). These data (22 sites) were used to examine spatio-temporal variability of mercury levels in herring gull (Larus argentatus) eggs, lake trout (Salvelinus namaycush), walleye (Sander vitreus), and rainbow smelt (Osmerus mordax). Trends were quantified with dynamic linear models, which provided time-variant rates of change of mercury concentrations. Lipid content (in both fish and eggs) and length in fish were used as covariates in all models. For the first three decades, mercury levels in gull eggs and fish declined at all stations. In the 2000s, trends for herring gull eggs reversed at two sites in Lake Erie and two sites in Lake Ontario. Similar trend reversals in the 2000s were observed for lake trout in Lake Superior and at a single station in Lake Ontario. Mercury levels in lake trout continued to slowly decline at all of the remaining stations, except for Lake Huron, where the levels remained stable. A post-hoc Bayesian regression analysis suggests strong trophic interactions between herring gulls and rainbow smelt in Lake Superior and Lake Ontario, but also pinpoints the likelihood of a trophic decoupling in Lake Huron and Lake Erie. Continued monitoring of mercury levels in herring gulls and fish is required to consolidate these trophic shifts and further evaluate their broader implications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA

    NASA Astrophysics Data System (ADS)

    Smith, Larry N.; Sohbati, Reza; Buylaert, Jan-Pieter; Lian, Olav B.; Murray, Andrew; Jain, Mayank

    2018-03-01

    Glaciolacustrine sediments in the Clark Fork River valley at Garden Gulch, near Drummond, Montana, USA record highstand positions of the ice-dammed glacial Lake Missoula and repeated subaerial exposure. During these highstands the lake was at greater than 65% of its recognized maximum capacity. The initial lake transgression deposited a basal sand unit. Subsequent cycles of lake-level fluctuations are recorded by sequences of laminated and cross laminated silt, sand, and clay deformed by periglacial processes during intervening periods of lower lake levels. Optically stimulated luminescence (OSL) dating of quartz sand grains, using single-aliquot regenerative-dose procedures, was carried out on 17 samples. Comparison of infrared stimulated luminescence (IRSL) from K-rich feldspar to OSL from quartz for all the samples suggests that they were well bleached prior to deposition and burial. Ages for the basal sand and overlying glaciolacustrine exposure surfaces are indistinguishable within one standard deviation, and give a weighted mean age of 20.9 ± 1.3 ka (n = 11). Based on sedimentological and stratigraphic analysis we infer that the initial transgression, and at least six cycles of lake-level fluctuation, occurred over time scales of decades to ∼2 ka. Bioturbated sandy slopewash dated at 10.6 ± 0.9 ka and 11.9 ± 1.2 ka unconformably overlies the upper glaciolacustrine deposits. The uppermost sediments, above the glaciolacustrine section, are younger than the Glacier Peak tephra (13.7-13.4 cal ka B.P.), which was deposited across parts of the drained lake basin, but has not been found at Garden Gulch. Our study indicates that glacial Lake Missoula reached >65 percent of maximum capacity by about 20.9 ± 1.3 ka and either partially or completely drained twelve times from this position. Rapid lowering from the lake's highstand position due to ice-dam failure likely led to scour in the downstream portions of the glacial Lake Missoula basin and megafloods in the

  14. Late quaternary sediments, minerals, and inferred geochemical history of Didwana Lake, Thar Desert, India

    USGS Publications Warehouse

    Wasson, R.J.; Smith, G.I.; Agrawal, D.P.

    1984-01-01

    Variations in clastic sediment texture, mineralogy of both evaporites formed at the surface and precipitates formed below the lake floor, and the relative chemical activities of the major dissolved components of the chemical precipitates, have allowed reconstruction of the history of salinity and water-level changes in Didwana Lake, Thar Desert, India. Hypersaline conditions prevailed at about the Last Glacial Maximum, with little evidence of clastic sediments entering the lake. Between ca. 13,000 and 6000 B.P. the lake level fluctuated widely, the lake alternately hypersaline and fresh, and clastic sediments were delivered to the lake at a low rate. Deep-water conditions occurred ca. 6000 B.P. and clastic influx increased abruptly. The water level dropped towards 4000 B.P. when the lake dried briefly. Since 4000 B.P. the lake has been ephemeral with a lowered rate of sedimentation and mildly saline conditions rather like those of today. This sequence of changes documented in the lake parallels changes in vegetation recorded in published pollen diagrams from both the Thar and the Arabian Sea. Correlation of the various lines of evidence suggests that the climate of the Last Glacial Maximum at Didwana was dry and windy with a weak monsson circulation. The monsson was re-established between ca. 13,000 and a little before 6000 B.P., and, when winter rainfall increased ca. 6000 B.P., the lake filled to its maximum depth. ?? 1984.

  15. A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials

    NASA Astrophysics Data System (ADS)

    Frey, H.; Haeberli, W.; Linsbauer, A.; Huggel, C.; Paul, F.

    2010-02-01

    In the course of glacier retreat, new glacier lakes can develop. As such lakes can be a source of natural hazards, strategies for predicting future glacier lake formation are important for an early planning of safety measures. In this article, a multi-level strategy for the identification of overdeepened parts of the glacier beds and, hence, sites with potential future lake formation, is presented. At the first two of the four levels of this strategy, glacier bed overdeepenings are estimated qualitatively and over large regions based on a digital elevation model (DEM) and digital glacier outlines. On level 3, more detailed and laborious models are applied for modeling the glacier bed topography over smaller regions; and on level 4, special situations must be investigated in-situ with detailed measurements such as geophysical soundings. The approaches of the strategy are validated using historical data from Trift Glacier, where a lake formed over the past decade. Scenarios of future glacier lakes are shown for the two test regions Aletsch and Bernina in the Swiss Alps. In the Bernina region, potential future lake outbursts are modeled, using a GIS-based hydrological flow routing model. As shown by a corresponding test, the ASTER GDEM and the SRTM DEM are both suitable to be used within the proposed strategy. Application of this strategy in other mountain regions of the world is therefore possible as well.

  16. Impacts of Lake Level Regulation on Beaches and Boating Facilities--Lakes Erie and Ontario and Connecting Waterways. Recreation Beaches Inventory.

    DTIC Science & Technology

    1979-12-18

    feet, the crews were in- structed to take additional measurements. At very long beaches, such as at Presque Isle State Park, in Pennsylvania , the...REGULATION ON BEACHES AND BOATING FACILITIES- LAKES ERIE AND) ONTARIO AND CONNECTING WATERWAYS -I RECREATION BEACHES INVENTORY 3 December 18, 1979 Contract...CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Impacts of Lake Level Regulation on Beaches and Boating Facilities--Lake Erie and

  17. Water Level Prediction of Lake Cascade Mahakam Using Adaptive Neural Network Backpropagation (ANNBP)

    NASA Astrophysics Data System (ADS)

    Mislan; Gaffar, A. F. O.; Haviluddin; Puspitasari, N.

    2018-04-01

    A natural hazard information and flood events are indispensable as a form of prevention and improvement. One of the causes is flooding in the areas around the lake. Therefore, forecasting the surface of Lake water level to anticipate flooding is required. The purpose of this paper is implemented computational intelligence method namely Adaptive Neural Network Backpropagation (ANNBP) to forecasting the Lake Cascade Mahakam. Based on experiment, performance of ANNBP indicated that Lake water level prediction have been accurate by using mean square error (MSE) and mean absolute percentage error (MAPE). In other words, computational intelligence method can produce good accuracy. A hybrid and optimization of computational intelligence are focus in the future work.

  18. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer

    PubMed Central

    Liu, T. Y.; Wu, Q. P.; Sun, B. Q.; Han, F. T.

    2016-01-01

    Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10−4g0 (Earth’s gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments. PMID:27530726

  19. Paleoenvironmental records of water level and climatic changes from the middle to late Holocene at a Lake Erie coastal wetland, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Finkelstein, Sarah A.; Davis, Anthony M.

    2006-01-01

    Pollen and diatom assemblages, and peat stratigraphies, from a coastal wetland on the northern shore of Lake Erie were used to analyze water level and climatic changes since the middle Holocene and their effects on wetland plant communities. Peat deposition began 4700 cal yr B.P. during the Nipissing II transgression, which was driven by isostatic rebound. At that time, a diatom-rich wild rice marsh existed at the site. Water level dropped at the end of the Nipissing rise at least 2 m within 200 yr, leading to the development of shallower-water plant communities and an environment too dry for most diatoms to persist. The sharp decline in water level was probably driven primarily by outlet incision, but climate likely played some role. The paleoecological records provide evidence for post-Nipissing century-scale transgressions occurring around 2300, 1160, 700 and 450 cal yr B.P. The chronology for these transgressions correlates with other studies from the region and implies climatic forcing. Peat inception in shallow sloughs across part of the study area around 700 cal yr B.P. coincides with the Little Ice Age. These records, considered alongside others from the region, suggest that the Little Ice Age may have resulted in a wetter climate across the eastern Great Lakes region.

  20. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and

  1. Estimation of unregulated monthly, annual, and peak streamflows in Forest City Stream and lake levels in East Grand Lake, United States-Canada border between Maine and New Brunswick

    USGS Publications Warehouse

    Lombard, Pamela J.

    2018-04-30

    The U.S. Geological Survey, in cooperation with the International Joint Commission, compiled historical data on regulated streamflows and lake levels and estimated unregulated streamflows and lake levels on Forest City Stream at Forest City, Maine, and East Grand Lake on the United States-Canada border between Maine and New Brunswick to study the effects on streamflows and lake levels if two or all three dam gates are left open. Historical regulated monthly mean streamflows in Forest City Stream at the outlet of East Grand Lake (referred to as Grand Lake by Environment Canada) fluctuated between 114 cubic feet per second (ft3 /s) (3.23 cubic meters per second [m3 /s]) in November and 318 ft3 /s (9.01 m3 /s) in September from 1975 to 2015 according to Environment Canada streamgaging data. Unregulated monthly mean streamflows at this location estimated from regression equations for unregulated sites range from 59.2 ft3 /s (1.68 m3 /s) in September to 653 ft3 /s (18.5 m3 /s) in April. Historical lake levels in East Grand Lake fluctuated between 431.3 feet (ft) (131.5 meters [m]) in October and 434.0 ft (132.3 m) in May from 1969 to 2016 according to Environment Canada lake level data for East Grand Lake. Average monthly lake levels modeled by using the estimated hydrology for unregulated flows, and an outflow rating built from a hydraulic model with all gates at the dam open, range from 427.7 ft (130.4 m) in September to 431.1 ft (131.4 m) in April. Average monthly lake levels would likely be from 1.8 to 5.4 ft (0.55 to 1.6 m) lower with the gates at the dam opened than they have been historically. The greatest lake level changes would be from June through September.

  2. Changes in the Global Hydrological Cycle: Lessons from Modeling Lake Levels at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Lowry, D. P.; Morrill, C.

    2011-12-01

    Geologic evidence shows that lake levels in currently arid regions were higher and lakes in currently wet regions were lower during the Last Glacial Maximum (LGM). Current hypotheses used to explain these lake level changes include the thermodynamic hypothesis, in which decreased tropospheric water vapor coupled with patterns of convergence and divergence caused dry areas to become more wet and vice versa, the dynamic hypothesis, in which shifts in the jet stream and Inter-Tropical Convergence Zone (ITCZ) altered precipitation patterns, and the evaporation hypothesis, in which lake expansions are attributed to reduced evaporation in a colder climate. This modeling study uses the output of four climate models participating in phase 2 of the Paleoclimate Modeling Intercomparison Project (PMIP2) as input into a lake energy-balance model, in order to test the accuracy of the models and understand the causes of lake level changes. We model five lakes which include the Great Basin lakes, USA; Lake Petén Itzá, Guatemala; Lake Caçó, northern Brazil; Lake Tauca (Titicaca), Bolivia and Peru; and Lake Cari-Laufquen, Argentina. These lakes create a transect through the drylands of North America through the tropics and to the drylands of South America. The models accurately recreate LGM conditions in 14 out of 20 simulations, with the Great Basin lakes being the most robust and Lake Caçó being the least robust, due to model biases in portraying the ITCZ over South America. An analysis of the atmospheric moisture budget from one of the climate models shows that thermodynamic processes contribute most significantly to precipitation changes over the Great Basin, while dynamic processes are most significant for the other lakes. Lake Cari-Laufquen shows a lake expansion that is most likely attributed to reduced evaporation rather than changes in regional precipitation, suggesting that lake levels alone may not be the best indicator of how much precipitation this region

  3. Tree-ring reconstruction of the level of Great Salt Lake, USA

    Treesearch

    R. Justin DeRose; Shih-Yu Wang; Brendan M. Buckley; Matthew F. Bekker

    2014-01-01

    Utah's Great Salt Lake (GSL) is a closed-basin remnant of the larger Pleistocene-age Lake Bonneville. The modern instrumental record of the GSL-level (i.e. elevation) change is strongly modulated by Pacific Ocean coupled ocean/atmospheric oscillations at low frequency, and therefore reflects the decadalscale wet/dry cycles that characterize the region. A within-...

  4. Effects of the human activities on the water level process of the Poyang Lake

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-kai; Chen, Li; Yang, Yun-xian

    2017-12-01

    The hydrological cycles in basin is profoundly affected by human activities. Yangtze River is a world class river with complex river-lake relations in the middle reaches. As the Three Gorges Reservoir (TGR) and other controlled reservoirs in the main stream and tributaries have been put into operation, the water regimes of the main stream in the middle reaches and Poyang Lake have been changed by water impounding and sediments trapping, clean water discharged from reservoirs, accelerating the evolution of the relationship of river and lake. After entering the 21st century, autumn droughts become more serious in Poyang Lake basin; the relationship between river and lake becomes tense. In light of the hydrological data in Poyang Lake since 2000s, this article made quantitative analyses of the influences of the human activities on the variation of the Poyang Lake level by authors. The results indicate that the main stream of Yangtze River, particularly the regulation of Three Gorges Reservoir, exerts a profound influence on the variation process of the Poyang Lake level. The regulation influence of the Upper Reach of the Yangtze River’s Reservoir Group (URYRRG) could spread to Tangyin area in the middle of the lake in October.

  5. Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events

    NASA Astrophysics Data System (ADS)

    Benson, Larry V.; Lund, Steve P.; Burdett, James W.; Kashgarian, Michaele; Rose, Timothy P.; Smoot, Joseph P.; Schwartz, Martha

    1998-01-01

    Oxygen-18 ( 18O) values of sediment from the Wilson Creek Formation, Mono Basin, California, indicate three scales of temporal variation (Dansgaard-Oeschger, Heinrich, and Milankovitch) in the hydrologic balance of Mono Lake between 35,400 and 12,900 14C yr B.P. During this interval, Mono Lake experienced four lowstands each lasting from 1000 to 2000 yr. The youngest lowstand, which occurred between 15,500 and 14,000 14C yr B.P., was nearly synchronous with a desiccation of Owens Lake, California. Paleomagnetic secular variation (PSV) data indicate that three of four persistent lowstands occurred at the same times as Heinrich events H1, H2, and H4. 18O data indicate the two highest lake levels occurred ˜18,000 and ˜13,100 14C yr B.P., corresponding to passages of the mean position of the polar jet stream over the Mono Basin. Extremely low values of total inorganic carbon between 26,000 and 14,000 14C yr B.P. indicate glacial activity, corresponding to a time when summer insolation was much reduced.

  6. Physical Controls on Delta Formation and Carbon Storage in Mountain Lakes

    NASA Astrophysics Data System (ADS)

    Scott, D.; Wohl, E.

    2014-12-01

    Carbon acts as a component in greenhouse gases that regulate global climate. It is imperative to understand the transport and storage of carbon in order to understand and manage climate change. We examine terrestrial carbon storage in mountain lake deltas as a way of furthering our understanding of the terrestrial carbon sink, which is a poorly understood but significant contributor to the global carbon cycle. We examined subalpine lake deltas in the Washington Cascade Range and Colorado Front Range to test the following hypotheses: 1) The size of the deltaic carbon sink is strongly correlated with incision at the outlet of the lake and the topography of the basin. 2) Areas of high exhumation rates will have smaller and fewer deltas because a high exhumation rate should lead to more confined basins and more colluvium available to dam lake outlets, preventing lake level drop and corresponding delta formation. 3) High-energy deltas will transport more carbon to lakes, avoiding the deltaic carbon sink. At 27 lakes, we surveyed mountain lake deltas and took sediment samples, surveyed lake outlets in the field, and measured lake valley confinement in GIS to test hypotheses 1 and 3. Across the Snoqualmie and Skykomish watersheds in the Washington Cascades and the Colorado Front Range, we took a census of the number of natural lakes and the proportion of those lakes with deltas to test hypothesis 2. Preliminary results indicate that the Washington Cascades (high exhumation rate) have a higher density of lakes, but fewer deltas, than the Colorado Front Range (low exhumation rate). We also suspect that deltas in the Washington Cascades will have a lower carbon content than the Colorado Front Range due to generally higher energy levels on deltas. Finally, we found a substantial difference in the geomorphology and sediment type between beaver-affected and non-beaver-affected lakes in the Colorado Front Range.

  7. A Relationship Between Microbial Activity in Soils and Phosphate Levels in Tributaries to Lake Champlain

    NASA Astrophysics Data System (ADS)

    Larose, R.; Lee, S.; Lane, T.

    2015-12-01

    Lake Champlain is a large natural freshwater lake. It forms the western boundary of Vermont and drains over half of the state. It is bordered by the state of New York on its western side and drains to the north into Quebec, Canada. Lake Champlain is the source of fresh drinking water for over quarter of a million people and provides for the livelihoods and recreational opportunities of many well beyond its borders. The health of this lake is important. During the summer month's algae blooms plague the lake. These unsightly growths, which affect other aquatic organisms, are the result of excess phosphate flowing into the lake from many sources. Examining whether there is a relationship between microbial activity in the soils bordering tributaries to Lake Champlain and phosphate levels in those tributaries sheds insight into the origins and paths by which phosphate moves into Lake Champlain. Understanding the how phosphate moves into the water system may assist in mitigation efforts.Total Phosphate levels and Total Suspended Solids were measured in second and third order streams in the Lake Champlain Basin over a three-year period. In addition microbial activity was measured within the toe, bank and upland riparian zone areas of these streams during the summer months. In general in areas showing greater microbial activity in the soil(s) there were increased levels of phosphate in the streams.

  8. Managing the financial risk of low water levels in Great Lakes with index-based contracts

    NASA Astrophysics Data System (ADS)

    Meyer, E.; Characklis, G. W.; Brown, C. M.; Moody, P.

    2014-12-01

    Low water levels in the Great Lakes have recently had significant financial impacts on the region's commercial shipping, responsible for transporting millions of dollars' worth of bulk goods each year. Low lake levels can significantly affect shipping firms, as cargo capacity is a function of draft, or the distance between water level and the ship's bottom. Draft increases with weight, and lower lake levels force ships to reduce cargo to prevent running aground in shallow harbors, directly impacting the finances of shipping companies. Risk transfer instruments may provide adaptable, yet unexplored, alternatives for managing these financial risks, at significantly less expense than more traditional solutions (e.g., dredging). Index-based financial instruments can be particularly attractive as contract payouts are directly linked to well-defined transparent metrics (e.g., lake levels), eliminating the need for subjective adjustors, as well as concerns over moral hazard. In developing such instruments, a major challenge is identifying an index that is well correlated with financial losses, and thus a contract that reliably pays out when losses are experienced (low basis risk). In this work, a relationship between lake levels and shipping revenues is developed, and actuarial analyses of the frequency and magnitude of revenue losses is completed using this relationship and synthetic water level data. This analysis is used to develop several types of index-based contracts. A standardized suite of binary contracts is developed, with each indexed to lake levels and priced according to predefined thresholds. These are combined to form portfolios with different objectives (e.g. options, collars), with optimal portfolio structure and length of coverage determined by limiting basis risk and contract cost, using simulations over the historic dataset. Results suggest that portfolios of these binary contracts can substantially reduce the risk of financial losses during periods of

  9. Improving regional climate and hydrological forecasting following the record setting flooding across the Lake Ontario - St. Lawrence River system

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.

    2017-12-01

    In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.

  10. A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data

    USGS Publications Warehouse

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2012-01-01

    Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of interand intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellitedriven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2m. The lake level fluctuated in the range up to 4m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water balance

  11. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  12. A digital terrain model of bathymetry and shallow-zone bottom-substrate classification for Spednic Lake and estimates of lake-level-dependent habitat to support smallmouth bass persistence modeling

    USGS Publications Warehouse

    Dudley, Robert W.; Schalk, Charles W.; Stasulis, Nicholas W.; Trial, Joan G.

    2011-01-01

    In 2009, the U.S. Geological Survey entered into a cooperative agreement with the International Joint Commission, St. Croix River Board to do an analysis of historical smallmouth bass habitat as a function of lake level for Spednic Lake in an effort to quantify the effects, if any, of historical lake-level management and meteorological conditions (from 1970 to 2009) on smallmouth bass year-class failure. The analysis requires estimating habitat availability as a function of lake level during spawning periods from 1970 to 2009, which is documented in this report. Field work was done from October 19 to 23, and from November 2 to 10, 2009, to acquire acoustic bathymetric (depth) data and acoustic data indicating the character of the surficial lake-bottom sediments. Historical lake-level data during smallmouth bass spawning (May-June) were applied to the bathymetric and surficial-sediment type data sets to produce annual historic estimates of smallmouth-bass-spawning-habitat area. Results show that minimum lake level during the spawning period explained most of the variability (R2 = 0.89) in available spawning habitat for nearshore areas of shallow slope (less than 10 degrees) on the basis of linear correlation. The change in lake level during the spawning period explained most of the variability (R2 = 0.90) in available spawning habitat for areas of steeper slopes (10 to 40 degrees) on the basis of linear correlation. The next step in modeling historic smallmouth bass year-class persistence is to combine this analysis of the effects of lake-level management on habitat availability with meteorological conditions.

  13. Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data

    NASA Astrophysics Data System (ADS)

    El-Shirbeny, Mohammed A.; Abutaleb, Khaled A.

    2018-05-01

    Apart from the Renaissance Dam and other constructed dams on the River Nile tributaries, Egypt is classified globally as a state of scarce water. Egypt's water resources are very limited and do not contribute a significant amount to its water share except the River Nile (55.5 billion m3/year). While the number of population increases every year, putting more stress on these limited resources. This study aims to use remote-sensing data to assess the change in surface area and water-level variation in Lake Nasser using remote-sensing data from Landsat-8 and altimetry data. In addition, it investigates the use of thermal data from Landsat-8 to calculate water loss based on evaporation from Lake Nasser. The eight Landsat-8 satellite images were used to study the change in surface area of Lake Nasser representing winter (January) and summer (June/July) seasons in two consecutive years (2015 and 2016). Time series analyses for 10-day temporal resolution water-level data from Jason-2/OSTM and Jason-3 altimetry was carried out to investigate water-level trends over the long term (1993 and 2016) and short term (2015-2016) in correspondence with the change of the surface area. Results indicated a shrink in the lake surface area in 2016 of approximately 14% compared to the 2015 area. In addition, the evaporation rate in the lake is very high causing a loss of approximately 20% of the total water share from the river Nile.

  14. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    NASA Astrophysics Data System (ADS)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  15. Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events

    USGS Publications Warehouse

    Benson, L.V.; Lund, S.P.; Burdett, J.W.; Kashgarian, Michaele; Rose, T.P.; Smoot, J.P.; Schwartz, M.

    1998-01-01

    Oxygen-18 (18O) values of sediment from the Wilson Creek Formation, Mono Basin, California, indicate three scales of temporal variation (Dansgaard-Oeschger, Heinrich, and Milankovitch) in the hydrologic balance of Mono Lake between 35,400 and 12,900 14C yr B.P. During this interval, Mono Lake experienced four lowstands each lasting from 1000 to 2000 yr. The youngest low-stand, which occurred between 15,500 and 14,000 14C yr B.P., was nearly synchronous with a desiccation of Owens Lake, California. Paleomagnetic secular variation (PSV) data indicate that three of four persistent lowstands occurred at the same times as Heinrich events H1, H2, and H4. 18O data indicate the two highest lake levels occurred ???18,000 and ???13,100 14C yr B.P., corresponding to passages of the mean position of the polar jet stream over the Mono Basin. Extremely low values of total inorganic carbon between 26,000 and 14,000 14C yr B.P. indicate glacial activity, corresponding to a time when summer insolation was much reduced. ?? 1998 University of Washington.

  16. A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials

    NASA Astrophysics Data System (ADS)

    Frey, Holger; Haeberli, Wilfried; Huggel, Christian; Linsbauer, Andreas

    2010-05-01

    Due to the expected atmospheric warming, mountain glaciers will retreat, potentially collapse or even vanish completely during the 21st century. When overdeepened parts of the glacier bed are exposed in the course of glacier retreat, glacier lakes can form. Such lakes have a potential for hydropower production, which is an important source of renewable energy. Furthermore they are important elements in the perception of high-mountain landscapes and they can compensate the loss of landscape attractiveness from glacier shrinkage to a certain degree. However, glacier lakes are also a potential source of serious flood and debris flow hazards, especially in densely populated mountain ranges. Thus, methods for early detection of sites with potential lake formation are important for early planning and development of protection concepts. In this contribution we present a multi-scale approach to detect sites with potential future lake formation on four different levels of detail. The methods are developed, tested and - as far as possible - verified in the Swiss Alps; but they can be applied to mountain regions all over the world. On a first level, potential overdeepenings are estimated by selecting flat parts (slope < 5°) of the current glacier surface based on a digital elevation model (DEM) and digital glacier outlines. The same input data are used on the second level for a manual detection of overdeepenings, which are expected at locations where the following three criteria apply: (a) A distinct increase of the glacier surface slope in down-glacier direction; (b) an enlarged width followed by a narrow glacier part; and (c) regions with compressive flow (no crevasses) followed by extending flow (heavily crevassed). On the third level, more sophisticated approaches to model the glacier bed topography are applied to get more quantitative information on potential future lakes. Based on the results of this level, scenarios of future lake outbursts can be modeled with simple

  17. Regional Analysis of the Hazard Level of Glacial Lakes in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Chisolm, Rachel E.; Jhon Sanchez Leon, Walter; McKinney, Daene C.; Cochachin Rapre, Alejo

    2016-04-01

    The Cordillera Blanca mountain range is the highest in Peru and contains many of the world's tropical glaciers. This region is severely impacted by climate change causing accelerated glacier retreat. Secondary impacts of climate change on glacier retreat include stress on water resources and the risk of glacial lake outburst floods (GLOFs) from the many lakes that are forming and growing at the base of glaciers. A number of GLOFs originating from lakes in the Cordillera Blanca have occurred over the last century, several of which have had catastrophic impacts on cities and communities downstream. Glaciologists and engineers in Peru have been studying the lakes of the Cordillera Blanca for many years and have identified several lakes that are considered dangerous. However, a systematic analysis of all the lakes in the Cordillera Blanca has never before been attempted. Some methodologies for this type of systematic analysis have been proposed (eg. Emmer and Vilimek 2014; Wang, et al. 2011), but as yet they have only been applied to a few select lakes in the Cordillera Blanca. This study uses remotely sensed data to study all of the lakes of the Glacial Lake Inventory published by the Glaciology and Water Resources Unit of Peru's National Water Authority (UGRH 2011). The objective of this study is to assign a level of potential hazard to each glacial lake in the Cordillera Blanca and to ascertain if any of the lakes beyond those that have already been studied might pose a danger to nearby populations. A number of parameters of analysis, both quantitative and qualitative, have been selected to assess the hazard level of each glacial lake in the Cordillera Blanca using digital elevation models, satellite imagery, and glacier outlines. These parameters are then combined to come up with a preliminary assessment of the hazard level of each lake; the equation weighting each parameter draws on previously published methodologies but is tailored to the regional characteristics

  18. Lake Afrera, a structural depression in the Northern Afar Rift (Red Sea).

    PubMed

    Bonatti, Enrico; Gasperini, Elia; Vigliotti, Luigi; Lupi, Luca; Vaselli, Orlando; Polonia, Alina; Gasperini, Luca

    2017-05-01

    The boundary between the African and Arabian plates in the Southern Red Sea region is displaced inland in the northern Afar rift, where it is marked by the Red Sea-parallel Erta Ale, Alaita, and Tat Ali volcanic ridges. The Erta Ale is offset by about 20 and 40 km from the two en echelon ridges to the south. The offset area is highly seismic and marked by a depression filled by lake Afrera, a saline body of water fed by hydrothermal springs. Acoustic bathymetric profiles show ≈80 m deep canyons parallel to the NNW shore of the lake, part of a system of extensional normal faults striking parallel to the Red Sea. This system is intersected by oblique structures, some with strike-slip earthquakes, in what might evolve into a transform boundary. Given that the lake's surface lies today about 112 m below sea level, the depressed (minus ≈190 m below sea level) lake's bottom area may be considered the equivalent of the "nodal deep" in slow-slip oceanic transforms. The chemistry of the lake is compatible with the water having originated from hydrothermal liquids that had reacted with evaporites and basalts, rather than residual from evaporation of sea water. Bottom sediments include calcitic grains, halite and gypsum, as well as ostracod and diatom tests. The lake's level appears to have dropped by over 10 m during the last ≈50 years, continuing a drying up trend of the last few thousand years, after a "wet" stage 9,800 and 7,800 years before present when according to Gasse (1973) Lake Afrera covered an area several times larger than at present. This "wet" stage corresponds to an early Holocene warm-humid climate that prevailed in Saharan and Sub Saharan Africa. Lake Abhé, located roughly 250 km south of Afrera, shows similar climate-driven oscillations of its level.

  19. PATTERNS OF LAKE HYDROLOGIC CHARACTERISTICS RELATED TO WATER LEVEL DRAWDOWN ACROSS THE CONTERMINOUS U.S.

    EPA Science Inventory

    Lake hydrologic characteristics related to water levels, such as drawdown distance and evaporative water loss, affect the physical, chemical, and biological condition of lakes. Disturbances such as water withdrawal and changing climate may alter water-level regimes and impact lak...

  20. The effects of Yucca shidigera extract on the reduction of ammonia concentration in Lake Koumoundourou

    NASA Astrophysics Data System (ADS)

    Dimitriou, Elias; Markogianni, Vassiliki; Yu, Xiaoxi

    2013-04-01

    Increasing concentrations of nutrients in Lakes is a common problem worldwide, nowadays and has significant impacts on their trophic status and thus on the ecosystem's health. Koumoundourou Lake is a shallow, semi-saline Lake, located in the industrial zone of Attica, Greece. The particular water body receives significant pressures from the nearby industries, from uncontrolled disposal of urban waste and from large number of birds that find a shelter there during the winter time (due to the extinction of most of the rest of Attica wetlands). This study investigates the efficiency of a particular restoration measure for the reduction of ammonia by using a plant extract. Particularly, Yucca shidigera has been proved effective in reducing ammonia in aquaculture and therefore, this study aims to investigate if the effects of Yucca extract could be similar in Lake Koumoundourou and determine the appropriate amount of Yucca extract, necessary to restore the water quality at the desirable levels. Six treatments (two replications per treatment) for 180 hours were conducted, in which three different levels of Ammonium chloride (varying between 0 and 6mg/l) and five different concentrations of Yucca (varying between 0 and 2 mg/l) were added in the lake water (in experimental tanks). As far as the effects of Yucca extract on water quality are concerned, it is initially considered that it stimulates the reduction of dissolved oxygen (DO) since its concentration dropped faster in the treatments with added Yucca than the treatments with no Yucca at all, despite the amount of the added Ammonia. Concentration of ammonia-nitrogen kept dropping until hour 48 from the beginning of the experiment, indicating that the efficacy of Yucca extract removing ammonia last for about 48 hours, irrespectively of the amount of yucca extract added. Additionally, the relationship between the added Yucca extract and the removed ammonia concentration is proportional. Thus, it is concluded that the

  1. What happens to near-shore habitat when lake and reservoir water levels decline?

    EPA Science Inventory

    Water management and drought can lead to increased fluctuation and declines in lake and reservoir water levels. These changes can affect near-shore physical habitat and the biotic assemblages that depend upon it. Structural complexity at the land-water interface of lakes promote...

  2. Estimating the economic benefits of maintaining residential lake levels at an irrigation reservoir: A contingent valuation study

    NASA Astrophysics Data System (ADS)

    Loomis, John; Smith, Adam; Huszar, Paul

    2005-08-01

    The contingent valuation method (CVM) was used to estimate homeowners' willingness to pay for water leasing to maintain stable lake levels at an irrigation reservoir in a residential neighborhood. A binary logit model was used to analyze households' voter referendum responses for maintaining the lake level. The median willingness to pay (WTP) was found to be $368 per year for lakefront residents and $59 per year for off-lake residents. The median WTP for lakefront residents was significantly different from off-lake residents at the 90% confidence level. Using the median WTP for lakefront and nonlakefront residents, we found that the increase in homeowner association fees would generate approximately $43,000, enough money to lease sufficient water to reach the target higher lake level in a normal water year.

  3. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    NASA Astrophysics Data System (ADS)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2017-07-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  4. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    NASA Astrophysics Data System (ADS)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2018-06-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  5. Evolution of Lake Turkana level at the end of the African Humid Period: modalities and forcings

    NASA Astrophysics Data System (ADS)

    Nutz, A.; Schuster, M.

    2015-12-01

    The African Humid Period (AHP), ca. 11,000 to 5,000 years ago, is a major phase that had significant impacts on the environments, ecosystems, and human occupation of Africa over several millennia. One of the most marked aspects stemming from an increase in rainfall during this climate period was the creation of numerous regional lakes and the recording of highstands for these waterbodies. The termination of the AHP is known to have been time-transgressive depending on the location, being either abrupt or gradual, thereby highlighting the complex interaction among multiple forcings and responses. Lake Turkana is one of the great lakes of the East African Rift where chronology of the AHP termination has already been investigated. In this study, the delta complex of the Turkwel River is analyzed using trajectory analysis in order to provide modalities of lake level decline during that time. Trajectories reveal six slightly descending (slope gradient: >0° to 0.4°) plateaus separated by four abrupt steps having higher slope gradients (1° to 3.8°). These abrupt steps reveal repeated short-lived strong increases in the rate of lake level decline that are superimposed on the relatively steady lake level decrease characterizing this period. This marks a stepwise forced regression at the end of the AHP in the Lake Turkana. We correlate the short-lived increases in the rate of lake level decline with short-lived abrupt decreases of solar irradiance. Through the termination of the AHP, the abrupt decreases in solar irradiance modulated the continuous precessional-based reduction of solar insulation that drastically impacted monsoon activity (i.e. rainfall) and led to variations in lake levels as a response. This suggests that short-term solar variability is able to modulate longer-term orbitally-driven climate trends having significant impacts in terms of hydrology and the regional continental environments.

  6. Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current status and future trends.

    PubMed

    Guédron, S; Point, D; Acha, D; Bouchet, S; Baya, P A; Tessier, E; Monperrus, M; Molina, C I; Groleau, A; Chauvaud, L; Thebault, J; Amice, E; Alanoca, L; Duwig, C; Uzu, G; Lazzaro, X; Bertrand, A; Bertrand, S; Barbraud, C; Delord, K; Gibon, F M; Ibanez, C; Flores, M; Fernandez Saavedra, P; Ezpinoza, M E; Heredia, C; Rocha, F; Zepita, C; Amouroux, D

    2017-12-01

    Aquatic ecosystems of the Bolivian Altiplano (∼3800 m a.s.l.) are characterized by extreme hydro-climatic constrains (e.g., high UV-radiations and low oxygen) and are under the pressure of increasing anthropogenic activities, unregulated mining, agricultural and urban development. We report here a complete inventory of mercury (Hg) levels and speciation in the water column, atmosphere, sediment and key sentinel organisms (i.e., plankton, fish and birds) of two endorheic Lakes of the same watershed differing with respect to their size, eutrophication and contamination levels. Total Hg (THg) and monomethylmercury (MMHg) concentrations in filtered water and sediment of Lake Titicaca are in the lowest range of reported levels in other large lakes worldwide. Downstream, Hg levels are 3-10 times higher in the shallow eutrophic Lake Uru-Uru than in Lake Titicaca due to high Hg inputs from the surrounding mining region. High percentages of MMHg were found in the filtered and unfiltered water rising up from <1 to ∼50% THg from the oligo/hetero-trophic Lake Titicaca to the eutrophic Lake Uru-Uru. Such high %MMHg is explained by a high in situ MMHg production in relation to the sulfate rich substrate, the low oxygen levels of the water column, and the stabilization of MMHg due to abundant ligands present in these alkaline waters. Differences in MMHg concentrations in water and sediments compartments between Lake Titicaca and Uru-Uru were found to mirror the offset in MMHg levels that also exist in their respective food webs. This suggests that in situ MMHg baseline production is likely the main factor controlling MMHg levels in fish species consumed by the local population. Finally, the increase of anthropogenic pressure in Lake Titicaca may probably enhance eutrophication processes which favor MMHg production and thus accumulation in water and biota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Climate Factors Contributing to Streamflow Inputs and Extreme Water-level Deviations from Long-term Averages for Lakes Superior and Michigan-Huron

    NASA Astrophysics Data System (ADS)

    Anderson, M. T.; Stamm, J. F.

    2014-12-01

    The Great Lakes are a highly valued freshwater resource of the United States and Canada. The Lakes are the focus of a science-based restoration program, known as the Great Lakes Restoration Initiative (GLRI). Physical and chemical factors, such as inflows and nutrient loads to the Great Lakes can affect ecosystem function, contribute to the spread of invasive species and increase the occurrence of harmful algal blooms. Since about 1999, water levels in Lakes Superior and Michigan-Huron have been at or below the long-term average (1918 to present). Analyses of streamflow trends for the period 1960 to 2012 in watersheds draining into Lakes Superior and Michigan-Huron showed a long-term decline in average inflows, which helps to explain the persistently below-average lake levels. Recent climatic conditions of October 2013 to August 2014 have contributed to a rapid rise in lake levels, most notably in Lake Superior. Lake Superior recently reached an elevation of 602.56 feet above sea level in August 2014, which is the highest level in 17 years. Coincident with this recovery was the development of a large algal bloom in Lake Erie in August of 2014 that shut down the Toledo, Ohio municipal water supply. These anomalous, extreme deviations from long-term average lake levels will be examined to better understand the forcing factors that contributed to changes in inflow volumes and lake-levels. Particular focus will be given to the climatology of years when changes in lake levels are most pronounced, such as; the measured lake-level declines during 1964-1965 and 1998-2000; and lake-level rises during 1973-1974, 1987-1989, and 2013-2014. The climatology of years with periods of algal blooms will also be examined such as, 2003, 2008, 2011 and 2014.

  8. Evaluation of potential impacts on Great Lakes water resources based on climate scenarios of two GCMs

    USGS Publications Warehouse

    Lofgren, B.M.; Quinn, F.H.; Clites, A.H.; Assel, R.A.; Eberhardt, A.J.; Luukkonen, C.L.

    2002-01-01

    The results of general circulation model predictions of the effects of climate change from the Canadian Centre for Climate Modeling and Analysis (model CGCM1) and the United Kingdom Meteorological Office's Hadley Centre (model HadCM2) have been used to derive potential impacts on the water resources of the Great Lakes basin. These impacts can influence the levels of the Great Lakes and the volumes of channel flow among them, thus affecting their value for interests such as riparians, shippers, recreational boaters, and natural ecosystems. On one hand, a hydrological modeling suite using input data from the CGCM1 predicts large drops in lake levels, up to a maximum of 1.38 m on Lakes Michigan and Huron by 2090. This is due to a combination of a decrease in precipitation and an increase in air temperature that leads to an increase in evaporation. On the other hand, using input from HadCM2, rises in lake levels are predicted, up to a maximum of 0.35 m on Lakes Michigan and Huron by 2090, due to increased precipitation and a reduced increase in air temperature. An interest satisfaction model shows sharp decreases in the satisfaction of the interests of commercial navigation, recreational boating, riparians, and hydropower due to lake level decreases. Most interest satisfaction scores are also reduced by lake level increases. Drastic reductions in ice cover also result from the temperature increases such that under the CGCM1 predictions, most of Lake Erie has 96% of its winters ice-free by 2090. Assessment is also made of impacts on the groundwater-dependent region of Lansing, Michigan.

  9. Hydrogeological features conditioning trophic levels of quarry lakes in western Po plain (north-western Italy)

    NASA Astrophysics Data System (ADS)

    De Luca, Domenico Antonio; Castagna, Sara; Lasagna, Manuela

    2013-04-01

    Quarry lakes occur in plains areas due to the extraction of alluvial sand and gravel used for grout and concrete in the construction industry. Excavation depths can reach and intersect the groundwater surface, thus creating a lake. Because of the need to optimize efficiency, the number of active open pit mines has increased in recent years; consequently, the global number of pit lakes will increase in coming decades (Castendyk and Eary 2009; Klapper and Geller 2001; Castro and Moore 2000). Similar to natural lakes, pit lakes are subject to eutrophication process, both during and after quarrying activity; during mining activity, the eutrophic level is strongly controlled by the excavation method. In the Piedmont territory (north-western Italy) there are 70 active quarry lakes, corresponding to approximately 0.1% of the entire plain area. Quarry lakes, located primarily along the main rivers occur in alluvial deposits of the plain area and have average depths between 20 and 30 m (maximum of 60 m deep) and surface areas between 3 and 30 hectares (Castagna 2008). The present study describes the trophic status of 23 active quarry lakes in the Piedmont plain that were evaluated by applying classifications from scientific literature. Currently, the majority of the studied quarry lakes may be defined as mesotrophic or eutrophic according to the trophic state classifications. Based on historic data, lake trophic levels have increased over time, during active mining. At the end of mining activity, further deterioration of water quality was expected, especially for smaller lakes with minimal oxygen stratification and higher levels of nutrients and algal growth. In addition, the paper focuses on the pit lake water quality and pit dimension; From an environmental perspective the excavation of quarry lakes with an appreciable size will likely result in a better safeguard of water quality and enhanced possibilities for lake end use after the cessation of mining. Piedmont quarry

  10. Interannual lake level fluctuations (1993 1999) in Africa from Topex/Poseidon: connections with ocean atmosphere interactions over the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mercier, Franck; Cazenave, Anny; Maheu, Caroline

    2002-04-01

    Water level fluctuations of continental lakes are related to regional to global scale climate changes. Water level fluctuations reflect variations in evaporation and precipitation over the lake area and its catchment area. Over such inland water bodies, the satellite altimetry technique offers both a world-wide coverage and a satisfying accuracy. We present here results of lake level variations of 12 African lakes based on 7 years of Topex/Poseidon (T/P) altimetry data acquired between 1993 and 1999. Among the 12 African lakes presented in this study, three are reservoirs whose level fluctuations are mainly driven by anthropogenic usage of the water. Either closed or open, the nine remaining lakes are sensitive indicators of the climate evolution over Africa during the 1990s. Seasonal signals of each lake are clearly identified and filtered out to focus on the interannual fluctuations. Clear correlated regional variations are reported among the east African lakes: several lakes exhibit a regular level decrease between 1993 and 1997, probably due to intense droughts. However, the most spectacular feature is an abrupt water level rise occurring in late 1997-early 1998 and affecting most of the lakes located within the Rift Valley. This major anomalous pattern, explained by a large excess rainfall anomaly occurring in late 1997, is quantified in both space and time domains through an EOF analysis of the lake level height time series. The spatial distribution of the leading mode of lake level height correlates with the dominant mode of precipitation computed over the same time span. Nevertheless, similar rainfall anomaly, but with lesser intensity, occurred in late 1994 without any noticeable consequence on lake level. The precipitation anomaly appears related to the equatorial Indian Ocean warming reported during the 1997-1998 ENSO event.

  11. RECENT DEVELOPMENTS IN HYDROWEB DATABASE Water level time series on lakes and reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Cretaux, J.; Arsen, A.; Calmant, S.

    2013-12-01

    We present the current state of the Hydroweb database as well as developments in progress. It provides offline water level time series on rivers, reservoirs and lakes based on altimetry data from several satellites (Topex/Poseidon, ERS, Jason-1&2, GFO and ENVISAT). The major developments in Hydroweb concerns the development of an operational data centre with automatic acquisition and processing of IGDR data for updating time series in near real time (both for lakes & rivers) and also use of additional remote sensing data, like satellite imagery allowing the calculation of lake's surfaces. A lake data centre is under development at the Legos in coordination with Hydrolare Project leaded by SHI (State Hydrological Institute of the Russian Academy of Science). It will provide the level-surface-volume variations of about 230 lakes and reservoirs, calculated through combination of various satellite images (Modis, Asar, Landsat, Cbers) and radar altimetry (Topex / Poseidon, Jason-1 & 2, GFO, Envisat, ERS2, AltiKa). The final objective is to propose a data centre fully based on remote sensing technique and controlled by in situ infrastructure for the Global Terrestrial Network for Lakes (GTN-L) under the supervision of WMO and GCOS. In a longer perspective, the Hydroweb database will integrate data from future missions (Jason-3, Jason-CS, Sentinel-3A/B) and finally will serve for the design of the SWOT mission. The products of hydroweb will be used as input data for simulation of the SWOT products (water height and surface variations of lakes and rivers). In the future, the SWOT mission will allow to monitor on a sub-monthly basis the worldwide lakes and reservoirs bigger than 250 * 250 m and Hydroweb will host water level and extent products from this

  12. Coastal change-potential assessment of Sleeping Bear Dunes, Indiana Dunes, and Apostle Islands National Lakeshores to lake-level changes

    USGS Publications Warehouse

    Pendleton, Elizabeth A.; Thieler, E. Robert; Williams, S. Jeffress

    2007-01-01

    A change-potential index (CPI) was used to map the susceptibility of the shoreline to future lake-level change within Apostle Islands, Indiana Dunes, and Sleeping Bear Dunes National Lakeshores (NL) along Lake Superior and Lake Michigan. The CPI in the Great Lakes setting ranks the following in terms of their physical contribution to lake-level related coastal change: geomorphology, regional coastal slope, rate and direction (i.e., rise and fall) of relative lake-level change, historical shoreline change rates, annual ice cover and mean significant wave height. The rankings for each input variable were combined, and an index value calculated for 1-minute bins covering the parks. The CPI highlights those regions where the physical effects of lake-level and coastal change might be the greatest. This approach combines the coastal system's potential for change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the parks' natural susceptibility to the effects of lake-level variation. The CPI provides an objective technique for evaluation and long-term planning by scientists and park managers. The CPI is applied to the National Lakeshores of Apostle Islands, Indiana Dunes, and Sleeping Bear Dunes to test this methodology in lake settings. The National Lakeshores in this study consist of sand and gravel beaches, rock outcrops, and dune and glacial bluffs. The areas within these Great Lakes parks that are likely to experience the most lake-level-related coastal change are areas of unconsolidated sediment where regional coastal slope is low and wave energy is high.

  13. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2

  14. A 3500 14C yr High-Resolution Record of Water-Level Changes in Lake Titicaca, Bolivia/Peru

    NASA Astrophysics Data System (ADS)

    Abbott, Mark B.; Binford, Michael W.; Brenner, Mark; Kelts, Kerry R.

    1997-03-01

    Sediment cores collected from the southern basin of Lake Titicaca (Bolivia/Peru) on a transect from 4.6 m above overflow level to 15.1 m below overflow level are used to identify a new century-scale chronology of Holocene lake-level variations. The results indicate that lithologic and geochemical analyses on a transect of cores can be used to identify and date century-scale lake-level changes. Detailed sedimentary analyses of subfacies and radiocarbon dating were conducted on four representative cores. A chronology based on 60 accelerator mass spectrometer radiocarbon measurements constrains the timing of water-level fluctuations. Two methods were used to estimate the 14C reservoir age. Both indicate that it has remained nearly constant at ˜250 14C yr during the late Holocene. Core studies based on lithology and geochemistry establish the timing and magnitude of five periods of low lake level, implying negative moisture balance for the northern Andean altiplano over the last 3500 cal yr. Between 3500 and 3350 cal yr B.P., a transition from massive, inorganic-clay facies to laminated organic-matter-rich silts in each of the four cores signals a water-level rise after a prolonged mid-Holocene dry phase. Evidence of other significant low lake levels occurs 2900-2800, 2400-2200, 2000-1700, and 900-500 cal yr B.P. Several of the low lake levels coincided with cultural changes in the region, including the collapse of the Tiwanaku civilization.

  15. Dynamics of the Ili delta with consideration of fluctuations of the level of Lake Balkhash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdrasilov, S.A.; Tulebaeva, K.A.

    1995-02-01

    This article examines the dynamics of the Ili delta region of Russia, with consideration of the fluctuations of the level of Lake Balkhash. Level fluctuations over a period of approximately 700 years are reviewed, and numerical data is presented. It is shown that the dynamics of the delta region affect both the amplitude and duration of the cycle of fluctuations of the lake level. In particular, the phase of the delta cycle that started cuts off the peak of the maximum ordinate of the level at the end of the tranasgressive period reduces still more the minimum elevations of themore » lake level at the end of the regressive period. It also accelerates the time of occurence of individual phases of the intrasecular cycle.« less

  16. Abrupt lake-level changes in the Rocky Mountains and surrounding regions since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Shuman, B. N.; Serravezza, M.

    2016-12-01

    The paleohydrologic record of western North America since the last glacial maximum reveals a wide range of hydroclimatic variability and distinctive patterns associated with abrupt climate changes. To evaluate the sequence of abrupt hydroclimatic shifts and centennial-to-millennial hydrologic variability in western North America over the past 17 ka, we reconstruct lake-level histories from two high-elevation lakes in the Beartooth and Bighorn Mountains. The lakes represent the headwaters of the Missouri River drainage in northern Wyoming, but also have the potential to capture regional hydroclimate variability that links the northern Rocky Mountains to the mid-continent, Pacific Northwest, and the Great Basin. We first discuss the stratigraphic record of lake-level changes in small mid-latitude lakes and then use ground-penetrating radar (GPR) and sediment cores to track the elevations of shoreline sediments within the lakes through time. We compare the stratigraphies to the records from four other lakes in Wyoming and Colorado, and find widespread evidence for a Terminal Pleistocene Drought from 15-11 ka, an early Holocene humid period from 11-8 ka, and a period of severe mid-Holocene aridity from 8-5.7 ka. The northern Wyoming lakes also provide evidence of high levels before ca. 15 ka, including rapid hydroclimatic changes at ca. 16.8 ka during Heinrich Event 1. We place the changes in a broad context by summarizing and mapping water-level changes from 107 additional, previously studied lakes. Important patterns include 1) extensive drying across the western U.S. after 15 ka; 2) coherent sub-regional differences during the Younger Dryas and Pleistocene-Holocene transition; 3) a north-south contrast from 9-6 ka consistent with a northward shift in storm tracks as the influence of the Laurentide Ice Sheet diminished; and 4) rapid increases in effective moisture across much of western North America from 6-4 ka.

  17. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    USGS Publications Warehouse

    Patrick, Matthew R.; Swanson, Don; Orr, Tim R.

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  18. Hydrology and water quality of Shell Lake, Washburn County, Wisconsin, with special emphasis on the effects of diversion and changes in water level on the water quality of a shallow terminal lake

    USGS Publications Warehouse

    Juckem, Paul F.; Robertson, Dale M.

    2013-01-01

    Shell Lake is a relatively shallow terminal lake (tributaries but no outlets) in northwestern Wisconsin that has experienced approximately 10 feet (ft) of water-level fluctuation over more than 70 years of record and extensive flooding of nearshore areas starting in the early 2000s. The City of Shell Lake (City) received a permit from the Wisconsin Department of Natural Resources in 2002 to divert water from the lake to a nearby river in order to lower water levels and reduce flooding. Previous studies suggested that water-level fluctuations were driven by long-term cycles in precipitation, evaporation, and runoff, although questions about the lake’s connection with the groundwater system remained. The permit required that the City evaluate assumptions about lake/groundwater interactions made in previous studies and evaluate the effects of the water diversion on water levels in Shell Lake and other nearby lakes. Therefore, a cooperative study between the City and U.S. Geological Survey (USGS) was initiated to improve the understanding of the hydrogeology of the area and evaluate potential effects of the diversion on water levels in Shell Lake, the surrounding groundwater system, and nearby lakes. Concerns over deteriorating water quality in the lake, possibly associated with changes in water level, prompted an additional cooperative project between the City and the USGS to evaluate efeffects of changes in nutrient loading associated with changes in water levels on the water quality of Shell Lake. Numerical models were used to evaluate how the hydrology and water quality responded to diversion of water from the lake and historical changes in the watershed. The groundwater-flow model MODFLOW was used to simulate groundwater movement in the area around Shell Lake, including groundwater/surface-water interactions. Simulated results from the MODFLOW model indicate that groundwater flows generally northward in the area around Shell Lake, with flow locally converging

  19. Hazardous radioactivity levels and heavy mineral concentrations in beach sediments of Lake Peipsi, northeastern Estonia

    NASA Astrophysics Data System (ADS)

    Järvelill, Johanna-Iisebel; Koch, Rein; Raukas, Anto; Vaasma, Tiit

    2018-03-01

    The present study discusses results of heavy mineral analyses and radioactivity of beach sediments of Lake Peipsi. Such analyses are commonly done globally, but had not yet been conducted for the fourth largest lake in Europe. The average heavy mineral content in Lake Peipsi beach sediments along the northern and western coast is higher than usual for Estonian coastal and Quaternary sediments. Concomitantly, elevated radioactivity levels have been measured in several places, with the highest concentrations observed at Alajõe (1885.5 Bq/kg), which is over five times more than the recommended limit. The aim of the present study is to find sites with higher radioactivity levels, because the northern coast of Lake Peipsi is a well-known recreational area.

  20. Levels, patterns, trends and significance of polychlorinated naphthalenes (PCNs) in Great Lakes fish.

    PubMed

    Gewurtz, Sarah B; Gandhi, Nilima; Drouillard, Ken G; Kolic, Terry; MacPherson, Karen; Reiner, Eric J; Bhavsar, Satyendra P

    2018-05-15

    Polychlorinated naphthalenes (PCNs) were introduced to market about a century ago and their production is thought to have ceased by the early 1980s. However, relatively limited knowledge exists on their abundance in the edible portion of a variety of Great Lakes fish to aid in understanding their potential risk to human consumers. We studied levels, patterns, trends and significance of PCNs in a total 470 fillet samples of 18 fish species collected from the Canadian waters of the Great Lakes between 2006 and 2013. A limited comparison of fillet and wholebody concentrations in Carp and Bullhead was also conducted. The ∑PCN ranged from 0.006-6.7ng/g wet weight (ww) and 0.15-190ng/g lipid weight (lw) with the dominant congeners being PCN-52/60 (34%), -42 (21%) and -66/67 (15%). The concentrations spatially varied in the order of the Detroit River>Lakes Erie>Ontario>Huron>Superior. PCN-66/67 was the dominating congener contributing on average 76-80% of toxic equivalent concentration (TEQ PCN ). Contribution of TEQ PCN to TEQ Total (TEQ Dioxins+Furans+dioxin-likePCBs+PCNs ) was mostly <15%, especially at higher TEQ Total, and PCB-126 remains the major congener contributing to TEQ Total . The congener pattern suggests that impurities in PCB formulations and thereby historical PCB contamination, instead of unintentional releases from industrial thermal processes, could be an important source of PCNs in Great Lakes fish. A limited temporal change analysis indicated declines in the levels of PCN-66/67 between 2006 and 2012, complemented by previously reported decrease in PCNs in Lake Ontario Lake Trout between 1979 and 2004. The whole body concentrations were 1.4-3.2 fold higher than the corresponding fillets of Carp and Bullhead. Overall, the study results suggest that only targeted monitoring of PCNs in Great Lakes fish, especially at the Detroit River, Lake Erie and Lake Ontario, is necessary to assess continued future improvements of this group of contaminants of

  1. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  2. Stable isotope evaluation of population- and individual-level diet variability in a large, oligotrophic lake with non-native lake trout

    USGS Publications Warehouse

    Ng, Elizabeth L.; Fredericks, Jim P.; Quist, Michael C.

    2016-01-01

    Non-native piscivores can alter food web dynamics; therefore, evaluating interspecific relationships is vital for conservation and management of ecosystems with introduced fishes. Priest Lake, Idaho, supports a number of introduced species, including lake troutSalvelinus namaycush, brook trout S. fontinalis and opossum shrimp Mysis diluviana. In this study, we used stable isotopes (δ13C and δ15N) to describe the food web structure of Priest Lake and to test hypotheses about apparent patterns in lake trout growth. We found that isotopic niches of species using pelagic-origin carbon did not overlap with those using more littoral-origin carbon. Species using more littoral-origin carbon, such as brook trout and westslope cutthroat trout Oncorhynchus clarki lewisi, exhibited a high degree of isotopic niche overlap and high intrapopulation variability in resource use. Although we hypothesised that lake trout would experience an ontogenetic diet shift, no such patterns were apparent in isotopic signatures. Lake trout growth rates were not associated with patterns in δ15N, indicating that variation in adult body composition may not be related to adult diet. Understanding trophic relationships at both the individual and species levels provides a more complete understanding of food webs altered by non-native species.

  3. Heating the Ice-Covered Lakes of the McMurdo Dry Valleys, Antarctica - Decadal Trends in Heat Content, Ice Thickness, and Heat Exchange

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Priscu, J. C.; Doran, P. T.; Chiuchiolo, A.; Obryk, M.

    2014-12-01

    Lakes integrate landscape processes and climate conditions. Most of the permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica are closed basin, receiving glacial melt water from streams for 10-12 weeks per year. Lake levels rise during the austral summer are balanced by sublimation of ice covers (year-round) and evaporation of open water moats (summer only). Vertical profiles of water temperature have been measured in three lakes in Taylor Valley since 1988. Up to 2002, lake levels were dropping, ice covers were thickening, and total heat contents were decreasing. These lakes have been gaining heat since the mid-2000s, at rates as high as 19.5x1014 cal/decade). Since 2002, lake levels have risen substantially (as much as 2.5 m), and ice covers have thinned (1.5 m on average). Analyses of lake ice thickness, meteorological conditions, and stream water heat loads indicate that the main source of heat to these lakes is from latent heat released when ice-covers form during the winter. An aditional source of heat to the lakes is water inflows from streams and direct glacieal melt. Mean lake temperatures in the past few years have stabilized or cooled, despite increases in lake level and total heat content, suggesting increased direct inflow of meltwater from glaciers. These results indicate that McMurdo Dry Valley lakes are sensitive indicators of climate processes in this polar desert landscape and demonstrate the importance of long-term data sets when addressing the effects of climate on ecosystem processes.

  4. Static shape of an acoustically levitated drop with wave-drop interaction

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1994-11-01

    The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.

  5. Importance of coastal change variables in determining vulnerability to sea- and lake-level change

    USGS Publications Warehouse

    Pendleton, E.A.; Thieler, E.R.; Williams, S.J.

    2010-01-01

    In 2001, the U.S. Geological Survey began conducting scientific assessments of coastal vulnerability to potential future sea- and lake-level changes in 22 National Park Service sea- and lakeshore units. Coastal park units chosen for the assessment included a variety of geological and physical settings along the U.S. Atlantic, Pacific, Gulf of Mexico, Gulf of Alaska, Caribbean, and Great Lakes shorelines. This research is motivated by the need to understand and anticipate coastal changes caused by accelerating sea-level rise, as well as lake-level changes caused by climate change, over the next century. The goal of these assessments is to provide information that can be used to make long-term (decade to century) management decisions. Here we analyze the results of coastal vulnerability assessments for several coastal national park units. Index-based assessments quantify the likelihood that physical changes may occur based on analysis of the following variables: tidal range, ice cover, wave height, coastal slope, historical shoreline change rate, geomorphology, and historical rate of relative sea- or lake-level change. This approach seeks to combine a coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, and it provides a measure of the system's potential vulnerability to the effects of sea- or lake-level change. Assessments for 22 park units are combined to evaluate relationships among the variables used to derive the index. Results indicate that Atlantic and Gulf of Mexico parks have the highest vulnerability rankings relative to other park regions. A principal component analysis reveals that 99% of the index variability can be explained by four variables: geomorphology, regional coastal slope, water-level change rate, and mean significant wave height. Tidal range, ice cover, and historical shoreline change are not as important when the index is evaluated at large spatial scales (thousands of kilometers

  6. Congruences between modular forms: raising the level and dropping Euler factors.

    PubMed

    Diamond, F

    1997-10-14

    We discuss the relationship among certain generalizations of results of Hida, Ribet, and Wiles on congruences between modular forms. Hida's result accounts for congruences in terms of the value of an L-function, and Ribet's result is related to the behavior of the period that appears there. Wiles' theory leads to a class number formula relating the value of the L-function to the size of a Galois cohomology group. The behavior of the period is used to deduce that a formula at "nonminimal level" is obtained from one at "minimal level" by dropping Euler factors from the L-function.

  7. Water Quality and Hydrology of Whitefish (Bardon) Lake, Douglas County, Wisconsin, With Special Emphasis on Responses of an Oligotrophic Seepage Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Juckem, Paul F.

    2009-01-01

    Whitefish Lake, which is officially named Bardon Lake, is an oligotrophic, soft-water seepage lake in northwestern Wisconsin, and classified by the Wisconsin Department of Natural Resources as an Outstanding Resource Water. Ongoing monitoring of the lake demonstrated that its water quality began to degrade (increased phosphorus and chlorophyll a concentrations) around 2002 following a period of high water level. To provide a better understanding of what caused the degradation in water quality, and provide information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. The goals of the study were to describe the past and present water quality of the lake, quantify water and phosphorus budgets for the lake, simulate the potential effects of changes in phosphorus inputs on the lake's water quality, analyze changes in the water level in the lake since 1900, and relate the importance of changes in climate and changes in anthropogenic (human-induced) factors in the watershed to the water quality of the lake. Since 1998, total phosphorus concentrations increased from near the 0.005-milligrams per liter (mg/L) detection limit to about 0.010 mg/L in 2006, and then decreased slightly in 2007-08. During this time, chlorophyll a concentrations and Secchi depths remained relatively stable at about 1.5 micrograms per liter (ug/L) and 26 feet, respectively. Whitefish Lake is typically classified as oligotrophic. Because the productivity in Whitefish Lake is limited by phosphorus, phosphorus budgets were constructed for the lake. Because it was believed that much of its phosphorus comes from the atmosphere, phosphorus deposition was measured in this study. Phosphorus input from the atmosphere was greater than computed based on previously reported wetfall phosphorus concentrations. The concentrations and deposition rates can be used to estimate atmospheric loading in future lake studies. The

  8. Lake levels and water quality in comparison to fish mercury body burdens, Voyageurs National Park, Minnesota, 2013–15

    USGS Publications Warehouse

    Christensen, Victoria G.; Larson, James H.; Maki, Ryan P.; Sandheinrich, Mark B.; Brigham, Mark E.; Kissane, Claire; LeDuc, Jamie F.

    2017-01-18

    Within Voyageurs National Park in Minnesota, lake levels are controlled by a series of dams to support a variety of uses. Previous research indicates a link between these artificially maintained water levels, referred to as rule curves, and mercury concentrations in fish owing to the drying and rewetting of wetlands and other nearshore areas, which may release methylmercury into the water when inundated. The U.S. Geological Survey, National Park Service, and University of Wisconsin-La Crosse cooperated in a study to assess the importance of lake-level fluctuation and other factors affecting mercury concentrations in Perca flavescens (yellow perch) in the lakes of Voyageurs National Park. For this study, mercury body burdens were determined for young-of-the-year yellow perch collected from the large lakes within Voyageurs National Park during 2013–15. These mercury body burdens were compared to lake levels and water-quality constituents from the same period.Field properties and profiles of lake water quality indicated that Sand Point, Little Vermilion, and Crane Lakes were anoxic at times near the lake bottom sediments, where sulfate-reducing bacteria may convert mercury to methylmercury. The median dissolved sulfate concentration was highest in Crane Lake, the median total organic carbon concentration was highest in Sand Point Lake, and the median total phosphorus concentration was highest in Kabetogama Lake, all of which is consistent with previous research. All lakes had median chlorophyll a concentrations of 3.6 micrograms per liter or less with the exception of Kabetogama Lake, where the median concentrations were 4.3 micrograms per liter for the midlake sites and 7.1 micrograms per liter and 9.0 micrograms per liter for the nearshore sites.Mercury concentrations in sampled fish varied widely between years and among lakes, from 14.7 nanograms per gram in fish samples from Kabetogama Lake in 2015 to 178 nanograms per gram in fish samples from Crane Lake in

  9. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    NASA Astrophysics Data System (ADS)

    Xiao, K.; Griffis, T. J.; Baker, J. M.; Bolstad, P. V.; Erickson, M. D.; Lee, X.; Wood, J. D.; Hu, C.

    2017-12-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. For example, the water level of White Bear Lake (WBL) declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The annual evaporation for years 2014 through 2016 were 559±22 mm, 779±81 mm, and 766±11 mm, respectively. The larger evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicated that WBL evaporation increased by about 3.8 mm yr-1. Mass balance analysis implied that the lake level declines at WBL during 1986-1990 and 2003-2012 were mainly caused by the coupled low precipitation and high evaporation. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm yr-1 over this century, which is largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan

  10. Seasonal mercury levels in phytoplankton and their relationship with algal biomass in two dystrophic shield lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkwood, A.E.; Chow-Fraser, P.; Mierle, G.

    1999-03-01

    This study focused on the seasonal dynamics of total Hg in the phytoplankton (living and dead) of two dystrophic shield lakes (Mouse and Ranger). Phytoplankton samples were taken from metalimnetic and hypolimnetic depths in the euphotic zone and were collected and analyzed using ultraclean techniques. In both lakes, phytoplankton Hg (PHYTO-Hg) levels (pg/L) in the metalimnion did not significantly change among dates over the season, although Ranger Lake exhibited significant differences between Hg values measured at the beginning and end of the season. In contrast, PHYTO-Hg significantly increased in the hypolimnia of both lakes by the end of the season.more » Combined influences of external Hg inputs, remineralization, phytoplankton sedimentation, and increased methylmercury production in the hypolimnia over the season may have contributed to these trends. A highly significant positive relationship existed between PHYTO-Hg levels and whole-water Hg levels, and the mean bioconcentration factor for Hg between the water column and phytoplankton was significantly higher in the hypolimnion compared to the metalimnion for both lakes. In most cases, parameters associated with algal biomass had significant positive correlations with PHYTO-Hg levels. Weight-specific PHYTO-Hg (pg/mg dry weight) varied significantly over the season, and there were interlake differences with respect to season trends. On the basis of these results, the authors recommend that the future sampling regimes include collection of phytoplankton at different limnetic depths through the season to account for spatial and temporal variations. Weight specific Hg levels in phytoplankton could not be explained well by the parameters tested, and the only significant regressions were with parameters reflecting algal biomass. This study provides in situ evidence of Hg accumulation in lake phytoplankton as a function of algal biomass on a seasonal basis and stresses the need to confirm these trends in other

  11. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    USGS Publications Warehouse

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  12. Hydrology of Indiana lakes

    USGS Publications Warehouse

    Perrey, Joseph Irving; Corbett, Don Melvin

    1956-01-01

    The stabilization of lake levels often requires the construction of outlet control structures. A detailed study of past lake-level elevations and other hydologic date is necessary to establish a level that can be maintained and to determine the means necessary for maintaining the established level. Detailed lake-level records for 28 lakes are included in the report, and records for over 100 other lakes data are available in the U.S. Geological Survey Office, Indianapolis, Ind. Evaporation data from the four Class A evaporation station of the U. S. Weather Bureau have been compiled in this report. A table showing the established legal lake level and related data is included.

  13. Banks Lake Fishery Evaluation Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polacek, Matt; Knuttgen, Kamia; Shipley, Rochelle

    2003-11-01

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. Fiscal Year (FY) 2001 of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. FY 2002 was used to continue seasonal fish and lakewide creel surveys and adjust methods and protocols as needed. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparentmore » by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 meters deep, with 16-17 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until August when dissolved oxygen dropped near or below 5 mg/L below 20-meters deep. Secchi depths ranged from 2.5-8 meters and varied by location and date. Nearshore and offshore fish surveys were conducted in October 2002 and May and July 2003 using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Yellow Perch Perca flavescens (32 %) and cottid spp. (22 %) dominated the nearshore species composition in October; however, by May yellow perch (12 %) were the third most common species followed by smallmouth bass Micropterous dolomieui (34 %) and lake whitefish Coregonus clupeaformis (14 %). Lake whitefish dominated the offshore catch during October (78 %) and May (81 %). Fish diet analysis indicated that juvenile fishes consumed primarily insects and zooplankton, while adult piscivores consumed cottids spp. and yellow perch most frequently. For FY 2002, the following creel statistics are comprehensive through August 31, 2003. The highest angling pressure occurred in June 2003, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized

  14. Predicting Late Winter Dissolved Oxygen Levels in Arctic Lakes Using Morphology and Landscape Metrics

    NASA Astrophysics Data System (ADS)

    Leppi, Jason C.; Arp, Christopher D.; Whitman, Matthew S.

    2016-02-01

    Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.

  15. Predicting Late Winter Dissolved Oxygen Levels in Arctic Lakes Using Morphology and Landscape Metrics.

    PubMed

    Leppi, Jason C; Arp, Christopher D; Whitman, Matthew S

    2016-02-01

    Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.

  16. Polybrominated diphenyl ethers (PBDEs) in Great Lakes fish: Levels, patterns, trends and implications for human exposure.

    PubMed

    Gandhi, Nilima; Gewurtz, Sarah B; Drouillard, Ken G; Kolic, Terry; MacPherson, Karen; Reiner, Eric J; Bhavsar, Satyendra P

    2017-01-15

    Levels of polybrominated diphenyl ethers (PBDEs) were measured in edible portions of Great Lakes fish, with the goal of examining patterns/trends and evaluating implications for human exposure. A total of 470 fillets of 18 fish species collected from various parts of the Canadian waters of the Great Lakes between 2006 and 2013 were analyzed for 17 (expanded to 33 in 2009) PBDEs. For a limited number of species, fillet to whole body and fillet to eggs PBDEs were compared to examine pattern and concentration among tissue types. Levels and patterns of PBDEs varied dramatically within and among the 18 fish species. Bottom dwelling Common Carp (and White Sucker) exhibited the highest ∑PBDE levels (27-71ng/g). Lake Trout and Lake Whitefish from Lake Superior had higher levels than those from the other Great Lakes; otherwise the spatial trend was Lake Ontario≫Erie~Huron~Superior. The measured levels would result in restriction on consumption of only Common Carp from the Toronto waterfront area, which is in proximity to the most urbanised region on the Canadian side of the basin. Deca-BDE was the major congener in panfish, while BDE-47 was the major congener in top predators and its contribution to ∑PBDE increased with the contamination. Although ∑PBDE was related to fish length and lipid content when all measurements were pooled, the relationships were variable for individual sampling events (species/location/year). Whole body ∑PBDE for bottom dweller Brown Bullhead and Common Carp were 2.6-4.9 times greater and egg ∑PBDE for four fatty Salmon/Trout species were same to 6.5 times greater than the corresponding fillet concentrations. Levels of major lower brominated PBDEs appear to have declined in fish fillets by 46-74% between 2006/07 and 2012. Although PBDE in existing consumer items will remain in-use for a while, it will likely not result in appreciable accumulation of PBDEs in fish. Based on an overall assessment, regular monitoring of PBDEs in Great Lake

  17. Reconstruction of vegetation and lake level at Moon Lake, North Dakota, from high-resolution pollen and diatom data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, E.C.; Laird, K.R.; Mueller, P.G.

    High-resolution fossil-pollen and diatom data from Moon Lake, North Dakota, reveal major climate and vegetation changes near the western margin of the tall-grass prairie. Fourteen AMS radiocarbon dates provide excellent time control for the past {approximately}11,800 {sup 14}C years B.P. Picea dominated during the late-glacial until it abruptly declined {approximately}10,300 B.P. During the early Holocene ({approximately}10,300-8000 B.P.), deciduous trees and shrubs (Populus, Betula, Corylus, Quercus, and especially Ulmus) were common, but prairie taxa (Poaceae, Artemisia, and Chenopodiaceae/Amaranthaceae) gradually increased. During this period the diatoms indicate the lake becoming gradually more saline as water-level fell. By {approximately}8000 B.P., salinity had increasedmore » to the point that the diatoms were no longer sensitive to further salinity increases. However, fluctuating pollen percentages of mud-flat weeds (Ambrosia and Iva) indicate frequently changing water levels during the mid-Holocene ({approximately}8000-5000 B.P.). The driest millennium was 7000-6000 B.P., when Iva annua was common. After {approximately}3000 B.P. the lake became less-saline, and the diatoms were again sensitive to changing salinity. The Medieval Warm Period and Little Ice Age are clearly evident in the diatom data.« less

  18. Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009)

    PubMed Central

    Liu, Hongxing; Chen, Yaning; Shu, Song; Wu, Qiusheng; Wang, Shujie

    2017-01-01

    This study utilizes ICESat Release 33 GLA14 data to analyse water level variation of Xinjiang’s lakes and reservoirs from 2003 to 2009. By using Landsat images, lakes and reservoirs with area larger than 1 km2 are numerically delineated with a software tool. Based on ICESat observations, we analyse the characteristics of water level variation in different geographic environments, as well as investigate the reasons for the variation. Results indicate that climatic warming contributes to rising water levels in lakes in mountainous areas, especially for lakes that are recharged by snow and glacial melting. For lakes in oases, the water levels are affected jointly by human activity and climate change, while the water levels of reservoirs are mainly affected by human activity. Comparing the annual average rates of water levels, those of lakes are higher than those of reservoirs in oasis areas. The main reasons for the decreasing water levels in desert regions are the reduction of recharged runoff and high evaporation. By analysing the variation of water levels and water volume in different geologic environments, it is found that water level and volume increased in mountainous regions, and decreased in oasis regions and desert regions. Finding also demonstrate that decreasing volume is greater than increasing volume, which results in decreasing total volume of Xinjiang lakes and reservoirs. PMID:28873094

  19. Latent fluctuation periods and long-term forecasting of the level of Markakol lake

    NASA Astrophysics Data System (ADS)

    Madibekov, A. S.; Babkin, A. V.; Musakulkyzy, A.; Cherednichenko, A. V.

    2018-01-01

    The analysis of time series of the level of Markakol Lake by the method of “Periodicities” reveals in its variations the harmonics with the periods of 12 and 14 years, respectively. The verification forecasts of the lake level by the trend tendency and by its combination with these sinusoids were computed with the lead time of 5 and 10 years. The estimation of the forecast results by the new independent data permitted to conclude that forecasts by the combination of the sinusoids and trend tendency are better than by the trend tendency only. They are no worse than the mean value prediction.

  20. The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system

    USGS Publications Warehouse

    Hart, W.S.; Quade, Jay; Madsen, D.B.; Kaufman, D.S.; Oviatt, Charles G.

    2004-01-01

    Lakes in the Bonneville basin have fluctuated dramatically in response to changes in rainfall, temperature, and drainage diversion during the Quaternary. We analyzed tufas and shells from shorelines of known ages in order to develop a relation between 87Sr/86Sr ratio of carbonates and lake level, which then can be used as a basis for constraining lake level from similar analyses on carbonates in cores. Carbonates from the late Quaternary shorelines yield the following average 87Sr/86Sr ratios: 0.71173 for the Stansbury shoreline (22-20 14C ka; 1350 m), 0.71153 for the Bonneville shoreline (15.5-14.5 14C ka; 1550 m), 0.71175 for the Provo shoreline (14.4-14.0 14C ka; 1450 m), 0.71244 for the Gilbert shoreline (???10.3-10.9 14C ka; 1300 m), and 0.71469 for the modern Great Salt Lake (1280 m). These analyses show that the 87Sr/86Sr ratio of lacustrine carbonates changes substantially at low- to mid-lake levels but is invariant at mid- to high-lake levels. Sr-isotope mixing models of Great Salt Lake and the Bonneville paleolake system were constructed to explain these variations in 87Sr/86Sr ratios with change in lake level. Our model of the Bonneville system produced a 87Sr/86Sr ratio of 0.71193, very close to the observed ratios from high-shoreline tufa and shell. The model verifies that the integration of the southern Sevier and Beaver rivers with the Bear and others rivers in the north is responsible for the lower 87Sr/86Sr ratios in Lake Bonneville compared to the modern Great Salt Lake. We also modeled the 87Sr/86Sr ratio of Lake Bonneville with the upper Bear River diverted into the Snake River basin and obtained an 87Sr/86Sr ratio of 0.71414. Coincidentally, this ratio is close to the observed ratio for Great Salt Lake of 0.71469. This means that 87Sr/86Sr ratios of >0.714 for carbonate can be produced by climatically induced low-lake conditions or by diversion of the upper Bear River out of the Bonneville basin. This model result also demonstrates that the

  1. Examining Ecological and Ecosystem Level Impacts of Aquatic Invasive Species in Lake Michigan Using An Ecosystem Productivity Model, LM-Eco

    EPA Science Inventory

    Ecological and ecosystem-level impacts of aquatic invasive species in Lake Michigan were examined using the Lake Michigan Ecosystem Model (LM-Eco). The LM-Eco model includes a detailed description of trophic levels and their interactions within the lower food web of Lake Michiga...

  2. Response of walleye and yellow perch to water-level fluctuations in glacial lakes

    USGS Publications Warehouse

    Dembkowski, D.J.; Chipps, Steven R.; Blackwell, B. G.

    2014-01-01

    The influence of water levels on population characteristics of yellow perch, Perca flavescens (Mitchill), and walleye, Sander vitreus (Mitchill), was evaluated across a range of glacial lakes in north-eastern South Dakota, USA. Results showed that natural variation in water levels had an important influence on frequently measured fish population characteristics. Yellow perch abundance was significantly (P<0.10) greater during elevated water levels. Yellow perch size structure, as indexed by the proportional size distribution of quality- and preferred-length fish (PSD and PSD-P), was significantly greater during low-water years, as was walleye PSD. Mean relative weight of walleye increased significantly during high-water periods. The dynamic and unpredictable nature of water-level fluctuations in glacial lakes ultimately adds complexity to management of these systems.

  3. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    NASA Astrophysics Data System (ADS)

    Xiao, Ke; Griffis, Timothy J.; Baker, John M.; Bolstad, Paul V.; Erickson, Matt D.; Lee, Xuhui; Wood, Jeffrey D.; Hu, Cheng; Nieber, John L.

    2018-06-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. White Bear Lake (WBL) is a notable example. Its water level declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The estimated annual evaporation losses for years 2014 through 2016 were 559 ± 22 mm, 779 ± 81 mm, and 766 ± 11 mm, respectively. The higher evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicate that WBL evaporation increased during this time by about 3.8 mm year-1, which was driven by increased wind speed and lake-surface vapor pressure gradient. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm year-1 over this century, largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.

  4. Relation Between Selected Water-Quality Variables, Climatic Factors, and Lake Levels in Upper Klamath and Agency Lakes, Oregon, 1990-2006

    USGS Publications Warehouse

    Morace, Jennifer L.

    2007-01-01

    Growth and decomposition of dense blooms of Aphanizomenon flos-aquae in Upper Klamath Lake frequently cause extreme water-quality conditions that have led to critical fishery concerns for the region, including the listing of two species of endemic suckers as endangered. The Bureau of Reclamation has asked the U.S. Geological Survey (USGS) to examine water-quality data collected by the Klamath Tribes for relations with lake level. This analysis evaluates a 17-year dataset (1990-2006) and updates a previous USGS analysis of a 5-year dataset (1990-94). Both univariate hypothesis testing and multivariable analyses evaluated using an information-theoretic approach revealed the same results-no one overarching factor emerged from the data. No single factor could be relegated from consideration either. The lack of statistically significant, strong correlations between water-quality conditions, lake level, and climatic factors does not necessarily show that these factors do not influence water-quality conditions; it is more likely that these conditions work in conjunction with each other to affect water quality. A few different conclusions could be drawn from the larger dataset than from the smaller dataset examined in 1996, but for the most part, the outcome was the same. Using an observational dataset that may not capture all variation in water-quality conditions (samples were collected on a two-week interval) and that has a limited range of conditions for evaluation (confined to the operation of lake) may have confounded the exploration of explanatory factors. In the end, all years experienced some variation in poor water-quality conditions, either in timing of occurrence of the poor conditions or in their duration. The dataset of 17 years simply provided 17 different patterns of lake level, cumulative degree-days, timing of the bloom onset, and poor water-quality conditions, with no overriding causal factor emerging from the variations. Water-quality conditions were

  5. Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2001 (September 1, 2001 to August 31, 2002).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polacek, Matt; Knuttgen, Kamia; Baldwin, Casey

    2003-03-01

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep,more » with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The

  6. Stratigraphy and chronology of offshore to nearshore deposits associated with the Provo shoreline, Pleistocene Lake Bonneville, Utah

    USGS Publications Warehouse

    Godsey, Holly S.; Oviatt, Charles G.; Miller, David M.; Chan, Marjorie A.

    2011-01-01

    Stratigraphic descriptions and radiocarbon data from eleven field locations are presented in this paper to establish a chronostratigraphic framework for offshore to nearshore deposits of Lake Bonneville. Based on key marker beds and geomorphic position, the deposits are interpreted to have accumulated during the period from the late transgressive phase, through the overflowing phase, into the regressive phase of the lake. Radiocarbon ages of sediments associated with the Provo shoreline indicate that Lake Bonneville dropped rapidly from the Provo shoreline at about 12,600 14C yr BP (15,000 cal yr B.P.). The presence of one or more sand beds in the upper part of the Provo-aged marl indicates rapid lowering of lake level or storm events at the end of the Provo episode. An accurate understanding of the timing and nature of Lake Bonneville's climate-driven regression from the Provo shoreline is critical to correlations with records of regional and hemispheric climate change. The rapid descent of the lake from the Provo shoreline correlates with the decline of Lakes Lahontan and Estancia, and with the onset of the BØlling–AllerØd warming event.

  7. Stratigraphy and chronology of offshore to nearshore deposits associated with the Provo shoreline, Pleistocene Lake Bonneville, Utah

    USGS Publications Warehouse

    Godsey, H.S.; Oviatt, Charles G.; Miller, D.M.; Chan, M.A.

    2011-01-01

    Stratigraphic descriptions and radiocarbon data from eleven field locations are presented in this paper to establish a chronostratigraphic framework for offshore to nearshore deposits of Lake Bonneville. Based on key marker beds and geomorphic position, the deposits are interpreted to have accumulated during the period from the late transgressive phase, through the overflowing phase, into the regressive phase of the lake. Radiocarbon ages of sediments associated with the Provo shoreline indicate that Lake Bonneville dropped rapidly from the Provo shoreline at about 12,600 14C yr BP (15,000 cal yr B.P.). The presence of one or more sand beds in the upper part of the Provo-aged marl indicates rapid lowering of lake level or storm events at the end of the Provo episode. An accurate understanding of the timing and nature of Lake Bonneville's climate-driven regression from the Provo shoreline is critical to correlations with records of regional and hemispheric climate change. The rapid descent of the lake from the Provo shoreline correlates with the decline of Lakes Lahontan and Estancia, and with the onset of the B??lling-Aller??d warming event. ?? 2011 Elsevier B.V.

  8. New insights on water level variability for Lake Turkana for the past 15 ka and at 150 ka from relict beaches

    NASA Astrophysics Data System (ADS)

    Forman, S. L.; Wright, D.

    2015-12-01

    Relict beaches adjacent to Lake Turkana provide a record of water level variability for the Late Quaternary. This study focused on deciphering the geomorphology, sedimentology, stratigraphy and 14C chronology of strand plain sequences in the Kalokol and Lothagam areas. Nine >30 m oscillations in water level were documented between ca. 15 and 4 ka. The earliest oscillation between ca. 14.5 and 13 ka is not well constrained with water level to at least 70 m above the present surface and subsequently fell to at least 50 m. Lake level increased to ~ 90 m between ca. 11.2 and 10.4 ka, post Younger Dryas cooling. Water level fell by >30 m by 10.2 ka, with another potential rise at ca. 8.5 ka to >70 m above current level. Lake level regressed by > 40 m at 8.2 ka coincident with cooling in the equatorial Eastern Atlantic Ocean. Two major >70 m lake level oscillations centered at 6.6 and 5.2 ka may reflect enhanced convection with warmer sea surface temperatures in the Western Indian Ocean. The end of the African Humid Period occurred from ca. 8.0 to 4.5 ka and was characterized by variable lake level (± > 40 m), rather than one monotonic fall in water level. This lake level variability reflects a complex response to variations in the extent and intensity of the East and West African Monsoons near geographic and topographic limits within the catchment of Lake Turkana. Also, for this closed lake basin excess and deficits in water input are amplified with a cascading lake effect in the East Rift Valley and through the Chew Bahir Basin. The final regression from a high stand of > 90 m began at. 5.2 ka and water level was below 20 m by 4.5 ka; and for the remainder of the Holocene. This sustained low stand is associated with weakening of the West African Monsoon, a shift of the mean position of Congo Air Boundary west of the Lake Turkana catchment and with meter-scale variability in lake level linked to Walker circulation across the Indian Ocean. A surprising observation is

  9. Centennial- to decadal scale environmental shifts in and around Lake Pannon (Vienna Basin) related to a major Late Miocene lake level rise

    PubMed Central

    Harzhauser, Mathias; Kern, Andrea; Soliman, Ali; Minati, Klaus; Piller, Werner E.; Danielopol, Dan L.; Zuschin, Martin

    2010-01-01

    A detailed ultra-high-resolution analysis of a 37-cm-long core of Upper Miocene lake sediments of the long-lived Lake Pannon has been performed. Despite a general stable climate at c. 11–9 Ma, several high-frequency oscillations of the paleoenvironments and depositional environments are revealed by the analysis over a short time span of less than 1000 years. Shifts of the lake level, associated with one major 3rd order flooding are reflected by all organisms by a cascade of environmental changes on a decadal scale. Within a few decades, the pollen record documents shifting vegetation zones due to the landward migration of the coast; the dinoflagellate assemblages switch towards “offshore-type” due to the increasing distance to the shore; the benthos is affected by low oxygen conditions due to the deepening. This general trend is interrupted by smaller scale cycles, which lack this tight interconnection. Especially, the pollen data document a clear cyclicity that is expressed by iterative low pollen concentration events. These “negative” cycles are partly reflected by dinoflagellate blooms suggesting a common trigger-mechanism and a connection between terrestrial environments and surface waters of Lake Pannon. The benthic fauna of the core, however, does not reflect these surface water cycles. This forcing mechanism is not understood yet but periodic climatic fluctuations are favoured as hypothesis instead of further lake level changes. Short phases of low precipitation, reducing pollen production and suppressing effective transport by local streams, might be a plausible mechanism. This study is the first hint towards solar activity related high-frequency climate changes during the Vallesian (Late Miocene) around Lake Pannon and should encourage further ultra-high-resolution analyses in the area. PMID:21179376

  10. Response in the trophic state of stratified lakes to changes in hydrology and water level: potential effects of climate change

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2011-01-01

    To determine how climate-induced changes in hydrology and water level may affect the trophic state (productivity) of stratified lakes, two relatively pristine dimictic temperate lakes in Wisconsin, USA, were examined. Both are closed-basin lakes that experience changes in water level and degradation in water quality during periods of high water. One, a seepage lake with no inlets or outlets, has a small drainage basin and hydrology dominated by precipitation and groundwater exchange causing small changes in water and phosphorus (P) loading, which resulted in small changes in water level, P concentrations, and productivity. The other, a terminal lake with inlets but no outlets, has a large drainage basin and hydrology dominated by runoff causing large changes in water and P loading, which resulted in large changes in water level, P concentrations, and productivity. Eutrophication models accurately predicted the effects of changes in hydrology, P loading, and water level on their trophic state. If climate changes, larger changes in hydrology and water levels than previously observed could occur. If this causes increased water and P loading, stratified (dimictic and monomictic) lakes are expected to experience higher water levels and become more eutrophic, especially those with large developed drainage basins.

  11. Paleolimnology of Lake Tanganyika, East Africa, over the past 100 k yr

    USGS Publications Warehouse

    Scholz, C.A.; King, J.W.; Ellis, G.S.; Swart, Peter K.; Stager, J.C.; Colman, Steven M.

    2003-01-01

    New sediment core data from a unique slow-sedimentation rate site in Lake Tanganyika contain a much longer and continuous record of limnological response to climate change than have been previously observed in equatorial regions of central Africa. The new core site was first located through an extensive seismic reflection survey over the Kavala Island Ridge (KIR), a sedimented basement high that separates the Kigoma and Kalemie Basins in Lake Tanganyika. Proxy analyses of paleoclimate response carried out on core T97-52V include paleomagnetic and index properties, TOC and isotopic analyses of organic carbon, and diatom and biogenic silica analyses. A robust age model based on 11 radiocarbon (AMS) dates indicates a linear, continuous sedimentation rate nearly an order of magnitude slower here compared to other core sites around the lake. This age model indicates continuous sedimentation over the past 79 k yr, and a basal age in excess of 100 k yr. The results of the proxy analyses for the past ??? 20 k yr are comparable to previous studies focused on that interval in Lake Tanganyika, and show that the lake was about 350 m lower than present at the Last Glacial Maximum (LGM). Repetitive peaks in TOC and corresponding drops in ??13C over the past 79 k yr indicate periods of high productivity and mixing above the T97-52V core site, probably due to cooler and perhaps windier conditions. From ??? 80 through ??? 58 k yr the ??13C values are relatively negative (-26 to -28???) suggesting predominance of algal contributions to bottom sediments at this site during this time. Following this interval there is a shift to higher values of ??13C, indicating a possible shift to C-4 pathway-dominated grassland-type vegetation in the catchment, and indicating cooler, dryer conditions from ??? 55 k yr through the LGM. Two seismic sequence boundaries are observed at shallow stratigraphic levels in the seismic reflection data, and the upper boundary correlates to a major discontinuity

  12. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  13. Groundwater-saline lakes interaction - The contribution of saline groundwater circulation to solute budget of saline lakes: a lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Weinstein, Yishai; Starinsky, Abraham; Yechieli, Yoseph

    2013-04-01

    Saline lakes act as base level for both surface water and groundwater. Thus, a change in lake levels is expected to result in changes in the hydrogeological system in its vicinity, exhibited in groundwater levels, location of the fresh-saline water interface, sub-lacustrine groundwater discharge (SGD) and saline water circulation. All these processes were observed in the declining Dead Sea system, whose water level dropped by ~35 meters in the last 50 years. This work focuses mainly on the effect of circulation of Dead Sea water in the aquifer, which continues even in this very rapid base level drop. In general, seawater circulation in coastal aquifers is now recognized as a major process affecting trace element mass balances in coastal areas. Estimates of submarine groundwater discharge (SGD) vary over several orders of magnitude (1-1000000 m3/yr per meter shoreline). These estimates are sensitive to fresh-saline SGD ratios and to the temporal and spatial scales of the circulation. The Dead Sea system is an excellent natural field lab for studying seawater-groundwater interaction and large-scale circulation due to the absence of tides and to the minor role played by waves. During Dead Sea water circulation in the aquifer several geochemical reactions occur, ranging from short-term adsorption-desorption reactions and up to long-term precipitation and dissolution reactions. These processes affect the trace element distribution in the saline groundwater. Barite and celestine, which are supersaturated in the lake water, precipitate during circulation in the aquifer, reducing barium (from 5 to 1.5 mg/L), strontium (from 350 to 300 mg/L) and the long-lived 226Ra (from 145 to 60 dpm/L) in the saline groundwater. Redox-controlled reactions cause a decrease in uranium from 2.4 to 0.1 μg/L, and an increase in iron from 1 to 13 mg/L. 228Ra (t1/2=5.75 yr) activity in the Dead Sea is ~1 dpm/L and increase gradually as the saline water flows further inland until reaching

  14. Diet overlap of top-level predators in recent sympatry: bull trout and nonnative lake trout

    USGS Publications Warehouse

    Guy, Christopher S.; McMahon, Thomas E.; Fredenberg, Wade A.; Smith, Clinton J.; Garfield, David W.; Cox, Benjamin S.

    2011-01-01

    The establishment of nonnative lake trout Salvelinus namaycush in lakes containing lacustrine–adfluvial bull trout Salvelinus confluentus often results in a precipitous decline in bull trout abundance. The exact mechanism for the decline is unknown, but one hypothesis is related to competitive exclusion for prey resources. We had the rare opportunity to study the diets of bull trout and nonnative lake trout in Swan Lake, Montana during a concomitant study. The presence of nonnative lake trout in Swan Lake is relatively recent and the population is experiencing rapid population growth. The objective of this study was to evaluate the diets of bull trout and lake trout during the early expansion of this nonnative predator. Diets were sampled from 142 bull trout and 327 lake trout during the autumn in 2007 and 2008. Bull trout and lake trout had similar diets, both consumed Mysis diluviana as the primary invertebrate, especially at juvenile stages, and kokanee Oncorhynchus nerka as the primary vertebrate prey, as adults. A diet shift from primarily M. diluviana to fish occurred at similar lengths for both species, 506 mm (476–545 mm, 95% CI) for bull trout and 495 mm (470–518 mm CI) for lake trout. These data indicate high diet overlap between these two morphologically similar top-level predators. Competitive exclusion may be a possible mechanism if the observed overlap remains similar at varying prey densities and availability.

  15. Ups and Downs of Burbot and their predator Lake Trout in Lake Superior, 1953-2011

    USGS Publications Warehouse

    Gorman, Owen T.; Sitar, Shawn P.

    2013-01-01

    The fish community of Lake Superior has undergone a spectacular cycle of decline and recovery over the past 60 years. A combination of Sea Lamprey Petromyzon marinus depredation and commercial overfishing resulted in severe declines in Lake Trout Salvelinus namaycush, which served as the primary top predator of the community. Burbot Lota lota populations also declined as a result of Sea Lamprey depredation, largely owing to the loss of adult fish. After Sea Lamprey control measures were instituted in the early 1960s, Burbot populations rebounded rapidly but Lake Trout populations recovered more slowly and recovery was not fully evident until the mid-1980s. As Lake Trout populations recovered, Burbot populations began to decline, and predation on small Burbot was identified as the most likely cause. By 2000, Burbot densities had dropped below their nadir in the early 1960s and have continued to decline, with the densities of juveniles and small adults falling below that of large adults. Although Burbot populations are at record lows in Lake Superior, the density of large reproductive adults remains stable and a large reserve of adult Burbot is present in deep offshore waters. The combination of the Burbot's early maturation, long life span, and high fecundity provides the species with the resiliency to remain a viable member of the Lake Superior fish community into the foreseeable future.

  16. An integrated investigation of lake storage and water level changes in the Paiku Co basin, central Himalayas

    NASA Astrophysics Data System (ADS)

    Lei, Yanbin; Yao, Tandong; Yang, Kun; Bird, Broxton W.; Tian, Lide; Zhang, Xiaowen; Wang, Weicai; Xiang, Yang; Dai, Yufeng; Lazhu; Zhou, Jing; Wang, Lei

    2018-07-01

    Since the late 1990s, lakes in the southern Tibetan Plateau (TP) have shrunk considerably, which contrasts with the rapid expansion of lakes in the interior TP. Although these spatial trends have been well documented, the underlying hydroclimatic mechanisms are not well understood. Since 2013, we have carried out comprehensive water budget observations at Paiku Co, an alpine lake in the central Himalayas. In this study, we investigate water storage and lake level changes on seasonal to decadal time scales based on extensive in-situ measurements and satellite observations. Bathymetric surveys show that Paiku Co has a mean and maximum water depth of 41.1 m and 72.8 m, respectively, and its water storage was estimated to be 109.3 × 108 m3 in June 2016. On seasonal scale between 2013 and 2017, Paiku Co's lake level decreased slowly between January and May, increased considerably between June and September, and then decreased rapidly between October and January. On decadal time scale, Paiku Co's lake level decreased by 3.7 ± 0.3 m and water storage reduced by (10.2 ± 0.8) × 108 m3 between 1972 and 2015, accounting for 8.5% of the total water storage in 1972. This change is consistent with a trend towards drier conditions in the Himalaya region during the recent decades. In contrast, glacial lakes within Paiku Co's basin expanded rapidly, indicating that, unlike Paiku Co, glacial meltwater was sufficient to compensate the effect of the reduced precipitation.

  17. Trophic state in Voyageurs National Park lakes before and after implementation of a revised water-level management plan

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.

    2015-01-01

    We compiled Secchi depth, total phosphorus, and chlorophyll a (Chla) data from Voyageurs National Park lakes and compared datasets before and after a new water-level management plan was implemented in January 2000. Average Secchi depth transparency improved (from 1.9 to 2.1 m, p = 0.020) between 1977-1999 and 2000-2011 in Kabetogama Lake for August samples only and remained unchanged in Rainy, Namakan, and Sand Point Lakes, and Black Bay in Rainy Lake. Average open-water season Chla concentration decreased in Black Bay (from an average of 13 to 6.0 μg/l, p = 0.001) and Kabetogama Lake (from 9.9 to 6.2 μg/l, p = 0.006) between 1977-1999 and 2000-2011. Trophic state index decreased significantly in Black Bay from 59 to 51 (p = 0.006) and in Kabetogama Lake from 57 to 50 (p = 0.006) between 1977-1999 and 2000-2011. Trophic state indices based on Chla indicated that after 2000, Sand Point, Namakan, and Rainy Lakes remained oligotrophic, whereas eutrophication has decreased in Kabetogama Lake and Black Bay. Although nutrient inputs from inflows and internal sources are still sufficient to produce annual cyanobacterial blooms and may inhibit designated water uses, trophic state has decreased for Kabetogama Lake and Black Bay and there has been no decline in lake ecosystem health since the implementation of the revised water-level management plan.

  18. Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea, Israel

    NASA Astrophysics Data System (ADS)

    Zilberman, Tami; Gavrieli, Ittai; Yechieli, Yoseph; Gertman, Isaac; Katz, Amitai

    2017-11-01

    The response of hypersaline terminal lakes to negative water balance was investigated by studying brines evaporating to extreme salinities in sinkholes along the western coast of the Dead Sea and during on-site evaporation experiments of the Dead Sea brine. Density and temperature were determined in the field and all samples were analyzed for their major and a few minor solutes. The activity of H2O (aH2O) in the brines was calculated, and the degree of evaporation (DE) was established using Sr2+as a conservative solute. The relations between density and water activity were obtained by polynomial regression, and the relation between the lake's volume and level was established using Hall's (1996) hypsographic model for the Dead Sea basin. Relating the results to the modern, long-term relative humidity (RH) over the basin shows that (a) The lowermost attainable level of a terminal lake undergoing evaporation with no inflow is dictated by the median RH; this level represents equilibrium between the brine's aH2O and RH; (b) Small, saline water bodies with high surface to volume ratios (A/V), such as the hypersaline brines in the sinkholes, are very sensitive to short term changes in RH; in these, the brines' aH2O closely follows the seasonal changes; (c) the level decline of the Dead Sea due to evaporation under present climatic conditions and assuming no inflow to the lake may continue down to 516-537 m below mean sea level (bmsl), corresponding to a water activity range of 0.46-0.39 in its brine, in equilibrium with the overlying relative air humidity; this suggests that the lake level cannot drop more than ∼100 m from its present level; and (d) The maximum RH values that existed over the precursor lake of the Dead Sea (Lake Lisan) during geologically reconstructed minima levels can be similarly calculated.

  19. Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kervyn, F.; Vittori, E.; Kajara, R. S. A.; Kilembe, E.

    1998-04-01

    Interpretation of remotely sensed images and air photographs, compilation of geological and topographical maps, morphostructural and fault kinematic observations and 14C dating reveal that, besides obvious climatic influences, the lake water extent and sedimentation in the closed hydrological system of Lake Rukwa is strongly influenced by tectonic processes. A series of sandy ridges, palaeolacustrine terraces and palaeounderwater delta fans are related to an Early Holocene high lake level and subsequent progressive lowering. The maximum lake level was controlled by the altitude of the watershed between the Rukwa and Tanganyika hydrological systems. Taking as reference the present elevation of the palaeolacustrine terraces around Lake Rukwa, two orders of vertical tectonic movement are evidenced: i) a general uplift centred on the Rungwe Volcanic Province between the Rukwa and Malawi Rift Basins; and ii) a tectonic northeastward tilting of the entire Rukwa Rift Basin, including the depression and rift shoulders. This is supported by the observed hydromorphological evolution. Local uplift is also induced by the development of an active fault zone in the central part of the depression, in a prolongation of the Mbeya Range-Galula Fault system. The Ufipa and Lupa Border Faults, bounding the Rukwa depression on the southwestern and northeastern sides, respectively, exert passive sedimentation control only. They appear inactive or at least less active in the Late Quaternary than during the previous rifting stage. The main Late Quaternary tectonic activity is represented by dextral strike-slip movement along the Mbeya Range-Galula Fault system, in the middle of the Rukwa Rift Basin, and by normal dip-slip movements along the Kanda Fault, in the western rift shoulder.

  20. Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level

    Treesearch

    Robert R. Gillies; Oi-Yu Chung; S.-Y. Simon Wang; R. Justin DeRose; Yan Sun

    2015-01-01

    Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover...

  1. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level.

    PubMed

    Havens, K E; Jin, K R; Rodusky, A J; Sharfstein, B; Brady, M A; East, T L; Iricanin, N; James, R T; Harwell, M C; Steinman, A D

    2001-04-04

    In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S.), the Governing Board of the South Florida Water Management District (SFWMD) authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000) of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms). Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater) until August. Furthermore, a vascular plant-dominated assemblage (Vallisneria, Potamogeton, and Hydrilla) that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga) in 2000. Hence, the lake"s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the previous

  2. Body burden levels of dioxin, furans, and PCBs among frequent consumers of Great Lakes sport fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, C.; Hanrahan, L.; Anderson, H.A.

    1999-02-01

    Dioxins, furans, and polychlorinated biphenyls (PCBs) are toxic, persist in the environment, and bioaccumulate to concentrations that can be harmful to humans. The Health Departments of five GL states, Wisconsin, Michigan, Ohio, Illinois, and Indiana, formed a consortium to study body burden levels of chemical residues in fish consumers of Lakes Michigan, Huron, and Erie. In Fall 1993, a telephone survey was administered to sport angler households to obtain fish consumption habits and demographics. A blood sample was obtained from a portion of the study subjects. One hundred serum samples were analyzed for 8 dioxin, 10 furan, and 4 coplanarmore » PCB congeners. Multiple linear regression was conducted to assess the predictability of the following covariates: GL sport fish species, age, BMI, gender, years sport fish consumed, and lake. Median total dioxin toxic equivalents (TEq), total furan TEq, and total coplanar PCB TEq were higher among all men than all women (P = 0.0001). Lake trout, salmon, age, BMI, and gender were significant regression predictors of log (total coplanar PCBs). Lake trout, age, gender, and lake were significant regression predictors of log (total furans). Age was the only significant predictor of total dioxin levels.« less

  3. Hydrology of the Reelfoot Lake basin, Obion and Lake counties, northwestern Tennessee

    USGS Publications Warehouse

    Robbins, C.H.

    1985-01-01

    Nine maps describe the following water resources aspects of the Reelfoot Lake watershed: Map 1-Surface water gaging stations, lake level, and locations of observation wells, rainfall stations and National Weather Service rainfall stations; Maps 2 and 3-water level contours, river stage, groundwater movement; Maps 4 and 5-grid blocks simulating constant head on the Mississippi River, Reelfoot Lake, Running Reelfoot Bayou, Reelfoot Creek, and Running Slough; Maps 6 and 7-difference between model calculated and observed water levels; and Maps 8 and 9-line of equal groundwater level increase and approximate lake area at pool elevation. (Lantz-PTT)

  4. Investigating the causality of changes in the landscape pattern of Lake Urmia basin, Iran using remote sensing and time series analysis.

    PubMed

    Mehrian, Majid Ramezani; Hernandez, Raul Ponce; Yavari, Ahmad Reza; Faryadi, Shahrzad; Salehi, Esmaeil

    2016-08-01

    Lake Urmia is the second largest hypersaline lake in the world in terms of surface area. In recent decades, the drop in water level of the lake has been one of the most important environmental issues in Iran. At present, the entire basin is threatened due to abrupt decline of the lake's water level and the consequent increase in salinity. Despite the numerous studies, there is still an ambiguity about the main cause of this environmental crisis. This paper is an attempt to detect the changes in the landscape structure of the main elements of the whole basin using remote sensing techniques and analyze the results against climate data with time series analysis for the purpose of achieving a more clarified illustration of processes and trends. Trend analysis of the different affecting factors indicates that the main cause of the drastic dry out of the lake is the huge expansion of irrigated agriculture in the basin between 1999 and 2014. The climatological parameters including precipitation and temperature cannot be the main reasons for reduced water level in the lake. The results show how the increase in irrigated agricultural area without considering the water resources limits can lead to a regional disaster. The approach used in this study can be a useful tool to monitor and assess the causality of environmental disaster.

  5. Foreseen hydrological changes drive efforts to formulate water balance improvement measures as part of the management options of adaptation at Lake Balaton, Hungary

    NASA Astrophysics Data System (ADS)

    Molnar, Gabor; Kutics, Karoly

    2013-04-01

    Located in Western Hungary, Lake Balaton (LB) is one of the shallowest large lakes of the world. The catchment area including the lake is 5775 km2, only 10 times more than the lake surface area of 593 km2. This relatively small catchment area and the relatively dry climate results in high vulnerability of the lake water budget to any hydro-meteorological changes. Due to the combined effects of planned water quality protection measures (refer to adjoining article on LB water quality) water quality was not as serious a concern over the last 15 years. However, a new and potentially more damaging threat, decreasing water level started to emerge in 2000. The natural water budget was negative half of the time, i.e. 6 years in the last 12 years. It hadn't occurred in the previous 80 years, since 1921, the year from which detailed meteorological data on the area are available. This new phenomenon raised and continues to raise serious sustainability concerns in the Lake Balaton area requiring better understanding of climatic changes and their foreseen impacts on hydrological and ecological processes that would lead decision makers to formulate the appropriate vulnerability and adaptation policies. Based on the common methodologies of the EULAKES project, present state of the hydrological conditions was analyzed as well as qualitative vulnerability assessment carried out to the area. Using the climate scenarios developed by the project partner Austrian Institute of Technology, calculations on water budget changes was possible. It is estimated that by the middle of the 21st century the lake will experience a drastic drop in the inflow and, accompanied by the increased evaporation, it is likely that years without outflow and serious drops in water-level would occur. The increased frequency of unfavorable water deficit will cause not only ecological, but also socio-economic conflicts in the multipurpose usage of the lake. Therefore, a qualitative vulnerability assessment was

  6. Assessing Water Level Changes in Lake, Reservoir, Wetland, and River Systems with Remote Sensing Tools and Hydrological Model

    NASA Astrophysics Data System (ADS)

    Ricko, M.; Birkett, C. M.; Beckley, B. D.

    2017-12-01

    The NASA/USDA Global Reservoir and Lake Monitor (G-REALM) offers multi-mission satellite radar altimetry derived surface water level products for a subset of large reservoirs, lakes, and wetlands. These products complement the in situ networks by providing stage information at un-gauged locations, and filling existing data gaps. The availability of both satellite-based rainfall (e.g., TRMM, GPCP) and surface water level products offers great opportunities to estimate and monitor additional hydrologic properties of the lake/reservoir systems. A simple water balance model relating the net freshwater flux over a catchment basin to the lake/reservoir level has been previously utilized (Ricko et al., 2011). The applicability of this approach enables the construction of a longer record of surface water level, i.e. improving the climate data record. As instrument technology and data availability evolve, this method can be used to estimate the water level of a greater number of water bodies, and a greater number of much smaller targets. In addition, such information can improve water balance estimation in different lake, reservoir, wetland, and river systems, and be very useful for assessment of improved prediction of surface water availability. Connections to climatic variations on inter-annual to inter-decadal time-scales are explored here, with a focus on a future ability to predict changes in storage volume for water resources or natural hazards concerns.

  7. Successional change in the Lake Superior fish community: population trends in ciscoes, rainbow smelt, and lake trout, 1958-2008

    USGS Publications Warehouse

    Gorman, Owen T.

    2012-01-01

    The Lake Superior fish community underwent massive changes in the second half of the 20th century. Those changes are largely reflected in changes in abundance of the adults of principal prey species, the ciscoes (Coregonus spp.), the invasive rainbow smelt (Osmerus mordax), and the principal predator, lake trout (Salvelinus namaycush). To better understand changes in species abundances, a comprehensive series of gillnet and bottom trawl data collected from 1958 to 2008 were examined. In the late 1950s/early 1960s, smelt abundance was at its maximum, wild lake trout was at its minimum, and an abundance of hatchery lake trout was increasing rapidly. The bloater (Coregonus hoyi) was the prevalent cisco in the lake; abundance was more than 300% greater than the next most abundant cisco, shortjaw cisco (C. zenithicus), followed by kiyi (C. kiyi) and lake cisco (C. artedi). By the mid-1960s, abundance of hatchery lake trout was nearing maximum, smelt abundance was beginning to decline, and abundances of all ciscoes declined, but especially that of shortjaw cisco and kiyi. By the late 1970s, recovery of wild lake trout stocks was well underway and abundances of hatchery lake trout and smelt were declining and the ciscoes were reaching their nadir. During 1980–1990, the fish community underwent a dramatic shift in organization and structure. The rapid increase in abundance of wild lake trout, concurrent with a rapid decline in hatchery lake trout, signaled the impending recovery. Rainbow smelt abundance dropped precipitously and within four years, lake cisco and bloater populations rebounded on the heels of a series of strong recruitment events. Kiyi populations showed signs of recovery by 1989, and shortjaw by 2000, though well below historic maximum abundances. High abundance of adult smelt prior to 1980 appears to be the only factor linked to recruitment failure in the ciscoes. Life history traits of the cisco species were examined to better understand their different

  8. Reconstruction of Sea/Lake-Level Changes in an Active Strike-Slip Basin (Gulf of Cariaco, NE Venezuela)

    NASA Astrophysics Data System (ADS)

    van Daele, M.; Audemard, F.; Beck, C.; de Batist, M.; van Welden, A.; Moernaut, J.; 2006 Shipboard Party, G.

    2008-05-01

    In January 2006, 76 high-resolution reflection seismic profiles were acquired in the Gulf of Cariaco, Northeast Venezuela. In the upper 100 m of sedimentary infill, 17 unconformity-bounded sequences were identified and mapped throughout the basin. Up to now, no core or borehole information is available to provide age constraints on these units. The sedimentary infill is cut by several faults, Riedel faults in the central part and the El Pilar fault (one of the main faults of the South American-Caribbean plate boundary) in the southern part of the gulf. The connection of the Gulf of Cariaco with the adjacent Cariaco Basin occurs at a present-day water depth of ~ 55 m. This implies that the gulf was disconnected from the world ocean and functioned as a lake during a large part of the last glacial. The main rivers entering the gulf drain the coastal mountain ranges and tend to form pronounced deltas at their inlet. During times when the gulf was a lake, periods with a dry climate resulted in dramatic lake-level lowstands and even complete desiccation/evaporation. The present-day depths of delta offlap breaks and the presence of lowstand/evaporite deposits can thus be used to estimate sea/lake level at the time of their formation. Detailed analysis of these stratigraphic sea/lake-level indicators allowed reconstructing the sea/lake-level history for the period encompassed by the 17 identified sequences. This sea/lake-level reconstruction also needed to be corrected for tectonic subsidence, affecting different parts of the gulf with different intensity. The reconstructed sea/lake-level curve of the Gulf of Cariaco was compared with the eustatic sea-level curve and with results of previous paleoclimate studies in Venezuela. The striking coherence between the eustatic curve and the amplitudes and absolute heights of successive reconstructed lowstands and highstands compelled us to tune our record to the eustatic curve in order to achieve a rough age estimate for our units

  9. Contaminants in American alligator eggs from Lake Apopka, Lake Griffin, and Lake Okeechobee, Florida

    USGS Publications Warehouse

    Heinz, Gary H.; Percival, H. Franklin; Jennings, Michael L.

    1991-01-01

    Residues of organochlorine pesticides, polychlorinated biphenyls (PCBs), and 16 elements were measured in American alligator (Alligator mississippiensis) eggs collected in 1984 from Lakes Apopka, Griffin, and Okeechobee in central and south Florida. Organochlorine pesticides were highest in eggs from Lake Apopka. None of the elements appeared to be present at harmful concentrations in eggs from any of the lakes. A larger sample of eggs was collected in 1985, but only from Lakes Griffin, a lake where eggs were relatively clean, and Apopka, where eggs were most contaminated. In 1985, hatching success of artificially incubated eggs was lower for Lake Apopka, and several organochlorine pesticides were higher than in eggs from Lake Griffin. However, within Lake Apopka, higher levels of pesticides in chemically analyzed eggs were not associated with reduced hatching success of the remaining eggs in the clutch. Therefore, it did not appear that any of the pesticides we measured were responsible for the reduced hatching success of Lake Apopka eggs.

  10. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.

    PubMed

    Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B

    2017-10-01

    Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often

  11. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    USGS Publications Warehouse

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  12. Late Pleistocene and Early Holocene lake-level fluctuations in the Lahontan Basin, Nevada: Implications for the distribution of archaeological sites

    USGS Publications Warehouse

    Adams, K.D.; Goebel, Thomas; Graf, K.; Smith, G.M.; Camp, A.J.; Briggs, R.W.; Rhode, D.

    2008-01-01

    The Great Basin of the western U.S. contains a rich record of late Pleistocene and Holocene lake-level fluctuations as well as an extensive record of human occupation during the same time frame. We compare spatial-temporal relationships between these records in the Lahontan basin to consider whether lake-level fluctuations across the Pleistocene-Holocene transition controlled distribution of archaeological sites. We use the reasonably well-dated archaeological record from caves and rockshelters as well as results from new pedestrian surveys to investigate this problem. Although lake levels probably reached maximum elevations of about 1230-1235 m in the different subbasins of Lahontan during the Younger Dryas (YD) period, the duration that the lakes occupied the highest levels was brief Paleoindian and early Archaic archaeological sites are concentrated on somewhat lower and slightly younger shorelines (???1220-1225 in) that also date from the Younger Dryas period. This study suggests that Paleoindians often concentrated their activities adjacent to large lakes and wetland resources soon after they first entered the Great Basin. ?? 2008 Wiley Periodicals, Inc.

  13. Ecological impacts of winter water level drawdowns on lake littoral zones: A review

    USGS Publications Warehouse

    Roy, Allison

    2017-01-01

    Freshwater littoral zones harbor diverse ecological communities and serve numerous ecosystem functions that are controlled, in part, by natural water level fluctuations. However, human alteration of lake hydrologic regimes beyond natural fluctuations threaten littoral zone ecological integrity. One type of hydrologic alteration in lakes is winter water level drawdowns, which are frequently employed for hydropower, flood control, and macrophyte control, among other purposes. Here, we synthesize the abiotic and biotic responses to annual and novel winter water level drawdowns in littoral zones of lakes and reservoirs. The dewatering, freezing, and increased erosion of exposed lakebeds drive changes in the littoral zone. Shoreline-specific physicochemical conditions such as littoral slope and shoreline exposure further induce modifications. Loss of fine sediment decreases nutrient availability over time, but desiccation may promote a temporary nutrient pulse upon re-inundation. Annual winter drawdowns can decrease taxonomic richness of macrophytes and benthic invertebrates and shift assemblage composition to favor taxa with r-selected life history strategies and with functional traits resistant to direct and indirect drawdown effects. Fish assemblages, though less directly affected by winter drawdowns (except where there is critically low dissolved oxygen), experience negative effects via indirect pathways like decreased food resources and spawning habitat. We identify eight general research gaps to guide future research that could improve our understanding about the complex effects of winter drawdowns on littoral zone ecology.

  14. A comparison of mercury levels in feathers and eggs of osprey (Pandion haliaetus) in the North American Great Lakes.

    PubMed

    Hughes, K D; Ewins, P J; Clark, K E

    1997-11-01

    Osprey (Pandion haliaetus) eggs and chick feathers were collected for mercury analysis from nests at four Great Lakes study areas in Ontario (three "naturally formed" lakes in southern Ontario and one reservoir in northern Ontario) and two New Jersey study areas in 1991-1994. Adult osprey feathers were sampled from three Great Lakes study areas in 1991. Feathers sampled from chicks (approximately 28-35 days old) appear to be better indicators of local contaminant conditions since spatial patterns of mercury in known prey, yellow perch (Perca flavescens), also collected in these areas, were more similar to chick feathers than to eggs. Mercury levels were less variable in chick feathers than in eggs. Estimates of biomagnification factors using prey of known size at these areas were also less variable in feathers than in eggs. At naturally formed lakes, no significant correlation in mercury levels between eggs and chick feathers from the same nest was apparent, suggesting that the source of mercury contamination was not the same in these two tissues: mercury levels in eggs reflect mercury acquired on the breeding grounds, wintering grounds, and migratory route; mercury levels in chick feathers reflect local dietary conditions on the breeding grounds. Mercury levels in both osprey eggs and chick feathers were higher at the Ogoki Reservoir than at naturally formed lakes. Adult osprey feathers had higher mercury concentrations than chick feathers. Mercury levels in osprey eggs, chick feathers, and adult feathers did not approach levels associated with toxic reproductive effects.

  15. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    USDA-ARS?s Scientific Manuscript database

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been pro...

  16. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake.

    PubMed

    DeMaere, Matthew Z; Williams, Timothy J; Allen, Michelle A; Brown, Mark V; Gibson, John A E; Rich, John; Lauro, Federico M; Dyall-Smith, Michael; Davenport, Karen W; Woyke, Tanja; Kyrpides, Nikos C; Tringe, Susannah G; Cavicchioli, Ricardo

    2013-10-15

    Deep Lake in Antarctica is a globally isolated, hypersaline system that remains liquid at temperatures down to -20 °C. By analyzing metagenome data and genomes of four isolates we assessed genome variation and patterns of gene exchange to learn how the lake community evolved. The lake is completely and uniformly dominated by haloarchaea, comprising a hierarchically structured, low-complexity community that differs greatly to temperate and tropical hypersaline environments. The four Deep Lake isolates represent distinct genera (∼85% 16S rRNA gene similarity and ∼73% genome average nucleotide identity) with genomic characteristics indicative of niche adaptation, and collectively account for ∼72% of the cellular community. Network analysis revealed a remarkable level of intergenera gene exchange, including the sharing of long contiguous regions (up to 35 kb) of high identity (∼100%). Although the genomes of closely related Halobacterium, Haloquadratum, and Haloarcula (>90% average nucleotide identity) shared regions of high identity between species or strains, the four Deep Lake isolates were the only distantly related haloarchaea to share long high-identity regions. Moreover, the Deep Lake high-identity regions did not match to any other hypersaline environment metagenome data. The most abundant species, tADL, appears to play a central role in the exchange of insertion sequences, but not the exchange of high-identity regions. The genomic characteristics of the four haloarchaea are consistent with a lake ecosystem that sustains a high level of intergenera gene exchange while selecting for ecotypes that maintain sympatric speciation. The peculiarities of this polar system restrict which species can grow and provide a tempo and mode for accentuating gene exchange.

  17. Coalescence of a Drop inside another Drop

    NASA Astrophysics Data System (ADS)

    Mugundhan, Vivek; Jian, Zhen; Yang, Fan; Li, Erqiang; Thoroddsen, Sigurdur

    2016-11-01

    Coalescence dynamics of a pendent drop sitting inside another drop, has been studied experimentally and in numerical simulations. Using an in-house fabricated composite micro-nozzle, a smaller salt-water drop is introduced inside a larger oil drop which is pendent in a tank containing the same liquid as the inner drop. On touching the surface of outer drop, the inner drop coalesces with the surrounding liquid forming a vortex ring, which grows in time to form a mushroom-like structure. The initial dynamics at the first bridge opening up is quantified using Particle Image Velocimetry (PIV), while matching the refractive index of the two liquids. The phenomenon is also numerically simulated using the open-source code Gerris. The problem is fully governed by two non-dimensional parameters: the Ohnesorge number and the diameter ratios of the two drops. The validated numerical model is used to better understand the dynamics of the phenomenon. In some cases a coalescence cascade is observed with liquid draining intermittently and the inner drop reducing in size.

  18. Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  19. Changes in Wisconsin's Lake Michigan salmonid sport fishery, 1969-1985

    USGS Publications Warehouse

    Hansen, Michael J.; Schultz, Paul T.; Lasee, Becky A.

    1990-01-01

    The modern sport fishery for salmonids in Wisconsin waters of Lake Michigan was begun during 1963-1969 with the stocking of rainbow trout (Oncorhynchus mykiss), lake trout (Salvelinus namaycush), brook trout (S. fontinalis), brown trout (Salmo trutta), coho salmon (O. kisutch), and chinook salmon (O. tshawytscha). The fishery grew rapidly during 1969-1985 as angler effort increased 10-fold, catch rate doubled, and catch increased 20-fold. The stocking and catch became increasingly dominated by chinook salmon, with coho salmon and lake trout of secondary importance and brown, rainbow, and brook trout of least importance. Trolling dominated the fishery, particularly by launched-boat anglers and, more recently, by moored-boat anglers. Charter boat trolling grew the most continuously and had the highest catch rates. The catch by trollers was dominated by chinook and coho salmon and lake trout. Pier, stream, and shore anglers fished less overall, but had catch rates that were similar to launched-boat anglers. The catch by pier and shore anglers was spread among chinook and coho salmon, and lake, brown and rainbow trout. The catch by stream anglers was dominated by chinook salmon. The percentage of stocked fish that were subsequently caught (catch ratio) was highest for fingerling chinook salmon (12.9%). Yearling brook trout, brown trout, coho salmon, lake trout, and rainbow trout had intermediate catch ratios (5.1-9.8%). Fingerling brook trout, brown trout, and lake trout had the lowest catch ratios (2.5-3.5%). The catch ratio for rainbow trout dropped from 9.8 to 5.1% after stocking with a different strain (the Shasta strain). Fingerling rainbow trout produced the lowest returns (<0.5%). We derived stocking recommendations for each species and life stage based on these catch ratios, and catch objectives based on maintaining catch levels recorded during 1983-1985.

  20. The importance of terrestrial carbon in supporting molluscs in the wetlands of Poyang Lake

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Yu, Xiubo; Wang, Yuyu; Xu, Jun

    2017-07-01

    Allochthonous organic matter plays an important role in nutrient cycling and energy mobilization in freshwater ecosystems. However, the subsidies of this carbon source in floodplain ecosystems have not yet well understood. We used a Bayesian mixing model and stable isotopes (δ13C and δ15N) of primary food resources and dominant molluscs species, to estimate the relative importance of allochthonous carbon sources for consumers in a representative sub-lake of Poyang Lake during a prolonged dry season. Our study inferred that terrestrial-derived carbon from Carex spp. could be the primary contributor to snails and mussels in Dahuchi Lake. The mean percentage of allochthonous food resources accounted for 35%-50% of the C incorporated by these consumers. Seston was another important energy sources for benthic consumers. However, during the winter and low water-level period, benthic algae and submerged vegetation contributed less carbon to benthic consumers. Our data highlighted the importance of terrestrial organic carbon to benthic consumers in the wetlands of Poyang Lake during the prolonged dry period. Further, our results provided a perspective that linkages between terrestrial and aquatic ecosystems might be facilitated by wintering geese via their droppings.

  1. Incidental oligotrophication of North American Great Lakes.

    PubMed

    Evans, Mary Anne; Fahnenstiel, Gary; Scavia, Donald

    2011-04-15

    Phytoplankton production is an important factor in determining both ecosystem stability and the provision of ecosystem goods and services. The expansive and economically important North American Great Lakes are subjected to multiple stressors and understanding their responses to those stresses is important for understanding system-wide ecological controls. Here we show gradual increases in spring silica concentration (an indicator of decreasing growth of the dominant diatoms) in all basins of Lakes Michigan and Huron (USA and Canadian waters) between 1983 and 2008. These changes indicate the lakes have undergone gradual oligotrophication coincident with and anticipated by nutrient management implementation. Slow declines in seasonal drawdown of silica (proxy for seasonal phytoplankton production) also occurred, until recent years, when lake-wide responses were punctuated by abrupt decreases, putting them in the range of oligotrophic Lake Superior. The timing of these dramatic production drops is coincident with expansion of populations of invasive dreissenid mussels, particularly quagga mussels, in each basin. The combined effect of nutrient mitigation and invasive species expansion demonstrates the challenges facing large-scale ecosystems and suggest the need for new management regimes for large ecosystems.

  2. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    PubMed

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Geochemistry of great Salt Lake, Utah II: Pleistocene-Holocene evolution

    USGS Publications Warehouse

    Spencer, R.J.; Eugster, H.P.; Jones, B.F.

    1985-01-01

    Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation. Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite. Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl- and SO42- are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input. ?? 1985.

  4. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    USGS Publications Warehouse

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  5. Corneal thickness differences between sexes after oxybuprocaine eye drops.

    PubMed

    Fernandez-Garcia, Pablo; Cerviño, Alejandro; Quiles-Guiñau, Laura; Albarran-Diego, Cesar; Garcia-Lazaro, Santiago; Sanchis-Gimeno, Juan A

    2015-01-01

    We aimed to analyze the corneal thickness (CT) values of female and male subjects before and after instillation of oxybuprocaine 0.4% anesthetic eye drops. The CT of 30 female subjects and 28 male subjects was measured using scanning-slit corneal topography (Orbscan Topography System II, Orbscan, Inc, Salt Lake City, UT). Measurements were carried out before and 3 minutes after the instillation of oxybuprocaine 0.4% eye drops. The difference between the baseline values and those obtained after anesthesia ranged as follows: male subjects: central, -26 to +24 μm; superior, -24 to +23 μm; inferior, -19 to +20 μm; nasal, -25 to +30 μm; and temporal, -21 to +20 μm; female subjects: central, -16 to +24 μm; superior, -19 to +32 μm; inferior, -14 to +34 μm; nasal, -19 to +33 μm; and temporal, -36 to +16 μm. No significant differences were found in any corneal location in male subjects. The differences were significant at inferior (p = 0.001) and nasal (p = 0.011) corneal sites in female subjects. Oxybuprocaine anesthetic eye drops induce significant CT increases in female subjects but not in male subjects.

  6. Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.

    NASA Astrophysics Data System (ADS)

    Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.

    2016-12-01

    Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30

  7. Climate-driven changes in grassland vegetation, snow cover, and lake water of the Qinghai Lake basin

    NASA Astrophysics Data System (ADS)

    Wang, Xuelu; Liang, Tiangang; Xie, Hongjie; Huang, Xiaodong; Lin, Huilong

    2016-07-01

    Qinghai Lake basin and the lake have undergone significant changes in recent decades. We examine MODIS-derived grassland vegetation and snow cover of the Qinghai Lake basin and their relations with climate parameters during 2001 to 2010. Results show: (1) temperature and precipitation of the Qinghai Lake basin increased while evaporation decreased; (2) most of the grassland areas improved due to increased temperature and growing season precipitation; (3) weak relations between snow cover and precipitation/vegetation; (4) a significantly negative correlation between lake area and temperature (r=-0.9, p<0.05) and (5) a positive relation between lake level (lake-level difference) and temperature (precipitation). Compared with Namco Lake (located in the inner Tibetan Plateau) where the primary water source of lake level increases was the accelerated melt of glacier/perennial snow cover in the lake basin, for the Qinghai Lake, however, it was the increased precipitation. Increased precipitation explained the improvement of vegetation cover in the Qinghai Lake basin, while accelerated melt of glacier/perennial snow cover was responsible for the degradation of vegetation cover in Namco Lake basin. These results suggest different responses to the similar warming climate: improved (degraded) ecological condition and productive capacity of the Qinghai Lake basin (Namco Lake basin).

  8. A View of Water Quality Characteristics Pertinent to Phosphorus Movement in a Third Level Tributary to Lake Champlain

    NASA Astrophysics Data System (ADS)

    Witt, M.

    2017-12-01

    Lake Champlain is a large natural freshwater lake located in the northeastern United States. The lake provides fresh drinking water for over a quarter of a million people and affords for the livelihoods and recreational opportunities of many well beyond its borders. The health of Lake Champlain is important to the people of Vermont and beyond. During the summer months it is plagued by algal blooms. These unsightly and harmful growths affect other aquatic organisms and are the result of excess phosphate flowing into the lake. Missisquoi Bay in the far northern part of the lake is an area of concern. (Algal bloom Missisquoi Bay. Photo by Robert Galbraith) Measuring in-stream characteristics pertinent to phosphorus movement from the headwaters to the outflow of a third level tributary concurrently will provide important information regarding the movement of phosphorus into tributaries then on into Lake Champlain. Phosphorus, Total Suspended Solids, Temperature and Flow Rate were measured at the mouth, mid-point and headwaters of Black Creek. Black Creek is the last major contributor to the Missisquoi River before it flows into Missisquoi Bay, a bay in Lake Champlain. These measurements were made concurrently at low, normal and high water levels. Significant differences were found between temperature, total suspended solids and phosphate from the headwaters of Black Creek through to its outflow into the Missisquoi River. These characteristics pertinent to phosphorus movement indicated various rates of increase from headwaters to outflow.

  9. Variations in gas emissions in correlation with lava lake level changes at Nyiragono volcano, DR Congo

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; Giuffrida, G. B.; Yalire, M.; Tedesco, D.; Arellano, S.; Galle, B.; Aiuppa, A.

    2012-04-01

    Between 2007 and 2011 four measurement campaigns (June 2007, July 2010, June 2011 and December 2011) were carried out at the crater rim of Nyiragongo volcano (1° 31'S, 29°15'E, 3470 m.a.s.l.). Nyiragongo volcano is located 15 km north of the million inhabitants strong city of Goma, North Kivu region (DRC) and belongs to the Virunga volcanic chain which is associated with the western branch of the Great Rift Valley. The volcanic activity of Niyragongo is the result caused by the rifting of the Earth's crust where two parts of the African plates are breaking apart. Nyiragongo is considered one of the most active volcanoes in Africa. The ground - based remote sensing technique - MAX-DOAS (Multi Axis Differential Optical Absorption Spectroscopy) using scattered sunlight and a Multi-gas-instrument have been simultaneously applied during all field trips and among others BrO/SO2 and CO2/SO2 ratios were determined. At the various field trips we could observe that the lava lake level frequently changes in height (in the order of minutes up to days and also between the years) and also our measured gas ratios showed variations. Higher CO2/SO2 and BrO2/SO2 levels were generally observed at higher lava lake levels and a decrease of the lava lake was accompanied by a decrease in the BrO/SO2 as well as CO2/SO2 ratio. Ideas to explain the correlation of gas ratios and the lava lake level will be discussed in this presentation and we will especially focus on the June 2011 campaign, because it contains the largest changes, observed during these campaigns. Gas emission changes in correlation with a change in the lava lake level might help to give insights within the magma plumbing system of Nyiragongo volcano and therefore leading to a better understanding of the volcanic behavior and improving the possibilities of forecasting a future eruption.

  10. Great Salt Lake Microbial Communities: The Foundation of a Terminal Lake Ecosystem

    NASA Astrophysics Data System (ADS)

    Baxter, B. K.; Acord, M.; Riddle, M. R.; Avery, B.

    2006-12-01

    Great Salt Lake (GSL) is a natural hypersaline ecosystem and a terminal lake of substantial size. The dramatic fluctuation in water levels and salinity creates an ecological backdrop selective for organisms with a high degree of adaptability. At the macro level, the biodiversity of the GSL ecosystem is simple, due to the limitations of an extreme saline environment: Birds eat the two invertebrates of the lake, and the invertebrates eat phytoplankton. However, analysis of the microbial level reveals an enormous diversity of species interacting with one another and the ecosystem as a whole. Our cultivation, biochemical tests, microscopy and DNA sequencing yielded data on dozens of isolates. These data demonstrate novel species, and possibly genera, living in the lake. In addition, we have discovered viruses (bacteriophage) that prey on the microorganisms. Preliminary data on bacteria dwelling in the gut of the brine shrimp, Artemia franciscana, link these prokaryotic organisms to the food chain for the first time. All of these results taken together open the door for the discussion of the significance of the microbial level of terminal lake ecosystem, particularly in light of lake water contamination and bioremediation possibilities.

  11. Oncorhynchus nerka population monitoring in the Sawtooth Valley Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuscher, D.M.; Taki, D.; Ariwite, K.

    1996-05-01

    Critical habitat for endangered Snake River sockeye salmon includes five rearing lakes located in the Sawtooth Valley of central Idaho. Most of the lakes contain either introduced or endemic kokanee populations. Snake River sockeye occur naturally in Redfish Lake, and are being stocked in Redfish and Pettit Lakes. Because kokanee compete with sockeye for limited food resources, understanding population characteristics of both species such as spawn timing, egg-to-fry survival, distribution and abundance are important components of sockeye recovery. This chapter describes some of those characteristics. In 1995, hydroacoustic estimates of O. nerka densities in the Sawtooth Valley Lakes ranged frommore » 57 to 465 fish/ha. Densities were greatest in Pettit followed by Redfish (167), Alturas (95), and Stanley Lakes. O. nerka numbers increased from 1994 values in Pettit and Alturas Lakes, but declined in Redfish and Stanley. Despite a decline in total lake abundance, O. nerka biomass estimates in Redfish Lake increased. Approximately 144,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lake was 5,000 and 30,000 fry, respectively. Egg-to-fry survival was 14% in Fishhook and 7% in Stanley Lake Creek. In Fishhook Creek, kokanee spawning escapement was estimated using stream surveys and a weir. Escapement estimates were 4,860 from weir counts, and 7,000 from stream surveys. As part of the kokanee reduction program, 385 of the spawning female kokanee were culled. Escapement for Stanley Lake Creek was only 60 fish, a ten fold decrease from 1994. In Alturas Lake, kokanee spawners dropped by 50% to 1,600.« less

  12. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  13. How wet is wet? Strontium isotopes as paleo-lake level indicators in the Chew Bahir basin (S-Ethiopia)

    NASA Astrophysics Data System (ADS)

    Junginger, A.; Vonhof, H.; Foerster, V. E.; Asrat, A.; Cohen, A. S.; Lamb, H. F.; Schaebitz, F.; Trauth, M. H.

    2016-12-01

    A major challenge in paleo-anthropology is to understand the impact of climatic changes on human evolution. The Hominin Sites and Paleo-lakes Drilling Project (HSPDP) is currently meeting that challenge by providing records that cover the last 3.7 Ma of paleoenvironmental change all located in close proximity to key paleo-anthropological findings in East Africa. One of the cored climatic archives comes from the dried up Chew Bahir basin in southern Ethiopia, where duplicate sediment cores, each 280 m long, are expected to provide valuable insights about East African environmental variability during the last >500 ka. The lake basins in the eastern branch of the East African Rift System today contain mainly shallow and alkaline lakes. However, paleo-shorelines in the form of wave cut notches, shell beds, and beach ridges are common morphological evidences for deep freshwater lakes that have filled the basins up to their overflow level during pronounced humid episodes, such as the African Humid Period (AHP, 15-5 ka). Unfortunately, further back in time, many of those morphological features disappear due to erosion and the estimation of paleo-water depths depend merely on qualitative proxies from core analyses. We here present a new method that shows high potential to translate qualitative proxy signals from sediment core analyses to quantitative climate signals in the Ethiopian Rift. The method aims at water level reconstruction of multiple paleo-lake episodes in the Chew Bahir basin using strontium isotope ratios (87Sr/86Sr, SIR) in lacustrine fossils and microfossils. SIR preserved in lacustrine fossils reflect the lithology of the drained catchment. The catchment of Chew Bahir consists mainly of Precambrian basement rocks producing high SIR in the lake waters. During humid periods, its catchment enlarged when higher elevated paleo-lakes Abaya, Chamo and Awassa were cascading down into Chew Bahir. These basins drain mainly volcanic rocks producing low SIR. First

  14. The oscillating fringe and paleo-intensity of the East Asian monsoon reconstructed using closed-basin lake-area and dDwax

    NASA Astrophysics Data System (ADS)

    Goldsmith, Y.; Broecker, W. S.; Polissar, P. J.; Xu, H.; Lan, J.; Zhou, W.; An, Z.; deMenocal, P. B.

    2016-12-01

    The magnitude, rate and extent of East Asian Monsoon (EAM) rainfall changes during the late Pleistocene-Holocene is reconstructed using the first well-dated northeastern China lake-area record from a closed-lake basin, which enables reconstructing quantitative absolute paleo-rainfall amounts. In addition, compound specific hydrogen isotopes (dDwax) from lake-sediments are used to reconstruct the isotopic composition of rainwater (dP). Lake-levels were 60m higher than present during the early and middle Holocene. Requiring an absolute increase in mean annual rainfall to at least two times higher than today and a 400 km northward expansion. The EAM intensity and northern extent alternated abruptly between wet and dry periods on time scales of a few centuries. Both the onset ( 60 m rise at 11.5 ka BP) and termination ( 35 m drop at 5.5 ka BP) of the Holocene humid period occurred abruptly, within centuries. dDwax is negatively correlated with the lake area record (R2=0.77), showing for the first time, the co-evolution of dP and local rainfall amount. Lake level is also highly correlated with Both North and South Chinese stalagmite records. These results indicate that local distillation is a significant control on dP in East China, and that local rainfall amount is correlated with the intensity of the large EAM system. These results resolve a current debate regarding the use of dP as a proxy for rainfall amount and validate the "intensity-based" interpretations of the Chinese cave deposit records. The lake is located at the modern NW boundary of the EAM, therefore, lake level is governed by the northward extent of the EAM. The covariation of lake level and the intensity of the monsoon indicate that intensity and northward expansion of the EAM are linked and that during intense (weak) EAM periods the EAM northwestern boundary shifts northward (southward).

  15. A sensor-based energy balance method for the distributed estimation of evaporation over the North American Great Lakes

    NASA Astrophysics Data System (ADS)

    Fries, K. J.; Kerkez, B.; Gronewold, A.; Lenters, J. D.

    2014-12-01

    We introduce a novel energy balance method to estimate evaporation across large lakes using real-time data from moored buoys and mobile, satellite-tracked drifters. Our work is motivated by the need to improve our understanding of the water balance of the Laurentian Great Lakes basin, a complex hydrologic system that comprises 90% of the United States' and 20% of the world's fresh surface water. Recently, the lakes experienced record-setting water level drops despite above-average precipitation, and given that lake surface area comprises nearly one third of the entire basin, evaporation is suspected to be the primary driver behind the decrease in water levels. There has historically been a need to measure evaporation over the Great Lakes, and recent hydrological phenomena (including not only record low levels, but also extreme changes in ice cover and surface water temperatures) underscore the urgency of addressing that need. Our method tracks the energy fluxes of the lake system - namely net radiation, heat storage and advection, and Bowen ratio. By measuring each of these energy budget terms and combining the results with mass-transfer based estimates, we can calculate real-time evaporation rates on sub-hourly timescales. To mitigate the cost prohibitive nature of large-scale, distributed energy flux measurements, we present a novel approach in which we leverage existing investments in seasonal buoys (which, while providing intensive, high quality data, are costly and sparsely distributed across the surface of the Great Lakes) and then integrate data from less costly satellite-tracked drifter data. The result is an unprecedented, hierarchical sensor and modeling architecture that can be used to derive estimates of evaporation in real-time through cloud-based computing. We discuss recent deployments of sensor-equipped buoys and drifters, which are beginning to provide us with some of the first in situ measurements of overlake evaporation from Earth's largest lake

  16. National Program for Inspection of Non-Federal Dams. Congamond Lakes North Dike (MA 00072), Connecticut River Basin, Southwick, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1980-08-01

    erosion resistant surface should be designed and con - structed on the downstream face after trees and trash have been removed. The owner should also...made by the Division of Waterways to con - struct a drop inlet spillway at North Dike in order to provide a more constant iake level. Plans (12 sheets...provide a more constant lake level. Plans (12 sheets) for this pro - * posal were prepared for the Division of Waterways by Robert G. Brown & Associ

  17. 1981 Hartwell Lake Water Quality Study.

    DTIC Science & Technology

    1982-09-01

    located approximately eight kilometers from stabions 2, 3, and 8. The highest and lowest temp- eratures were 101 and 11 farenheit (F) during the hottest...stations and months for ORP measurements are given in Figures B-21 through B-23. There was absolutely no pattern to the August values for both...all lake stations (excluding Station 9), but which was most pronounced in the cove where denisties dropped to zero , is unknown. Physical and chemical

  18. Direct and indirect climate impact on the lake ecosystem during Late Glacial Period.

    NASA Astrophysics Data System (ADS)

    Zawiska, Izabela; Słowiński, Michał; Obremska, Milena; Woszczyk, Michał; Milecka, Krystyna

    2013-04-01

    by the water level drop. This dramatic event was probably caused by the changes in the ground water circulation connected with the permafrost disappearance.

  19. The Geologic History of Lake of the Woods, Minnesota, Reconstructed Using Seismic-Reflection Imaging and Sediment Core Analysis

    NASA Astrophysics Data System (ADS)

    Hougardy, Devin D.

    The history of glacial Lake Agassiz is complex and has intrigued researchers for over a century. Over the course of its ˜5,000 year existence, the size, shape, and location of Lake Agassiz changed dramatically depending on the location of the southern margin of the Laurentide Ice Sheet (LIS), the location and elevation of outflow channels, and differential isostatic rebound. Some of the best-preserved sequences of Lake Agassiz sediments are found in remnant lake basins where erosional processes are less pronounced than in adjacent higher-elevation regions. Lake of the Woods (LOTW), Minnesota, is among the largest of the Lake Agassiz remnant lakes and is an ideal location for Lake Agassiz sediment accumulation. High-resolution seismic-reflection (CHIRP) data collected from the southern basin of LOTW reveal up to 28 m of stratified lacustrine sediment deposited on top of glacial diamicton and bedrock. Five seismic units (SU A-E) were identified and described based on their reflection character, reflection configuration, and external geometries. Three prominent erosional unconformities (UNCF 1-3) underlie the upper three seismic units and indicate that deposition at LOTW was interrupted by a series of relatively large fluctuations in lake level. The lowermost unconformity (UNCF-1) truncates uniformly draped reflections within SU-B at the margins of the basin, where as much as four meters of sediment were eroded. The drop in lake level is interpreted to be contemporaneous with the onset of the low-stand Moorhead phase of Lake Agassiz identified from subaerial deposits in the Red River Valley, Rainy River basin, and Lake Winnipeg. A rise in lake level, indicated by onlapping reflections within SU-C onto UNCF-1, shifted the wave base outwards and as much as 11 m of sediment were deposited (SU-C) in the middle of the basin before a second drop, and subsequent rise, in lake level resulted in the formation of UNCF-2. Reflections in the lower part of SU-D onlap onto UNCF-2

  20. Sanctuaries for lake trout in the Great Lakes

    USGS Publications Warehouse

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  1. Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.

    PubMed

    Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-04-01

    Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Holocene history of a lake filling and vegetation dynamics of the Serra Sul dos Carajás, southeast Amazonia.

    PubMed

    Guimarães, José T F; Sahoo, Prafulla K; Souza-Filho, Pedro W M; Figueiredo, Mariana M J Costa DE; Reis, Luiza S; Silva, Marcio S DA; Rodrigues, Tarcísio M

    2017-07-24

    Down-core changes in sedimentary facies, elemental geochemistry, pollen, spore, δ13C, δ15N and radiocarbon records from a filled lake, named R4, of the Serra Sul dos Carajás were used to study the relationship between the paleomorphological and paleoecological processes and their significance for Holocene paleoclimatology of the southeast Amazonia. The sediment deposition of the R4 lake started around 9500 cal yr BP. Increase of detrital components from 9500 to 7000 cal yr BP suggests high weathering of surrounding catchment rocks and soils, and deposition into the lake basin under mudflows. At that time, montane savanna and forest formation were already established suggesting predominance of wet climate. However, from 7000 to 3000 cal yr BP, a decline of detrital input occurred. Also, forest formation and pteridophytes were declined, while palms and macrophytes were remained relatively stable, indicating that water levels of the lake is likely dropped allowing the development of plants adapted to subaerial condition under drier climate conditions. After 3000 cal yr BP, eutrophication and low accommodation space lead to high lake productivity and the final stage of the lake filling respectively, and forest formation may has acquired its current structure, which suggests return of wetter climate conditions.

  3. Characteristics of Lake Chad Level Variability and Links to ENSO, Precipitation, and River Discharge

    PubMed Central

    Demoz, Belay; Gebremariam, Sium

    2014-01-01

    This study used trend, correlation, and wavelet analysis to characterize Lake Chad (LC) level fluctuations, river discharge, El Niño Southern Oscillation (ENSO), and precipitation regimes and their interrelationships. Linear correlation results indicate a negative association between ENSO and LC level, river discharge and precipitation. Trend analysis shows increasing precipitation in the Lake Chad Basin (LCB) but decreasing LC level. The mode of interannual variability in LC level, rainfall, and ENSO analyzed using wavelet analysis is dominated by 3-4-year periods. Results show that variability in ENSO could explain only 31% and 13% of variations in LC level at Kindjeria and precipitation in the northern LCB, respectively. The wavelet transform coherency (WTC) between LC level of the southern pool at Kalom and ENSO is statistically significant at the 95% confidence level and phase-locked, implying a cause-and-effect association. These strong coherencies coincide with the La Niña years with the exception of 1997-1998 El Niño events. The WTC shows strong covariance between increasing precipitation and LC level in the northern pool at a 2- to 4-year band and 3- to 4-year band localized from 1996 to 2010. Implications for water resource planning and management are discussed. PMID:25538946

  4. Dramatic and long-term lake level changes in the Qinghai-Tibet Plateau from Cryosat-2 altimeter: validation and augmentation by results from repeat altimeter missions and satellite imagery

    NASA Astrophysics Data System (ADS)

    Hwang, Cheinway; Huang, YongRuei; Cheng, Ys; Shen, WenBin; Pan, Yuanjin

    2017-04-01

    The mean elevation of the Qinghai-Tibet Plateau (QTP) exceeds 4000 m. Lake levels in the QTP are less affected by human activities than elsewhere, and may better reflect the state of contemporary climate change. Here ground-based lake level measurements are rare. Repeat altimeter missions, particularly those from the TOPEX and ERS series of altimetry, have provided long-term lake level observations in the QTP, but their large cross-track distances allow only few lakes to be monitored. In contrast, the Cryosat-2 altimeter, equipped with the new sensor SIRAL (interferometric/ synthetic aperture radar altimeter), provides a much better ranging accuracy and a finer spatial coverage than these repeated missions, and can detect water level changes over a large number of lakes in the QTP. In this study, Cryosat-2 data are used to determine lake level changes over 75˚E-100˚E and 28˚N-37.5˚N, where Cryosat-2 covers 60 lakes and SARAL/ AltiKa covers 32 lakes from 2013 to 2016. Over a lake, Cryosat-2 in different cycles can pass through different spots of the lake, making the numbers of observations non-uniform and requiring corrections for lake slopes. Four cases are investigated to cope with these situations: (1) neglecting inconsistency in data volume and lake slopes (2) considering data volume, (3) considering lake slopes only, and (4) considering both data volume and lake slopes. The CRYOSAT-2 result is then compared with the result from the SARAL to determine the best case. Because Cryosat-2 is available from 2010 to 2016, Jason-2 data are used to fill gaps between the time series of Cryosat-2 and ICESat (2003-2009) to obtain >10 years of lake level series. The Cryosat-2 result shows dramatic lake level rises in Lakes Kusai, Zhuoaihu and Salt in 2011 caused by floods. Landsat satellite imagery assists the determination and interpretation of such rises.

  5. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  6. Impact of methane flow through deformable lake sediments on atmospheric release

    NASA Astrophysics Data System (ADS)

    Scandella, B.; Juanes, R.

    2010-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.

  7. The 24 July 2008 outburst flood of Zyndan glacier lake, Ysyk-Köl region, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Narama, C.; Duishonakonov, M.; Kääb, A.; Abdrakhmatov, K.

    2009-04-01

    On 24 July 2008, a glacial lake outburst flood (GLOF) occurred in the Zyndan River, the Ysyk-Köl region, Kyrgyzstan. The flood killed three people and many livestock (horse, sheep, fish), and caused heavy damage destroying a bridge, road, two homes, and crops of agriculture fields. We researched the damege after two days of the GLOF. Using kinematic GPS we measured the decrease of the glacier lake area, and the according drop of the water level through the outburst. Glacier lake area of about 0.03 km2 reduced after the collapse, more than 400,000 m3 of water were discharged. While the initial flood discharge was relatively small, it increased substantially and was carrying large boulders after 30 minutes. When spreading further downstream, the dirty waters trapped eight people on islands between the stream branches. The flood discharge continued to rise until midnight and began to decrease again around 3 AM the next morning. The lake at 3771 m asl is located in front of the west Zyndan glacier at the head of the Zyndan River basin. The glacier lake had developed rapidly due to glacier shrinkage caused by recent atmospheric warming. Reasons for the outburst included melting of dead ice inside the moraine that dammed the lake. The villages downstream escaped heavy damage, because the main flood changed its direction, away from the water reservoir along the village and towards another river.

  8. Spatial and temporal variation in distribution of larval lake whitefish in eastern Lake Ontario: signs of recovery?

    USGS Publications Warehouse

    McKenna, J.E.; Johnson, J. H.

    2009-01-01

    The lake whitefish (Coregonus clupeaformis) is one of the native Lake Ontario fishes that declined severely over the past century. Recent evidence of larval lake whitefish production in a historic spawning area (Chaumont Bay) might signal a recovery of this species in New York waters. We surveyed coastal and open water areas to evaluate densities and estimate total abundance of larval lake whitefish in Chaumont Bay. Other historic spawning areas and embayments with appropriate spawning and nursery habitat were also surveyed, but only a few larvae were found outside of Chaumont Bay. Lake whitefish larvae were found in every embayment sampled within Chaumont Bay, with larval densities of nearly 600/1000 m2 in some samples. Greatest abundances occurred in the northern sectors and near the mouth of the bay. Open water densities were generally less than half that of nearshore sites. The total bay-wide estimate for 2005 was approximately 644,000 lake whitefish larvae, but dropped to 230,000–400,000 in 2006 and 2007, respectively. Mean larval growth rates (0.36 mm/day) did not differ by year, but were consistently higher in early May than in late April. Lake whitefish production in Chaumont Bay is encouraging for this species, but the cause and persistence of the decline after 2005 can be determined only by continued monitoring. Other possible bottlenecks of survival may exist at juvenile and adult stages and could significantly affect recruitment dynamics. This species is sensitive to normal climatic fluctuations and increased variability associated with global climatic change could make winter nursery conditions unfavorable for this species.

  9. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping.

    PubMed

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1987-08-01

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce drop jumps the influence of dropping height on the biomechanics of the jumps. Six subjects executed bounce drop jumps from heights of 20 cm (designated here as DJ20), 40 cm (designated here as DJ40), and 60 cm (designated here as DJ60). During jumping, they were filmed, and ground reaction forces were recorded. The results of a biomechanical analysis show no difference between DJ20 and DJ40 in mechanical output about the joints during the push-off phase. Peak values of moment and power output about the ankles during the push-off phase were found to be smaller in DJ60 than in DJ40 (DJ20 = DJ60). The amplitude of joint reaction forces increased with dropping height. During DJ60, the net joint reaction forces showed a sharp peak on the instant that the heels came down on the ground. Based on the results, researchers are advised to limit dropping height to 20 or 40 cm when investigating training effects of the execution of bounce drop jumps.

  10. Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Carbone, Daniele; Poland, Michael P.; Patrick, Matthew R.; Orr, Tim R.

    2013-01-01

    On 5 March 2011, the lava lake within the summit eruptive vent at Kīlauea Volcano, Hawai‘i, began to drain as magma withdrew to feed a dike intrusion and fissure eruption on the volcanoʼs east rift zone. The draining was monitored by a variety of continuous geological and geophysical measurements, including deformation, thermal and visual imagery, and gravity. Over the first ∼14 hours of the draining, the ground near the eruptive vent subsided by about 0.15 m, gravity dropped by more than 100 μGal, and the lava lake retreated by over 120 m. We used GPS data to correct the gravity signal for the effects of subsurface mass loss and vertical deformation in order to isolate the change in gravity due to draining of the lava lake alone. Using a model of the eruptive vent geometry based on visual observations and the lava level over time determined from thermal camera data, we calculated the best-fit lava density to the observed gravity decrease — to our knowledge, the first geophysical determination of the density of a lava lake anywhere in the world. Our result, 950 +/- 300 kg m-3, suggests a lava density less than that of water and indicates that Kīlaueaʼs lava lake is gas-rich, which can explain why rockfalls that impact the lake trigger small explosions. Knowledge of such a fundamental material property as density is also critical to investigations of lava-lake convection and degassing and can inform calculations of pressure change in the subsurface magma plumbing system.

  11. Quantifying the impact of bathymetric changes on the hydrological regimes in a large floodplain lake: Poyang Lake

    NASA Astrophysics Data System (ADS)

    Yao, Jing; Zhang, Qi; Ye, Xuchun; Zhang, Dan; Bai, Peng

    2018-06-01

    The hydrological regime of a lake is largely dependent on its bathymetry. A dramatic water level reduction has occurred in Poyang Lake in recent years, coinciding with significant bed erosion. Few studies have focused on the influence of bathymetric changes on the hydrological regime in such a complex river-lake floodplain system. This study combined hydrological data and a physically based hydrodynamic model to quantify the influence of the bathymetric changes (1998-2010) on the water level spatiotemporal distribution in Poyang Lake, based on a dry year (2006), a wet year (2010) and an average year (2000-2010). The following conclusions can be drawn from the results of this study: (1) The bed erosion of the northern outlet channel averaged 3 m, resulting in a decrease in the water level by 1.2-2 m in the northern channels (the most significantly influenced areas) and approximately 0.3 m in the central lake areas during low-level periods. The water levels below 16 m and 14 m were significantly affected during the rising period and recession period, respectively. The water level reduction was enhanced due to lower water levels. (2) The water surface profiles adjusted, and the rising and recession rates of the water level increased by 0.5-3.1 cm/d at the lake outlet. The bathymetric influence extended across the entire lake due to the emptying effect, resulting in a change in the water level distribution. The average annual outflow increased by 6.8%. (3) The bathymetric changes contributed approximately 14.4% to the extreme low water level in autumn 2006 and enhanced the drought in the dry season. This study quantified the impact of the bathymetric changes on the lake water levels, thereby providing a better understanding of the potential effects of continued sand mining operations and providing scientific explanations for the considerable variations in the hydrological regimes of Poyang Lake. Moreover, this study attempts to provide a reference for the assessment of

  12. Evaluation and Analysis of Urmia Lake Water Level Fluctuations Bettwen 1998-2006 Using Landsat Images and TOPEX Altimetry Data

    NASA Astrophysics Data System (ADS)

    Zahir, N.; Ali, A.

    2015-12-01

    The Lake Urmiah has undergone a drastic shrinkage in size over the past few decades. The initial intention of this paper is to present an approach for determining the so called "salient times" during which the trend of the shrinkage process is accelerated or decelerated. To find these salient times, a quasi_continuous curve was optimally fitted to the Topex altimetry data within the period 1998 to 2006. To find the salient points within this period of time, the points of inflections of the fitted curve is computed using a second derivative approach. The water volume was also computed using 16 cloud free Landsat images of the Lake within the periods of 1998 to 2006. In the first stage of the water volume calculation, the pixels of the Lake were segmented using the Automated Water Extraction Index (AWEI) and the shorelines of the Lake were extracted by a boundary detecting operator using the generated binary image of the Lake surface. The water volume fluctuation rate was then computed under the assumption that the two successive Lake surfaces and their corresponding water level differences demonstrate approximately a truncated pyramid. The analysis of the water level fluctuation rates were further extended by a sinusoidal curve fitted to the Topex altimetry data. This curve was intended to model the seasonal fluctuations of the water level. In the final stage of this article, the correlation between the fluctuation rates and the precipitation and temperature variations were also numerically determined. This paper reports in some details the stages mentioned above.

  13. Embryotoxicity of an extract from Great Lakes lake trout to rainbow trout and lake trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, P.J.; Tillitt, D.E.

    1995-12-31

    Aquatic ecosystems such as the Great Lakes are known to be contaminated with chemicals that are toxic to fish. However, the role of these contaminants in reproductive failures of fishes, such as lake trout recruitment, has remained controvertible. It was the objective to evaluate dioxin-like embryotoxicity of a complex mixture of chemicals and predict their potential to cause the lack of recruitment in Great Lakes lake trout. Graded doses of a complex environmental extract were injected into eggs of both rainbow trout and lake trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988.more » The extract was embryotoxic in rainbow trout, with LD50 values for Arlee strain and Erwin strain of 33 eggEQ and 14 eggEQ respectively. The LOAEL for hemorrhaging, yolk-sac edema, and craniofacial deformities in rainbow trout were 2, 2, and 4 eggEQ, respectively. Subsequent injections of the extract into lake trout eggs were likewise embryotoxic, with an LD50 value of 7 eggEQ. The LOAEL values for the extract in lake trout for hemorrhaging, yolk-sac edema, and craniofacial deformities were 0.1, 1, and 2 eggEQ, respectively. The current levels of contaminants in lake trout eggs are above the threshold for hemorrhaging and yolk-sac edema. The results also support the use of an additive model of toxicity to quantify PCDDs, PCDFs, Non-o-PCBs, and Mono-o-PCBs in relation to early life stage mortality in Lake Michigan lake trout.« less

  14. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loope, D.B.; Swinehart, J.B.

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of themore » dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.« less

  15. Heat loss and drag of spherical drop tube samples

    NASA Technical Reports Server (NTRS)

    Wallace, D. B.

    1982-01-01

    Analysis techniques for three aspects of the performance of the NASA/MSFC 32 meter drop tube are considered. Heat loss through the support wire in a pendant drop sample, temperature history of a drop falling through the drop tube when the tube is filled with helium gas at various pressures, and drag and resulting g-levels experienced by a drop falling through the tube when the tube is filled with helium gas at various pressures are addressed. The developed methods apply to systems with sufficiently small Knudsen numbers for which continuum theory may be applied. Sample results are presented, using niobium drops, to indicate the magnitudes of the effects. Helium gas at one atmosphere pressure can approximately double the amount of possible undercooling but it results in an apparent gravity levels of up to 0.1 g.

  16. Undercooling of acoustically levitated molten drops

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.; Glicksman, M. E.

    1990-01-01

    It was observed that the acoustically levitated molten SCN (succinonitrile) drops can generally be undercooled to a degree where the impurities in the drop are responsible for the nucleation of the solid phase. However, it was also observed that ultrasound occasionally terminates undercooling of the levitated drops by initiating the nucleation of the solid at an undercooling level which is lower than that found for the nucleation catalyzed by the impurities in the drop. This premature nucleation can be explained by thermodynamic considerations which predict an increase in effective undercooling of the liquid upon the collapse of cavities. Pre-existing gas microbubbles which grow under the influence of ultrasound are suggested as the source of cavitation. The highly undercooled SCN drops can be utilized to measure the growth velocity of the solid in the deeply undercooled region including the hypercooled region.

  17. Banks Lake Fishery Evaluation Project Annual Report : Fiscal Year 2008 (March 1, 2008 to February 1, 2009).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polacek, Matt

    2009-07-15

    The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration, and continued project tasks in 2008. The objective was to evaluate factors that could limit kokanee in Banks Lake, including water quality, prey availability, harvest, and acute predation during hatchery releases. Water quality parameters were collected twice monthly from March through November. Banks Lake water temperatures began to increase in May and stratification was apparent by July. By late August, the thermocline had dropped to 15 meters deep, with temperatures of 21-23 C in themore » epilimnion and 16-19 C in the hypolimnion. Dissolved oxygen levels were generally above 8 mg/L until August when they dropped near or below 5 mg/L deeper than 20-meters. Secchi depths ranged from 3.2 to 6.2 meters and varied spatially and temporally. Daphnia and copepod densities were the highest in May and June, reaching densities of 26 copepods/liter and 9 Daphnia/liter. Fish surveys were conducted in July and October 2008 using boat electrofishing, gill netting, and hydroacoustic surveys. Lake whitefish (71%) and yellow perch (16%) dominated the limnetic fish assemblage in the summer, while lake whitefish (46%) and walleye (22%) were the most abundant in gill net catch during the fall survey. Piscivore diets switched from crayfish prior to the release of rainbow trout to crayfish and rainbow trout following the release. The highest angling pressure occurred in May, when anglers were primarily targeting walleye and smallmouth bass. Boat anglers utilized Steamboat State Park more frequently than any other boat ramp on Banks Lake. Shore anglers used the rock jetty at Coulee City Park 45% of the time, with highest use occurring from November through April. Ice fishing occurred in January and February at the south end of the lake. An estimated total of 4,397 smallmouth bass, 11,106 walleye, 371

  18. Levels and potential sources of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (DecaBDE) in lake and marine sediments in Sweden.

    PubMed

    Ricklund, Niklas; Kierkegaard, Amelie; McLachlan, Michael S

    2010-03-15

    Decabromodiphenyl ethane (DBDPE) is a brominated flame retardant (BFR) used as a replacement for the structurally similar decabromodiphenyl ether (decaBDE), which is a regulated environmental contaminant of concern. DBDPE has been found in indoor dust, sewage sludge, sediment, and biota, but little is known about its occurrence and distribution in the environment In this paper, sediment was analyzed from 11 isolated Swedish lakes and along a transect running from central Stockholm through the Stockholm archipelago to the Baltic Sea. DBDPE was present in all samples. In lake sediment, the levels ranged from 0.23 to 11 ng/g d.wt. and were very similar to the levels of decaBDE (0.48-11 ng/g d.wt.). Since the lakes have no known point sources of BFRs, their presence in the sediments provides evidence for long-range atmospheric transport and deposition. In the marine sediment, the DBDPE and decaBDE levels decreased by a factor of 20-50 over 40 km from the inner harbor to the outer archipelago. There the DBDPE and decaBDE levels were similar to the levels in nearby isolated lakes. The results indicate that contamination of the Swedish environment with DBDPE has already approached that of decaBDE, and that this contamination is primarily occurring via the atmosphere.

  19. Internal Flows in Free Drops (IFFD)

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Sadhal, Satwindar S.; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Within the framework of an Earth-based research task investigating the internal flows within freely levitated drops, a low-gravity technology development experiment has been designed and carried out within the NASA Glovebox facility during the STS-83 and STS-94 Shuttle flights (MSL-1 mission). The goal was narrowly defined as the assessment of the capabilities of a resonant single-axis ultrasonic levitator to stably position free drops in the Shuttle environment with a precision required for the detailed measurement of internal flows. The results of this entirely crew-operated investigation indicate that the approach is fundamentally sound, but also that the ultimate stability of the positioning is highly dependent on the residual acceleration characteristic of the Spacecraft, and to a certain extent, on the initial drop deployment of the drop. The principal results are: the measured dependence of the residual drop rotation and equilibrium drop shape on the ultrasonic power level, the experimental evaluation of the typical drop translational stability in a realistic low-gravity environment, and the semi-quantitative evaluation of background internal flows within quasi-isothermal drops. Based on these results, we conclude that the successful design of a full-scale Microgravity experiment is possible, and would allow accurate the measurement of thermocapillary flows within transparent drops. The need has been demonstrated, however, for the capability for accurately deploying the drop, for a quiescent environment, and for precise mechanical adjustments of the levitator.

  20. Microplastics in Taihu Lake, China.

    PubMed

    Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-09-01

    In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Modeling CO 2 emissions from Arctic lakes: Model development and site-level study

    DOE PAGES

    Tan, Zeli; Zhuang, Qianlai; Shurpali, Narasinha J.; ...

    2017-09-14

    Recent studies indicated that Arctic lakes play an important role in receiving, processing, and storing organic carbon exported from terrestrial ecosystems. To quantify the contribution of Arctic lakes to the global carbon cycle, we developed a one-dimensional process-based Arctic Lake Biogeochemistry Model (ALBM) that explicitly simulates the dynamics of organic and inorganic carbon in Arctic lakes. By realistically modeling water mixing, carbon biogeochemistry, and permafrost carbon loading, the model can reproduce the seasonal variability of CO 2 fluxes from the study Arctic lakes. The simulated area-weighted CO 2 fluxes from yedoma thermokarst lakes, nonyedoma thermokarst lakes, and glacial lakes aremore » 29.5, 13.0, and 21.4 g C m -2 yr -1, respectively, close to the observed values (31.2, 17.2, and 16.5 ± 7.7 g C m -2 yr -1, respectively). The simulations show that the high CO 2 fluxes from yedoma thermokarst lakes are stimulated by the biomineralization of mobilized labile organic carbon from thawing yedoma permafrost. The simulations also imply that the relative contribution of glacial lakes to the global carbon cycle could be the largest because of their much larger surface area and high biomineralization and carbon loading. According to the model, sunlight-induced organic carbon degradation is more important for shallow nonyedoma thermokarst lakes but its overall contribution to the global carbon cycle could be limited. Overall, the ALBM can simulate the whole-lake carbon balance of Arctic lakes, a difficult task for field and laboratory experiments and other biogeochemistry models.« less

  2. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    NASA Astrophysics Data System (ADS)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  3. Glacial lake inventory and lake outburst potential in Uzbekistan.

    PubMed

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Investigating the Spatial Trends in the Level of Organic Contaminants in the Ethiopian Rift Valley Lakes Using Semipermeable Membrane Devices.

    PubMed

    Deribe, Ermias

    2018-05-21

    Organic pollutants in the Ethiopian Rift Valley Lakes are the major factors that contribute to severe environmental problem. SPMDs were deployed for the analysis of selected organic pollutants for 1 month at 2 sites in Lakes Hawassa, Ziway and Koka, Ethiopia. From SPMDs placed in the three lakes, the predominant OCPs were DDT which comprise 67% and followed by endosulfan 23% of the total organochlorine pesticides (OCPs) retrieved. The highest level of OCPs, in general, was found in the SPMDs deployed in Lake Ziway with the mean concentration of 308.5 ng/SPMD. However, the concentrations of polychlorinated biphenyls (PCBs) were the highest in the SPMDs deployed in Lake Hawassa with mean concentration of 50.2 ng/SPMD. Spatial variation on the accumulation of OCPs and PCBs among the lakes depends on the shoreline activities, distance of the lakes from point and non-point sources, and the biofouling factors.

  5. Reeling in the damages: Harmful algal blooms' impact on Lake Erie's recreational fishing industry.

    PubMed

    Wolf, David; Georgic, Will; Klaiber, H Allen

    2017-09-01

    Lake Erie is one of the most valuable natural resources in the United States, providing billions of dollars in benefits each year to recreationalists, homeowners and local governments. The ecosystem services provided by Lake Erie, however, are under threat due to harmful algal blooms. This paper provides recreational damage estimates using spatially and temporally varying algae measures and monthly fishing permit sales collected between 2011 and 2014. Results indicate that fishing license sales drop between 10% and 13% when algal conditions surpass the World Health's Organization's moderate health risk advisory threshold of 20,000 cyanobacteria cells/mL. For Lake Erie adjacent counties experiencing a large, summer-long algal bloom, this would result in approximately 3600 fewer fishing licenses issued and approximately $2.25 million to $5.58 million in lost fishing expenditures. Our results show a discrete jump in reduced angling activity upon crossing this threshold, with limited additional impacts associated with more severe algal blooms. This suggests that policies aimed at eliminating, rather than mitigating, algal levels are most beneficial to the Ohio angling industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. On the rising motion of a drop in stratified fluids

    NASA Astrophysics Data System (ADS)

    Bayareh, M.; Doostmohammadi, A.; Dabiri, S.; Ardekani, A. M.

    2013-10-01

    The rising dynamics of a deformable drop in a linearly stratified fluid is numerically obtained using a finite-volume/front-tracking method. Our results show that the drag coefficient of a spherical drop in a stratified fluid enhances as C_{d,s}/C_{d,h}-1˜ Fr_d^{-2.86} for drop Froude numbers in the range of 4 < Frd < 16. The role of the deformability of the drop on the temporal evolution of the motion is investigated along with stratification and inertial effects. We also present the important role of stratification on the transient rising motion of the drop. It is shown that a drop can levitate in the presence of a vertical density gradient. The drop undergoes a fading oscillatory motion around its neutrally buoyant position except for high viscosity ratio drops where the oscillation occurs around a density level lighter than the neutral buoyancy level. In addition, a detailed characterization of the flow signature of a rising drop in a linearly stratified fluid including the buoyancy induced vortices and the resultant buoyant jet is presented.

  7. Duration and severity of Medieval drought in the Lake Tahoe Basin

    USGS Publications Warehouse

    Kleppe, J.A.; Brothers, D.S.; Kent, G.M.; Biondi, F.; Jensen, S.; Driscoll, N.W.

    2011-01-01

    Droughts in the western U.S. in the past 200 years are small compared to several megadroughts that occurred during Medieval times. We reconstruct duration and magnitude of extreme droughts in the northern Sierra Nevada from hydroclimatic conditions in Fallen Leaf Lake, California. Stands of submerged trees rooted in situ below the lake surface were imaged with sidescan sonar and radiocarbon analysis yields an age estimate of ∼1250 AD. Tree-ring records and submerged paleoshoreline geomorphology suggest a Medieval low-stand of Fallen Leaf Lake lasted more than 220 years. Over eighty more trees were found lying on the lake floor at various elevations above the paleoshoreline. Water-balance calculations suggest annual precipitation was less than 60% normal from late 10th century to early 13th century AD. Hence, the lake’s shoreline dropped 40–60 m below its modern elevation. Stands of pre-Medieval trees in this lake and in Lake Tahoe suggest the region experienced severe drought at least every 650–1150 years during the mid- and late-Holocene. These observations quantify paleo-precipitation and recurrence of prolonged drought in the northern Sierra Nevada.

  8. A Digital 3D-Reconstruction of the Younger Dryas Baltic Ice Lake

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Alm, G.; Bjorck, S.; Lindeberg, G.; Svensson, N.

    2005-12-01

    A digital 3D-reconstruction of the final stage of the ice dammed Baltic Ice Lake (BIL), dated to the very end of the Younger Dryas cold period (ca. 11 600 cal. yr BP) has been compiled using a combined bathymetric-topographic Digital Terrain Model (DTM), Scandinavian ice sheet limits, Baltic Sea Holocene bottom sediment thickness information, and a paleoshoreline database maintained at the Lund University. The combined bathymetric-topographic Digital Terrain Model (DTM) model used to reconstruct the ice dammed lake was compiled specifically for this study from publicly available data sets. The final DTM is in the form of a digital grid on Lamberts Equal Area projection with a resolution of 500 x 500 m, which permits a much more detailed reconstruction of the BIL than previously made. The lake was constructed through a series of experiments where mathematical algorithms were applied to fit the paleolake's surface through the shoreline database. The accumulated Holocene bottom sediments in the Baltic Sea were subsequently subtracted from the present bathymetry in our reconstruction. This allows us to estimate the Baltic Ice Lake's paleobathymetry, area, volume, and hypsometry, which will comprise key input data to lake/climate modeling exercises following this study. The Scandinavian ice sheet margin eventually retreated north of Mount Billingen, which was the high point in terrain of Southern central Sweden bordering to lower terrain further to the North. As a consequence, the BIL was catastrophically drained through this area, resulting in a 25 m drop of the lake level. With our digital BIL model we estimate that approximately 7, 800 km3 of water drained during this event and that the ice dammed lake area was reduced with ca 18 percent. The digital BIL reconstruction is analyzed using 3D-visualization techniques that provide new detailed information on the paleogeography in the area, both before and after the lake drainage, with implications for interpretations of

  9. Fish remains from Homestead Cave and lake levels of the past 13,000 years in the Bonneville basin

    USGS Publications Warehouse

    Broughton, J.M.; Madsen, D.B.; Quade, Jay

    2000-01-01

    A late Quaternary ichthyofauna from Homestead Cave, Utah, provides a new source of information on lake history in the Bonneville basin. The fish, represented by 11 freshwater species, were accumulated between ~11,200 and ~1000 14C yr B.P. by scavenging owls. The 87Sr/86Sr ratio of Lake Bonneville varied with its elevation; 87Sr/86Sr values of fish from the lowest stratum of the cave suggest they grew in a lake near the terminal Pleistocene Gilbert shoreline. In the lowest deposits, a decrease in fish size and an increase in species tolerant of higher salinities or temperatures suggest multiple die-offs associated with declining lake levels. An initial, catastrophic, post-Provo die-off occurred at 11,300-11,200 14C yr B.P. and was followed by at least one rebound or recolonization of fish populations, but fish were gone from Lake Bonneville sometime before ~10,400 14C yr B.P. This evidence is inconsistent with previous inferences of a near desiccation of Lake Bonneville between 13,000 and 12,000 14C yr B.P. Peaks in Gila atraria frequencies in the upper strata suggest the Great Salt Lake had highstands at ~3400 and ~1000 14C yr B.P. (C) 2000 University of Washington.

  10. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dessie, Mekete; Verhoest, Niko E. C.; Pauwels, Valentijn R. N.; Adgo, Enyew; Deckers, Jozef; Poesen, Jean; Nyssen, Jan

    2015-03-01

    Lakes are very important components of the earth's hydrological cycle, providing a variety of services for humans and ecosystem functioning. For a sustainable use of lakes, a substantial body of knowledge on their water balance is vital. We present here a detailed daily water balance analysis for Lake Tana, the largest lake in Ethiopia and the source of the Blue Nile. Rainfall on the lake is determined by Thiessen polygon procedure, open water evaporation is estimated by the Penman-combination equation and observed inflows for the gauged catchments as well as outflow data at the two lake outlets are directly used. Runoff from ungauged catchments is estimated using a simple rainfall-runoff model and runoff coefficients. Hillslope catchments and floodplains are treated separately, which makes this study unique compared to previous water balance studies. Impact of the floodplain on the lake water balance is analyzed by conducting scenario-based studies. We found an average yearly abstraction of 420 × 106 m3 or 6% of river inflows to the lake by the floodplain in 2012 and 2013. Nearly 60% of the inflow to the lake is from the Gilgel Abay River. Simulated lake levels compare well with the observed lake levels (R2 = 0.95) and the water balance can be closed with a closure error of 82 mm/year (3.5% of the total lake inflow). This study demonstrates the importance of floodplains and their influence on the water balance of the lake and the need of incorporating the effects of floodplains and water abstraction for irrigation to improve predictions.

  11. A previously unrecognized path of early Holocene base flow and elevated discharge from Lake Minong to Lake Chippewa across eastern Upper Michigan

    USGS Publications Warehouse

    Loope, Walter L.; Jol, Harry M.; Fisher, Timothy G.; Blewett, William L.; Loope, Henry M.; Legg, Robert J.

    2014-01-01

    It has long been hypothesized that flux of fresh meltwater from glacial Lake Minong in North America's Superior Basin to the North Atlantic Ocean triggered rapid climatic shifts during the early Holocene. The spatial context of recent support for this idea demands a reevaluation of the exit point of meltwater from the Superior Basin. We used ground penetrating radar (GPR), foundation borings from six highway bridges, a GIS model of surface topography, geologic maps, U.S. Department of Agriculture–Natural Resources Conservation Service soils maps, and well logs to investigate the possible linkage of Lake Minong with Lake Chippewa in the Lake Michigan Basin across eastern Upper Michigan. GPR suggests that a connecting channel lies buried beneath the present interlake divide at Danaher. A single optical age hints that the channel aggraded to 225 m as elevated receipt of Lake Agassiz meltwater in the Superior Basin began to wane <10.6 ka. The large supply of sediment required to accommodate aggradation was immediately available at the channel's edge in the littoral shelves of abandoned Lake Algonquin and in distal parts of post-Algonquin fans. As discharge decreased further, the aggraded channel floor was quickly breached and interbasin flow to Lake Chippewa was restored. Basal radiocarbon ages on wood from small lakes along the discharge path and a GIS model of Minong's shoreline are consistent with another transgression of Minong after ca. 9.5 ka. At the peak of the latter transgression, the southeastern rim of the Superior Basin (Nadoway Drift Barrier) failed, ending Lake Minong. Upon Minong's final drop, aggradational sediments were deposited at Danaher, infilling the prior breach.

  12. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    USGS Publications Warehouse

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  13. Hydrology of Lake Butler, Orange County, Florida

    USGS Publications Warehouse

    Smoot, James L.; Schiffer, Donna M.

    1984-01-01

    Lake Butler is one of the lakes that collectively make up the Butler chain of lakes in the headwaters of the Kissimmee River, Florida. The bottom configuration of the lake is typical of relict karst features formed during lower stages in sea level. The top of the Floridan aquifer is 50 to 100 feet below the land surface. The drainage area of Lake Butler is approximately 14.5 sq mi and is comprised of sub-basins of other lakes in the vicinity. Surface outflow from Lake Butler is generally southward to Cypress Creek, a tributary of the Kissimmee River. The extremes in lake stage for the period 1933-81 are 94.67 ft on June 23, 1981 and 101.78 ft on September 13, 1960. The median lake stage for this period was 99.28 ft above sea level. The quality of water in Lake Butler is excellent, based on studies of physical, chemical, and biological conditions by the Orange County Pollution Control Department. The lake water is slightly acidic and soft (48 mg/L hardness as calcium carbonate). Pesticides in water were below detection levels at two sites sampled in the lake, but were detected in the bottom sediments. (USGS)

  14. Progress toward lake trout restoration in Lake Michigan

    USGS Publications Warehouse

    Holey, Mark E.; Rybicki, Ronald W.; Eck, Gary W.; Brown, Edward H.; Marsden, J. Ellen; Lavis, Dennis S.; Toneys, Michael L.; Trudeau, Tom N.; Horrall, Ross M.

    1995-01-01

    Progress toward lake trout restoration in Lake Michigan is described through 1993. Extinction of the native lake trout fishery by sea lamprey predation, augmented by exploitation and habitat destruction, resulted in an extensive stocking program of hatchery-reared lake trout that began in 1965. Sea lamprey abundance was effectively controlled using selective chemical toxicants. The initial stocking produced a measurable wild year class of lake trout by 1976 in Grand Traverse Bay, but failed to continue probably due to excessive exploitation. The overall lack of successful reproduction lakewide by the late 1970s led to the development and implementation in 1985 of a focused inter-agency lakewide restoration plan by a technical committee created through the Lake Committee structure of the Great Lakes Fishery Commission. Strategies implemented in 1985 by the plan included setting a 40% total mortality goal lakewide, creating two large refuges designed to encompass historically the most productive spawning habitat and protect trout stocked over their home range, evaluating several lake trout strains, and setting stocking priorities throughout the lake. Target levels for stocking in the 1985 Plan have never been reached, and are much less than the estimated lakewide recruitment of yearlings by the native lake trout stocks. Since 1985, over 90% of the available lake trout have been stocked over the best spawning habitat, and colonization of the historically productive offshore reefs has occurred. Concentrations of spawning lake trout large enough for successful reproduction, based on observations of successful hatchery and wild stocks, have developed at specific reefs. Continued lack of recruitment at these specific sites suggests that something other than stotk abundance has limited success. Poor survival of lake trout eggs, assumed to be related to contaminant burden, occurred in the late 1970s and early 1980s, but survival has since increased to equal survival in the

  15. Characterization of microbial populations across geochemical and lithological boundaries in urban lake sediments under environmental change in Minneapolis-St. Paul

    NASA Astrophysics Data System (ADS)

    Gilbertson, M.; Harrison, B. K.; Flood, B. E.; Myrbo, A.; Bailey, J. V.

    2013-12-01

    The characterization of microbial communities within urban lake sediments may offer a promising method to observe changes in lake geochemistry due to human impact. By mapping the abundances and diversity of microorganisms through the uppermost meter of sediment in three distinctive Minneapolis-St. Paul lakes (Brownie Lake and Twin Lake, both meromictic, and oligomictic Lake McCarrons) using 16S rRNA characterization, our aim was to observe changes in microbial populations across steep geochemical and lithological gradients. Lake McCarrons underwent a process of eutrophication and a shift to bottom water anoxia beginning around 1910 due mostly to agricultural run-off. This shift greatly increased the preservation potential of seasonal sedimentation and finely laminated varve accumulation. The onset of meromixis in Brownie Lake in ~1915 is abrupt and has been attributed to a sudden drop in water level. Twin Lake is perennially meromictic due to the topography of the watershed. The three lakes were sampled by collecting freeze cores in July, 2012 (McCarrons, Brownie) and February, 2013 (Twin) at the deepest locations beneath anoxic to hypoxic bottom waters. The cores were then subsampled with high resolution techniques at places of interest: within individual lamina, across mass flow deposits, and near the onset of laminae preservation (beginning of oxygen-depleted bottom waters). Terminal Restriction Fragment Length Polymorphism (T-RFLP) allows for comparison of the microbial assemblages throughout the sediment columns of each lake and from lake to lake, with a focus on the horizons mentioned previously. The microbial assemblages present in specific horizons are often introduced via sedimentation and are partially derived from community composition at the time of sedimentation. T-RFLP analyses are complemented by mineralogical and lithological descriptions. The lakes have each been subject to their own set of variables and inputs. Brownie Lake contains high levels of

  16. Geohydrology of the lowland lakes area, Anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester

    1976-01-01

    Unconsolidated deposits, chiefly of glacial origin, make up the surficial geologic materials in the Anchorage lowland lakes area , the western part of the Anchorage glacial outwash plain. Postglacial accumulation of peat, commonly 5 to 10 feet thick, and the presence of ground water at or very near the surface combine to create the swamp-muskeg terrane of much of the area. Deeper, confined ground water is also present beneath thick silt and clay layers that underlie the surficial deposits. Domestic water supply for the lowland lakes area is provided largely by public-supply wells completed in the deep, confined aquifers. No large perennial streams traverse the area, thus streamflow is not a major parameter in the area 's natural water balance. The major uses of surface water are recreational, including fishing and boating at several of the larger lakes, and private and commercial aircraft operations at Hood-Spenard Lakes floatplane base. The hydrology and water balance of these lakes is complex. Water levels in some lakes appear to be closely related to adjacent ground-water levels. Other lakes are evidently perched above the local water table. The relation of lake level to adjacent ground-water level may vary along the shoreline of a single lake. The effect of residential development practices on lake basin water balance is not completely understood. At Sand Lake, the largest lake in this area of rapid urbanization, the water level has declined about 6 feet since the early 1960's. (Woodard-USGS)

  17. Late Holocene Lake Level Fluctuations at Laguna Arapa, Peru and Connections to Human Demography

    NASA Astrophysics Data System (ADS)

    Hillman, A. L.; Abbott, M. B.; Werne, J. P.; Arkush, E.; Thompson, L. G.; Ferland, T.; Holmes, E.; Puhnaty, C.; Woods, A.

    2016-12-01

    The relationship between variations in hydroclimate and human demography on the Peruvian Altiplano has significant implications for understanding how people in the past have adapted to changes in freshwater resources. To investigate these human-environmental interactions, this project presents a 2,000 year sediment record from Laguna Arapa, a large lake that is <20 km NW of Lake Titicaca. Using sedimentology and stratigraphy as well as a suite of organic geochemical proxies including fecal 5β-stanols and leaf waxes (long chain n-alkanoic acids), we aim to tie together proxies of human population with indicators of regional hydroclimate. Preliminary results of sedimentology and stratigraphy show notable transitions from sand to silt to clay, suggesting rising lake level sequences at 500 and 700 AD. The last 1,300 years of sediment are characterized by alternating layers of organic rich material with abundant charcoal and black inorganic clay, suggesting intermittent periods of aridity and/or anthropogenic fire-setting. These layers are particularly frequent during the Medieval Climate Anomaly, which was characterized by dry and warm conditions. These results agree well with other records of hydroclimate from regional lakes as well as accumulation rate and temperature from the Quelccaya ice cap. Organic geochemical work is currently in progress and shows promise for linking together proxies of human demography with hydroclimate to understand the relationship between human settlement and climate change.

  18. The biological pump and lower trophic level controls on carbon cycling in Lake Superior: Insights from a multi-pronged study

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Bramburger, A.; Ozersky, T.; Sheik, C.; Steinman, B. A.

    2016-02-01

    Lake Superior is the largest freshwater lake in the world, supporting economically important fisheries and providing drinking water to hundreds of thousands of people. In recent decades, summer surface water temperature and the intensity and duration of water column stratification in the lake has increased steadily. These physical changes have resulted in significant perturbations to lower trophic level ecosystem characteristics. Recent observations of Great Lakes plankton assemblages have revealed multi-decadal patterns of community reorganization, with increased relative abundance of taxa characteristic of warmer waters. These changes, coupled with changing nutrient concentrations and colonization by non-native taxa, threaten to shift trophic structure and carbon dynamics at the bottom of the food web. To this end, this study seeks to quantify the impacts of this ecosystem shift on carbon fixation, the biological pump, and organic carbon cycling in Lake Superior. Utilizing a combined sampling approach, in the summer of 2015 we collected water, sediment, and biological samples across a nearshore-to-offshore gradient in the western arm of Lake Superior. Analyses included the community composition of bacteria, archaea, phytoplankton, and zooplankton; water column carbon and nutrient speciation; algal pigments and pigment degradation products; and net primary productivity. The collection of surface sediments allowed for additional assessment of benthic-pelagic coupling. The novel combination of this wide-ranging set of analyses to a locally and globally important water body like Lake Superior allowed us to fully assess the interactions between lower trophic level biology and carbon and nutrient cycling throughout the water column. Preliminary data indicates that microbial community composition was variable across the western arm of Lake Superior and showed signs of stratification at individual stations (>100 m deep). Sample collection occurred soon after lake

  19. Wave Height and Water Level Variability on Lakes Michigan and St Clair

    DTIC Science & Technology

    2012-10-01

    Observations: http://www.ssec.wisc.edu/sose/glwx_activity.html 4. NASA Atlas of Extratropical Storm Tracks: http://data.giss.nasa.gov/stormtracks...term meteorological, ice, wave, and water level measurements. 15. SUBJECT TERMS Base flood elevation Coastal flood Extratropical storms Great...Box 1027 Detroit, MI 48231-1027 ERDC/CHL TR-12-23 ii Abstract The Great Lakes are subject to coastal flooding as a result of severe storms

  20. High-levels of microplastic pollution in a large, remote, mountain lake.

    PubMed

    Free, Christopher M; Jensen, Olaf P; Mason, Sherri A; Eriksen, Marcus; Williamson, Nicholas J; Boldgiv, Bazartseren

    2014-08-15

    Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia. With an average microplastic density of 20,264 particles km(-2), Lake Hovsgol is more heavily polluted with microplastics than the more developed Lakes Huron and Superior in the Laurentian Great Lakes. Fragments and films were the most abundant microplastic types; no plastic microbeads and few pellets were observed. Household plastics dominated the shoreline debris and were comprised largely of plastic bottles, fishing gear, and bags. Microplastic density decreased with distance from the southwestern shore, the most populated and accessible section of the park, and was distributed by the prevailing winds. These results demonstrate that without proper waste management, low-density populations can heavily pollute freshwater systems with consumer plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. High impact mass drops from helicopter: A new active seismic source method applied in an active volcanic setting

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Chardot, L.; Neuberg, J.; Fournier, N.; Scott, B. J.; Sherburn, S.

    2012-06-01

    We obtain estimates of the seismic velocity and attenuation for White Island volcano by use of high-impact sand-bag drops from helicopter. Three drops were attempted, two at either end of a 6-station linear array within the crater floor, and the third in the volcano's crater lake. The bags were dropped from ˜310-380 m height and contained ˜700 kg of sand. The impact velocity was estimated at ˜60-70 m/s yielding a kinetic energy of about 106 Nm, giving P-wave onsets to a distance of ˜1 km. We obtained a seismic velocity estimate of Vp = 1.2 km/s for the unconsolidated crater floor and Vp = 2.2 km/s for rays traversing through consolidated rock outside the crater. Attenuation was very strong (Q < 10) for both consolidated and unconsolidated parts of the volcano. This trial shows that low cost helicopter mass drops can be successfully applied to safely determine sub-surface properties at hazardous volcanoes.

  2. Treating floodplain lakes of large rivers as study units for variables that vary within lakes; an evaluation using chlorophyll a and inorganic suspended solids data from floodplain lakes of the Upper Mississippi River

    USGS Publications Warehouse

    Gray, B.R.; Rogala, J.R.; Houser, J.N.

    2013-01-01

    Contiguous floodplain lakes ('lakes') have historically been used as study units for comparative studies of limnological variables that vary within lakes. The hierarchical nature of these studies implies that study variables may be correlated within lakes and that covariate associations may differ not only among lakes but also by spatial scale. We evaluated the utility of treating lakes as study units for limnological variables that vary within lakes based on the criteria of important levels of among-lake variation in study variables and the observation of covariate associations that vary among lakes. These concerns were selected, respectively, to ensure that lake signatures were distinguishable from within-lake variation and that lake-scale effects on covariate associations might provide inferences not available by ignoring those effects. Study data represented chlorophyll a (CHL) and inorganic suspended solids (ISS) data from lakes within three reaches of the Upper Mississippi River. Sampling occurred in summer from 1993 through 2005 (except 2003); numbers of lakes per reach varied from 7 to 19, and median lake area varied from 53 to 101 ha. CHL and ISS levels were modelled linearly, with lake, year and lake x year effects treated as random. For all reaches, the proportions of variation in CHL and ISS attributable to differences among lakes (including lake and lake x year effects) were substantial (range: 18%-73%). Finally, among-lake variation in CHL and ISS was strongly associated with covariates and covariate effects that varied by lakes or lake-years (including with vegetation levels and, for CHL, log(ISS)). These findings demonstrate the utility of treating floodplain lakes as study units for the study of limnological variables and the importance of addressing hierarchy within study designs when making inferences from data collected within floodplain lakes.

  3. Is Lake Chabot Eutrophic?

    NASA Astrophysics Data System (ADS)

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    Introduction/Abstract: Lake Chabot is an integral part of the East Bay watershed that provides habitats for animals and recreation for humans year-round. Lake Chabot has been in danger of eutrophication due to excessive dumping of phosphorous and nitrogen into the water from the fertilizers of nearby golf courses and neighboring houses. If the lake turned out to be eutrophified, it could seriously impact what is currently the standby emergency water supply for many Castro Valley residents. Eutrophication is the excessive richness of nutrients such as nitrogen and phosphorus in a lake, usually as a result of runoff. This buildup of nutrients causes algal blooms. The algae uses up most of the oxygen in the water, and when it dies, it causes the lake to hypoxify. The fish in the lake can't breathe, and consequently suffocate. Other oxygen-dependant aquatic creatures die off as well. Needless to say, the eutrophication of a lake is bad news for the wildlife that lives in or around it. The level of eutrophication in our area in Northern California tends to increase during the late spring/early summer months, so our crew went out and took samples of Lake Chabot on June 2. We focused on the area of the lake where the water enters, known on the map as Honker Bay. We also took readings a ways down in deeper water for comparison's sake. Visually, the lake looked in bad shape. The water was a murky green that glimmered with particulate matter that swirled around the boat as we went by. In the Honker Bay region where we focused our testing, there were reeds bathed in algae that coated the surface of the lake in thick, swirling patterns. Surprisingly enough, however, our test results didn't reveal any extreme levels of phosphorous or nitrogen. They were slightly higher than usual, but not by any significant amount. The levels we found were high enough to stimulate plant and algae growth and promote eutrophication, but not enough to do any severe damage. After a briefing with a

  4. Using high hydraulic conductivity nodes to simulate seepage lakes

    USGS Publications Warehouse

    Anderson, Mary P.; Hunt, Randall J.; Krohelski, James T.; Chung, Kuopo

    2002-01-01

    In a typical ground water flow model, lakes are represented by specified head nodes requiring that lake levels be known a priori. To remove this limitation, previous researchers assigned high hydraulic conductivity (K) values to nodes that represent a lake, under the assumption that the simulated head at the nodes in the high-K zone accurately reflects lake level. The solution should also produce a constant water level across the lake. We developed a model of a simple hypothetical ground water/lake system to test whether solutions using high-K lake nodes are sensitive to the value of K selected to represent the lake. Results show that the larger the contrast between the K of the aquifer and the K of the lake nodes, the smaller the error tolerance required for the solution to converge. For our test problem, a contrast of three orders of magnitude produced a head difference across the lake of 0.005 m under a regional gradient of the order of 10−3 m/m, while a contrast of four orders of magnitude produced a head difference of 0.001 m. The high-K method was then used to simulate lake levels in Pretty Lake, Wisconsin. Results for both the hypothetical system and the application to Pretty Lake compared favorably with results using a lake package developed for MODFLOW (Merritt and Konikow 2000). While our results demonstrate that the high-K method accurately simulates lake levels, this method has more cumbersome postprocessing and longer run times than the same problem simulated using the lake package.

  5. THE CHALLENGE OF ACQUIRING ALPINE LARGE VOLUME LAKE WATER SAMPLES FOR ULTRA TRACE LEVEL ANALYSIS

    EPA Science Inventory

    The National Exposure Research Laboratory-Las Vegas, Nevada is interested in the emerging field technology of in-situ extraction of contaminants from surface water. A current research project involves ultra-trace level determination of agricultural pesticides from alpine lakes. T...

  6. Do water level fluctuations influence production of walleye and yellow perch young-of-the-year in large northern lakes?

    USGS Publications Warehouse

    Larson, James H.; Staples, David F.; Maki, Ryan P.; Vallazza, Jon M.; Knights, Brent C.; Peterson, Kevin E.

    2016-01-01

    Many ecological processes depend on the regular rise and fall of water levels (WLs), and artificial manipulations to WL regimes can impair important ecosystem services. Previous research has suggested that differences in WL between late summer and early spring may alter the suitability of shoals used by Walleyes Sander vitreus for spawning. Other species, such as the Yellow Perch Perca flavescens, are unlikely to be affected in the same way by WL fluctuations because their spawning requirements are quite different. We used 11–23 years of data from six northern Minnesota lakes to assess the effects of WL fluctuations on the abundances of young-of-the-year (age-0) Walleyes and Yellow Perch. In two lakes (Rainy Lake and Lake Kabetogama), a change in WL management occurred in 2000, after which these lakes saw increased age-0 Walleye abundance, while the other study lakes experienced decreases or no change. Rainy Lake and Lake Kabetogama also had increases in age-0 Yellow Perch, but another study lake did also. We used partial least-squares regression to assess whether WL metrics were associated with variation in age-0 Walleye and Yellow Perch abundances, but WL metrics were seldom associated with age-0 abundance for either species. Our analysis suggested a potential influence of WL regulation on age-0 Walleye abundance, but we found no evidence that early spring access to spawning shoals was the mechanism by which this occurred.

  7. The seismic-stratigraphic record of lake-level fluctuations in Lake Challa: Hydrological stability and change in equatorial East Africa over the last 140 kyr

    NASA Astrophysics Data System (ADS)

    Moernaut, J.; Verschuren, D.; Charlet, F.; Kristen, I.; Fagot, M.; De Batist, M.

    2010-02-01

    Seismic-reflection data from crater lake Challa (Mt. Kilimanjaro, equatorial East Africa) reveal a ˜ 210-m thick sedimentary infill containing distinct seismic-stratigraphic signatures of late-Quaternary lake-level fluctuations. Extrapolation of a well-constrained age model on the cored upper part of the sequence suggests that these lake-level fluctuations represent a detailed and continuous record of moisture-balance variation in equatorial East Africa over the last 140 kyr. This record indicates that the most severe aridity occurred during peak Penultimate glaciation immediately before ˜ 128 kyr BP (coeval with Heinrich event 11) and during a Last Interglacial 'megadrought' period between ˜ 114 and ˜ 97 kyr BP; in comparison, Last Glacial Maximum (LGM) aridity was modest. It was preceded by ˜ 75 000 years of relatively stable and moist climate conditions interrupted by eleven short-lived dry spells, five of which match the timing of Heinrich events 2 to 6. Climate history near the East African equator reflects variation in the precessional forcing of monsoon rainfall modulated by orbital eccentricity, but precession-driven moisture fluctuations were less extreme than those observed in northern and southern tropical Africa. The near-continuous moist climate from ˜ 97 to 20.5 kyr BP recorded in the Lake Challa record contrasts with the trend towards greater aridity after ˜ 70 kyr BP documented in equatorial West Africa. This long period of moist glacial climate and a short, relatively modest LGM drought can be attributed to greater independence of western Indian Ocean monsoon dynamics from northern high-latitude glaciation than those in the tropical Atlantic Ocean. This rather persistent moist glacial climate regime may have helped maintain high biodiversity in the tropical forest ecosystems of the Eastern Arc mountains in Tanzania.

  8. Hydrology of Crater, East and Davis Lakes, Oregon; with section on Chemistry of the Lakes

    USGS Publications Warehouse

    Phillips, Kenneth N.; Van Denburgh, A.S.

    1968-01-01

    Crater, East, and Davis Lakes are small bodies of fresh water that occupy topographically closed basins in Holocene volcanic terrane. Because the annual water supply exceeds annual evaporation, water must be lost by seepage from each lake. The seepage rates vary widely both in volume and in percentage of the total water supply. Crater Lake loses about 89 cfs (cubic feet per second), equivalent to about 72 percent of its average annual supply. East Lake loses about 2.3 cfs, or about 44 percent of its estimated supply. Davis Lake seepage varies greatly with lake level, but the average loss is about 150 cfs, more than 90 percent of its total supply. The destination of the seepage loss is not definitely known for any of the lakes. An approximate water budget was computed for stationary level for each lake, by using estimates 'by the writer to supplement the hydrologic data available. The three lake waters are dilute. Crater Lake contains about 80 ppm, (parts per million) of dissolved solids---mostly silica, sodium, and bicarbonate, and lesser amounts of calcium, sulfate, and chloride. Much of the dissolved-solids content of Crater Lake---especially the sulfate and chloride---may be related to fumarole and thermal-spring activity that presumably followed the collapse of Mount Mazama. Although Grater Lake loses an estimated 7,000 tons of its 1.5million-ton salt content each year by leakage, the chemical character of the lake did not change appreciably between 1912 and 1964. East Lake contains 200 ppm of dissolved solids, which includes major proportions of calcium, sodium, bicarbonate, and sulfate, but almost no chloride. The lake apparently receives much of its dissolved solids from subsurface thermal springs. Annual solute loss from East Lake by leakage is about 450 tons, or 3 percent of the lake's 15,000-ton estimated solute content. Davis Lake contains only 48 ppm of dissolved solids, much of which is silica and bicarbonate; chloride is almost completely absent

  9. Three-Dimensional Simulation of Avalanche-Generated Impulse Waves and Evaluation of Lake-Lowering Scenarios at Lake Palcacocha, Peru

    NASA Astrophysics Data System (ADS)

    Chisolm, R. E.; McKinney, D. C.

    2014-12-01

    Accelerated retreat of Andean glaciers in recent decades due to a warming climate has caused the emergence and growth of glacial lakes. As these lakes continue to grow, they pose an increasing risk of glacial lake outburst floods (GLOFs). GLOFs can be triggered by moraine failures or by avalanches, rockslides, or ice calving into glacial lakes. For many decades Lake Palcacocha in the Cordillera Blanca, Peru has threatened citizens living in the city of Huaraz which was devastated by a GLOF in 1941. A safety system for Lake Palcacocha was put in place in the 1970's to control the lake level, but the lake has since grown to the point where it is once again dangerous. Overhanging ice from the glaciers above and a relatively low freeboard make the lake vulnerable to avalanches and landslides. Lake Palcacocha is used as a case study to investigate the impact of an avalanche event on the lake dynamics. Three-dimensional lake modeling in the context of glacial hazards is not common, but 3D simulations can enhance our understanding of avalanche-generated impulse waves and their downstream impacts. In this work, a 3D hydrodynamic model is used to simulate the generation of an impulse wave from an avalanche falling into the lake, wave propagation, and overtopping of the terminal moraine. These results are used as inputs to a downstream model to predict the impact from a GLOF. As lowering the level of the lake is the most likely mitigation alternative, several scenarios are considered to evaluate the impact from avalanche events with a reduction in the lake level. The results of this work can be used to evaluate the effectiveness of the current lake management system and potential lake-lowering alternatives. Use of a robust 3D lake model enables more accurate predictions of peak flows during GLOF events and the time scales of these events so that mitigation strategies can be developed that reduce the risk to communities living downstream of hazardous lakes.

  10. Lake trout spawning habitat in the Six Fathom Bank-Yankee Reef lake trout sanctuary, Lake Huron

    USGS Publications Warehouse

    Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; Poe, Thomas P.

    1992-01-01

    Attempts to reestablish self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes, where the species was extinguished in the 1950s and 1960s, have been largely unsuccessful. To avoid many of the problems believed to be contributing to this failure, the fishery management community recently established several sanctuaries in the offshore waters of the Great Lakes where the development and protection of self-sustaining stocks of lake trout would be a primary management objective. One of these, the Six Fathom Bank-Yankee Reef sanctuary, was created in the south-central portion of Lake Huron. This sanctuary covers 168,000 ha and includes the shallower portions of the Six Fathom and Ipperwash scarps, which are major bathymetric features in the southern half of the lake. Historical accounts describe Six Fathom Bank as the most important lake trout spawning ground in the lake. Here we present the results of lake bed surveys conducted in the sanctuary with side-scan sonar, underwater videocamera systems, and a small research submarine. Our observations of the lake bed are consistent with what is known of the bedrock stratigraphy, glacial history, and karst geomorphology of the Lake Huron basin. Most of the loose rock we found seemed to be derived from local carbonate bedrock formations, although non-carbonate rock probably from Precambrian sources to the north was also present in some areas. Much of the bedrock and loose rock displayed karst solution features described for the Bruce Peninsula on the Ontario shoreline. Our surveys revealed substantial areas of lake bed at water depths of 20–36 m that resembled suitable spawning and fry production habitat for the shallow-water strains of lake trout that are the focus of the rehabilitation effort. Low mid-lake nutrient levels documented recently by others and the extremely high abundance of Mysis relicta (an important item in the diet of young lake trout) that we documented on Yankee Reef

  11. Ground Penetrating Radar, Magnetic and Compositional Analysis of Sediment Cores and Surface Samples: The Relationships Between Lacustrine Sediments and Holocene Lake- Level and Climate Change at Deming Lake, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Murray, R.; Lascu, I.; Plank, C.

    2007-12-01

    Deming Lake is a small (<1 square km), deep (about 17m), meromictic kettle lake situated near the prairie- forest boundary, in Itasca State Park, MN. Because of the lake's location and morphology, the accumulated sediments comprise a high-resolution record of limnological and ecological changes in response to Holocene climate variations. We used a shore perpendicular transect of three cores (located in littoral, mid-slope, and profundal settings) and ground penetrating radar (GPR) profiles to investigate Holocene lake-level variability at Deming. Cores were sampled continuously at a 1-2 cm resolution and sediment composition (in terms of percent organic matter, carbonate material, and minerogenic residue) was determined via loss on ignition (LOI). Isothermal remanent magnetization (IRM) and anhysteretic remanent magnetization (ARM) were used as proxies of magnetic mineral concentration and grain size. Four lithostratigraphic units were identified and correlated between cores based on these analyses. Changes in GPR facies corroborate the correlation between the two shallow cores. In order to inform our interpretation of down-core variations in magnetic properties and LOI values in terms of variations in lake depth, a suite of over 70 modern sediment samples were collected from the basin and analyzed. LOI compositional variability across the basin was high, with no clear trends related to depth or distance from shore. A sharp decrease in minerogenic content was observed at depths consistent with a predicted wave-base of 0.5 m, but aside from this trend it appears the steep slopes of much of the basin promote gravity driven slumping and mixing of sediments at depth. In the profundal sediments IRM values are routinely 5% higher than in the slope and littoral environments, while ARM/IRM ratios indicate an increase in magnetic grain size with water depth. We infer that an increase in coarse organic material in the shallow-water cores of Deming records a period of aridity

  12. Evaluation of wheelchair drop seat crashworthiness.

    PubMed

    Bertocci, G; Ha, D; van Roosmalen, L; Karg, P; Deemer, E

    2001-05-01

    Wheelchair seating crash performance is critical to protecting wheelchair users who remain seated in their wheelchairs during transportation. Relying upon computer simulation and sled testing seat loads associated with a 20 g/48 kph (20 g/30 mph) frontal impact and 50th percentile male occupant were estimated to develop test criteria. Using a static test setup we evaluated the performance of various types of commercially available drop seats against the loading test criteria. Five different types of drop seats (two specimens each) constructed of various materials (i.e. plastics, plywood, metal) were evaluated. Two types of drop seats (three of the total 10 specimens) met the 16650 N (3750 lb) frontal impact test criteria. While additional validation of the test protocol is necessary, this study suggests that some drop seat designs may be incapable of withstanding crash level loads.

  13. U. S. plastics demand drops sharply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    According to the Society of the Plastics Industry, plastics demand dropped sharply in the U.S. during second-quarter 1980. U.S. exports of themoplastics are down slightly from year-ago levels, and PVC and low-density polyethylene (LDPE) exports are increasing strongly, but strong exports can not offset a weak domestic market. The weakness in domestic PVC sales is due mostly to large drops in contruction pipe (-49%) and automotive uses, its leading markets, in the last year. LDPE sales have dropped 3% over the year, and 8% in film, LPDE's largest market. Polypropylene's two largest U.S. markets, molding and fibers, have also droppedmore » sharply. Epoxy resin showed a May 1979 to May 1980 gain of 28% in exports, but three other thermosets, polyesters, urea-melamine, and phenolics, have dropped sharply since May 1979.« less

  14. Evolution of alkaline lakes - Lake Van case study

    NASA Astrophysics Data System (ADS)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    activity (e.g.: tephra layers, deformation structures, slumping) in the Lake Van sedimentary profile around 530 ka, it seems unlikely that a pyroclastic flow blocked the outflow of the lake. Alternatively, a portion of inflow has been diverged which might have caused a change in the hydrological balance and lake level falling below its outlet. However, as no geomorphological data confirming this scenario yet exist, it is only a tentative explanation. Lacey et al. 2016. Northern Mediterranean climate since the Middle Pleistocene: a 637 ka stable isotope record from Lake Ohrid (Albania/Macedonia). Biogeosciences 13 Stockhecke et al. 2014. Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years. Sedimentology

  15. Crater Floor and Lava Lake Dynamics Measured with T-LIDAR at Pu`u`O`o Crater, Hawai`i

    NASA Astrophysics Data System (ADS)

    Brooks, B. A.; Kauahikaua, J. P.; Foster, J. H.; Poland, M. P.

    2007-12-01

    We used a near-infrared (1.2 micron wavelength) tripod-based scanning LiDAR system (T-LIDAR) to capture crater floor and lava lake dynamics in unprecedented detail at P`u`u `O`o crater on Kilauea volcano, Hawai`i. In the ~40 days following the June 17-19 intrusion/eruption, Pu`u `O`o crater experienced substantial deformation comprising 2 collapse events bracketing rapid filling of the crater by a lava lake. We surveyed the crater floor with centimeter-scale spot-spacings from 3 different vantage points on July 13 and from one vantage point on July 24. Data return was excellent despite heavy fume on July 24 that obscured nearly all of the crater features, including the walls and floor. We formed displacement fields by aligning identical features from different acquisition times in zones on the relatively stable crater walls. From July 13, over a period of several hours, we imaged ~2 m of differential lava lake surface topography from the upwelling (eastern) to downstream (western) portion of the flowing lava lake. From July 13 to July 24, the lava lake level dropped by as much as 20 meters in a zone confined by flanking levees. Our results confirm the utility of T-LiDAR as a new tool for detailed volcano geodesy studies and suggest potential applications in volcano hazards monitoring.

  16. ANALYSIS OF LOW-LEVEL PESTICIDES FROM HIGH-ELEVATION LAKE WATERS BY LARGE VOLUME INJECTION GCMS

    EPA Science Inventory

    This paper describes the method development for the determination of ultra-low level pesticides from high-elevation lake waters by large-volume injection programmable temperature vaporizer (LVI-PTV) GC/MS. This analytical method is developed as a subtask of a larger study, backgr...

  17. Circulation and sedimentation in a tidal-influenced fjord lake: Lake McKerrow, New Zealand

    NASA Astrophysics Data System (ADS)

    Pickrill, R. A.; Irwin, J.; Shakespeare, B. S.

    1981-01-01

    Lake McKerrow is a tide-influenced fjord lake, separated from the open sea by a Holocene barrier spit. Fresh, oxygenated waters of the epilimnion overlie saline, deoxygenated waters of the hypolimnion. During winter, water from the Upper Hollyford River interflows along the pycnocline, depositing coarse silt on the steep delta and transporting finer sediment down-lake. An extensive sub-lacustrine channel system on the foreset delta slope is possibly maintained by turbidity currents. Saline waters of the hypolimnion are periodically replenished. During high tides and low lake levels saline water flows into the lake and downslope into the lake basin as a density current in a well defined channel.

  18. Integration of altimetric lake levels and GRACE gravimetry over Africa: Inferences for terrestrial water storage change 2003-2011

    NASA Astrophysics Data System (ADS)

    Moore, P.; Williams, S. D. P.

    2014-12-01

    Terrestrial water storage (TWS) change for 2003-2011 is estimated over Africa from GRACE gravimetric data. The signatures from change in water of the major lakes are removed by utilizing kernel functions with lake heights recovered from retracked ENVISAT satellite altimetry. In addition, the contribution of gravimetric change due to soil moisture and biomass is removed from the total GRACE signal by utilizing the GLDAS land surface model. The residual TWS time series, namely groundwater and the surface waters in rivers, wetlands, and small lakes, are investigated for trends and the seasonal cycle using linear regression. Typically, such analyses assume that the data are temporally uncorrelated but this has been shown to lead to erroneous inferences in related studies concerning the linear rate and acceleration. In this study, we utilize autocorrelation and investigate the appropriate stochastic model. The results show the proper distribution of TWS change and identify the spatial distribution of significant rates and accelerations. The effect of surface water in the major lakes is shown to contribute significantly to the trend and seasonal variation in TWS in the lake basin. Lake Volta, a managed reservoir in Ghana, is seen to have a contribution to the linear trend that is a factor of three greater than that of Lake Victoria despite having a surface area one-eighth of that of Lake Victoria. Analysis also shows the confidence levels of the deterministic trend and acceleration identifying areas where the signatures are most likely due to a physical deterministic cause and not simply stochastic variations.

  19. Population dynamics of Lake Ontario lake trout during 1985-2007

    USGS Publications Warehouse

    Brenden, Travis O.; Bence, James R.; Lantry, Brian F.; Lantry, Jana R.; Schaner, Ted

    2011-01-01

    Lake trout Salvelinus namaycush were extirpated from Lake Ontario circa 1950 owing to commercial and recreational fishing, predation by sea lampreys Petromyzon marinus, and habitat degradation. Since the 1970s, substantial efforts have been devoted to reestablishing a self-sustaining population through stocking, sea lamprey control, and harvest reduction. Although a stocking-supported population has been established, only limited natural reproduction has been detected. Since the 1990s, surveys have indicated a continuing decline in overall abundance despite fairly static stocking levels. We constructed a statistical catch-at-age model to describe the dynamics of Lake Ontario lake trout from 1985 to 2007 and explore what factor(s) could be causing the declines in abundance. Model estimates indicated that abundance had declined by approximately 76% since 1985. The factor that appeared most responsible for this was an increase in age-1 natural mortality rates from approximately 0.9 to 2.5 between 1985 and 2002. The largest source of mortality for age-2 and older fish was sea lamprey predation, followed by natural and recreational fishing mortality. Exploitation was low, harvest levels being uncertain and categorized by length rather than age. Accurate predictions of fishery harvest and survey catch per unit effort were obtained despite low harvest levels by using atypical data (e.g., numbers stocked as an absolute measure of recruitment) and a flexible modeling approach. Flexible approaches such as this might allow similar assessments for a wide range of lightly exploited stocks. The mechanisms responsible for declining age-1 lake trout survival are unknown, but the declines were coincident with an increase in the proportion of stocked fish that were of the Seneca strain and a decrease in the overall stocking rate. It is possible that earlier studies suggesting that Seneca strain lake trout would be successful in Lake Ontario are no longer applicable given the large

  20. The effects of using ground water to maintain water levels of Cedar Lake, Wisconsin

    USGS Publications Warehouse

    McLeod, R.S.

    1980-01-01

    There were no identifiable changes in measured physical and chemical characteristics of lake water during sustained pumping of ground water into the lake, nor were there identifiable changes in the number or makeup of the phytoplankton community. Differences in physical and chemical characteristics of lake water and ground water added to the lake probably were not great enough to cause changes within the lake.

  1. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  2. Sunspots, El Niño, and the levels of Lake Victoria, East Africa

    NASA Astrophysics Data System (ADS)

    Stager, J. Curt; Ruzmaikin, Alexander; Conway, Declan; Verburg, Piet; Mason, Peter J.

    2007-08-01

    An association of high sunspot numbers with rises in the level of Lake Victoria, East Africa, has been the focus of many investigations and vigorous debate during the last century. In this paper, we show that peaks in the ~11-year sunspot cycle were accompanied by Victoria level maxima throughout the 20th century, due to the occurrence of positive rainfall anomalies ~1 year before solar maxima. Similar patterns also occurred in at least five other East African lakes, which indicates that these sunspot-rainfall relationships were broadly regional in scale. Although irradiance fluctuations associated with the sunspot cycle are weak, their effects on tropical rainfall could be amplified through interactions with sea surface temperatures and atmospheric circulation systems, including ENSO. If this Sun-rainfall relationship persists in the future, then sunspot cycles can be used for long-term prediction of precipitation anomalies and associated outbreaks of insect-borne disease in much of East Africa. In that case, unusually wet rainy seasons and Rift Valley Fever epidemics should occur a year or so before the next solar maximum, which is expected to occur in 2011-2012 AD.

  3. Beryllium isotopes as tracers of Lake Lisan (last Glacial Dead Sea) hydrology and the Laschamp geomagnetic excursion

    NASA Astrophysics Data System (ADS)

    Belmaker, Reuven; Stein, Mordechai; Beer, Jürg; Christl, Marcus; Fink, David; Lazar, Boaz

    2014-08-01

    The content of the cosmogenic isotope 10Be (t1/2=1.39 Ma) in lacustrine sediments that deposit in lakes with a large watershed is susceptible to both climate and cosmogenic production rate variations. In order to distinguish between these two controls, we measured 10Be and major elements in several sections of the annually laminated sediments of the Lake Lisan (the last Glacial precursor of the Dead Sea) that are composed of detrital sediments and primary (evaporitic) aragonites. The sections were selected to represent regional hydrology and climate as reflected by different lake configurations (level rise, drop and high-stands) and rapid change in the 10Be production rate during the Laschamp geomagnetic excursion. Since the short-lived cosmogenic “sister” of 10Be, 7Be (t1/2=53.3 d) has virtually no recycled component, the recycled 10Be in Lake Lisan detrital sediments was evaluated by measuring 7Be in their modern equivalents: modern flood suspended matter, dust and mud cracks. Our results demonstrate that although the recycled 10Be component is significant, secular variations in the 10Be concentration in Lake Lisan sediments correlate with hydrological variations and geomagnetic excursions. During periods of moderate variations in 10Be production rate, the 10Be concentration in the Lisan detrital sediments positively correlates with lake level, Al + Fe content and the (Al + Fe)/(Ca + Mg) ratio. These correlations suggest that the 10Be is adsorbed on the fine silicate component (probably clays) of the detrital laminae. The fine silicates together with carbonates were transported to Dead Sea drainage basin mainly as airborne dust that after a short residence time was washed into Lake Lisan as flood suspended matter. We suggest that preferential dissolution of carbonates in the flood suspended matter concentrated the residual fine component leading to the positive correlation between 10Be and the (Al + Fe)/(Ca + Mg) ratio. During periods of increased water

  4. Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China.

    PubMed

    Yang, Yuyi; Cao, Xinhua; Lin, Hui; Wang, Jun

    2016-11-01

    Sediment is an ideal medium for the aggregation and dissemination of antibiotics and antibiotic resistance genes (ARGs). The levels of antibiotics and ARGs in Honghu Lake and East Dongting Lake of central China were investigated in this study. The concentrations of eight antibiotics (four sulfonamides and four tetracyclines) in Honghu Lake were in the range 90.00-437.43 μg kg -1 (dry weight (dw)) with mean value of 278.21 μg kg -1 dw, which was significantly higher than those in East Dongting Lake (60.02-321.04 μg kg -1 dw, mean value of 195.70 μg kg -1 dw). Among the tested three sulfonamide resistance genes (sul) and eight tetracycline resistance genes (tet), sul1, sul2, tetA, tetC, and tetM had 100 % detection frequency in sediment samples of East Dongting Lake, while only sul1, sul2, and tetC were observed in all samples of Honghu Lake. The relative abundance of sul2 was higher than that of sul1 at p < 0.05 level in both lakes. The relative abundance of tet genes in East Dongting Lake was in the following order: tetM > tetB > tetC > tetA. The relative abundance of sul1, sul2, and tetC in East Dongting Lake was significantly higher than those in Honghu Lake. The abundance of background bacteria may play an important role in the horizontal spread of sul2 and tetC genes in Honghu Lake and sul1 in East Dongting Lake, respectively. Redundancy analysis indicated that tetracyclines may play a more important role than sulfonamides in the abundance of sul1, sul2, and tetC gens in Honghu Lake and East Dongting Lake.

  5. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    NASA Astrophysics Data System (ADS)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  6. Feasibility Study of Shoreline Protection and Lake Level Regulation for Lake Ontario. Reconnaissance Report. Volume II. Appendices.

    DTIC Science & Technology

    1981-11-01

    Presque Isle , Pennsylvania , Lake Erie . For more information on headlands see Coastal Enqineering, 2, Sedimentation, Estuaries, Tides, Effluents, and...Environmental Inventory. 1978. Erie County Metropolitan Planning Commission. Erie County Land Use Plan, Erie County, Pennsylvania . 1971. Geis, James W...International Lake Erie Regulation Study A-I-13 e. New York State Coastal Zone Management Program A-1-14 f. Pollution from Land Use Activities (PLUARG) A-1-14

  7. Evaluation of ERTS data for certain oceanographic uses. [precipitation of calcium carbonate in Lake Michigan, Lake Erie, and Lake Ontario

    NASA Technical Reports Server (NTRS)

    Strong, A. E. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. According to Lake Michigan records, the pH levels have been steadily increasing as the lake becomes more eutrophic. Numerous upwellings during the summer of 1973, beginning with the late July event, appear to be triggering a chemical precipitation of calcium carbonate. The upwelling provides abundant carbon dioxide into the surface water and results in massive blooms of phytoplankton. As the CO2 is utilized by these microscopic plants the pH is increased (acidity decreases) and CaCO3 no longer is able to remain in solution. The precipitation takes place where the phytoplankton are living, near depths of 10 meters. Therefore, the whiting observed by ERTS-1 is only seen in the green band, as red cannot penetrate but a few meters. With these whitings, secci disc readings lower in July from 10-15 meters to 3-5 meters and green, milky water is observed by research vessels. It appears that whitings have been becoming more frequent since the middle 60's but until ERTS-1 the extent had never been realized. Calcium levels are too low, presently, for a similar precipitate in Lakes Huron or Superior. However, whitings have been seen by ERTS-1 in Lakes Erie and Ontario where the calcium ion and pH levels are more like those found in Lake Michigan.

  8. Ecology under lake ice.

    PubMed

    Hampton, Stephanie E; Galloway, Aaron W E; Powers, Stephen M; Ozersky, Ted; Woo, Kara H; Batt, Ryan D; Labou, Stephanie G; O'Reilly, Catherine M; Sharma, Sapna; Lottig, Noah R; Stanley, Emily H; North, Rebecca L; Stockwell, Jason D; Adrian, Rita; Weyhenmeyer, Gesa A; Arvola, Lauri; Baulch, Helen M; Bertani, Isabella; Bowman, Larry L; Carey, Cayelan C; Catalan, Jordi; Colom-Montero, William; Domine, Leah M; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N; Jolley, Jeff C; Kahilainen, Kimmo K; Kaup, Enn; Kehoe, Michael J; MacIntyre, Sally; Mackay, Anson W; Mariash, Heather L; McKay, Robert M; Nixdorf, Brigitte; Nõges, Peeter; Nõges, Tiina; Palmer, Michelle; Pierson, Don C; Post, David M; Pruett, Matthew J; Rautio, Milla; Read, Jordan S; Roberts, Sarah L; Rücker, Jacqueline; Sadro, Steven; Silow, Eugene A; Smith, Derek E; Sterner, Robert W; Swann, George E A; Timofeyev, Maxim A; Toro, Manuel; Twiss, Michael R; Vogt, Richard J; Watson, Susan B; Whiteford, Erika J; Xenopoulos, Marguerite A

    2017-01-01

    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  9. LANDSLIDE DAMMED LAKES AT MOUNT ST. HELENS, WASHINGTON.

    USGS Publications Warehouse

    Meyer, William; Sabol, Martha A.; Schuster, Robert; ,

    1986-01-01

    The collapse of the north face of Mount St. Helens on May 18, 1980, and the debris avalanche that resulted blocked outflow from Spirit Lake and Coldwater and South Fork Castle Creeks. Spirit Lake began to increase in size and lakes began to form in the canyons of Coldwater and South Fork Castle Creeks. Coldwater and Castle Lakes would have overtopped their respective blockages in late 1981 or early 1982. Catastrophic flooding would have occurred from the breakout of Coldwater Lake while serious flooding probably would have resulted from the breakout of Castle Lake. As a result, the level of both lakes was stabilized with spillways in 1981. The three blockages are stable against liquefaction and gravitationally induced slope failure. The existence of groundwater in the blockages was observed in piezometers installed between 1981 and 1983. Groundwater mounds with water levels above lake level exist under the crest of all of the blockages.

  10. Analysis of the Tonle Sap Flood Pulse Based on Remote Sensing: how much does Tonle Sap Lake Affect the Mekong River Flood?

    NASA Astrophysics Data System (ADS)

    Qu, W.; Hu, N.; Fu, J.; Lu, J.; Lu, H.; Lei, T.; Pang, Z.; Li, X.; Li, L.

    2018-04-01

    The economic value of the Tonle Sap Lake Floodplain to Cambodia is among the highest provided to a nation by a single ecosystem around the world. The flow of Mekong River is the primary factor affecting the Tonle Sap Lake Floodplain. The Tonle Sap Lake also plays a very important role in regulating the downstream flood of Mekong River. Hence, it is necessary to understand its temporal changes of lake surface and water storage and to analyse its relation with the flood processes of Mekong River. Monthly lake surface and water storage from July 2013 to May 2014 were first monitored based on remote sensing data. The relationship between water surface and accumulative water storage change was then established. In combination with hydrological modelling results of Mekong River Basin, the relation between the lake's water storage and the runoff of Mekong River was analysed. It is found that the water storage has a sharp increase from September to December and, after reaching its maximum in December, water storage quickly decreases with a 38.8 billion m3 of drop in only half month time from December to January, while it keeps rather stable at a lower level in other months. There is a two months' time lag between the maximum lake water storage and the Mekong River peak flood, which shows the lake's huge flood regulation role to downstream Mekong River. It shows that this remote sensing approach is feasible and reliable in quantitative monitoring of data scarce lakes.

  11. Characterizing Microbial Mat Morphology with Structure from Motion Techniques in Ice-Covered Lake Joyce, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Mackey, T. J.; Leidman, S. Z.; Allen, B.; Hawes, I.; Lawrence, J.; Jungblut, A. D.; Krusor, M.; Coleman, L.; Sumner, D. Y.

    2015-12-01

    Structure from Motion (SFM) techniques can provide quantitative morphological documentation of otherwise inaccessible benthic ecosystems such as microbial mats in Lake Joyce, a perennially ice-covered lake of the Antarctic McMurdo Dry Valleys (MDV). Microbial mats are a key ecosystem of MDV lakes, and diverse mat morphologies like pinnacles emerge from interactions among microbial behavior, mineralization, and environmental conditions. Environmental gradients can be isolated to test mat growth models, but assessment of mat morphology along these gradients is complicated by their inaccessibility: the Lake Joyce ice cover is 4-5 m thick, water depths containing diverse pinnacle morphologies are 9-14 m, and relevant mat features are cm-scale. In order to map mat pinnacle morphology in different sedimentary settings, we deployed drop cameras (SeaViewer and GoPro) through 29 GPS referenced drill holes clustered into six stations along a transect spanning 880 m. Once under the ice cover, a boom containing a second GoPro camera was unfurled and rotated to collect oblique images of the benthic mats within dm of the mat-water interface. This setup allowed imaging from all sides over a ~1.5 m diameter area of the lake bottom. Underwater lens parameters were determined for each camera in Agisoft Lens; images were reconstructed and oriented in space with the SFM software Agisoft Photoscan, using the drop camera axis of rotation as up. The reconstructions were compared to downward facing images to assess accuracy, and similar images of an object with known geometry provided a test for expected error in reconstructions. Downward facing images identify decreasing pinnacle abundance in higher sedimentation settings, and quantitative measurements of 3D reconstructions in KeckCAVES LidarViewer supplement these mat morphological facies with measurements of pinnacle height and orientation. Reconstructions also help isolate confounding variables for mat facies trends with measurements

  12. Great Salt Lake, Utah, USA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As seen from space, the Great Salt Lake, Utah, USA (41.5N, 112.5W) appears as two separate bodies of water with a narrow divider in the middle. At the turn of the century, a railroad bridge without culverts, was built across the lake and ever since, the water and salinity levels have been uneqal on either side. Fed by snowmelt from the nearby Wasatch Mountains, the lake in recent years has had record high water levels, threatening to flood the local areas.

  13. Great Salt Lake, Utah, USA

    NASA Image and Video Library

    1990-03-04

    As seen from space, the Great Salt Lake, Utah, USA (41.5N, 112.5W) appears as two separate bodies of water with a narrow divider in the middle. At the turn of the century, a railroad bridge without culverts, was built across the lake and ever since, the water and salinity levels have been uneqal on either side. Fed by snowmelt from the nearby Wasatch Mountains, the lake in recent years has had record high water levels, threatening to flood the local areas.

  14. Tapping rocks for Terror Lake hydro project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieber, O.V.

    The Terror Lake hydro project in Alaska is described. Terror Lake is a small alpine lake surrounded by barren glacier-scoured, rocky mountain tops and plateaus that do not retain moisture. The method for obtaining more water for the hydro project in Kodiak is unique. The basic program was to dam up the outlet of Terror Lake and raise the water level 170 ft. from approximately 1250 ft. above sea level to 1420 ft. Although the megawatt output of the project is small, the concept of the Terror Lake Project has an epic scale to it.

  15. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    USGS Publications Warehouse

    Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  16. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    PubMed

    Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  17. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    PubMed Central

    Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  18. Geochemical history of Lake Miccosukee, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.Q.; Donoghue, J.F.; Hess, D.W.

    1994-03-01

    Lake Miccosukee is a 2,500 hectare karst lake in northwest Florida. The lake draws water from a 65,000 hectare watershed, although groundwater seepage appears to be the principal water source to the lake. Like many of the large lakes of north Florida it periodically drains via sinkholes, becoming nearly dry in the process. The result of the natural drawdowns is a large reduction of the organic matter content of the bottom sediments. The water level in the lake was stabilized after 1954 with the construction of a dike and weir. Drawdowns have been managed since then and have been fewermore » and less drastic. The lake bottom has been exposed for only about six months since 1954. The result has been an increase in aquatic vegetation and a diminishment in fish populations. A set of two dozen sediment cores was analyzed for sedimentation rate (using lead-210 and Cs-137), percent organics, C, N, P and trace metals. The effect of the lake level stabilization appears to be an increase in organic matter deposited in the bottom sediments. Anthropogenic metals, including Hg, Zn, Pb, Cu and V have been found to increase considerably near the tops of the cores, by a factor of two or more over long-term background levels.« less

  19. Drop-on-demand inkjet-based cell printing with 30-μm nozzle diameter for cell-level accuracy

    PubMed Central

    Kim, Young Kwon; Yoon, Woong Hee; Kim, Joonwon; Jung, Sungjune

    2016-01-01

    We present drop-on-demand inkjet-based mammalian cell printing with a 30-μm nozzle diameter for cell-level accuracy. High-speed imaging techniques have been used to analyze the go-and-stop movement of cells inside the nozzle under a pulsed pressure generated by a piezo-actuator and the jet formation after ejection. Patterning of an array of 20 × 20 dots on a glass substrate reveals that each printed drop contains 1.30 cells on average at the cell concentration of 5.0 × 106 cells ml−1 for the very small nozzle, whereas larger nozzles with the diameter of 50 and 80 μm deliver 2.57 and 2.88 cells per drop, respectively. The effects of the size and concentration of printed cells on the number of cells have also been investigated. Furthermore, the effect of the nozzle diameter on printed cells has been evaluated through an examination of viability, proliferation, and morphology of cells by using a live/dead assay kit, CCK-8 assay, and cellular morphology imaging, respectively. We believe that the 30-μm inkjet nozzle can be used for precise cell deposition without any damages to the printed mammalian cells. PMID:27990212

  20. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, B. L.; Roelke, Daniel; Brooks, Bryan

    blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.« less

  1. Hatchery Contributions to Emerging Naturally Produced Lake Huron Lake Trout.

    PubMed

    Scribner, Kim; Tsehaye, Iyob; Brenden, Travis; Stott, Wendylee; Kanefsky, Jeannette; Bence, James

    2018-06-19

    Recent assessments indicate the emergence of naturally produced lake trout (Salvelinus namaycush) recruitment throughout Lake Huron in the North American Laurentian Great Lakes (>50% of fish <7 yrs). Because naturally produced fish derived from different stocked hatchery strains are unmarked, managers cannot distinguish strains contributing to natural recruitment. We used 15 microsatellite loci to identify strains of naturally produced lake trout (N=1567) collected in assessment fisheries during early (2002-2004) and late (2009-2012) sampling periods. Individuals from 13 American and Canadian hatchery strains (N=1143) were genotyped to develop standardized baseline information. Strain contributions were estimated using a Bayesian inferential approach. Deviance information criteria was used to compare models evaluating strain contributions at different spatial and temporal scales. The best performing models were the most complex models, suggesting that hatchery strain contributions to naturally produced lake trout varied spatially among management districts and temporally between time periods. Contributions of Seneca strain lake trout were consistently high across most management districts, with contributions increasing from early to late time periods (estimates ranged from 52-94% for the late period across eight of nine districts). Strain contributions deviated from expectations based on historical stocking levels, indicating strains differed with respect to survival, reproductive success, and/or dispersal. Knowledge of recruitment levels of strains stocked in different management districts, and how strain-specific recruitment varies temporally, spatially, and as a function of local or regional stocking is important to prioritize strains for future stocking and management of the transition process from primarily hatchery to naturally produced stocks.

  2. Recent geologic history of lake Atitlán, a caldera lake in western Guatemala

    USGS Publications Warehouse

    Newhall, C.G.; Paull, C.K.; Bradbury, J.P.; Higuera-Gundy, A.; Poppe, L.J.; Self, S.; Bonar, Sharpless N.; Ziagos, J.

    1987-01-01

    Heat-flow measurements inside and just outside the caldera are high (290 and 230 mW m−2), suggesting hydrothermal convection and a shallow heat source. High heat flow, a geological record of post-caldera silicic eruptions, and unexplained fluctuations of lake level (episodic tumescence ofthe lake floor?) suggest that magma remains beneath Lake Atitlán and that future eruptions are possible.

  3. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake

    PubMed Central

    Mei, Xuefei; Dai, Zhijun; Du, Jinzhou; Chen, Jiyu

    2015-01-01

    Despite comprising a small portion of the earth’s surface, lakes are vitally important for global ecosystem cycling. However, lake systems worldwide are extremely fragile, and many are shrinking due to changing climate and anthropogenic activities. Here, we show that Poyang Lake, the largest freshwater lake in China, has experienced a dramatic and prolonged recession, which began in late September of 2003. We further demonstrate that abnormally low levels appear during October, 28 days ahead of the normal initiation of the dry season, which greatly imperiled the lake’s wetland areas and function as an ecosystem for wintering waterbirds. An increase in the river-lake water level gradient induced by the Three Gorges Dam (TGD) altered the lake balance by inducing greater discharge into the Changjiang River, which is probably responsible for the current lake shrinkage. Occasional episodes of arid climate, as well as local sand mining, will aggravate the lake recession crisis. Although impacts of TGD on the Poyang Lake recession can be overruled by episodic extreme droughts, we argue that the average contributions of precipitation variation, human activities in the Poyang Lake catchment and TGD regulation to the Poyang Lake recession can be quantified as 39.1%, 4.6% and 56.3%, respectively. PMID:26657816

  4. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake

    NASA Astrophysics Data System (ADS)

    Mei, Xuefei; Dai, Zhijun; Du, Jinzhou; Chen, Jiyu

    2015-12-01

    Despite comprising a small portion of the earth’s surface, lakes are vitally important for global ecosystem cycling. However, lake systems worldwide are extremely fragile, and many are shrinking due to changing climate and anthropogenic activities. Here, we show that Poyang Lake, the largest freshwater lake in China, has experienced a dramatic and prolonged recession, which began in late September of 2003. We further demonstrate that abnormally low levels appear during October, 28 days ahead of the normal initiation of the dry season, which greatly imperiled the lake’s wetland areas and function as an ecosystem for wintering waterbirds. An increase in the river-lake water level gradient induced by the Three Gorges Dam (TGD) altered the lake balance by inducing greater discharge into the Changjiang River, which is probably responsible for the current lake shrinkage. Occasional episodes of arid climate, as well as local sand mining, will aggravate the lake recession crisis. Although impacts of TGD on the Poyang Lake recession can be overruled by episodic extreme droughts, we argue that the average contributions of precipitation variation, human activities in the Poyang Lake catchment and TGD regulation to the Poyang Lake recession can be quantified as 39.1%, 4.6% and 56.3%, respectively.

  5. Monitoring change in Great Salt Lake

    USGS Publications Warehouse

    Naftz, David L.; Angeroth, Cory E.; Freeman, Michael L.; Rowland, Ryan C.; Carling, Gregory

    2013-01-01

    Despite the ecological and economic importance of Great Salt Lake, only limited water quality monitoring has occurred historically. To change this, new monitoring stations and networks—gauges of lake level height and rate of inflow, moored buoys, and multiple lake-bottom sensors—will provide important information that can be used to make informed decisions regarding future management of the Great Salt Lake ecosystem.

  6. The study of Lake Urmia desiccation: morphometry impress

    NASA Astrophysics Data System (ADS)

    Moradi, Ayoub; Rasouli, Ali Akbar; Roostaei, Shahram

    2017-04-01

    Located in northwestern Iran, the hypersaline Lake Urmia has started a serious uninterrupted desiccation since 1995. The lake has lost about eight meters of water level and about 75% of water surface area during past 20 years. In particular, the lake water volume decrement has been accelerated in recent years. The importance of the Lake Urmia for human life in northwestern Iran, and its destructive effects on a vast region if totally dry up, demands comprehensive studies of the lake level fluctuations mechanism. According to literature review, the water volume of the lake behaves sometimes differently from the water storage of the whole basin. Our time series analysis using Land Data Assimilation Systems also confirms those differences within last decades. In other hand, many studies addressed the lake desiccation to climatic changes and/or anthropogenic influences such as excessive dam constructions in the watershed during last decades. As water leaves the lake only through evaporation, the fluctuation of evaporation has a distinctive role in the lake level variations. Dramatic decreament in the lake extent indicates of a special morphometry. The lake's morphometry has made it vulnerable to temperature and salinity changes. It strongly controls the lake's water heat capacity and water density. And, it therefore controls the rate of evaporation from water surface. We study the role of lake's morphometry on the lake desiccation. Although, the global climatic change is known as the primary reason for current droughts in the Middle East generally, our preliminary results show that the lake's morphometry is the main cause for the accelerating of water volume lost in Lake Urmia. In particular, after 2007, lake's water temperature and density show significant variations. Water heat capacity and evaporation rate are consistent with information of lake's hypsometry.

  7. Assessing the influence of water level on schistosomiasis in Dongting Lake region before and after the construction of Three Gorges Dam.

    PubMed

    Li, Zhongwu; Nie, Xiaodong; Zhang, Yan; Huang, Jinquan; Huang, Bin; Zeng, Guangming

    2016-01-01

    Schistosomiasis is a severe public health problem in the Dongting Lake region, and its distribution, prevalence, and intensity of infection are particularly sensitive to environmental changes. In this study, the human and bovine schistosomiasis variations in the Dongting Lake region were studied from 1996 to 2010, and the relationships between schistosomiasis and water level were examined. Furthermore, based on these results, the potential effects of the Three Gorges Dam (TGD) on schistosomiasis were investigated. Results showed an increase in human schistosomiasis and in the scope of seriously affected regions, along with a decrease in bovine schistosomiasis. Human schistosomiasis was negatively correlated with water level during wet season (from May to October), particularly the average water level in October. This finding indicated that the decreasing water level may be highly related to the increasing of human schistosomiasis in the Dongting Lake region. Based on this result and the variation of schistosomiasis before and after the construction and operation of TGD, the impoundment of the Three Gorges reservoir is believed to decrease the water level and increase the contact between people and schistosomiasis. Therefore, the TGD, which is operated by regulating water and scheduling water operations, is not good for the control of human schistosomiasis in the Dongting Lake region. Although the extent of the influence of the TGD on schistosomiasis remains unclear, the influence of the TGD on preventing and controlling schistosomiasis should not be ignored.

  8. Bathymetry of Bonnie Doone Lake, Kornbow Lake, Mintz Pond, and Glenville Lake, Cumberland County, North Carolina, 1996-98

    USGS Publications Warehouse

    Giorgino, M.J.; Strain, R.E.

    1999-01-01

    Bathymetric surveys were conducted at four water-supply impoundments of Little Cross Creek in Cumberland County, North Carolina. The surveys were conducted in April 1996 at Mintz Pond and Glenville Lake, and in January 1998 at Bonnie Doone Lake and Kornbow Lake. The resulting bathymetric maps are the first to cover the entire range in depth for these reservoirs and provide a framework for future evaluations of bathymetry and storage capacity. Bathymetric maps were constructed from depth and position data collected at each reservoir. A boat-mounted, research-grade fathometer was used to record water depths with a vertical accuracy of 0.1 foot. At Mintz Pond and Glenville Lake, position was measured by using a wide-band laser tracking system interfaced with a total station survey instrument. This positioning method required multiple land-based control points to be established and was hampered by line-of-sight restrictions between the control points and the boat. At Bonnie Doone Lake and Kornbow Lake, a global positioning system was used to collect differentially corrected location data. This positioning method enabled more rapid data collection, eliminated the need for land-based control points, and provided improved data coverage. Spillway elevations range from 172.8 feet above mean sea level at Bonnie Doone Lake to 113.1 feet at Glenville Lake. Surface area and storage volume were computed for each reservoir and were related to water-surface elevations at 1-foot intervals. The combined surface acreage of the four Little Cross Creek reservoirs at their full-pool elevations is 120.97 acres, consisting of 21.20 acres at Bonnie Doone Lake, 47.09 acres at Kornbow Lake, 15.56 acres at Mintz Pond, and 37.12 acres at Glenville Lake. The four reservoirs have a combined usable storage capacity of 674.91 acre-feet, which is the sum of 127.93 acre-feet in Bonnie Doone Lake, 320.62 acre-feet in Kornbow Lake, 53.25 acre-feet in Mintz Pond, and 173.11 acre-feet in Glenville Lake.

  9. Facilitators and Barriers of Drop-In Center Use Among Homeless Youth.

    PubMed

    Pedersen, Eric R; Tucker, Joan S; Kovalchik, Stephanie A

    2016-08-01

    Drop-in centers for homeless youth address basic needs for food, hygiene, and clothing but can also provide critical services that address youth's "higher level" needs (e.g., substance use treatment, mental health care, HIV-related programs). Unlike other services that have restrictive rules, drop-in centers typically try to break down barriers and take a "come as you are" approach to engaging youth in services. Given their popularity, drop-in centers represent a promising location to deliver higher level services to youth that may not seek services elsewhere. A better understanding of the individual-level factors (e.g., characteristics of homeless youth) and agency-level factors (e.g., characteristics of staff and environment) that facilitate and impede youth engagement in drop-in centers will help inform research and outreach efforts designed to engage these at-risk youth in services. Thus, the goal of this review was to develop a preliminary conceptual model of drop-in center use by homeless youth. Toward this goal, we reviewed 20 available peer-reviewed articles and reports on the facilitators and barriers of drop-in center usage and consulted broader models of service utilization from both youth and adult studies to inform model development. Copyright © 2016 Society for Adolescent Health and Medicine. All rights reserved.

  10. Characterization of Park Visitors, Visitation Levels, and Associated Economic Impacts of Recreation at Bull Shoals, Norfork, and Table Rock Lakes

    DTIC Science & Technology

    2010-11-01

    ER D C/ EL T R- 10 -1 8 Recreation Management Support Program Characterization of Park Visitors, Visitation Levels, and Associated...distribution is unlimited. Recreation Management Support Program ERDC/EL TR-10-18 November 2010 Characterization of Park Visitors, Visitation ...surrounding the lakes. The report also examines visitor recreation patterns, visitor perceptions of lake and park attributes that affect the

  11. Drop-on-demand drop formation of polyethylene oxide solutions

    NASA Astrophysics Data System (ADS)

    Yan, Xuejia; Carr, Wallace W.; Dong, Hongming

    2011-10-01

    The dynamics of drop-on-demand (DOD) drop formation for solutions containing polyethylene oxide (PEO) have been studied experimentally. Using a piezoelectrical actuated inkjet printhead with the nozzle orifice diameter of 53 μm, experiments were conducted for a series of PEO aqueous solutions with molecular weights ranging from 14 to 1000 kg/mol, polydispersity from 1.02 to 2.5, and concentrations from 0.005 to 10 wt. %. The addition of a small amount of PEO can have a significant effect on the DOD drop formation process, increasing breakup time, decreasing primary drop speed, and decreasing the number of satellite drops in some cases. The effects depend on both molecular weight and concentration. At lower molecular weights (14 and 35 kg/mol), the effect of PEO over the dilute solution regime is insignificant even at concentrations large enough that the solution does not fall in the dilute regime. As PEO molecular weight increased, the effects became significant. For monodispersed PEO solutions, breakup time and primary drop speed closely correlated with effective relaxation time but not for polydispersed PEO. Effective relaxation time depended greatly on molecular weight distribution. Viscosity-average molecular weight, used in calculating effective relaxation time for polydispersed PEO solutions, did not adequately account for high molecular fractions in the molecular weight distribution of the polydispersed PEOs. A mixture rule was developed to calculate the effective relaxation times for aqueous solutions containing mixtures of monodispersed PEO, and breakup times and primary drop speeds correlated well with effective relaxation times. For our experiments, DOD drop formation was limited to Deborah number ≲ 23.

  12. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles.

    PubMed

    Schmit, Alexandre; Salkin, Louis; Courbin, Laurent; Panizza, Pascal

    2015-03-28

    Depending on the capillary number at play and the parameters of the flow geometry, a drop may or may not break when colliding with an obstacle in a microdevice. Modeling the flow of one-dimensional trains of monodisperse drops impacting a micro-obstacle, we show numerically that complex dynamics may arise through drop-to-drop hydrodynamic interactions: we observe sequences of breakup events in which the size of the daughter drops created upon breaking mother ones becomes a periodic function of time. We demonstrate the existence of numerous bifurcations between periodic breakup regimes and we establish diagrams mapping the possible breakup dynamics as a function of the governing (physicochemical, hydrodynamic, and geometric) parameters. Microfluidic experiments validate our model as they concur very well with predictions.

  13. Genetic strategies for lake trout rehabilitation: a synthesis

    USGS Publications Warehouse

    Burnham-Curtis, Mary K.; Krueger, Charles C.; Schreiner, Donald R.; Johnson, James E.; Stewart, Thomas J.; Horrall, Ross M.; MacCallum, Wayne R.; Kenyon, Roger; Lange, Robert E.

    1995-01-01

    The goal of lake trout rehabilitation efforts in the Great Lakes has been to reestablish inshore lake trout (Salvelinus namaycush) populations to self-sustaining levels. A combination of sea lamprey control, stocking of hatchery-reared lake trout, and catch restrictions were used to enhance remnant lake trout stocks in Lake Superior and reestablish lake trout in Lakes Michigan, Huron, Erie, and Ontario. Genetic diversity is important for the evolution and maintenance of successful adaptive strategies critical to population restoration. The loss of genetic diversity among wild lake trout stocks in the Great Lakes imposes a severe constraint on lake trout rehabilitation. The objective of this synthesis is to address whether the particular strain used for stocking combined with the choice of stocking location affects the success or failure of lake trout rehabilitation. Poor survival, low juvenile recruitment, and inefficient habitat use are three biological impediments to lake trout rehabilitation that can be influenced by genetic traits. Evidence supports the hypothesis that the choices of appropriate lake trout strain and stocking locations enhance the survival of lake trout stocked into the Great Lakes. Genetic strategies proposed for lake trout rehabilitation include conservation of genetic diversity in remnant stocks, matching of strains with target environments, stocking a greater variety of lake trout phenotypes, and rehabilitation of diversity at all trophic levels.

  14. Characterization of Lake Michigan coastal lakes using zooplankton assemblages

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.

    2004-01-01

    Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.

  15. Assessment of a new seasonal to inter-annual operational Great Lakes water supply, water levels, and connecting channel flow forecasting system

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Fry, L. M.; Hunter, T.; Pei, L.; Smith, J.; Lucier, H.; Mueller, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) has recently operationalized a suite of ensemble forecasts of Net Basin Supply (NBS), water levels, and connecting channel flows that was developed through a collaboration among USACE, NOAA's Great Lakes Environmental Research Laboratory, Ontario Power Generation (OPG), New York Power Authority (NYPA), and the Niagara River Control Center (NRCC). These forecasts are meant to provide reliable projections of potential extremes in daily discharge in the Niagara and St. Lawrence Rivers over a long time horizon (5 years). The suite of forecasts includes eight configurations that vary by (a) NBS model configuration, (b) meteorological forcings, and (c) incorporation of seasonal climate projections through the use of weighting. Forecasts are updated on a weekly basis, and represent the first operational forecasts of Great Lakes water levels and flows that span daily to inter-annual horizons and employ realistic regulation logic and lake-to-lake routing. We will present results from a hindcast assessment conducted during the transition from research to operation, as well as early indications of success rates determined through operational verification of forecasts. Assessment will include an exploration of the relative skill of various forecast configurations at different time horizons and the potential for application to hydropower decision making and Great Lakes water management.

  16. [Spatial Variability Characteristics of Water Quality and Its Driving Forces in Honghu Lake During High Water-level Period].

    PubMed

    Li, Kun; Wang, Ling; Li, Zhao-hua; Wang, Xiang-rong; Chen, Hong-bing; Wu, Zhong; Zhu, Peng

    2015-04-01

    Based on the high-density analysis of 139 monitoring points and samples in water of honghu lake with different degrees of eutrophication during the high water-level period, we could get the figures of spatial variability characteristics of pollution factors, the biomass of aquatic plants and water quality in Honghu Lake using the GIS interpolation methods. The result showed that the concentrations of TN, TP, NH4(+) -N, permanganate index gradually increased from south to north during this period, the trend of water pollution degree in Honghu Lake was the region of inflowing rivers > enclosure culture area > open water area > the lake protection area > region of the Yangtze river into the lake; and the contribution rate of water quality parameters was in the order of TN > TP > permanganate index > NH4(+), -N > DO; under the influence of industrial sewage, agricultural sewage, domestic sewage, bait, aquatic plants and water exchange, 59% of TN, 35.2% of TP, 13.7% of permanganate index, 4.3% of NH4(+)-N exceeded the water quality targets, respectively, accordingly, 66.2% of the water quality also exceeded the water quality target. Nonetheless, DO reached the water quality target due to the influences of monsoon climate and other environment factors. The spatial variation analysis could directly reflect the mutual interaction among human activity, land-use types and environment factors which had an enormous impact on Honghu Lake water environment. In order to ensure that the lake water environment is beneficial for human productions and livings, it is necessary for us to control the discharge of industrial sewage, agricultural sewage and domestic sewage, as well as the expanding area of aquaculture, all the above measures would be significant for gradually resuming the self-purification capacity of water body and finally achieving the ecological sustainable development of Honghu Lake water environment.

  17. Effects of probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary Streptococcus mutans and Lactobacillus levels

    PubMed Central

    Tehrani, Maryam Hajnorouzali; Akhlaghi, Najmeh; Talebian, Leila; Emami, Jaber; Keyhani, Siamak Etzad

    2016-01-01

    Aims: The aim of the present study was to evaluate the effect of a probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary counts of Streptococcus mutans (SM) and Lactobacillus (LB) in children 3–6 years of age. Settings and Design: Sixty-one healthy children were randomly allocated into two parallel blocks in this double-blind, randomized controlled trial (IRCT2014120320202N1) from May to June 2015. Subjects and Methods: Finally 53 participants consumed five drops of placebo (n = 23) or probiotic (n = 30) every night for 2 weeks. Before intervention and 1 day after completion of the intervention, unstimulated salivary samples were collected, and microbiologic evaluations were carried out. Statistical Analysis: Data were analyzed with descriptive statistical methods Wilcoxon signed ranks, Mann–Whitney, and logistic regression. Results: SM level decreased significantly in probiotic group after intervention (P = 0.045), and there were significant differences in salivary SM counts after intervention between two groups (P = 0.04). In probiotic group, LB counts decreased significantly after intervention (P = 0.048); however, there were no significant differences between two groups (P = 0.216). Conclusions: Use of this probiotic drop decreased salivary counts of SM; however, LB counts did not change. In addition, use of the drop in children with higher salivary counts appeared to be more effective. PMID:27994413

  18. Copepods in Turbid Shallow Soda Lakes Accumulate Unexpected High Levels of Carotenoids

    PubMed Central

    Schneider, Tobias; Herzig, Alois; Koinig, Karin A.; Sommaruga, Ruben

    2012-01-01

    Carotenoids are protective pigments present in many aquatic organisms that reduce the photooxidative stress induced by short-wavelenght solar radiation, yet increase their susceptibility to predators. Arctodiaptomus spinosus, a calanoid copepod typically found in many fishless shallow soda lakes, shows large between-lake differences in pigmentation. Here, we attribute these differences to the environmental state of these ecosystems, namely, ‘dark water’ lakes with submersed vegetation and turbid ‘white’ lakes lacking macrophytes. Copepod carotenoid concentration in the turbid ‘white’ lakes was significantly (about 20-fold) higher than in the ‘dark water’ ones, although the latter systems were characterized by higher transparency. In addition, males had on a dry weight basis around three times higher carotenoid concentrations than females. Mycosporine-like amino acids (direct UV screening substances) were found in all cases, but in low concentration. The environmental conditions in these ecosystems were largely shaped by the presence/absence of submersed macrophytes Thus, in the turbid lakes, the strong wind-driven mixis allows for copepods to be brought to the surface and being exposed to solar radiation, whereas in ‘dark water’ ones, macrophytes reduce water turbulence and additionally provide shelter. Our results explain the counter-intuitive notion of strong red pigmentation in copepods from a turbid ecosystem and suggest that factors other than high UV transparency favor carotenoid accumulation in zooplankton. PMID:22916208

  19. Influence of geomorphic setting on sedimentation of two adjacent alpine lakes, Triglav Lakes Valley (Julian Alps, NW Slovenia)

    NASA Astrophysics Data System (ADS)

    Smuc, Andrej; Skabene, Dragomir; Muri, Gregor; Vreča, Polona; Jaćimović, Radojko; Čermelj, Branko; Turšič, Janja

    2013-04-01

    The Triglav Lakes Valley is elongated, 7km long depression, located high (at places over 2000 m.a.s.l.) in the central part of the Julian Alps (NW Slovenia). It hosts 6 small isolated lakes that formed due to the combination of Neogene tectonic and Pleistocene glaciation. The study is focused on the 5th and 6th Triglav Valley Lakes that characterize lower part of the valley. The lakes are located so close to each other that they are even connected in times of high water. Thus, they share the same bedrock geology, are subjected to the same climatic forcing and share similar vegetation communities. Despite their proximity, the lakes differ in their hydrologic and geomorphic setting. The lakes have no permanent surface tributaries; however 5th is fed periodically, at times of high water level, by the Močivec spring, while additional water flows from the swamp area near its northern shore. An underground spring on the eastern side of 5th represents the lake's only permanent freshwater inflow, while drainage takes place to the west via a small ponor. 6th has only one weak underground spring on the eastern side of the lake. Water levels may fluctuate between 2 and 3 m. Additionally, the lakes have different configuration of lakes shores; the northern shores of the 5th lake are low-angle soil and debris covered plateau, while southern shores of the 5th lake and shores of the 6th lake are represented by heavily karstified carbonate base rock and covered partly by trees. The detailed sedimentary analysis of the lakes record showed some similarities, but also some significant differences. Sediments of both lakes are represented by fine-grained turbidity current deposits that are transported from lake shores during snow melt or storms. The grain-size and sedimentary rates of the lakes are however markedly different. The 5th lake has coarser grained sediments, with mean ranging from 46 to 60 µm and records higher sedimentation rates of ~0,57 cm/year, compared to the 6th lake

  20. Seismic investigation of Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Naudts, L.; De Mol, L.; De Batist, M.

    2012-04-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan mountains in Kyrgyzstan, Central Asia. It has formed in a tectonically active region with W-E striking major thrust zones north and south of the lake. The lake's modern surface level is at 1607 m above sea level, maximum depth in the central basin of the lake is roughly 670 m, and the total water volume is around 1736 km3. The lake is elongated with 180 km in west-east and 60 km in south-north direction. With a surface area of 6232 km2, Lake Issyk-Kul is the second largest lake in the higher altitudes. The lake is characterized by two large delta areas at its western and eastern end, with the deltaic area being as wide as up to 60 km in the eastern and 40 km in the western part, and by steep slopes at the northern and southern shore with only a rather narrow shallower shelf area. The lake contains the sediments of the past up to several million years, and has been proposed as a future target for deep drilling within ICDP. Three seismic surveys by Russian and Belgian groups in 1982, 1997 and 2001 revealed a thick sediment infill in Lake Issyk-Kul. At both the western and the eastern end of the lake, large delta systems were formed by actual and previous inlets, namely the Tyup and Djyrgalan rivers in the eastern part of the lake (still active) and the Chu River at the western end (currently bypassing the lake). Large sub-aquatic channel systems are visible in the lake's bathymetry in the shallower part of the delta systems close to the river mouths. They were quite likely formed by these rivers during a former lake level lowstand. The delta system consists of stacked prograding delta lobes with a characteristic topset-foreset-bottomset configuration. These lobes together with sub-aerial terraces found at several spots around the lake witness lake level fluctuations of up to >400 m. The sediments in the central plain of Lake Issyk-Kul are mainly well-layered with many turbiditic sequences

  1. Pronounced occurrence of long-chain alkenones and dinosterol in a 25,000-year lipid molecular fossil record from Lake Titicaca, South America

    NASA Astrophysics Data System (ADS)

    Theissen, Kevin M.; Zinniker, David A.; Moldowan, J. Michael; Dunbar, Robert B.; Rowe, Harold D.

    2005-02-01

    mid-Holocene. In contrast to previous speculation, lipid analysis provides little evidence of a greatly increased presence of aquatic plants during the mid-Holocene. Instead, it appears that a few algal species were dominant in the lake. Based on the dramatic rise in abundances of LCAs and dinosterol during the early to mid-Holocene, we suspect that the algal producers of these compounds rose in response to a combination of physical and chemical changes in the lake. These include temperature, salinity, and alkalinity changes that occurred as lake level dropped sharply during a multi-millennial drought affecting the Central Andean Altiplano.

  2. Biogeochemistry of silica in Devils Lake: Implications for diatom preservation

    USGS Publications Warehouse

    Lent, R.M.; Lyons, B.

    2001-01-01

    Diatom-salinity records from sediment cores have been used to construct climate records of saline-lake basins. In many cases, this has been done without thorough understanding of the preservation potential of the diatoms in the sediments through time. The purpose of this study was to determine the biogeochemistry of silica in Devils Lake and evaluate the potential effects of silica cycling on diatom preservation. During the period of record, 1867-1999, lake levels have fluctuated from 427 m above sea level in 1940 to 441.1 m above sea level in 1999. The biogeochemistry of silica in Devils Lake is dominated by internal cycling. During the early 1990s when lake levels were relatively high, about 94% of the biogenic silica (BSi) produced in Devils Lake was recycled in the water column before burial. About 42% of the BSi that was incorporated in bottom sediments was dissolved and diffused back into the lake, and the remaining 58% was buried. Therefore, the BSi accumulation rate was about 3% of the BSi assimilation rate. Generally, the results obtained from this study are similar to those obtained from studies of the biogeochemistry of silica in large oligotrophic lakes and the open ocean where most of the BSi produced is recycled in surface water. During the mid 1960s when lake levels were relatively low, BSi assimilation and water-column dissolution rates were much higher than when lake levels were high. The BSi assimilation rate was as much as three times higher during low lake levels. Even with the much higher BSi assimilation rate, the BSi accumulation rate was about three times lower because the BSi water-column dissolution rate was more than 99% of the BSi assimilation rate compared to 94% during high lake levels. Variations in the biogeochemistry of silica with lake level have important implications for paleolimnologic studies. Increased BSi water-column dissolution during decreasing lake levels may alter the diatom-salinity record by selectively removing the

  3. Modeling wetland plant community response to assess water-level regulation scenarios in the Lake Ontario-St. Lawrence River basin

    USGS Publications Warehouse

    Hudon, Christiane; Wilcox, Douglas; Ingram, Joel

    2006-01-01

    The International Joint Commission has recently completed a five-year study (2000-2005) to review the operation of structures controlling the flows and levels of the Lake Ontario - St. Lawrence River system. In addition to addressing the multitude of stakeholder interests, the regulation plan review also considers environmental sustainability and integrity of wetlands and various ecosystem components. The present paper outlines the general approach, scientific methodology and applied management considerations of studies quantifying the relationships between hydrology and wetland plant assemblages (% occurrence, surface area) in Lake Ontario and the Upper and Lower St. Lawrence River. Although similar study designs were used across the study region, different methodologies were required that were specifically adapted to suit the important regional differences between the lake and river systems, range in water-level variations, and confounding factors (geomorphic types, exposure, sediment characteristics, downstream gradient of water quality, origin of water masses in the Lower River). Performance indicators (metrics), such as total area of wetland in meadow marsh vegetation type, that link wetland response to water levels will be used to assess the effects of different regulation plans under current and future (climate change) water-supply scenarios.

  4. Status of lake trout rehabilitation in the Northern Refuge of Lake Michigan

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.

    1999-01-01

    The Northern Refuge in Lake Michigan was established in 1985 as part of a rehabilitation program to stock yearling lake trout Salvelinus namaycush in areas with the best potential for success. Stocking of hatchery-reared lake trout within the refuge began in 1986 at three reefs: Boulder Reef, Gull Island Reef, and Richards Reef. On each reef from 1991 to 1997 we conducted gill-net surveys during the fall spawning season to evaluate performance of adult lake trout, and we conducted beam trawl surveys for naturally reproduced age-0 lake trout in the spring. Criteria to evaluate performance included spawner density, growth, maturity, and mortality. We found no evidence of natural reproduction by lake trout from our surveys. Nevertheless, density of spawning lake trout on Boulder Reef (69 fish/305 m of gill net/night) and Gull Island Reef (34 fish/305 m of gill net/night) appeared to be sufficiently high to initiate a self-sustaining population. Growth and maturity rates of lake trout in the Northern Refuge were similar to those for lake trout stocked in the nearshore region of Lake Michigan. In the Northern Refuge, growth rate for the Marquette strain of lake trout was slightly higher than for the Lewis Lake strain. Annual mortality estimates from catch curve analyses ranged from 0.46 to 0.41, and therefore, these estimates approached a level that was considered to be sufficiently low to allow for a self-sustaining population. Thus, it appeared that the lack of evidence for natural reproduction by lake trout in the Northern Refuge should not be attributed to inability of the population to attain a sufficiently large stock of spawners.

  5. Cooperative science to inform Lake Ontario management: Research from the 2013 Lake Ontario CSMI program

    USGS Publications Warehouse

    Watkins, James M.; Weidel, Brian C.; Fisk, Aaron T.; Rudstam, Lars G.

    2017-01-01

    Since the mid-1970s, successful Lake Ontario management actions including nutrient load and pollution reductions, habitat restoration, and fish stocking have improved Lake Ontario. However, several new obstacles to maintenance and restoration have emerged. This special issue presents management-relevant research from multiple agency surveys in 2011 and 2012 and the 2013 Cooperative Science and Monitoring Initiative (CSMI), that span diverse lake habitats, species, and trophic levels. This research focused on themes of nutrient loading and fate; vertical dynamics of primary and secondary production; fish abundance and behavior; and food web structure. Together these papers identify the status of many of the key drivers of the Lake Ontario ecosystem and contribute to addressing lake-scale questions and management information needs in Lake Ontario and the other Great Lakes and connecting water bodies.

  6. Extent of Pleistocene lakes in the western Great Basin

    USGS Publications Warehouse

    Reheis, Marith C.

    1999-01-01

    During the Pliocene to middle Pleistocene, pluvial lakes in the western Great Basin repeatedly rose to levels much higher than those of the well-documented late Pleistocene pluvial lakes, and some presently isolated basins were connected. Sedimentologic, geomorphic, and chronologic evidence at sites shown on the map indicates that Lakes Lahontan and Columbus-Rennie were as much as 70 m higher in the early-middle Pleistocene than during their late Pleistocene high stands. Lake Lahontan at its 1400-m shoreline level would submerge present-day Reno, Carson City, and Battle Mountain, and would flood other now-dry basins. To the east, Lakes Jonathan (new name), Diamond, Newark, and Hubbs also reached high stands during the early-middle(?) Pleistocene that were 25-40 m above their late Pleistocene shorelines; at these very high levels, the lakes became temporarily or permanently tributary to the Humboldt River and hence to Lake Lahontan. Such a temporary connection could have permitted fish to migrate from the Humboldt River southward into the presently isolated Newark Valley and from Lake Lahontan into Fairview Valley. The timing of drainage integration also provides suggested maximum ages for fish to populate the basins of Lake Diamond and Lake Jonathan. Reconstructing and dating these lake levels also has important implications for paleoclimate, tectonics, and drainage evolution in the western Great Basin. For example, shorelines in several basins form a stair-step sequence downward with time from the highest levels, thought to have formed at about 650 ka, to the lowest, formed during the late Pleistocene. This descending sequence indicates progressive drying of pluvial periods, possibly caused by uplift of the Sierra Nevada and other western ranges relative to the western Great Basin. However, these effects cannot account for the extremely high lake levels during the early middle Pleistocene; rather, these high levels were probably due to a combination of increased

  7. Sedimentary archaeal amoA gene abundance reflects historic nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau

    PubMed Central

    Yang, Jian; Jiang, Hongchen; Dong, Hailiang; Hou, Weiguo; Li, Gaoyuan; Wu, Geng

    2015-01-01

    Integration of DNA derived from ancient phototrophs with their characteristic lipid biomarkers has been successfully employed to reconstruct paleoenvironmental conditions. However, it is poorly known that whether the DNA and lipids of microbial functional aerobes (such as ammonia-oxidizing archaea: AOA) can be used for reconstructing past environmental conditions. Here we identify and quantify the AOA amoA genes (encoding the alpha subunit of ammonia monooxygenases) preserved in a 5.8-m sediment core (spanning the last 18,500 years) from Qinghai Lake. Parallel analyses revealed that low amoA gene abundance corresponded to high total organic carbon (TOC) and salinity, while high amoA gene abundance corresponded to low TOC and salinity. In the Qinghai Lake region, TOC can serve as an indicator of paleo-productivity and paleo-precipitation, which is related to historic nutrient input and salinity. So our data suggest that temporal variation of AOA amoA gene abundance preserved in Qinghai Lake sediment may reflect the variations of nutrient level and salinity throughout the late Pleistocene and Holocene in the Qinghai Lake region. PMID:26666501

  8. A SCREENING-LEVEL MODEL EVALUATION OF ATRAZINE IN THE LAKE MICHIGAN BASIN

    EPA Science Inventory

    Atrazine, a widely used herbicide in the agricultural regions of the Lake Michigan basin, was selected as a priority toxic chemical study in the United States Environmental Protection Agency (U.S. EPA) - sponsored Lake Michigan Mass Balance Project.

  9. Computer simulations of nematic drops: Coupling between drop shape and nematic order

    NASA Astrophysics Data System (ADS)

    Rull, L. F.; Romero-Enrique, J. M.; Fernandez-Nieves, A.

    2012-07-01

    We perform Monte Carlo computer simulations of nematic drops in equilibrium with their vapor using a Gay-Berne interaction between the rod-like molecules. To generate the drops, we initially perform NPT simulations close to the nematic-vapor coexistence region, allow the system to equilibrate and subsequently induce a sudden volume expansion, followed with NVT simulations. The resultant drops coexist with their vapor and are generally not spherical but elongated, have the rod-like particles tangentially aligned at the surface and an overall nematic orientation along the main axis of the drop. We find that the drop eccentricity increases with increasing molecular elongation, κ. For small κ the nematic texture in the drop is bipolar with two surface defects, or boojums, maximizing their distance along this same axis. For sufficiently high κ, the shape of the drop becomes singular in the vicinity of the defects, and there is a crossover to an almost homogeneous texture; this reflects a transition from a spheroidal to a spindle-like drop.

  10. L-Lake macroinvertebrate community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of manymore » other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.« less

  11. Precipitation and lake-level changes in the West and Midwest over the past 10,000 to 24,000 years. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, T. III; Street, F.A.; Howe, S.

    The goal of the research described in this report is to document the climatic variability over the past 10,000 to 20,000 years in areas in which sites may be designated for the burial of nuclear wastes. Three separate data sets were studied, and the results are presented in three chapters. The first data set consisted of radiocarbon dates documenting past changes in lake levels in lakes and playas in the western United States. The sites were mapped where water levels were higher than the levels today and were presented in a table telling what evidence is available at each site.more » The lake-level fluctuations for the past 24,000 years at sites in the West were also mapped and time series for these fluctuations at four sites were presented. The second data set was a selection of the published radiocarbon-dated pollen diagrams from the western United States. These data are a valuable source of climatic information and complement the geological evidence of lake-level fluctuations in the West. A table is presented that gives the location, elevation, and number of radiocarbon dates for each site. The third data set was a set of fossil pollen data from 20 sites in the upper Midwest. These data were calibrated in terms of precipitation changes over the past 10,000 years, and maps are presented of the estimated precipitation changes between 10,000 and 7000 years ago and between 7000 years ago and today.« less

  12. Glacial Lake Lind, Wisconsin and Minnesota

    USGS Publications Warehouse

    Johnson, M.D.; Addis, K.L.; Ferber, L.R.; Hemstad, C.B.; Meyer, G.N.; Komai, L.T.

    1999-01-01

    Glacial Lake Lind developed in the pre-late Wisconsinan St. Croix River valley, Minnesota and Wisconsin, and lasted more than 1000 yr during the retreat of the Superior lobe at the end of the Wisconsinan glaciation. Lake Lind sediment consists primarily of red varved silt and clay, but also includes mud-flow deposits, nearshore silt (penecontemporaneously deformed in places), nearshore rippled sand, and deltaic sand. Lake Lind varved red clay is not part of glacial Lake Grantsburg, as suggested by earlier authors, because the red varves are separated from overlying glacial Lake Grantsburg silt and clay by a unit of deltaic and fluvial sand. Furthermore, varve correlations indicate that the base of the red varves is younger to the north, showing that the basin expanded as the Superior lobe retreated and was not a lake basin dammed to the southwest by the advancing Grantsburg sublobe. Varve correlations indicate that the Superior lobe retreated at a rate of about 200 m/yr. Uniform winter-clay thickness throughout most of the varve couplets suggests thermal stratification in the lake with clay trapped in the epilimnion; some clay would exit the lake at the outlet prior to winter freeze. Zones of thicker winter-clay layers, in places associated with mud-flow layers, indicate outlet incision, lake-level fall, and shoreline erosion and resuspension of lake clay. The most likely outlet for glacial Lake Lind was in the southwest part of the lake near the present site of Minneapolis, Minnesota. Nearshore sediment indicates that the lake level of glacial Lake Lind was around 280 m. The elevation of the base of the Lake Lind sediments indicates water depth was 20 to 55 m. Evidence in the southern part of the lake basin suggests that the Superior lobe readvanced at least once during the early stages of glacial Lake Lind. Lake Lind ended not by drainage but by being filled in by prograding deltas and outwash plains composed of sand derived from the retreating Superior lobe. It

  13. Linking egg thiamine and fatty acid concentrations of Lake Michigan lake trout with early life stage mortality.

    PubMed

    Czesny, Sergiusz; Dettmers, John M; Rinchard, Jacques; Dabrowski, Konrad

    2009-12-01

    The natural reproduction of lake trout Salvelinus namaycush in Lake Michigan is thought to be compromised by nutritional deficiency associated with inadequate levels of thiamine (vitamin B1) in their eggs. However, mortality driven by thiamine deficiency (commonly referred to as early mortality syndrome [EMS]) is not the only significant cause of low lake trout survival at early life stages. In this study, we sought to better understand the combined effects of variable levels of thiamine and fatty acids in lake trout eggs on prehatch, posthatch, and swim-up-stage mortality. We sampled the eggs of 29 lake trout females from southwestern Lake Michigan. The concentrations of free thiamine and its vitamers (e.g., thiamine monophosphate [TMP] and thiamine pyrophosphate [TPP]) as well as fatty acid profiles were determined in sampled eggs. Fertilized eggs and embryos were monitored through the advanced swim-up stage (1,000 degree-days). Three distinct periods of mortality were identified: prehatch (0-400 degree-days), immediately posthatch (401-600 degree-days), and swim-up (601-1,000 degree-days). Stepwise multiple regression analysis revealed (1) that cis-7-hexadecenoic acid in both neutral lipids (NL) and phospholipids (PL) correlated with prehatch mortality, (2) that docosapentaenoic acid in PL and docosahexaenoic acid in NL correlated with posthatch mortality, and (3) that total lipids, TPP, and palmitoleic acid in NL, linoleic acid, and palmitic acid in PL correlated with the frequency of EMS. These results indicate the complexity of early life stage mortality in lake trout and suggest that inadequate levels of key fatty acids in eggs, along with variable thiamine content, contribute to the low survival of lake trout progeny in Lake Michigan.

  14. Does water level affect benthic macro-invertebrates of a marginal lake in a tropical river-reservoir transition zone?

    PubMed

    Zerlin, R A; Henry, R

    2014-05-01

    Benthic macro-invertebrates are important components of freshwater ecosystems which are involved in ecological processes such as energy transfer between detritus and consumers and organic matter recycling. The aim of this work was to investigate the variation in organism richness, diversity and density of benthic fauna during the annual cycle in Camargo Lake, a lake marginal to Paranapanema River, southeast Brazil. The correlation of environmental factors with community attributes of the macro-benthic fauna was assessed. Since Camargo Lake is connected to the river, we tested the hypothesis that water level variation is the main regulating factor of environmental variables and of the composition and abundance of benthic macro-invertebrates. The results indicated that lake depth varied with rainfall, being the highest at the end of the rising water period and the lowest at the beginning of this period. The sediment granulometry was more heterogeneous at the bottom of the lake by the end of the high water period. The benthic macro-invertebrate fauna was composed by 15 taxa. The Diptera order was represented by seven taxa and had greater richness in relation to other taxa. This group was responsible for 60% of the total abundance of organisms, followed by Ephemeroptera (22%) and Anellida (16%). Significant differences were observed over time in total richness and, in density of Narapa bonettoi, Chaoborus, Ablabesmyia gr. annulata, Chironomus gigas, Larsia fittkau, and Procladius sp. 2. Total taxa richness correlated negatively with water pH, transparency, conductivity, and bottom water oxygen. Higher positive correlations were found between the densities of some taxa and bottom water oxygen, conductivity and very fine sand, silt + clay of sediment, while negative correlations were recorded with organic matter, and fine, medium and coarse sand, bottom water temperature, mean temperature and rainfall. The significant temporal difference in water level was associated

  15. A post-Calumet shoreline along southern Lake Michigan

    USGS Publications Warehouse

    Capps, D.K.; Thompson, T.A.; Booth, R.K.

    2007-01-01

    The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.

  16. Comparative randomised controlled clinical trial of a herbal eye drop with artificial tear and placebo in computer vision syndrome.

    PubMed

    Biswas, N R; Nainiwal, S K; Das, G K; Langan, U; Dadeya, S C; Mongre, P K; Ravi, A K; Baidya, P

    2003-03-01

    A comparative randomised double masked multicentric clinical trial has been conducted to find out the efficacy and safety of a herbal eye drop preparation, itone eye drops with artificial tear and placebo in 120 patients with computer vision syndrome. Patients using computer for at least 2 hours continuosly per day having symptoms of irritation, foreign body sensation, watering, redness, headache, eyeache and signs of conjunctival congestion, mucous/debris, corneal filaments, corneal staining or lacrimal lake were included in this study. Every patient was instructed to put two drops of either herbal drugs or placebo or artificial tear in the eyes regularly four times for 6 weeks. Objective and subjective findings were recorded at bi-weekly intervals up to six weeks. Side-effects, if any, were also noted. In computer vision syndrome the herbal eye drop preparation was found significantly better than artificial tear (p < 0.01). No side-effects were noted by any of the drugs. Both subjective and objective improvements were observed in itone treated cases. So, itone can be considered as a useful drug in computer vision syndrome.

  17. Colorimetric determinations of lithium levels in drop-volumes of human plasma for monitoring patients with bipolar mood disorder.

    PubMed

    Qassem, M; Hickey, M; Kyriacou, P A

    2016-08-01

    Lithium preparations are considered the most reliable form of mood stabilizing medication for patients with Bipolar disorder. Nevertheless, lithium is a toxic element and its therapeutic range is extremely narrow, with levels of 0.61.0 mEq considered normal, whereas levels above 1.5 mEq are toxic. Thus unfortunately, many patients reach toxic levels that lead to unnecessary complications. It is believed that personal monitoring of blood lithium levels would benefit patients taking lithium medication. Therefore, our aim is to develop a personal lithium blood level analyzer for patients with bipolar mood disorder, and we report here our initial results of a colorimetric-based method used to test drop-volumes of human plasma that had been spiked with lithium. It was possible to validate results with standard flame photometry readings. Applying the Partial Least Squares (PLS) method on preprocessed spectra, therapeutic concentrations of lithium in a single drop can be predicted in a rapid manner, and furthermore, the calibration results were used to select effective wavelengths which were employed as inputs in Multiple Linear Regression (MLR). The simplified algorithms of this would prove useful when developing a personal lithium analyzer. Overall, both calibration methods gave high correlation and small error outputs with a R2= 0.99036 and RMSEC = 0.03778, and R2= 0.994148 and RMSEC= 0.0294404, for PLS and MLR methods, respectively. The results show that the spectrophotometric determination of blood lithium levels can be extended beyond laboratory applications and indicate the capability of this testing principle to be employed in a personal monitoring device. Future work will now focus on the technical development of a miniaturized system for measurement of lithium levels in blood with an acceptable level of accuracy and sensitivity.

  18. Lake Chad, Chad, Africa

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The fluctuating water levels of Lake Chad, (13.0N, 15.0E) at the intersection of the borders of Chad, Niger and Cameroon in the Sahara Desert, is an index of the drought in Africa. The lake level continues to decrease as indicated by the growing number and extent of emerging islands as previously submerged ancient sand dunes become visible. The water impounded between the dunes is probably because of local rainfall rather than a reversal of desertification.

  19. Evaluation of the lake macroinvertebrate integrity index (LMII) and alternate indices for eastern U.S. lakes and reservoirs

    EPA Science Inventory

    We applied the Lake Macroinvertebrate Integrity Index (LMII) to 69 lakes and reservoirs across the eastern United States. Genus-level sub-littoral benthos samples, collected by EPA Regions 2 and 3 in 2007, were used to calcualte LMII scores for each lake. We investigated relation...

  20. Determining the efficacy of microsatellite DNA-based mixed-stock analysis of Lake Michigan’s lake whitefish commercial fishery

    USGS Publications Warehouse

    VanDeHey, Justin A.; Sloss, Brian L.; Peeters, Paul J.; Sutton, Trent M.

    2009-01-01

    Management of commercially exploited fish should be conducted at the stock level. If a mixed stock fishery exists, a comprehensive mixed stock analysis is required for stock-based management. The lake whitefish Coregonus clupeaformis comprises the primary commercial fishery across the Great Lakes. Recent research resolved that six genetic stocks of lake whitefish were present in Lake Michigan, and long-term tagging data indicate that Lake Michigan's lake whitefish commercial fishery is a mixed stock fishery. The objective of this research was to determine the usefulness of microsatellite data for conducting comprehensive mixed stock analyses of the Lake Michigan lake whitefish commercial fishery. We used the individual assignment method as implemented in the program ONCOR to determine the accuracy level at which microsatellite data can reliably identify component populations or stocks. Self-assignment of lake whitefish to their population and stock of origin ranged from > 96% to 100%. Evaluation of genetic stock discreteness indicated a moderately high degree of correct assignment (average = 75%); simulations indicated supplementing baseline data by ∼ 50 to 100 individuals could increase accuracy by up to 4.5%. Simulated mixed stock commercial harvests with known stock composition showed a high degree of correct proportional assignment between observed and predicted harvest values. These data suggest that a comprehensive mixed stock analysis of Lake Michigan's lake whitefish commercial fishery is viable and would provide valuable information for improving management.

  1. 2014 status of the Lake Ontario lower trophic levels

    USGS Publications Warehouse

    Holeck, Kristen T.; Rudstam, Lars G.; Hotaling, Christopher; McCullough, Russ D.; Lemon, Dave; Pearsall, Web; Lantry, Jana; Connerton, Michael J.; LaPan, Steve; Biesinger, Zy; Lantry, Brian F.; Walsh, Maureen; Weidel, Brian C.

    2015-01-01

    Soluble reactive phosphorus (SRP) concentrations have been stable in nearshore and offshore habitats since 1998 (0.4 – 3.3 μg/L). SRP concentrations were low in 2014; Apr/May – Oct mean values were <1 μg/L at most sites. Spring TP concentrations at individual sites exceeded 10 μg/L on occasion, but spring means were below the 10 μg/L target set by the Great Lakes Water Quality Agreement of 1978 for offshore waters of Lake Ontario. TP concentrations were low at both nearshore and offshore locations; Apr/May – Oct mean values from individual sites ranged from 4.6 – 9.1 μg/L. Spring TP has declined significantly in the longer data series (since 1981), but not since 1995 indicating stable nutrient loading into Lake Ontario for nearly two decades. It averaged 7.8 μg/L in the nearshore and 5.6 μg/L in the offshore in 2014.Chlorophyll-a and secchi depth values are indicative of oligotrophic conditions in nearshore and offshore habitats. Offshore summer chlorophyll-a declined significantly in both the short- (2000-2014) and long-term (1981-2014) time series at a rate of 4-6% per year. Nearshore chlorophyll-a increased after 2003 but then declined again after 2009. Epilimnetic chlorophyll-a averaged between 0.6 and 1.6 μg/L across sites with no difference between nearshore and offshore habitats. Apr/May – Oct Secchi depth ranged from 4.0 m to 10.8 m at individual sites and was higher in the offshore (average 9.1 m) than nearshore (5.9 m).In 2014, Apr/May – Oct epilimnetic zooplankton density, size, and biomass were not different between the offshore and the nearshore, and there were no differences in epilimnetic biomass between offshore and nearshore areas for any of the zooplankton groups.Zooplankton density and biomass peaked in September, an atypical pattern. This coincided with peaks in calanoid copepod, daphnid, and Holopedium biomass. Holopedium biomass in the nearshore increased significantly since 1995.The predatory cladoceran Cercopagis

  2. Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation

  3. Limnology of Botos Lake, a tropical crater lake in Costa Rica.

    PubMed

    Umaña, G

    2001-12-01

    Botos Lake, located at the Poas Volcano complex (Costa Rica) was sampled eight times from 1994 to 1996 for physicochemical conditions of the water column and phytoplanktonic community composition. Depth was measured at fixed intervals in several transects across the lake to determine its main morphometric characteristics. The lake has an outlet to the north. It is located 2580 m above sea level and is shallow, with a mean depth of 1.8 m and a relative depth of 2.42 (surface area 10.33 ha, estimated volume 47.3 hm3). The lake showed an isothermal water column in all occasions, but it heats and cools completely according to weather fluctuations. Water transparency reached the bottom on most occasions (> 9 m). The results support the idea that the lake is polymictic and oligotrophic. The lake has at least 23 species of planktonic algae, but it was always dominated by dinoflagellates, especially Peridinium inconspicuum. The shore line is populated by a sparse population of Isoetes sp. and Eleocharis sp. mainly in the northern shore where the bottom has a gentle slope and the forest does not reach the shore.

  4. Facilitators and barriers of drop-in center use among homeless youth

    PubMed Central

    Pedersen, Eric R.; Tucker, Joan S.; Kovalchik, Stephanie A.

    2016-01-01

    Drop-in centers for homeless youth address basic needs for food, hygiene, and clothing, but can also provide critical services that address youth’s “higher-level” needs (e.g., substance use treatment, mental health care, HIV-related programs). Unlike other services that have restrictive rules, drop-in centers typically try to break down barriers and take a “come as you are” approach to engaging youth in services. Given their popularity, drop-in centers represent a promising location to deliver higher level services to youth that may not seek services elsewhere. A better understanding of the individual-level factors (e.g., characteristics of homeless youth) and agency-level factors (e.g., characteristics of staff and environment) that facilitate and impede youth engagement in drop-in centers will help inform research and outreach efforts designed to engage these at-risk youth in services. Thus, the goal of this review was to develop a preliminary conceptual model of drop-in center use by homeless youth. Towards this goal, we reviewed 20 available peer-reviewed papers and reports on the facilitators and barriers of drop-in center usage and consulted broader models of service utilization from both youth and adult studies to inform model development. PMID:27238839

  5. Post-glacial inflation-deflation cycles, tilting, and faulting in the Yellowstone Caldera based on Yellowstone Lake shorelines

    USGS Publications Warehouse

    Pierce, Kenneth L.; Cannon, Kenneth P.; Meyer, Grant A.; Trebesch, Matthew J.; Watts, Raymond D.

    2002-01-01

    The Yellowstone caldera, like many other later Quaternary calderas of the world, exhibits dramatic unrest. Between 1923 and 1985, the center of the Yellowstone caldera rose nearly one meter along an axis between its two resurgent domes (Pelton and Smith, 1979, Dzurisin and Yamashita, 1987). From 1985 until 1995-6, it subsided at about two cm/yr (Dzurisin and others, 1990). More recent radar interferometry studies show renewed inflation of the northeastern resurgent dome between 1995 and 1996; this inflation migrated to the southwestern resurgent dome from 1996 to 1997 (Wicks and others, 1998). We extend this record back in time using dated geomorphic evidence of postglacial Yellowstone Lake shorelines around the northern shore, and Yellowstone River levels in the outlet area. We date these shorelines using carbon isotopic and archeological methods. Following Meyer and Locke (1986) and Locke and Meyer (1994), we identify the modern shoreline as S1 (1.9 ? 0.3 m above the lake gage datum), map paleoshoreline terraces S2 to S6, and infer that the prominent shorelines were cut during intracaldera uplift episodes that produced rising water levels. Doming along the caldera axis reduces the gradient of the Yellowstone River from Le Hardys Rapids to the Yellowstone Lake outlet and ultimately causes an increase in lake level. The 1923-1985 doming is part of a longer uplift episode that has reduced the Yellowstone River gradient to a ?pool? with a drop of only 0.25 m over most of this 5 km reach. We also present new evidence that doming has caused submergence of some Holocene lake and river levels. Shoreline S5 is about 14 m above datum and estimated to be ~12.6 ka, because it post-dates a large hydrothermal explosion deposit from the Mary Bay area (MB-II) that occurred ~13 ka. S4 formed about 8 m above datum ~10.7 ka as dated by archeology and 14C, and was accompanied by offset on the Fishing Bridge fault. About 9.7 ka, the Yellowstone River eroded the ?S-meander?, followed

  6. Groundwater levels, geochemistry, and water budget of the Tsala Apopka Lake system, west-central Florida, 2004–12

    USGS Publications Warehouse

    McBride, W. Scott; Metz, Patricia A.; Ryan, Patrick J.; Fulkerson, Mark; Downing, Harry C.

    2017-12-18

    , and the Upper Floridan aquifer; and to estimate an annual water budget for each pool and for the entire lake system for 2004–12. The hydrologic interactions were evaluated using hydraulic head and geochemical data. Geochemical data, including major ion, isotope, and age-tracer data, were used to evaluate sources of water and to distinguish flow paths. Hydrologic connection of the surficial environment (lakes, ponds, wetlands, and the surficial aquifer) was quantified on the basis of a conceptualized annual water-budget model. The model included the change in surface water and groundwater storage, precipitation, evapotranspiration, surface-water inflow and outflow, and net groundwater exchange with the underlying Upper Floridan aquifer. The control volume for each pool extended to the base of the surficial aquifer and covered an area defined to exceed the maximum inundated area for each pool during 2004–12 by 0.5 foot. Net groundwater flow was computed as a lumped value and was either positive or negative, with a negative value indicating downward or lateral leakage from the control volume and a positive value indicating upward leakage to the control volume.The annual water budget for Tsala Apopka Lake was calculated using a combination of field observations and remotely sensed data for each of three pools and for the composite three pool area. A digital elevation model at a 5-foot grid spacing and bathymetric survey data were used to define the land-surface elevation and volume of each pool and to calculate the changes in inundated area with change in lake stage. Continuous lake-stage and groundwater-level data were used to define the change in storage for each pool. The rainfall data used in the water-budget calculations were based on daily radar reflectance data and measured rainfall from weather stations. Evapotranspiration was computed as a function of reference evapotranspiration, adjusted to actual evapotranspiration using a monthly land-cover coefficient

  7. Lake whitefish and Diporeia spp. in the Great lakes: an overview

    USGS Publications Warehouse

    Nalepa, Thomas F.; Mohr, Lloyd C.; Henderson, Bryan A.; Madenjian, Charles P.; Schneeberger, Philip J.

    2005-01-01

    Because of growing concern in the Great Lakes over declines in abundance and growth of lake whitefish (Coregonus clupeaformis) and declines in abundance of the benthic amphipod Diporeia spp., a workshop was held to examine past and current trends, to explore trophic links, and to discuss the latest research results and needs. The workshop was divided into sessions on the status of populations in each of the lakes, bioenergetics and trophic dynamics, and exploitation and management. Abundance, growth, and condition of whitefish populations in Lakes Superior and Erie are stable and within the range of historical means, but these variables are declining in Lakes Michigan and Ontario and parts of Lake Huron. The loss of Diporeia spp., a major food item of whitefish, has been a factor in observed declines, particularly in Lake Ontario, but density-dependent factors also likely played a role in Lakes Michigan and Huron. The loss of Diporeia spp. is temporally linked to the introduction and proliferation of dreissenid mussels, but a direct cause for the negative response of Diporeia spp. has not been established. Given changes in whitefish populations, age-structured models need to be re-evaluated. Other whitefish research needs to include a better understanding of what environmental conditions lead to strong year-classes, improved aging techniques, and better information on individual population (stock) structure. Further collaborations between assessment biologists and researchers studying the lower food web would enhance an understanding of links between trophic levels.

  8. Annual contribution of carbon, nitrogen, and phosphorus by migrant Canada geese to a hardwater lake

    USGS Publications Warehouse

    Manny, Bruce A.; Wetzel, Robert G.; Johnson, W.C.

    1975-01-01

    Each year more than 6,000 migrant Canada geese (Branta canadensis interior Todd) rest for 3 to 10 days during the months of March, October, November, and December on Wintergreen Lake, a productive 15 ha (33 acre) hardwater lake in the W. K. Kellogg Bird Sanctuary of Michigan State University in southwestern Michigan. For the past six years accurate weekly counts have been made of resident and migrant waterfowl using Wintergreen Lake. During the past four years Wintergreen Lake has been the site of extensive limnological investigations relating nutrient dynamics and primary productivity. These limnological investigations suggested nutrients contributed by migrant Canada geese were the chief cause of hypereutrophic primary productivity conditions in Wintergreen Lake. Until January 1970, the unpredictable habits of wild Canada geese using Wintergreen Lake prevented accurate estimation of nutrients contributed ton the lake in the form of goose feces. An opportunity to measure this source of nutrients was presented on 9 to 11 January 1970 when about 600 late fall migrant Canada geese rested part of three days in a clearly defined area on newly fallen snow covering frozen Wintergreen Lake. During their stay on the lake accurate records were kept of goose numbers, their location on the lake surface, hours spent on the ice and hours spent feeding off the lake. After the geese left on 11 January 1970, a random sampling procedure was used to measure the density of droppings deposited within the area used by the geese on the lake surface.

  9. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    NASA Astrophysics Data System (ADS)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  10. Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations

    NASA Astrophysics Data System (ADS)

    Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.

    2017-12-01

    Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.

  11. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Szilagyi, Jozsef; Niu, Guo-Yue; Zhang, Yinsheng; Zhang, Teng; Wang, Binbin; Wu, Yanhong

    2016-06-01

    Previous studies have shown that the majority of the lakes in the Tibetan Plateau (TP) started to expand rapidly since the late 1990s. However, the causes are still not well known. For Nam Co, being a closed lake with no outflow, evaporation (EL) over the lake surface is the only way water may leave the lake. Therefore, quantifying EL is key for investigating the mechanism of lake expansion in the TP. EL can be quantified by Penman- and/or bulk-transfer-type models, requiring only net radiation, temperature, humidity and wind speed for inputs. However, interpolation of wind speed data may be laden with great uncertainty due to extremely sparse ground meteorological observations, the highly heterogeneous landscape and lake-land breeze effects. Here, evaporation of Nam Co Lake was investigated within the 1979-2012 period at a monthly time-scale using the complementary relationship lake evaporation (CRLE) model which does not require wind speed data. Validations by in-situ observations of E601B pan evaporation rates at the shore of Nam Co Lake as well as measured EL over an adjacent small lake using eddy covariance technique suggest that CRLE is capable of simulating EL well since it implicitly considers wind effects on evaporation via its vapor transfer coefficient. The multi-year average of annual evaporation of Nam Co Lake is 635 mm. From 1979 to 2012, annual evaporation of Nam Co Lake expressed a very slight decreasing trend. However, a more significant decrease in EL occurred during 1998-2008 at a rate of -12 mm yr-1. Based on water-level readings, this significant decrease in lake evaporation was found to be responsible for approximately 4% of the reported rapid water level increase and areal expansion of Nam Co Lake during the same period.

  12. Hulun Lake's ecological health and evaluation of its' eutrophication

    NASA Astrophysics Data System (ADS)

    Li, W.; Yang, W.; Wang, X.; Huang, J.; Sun, B.; Li, X.

    2013-12-01

    Hulun Lake is the largest lake in the north of china. The special geological location determines its important position in regional environmental protection. In terms of Hulun Lake's current situation, this paper chooses the indexes of lake system, lake structure and lake condition. Based on the calculation of these indexes and related theory , the evaluation standards of Hulun Lake's ecological healthy system are worked out. The author used Analytic Hierarchy Process to determine the weight of each indicator layer and criteria layer, and then applied fuzzy-pattern recognition model to calculate, finally, identifying the status of Hulun Lake according to the degrees of all levels. At the same time, the author used an integrated nutrition state index method to do the eutrophication assessment. Evaluation results show that the current status of Hulun Lake is healthy and it is in the moderate level of eutrophication.

  13. A 9,000-year-old caribou hunting structure beneath Lake Huron.

    PubMed

    O'Shea, John M; Lemke, Ashley K; Sonnenburg, Elizabeth P; Reynolds, Robert G; Abbott, Brian D

    2014-05-13

    Some of the most pivotal questions in human history necessitate the investigation of archaeological sites that are now under water. Nine thousand years ago, the Alpena-Amberley Ridge (AAR) beneath modern Lake Huron was a dry land corridor that connected northeast Michigan to southern Ontario. The newly discovered Drop 45 Drive Lane is the most complex hunting structure found to date beneath the Great Lakes. The site and its associated artifacts provide unprecedented insight into the social and seasonal organization of prehistoric caribou hunting. When combined with environmental and simulation studies, it is suggested that distinctly different seasonal strategies were used by early hunters on the AAR, with autumn hunting being carried out by small groups, and spring hunts being conducted by larger groups of cooperating hunters.

  14. A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach

    PubMed Central

    Meyer, Britta S.; Matschiner, Michael; Salzburger, Walter

    2015-01-01

    The species-flocks of cichlid fishes in the East African Great Lakes Victoria, Malawi and Tanganyika constitute the most diverse extant adaptive radiations in vertebrates. Lake Tanganyika, the oldest of the lakes, harbors the morphologically and genetically most diverse assemblage of cichlids and contains the highest number of endemic cichlid genera of all African lakes. Based on morphological grounds, the Tanganyikan cichlid species have been grouped into 12–16 distinct lineages, so-called tribes. While the monophyly of most of the tribes is well established, the phylogenetic relationships among the tribes remain largely elusive. Here, we present a new tribal level phylogenetic hypothesis for the cichlid fishes of Lake Tanganyika that is based on the so far largest set of nuclear markers and a total alignment length of close to 18 kb. Using next-generation amplicon sequencing with the 454 pyrosequencing technology, we compiled a dataset consisting of 42 nuclear loci in 45 East African cichlid species, which we subjected to maximum likelihood and Bayesian inference phylogenetic analyses. We analyzed the entire concatenated dataset and each marker individually, and performed a Bayesian concordance analysis and gene tree discordance tests. Overall, we find strong support for a position of the Oreochromini, Boulengerochromini, Bathybatini and Trematocarini outside of a clade combining the substrate spawning Lamprologini and the mouthbrooding tribes of the ‘H-lineage’, which are both strongly supported to be monophyletic. The Eretmodini are firmly placed within the ‘H-lineage’, as sister-group to the most species-rich tribe of cichlids, the Haplochromini. The phylogenetic relationships at the base of the ‘H-lineage’ received less support, which is likely due to high speciation rates in the early phase of the radiation. Discordance among gene trees and marker sets further suggests the occurrence of past hybridization and/or incomplete lineage sorting in

  15. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    PubMed

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  16. Satellite monitoring of dramatic changes at Hawai'i's only alpine lake: Lake Waiau on Mauna Kea volcano

    USGS Publications Warehouse

    Patrick, Matthew R.; Kauahikaua, James P.

    2015-01-01

    Lake Waiau is a small, typically 100-meter-long lake, located near the summit of Mauna Kea volcano, on the Island of Hawaiʻi. It is Hawaiʻi’s only alpine lake and is considered sacred in Hawaiian cultural tradition. Over the past few years, the lake has diminished in size, and, by October 2013, surface water had almost completely disappeared from the lake. In this study, we use high-resolution satellite images and aerial photographs to document recent changes at the lake. Based on our reconstructions covering the past 200 years, the historical lake surface area has typically ranged from 5,000 to 7,000 square meters, but in 2010 a dramatic plunge in lake area ensued. The lake area rebounded significantly in early 2014, following heavy winter storms. This near disappearance of the lake, judging from analysis of visitor photographs and field reports, appears to be highly unusual, if not unprecedented, in the historical record. The unusually low water levels in the lake are consistent with a recent severe drought in Hawaiʻi.

  17. The Provo shoreline of Lake Bonneville: Chapter 7

    USGS Publications Warehouse

    Miller, David

    2016-01-01

    G.K. Gilbert studied the Bonneville basin 150 years ago and his findings have largely stood the test of time: The Provo shoreline, the most prominent geomorphic feature of Lake Bonneville, reflects threshold-stabilized overflow of the lake after the Bonneville flood and before a drier climate caused the lake to shrink. Subsequent refinements in chronology allow the Provo lake to be identified as about 18.2–14.8 cal ka BP, and stratigraphic studies show that the lake was gradually growing deeper during that time. Because the lake deepened through time as isostatic rebound occurred, individual landforms in general reflect processes operating for a small part of the ~ 3400 year of Provo time. Opportunities remain to improve our knowledge of the Provo lake; topics include (1) refinement of lake levels using delta and beach stratigraphy; (2) improved understanding of lake water chemistry and its role in determining deep-water sediment and cave deposits, which have disparate interpretations; (3) identifying processes at the threshold that caused the lake level to rise; and (4) identifying climate variability signals during Provo time.

  18. Observation of ice nucleation in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Xie, W. J.; Wei, B.

    2005-10-01

    The supercooling and nucleation of acoustically levitated water drops were investigated at two different sound pressure levels (SPL). These water drops were supercooled by 13to16K at the low SPL of 160.6dB, whereas their supercoolings varied from 5to11K at the high SPL of 164.4dB. The maximum supercooling obtained in the experiments is 32K. Statistical analyses based on the classical nucleation theory reveal that the occurrence of ice nucleation in water drops is mainly confined to the surface region under acoustic levitation conditions and the enlargement of drop surface area caused by the acoustic radiation pressure reduces water supercoolability remarkably. A comparison of the nucleation rates at the two SPLs indicates that the sound pressure can strengthen the surface-dominated nucleation of water drops. The acoustic stream around levitated water drops and the cavitation effect associated with ultrasonic field are the main factors that induce surface-dominated nucleation.

  19. A 300 year history of lead contamination in northern French Alps reconstructed from distant lake sediment records.

    PubMed

    Arnaud, F; Revel-Rolland, M; Bosch, D; Winiarski, T; Desmet, M; Tribovillard, N; Givelet, N

    2004-05-01

    Lead concentrations and isotopic ratios were measured along two well-dated sediment cores from two distant lakes: Anterne (2100 m a.s.l.) and Le Bourget (270 m a.s.l.), submitted to low and high direct human impact and covering the last 250 and 600 years, respectively. The measurement of lead in old sediment samples (>3000 BP) permits, in using mixing-models, the determination of lead concentration, flux and isotopic composition of purely anthropogenic origin. We thus show that since ca. 1800 AD the regional increase in lead contamination was mostly driven by coal consumption ((206)Pb/(207)Pb approximately 1.17-1.19; (206)Pb/(204)Pb approximately 18.3-18.6), which peaks around 1915 AD. The increasing usage of leaded gasoline, introduced in the 1920s, was recorded in both lakes by increasing Pb concentrations and decreasing Pb isotope ratios. A peak around 1970 ((206)Pb/(207)Pb approximately 1.13-1.16; (206)Pb/(204)Pb approximately 17.6-18.0) corresponds to the worldwide recorded leaded gasoline maximum of consumption. The 1973 oil crisis is characterised by a drastic drop of lead fluxes in both lakes (from approximately 35 to <20 mg cm(-2) yr(-1)). In the late 1980s, environmental policies made the Lake Anterne flux drop to pre-1900 values (<10 mg cm(-2) yr(-1)) while Lake Le Bourget is always submitted to an important flux (approximately 25 mg cm(-2) yr(-1)). The good match of our distant records, together and with a previously established series in an ice core from Mont Blanc, provides confidence in the use of sediments as archives of lead contamination. The integration of the Mont Blanc ice core results from Rosman et al. with our data highlights, from 1990 onward, a decoupling in lead sources between the high elevation sites (Lake Anterne and Mont Blanc ice core), submitted to a mixture of long-distance and regional contamination and the low elevation site (Lake Le Bourget), where regional contamination is predominant.

  20. Geospatial analysis of lake and landscape interactions within the Toolik Lake region, North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Pathak, Prasad A.

    The Arctic region of Alaska is experiencing severe impacts of climate change. The Arctic lakes ecosystems are bound to undergo alterations in its trophic structure and other chemical properties. However, landscape factors controlling the lake influxes were not studied till date. This research has examined the currently existing lake landscape interactions using Remote Sensing and GIS technology. The statistical modeling was carried out using Regression and CART methods. Remote sensing data was applied to derive the required landscape indices. Remote sensing in the Arctic Alaska faces many challenges including persistent cloud cover, low sun angle and limited snow free period. Tundra vegetation types are interspersed and intricate to classify unlike managed forest stands. Therefore, historical studies have remained underachieved with respect thematic accuracies. However, looking at vegetation communities at watershed level and the implementation of expert classification system achieved the accuracies up to 90%. The research has highlighted the probable role of interactions between vegetation root zones, nutrient availability within active zone, as well as importance of permafrost thawing. Multiple regression analyses and Classification Trees were developed to understand relationships between landscape factors with various chemical parameters as well as chlorophyll readings. Spatial properties of Shrubs and Riparian complexes such as complexity of individual patches at watershed level and within proximity of water channels were influential on Chlorophyll production of lakes. Till-age had significant impact on Total Nitrogen contents. Moreover, relatively young tills exhibited significantly positive correlation with concentration of various ions and conductivity of lakes. Similarly, density of patches of Heath complexes was found to be important with respect to Total Phosphorus contents in lakes. All the regression models developed in this study were significant at 95

  1. Population-structure and genetic diversity in a haplochromine cichlid fish [corrected] of a satellite lake of Lake Victoria.

    PubMed

    Abila, Romulus; Barluenga, Marta; Engelken, Johannes; Meyer, Axel; Salzburger, Walter

    2004-09-01

    The approximately 500 species of the cichlid fish species flock of Lake Victoria, East Africa, have evolved in a record-setting 100,000 years and represent one of the largest adaptive radiations. We examined the population structure of the endangered cichlid species Xystichromis phytophagus from Lake Kanyaboli, a satellite lake to Lake Victoria in the Kenyan Yala wetlands. Two sets of molecular markers were analysed--sequences of the mitochondrial control region as well as six microsatellite loci--and revealed surprisingly high levels of genetic variability in this species. Mitochondrial DNA sequences failed to detect population structuring among the three sample populations. A model-based population assignment test based on microsatellite data revealed that the three populations most probably aggregate into a larger panmictic population. However, values of population pairwise FST indicated moderate levels of genetic differentiation for one population. Eleven distinct mitochondrial haplotypes were found among 205 specimens of X. phytophagus, a relatively high number compared to the total number of 54 haplotypes that were recovered from hundreds of specimens of the entire cichlid species flock of Lake Victoria. Most of the X. phytophagus mitochondrial DNA haplotypes were absent from the main Lake Victoria, corroborating the putative importance of satellite lakes as refugia for haplochromine cichlids that went extinct from the main lake in the last decades and possibly during the Late Pleistocene desiccation of Lake Victoria.

  2. Seasonal habitat selection by lake trout (Salvelinus namaycush) in a small Canadian shield lake: Constraints imposed by winter conditions

    USGS Publications Warehouse

    Blanchfield, P.J.; Tate, L.S.; Plumb, J.M.; Acolas, M.-L.; Beaty, K.G.

    2009-01-01

    The need for cold, well-oxygenated waters significantly reduces the habitat available for lake trout (Salvelinus namaycush) during stratification of small temperate lakes. We examined the spatial and pelagic distribution of lake trout over two consecutive summers and winters and tested whether winter increased habitat availability and access to littoral regions in a boreal shield lake in which pelagic prey fish are absent. In winter, lake trout had a narrowly defined pelagic distribution that was skewed to the upper 3 m of the water column and spatially situated in the central region of the lake. Individual core areas of use (50% Kernel utilization distributions) in winter were much reduced (75%) and spatially non-overlapping compared to summer areas, but activity levels were similar between seasons. Winter habitat selection is in contrast to observations from the stratified season, when lake trout were consistently located in much deeper waters (>6 m) and widely distributed throughout the lake. Winter distribution of lake trout appeared to be strongly influenced by ambient light levels; snow depth and day length accounted for up to 69% of the variation in daily median fish depth. More restricted habitat use during winter than summer was in contrast to our original prediction and illustrates that a different suite of factors influence lake trout distribution between these seasons. ?? Springer Science+Business Media B.V. 2009.

  3. Rapid thinning and collapse of lake calving Yakutat Glacier, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Trussel, Barbara Lea

    , increased water input may cause lake level in rifts to rise resulting in faster rift propagation and spreading. Similar formation and disintegration of floating tongues are expected to occur in the glacier's future, as the ice divide lies below the current lake level. In addition to calving retreat, Yakutat Glacier is rapidly thinning, which lowers its surface and therefore exposes the ice to warmer air temperatures causing increased thinning. Even under a constant climate, this positive feedback mechanism would force Yakutat Glacier to quickly retreat and mostly disappear. Simulations of future mass loss were run for two scenarios, keeping the current climate and forcing it with a projected warming climate. Results showed that over 95% of the glacier ice will have disappeared by 2120 or 2070 under a constant vs projected climate, respectively. For the first few decades, the glacier will be able to maintain its current thinning rate by retreating and thus losing areas of lowest elevation. However, once higher elevations have thinned substantially, the glacier cannot compensate any more to maintain a constant thinning rate and transfers into an unstable run-away situation. To stop this collapse and transform Yakutat Glacier into equilibrium in its current geometry, air temperatures would have to drop by 1.5 K or precipitation would have to increase by more than 50%. An increase in precipitation alone is unlikely to lead to a stable configuration, due to the very small current accumulation area.

  4. Use of a two-dimensional hydrodynamic model to evaluate extreme flooding and transport of dissolved solids through Devils Lake and Stump Lake, North Dakota, 2006

    USGS Publications Warehouse

    Nustad, Rochelle A.; Wood, Tamara M.; Bales, Jerad D.

    2011-01-01

    The U.S. Geological Survey in cooperation with the North Dakota Department of Transportation, North Dakota State Water Commission, and U.S. Army Corps of Engineers, developed a two-dimensional hydrodynamic model of Devils Lake and Stump Lake, North Dakota to be used as a hydrologic tool for evaluating the effects of different inflow scenarios on water levels, circulation, and the transport of dissolved solids through the lake. The numerical model, UnTRIM, and data primarily collected during 2006 were used to develop and calibrate the Devils Lake model. Performance of the Devils Lake model was tested using 2009 data. The Devils Lake model was applied to evaluate the effects of an extreme flooding event on water levels and hydrological modifications within the lake on the transport of dissolved solids through Devils Lake and Stump Lake. For the 2006 calibration, simulated water levels in Devils Lake compared well with measured water levels. The maximum simulated water level at site 1 was within 0.13 feet of the maximum measured water level in the calibration, which gives reasonable confidence that the Devils Lake model is able to accurately simulate the maximum water level at site 1 for the extreme flooding scenario. The timing and direction of winddriven fluctuations in water levels on a short time scale (a few hours to a day) were reproduced well by the Devils Lake model. For this application, the Devils Lake model was not optimized for simulation of the current speed through bridge openings. In future applications, simulation of current speed through bridge openings could be improved by more accurate definition of the bathymetry and geometry of select areas in the model grid. As a test of the performance of the Devils Lake model, a simulation of 2009 conditions from April 1 through September 30, 2009 was performed. Overall, errors in inflow estimates affected the results for the 2009 simulation; however, for the rising phase of the lakes, the Devils Lake model

  5. Monitoring and Assessment of Hydrological and Ecological Changes in Lake Manyas

    NASA Astrophysics Data System (ADS)

    Curebal, Isa; Efe, Recep; Soykan, Abdullah; Sonmez, Suleyman

    2014-05-01

    Manyas Lake in the northwest of Turkey occupies an area of 165 square kilometers. The surface area of the lake is continuously changing due to human activities, hydrologic and climatic conditions. The objective of this study is to examine the changes in water level and the area of lake and the effects of these changes on the lake's ecosystem and human economic activities. In order to determine the changes lake level measurement data, 1/25000 scale topography maps, rainfall and temperature data and bathymetry maps were used and elevation models were made. During the study period the water level fluctuated between 14.0 and 17.8 meters, and surface area changed between 124,8 km2 and 170,6 km2 respectively. Prior to the construction of a flood barrier at the southern end of the lake in 1992 the maximum surface area of the lake was calculated at 209 km2. Lake Manyas is an important wetland on the route of migration of birds from/to Europe and Africa. 64 ha of the lake and its surroundings along with the entire National Park is a Ramsar site. Irrigated and dry farming is practiced around the lake and fishing is important economic activity. The changes in the water level as result of natural and human factors brought about negative effects on the lake's ecosystem in last ten years. Result of these effects, natural fluctuation of the lake changed and the marshes around the lake destroyed and the bird population decreased. Lowering the water level in the lake is also significantly reduced the number of fish and number of migratory birds. The construction of the flood barrier destroyed vegetation and bird life in about a 25% of area of the lake on the south. The natural ecosystem in this area has been adversely affected. Moreover, when the water level is low due to low rain fall and irrigation, vegetation on the lake's shore line dies and some areas turn to swamp. The fauna and flora are negatively affected by water level changes particularly in the protected National Park

  6. Influence of permafrost on lake terraces of Lake Heihai (NE Tibetan Plateau)

    NASA Astrophysics Data System (ADS)

    Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd

    2013-04-01

    The Tibetan Plateau (TP) is one of the key regions for climatic global change. Besides the poles the TP is the third highest storage of frozen water in glaciers. Here global warming is three times higher than in the rest of the world. Additionally the TP provides water for billions of people and influences the moisture availability from the Indian and East Asian monsoon systems. During the Holocene extent and intensity of the monsoonal systems changed. Hence, in the last decades, a lot of work was done to reconstruct timing and frequency of monsoonal moisture, to understand the past and give a better forecast for the future. Comparative workings often show very heterogeneous patterns of timing and frequency of the Holocene precipitation and temperature maximum, emphasizing the local importance of catchment dynamics. In this study we present first results of lake Heihai (36°N, 93°15'E, 4500m a.s.l.), situated at the north-eastern border of the TP. The lake is surrounded by a broad band of near-shore lake sediments, attesting a larger lake extent in the past. These sediments were uplifted by permafrost, reaching nowadays heights ca. +8 meters above present lake level. Due to the uplift one of the main inflows was blocked and the whole hydrology of the catchment changed. To quantify the uplift of permafrost Hot Spot Analysis were accomplished at a DEM of the near-shore area. As a result regions of high permafrost uplift and those which mirror the original height of lake ground were revealed. The most obvious uplift took place in the northern and western part of the lake, where the four uplift centers are located. In contrast the southern and eastern areas show a rather degraded pattern (probably by fluvial erosion, thermokarst, etc.). The ancient lake bottom, without permafrost uplift was estimated to be 4-6 meters above the modern lake level. For a better understanding of permafrost interaction inside the terrace bodies a 5m sediment profile was sampled and

  7. Quadricep and hamstring activation during drop jumps with changes in drop height.

    PubMed

    Peng, Hsien-Te; Kernozek, Thomas W; Song, Chen-Yi

    2011-08-01

    Compare the muscle activation patterns of the quadricep-hamstring during drop jumps with increasing demands of drop heights. Observational. University biomechanics laboratory. Fifteen male and eight female college physical education students. Electromyographic activity of the rectus femoris (RF) and biceps femoris (BF) during the landing and takeoff phase of drop jumps from 20 to 60-cm heights. The ground contact time, vertical ground reaction force (vGRF), knee flexion angle during ground contact, and jump height after takeoff were also analyzed. The activation of RF was higher in the drop jump from 60-cm than that from 20- and 30-cm (comparing 107.0 ± 45.9 to 82.3 ± 30.8 and 88.9 ± 38.9 %MVIC, P<.05) during the landing phase. Activation of BF remained similar across all drop heights. Drop jump from 60-cm resulted in greater contact time during takeoff phase and peak vGRF, and resulted in greater maximum knee flexion but straighter knee at ground contact than from lower drop heights. At drop height of 60-cm, the altered knee muscular activation and movement patterns may diminish the effectiveness of plyometric training and increase the potential injury risk of knee. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Development of a new Lake-wide Multiple Gear Survey to Assess Status and Trends of the Lake Superior Fish Community and Lower Trophic Levels

    EPA Science Inventory

    The U.S. Geological Survey Great Lakes Science Center has developed a plan to implement revision of its annual fish community survey of Lake Superior. The primary objective of the revision is improvement of the sampling design to be more representative of the Lake Superior fish c...

  9. Suppression of invasive lake trout in an isolated backcountry lake in Glacier National Park

    USGS Publications Warehouse

    Fredenberg, C. R.; Muhlfeld, Clint C.; Guy, Christopher S.; D'Angelo, Vincent S.; Downs, Christopher C.; Syslo, John M.

    2017-01-01

    Fisheries managers have implemented suppression programmes to control non-native lake trout, Salvelinus namaycush (Walbaum), in several lakes throughout the western United States. This study determined the feasibility of experimentally suppressing lake trout using gillnets in an isolated backcountry lake in Glacier National Park, Montana, USA, for the conservation of threatened bull trout, Salvelinus confluentus (Suckley). The demographics of the lake trout population during suppression (2009–2013) were described, and those data were used to assess the effects of suppression scenarios on population growth rate (λ) using an age-structured population model. Model simulations indicated that the population was growing exponentially (λ = 1.23, 95% CI: 1.16–1.28) prior to suppression. However, suppression resulted in declining λ(0.61–0.79) for lake trout, which was concomitant with stable bull trout adult abundances. Continued suppression at or above observed exploitation levels is needed to ensure continued population declines.

  10. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    USGS Publications Warehouse

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  11. Evidence of Lake Trout reproduction at Lake Michigan's mid-lake reef complex

    USGS Publications Warehouse

    Janssen, J.; Jude, D.J.; Edsall, T.A.; Paddock, R.W.; Wattrus, N.; Toneys, M.; McKee, P.

    2006-01-01

    The Mid-Lake Reef Complex (MLRC), a large area of deep (> 40 m) reefs, was a major site where indigenous lake trout (Salvelinus namaycush) in Lake Michigan aggregated during spawning. As part of an effort to restore Lake Michigan's lake trout, which were extirpated in the 1950s, yearling lake trout have been released over the MLRC since the mid-1980s and fall gill net censuses began to show large numbers of lake trout in spawning condition beginning about 1999. We report the first evidence of viable egg deposition and successful lake trout fry production at these deep reefs. Because the area's existing bathymetry and habitat were too poorly known for a priori selection of sampling sites, we used hydroacoustics to locate concentrations of large fish in the fall; fish were congregating around slopes and ridges. Subsequent observations via unmanned submersible confirmed the large fish to be lake trout. Our technological objectives were driven by biological objectives of locating where lake trout spawn, where lake trout fry were produced, and what fishes ate lake trout eggs and fry. The unmanned submersibles were equipped with a suction sampler and electroshocker to sample eggs deposited on the reef, draw out and occasionally catch emergent fry, and collect egg predators (slimy sculpin Cottus cognatus). We observed slimy sculpin to eat unusually high numbers of lake trout eggs. Our qualitative approaches are a first step toward quantitative assessments of the importance of lake trout spawning on the MLRC.

  12. Sediment deposition and selected water-quality characteristics in Cedar Lake and Lake Olathe, Northeast Kansas, 2000

    USGS Publications Warehouse

    Mau, D.P.

    2002-01-01

    .91 pound per acre per year for Lake Olathe. Phosphorus yields in the Cedar Lake watershed were largest of the six Kansas impoundment watersheds recently studied. Concentrations of total ammonia plus organic nitrogen as nitrogen in bottom sediment increased from upstream to downstream in both Cedar Lake and Lake Olathe. Mean concentrations of total ammonia plus organic nitrogen as nitrogen (N) ranged from 2,000 to 2,700 milligrams per kilogram in bottom-sediment samples from Cedar Lake and from 1,300 to 2,700 milligrams per kilogram in samples from Lake Olathe. There was no statistical significance between total ammonia plus organic nitrogen as nitrogen and depth of bottom sediment. Concentrations of six trace elements in bottom sediment from Cedar Lake and Lake Olathe (arsenic, chromium, copper, lead, nickel, and zinc) exceeded the U.S. Environmental Protection Agency Threshold Effects Levels (TELs) sediment-quality guidelines for aquatic organisms in sediment except for one lead concentration. Probable Effects Levels (PELs) for trace elements, however, were not exceeded at either lake. Organochlorine and organophosphate insecticides were not detected in bottom-sediment samples from either Cedar Lake or Lake Olathe, but the acetanilide herbicides alachlor and metolachlor were detected in sediment from both lakes. The U.S. Environmental Protection Agency has not proposed TEL or PEL guideline concentrations for bottom sediment for any of the organophosphate, acetanilide, or triazine pesticides. The diatoms (microscopic, single-celled organisms) Cyclotella bodanica, an indicator of low organic-enriched water, and Cyclotella meneghiniana, an indicator of organic-enriched water, were both present in bottom sediment from Lake Olathe. The presence of both of these diatoms suggests varying periods of low and high eutrophication in Lake Olathe from 1956 to 2000. The concentrations of two species in bottom sediment from Cedar Lake, Aulacoseira cf alpigena and Cyclotella meneg

  13. Extreme drought causes distinct water acidification and eutrophication in the Lower Lakes (Lakes Alexandrina and Albert), Australia

    NASA Astrophysics Data System (ADS)

    Li, Siyue; Bush, Richard T.; Mao, Rong; Xiong, Lihua; Ye, Chen

    2017-01-01

    Droughts are set to increase in frequency and magnitude with climate change and water extraction, and understanding their influence on ecosystems is urgent in the Holocene. Low rainfall across the Murray-Darling Basin (MDB) of Australia resulted in an unprecedented water level decline in the Lower Lakes (Lakes Alexandrina and Albert) at the downstream end of the river system. A comprehensive data covering pre-drought (2004-2006), drought (2007-2010) and post-drought (2010-2013) was firstly used to unravel drought effects on water quality in the contrasting main parts and margins of the two Lakes, particularly following water acidification resulting from acid sulfate soil oxidation. Salinity, nutrients and Chl-a significantly increased during the drought in the Lake main waterbody, while pH remained stable or showed minor shifts. In contrast to the Lake Alexandrina, total dissolved solid (TDS) and electrical conductivity (EC) during the post-drought more than doubled the pre-drought period in the Lake Albert as being a terminal lake system with narrow and shallow entrance. Rewetting of the exposed pyrite-containing sediment resulted in very low pH (below 3) in Lake margins, which positively contributed to salinity increases via SO42- release and limestone dissolution. Very acidic water (pH 2-3) was neutralised naturally by lake refill, but aerial limestone dosing was required for neutralisation of water acidity during the drought period. The Lower Lakes are characterized as hypereutrophic with much higher salinity, nutrient and algae concentrations than guideline levels for aquatic ecosystem. These results suggest that, in the Lower Lakes, drought could cause water quality deterioration through water acidification and increased nutrient and Chl-a concentrations, more effective water management in the lake catchment is thus crucial to prevent the similar water quality deterioration since the projected intensification of droughts. A comparative assessment on lake

  14. 77 FR 41686 - Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ...-AA00 Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Sheffield Lake, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  15. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive

  16. Hydrology of Lake Tohopekaliga, Osceola County, Florida

    USGS Publications Warehouse

    Phelps, G.G.

    1982-01-01

    Lake Tohopekaliga, one of the major lakes in central Florida, provides flood control in the upper Kissimmee River basin, recreation for fishermen and boaters, water for live-stock, esthetic surroundings for homesites, and serves as a receiving body for treated effluent from municipal sewage treatment plants. The purpose of this map report is to provide a general reconnaissance of the lake, based primarily on existing geologic , hydrologic and water-quality data. The lake has a surface area of about 30 square miles and a mean depth of about 5 feet. Maximum depth measured was about 13 feet. Inflow to the lake comes from Shingle Creek and St. Cloud canal and outflow is through the South-port canal. Regulation of lake levels for flood control began in the early 1960 's and has resulted in a decrease in the range of lake stage of about 3 feet. Concentrations of pesticide residues in lake bottom sediments do not appear to have increased from 1972 to 1980. The lake has abundant aquatic vegetation, the amount and extent of which varies with fluctuating water levels. Water-quality data collected between 1954-77 are summarized in the report and additional data collected in 1980 are also shown. The range of plant nutrient concentrations measured in May 1980 are: Total organic nitrogen 0.71-2.2 milligrams per liter. Most water-quality parameters vary from one area of the lake to another because of restricted areal circulation due to the shape of the lake. (USGS)

  17. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  18. Mercury accumulation in Devils Lake, North Dakota effects of environmental variation in closed-basin lakes on mercury chronologies

    USGS Publications Warehouse

    Lent, R.M.; Alexander, C.R.

    1997-01-01

    Sediment cores were collected from lakes in the Devils Lake Basin in North Dakota to determine if mercury (Hg) accumulation chronologies from sediment-core data are good indicators of variations in Hg accumulation rates in saline lakes. Sediment cores from Creel Bay and Main Bay, Devils Lake were selected for detailed analysis and interpretation. The maximum Hg concentration in the Creel Bay core was 0.15 micrograms per gram at 8 to 9 centimeters. The maximum Hg concentration in the Main Bay core was 0.07 micrograms per gram at 5 to 7 centimeters. The general decreases in Hg concentrations with depth are attributed to historic variations in atmospheric Hg deposition rate. Hg stratigraphies combined with 210Pb and 137Cs dating analyses yield Hg chronologies that indicate a general increase in Hg accumulation rates in Devils Lake since the middle of the 19th century. Mean modern Hg accumulation rates in Creel Bay were 4.9 nanograms per square centimeter per year, and rates in Main Bay were 1.8 nanograms per square centimeter per year. Mean preindustrial Hg accumulation rates in Creel Bay were 1.2 nanograms per square centimeter per year, and rates in Main Bay were 1.6 nanograms per square centimeter per year. Relatively low Hg concentrations in recent sediments in the Devils Lake Basin, along with similarities in Hg accumulation rates between lakes in the Devils Lake Basin and other lakes in the northern interior of North America, indicate that local sources of Hg are not important sources of Hg. Results of the study indicate that accurate Hg chronologies are discernible in sediment cores collected from saline lakes. However, spatial and temporal variations in lake level and water chemistry common to saline lakes make interpretation of radioisotopic and geochemical chronologies difficult. Hg geochemistry in Devils Lake, and presumably in other saline lakes, is dynamic. The results of this study indicate that the absolute amount of sediment transported to Devils Lake

  19. HIV Patients Drop Out in Indonesia: Associated Factors and Potential Productivity Loss.

    PubMed

    Siregar, Adiatma Ym; Pitriyan, Pipit; Wisaksana, Rudi

    2016-07-01

    this study reported various factors associated with a higher probability of HIV patients drop out, and potential productivity loss due to HIV patients drop out. we analyzed data of 658 HIV patients from a database in a main referral hospital in Bandung city, West Java, Indonesia from 2007 to 2013. First, we utilized probit regression analysis and included, among others, the following variables: patients' status (active or drop out), CD4 cell count, TB and opportunistic infection (OI), work status, sex, history of injecting drugs, and support from family and peers. Second, we used the drop out data from our database and CD 4 cell count decline rate from another study to estimate the productivity loss due to HIV patients drop out. lower CD4 cell count was associated with a higher probability of drop out. Support from family/peers, living with family, and diagnosed with TB were associated with lower probability of drop out. The productivity loss at national level due to treatment drop out (consequently, due to CD4 cell count decline) can reach US$365 million (using average wage). first, as lower CD 4 cell count was associated with higher probability of drop out, we recommend (to optimize) early ARV initiation at a higher CD 4 cell count, involving scaling up HIV service at the community level. Second, family/peer support should be further emphasized to further ensure treatment success. Third, dropping out from ART will result in a relatively large productivity loss.

  20. Introduction and summary: Chlorinated hydrocarbons as a factor in the reproduction and survival of lake trout (Salvelinus namaycush) in Lake Michigan

    USGS Publications Warehouse

    Willford, Wayne A.; Bergstedt, Roger A.; Berlin, William H.; Foster, Neal R.; Hesselberg, Robert J.; Mac, Michael J.; Passino, Dora R. May; Reinert, Robert E.; Rottiers, Donald V.

    1981-01-01

    Although lake trout (Salvelinus namaycush) were considered extinct in Lake Michigan by the mid 1950's, control of the parasitic sea lamprey (Petromyzon marinus) and extensive restocking resulted in an abundance of hatchery-produced lake trout in the lake by the early 1970's. However, no naturally produced yearling or older lake trout have been found in the lake during nearly a decade of assessment sampling. Among the numerous hypotheses proposed to account for this apparent reproductive failure of the planted lake trout, a frequently suggested cause is the well-documented contamination of the fish by toxic substances such as DDT and its metabolites, and polychlorinated biphenyls (PCB's) at concentrations reported as adversely affecting the hatching of eggs and survival of larval fish. However, manually stripped and fertilized eggs of Lake Michigan lake trout have hatched successfully and the fry have survived normally under a variety of hatchery conditions. This observation led to studies at the Great Lakes Fishery Laboratory on the performance and survival of fry hatched from eggs of Lake Michigan lake trout and exposed for 6 months to PCB's (Aroclor 1254) and DDE at concentrations similar to those present in offshore waters and zooplankton of Lake Michigan (10.0 ng/L PCB's and 1.0 ng/L DDE in water; 1.0 μg/g PCB's and 0.1 μg/g DDE in food), and at concentrations 5 and 25 times higher. Cumulative mortality of the fry exposed to simulated Lake Michigan levels of PCB's and DDE for 6 months was 40.7% — nearly twice that of unexposed (control) fry — and mortality at the highest exposure level was 46.5%. Evaluation of the growth, swimming performance, predator avoidance, temperature preference, and metabolism of the fry showed no significant effects attributable to exposure to PCB's and DDE, except for a lowering of preferred temperature at the highest (25x) exposures (the only concentration tested) to each contaminant and (additively) both contaminants combined

  1. Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents.

    PubMed

    Huang, Lei; Fang, Hongwei; He, Guojian; Jiang, Helong; Wang, Changhui

    2016-12-01

    Wind-driven sediment resuspension exerts significant effects on the P behavior in shallow lake ecosystems. In this study, a comprehensive dynamic phosphorus (P) model that integrates hydrodynamic, wind wave and sediment transport is proposed to assess the importance of internal P cycling due to sediment resuspension on water column P levels. The primary contribution of the model is detailed modeling and rigorous coupling of sediment and P dynamics. The proposed model is applied to predict the P behavior in the shallow Taihu Lake, which is the third largest lake in China, and quantitatively estimate the effects of wind waves and lake currents on P release and distribution. Both the prevailing southeast winds in summer and northwest winds in winter are applied for the simulation, and different wind speeds of 5 m/s and 10 m/s are also considered. Results show that sediment resuspension and the resulting P release have a dominant effect on P levels in Taihu Lake, and likely similar shallow lakes. Wind-driven waves at higher wind speeds significantly enhance sediment resuspension and suspended sediment concentration (SSC). Total P concentration in the water column is also increased but not in proportion to the SSC. The different lake circulations resulting from the different prevailing wind directions also affect the distribution of suspended sediment and P around the lake ultimately influencing where eutrophication is likely to occur. The proposed model demonstrates that internal cycling in the lake is a dominant factor in the lake P and must be considered when trying to manage water quality in this and similar lakes. The model is used to demonstrate the potential effectiveness of remediation of an area where historical releases have led to P accumulation on overall lake quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Genetic diversity of wild and hatchery lake trout populations: Relevance for management and restoration in the Great Lakes

    USGS Publications Warehouse

    Page, K.S.; Scribner, K.T.; Burnham-Curtis, M.

    2004-01-01

    The biological diversity of lake trout Salvelinus namaycush in the upper Great Lakes was historically high, consisting of many recognizable morphological types and discrete spawning populations. During the 1950s and 1960s, lake trout populations were extirpated from much of the Great Lakes primarily as a result of overfishing and predation by the parasitic sea lamprey Petromyzon marinus. Investigations of how genetic diversity is partitioned among remnant wild lake trout populations and hatchery broodstocks have been advocated to guide lake trout management and conservation planning. Using microsatellite genetic markers, we estimated measures of genetic diversity and the apportionment of genetic variance among 6 hatchery broodstocks and 10 wild populations representing three morphotypes (lean, humper, and siscowet). Analyses revealed that different hatchery broodstocks and wild populations contributed disproportionally to the total levels of genetic diversity. The genetic affinities of hatchery lake trout reflected the lake basins of origin of the wild source populations. The variance in allele frequency over all sampled extant wild populations was apportioned primarily on the basis of morphotype (??MT = 0.029) and secondarily among geographically dispersed populations within each morphotype (??ST = 0.024). The findings suggest that the genetic divergence reflected in recognized morphotypes and the associated ecological and physiological specialization occurred prior to the partitioning of large proglacial lakes into the Great Lakes or as a consequence of higher contemporary levels of gene flow within than among morphotypes. Information on the relative contributions of different broodstocks to total gene diversity within the regional hatchery program can be used to prioritize the broodstocks to be retained and to guide future stocking strategies. The findings highlight the importance of ecological and phenotypic diversity in Great Lakes fish communities and

  3. Mid-Holocene hydrologic model of the Shingobee watershed, Minnesota

    USGS Publications Warehouse

    Filby, S.K.; Locke, Sharon M.; Person, M.A.; Winter, T.C.; Rosenberry, D.O.; Nieber, J.L.; Gutowski, W.J.; Ito, E.

    2002-01-01

    A hydrologifc model of the Shingobee Watershed in north-central Minnesota was developed to reconstruct mid-Holocene paleo-lake levels for Williams Lake, a surface-water body located in the southern portion of the watershed. Hydrologic parameters for the model were first estimated in a calibration exercise using a 9-yr historical record (1990-1998) of climatic and hydrologic stresses. The model reproduced observed temporal and spatial trends in surface/groundwater levels across the watershed. Mid-Holocene aquifer and lake levels were then reconstructed using two paleoclimatic data sets: CCM1 atmospheric general circulation model output and pollen-transfer functions using sediment core data from Williams Lake. Calculated paleo-lake levels based on pollen-derived paleoclimatic reconstructions indicated a 3.5-m drop in simulated lake levels and were in good agreement with the position of mid-Holocene beach sands observed in a Williams Lake sediment core transect. However, calculated paleolake levels based on CCM1 climate forcing produced only a 0.05-m drop in lake levels. We found that decreases in winter precipitation rather than temperature increases had the largest effect on simulated mid-Holocene lake levels. The study illustrates how watershed models can be used to critically evaluate paleoclimatic reconstructions by integrating geologic, climatic, limnologic, and hydrogeologic data sets. ?? 2002 University of Washington.

  4. On the relation of earthquake stress drop and ground motion variability

    NASA Astrophysics Data System (ADS)

    Oth, Adrien; Miyake, Hiroe; Bindi, Dino

    2017-07-01

    One of the key parameters for earthquake source physics is stress drop since it can be directly linked to the spectral level of ground motion. Stress drop estimates from moment corner frequency analysis have been shown to be extremely variable, and this to a much larger degree than expected from the between-event ground motion variability. This discrepancy raises the question whether classically determined stress drop variability is too large, which would have significant consequences for seismic hazard analysis. We use a large high-quality data set from Japan with well-studied stress drop data to address this issue. Nonparametric and parametric reference ground motion models are derived, and the relation of between-event residuals for Japan Meteorological Agency equivalent seismic intensity and peak ground acceleration with stress drop is analyzed for crustal earthquakes. We find a clear correlation of the between-event residuals with stress drops estimates; however, while the island of Kyushu is characterized by substantially larger stress drops than Honshu, the between-event residuals do not reflect this observation, leading to the appearance of two event families with different stress drop levels yet similar range of between-event residuals. Both the within-family and between-family stress drop variations are larger than expected from the ground motion between-event variability. A systematic common analysis of these parameters holds the potential to provide important constraints on the relative robustness of different groups of data in the different parameter spaces and to improve our understanding on how much of the observed source parameter variability is likely to be true source physics variability.

  5. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    NASA Astrophysics Data System (ADS)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo; Bennike, Ole; Hübscher, Christian; Clausen, Ole Rønø

    2017-12-01

    High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels in the period 10.3-9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea-level rise. The estuary existed simultaneously with the occurrence and drainage of the Ancylus Lake. The drainage of this lake occurred through the Dana River (palaeo-Great Belt channel) into the southern Kattegat and then into the study area. The level of the Ancylus Lake in the Baltic Sea region dropped significantly at about 10.2 cal. ka BP at the same time as the estuary developed in the Kattegat region. One outcome of the present study is an enhanced understanding of the Ancylus Lake drainage path. No evidence of major erosion is seen, which indicates non-catastrophic continuous water flow from the south without major drainage events of the Ancylus Lake to the southern Kattegat. During the Littorina transgression, coastal estuarine conditions characterized the Hesselø Bay area where elongated ridges formed a bar system. As the Littorina transgression continued, back-stepping of the bar system and coastline occurred. When the transgression breached the Great Belt threshold, flooding caused major erosion throughout the study area.

  6. Continuous water-quality monitoring to improve lake management at Lake Mattamuskeet National Wildlife Refuge

    Treesearch

    Michelle Moorman; Tom Augspurger

    2016-01-01

    The U.S. Fish and Wildlife Service has partnered with U.S. Geological Survey to establish 2 continuous water-quality monitoring stations at Lake Mattamuskeet. Stations on the east and west side of the lake measure water level, clarity, dissolved oxygen, pH, temperature, salinity, and conductivity.

  7. Early Holocene Great Salt Lake

    USGS Publications Warehouse

    Oviatt, Charles G.; Madsen, David B.; Miller, David; Thompson, Robert S.; McGeehin, John P.

    2015-01-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5–10.2 cal ka BP; 10–9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column — a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  8. Natural reservoirs and triggered seismicity: a study of two northern Utah Lakes

    NASA Astrophysics Data System (ADS)

    Whidden, K. M.; Hansen, K.; Timothy, M.; Boltz, M. S.; Pankow, K. L.; Koper, K. D.

    2014-12-01

    The Great Salt Lake (GSL) and Utah Lake (UL) in northern Utah are in the middle of the Intermountain Seismic Belt, a band of active seismicity extending from western Montana through central Utah to northern Arizona. The proximity of these water bodies to an active earthquake zone is ideal for an investigation of lake-triggered seismicity. Both GSL and UL are shallow (10 and 4.3 m, respectively). The fresh water UL drains via the Jordan River into the salty GSL, which has no outlet. GSL has an aerial extent of 4400 km2, and the shallow depth and lack of outlet cause the surface area to change greatly as the lake volume increases and decreases. UL is much smaller with an almost constant aerial extent of 385 km2. For each lake, we compare yearly earthquake counts near the lake to yearly average lake level for years 1975-2013. GSL seismicity and lake level data correlate well, with seismicity increasing 3-5 years after lake level rise (cross correlation coefficient=0.56, P-value=0.0005). There is an especially large increase in seismicity in 1989 NE of the GSL following the historic lake level high stand in the mid-1980s. The 1989 seismicity has characteristics of both a swarm and a traditional mainshock/aftershock sequence. We will use a double-difference method (HypoDD) to relocate these earthquakes. UL seismicity does not correlate well with the lake level. The different results for the two lakes could perhaps be explained by the lakes' different sizes and the fact that UL has an outlet while GSL does not. The difference might also be explained by subsurface fluid pathways and available faults for nucleating earthquakes. We will further explore the significance of the GSL seismicity and lake level correlation by generating synthetic earthquake catalogs and cross correlating their yearly earthquake counts with the lake level data.

  9. Does Parental Educational Level Predict Drop-Out from Upper Secondary School for 16- to 24-Year-Olds when Basic Skills Are Accounted For? A Cross Country Comparison

    ERIC Educational Resources Information Center

    Lundetrae, Kjersti

    2011-01-01

    Drop-out from upper secondary school is considered a widespread problem, closely connected with youth unemployment. The aim of the current study was to examine whether parents' level of education predicted drop-out for 16-24-year-olds when accounting for basic skills. For this purpose, data from the Norwegian (n = 996) and American (n = 641)…

  10. Lake trout rehabilitation in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Eckert, Thomas H.; Schaner, Ted; Bowlby, James N.; Schleen, Larry P.

    1995-01-01

    Attempts to maintain the native lake trout (Salvelinus namaycush) population in Lake Ontario by stocking fry failed and the species was extirpated by the 1950s. Hatchery fish stocked in the 1960s did not live to maturity because of sea lamprey (Petromyzon marinus) predation and incidental commercial harvest. Suppression of sea lampreys began with larvicide treatments of Lake Ontario tributaries in 1971 and was enhanced when the tributaries of Oneida Lake and Lake Erie were treated in the 1980s. Annual stocking of hatchery fish was resumed with the 1972 year class and peaked at about 1.8 million yearlings and 0.3 million fingerlings from the 1985–1990 year classes. Survival of stocked yearlings declined over 50% in the 1980 s and was negatively correlated with the abundance of lake trout > 550 mm long (r = −0.91, P < 0.01, n = 12). A slot length limit imposed by the State of New York for the 1988 fishing season reduced angler harvest. Angler harvest in Canadian waters was 3 times higher in eastern Lake Ontario than in western Lake Ontario. For the 1977–1984 year classes, mean annual survival rate of lake trout age 6 and older was 0.45 (range: 0.35–0.56). In U.S. waters during 1985–1992, the total number of lake trout harvested by anglers was about 2.4 times greater than that killed by sea lampreys. The number of unmarked lake trout < 250 mm long in trawl catches in 1978–1992 was not different from that expected due to loss of marks and failure to apply marks at the hatchery, and suggested that recruitment of naturally-produced fish was nil. However, many of the obstacles which may have impeded lake trout rehabilitation in Lake Ontario during the 1980s are slowly being removed, and there are signs of a general ecosystem recovery. Significant recruitment of naturally produced lake trout by the year 2000, one interim objective of the rehabilitation plan for the Lake, may be achieved.

  11. Alligator diet in relation to alligator mortality on Lake Griffin, FL

    USGS Publications Warehouse

    Rice, A.N.; Ross, J.P.; Woodward, A.R.; Carbonneau, D.A.; Percival, H.F.

    2007-01-01

    Alligator mississippiensis (American Alligators) demonstrated low hatch-rate success and increased adult mortality on Lake Griffin, FL, between 1998 and 2003. Dying Lake Griffin alligators with symptoms of poor motor coordination were reported to show specific neurological impairment and brain lesions. Similar lesions were documented in salmonines that consumed clupeids with high thiaminase levels. Therefore, we investigated the diet of Lake Griffin alligators and compared it with alligator diets from two lakes that exhibited relatively low levels of unexplained alligator mortality to see if consumption of Dorosoma cepedianum (gizzard shad) could be correlated with patterns of mortality. Shad in both lakes Griffin and Apopka had high levels of thiaminase and Lake Apopka alligators were consuming greater amounts of shad relative to Lake Griffin without showing mortality rates similar to Lake Griffin alligators. Therefore, a relationship between shad consumption alone and alligator mortality is not supported.

  12. Lakes, Lagerstaetten, and Evolution

    NASA Astrophysics Data System (ADS)

    Kordesch, E. G.; Park, L. E.

    2001-12-01

    The diversity of terrestrial systems is estimated to be greater than in the marine realm. However no hard data yet exists to substantiate this claim. Ancient lacustrine deposits may preserve an exceptionally diverse fossil fauna and aid in determining continental faunal diversities. Fossils preserved in lake deposits, especially those with exceptional preservation (i.e. Konservat Lagerstaetten), may represent a dependable method for determining species diversity changes in the terrestrial environment because of their faunal completeness. Important Konservat Lagerstaetten, such as the Green River Formation (US) and Messel (Germany), both Eocene in age, are found in lake sediments and show a remarkable faunal diversity for both vertebrates and invertebrates. To date information from nearly 25 lake lagerstaetten derived from different types of lake basins from the Carboniferous to the Miocene have been collected and described. Carboniferous sites derive from the cyclothems of Midcontinent of the US while many Cenozoic sites have been described from North and South America as well as Europe and Australia. Asian sites contain fossils from the Mesozoic and Cenozoic. With this data, insight into the evolutionary processes associated with lake systems can be examined. Do lakes act as unique evolutionary crucibles in contrast to marine systems? The speciation of cichlid fishes in present-day African lakes appears to be very high and is attributed to the diversity of environments found in large rift lakes. Is this true of all ancient lakes or just large rift lakes? The longevity of a lake system may be an important factor in allowing speciation and evolutionary processes to occur; marine systems are limited only in the existence of environments as controlled by tectonics and sea level changes, on the order of tens of millions of years. Rift lakes are normally the longest lived in the millions of years. Perhaps there are only certain types of lakes in which speciation of

  13. Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael L.; Wiscombe, Warren J.

    2005-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, it has been shown in a companion paper that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)), where 0 less than or equals D(r) less than or equals 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and a Poisson distribution of cloud drops, these models illustrate strong drop clustering, especially with larger drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics, including how fast rain can form. For radiative transfer theory, clustering of large drops enhances their impact on the cloud optical path. The clustering phenomenon also helps explain why remotely sensed cloud drop size is generally larger than that measured in situ.

  14. Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes

    PubMed Central

    Verspagen, Jolanda M. H.; Van de Waal, Dedmer B.; Finke, Jan F.; Visser, Petra M.; Van Donk, Ellen; Huisman, Jef

    2014-01-01

    Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of

  15. Critical levels of atmospheric pollution: criteria and concepts for operational modelling of mercury in forest and lake ecosystems.

    PubMed

    Meili, Markus; Bishop, Kevin; Bringmark, Lage; Johansson, Kjell; Munthe, John; Sverdrup, Harald; de Vries, Wim

    2003-03-20

    Mercury (Hg) is regarded as a major environmental concern in many regions, traditionally because of high concentrations in freshwater fish, and now also because of potential toxic effects on soil microflora. The predominant source of Hg in most watersheds is atmospheric deposition, which has increased 2- to >20-fold over the past centuries. A promising approach for supporting current European efforts to limit transboundary air pollution is the development of emission-exposure-effect relationships, with the aim of determining the critical level of atmospheric pollution (CLAP, cf. critical load) causing harm or concern in sensitive elements of the environment. This requires a quantification of slow ecosystem dynamics from short-term collections of data. Aiming at an operational tool for assessing the past and future metal contamination of terrestrial and aquatic ecosystems, we present a simple and flexible modelling concept, including ways of minimizing requirements for computation and data collection, focusing on the exposure of biota in forest soils and lakes to Hg. Issues related to the complexity of Hg biogeochemistry are addressed by (1) a model design that allows independent validation of each model unit with readily available data, (2) a process- and scale-independent model formulation based on concentration ratios and transfer factors without requiring loads and mass balance, and (3) an equilibration concept that accounts for relevant dynamics in ecosystems without long-term data collection or advanced calculations. Based on data accumulated in Sweden over the past decades, we present a model to determine the CLAP-Hg from standardized values of region- or site-specific synoptic concentrations in four key matrices of boreal watersheds: precipitation (atmospheric source), large lacustrine fish (aquatic receptor and vector), organic soil layers (terrestrial receptor proxy and temporary reservoir), as well as new and old lake sediments (archives of response

  16. A 9,000-year-old caribou hunting structure beneath Lake Huron

    PubMed Central

    O’Shea, John M.; Lemke, Ashley K.; Sonnenburg, Elizabeth P.; Reynolds, Robert G.; Abbott, Brian D.

    2014-01-01

    Some of the most pivotal questions in human history necessitate the investigation of archaeological sites that are now under water. Nine thousand years ago, the Alpena-Amberley Ridge (AAR) beneath modern Lake Huron was a dry land corridor that connected northeast Michigan to southern Ontario. The newly discovered Drop 45 Drive Lane is the most complex hunting structure found to date beneath the Great Lakes. The site and its associated artifacts provide unprecedented insight into the social and seasonal organization of prehistoric caribou hunting. When combined with environmental and simulation studies, it is suggested that distinctly different seasonal strategies were used by early hunters on the AAR, with autumn hunting being carried out by small groups, and spring hunts being conducted by larger groups of cooperating hunters. PMID:24778246

  17. Decline of the world's saline lakes

    NASA Astrophysics Data System (ADS)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  18. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  19. Lifetime of oil drops pressed by buoyancy against a planar interface: Large drops

    NASA Astrophysics Data System (ADS)

    Rojas, Clara; García-Sucre, Máximo; Urbina-Villalba, Germán

    2010-11-01

    In a previous report [C. Rojas, G. Urbina-Villalba, and M. García-Sucre, Phys. Rev. E 81, 016302 (2010)10.1103/PhysRevE.81.016302] it was shown that emulsion stability simulations are able to reproduce the lifetime of micrometer-size drops of hexadecane pressed by buoyancy against a planar water-hexadecane interface. It was confirmed that small drops (ri<10μm) stabilized with β -casein behave as nondeformable particles, moving with a combination of Stokes and Taylor tensors as they approach the interface. Here, a similar methodology is used to parametrize the potential of interaction of drops of soybean oil stabilized with bovine serum albumin. The potential obtained is then employed to study the lifetime of deformable drops in the range 10≤ri≤1000μm . It is established that the average lifetime of these drops can be adequately replicated using the model of truncated spheres. However, the results depend sensibly on the expressions of the initial distance of deformation and the maximum film radius used in the calculations. The set of equations adequate for large drops is not satisfactory for medium-size drops (10≤ri≤100μm) , and vice versa. In the case of large particles, the increase in the interfacial area as a consequence of the deformation of the drops generates a very large repulsive barrier which opposes coalescence. Nevertheless, the buoyancy force prevails. As a consequence, it is the hydrodynamic tensor of the drops which determine the characteristic behavior of the lifetime as a function of the particle size. While the average values of the coalescence time of the drops can be justified by the mechanism of film thinning, the scattering of the experimental data of large drops cannot be rationalized using the methodology previously described. A possible explanation of this phenomenon required elaborate simulations which combine deformable drops, capillary waves, repulsive interaction forces, and a time-dependent surfactant adsorption.

  20. A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

    NASA Astrophysics Data System (ADS)

    Pan, Hai

    1999-08-01

    Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide

  1. Were lakes on early Mars perennially were ice-covered?

    NASA Astrophysics Data System (ADS)

    Sumner, D. Y.; Rivera-Hernandez, F.; Mackey, T. J.

    2016-12-01

    Paleo-lake deposits indicate that Mars once sustained liquid water, supporting the idea of an early "wet and warm" Mars. However, liquid water can be sustained under ice in cold conditions as demonstrated by perennially ice-covered lakes (PICLs) in Antarctica. If martian lakes were ice-covered, the global climate on early Mars could have been much colder and dryer than if the atmosphere was in equilibrium with long-lived open water lakes. Modern PICLs on Earth have diagnostic sedimentary features. Unlike open water lakes that are dominated by mud, and drop stones or tills if icebergs are present, previous studies determined that deposits in PICLs can include coarser grains that are transported onto the ice cover, where they absorb solar radiation, melt through the ice and are deposited with lacustrine muds. In Lake Hoare, Antarctica, these coarse grains form conical sand mounds and ridges. Our observations of ice-covered lakes Joyce, Fryxell, Vanda and Hoare, Antarctica suggest that the distributions of grains depend significantly on ice characteristics. Deposits in these lakes contain moderately well to moderately sorted medium to very coarse sand grains, which preferentially melt through the ice whereas granules and larger grains remain on the ice surface. Similarly, high albedo grains are concentrated on the ice surface, whereas low albedo grains melt deeper into the ice, demonstrating a segregation of grains due to ice-sediment interactions. In addition, ice cover thickness may determine the spatial distribution of sand deposited in PICLs. Localized sand mounds and ridges composed of moderately sorted sand are common in PICLs with rough ice covers greater than 3 m thick. In contrast, lakes with smooth and thinner ice have disseminated sand grains and laterally extensive sand layers but may not have sand mounds. At Gale Crater, Mars, the Murray formation consists of sandy lacustrine mudstones, but the depositional process for the sand is unknown. The presence of

  2. Extension of drop experiments with the MIKROBA balloon drop facility

    NASA Astrophysics Data System (ADS)

    Sommer, K.; Kretzschmar, K.; Dorn, C.

    1992-12-01

    The German balloon drop facility MIKROBA extends the worldwide available drop experiment opportunities to the presently highest usable experimentation time span of 55 s at microgravity conditions better than 0.001 g. The microgravity period is started with the typical quasi-deal step function from 1 to 0 g. MIKROBA allows flexible experiment design, short access time, and easy hands-on payload integration. The transport to the operational height is realized by soft energies and technologies compatible with the earth's environment. Balloon campaigns are not restricted to a certain test range, i.e., several suitable sites are available all over the world. MIKROBA combines negligible mechanical loads at the mission start, typical of all drop facilities, with extremely low drop deceleration loads (less than g), due to the implemented three-stage parachute and airbag recovery subsystem.

  3. Lake Sarez, Tajikistan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Sarez (top), deep in the Pamir mountains of Tajikistan, was created 90 years ago when a strong earthquake triggered a massive landslide that, in turn, became a huge dam along the Murghob River, now called the Usoi Dam. The resulting lake is perched above surrounding drainages at an elevation greater than 3000m, and is part of the watershed that drains the towering Akademi Nauk Range (see the regional image, lower). The lake is 61 km long and as deep as 500 m, and holds an estimated 17 cubic km of water. The area experiences considerable seismic activity, and scientists fear that part of the right bank may slump into the lake, creating a huge wave that will top over and possibly breach the natural dam. Such a wave would create a catastrophic flood downstream along the Bartang, Panj and Amu Darya Rivers, perhaps reaching all the way to the Aral Sea. Currently, central Asian governments, as well as the World Bank and the UN are monitoring the dam closely, and have proposed gradually lowering the lake level as a preventive measure. More information about the lake is available at the following web sites: Lake Sarez Study group, UN Report, Reliefweb Digital photograph numbers ISS002-E-7771 and ISS002-E-7479 were taken in the spring of 2001 from Space Station Alpha and are provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  4. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    NASA Astrophysics Data System (ADS)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study

  5. Fish community change in Lake Superior, 1970-2000

    USGS Publications Warehouse

    Bronte, Charles R.; Ebener, Mark P.; Schreiner, Donald R.; DeVault, David S.; Petzold, Michael M.; Jensen, Douglas A.; Richards, Carl; Lozano, Steven J.

    2003-01-01

    Changes in Lake Superior's fish community are reviewed from 1970 to 2000. Lake trout (Salvelinus namaycush) and lake whitefish (Coregonus clupeaformis) stocks have increased substantially and may be approaching ancestral states. Lake herring (Coregonus artedi) have also recovered, but under sporadic recruitment. Contaminant levels have declined and are in equilibrium with inputs, but toxaphene levels are higher than in all other Great Lakes. Sea lamprey (Petromyzon marinus) control, harvest limits, and stocking fostered recoveries of lake trout and allowed establishment of small nonnative salmonine populations. Natural reproduction supports most salmonine populations, therefore further stocking is not required. Nonnative salmonines will likely remain minor components of the fish community. Forage biomass has shifted from exotic rainbow smelt (Osmerus mordax) to native species, and high predation may prevent their recovery. Introductions of exotics have increased and threaten the recovering fish community. Agencies have little influence on the abundance of forage fish or the major predator, siscowet lake trout, and must now focus on habitat protection and enhancement in nearshore areas and prevent additional species introductions to further restoration. Persistence of Lake Superior's native deepwater species is in contrast to other Great Lakes where restoration will be difficult in the absence of these ecologically important fishes.

  6. Dropping sand bags from helicopters: A low cost and environmentally benign approach to determine subsurface velocity and attenuation structure of active volcanic systems

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Chardot, L.; Sherburn, S.; Cole-Baker, J.; Scott, B. J.; Fournier, N.; Neuberg, J. N.

    2012-04-01

    Obtaining estimates of the seismic velocity and attenuation structure of volcanic systems is considered valuable from a monitoring perspective but can be extremely costly and time consuming due to the potential environmental impacts, safety issues and the permitting process. Here, we present an easy, low cost and environmentally benign alternative whereby the shallow velocity and attenuation structure can be obtained via high impact sandbag drops from helicopter. We conducted such a sandbag drop experiment at White Island volcano on 23 September 2011, during the final stage of a 6 month deployment of 14 broadband seismometers. Three drops were attempted, two at either end of a 5 station linear array within the crater floor, and the third within the volcano's shallow active acid crater lake. The bags were dropped from ~400 m height and contained ~700 kg of fine beach sand held within nylon sacks having a volume capacity of ~2.0 m3. The impact velocity was estimated at ~70 m/s yielding a kinetic energy of about 106 to 107 Nm. The source position was established by GPS on the resulting impact crater and was accurate to within ~5 m. The lake drop position was estimated from video footage relative to known ground features and was accurate to ~30 m. Impact timing was achieved by drop placement close to, but not on, the nearby seismometer recording systems. For the crater floor drops the timing was constrained to within ~0.05 s based on distance from the closest stations. The low kinetic energy and strong attenuation of the crater floor meant that strong first-P arrival times were limited to an area within ~1 km of the impact position. We obtained a rough velocity estimate of about 1.0-1.5 km/s for the unconsolidated crater floor and a velocity of ~1.5-2.0 km/s for rays traversing mostly through the consolidated rocks comprising the crater walls. Attenuation was found to be generally very strong (Q < 10) for both consolidated and unconsolidated parts of the volcano

  7. Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes

    USGS Publications Warehouse

    Carl, Leon M.; McGuiness, Fiona

    2006-01-01

    This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.

  8. Contaminant trends in lake trout and walleye from the Laurentian Great Lakes

    USGS Publications Warehouse

    DeVault, David S.; Hesselberg, Robert J.; Rodgers, Paul W.; Feist, Timothy J.

    1996-01-01

    Trends in PCBs, DDT, and other contaminants have been monitored in Great Lakes lake trout and walleye since the 1970s using composite samples of whole fish. Dramatic declines have been observed in concentrations of PCB, ΣDDT, dieldrin, and oxychlordane, with declines initially following first order loss kinetics. Mean PCB concentrations in Lake Michigan lake trout increased from 13 μg/g in 1972 to 23 μg/g in 1974, then declined to 2.6 μg/g by 1986. Between 1986 and 1992 there was little change in concentration, with 3.5 μg/g observed in 1992. ΣDDT in Lake Michigan trout followed a similar trend, decreasing from 19.2 μg/g in 1970 to 1.1 μg/g in 1986, and 1.2 μg/g in 1992. Similar trends were observed for PCBs and ΣDDT in lake trout from Lakes Superior, Huron and Ontario. Concentrations of both PCB and ΣDDT in Lake Erie walleye declined between 1977 and 1982, after which concentrations were relatively constant through 1990. When originally implemented it was assumed that trends in the mean contaminant concentrations in open-lake fish would serve as cost effective surrogates to trends in the water column. While water column data are still extremely limited it appears that for PCBs in lakes Michigan and Superior, trends in lake trout do reasonably mimic those in the water column over the long term. Hypotheses to explain the trends in contaminant concentrations are briefly reviewed. The original first order loss kinetics used to describe the initial decline do not explain the more recent leveling off of contaminant concentrations. Recent theories have examined the possibilities of multiple contaminant pools. We suggest another hypothesis, that changes in the food web may have resulted in increased bioaccumulation. However, a preliminary exploration of this hypothesis using a change point analysis was inconclusive.

  9. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  10. Increase in lake trout reproduction in Lake Huron following the collapse of alewife: Relief from thiamine deficiency or larval predation?

    USGS Publications Warehouse

    Fitzsimons, J.D.; Brown, S.; Brown, L.; Honeyfield, D.; He, J.; Johnson, J.E.

    2010-01-01

    In the Great Lakes there is still uncertainty as to the population level effects of a thiamine deficiency on salmonines caused by high consumption of alewives Alosa pseudoharengus. A resurgence of lake trout Salvelinus namaycush reproduction in Lake Huron following the crash of alewife stocks between 2002 and 2004 provided an opportunity to evaluate the relative effects of this crash on reproduction through relief from either alewife mediated thiamine deficiency or alewife predation on larval lake trout relative to possible changes in the size of the lake trout spawning stock. Changes in mean lake trout egg thiamine concentration post crash at one spawning reef in Parry Sound, where mean thiamine concentration increased by almost two-fold, were consistent with diet switching from alewives to rainbow smelt Osmerus mordax, the next most abundant prey fish in Lake Huron. Although thiamine levels for lake trout collected at a second reef in Parry Sound did not change post-crash, levels both pre- and post-crash were consistent with a rainbow smelt diet. A reef specific fry emergence index was found to be positively related to reef specific egg thiamine concentration but negatively related to reef specific occurrence of EMS, a thiamine deficiency related mortality syndrome. We found little evidence for overlap between the timing of spring shoreward migration of alewives and lake trout emergence, suggesting that relief from alewife predation effects had relatively little effect on the observed increase in lake trout recruitment. Numbers of spawners in the north, north-central, and southern zones of the lake increased from 2000 onwards. Overall the abundance post-2003 was higher than from pre-2004, suggesting that spawner abundance may also have contributed to increased lake trout reproduction. However, predicted numbers of spawners and measured abundance of wild recruits in assessment gear were poorly correlated suggesting that the increase in reproduction was not totally

  11. Isotope analyses of the lake sediments in the Plitvice Lakes, Croatia

    NASA Astrophysics Data System (ADS)

    Horvatinčić, Nada; Sironić, Andreja; Barešić, Jadranka; Bronić, Ines Krajcar; Nikolov, Jovana; Todorović, Nataša; Hansman, Jan; Krmar, Miodrag

    2014-10-01

    The analyses of radioactive isotopes 14C, 137Cs and 210Pb, and stable isotope 13C were performed in the sediment cores, top 40 cm, taken in 2011 from karst lakes Prošće and Kozjak in the Plitvice Lakes National Park, central Croatia. Frozen sediment cores were cut into 1 cm thick layers and dried. 14C activity in both carbonate and organic fractions was measured using accelerator mass spectrometry technique with graphite synthesis. 137Cs, 210Pb, 214Pb and 214Bi were measured by low level gamma spectrometry method on ORTECHPGe detector with the efficiency of 32%. Distribution of 14C activity from both lakes showed increase of the 14C activity in the top 10-12 cm in both carbonate and organic fractions as a response to thermonuclear bomb-produced 14C in the atmosphere in the sixties of the 20th century. Anthropogenically produced 137Cs was also observed in sediment profiles. Sedimentation rates for both lake sediments were estimated based on the unsupported 210Pb activity. Different 14C activity of the carbonate fraction (63-80 pMC, percent of modern carbon) and organic fraction (82-93 pMC) is the result of geochemical and biological processes of the sediment precipitation in the lake waters. This is also confirmed by the δ 13 C values of both fractions. Carbon isotope composition, a 14 C and δ 13 C, was compared with the lake sediments from the same lakes collected in 1989 and 2003.

  12. Hydrologic Analyses of Acidic and Alkaline Lakes

    NASA Astrophysics Data System (ADS)

    Chen, C. W.; Gherini, S. A.; Peters, N. E.; Murdoch, P. S.; Newton, R. M.; Goldstein, R. A.

    1984-12-01

    Woods and Panther lakes in the Adirondack Mountains of New York respond differently to the same acidic deposition. A mathematical model study has shown that lake water becomes acidic when hydrologic conditions force precipitation to flow to the lakes as surface flow or as lateral flow through the shallow organic soil horizon. Hydrographic data, capacity of flow through inorganic soil horizons, runoff recession curves, and groundwater level fluctuations of Woods and Panther lake basins provide independent evidence to support the thesis that the acidic state of a lake depends on the paths the tributary water takes as it passes thorough the terrestrial system. It is concluded thot Panther Lake is more alkaline than Woods Lake, because a larger proportion of the precipitation falling on the basin passes through deeper mineral soil horizons.

  13. Are the Stress Drops of Small Earthquakes Good Predictors of the Stress Drops of Larger Earthquakes?

    NASA Astrophysics Data System (ADS)

    Hardebeck, J.

    2017-12-01

    Uncertainty in PSHA could be reduced through better estimates of stress drop for possible future large earthquakes. Studies of small earthquakes find spatial variability in stress drop; if large earthquakes have similar spatial patterns, their stress drops may be better predicted using the stress drops of small local events. This regionalization implies the variance with respect to the local mean stress drop may be smaller than the variance with respect to the global mean. I test this idea using the Shearer et al. (2006) stress drop catalog for M1.5-3.1 events in southern California. I apply quality control (Hauksson, 2015) and remove near-field aftershocks (Wooddell & Abrahamson, 2014). The standard deviation of the distribution of the log10 stress drop is reduced from 0.45 (factor of 3) to 0.31 (factor of 2) by normalizing each event's stress drop by the local mean. I explore whether a similar variance reduction is possible when using the Shearer catalog to predict stress drops of larger southern California events. For catalogs of moderate-sized events (e.g. Kanamori, 1993; Mayeda & Walter, 1996; Boyd, 2017), normalizing by the Shearer catalog's local mean stress drop does not reduce the standard deviation compared to the unmodified stress drops. I compile stress drops of larger events from the literature, and identify 15 M5.5-7.5 earthquakes with at least three estimates. Because of the wide range of stress drop estimates for each event, and the different techniques and assumptions, it is difficult to assign a single stress drop value to each event. Instead, I compare the distributions of stress drop estimates for pairs of events, and test whether the means of the distributions are statistically significantly different. The events divide into 3 categories: low, medium, and high stress drop, with significant differences in mean stress drop between events in the low and the high stress drop categories. I test whether the spatial patterns of the Shearer catalog

  14. Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zhangdong; You, Chen-Feng; Wang, Yi

    2009-12-04

    Water level and chemistry of Lake Qinghai are sensitive to climate changes and are important for paleoclimatic implications. An accurate understanding of hydrological and chemical budgets is crucial for quantifying geochemical proxies and carbon cycle. Published results of water budget are firstly reviewed in this paper. Chemical budget and residence time of major dissolved constituents in the lake are estimated using reliable water budget and newly obtained data for seasonal water chemistry. The results indicate that carbonate weathering is the most important riverine process, resulting in dominance of Ca 2+ and DIC for river waters and groundwater. Groundwater contribution tomore » major dissolved constituents is relatively small (4.2 ± 0.5%). Wet atmospheric deposition contributes annually 7.4–44.0% soluble flux to the lake, resulting from eolian dust throughout the seasons. Estimates of chemical budget further suggest that (1) the Buha-type water dominates the chemical components of the lake water, (2) Na +, Cl -, Mg 2+ , and K + in lake water are enriched owing to their conservative behaviors, and (3) precipitation of authigenic carbonates (low-Mg calcite, aragonite, and dolomite) transits quickly dissolved Ca 2+ into the bottom sediments of the lake, resulting in very low Ca 2+ in the lake water. Therefore, authigenic carbonates in the sediments hold potential information on the relative contribution of different solute inputs to the lake and the lake chemistry in the past.« less

  15. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria

    PubMed Central

    Zwirglmaier, Katrin; Keiz, Katharina; Engel, Marion; Geist, Juergen; Raeder, Uta

    2015-01-01

    The Osterseen Lake District in Bavaria consists of 19 small interconnected lakes that exhibit a pronounced trophic gradient from eutrophic to oligotrophic. It therefore presents a unique model system to address ecological questions regarding niche adaptation and Baas Becking's long standing hypothesis of “everything is everywhere, but the environment selects.” Here, we present the first assessment of the microbial diversity in these lakes. We sampled the lakes in August and December and used 454 pyrosequencing of 16S rRNA amplicons to analyze the microbial diversity. The diversity patterns between lakes and seasons were compared and the bacterial community composition was correlated with key chemical and physical parameters. Distinct patterns of bacterial diversity only emerged at the level of individual OTUs (operational taxonomic units), but not at the level of the major bacterial phyla. This emphasizes the high functional and physiological diversity among bacterial species within a phylum and calls for analysis of biodiversity at the level of OTUs in order to understand fine-scale biogeography. We were able to identify a number of cosmopolitan OTUs as well as specialist OTUs that were restricted to certain lakes or seasons, suggesting adaptation to specific ecological niches. PMID:26579082

  16. Near real-time monitoring and mapping of specific conductivity levels across Lake Texoma, USA

    USGS Publications Warehouse

    Atkinson, S.F.; Mabe, J.A.

    2006-01-01

    A submersible sonde equipped with a specific conductivity probe, linked with a global positioning satellite receiver was developed, deployed on a small boat, and used to map spatial and temporal variations in specific conductivity in a large reservoir. 7,695 sample points were recorded during 8 sampling trips. Specific conductivity ranged from 442 uS/cm to 3,378 uS/cm over the nine-month study. The data showed five statistically different zones in the reservoir: 2 different riverine zones, 2 different riverine transition zones, and a lacustrine zone (the main lake zone). These data were imported to a geographic information system where they were spatially interpolated to generate 8 maps showing specific conductivity levels across the entire surface of the lake. The highly dynamic nature of water quality, due to the widely differing nature of the rivers that flow into the reservoir and the effect of large inflows of fresh water during winter storms is easily captured and visualized using this approach. ?? Springer Science+Business Media, Inc. 2006.

  17. Status of lake trout rehabilitation on Six Fathom Bank and Yankee Reef in Lake Huron

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; McClain, Jerry R.; Woldt, Aaron P.; Holuszko, Jeffrey D.; Bowen, Charles A.

    2004-01-01

    Six Fathom Bank, an offshore reef in the central region of Lake Huron's main basin, was stocked annually with hatchery-reared lake trout Salvelinus namaycush during 1985–1998, and nearby Yankee Reef was stocked with hatchery-reared lake trout in 1992, 1997, and annually during 1999–2001. We conducted gill-net surveys during spring and fall to evaluate performances of each of the various strains of lake trout, as well as the performance of the entire lake trout population (all strains pooled), on these two offshore reefs during 1992–2000. Criteria to evaluate performance included the proportion of “wild” fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lamprey Petromyzon marinus. Although naturally reproduced age-0 lake trout fry were caught on Six Fathom Bank and Yankee Reef, wild lake trout did not recruit to the adult population to any detectable degree. The density of spawning lake trout on Six Fathom Bank (>100 fish/305 m of gill net) during 1995–1998 appeared to be sufficiently high to initiate a self-sustaining population. However, annual mortality estimates for all lake trout strains pooled from catch curve analyses ranged from 0.48 to 0.62, well exceeding the target level of 0.40 suggested for lake trout rehabilitation. Annual mortality rate for the Seneca Lake strain (0.34) was significantly lower than that for the Superior–Marquette (0.69) and Lewis Lake (0.69) strains. This disparity in survival among strains was probably attributable to the lower sea-lamprey-induced mortality experienced by the Seneca Lake strain. The relatively high mortality experienced by adult lake trout partly contributed to the lack of successful natural recruitment to the adult population on these offshore reefs, but other factors were probably also involved. We recommend that both stocking of the Seneca Lake strain and enhanced efforts to reduce sea lamprey abundance in Lake Huron be continued.

  18. Using a coupled groundwater/surfacewater model to predict climate-change impacts to lakes in the Trout Lake watershed, Northern Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hunt, Randall J.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John

    2009-01-01

    A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes. The Trout Lake watershed in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow is dominated by groundwater contributions; however, surface runoff occurs during intense rainfall periods and spring snowmelt. Surface runoff also occurs locally near stream/lake areas where the unsaturated zone is thin. A diverse data set, collected from 1992 to 2007 for the Trout Lake WEBB project and the co-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential evapotranspiration, lake levels, groundwater levels, and streamflow. The timeseries processing software TSPROC (Doherty 2003) was used to distill the large time series data set to a smaller set of observations and summary statistics that captured the salient hydrologic information. The timeseries processing reduced hundreds of thousands of observations to less than 5,000. Model calibration included specific predictions for several lakes in the study area using the PEST parameter estimation suite of software (Doherty 2007). The calibrated model was used to simulate the hydrologic response in the study lakes to a variety of climate change scenarios culled from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon et al. 2007). Results from the simulations indicate climate change could result in substantial changes to the lake levels and components of the hydrologic budget of a seepage lake in the flow system. For a drainage lake

  19. Derivation of Lake Areas and Elevations for the Mackenzie Basin Using Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Birkett, Charon; Kite, Geoff

    1997-01-01

    Modelling hydrological processes in large watersheds flowing to the Arctic ocean is one step towards larger-scale modelling of the global water and energy cycles. Models of the Mackenzie River Basin (Northern Canada) are currently available but omit explicit routing of river flows through the three main lakes - Athabasca, Great Slave Lake and Great Bear Lake (Kite et al, 1994). These lakes occupy an area of 65,000 sq km but little gauge information is available. The levels of the lakes are only measured at a few points on the circumferences and river flows are only measured downstream. The hydraulic relationships between level/discharge and level/area/volume are uncertain. It has been previously shown that satellite remote sensing can be utilised in providing measurements of both lake surface area using imaging techniques and lake level using radar altimetry (Birkett, 1994). Here, we explore the application of these techniques to derive the lake levels and areas for the Mackenzie Basin lakes.

  20. Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China.

    PubMed

    Zhang, Hua; Jiang, Yinghui; Ding, Mingjun; Xie, Zhenglei

    2017-09-01

    The concentrations, sources, and risks of heavy metals (Fe, Al, Mn, Cr, Co, Ni, Cu, Zn, As, Cd, W, Pb, and Tl) in sediments in five river-lake ecosystems in the Poyang Lake region were studied. The concentrations of the heavy metals varied spatially, with most of the highest concentrations in the Raohe river-lake ecosystem (RH). All heavy metals except As, Cd, W, and Tl were enriched in sediments possessing high total organic carbon contents or in finer sediments. Based on enrichment factors and statistical methods, it was found that Cd in sediments in the Xiushui (XS), Ganjiang (GJ), Xinjiang (XJ) river-lake ecosystems, and RH; Mn in the XS, GJ, and RH; and W in the XS and GJ were greatly affected by anthropogenic inputs. Moreover, the origins of Cu, Zn, and As require more attention due to the high concentrations found. The high enrichment factor of Cd in the sediments indicated that this metal might cause significant pollution in the environment. The results of the modified potential ecological risk index revealed that the XS, GJ, RH, and XJ were at considerable ecological risk, while the sediments in the Fuhe river-lake ecosystem (FH) were at moderate ecological risk, with Cd contributing the highest proportion of risk. The hazard score fundamentally validated the modified potential ecological risk analysis and revealed a mean toxicity of 57.80% to the benthic organisms in the RH.

  1. Spatial and temporal variability of dissolved sulfate in Devils Lake, North Dakota, 1998

    USGS Publications Warehouse

    Sether, Bradley A.; Vecchia, Aldo V.; Berkas, Wayne R.

    1998-01-01

    The Devils Lake Basin is a 3,810-squaremile closed subbasin of the Red River of the North Basin (fig. 1). About 3,320 square miles of the total 3,810 square miles is tributary to Devils Lake. The Devils Lake Basin contributes to the Red River of the North Basin when the level of Devils Lake is greater than 1,459 feet above sea level.Lake levels of Devils Lake were recorded sporadically from 1867 to 1890. In 1901, the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 through 1998, the lake level has fluctuated between a minimum of 1,400.9 feet above sea level in 1940 and a maximum of 1,444.7 feet above sea level in 1998 (fig. 2). The maximum, which occurred on July 7, 1998, was 22.1 feet higher than the level recorded in February 1993.The rapid rise in the lake level of Devils Lake since 1993 is in response to abovenormal precipitation and below-normal evaporation from the summer of 1993 through 1998. Because of the rising lake level, more than 50,000 acres of land and many roads around the lake have been flooded. In addition, the water quality of Devils Lake changed substantially in 1993 because of the summer flooding (Williams-Sether and others, 1996). In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) flood mitigation options. Current and accurate hydrologic and water-quality information is needed to assess the effectiveness of the flood mitigation options, which include managing and storing water in the Devils Lake Basin, continuing infrastructure protection, and providing an outlet to the Sheyenne River (Wiche, 1998). As part of the U.S. Army Corps of Engineers Devils Lake emergency outlet feasibility study, the U.S. Geological Survey is modeling lake levels and sulfate concentrations in Devils Lake to simulate operation of an emergency outlet. Accurate simulation of sulfate concentrations in

  2. Study on turbulence characteristics and sensitivity of quadrant analysis to threshold level in Lake Taihu.

    PubMed

    Weng, Shenglin; Li, Yiping; Wei, Jin; Du, Wei; Gao, Xiaomeng; Wang, Wencai; Wang, Jianwei; Acharya, Kumud; Luo, Liancong

    2018-05-01

    The identification of coherent structures is very important in investigating the sediment transport mechanism and controlling the eutrophication in shallow lakes. This study analyzed the turbulence characteristics and the sensitivity of quadrant analysis to threshold level. Simultaneous in situ measurements of velocities and suspended sediment concentration (SSC) were conducted in Lake Taihu with acoustic Doppler velocimeter (ADV) and optical backscatter sensor (OBS) instruments. The results show that the increase in hole size makes the difference between dominant and non-dominant events more distinct. Wind velocity determines the frequency of occurrence of sweep and ejection events, which provide dominant contributions to the Reynolds stress. The increase of wind velocity enlarges the magnitude of coherent events but has little impact on the events frequency with the same hole size. The events occurring within short periods provide large contributions to the momentum flux. Transportation and diffusion of sediment are in control of the intermittent coherent events to a large extent.

  3. 2013 status of the Lake Ontario lower trophic levels

    USGS Publications Warehouse

    Holeck, Kristen T.; Rudstam, Lars G.; Hotaling, Christopher; McCullough, Russ D.; Lemon, Dave; Pearsall, Web; Lantry, Jana R.; Connerton, Michael J.; LaPan, Steve; Trometer, Betsy; Lantry, Brian F.; Walsh, Maureen; Weidel, Brian C.

    2014-01-01

    abundant in the summer, peaking at ~7 mg/m3in the offshore. Bythotrephes peaked in October (~0.7 mg/m3), but Bythotrephes biomass was at its lowest biomass in both offshore and nearshore stations since 2005.Summer nearshore zooplankton density and biomass have declined significantly since 1995 at rates of 9-10% per year. Nearshore epilimnetic zooplankton density and biomass have remained stable since 2005 at low levels relative to previous years.Summer offshore zooplankton density and biomass in the epilimnion of Lake Ontario have also declined since 1995 at rates of 10-14% per year, but those declines are marginally significant; density declined significantly in the long-term (since 1981) but has remained at a lower stable level since 2005.Bosminid and cyclopoid copepod biomass declined significantly in nearshore waters. The same pattern occurred in the offshore but declines were significant for bosminids and marginally significant for cyclopoid copepods. Daphnid biomass has also declined significantly in the nearshore.The decline in Daphnid biomass nearshore and Bythotrephes biomass offshore and nearshore is indicative of increased planktivory by alewife. Significant declines in Bosminid and cyclopoid copepod biomass is indicative of increased invertebrate predation by Cercopagis and Bythotrephes in recent years.

  4. Water quality of selected lakes in Mount Rainier National Park, Washington with respect to lake acidification

    USGS Publications Warehouse

    Turney, G.L.; Dion, N.P.; Sumioka, S.S.

    1986-01-01

    Thirteen lakes in Mount Rainier National Park were evaluated for general chemical characteristics, sensitivity to acidification by acidic precipitation, and degree of existing acidification. The lakes studies were Allen, one of the Chenuis group, Crescent , Crystal, Eleanor, Fan, one of the Golden group, Marsh, Mowich, Mystic, Shriner, and two unnamed lakes. The lakes were sampled in August 1983. Specific conductance values were generally 21 microsiemens/cm at 25 C or less, and dissolved solids concentrations were generally 20 mg/L or less. The major cations were calcium and sodium, and the major anion was bicarbonate. Alkalinity concentrations ranged from 2.1 to 9.0 mg/L in 12 of the lakes. Allen Lake was the exception, having an alkalinity concentration of 27 mg/L. The pH values for all of the lakes ranged from 5.8 to 6.5. In most of the lakes, vertical profiles of temperature, dissolved oxygen, pH, and specific conductance were relatively uniform. In the deeper lakes, temperature decreased with depth and dissolved-oxygen concentrations increased to about 20 feet, remained constant to 80 ft, then decreased with increasing depth. Exceptions to general water quality patterns were observed in three lakes. Allen Lake had a specific conductance value of 58 Microsiemens/cm. The lake of the Golden group was anaerobic at the bottom and had relatively high concentrations of dissolved organic carbon and dissolved metals, and a lower light transmission than the other lakes studied. One of the unnamed lakes had relatively high concentrations of phytoplankton and dissolved organic carbon and relatively low levels of light transmission. Comparisons of lake data to acid-sensitivity thresholds for specific conductance and alkalinity indicated that all of the lakes except Allen would be sensitive to acidic precipitation. The small sizes of the lakes, and their locations in basins of high precipitation and weathering-resistant rock types, enhance their sensitivity. None of the

  5. Health implications of radionuclide levels in cattle raised near U mining and milling facilities in Ambrosia Lake, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapham, S.C.; Millard, J.B.; Samet, J.M.

    1989-03-01

    This study was conducted to determine radionuclide tissue levels in cattle raised near U mining and milling facilities. Ambrosia Lake, New Mexico, has been the site of extensive U mining for 30 y and contains several underground U mines, a processing mill, and two large U tailings piles. Ten cows were purchased from two grazing areas in Ambrosia Lake and ten control animals were purchased from Crownpoint, New Mexico. Muscle, liver, kidney, and bone tissue taken from these animals, and environmental samples, including water, grasses and soil collected from the animals' grazing areas, were analyzed for /sup 238/U, /sup 234/U,more » /sup 230/Th, /sup 226/Ra, /sup 210/Pb, and /sup 210/Po. Mean radionuclide levels in cattle tissue and environmental samples from Ambrosia Lake were higher in almost every comparison than those found in respective controls. Liver and kidney tissues were particularly elevated in /sup 226/Ra and /sup 210/Po. Radiation dose commitments from eating cattle tissue with these radionuclide concentrations were calculated. We concluded that the health risk to the public from eating exposed cattle is minimal, unless large amounts of this tissue, especially liver and kidney, are ingested.« less

  6. Change in the size of Walker Lake during the past 5000 years

    USGS Publications Warehouse

    Benson, L.V.; Meyers, P.A.; Spencer, R.J.

    1991-01-01

    In 1984, a 12-m sediment core (WLC84-8) was taken from the deepest part of Walker Lake. Samples of the core were analysed for diatoms, pollen, carbonate mineralogy, magnesium content, ??18O and ??13C values of the total inorganic fractin, ??18O and ??13C values of Limnocythere ceriotuberosa, ??13C values of the total organic fraction, grain size, and magnetic susceptibility. The data indicate that Walker Lake became shallow and probably desiccated between ???5300-4800 and 2700-2100 yr B.P.. Each of the organic and inorganic proxy indicators of lake size discussed in this paper was useful in determining the presence of the shallow-lake intervals. However, none of the indicators was useful in determining the cause of the shallow-lake intervals. Instead, the types of fish living in Walker Lake prior to 1940 were used to demonstrate that shallow-lake intervals resulted from diversion of the Walker River and not from climatic aridity. Major changes in mineralogy and magnesium content of carbonates and major changes in diatom populations with time were found to be a function of the chemical evolution of Walker Lake combined with changing lake size. The stable isotopes of oxygen and carbon were found to be good indicators of lake volume changes. A lake-level record for Walker Lake constructed from stable-isotope data was found to be similar to a lake-level record constructed using tufa and tree-stump data. Both records indicate relatively high lake levels between 4800-2700 yr B.P., at 1250 yr B.P., and within the last 300 yr. Substantial declines in lake level occurred ???2000 and ???1000 yr B.P. ?? 1991.

  7. Looking Under a Leidenfrost Drop

    NASA Astrophysics Data System (ADS)

    Burton, Justin; Sharpe, Aaron; van der Veen, Roeland; Franco, Andres; Nagel, Sidney

    2011-11-01

    The Leidenfrost effect can be observed when small water drops move around effortlessly without sticking on a hot pan. The transition to a levitated state, where the drops rest on an insulating layer of vapor, occurs at the Leidenfrost temperature. Experiment and theory have examined the lifetime and maximum size of Leidenfrost drops. However, the liquid-vapor interface beneath the drop has not been fully charcterized. We report experiments using laser-light interference to measure the geometry of the liquid-vapor interface. By imaging the interference fringes produced between the bottom surface of the liquid and the hot substrate, we can measure the curvature of the vapor pocket beneath the drop as well as the azimuthal undulations along the neck that sits closest to the surface. From these measurements, we can extrapolate the shape of the bottom of the drop, which fluctuates in time with a period of a few milliseconds for millimeter-sized water drops. Our measurements of the azimuthal neck radius agree with predictions: the difference between the drop and neck radii, (Rd -Rn) ~0.53 λ in the limit of large drops where λ is the capillary length of the fluid. For small drops we recover the result found in that Rn ~Rd2 / λ .

  8. Acidity of Lakes and Impoundments in North-Central Minnesota

    Treesearch

    Elon S. Verry

    1981-01-01

    Measurements of lake and impoundment pH for several years, intensive sampling within years, and pH-calcium plots verify normal pH levels and do not show evidence of changes due to acid precipitation. These data in comparison with general lake data narrow the northern Lake States area in which rain or snow may cause lake acidification.

  9. The sediment record of Lake Ohrid (Albania/Macedonia)

    NASA Astrophysics Data System (ADS)

    Vogel, H.; Wagner, B.; Sulpizio, R.; Zanchetta, G.; Schouten, S.; Leng, M. J.; Wessels, M.; Nowaczyk, N.; Hilgers, A.

    2009-12-01

    pollen-based temperature reconstructions in the terrestrial (-9°C) vicinity. Moreover, the detection of subaquatic terrace levels implies that pronounced climate fluctuations in the past had substantial impact on the hydrological budget of the lake and led to significant lake level lowering. Dating and sedimentological analyses of sediment successions recovered from these subaquatic terrace levels point to significant lake level low stands during MIS 6, MIS 5.5, and during the last glacial inception. In order to recover longer sediment succession extending back into Pliocene times from this promising site an ICDP deep drilling campaign is envisaged and scheduled for 2011.

  10. Hydrology of Lake Carroll, Hillsborough County, Florida

    USGS Publications Warehouse

    Henderson, S.E.; Hayes, R.D.; Stoker, Y.E.

    1985-01-01

    Lakeshore property around Lake Carroll has undergone extensive residential development since 1960. This development increased the lake shoreline, altered surface water flow to and from the lake, and may have affected lake-stage characteristics. Some areas of the lake were dredged to provide fill material for lakefront property. Water-balance analyses for 1952-60, a predevelopment period, and 1961-80, a period of residential development, indicate that both net surface water flow to the lake and downward leakage from the lake to the Floridan aquifer were greater after 1960. These changes were due more to changes in the regional climate and related changes in ground-water levels than to changes associated with residential development. Results of water quality analyses in 1980-81 are within State limits for surface waters used for recreation and wildlife propagation. (USGS)

  11. Estimating Spring Condensation on the Great Lakes

    NASA Astrophysics Data System (ADS)

    Meyer, A.; Welp, L.

    2017-12-01

    The Laurentian Great Lakes region provides opportunities for shipping, recreation, and consumptive water use to a large part of the United States and Canada. Water levels in the lakes fluctuate yearly, but attempts to model the system are inadequate because the water and energy budgets are still not fully understood. For example, water levels in the Great Lakes experienced a 15-year low period ending in 2013, the recovery of which has been attributed partially to decreased evaporation and increased precipitation and runoff. Unlike precipitation, the exchange of water vapor between the lake and the atmosphere through evaporation or condensation is difficult to measure directly. However, estimates have been constructed using off-shore eddy covariance direct measurements of latent heat fluxes, remote sensing observations, and a small network of monitoring buoys. When the lake surface temperature is colder than air temperature as it is in spring, condensation is larger than evaporation. This is a relatively small component of the net annual water budget of the lakes, but the total amount of condensation may be important for seasonal energy fluxes and atmospheric deposition of pollutants and nutrients to the lakes. Seasonal energy fluxes determine, and are influenced by, ice cover, water and air temperatures, and evaporation in the Great Lakes. We aim to quantify the amount of spring condensation on the Great Lakes using the National Center for Atmospheric Prediction North American Regional Reanalysis (NCEP NARR) Data for Winter 2013 to Spring 2017 and compare the condensation values of spring seasons following high volume, high duration and low volume, low duration ice cover.

  12. [Dropped head syndrome as first manifestation of primary hyperparathyroid myopathy].

    PubMed

    Ota, Kiyobumi; Koseki, Sayo; Ikegami, Kenji; Onishi, Iichiroh; Tomimitsu, Hiyoryuki; Shintani, Shuzo

    2018-03-28

    75 years old woman presented with 6-month history of progressive dropped head syndrome. Neurological examination revealed moderate weakness of flexor and extensor of neck and mild weakness of proximal appendicular muscles with normal deep tendon reflexes. The needle electromyography showed short duration and low amplitude motor unit potential. No fibrillation potentials or positive sharp waves were seen. Biopsy of deltoid muscle was normal. Laboratory studies showed elevated levels of serum calcium (11.8 mg/dl, upper limit of normal 10.1) and intact parathyroid hormone (104 pg/ml, upper limit of normal 65), and decreased level of serum phosphorus (2.3 mg/dl, lower limit of normal 2.7). Ultrasonography and enhanced computed tomography revealed a parathyroid tumor. The tumor was removed surgically. Pathological examination proved tumor to be parathyroid adenoma. Dropped head and weakness of muscles were dramatically improved within a week after the operation. Although hyperparathyroidism is a rare cause of dropped head syndrome, neurologists must recognize hyperparathyroidism as a treatable cause of dropped head syndrome.

  13. Dynamics of the earth magnetic field in the 10-75 kyr period comprising the Laschamp and Mono Lake excursions: New results from the French Chaîne des Puys in a global perspective

    NASA Astrophysics Data System (ADS)

    Laj, Carlo; Guillou, Hervé; Kissel, Catherine

    2014-02-01

    We report here on a new paleomagnetic (directions and intensities) and coupled K/Ar and 40Ar/39Ar analysis of 35 different flows, emplaced in the Chaîne des Puys during the 75 to 10 kyr interval, which contains the Mono Lake and Laschamp excursions. There is a remarkable agreement between the new set of absolute volcanic intensities and published sedimentary (GLOPIS-75) and cosmogenic (10Be and 36Cl) records. The Laschamp and Mono Lake excursions are clearly revealed by a very significant intensity drop at 41.2±1.6 ka and 34.2±1.2 ka respectively. The duration of the Laschamp excursion is ˜1500 yr and about 640 yr when the drop of paleointensity or the directional change are considered respectively. The intensity drop at the Mono Lake is twice as short. In the ˜7 ka interval separating the two excursions, the field intensity recovers to almost non-transitional values. The rate of decrease of the field intensity during these excursions attains 18 nT/yr for the Laschamp and even greater value (33 nT/yr) for the Mono Lake. This figure is, for the Laschamp excursion, similar to the present field intensity decrease in the last two centuries so that one may wonder whether such a high rate of change may be characteristic of an impending geomagnetic event (reversal or excursion). We suggest that the name Auckland excursion should be used for the present-day called Mono Lake.

  14. Authigenic carbonate precipitation in Lake Acigöl, a hypersaline lake in southwestern Turkey

    NASA Astrophysics Data System (ADS)

    Balci, Nurgul; Menekse, Meryem; Gül Karagüler, Nevin; Seref Sönmez, M.; Meister, Patrick

    2014-05-01

    Lake Acigöl (Bitter Lake) is a hypersaline lake in southwestern Turkey at an elevation of 836 m above sea level showing authigenic precipitation of several different carbonate mineral phases. It is a perennial lake and closed drainage basin where a semiarid continental climate dominates. Due to the extreme water chemistry (salinity 8-200 mg/l; SO4 112-15232 mg/l; Cl 290-35320 mg/l; Mg, 82-3425 mg/l; Ca 102-745 mg/l) unique microorganisms flourish in the lake. We studied microbial diversity from enrichment cultures and performed precipitation experiments using similar water chemistry and adding bacterial enrichment cultures from lake sediments in order to elucidate whether the mineral assemblages found in the lake can be reproduced. Experiments using moderately halophilic bacteria obtained from the lake sediments demonstrate the formation of various calcium-/magnesium-carbonates: hydromagnesite, dypingite, huntite, monohydrocalcite and aragonite. The relative amounts of different mineral phases, particularly monohydrocalcite, hydromagnesite and dypingite, could be controlled by varying the sulphate concentration in the media from 0 to 56 mM. The similar mineral assemblages identified in the sediments of Lake Acigöl and in the experiments point to similar thermodynamic conditions and kinetics of crystal growth. In particular, the similar spherical morphology points to a rapid crystal growth under strong kinetic inhibition, possibly by organic polymers that are commonly produced by microbial communities. Our results demonstrate that the authigenic carbonate paragenesis of hypersaline lakes as Lake Acigöl can be reproduced in halophilic bacterial cultures. The exact thermodynamic conditions and precipitation kinetics under seasonally changing water chemistry or in batch experiment, however, still have to be constrained in order to establish a microbial model for carbonate precipitation in such environments.

  15. Heritage strain and diet of wild young of year and yearling lake trout in the main basin of Lake Huron

    USGS Publications Warehouse

    Roseman, E.F.; Stott, W.; O'Brien, T. P.; Riley, S.C.; Schaeffer, J.S.

    2009-01-01

    Restoration of lake trout Salvelinus namaycush stocks in Lake Huron is a fish community objective developed to promote sustainable fish communities in the lake. Between 1985 and 2004, 12.65 million lake trout were stocked into Lake Huron representing eight different genetic strains. Collections of bona fide wild fish in USGS surveys have increased in recent years and this study examined the ancestry and diet of fish collected between 2004 and 2006 to explore the ecological role they occupy in Lake Huron. Analysis of microsatellite DNA revealed that both pure strain and inter-strain hybrids were observed, and the majority of fish were classified as Seneca Lake strain or Seneca Lake hybrids. Diets of 50 wild age-0 lake trout were examined. Mysis, chironomids, and zooplankton were common prey items of wild age-0 lake trout. These results indicate that stocked fish are successfully reproducing in Lake Huron indicating a level of restoration success. However, continued changes to the benthic macroinvertebrate community, particularly declines of Mysis, may limit growth and survival of wild fish and hinder restoration efforts.

  16. Impacts of Recent Wetting on Snow Processes and Runoff Generation in a Terminal Lake Basin, Devils Lake, North Dakota.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Van Hoy, D.

    2016-12-01

    The Devils Lake Basin, only terminal lake basin in North America, drains to a terminal lake called Devils Lake. Terminal lakes are susceptible to climate and land use changes as their water levels fluctuate to these changes. The streamflow from the headwater catchments of the Devils Lake basin exerts a strong control on the water level of the lake. Since, the mid-1980s, the Devils Lake Basin as well as other basins in the northern Great Plains have faced a large and abrupt surge in precipitation regime resulting in a series of wetter climatic condition and flooding around the Devils Lake area. Nevertheless, the impacts of the recent wetting on snow processes such as snow accumulations, blowing snow transport, in-transit sublimation, frozen soil infiltration and snowmelt runoff generations in a headwater catchment of the Devils Lake basin are poorly understood. In this study, I utilize a physically-based, distributed cold regions hydrological model to simulate the hydrological responses in the Mauvais Coulee basin that drains to Devils Lake. The Mauvais Coulee basin ( 1072 km2), located in the north-central North Dakota, is set in a gently rolling landscape with low relief ( 220 m) and an average elevation of 500 m. Major land covers are forest areas in turtle mountains ( 10%) and crops ( 86%), with wheat ( 25%) and canola ( 20%) as the major crops. The model set up includes ten sub-basins, each of which is divided into several hydrological response units (HRUs): riparian forest, river channel, reservoir, wheat, canola, other crops, and marsh. The model is parameterized using local and regional measurements and the findings from previous scientific studies. The model is evaluated against streamflow observations at the Mauvais Coulee gauge (USGS) during 1994-2013 periods using multiple performance criteria. Finally, the impacts of recent increases in precipitation on hydrologic responses are investigated using modeled hydrologic processes.

  17. Map of Western Copper River Basin, Alaska, Showing Lake Sediments and Shorelines, Glacial Moraines, and Location of Stratigraphic Sections and Radiocarbon-Dated Samples

    USGS Publications Warehouse

    Williams, John R.; Galloway, John P.

    1986-01-01

    interpretation of the late Wisconsin till at Tyone Bluff is that it is a glaciolacustrine diamicton of the 914-975 m lake into which the ice advanced to the Hatchet Lake and to the Old Man moraines. The level of this regional lake in the Susitna drainage and on Heartland Ridge then dropped from over 914 m to about 777 m, to uncover the Tyone Spillway. An intermediate lake level in the Susitna-Tyone-Louise lake region was lowered rapidly by erosion of the spillway to 747 m. The drainage of the 747 m lake was concentrated in the spillway leading west from the West Fork Gulkana River. This spillway or a rock threshold downstream apparently was stable enough to permit formation of basin-wide, apparently undeformed, shoreline systems at 747 m, and, on recession, local shorelines at 717 m and 700 m and lower levels. The level of the 747 m lake that was confined to about 9000 km2 of the present Copper River Basin fluctuated for one or more reasons such as: the volume of ice added to or withdrawn from the system, because of changes in water budget (assuming no outflow), and/or because of temporary releases through the only outlets, perhaps Mentasta Pass, but importantly, the Copper River canyon. The 747 m lake persisted until glaciers had withdrawn to well within the Chugach Mountains, perhaps 10 to 20 km from the present glaciers.

  18. Interaction of hydrological regime and vegetation in a seasonally flooded lake wetland (Poyang Lake) in China

    NASA Astrophysics Data System (ADS)

    Zhang, Qi

    2017-04-01

    Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetlands. To explore the influences of hydrological conditions on the spatial distribution of wetland vegetation, an experimental transect in Poyang Lake wetland, the largest freshwater lake in China, was selected as a study area. In-situ high time frequency observations of climate, soil moisture, groundwater level and surface water level were simultaneously conducted. Vegetation was sampled periodically to obtain species composition, diversity and biomass. Results show that significant hydrological gradient exists along the experimental transect. Both groundwater level and soil moisture demonstrate high correlation with the distribution of different communities of vegetation. Above- and belowground biomass present Gaussian models along the gradient of groundwater depth in growing seasons. It was found that the optimal average groundwater depths for above- and belowground biomass are 0.8 m and 0.5 m, respectively. Numerical simulations using HYDRUS-1D further indicated that the groundwater depths had significant influences on the water usage by vegetation, which suggested the high dependence of wetland vegetation on groundwater, even in a wet climate zone such as Poyang Lake. The study revealed new knowledge on the interaction of hydrological regime and wetland vegetation, and provided scientific support for an integrated management of balancing wetland ecology and water resources development in Poyang Lake, and other lake floodplain wetlands, with strong human interferences.

  19. Levels of Plant Available Phosphorus in Agricultural Soils in the Lake Erie Drainage Basin.

    DTIC Science & Technology

    1977-12-01

    total P tributary load to Lake Erie is in the form of Tsediment-P and most of the sediment -P is of surficial soil origin. Total P load can be related...extremely high ranges can be attributed to 1) and 2) above. Lake Erie counties in Ontario were identified (Figure 3 ) and published reports of the...M-I -28- -tq 𔃾 way.’ .*..... . .. .. ... oi 111 1111; l -29- Table 8 Available-P in Ontario soils in Lake Erie Basin counties Available*-P (ug/g

  20. Estimating microcystin levels at recreational sites in western Lake Erie and Ohio

    USGS Publications Warehouse

    Francy, Donna S.; Brady, Amie M. G.; Ecker, Christopher D.; Graham, Jennifer L.; Stelzer, Erin A.; Struffolino, Pamela; Loftin, Keith A.

    2016-01-01

    Cyanobacterial harmful algal blooms (cyanoHABs) and associated toxins, such as microcystin, are a major global water-quality issue. Water-resource managers need tools to quickly predict when and where toxin-producing cyanoHABs will occur. This could be done by using site-specific models that estimate the potential for elevated toxin concentrations that cause public health concerns. With this study, samples were collected at three Ohio lakes to identify environmental and water-quality factors to develop linear-regression models to estimate microcystin levels. Measures of the algal community (phycocyanin, cyanobacterial biovolume, and cyanobacterial gene concentrations) and pH were most strongly correlated with microcystin concentrations. Cyanobacterial genes were quantified for general cyanobacteria, general Microcystis and Dolichospermum, and for microcystin synthetase (mcyE) for Microcystis, Dolichospermum, and Planktothrix. For phycocyanin, the relations were different between sites and were different between hand-held measurements on-site and nearby continuous monitor measurements for the same site. Continuous measurements of parameters such as phycocyanin, pH, and temperature over multiple days showed the highest correlations to microcystin concentrations. The development of models with high R2values (0.81–0.90), sensitivities (92%), and specificities (100%) for estimating microcystin concentrations above or below the Ohio Recreational Public Health Advisory level of 6 μg L−1 was demonstrated for one site; these statistics may change as more data are collected in subsequent years. This study showed that models could be developed for estimates of exceeding a microcystin threshold concentration at a recreational freshwater lake site, with potential to expand their use to provide relevant public health information to water resource managers and the public for both recreational and drinking waters.

  1. Hydrologic data; North Canadian River from Lake Overholser to Lake Eufaula, central Oklahoma

    USGS Publications Warehouse

    Havens, J.S.

    1984-01-01

    The data contained in this report were gathered during the period 1982 to 1984 for use in constructing a digital model of the North Canadian River from Lake Overholser, in the western part of Oklahoma City, to Lake Eufaula, in eastern Oklahoma. Locations of test holes and sampling sites are show in figure 1. Information on well depths and water levels in table 1 was gathered in the summer of 1982. Some information in the table was reported by well owners. Field water-quality data for water temperatures, specific conductance, and pH were measured at the time the wells were inventoried in 1982 and appear in table 2. Forty-nine test holes were augered to provide more comprehensive lithologic and water-level data along the North Canadian River. Lithologic logs of these test holes appear in table 3. Thirty-eight of the test holes were completed as observations wells by placing perforated plastic casing in the holes. Water levels were measured in these observations wells from the time of completion in mid-1982 through mid-1984. Hydrographs of the observation wells are shown in figures 2 through 15. The data are presented graphically for clarity. Hydrographs of water-level fluctuations in two wells equipped with continuous water-level recorders and hydrographs of stage fluctuations on the North Canadian River at nearby gaging stations are shown in figures 16 and 17. Two sets of low-flow measurements for the North Canadian River showing gains and losses in flow between measuring sites in the reach from Lake Overholser to Lake Eufaula are given in table 4. Measurements of flow on tributary streams are also given in this table. Analyses of water-quality samples collected at the time of the low-flow measurements are given in table 5.

  2. Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99

    USGS Publications Warehouse

    Schrader, David L.; Holmes, Robert R.

    2000-01-01

    The Fox Chain of Lakes is a glacial lake system in McHenry and Lake Counties in northern Illinois and southern Wisconsin. Sedimentation and nutrient overloading have occurred in the lake system since the first dam was built (1907) in McHenry to raise water levels in the lake system. Using data collected from December 1, 1997, to June 1, 1999, suspended-sediment budgets were constructed for the most upstream lake in the system, Grass Lake, and for the lakes downstream from Grass Lake. A total of 64,900 tons of suspended sediment entered Grass Lake during the study, whereas a total of 70,600 tons of suspended sediment exited the lake, indicating a net scour of 5,700 tons of sediment. A total of 44,100 tons of suspended sediment was measured exiting the Fox Chain of Lakes at Johnsburg, whereas 85,600 tons entered the system downstream from Grass Lake. These suspended-sediment loads indicate a net deposition of 41,500 tons downstream from Grass Lake, which represents a trapping efficiency of 48.5 percent. A large amount of recreational boating takes place on the Fox Chain of Lakes during summer months, and suspended-sediment load was observed to rise from 110 tons per day to 339 tons per day during the 1999 Memorial Day weekend (May 26 ?31, 1999). Presumably, this rise was the result of the boating traffic because no other hydrologic event is known to have occurred that might have caused the rise. This study covers a relatively short period and may not represent the long-term processes of the Fox Chain of Lakes system, although the sediment transport was probably higher than an average year. The bed sediments found on the bottom of the lakes are composed of mainly fine particles in the silt-clay range. The Grass Lake sediments were characterized as black peat with an organic content of between 9 and 18 percent, and the median particle size ranged from 0.000811 to 0.0013976 inches. Other bed material samples were collected at streamflow-gaging stations on the

  3. Hydrological and chemical budgets in a volcanic caldera lake: Lake Kussharo, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Chikita, Kazuhisa A.; Nishi, Masataka; Fukuyama, Ryuji; Hamahara, Kazuhiro

    2004-05-01

    The contribution of groundwater output and input to lake chemistry was examined by estimating the hydrological and chemical budgets of a volcanic caldera lake, Lake Kussharo, Hokkaido, Japan. The lake level, meteorology, river water discharge and water properties were measured in the ice-covered period of February-March and in the open-water period of June-October in 2000. The inorganic chemistry was then analyzed for sporadically sampled surface water and hot spring water. The chemistry of lake water at pH of 6.91-7.57 and EC25 (electric conductivity at 25 °C) of 29.2-32.7 mS/m appears to be controlled by the input of two types of hot spring water: the inflowing Yunokawa River (pH of 2.27-2.54 and EC25 of 197.8-258.0 mS/m) and groundwater discharging directly on the shore (pH of 7.13-8.32, water temperature of 35.0-46.5 °C and EC25 of 53.1-152.0 mS/m). Excluding the days with rainfall or a great change in lake level, the water budget in June-October gave a net groundwater input of -7.41 to 2.97 m 3/s. A combination of the water budget with the chemical budget of two solutes, Na + and Cl -, led to the best estimate of groundwater output, Gout, at 3.82±3.02 m 3/s, the total fresh groundwater input, ∑ Gfresh, at 2.14±1.00 m 3/s, and the total groundwater input of hot springs, ∑ Gspa, at 0.46±0.05 m 3/s. This is comparable to G out=3.87 m3/ s, ∑G fresh=1.49 m3/ s and ∑G spa=0.41 m3/ s during the ice-covered period. The chemical flux by the freshwater input plays an important role in the alkalinity of lake water, as does the chemical flux by the shoreline hot springs. The large groundwater output could occur by the leakage through the highly permeable, underground pumice, distributed from the east-to-south lake basin to southeast of the outlet.

  4. Shaping liquid drops by vibration

    NASA Astrophysics Data System (ADS)

    Pototsky, Andrey; Bestehorn, Michael

    2018-02-01

    We present and analyze a minimal hydrodynamic model of a vertically vibrated liquid drop that undergoes dynamic shape transformations. In agreement with experiments, a circular lens-shaped drop is unstable above a critical vibration amplitude, spontaneously elongating in the horizontal direction. Smaller drops elongate into localized states that oscillate with half of the vibration frequency. Larger drops evolve by transforming into a snake-like structure with gradually increasing length. The worm state is long-lasting with a potential to fragment into smaller drops.

  5. Instant freezing of impacting wax drops

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Alexandre; Virot, Emmanuel; Rubinstein, Shmuel

    2015-11-01

    We present the impact of hot liquid drops of wax on surfaces whose temperature is below the solidifying temperature of the drops. During the fall the drops remain mostly liquid, but upon impact, their temperature quickly decreases resulting in the solidification of the drop. Depending on the impact energy, drops size and the temperature difference between the drop and the surface this results in plethora of solid shapes: simple lenses, triangular drops, spherical caps and popped popcorn shapes.

  6. The tufas of Pyramid Lake, Nevada

    USGS Publications Warehouse

    Benson, Larry V.

    2004-01-01

    Pyramid Lake is the site of some of the Earth's most spectacular tufa deposits. The Tufas are composed of calcium carbonate (CaCO3). The large tufa mounds, reef- and sheet-like tufas formed within Pyramid Lake, between 26,000 and 13,000 years (yr) ago, when the lake was part of pluvial Lake Lahontan. The mounds are composed of large interlocking spheres that contain multiple generations of a crystalline (thinolite) variety of tufa. Over time many of the mounds have fallen apart, exposing an internal network of tubes. The tubular structures are thought to have been created when springs discharged from the bottom of Pyramid Lake, supplying calcium that combined with carbonate dissolved in lake water to form the mounds. The reef- and sheet-like deposits contain pillow and pendant forms made up of a branching variety of tufa that often grades into dense layers or nodules. Dense layers of tufa also coat cobbles and boulders that were deposited in near-shore shallow-water areas. The thickest tufa deposits formed at lake-bottom sites of ground-water discharge and at overflow elevations1 where the lake was held at near-constant levels for long periods of time.

  7. The new Drop Tower catapult system

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  8. Status and trends of prey fish populations in Lake Michigan, 2008

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Holuszko, Jeffrey D.; Desorcie, Timothy J.; Adams, Jean V.

    2009-01-01

    .e., < 100 mm) equaled 0.7 fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass of dreissenid mussels dropped precipitously in 2008, down to 9.47 kt, and a 96% decline from the 2007 biomass estimate. Overall, the total lake-wide prey fish biomass estimate (sum of alewife, bloater, rainbow smelt, deepwater sculpin, slimy sculpin, round goby, and ninespine stickleback) in 2008 was 25.62 kt, which was the lowest observed since the survey began in 1973.

  9. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: hydroclimatic implications

    USGS Publications Warehouse

    Watras, C.J.; Read, J.S.; Holman, K.D.; Liu, Z.; Song, Y.-Y.; Watras, A.J.; Morgan, S.; Stanley, E.H.

    2014-01-01

    We report a unique hydrologic time-series which indicates that water levels in lakes and aquifers across the upper Great Lakes region of North America have been dominated by a climatically-driven, near-decadal oscillation for at least 70 years. The historical oscillation (~13y) is remarkably consistent among small seepage lakes, groundwater tables and the two largest Laurentian Great Lakes despite substantial differences in hydrology. Hydrologic analyses indicate that the oscillation has been governed primarily by changes in the net atmospheric flux of water (P-E) and stage-dependent outflow. The oscillation is hypothetically connected to large-scale atmospheric circulation patterns originating in the mid-latitude North Pacific that support the flux of moisture into the region from the Gulf of Mexico. Recent data indicate an apparent change in the historical oscillation characterized by a ~12y downward trend beginning in 1998. Record low water levels region-wide may mark the onset of a new hydroclimatic regime.

  10. Simulation of a proposed emergency outlet from Devils Lake, North Dakota

    USGS Publications Warehouse

    Vecchia, Aldo V.

    2002-01-01

    From 1993 to 2001, Devils Lake rose more than 25 feet, flooding farmland, roads, and structures around the lake and causing more than $400 million in damages in the Devils Lake Basin. In July 2001, the level of Devils Lake was at 1,448.0 feet above sea level1, which was the highest lake level in more than 160 years. The lake could continue to rise to several feet above its natural spill elevation to the Sheyenne River (1,459 feet above sea level) in future years, causing extensive additional flooding in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin as well. The outlet simulation model described in this report was developed to determine the potential effects of various outlet alternatives on the future lake levels and water quality of Devils Lake.Lake levels of Devils Lake are controlled largely by precipitation on the lake surface, evaporation from the lake surface, and surface inflow. For this study, a monthly water-balance model was developed to compute the change in total volume of Devils Lake, and a regression model was used to estimate monthly water-balance data on the basis of limited recorded data. Estimated coefficients for the regression model indicated fitted precipitation on the lake surface was greater than measured precipitation in most months, fitted evaporation from the lake surface was less than estimated evaporation in most months, and ungaged inflow was about 2 percent of gaged inflow in most months. Dissolved sulfate was considered to be the key water-quality constituent for evaluating the effects of a proposed outlet on downstream water quality. Because large differences in sulfate concentrations existed among the various bays of Devils Lake, monthly water-balance data were used to develop detailed water and sulfate mass-balance models to compute changes in sulfate load for each of six major storage compartments in response to precipitation, evaporation, inflow, and outflow from

  11. Comparing Effects of Lake- and Watershed-Scale Influences on Communities of Aquatic Invertebrates in Shallow Lakes

    PubMed Central

    Hanson, Mark A.; Herwig, Brian R.; Zimmer, Kyle D.; Fieberg, John; Vaughn, Sean R.; Wright, Robert G.; Younk, Jerry A.

    2012-01-01

    Constraints on lake communities are complex and are usually studied by using limited combinations of variables derived from measurements within or adjacent to study waters. While informative, results often provide limited insight about magnitude of simultaneous influences operating at multiple scales, such as lake- vs. watershed-scale. To formulate comparisons of such contrasting influences, we explored factors controlling the abundance of predominant aquatic invertebrates in 75 shallow lakes in western Minnesota, USA. Using robust regression techniques, we modeled relative abundance of Amphipoda, small and large cladocera, Corixidae, aquatic Diptera, and an aggregate taxon that combined Ephemeroptera-Trichoptera-Odonata (ETO) in response to lake- and watershed-scale characteristics. Predictor variables included fish and submerged plant abundance, linear distance to the nearest wetland or lake, watershed size, and proportion of the watershed in agricultural production. Among-lake variability in invertebrate abundance was more often explained by lake-scale predictors than by variables based on watershed characteristics. For example, we identified significant associations between fish presence and community type and abundance of small and large cladocera, Amphipoda, Diptera, and ETO. Abundance of Amphipoda, Diptera, and Corixidae were also positively correlated with submerged plant abundance. We observed no associations between lake-watershed variables and abundance of our invertebrate taxa. Broadly, our results seem to indicate preeminence of lake-level influences on aquatic invertebrates in shallow lakes, but historical land-use legacies may mask important relationships. PMID:22970275

  12. Food Web Topology in High Mountain Lakes.

    PubMed

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels.

  13. Dynamics of the Mount Nyiragongo lava lake

    NASA Astrophysics Data System (ADS)

    Burgi, P.-Y.; Darrah, T. H.; Tedesco, D.; Eymold, W. K.

    2014-05-01

    The permanent and presently rising lava lake at Mount Nyiragongo constitutes a major potential geological hazard to the inhabitants of the Virunga volcanic region in the Democratic Republic of Congo (DRC) and Rwanda. Based on two field campaigns in June 2010 and 2011, we estimate the lava lake level from the southeastern crater rim (~400 m diameter) and lava lake area (~46,550 m2), which constrains, respectively, the lava lake volume (~9 × 106 m3) and volume flow rate needed to keep the magma in a molten state (0.6 to 3.5 m3 s-1). A bidirectional magma flow model, which includes the characterization of the conduit diameter and funnel-shaped lava lake geometry, is developed to constrain the amount of magma intruded/emplaced within the magmatic chamber and rift-related structures that extend between Mount Nyiragongo's volcanic center and the city of Goma, DRC, since Mount Nyiragongo's last eruption (17 January 2002). Besides matching field data of the lava lake level covering the period 1977 to 2002, numerical solutions of the model indicate that by 2022, 20 years after the January 2002 eruption, between 300 and 1700 × 106 m3 (0.3 to 1.7 km3) of magma could have intruded/emplaced underneath the edifice, and the lava lake volume could exceed 15 × 106 m3.

  14. Perfluorooctane sulfonate (PFOS) contamination of fish in urban lakes: a prioritization methodology for lake management.

    PubMed

    Xiao, Feng; Gulliver, John S; Simcik, Matt F

    2013-12-15

    The contamination of urban lakes by anthropogenic pollutants such as perfluorooctane sulfonate (PFOS) is a worldwide environmental problem. Large-scale, long-term monitoring of urban lakes requires careful prioritization of available resources, focusing efforts on potentially impaired lakes. Herein, a database of PFOS concentrations in 304 fish caught from 28 urban lakes was used for development of an urban-lake prioritization framework by means of exploratory data analysis (EDA) with the aid of a geographical information system. The prioritization scheme consists of three main tiers: preliminary classification, carried out by hierarchical cluster analysis; predictor screening, fulfilled by a regression tree method; and model development by means of a neural network. The predictive performance of the newly developed model was assessed using a training/validation splitting method and determined by an external validation set. The application of the model in the U.S. state of Minnesota identified 40 urban lakes that may contain elevated levels of PFOS; these lakes were not previously considered in PFOS monitoring programs. The model results also highlight ongoing industrial/commercial activities as a principal determinant of PFOS pollution in urban lakes, and suggest vehicular traffic as an important source and surface runoff as a primary pollution carrier. In addition, the EDA approach was further compared to a spatial interpolation method (kriging), and their advantages and disadvantages were discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. 2016 Lake Michigan Lake Trout Working Group Report

    USGS Publications Warehouse

    Madenjian, Charles P.; Breidert, Brian; Boyarski, David; Bronte, Charles R.; Dickinson, Ben; Donner, Kevin; Ebener, Mark P.; Gordon, Roger; Hanson, Dale; Holey, Mark; Janssen, John; Jonas, Jory; Kornis, Matthew; Olsen, Erik; Robillard, Steve; Treska, Ted; Weldon, Barry; Wright, Greg D.

    2017-01-01

    This report provides a review on the progression of lake trout rehabilitation towards meeting the Salmonine Fish Community Objectives (FCOs) for Lake Michigan (Eshenroder et. al. 1995) and the interim goal and evaluation objectives articulated in A Fisheries Management Implementation Strategy for the Rehabilitation of Lake Trout in Lake Michigan (Dexter et al. 2011); we also include data describing lake trout stocking and mortality to portray the present state of progress towards lake trout rehabilitation.

  16. Palaeoenvironmental evolution of Lake Gacko (Southern Bosnia and Herzegovina): Impact of the Middle Miocene Climatic Optimum on the Dinaride Lake System

    PubMed Central

    Mandic, Oleg; de Leeuw, Arjan; Vuković, Boško; Krijgsman, Wout; Harzhauser, Mathias; Kuiper, Klaudia F.

    2011-01-01

    In the Early to Middle Miocene, a series of lakes, collectively termed the Dinaride Lake System (DLS), spread out across the north-western part of the Dinaride–Anatolian continental block. Its deposits, preserved in numerous intra-montane basins, allow a glimpse into the palaeoenvironmental, palaeobiogeographic and geodynamic evolution of the region. Lake Gacko, situated in southern Bosnia and Herzegovina, is one of the constituent lakes of the DLS, and its deposits are excellently exposed in the Gračanica open-cast coal-mine. A detailed study of the sedimentary succession that addresses facies, sediment petrography, geophysical properties, and fossil mollusc palaeoecology reveals repetitive changes in lake level. These are interpreted to reflect changes in the regional water budget. First-order chronologic constraints arise from the integration of radio-isotopic and palaeomagnetic data. 40Ar/39Ar measurements on feldspar crystals from a tephra bed in the upper part of the sedimentary succession indicate a 15.31 ± 0.16 Ma age for this level. The reversed magnetic polarity signal that characterises the larger part of the investigated section correlates to chron C5Br of the Astronomically Tuned Neogene Timescale. Guided by these chronologic data and a detailed cyclostratigraphic analysis, the observed variations in lake-level, evident as two ~ 40-m and seven ~ 10-m scale transgression–regression cycles, are tuned to ~ 400-kyr and ~ 100-kyr eccentricity cycles. From the tuning, it can be inferred that the sediments in the Gacko Basin accumulated between ~ 15.8 and ~ 15.2 Ma. The economically valuable lignite accumulations in the lower part of the succession are interpreted to indicate the development of swamp forests in conjunction with lake-level falls corresponding to ~ 100-kyr eccentricity minima. Pedogenesis, rhizoliths and palustrine carbonate breccias in the upper part of the section reveal long-term aridity coinciding with a ~ 400-kyr

  17. Seismic tremor and gravity measurements at Inferno Crater Lake, Waimangu Geothermal Field, New Zealand

    NASA Astrophysics Data System (ADS)

    O'Brien, J. F.; Jolly, A. D.; Fournier, N.; Cole-Baker, J.; Hurst, T.; Roman, D. C.

    2011-12-01

    Volcanic crater lakes are often associated with active hydrothermal systems that induce cyclic behavior in the lake's level, temperature, and chemistry. Inferno Crater Lake, located in the Waimangu geothermal field within the Taupo Volcanic Zone (TVZ) on the North Island of New Zealand exhibits lake level fluctuations of >7m, and temperature fluctuations >40°C with a highly variable periodicity. Seismic and gravity monitoring of Inferno Lake was carried out from December, 2009 - March, 2010 and captured a full cycle of lake fluctuation. Results indicate that this cycle consisted of ~5 smaller fluctuations of ~3m in lake level followed by a larger fluctuation of ~7m. A broadband seismometer recorded strong seismic tremor in the hours leading up to each of the minor and major high stands in lake level. Spectral analysis of the tremor shows dominant frequencies in the range of ~10Hz and a fundamental harmonic frequency located in the 1Hz range. The 1Hz frequency band exhibits gliding spectral lines which increase in frequency at the end of each tremor period. Particle motion analysis of harmonic tremor waveforms indicate a ~100m upward migration of the source location from the onset of tremor until it ceases at the peak of each lake level high stand. Particle motions also indicate an azimuthal migration of the source by ~30° from the overflow outlet region of the lake toward the central vent location during the course of the tremor and lake level increase. Lake water temperature has a direct relationship with lake level and ranges between ~40°C - ~80°C. Gravity fluctuations were also continuously monitored using a Micro-g-LaCoste gPhone relative gravity meter with a 1Hz sampling rate and precision of 1 microgal. These data indicate a direct relationship between lake level and gravity showing a net increase of ~100 microgals between lake level low and high stands. A piezometer located beside the lake indicates an inflow of ground water into the subsoil during

  18. Electrohydrodynamics of a particle-covered drop

    NASA Astrophysics Data System (ADS)

    Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.

  19. The evaporation of a drop of mercury

    NASA Astrophysics Data System (ADS)

    Winter, Thomas G.

    2003-08-01

    The evaporative rates of two drops of mercury at room temperature are determined experimentally and theoretically. The resulting mercury vapor levels are estimated and measured, compared with the OSHA permissible exposure limit, and found to be small by comparison.

  20. Salinity and hydrology of closed lakes

    USGS Publications Warehouse

    Langbein, Walter Basil

    1961-01-01

    Lakes without outlets, called closed lakes, are exclusively features of the arid and semiarid zones where annual evaporation exceeds rainfall. The number of closed lakes increases with aridity, so there are relatively few perennial closed lakes, but "dry" lakes that rarely contain water are numerous.Closed lakes fluctuate in level to a much greater degree than the open lakes of the humid zone, because variations in inflow can be compensated only by changes in surface area. Since the variability of inflow increases with aridity, it is possible to derive an approximate relationship for the coefficient of variation of lake area in terms of data on rates of evaporation, lake area, lake depth, and drainage area.The salinity of closed lakes is highly variable, ranging from less than 1 percent to over 25 percent by weight of salts. Some evidence suggests that the tonnage of salts in a lake solution is substantially less than the total input of salts into the lake over the period of existence of the closed lake. This evidence suggests further that the salts in a lake solution represent a kind of long-term balance between factors of gain and loss of salts from the solution.Possible mechanisms for the loss of salts dissolved in the lake include deposition in marginal bays, entrapment in sediments, and removal by wind. Transport of salt from the lake surface in wind spray is also a contributing, but seemingly not major, factor.The hypothesis of a long-term balance between input to and losses from the lake solution is checked by deriving a formula for the equilibrium concentration and comparing the results with the salinity data. The results indicate that the reported salinities seemingly can be explained in terms of their geometric properties and hydrologic environment.The time for accumulation of salts in the lake solution the ratio between mass of salts in the solution and the annual input may also be estimated from the geometric and hydrologic factors, in the absence of