Sample records for lake llanquihue southern

  1. Plankton crustaceans in bays with different trophic status in Llanquihue lake (41° S Chile).

    PubMed

    Escalante, P De Los Ríos; Soto, D; Santander-Massa, R; Acevedo, P

    2017-01-01

    The Llanquihue lake is included in the called Araucanian or Nord Patagonian lakes located between 38-41° S. These lakes are characterized by their oligo-mesotrophic status due to human intervention which takes to the increase in nutrients inputs from industries and towns. Effects on zooplankton assemblages are observed with marked increase of daphnids abundance. The aim of the present study is to analyze the trophic status and zooplankton relative abundance in different bays of Llanquihue lake. It was found direct associations between chlorophyll a with daphnids percentage, total dissolved nitrogen with reactive soluble phosphorus nitrogen/phosphorus molar radio with cyclopoids percentage, and an inverse relation between daphnids and calanoids percentages. The occurrence of three kinds of microcrustacean assemblages and environmental conditions was evidenced: the first one with high calanoids percentage, low species number and low chlorophyll and nutrients concentration, a second with moderate chlorophyll and nutrients concentration and moderate daphnids percentage; high species number and a third site with high chlorophyll and nutrients concentration, high daphnids percentage and high species number. Daphnids increase under mesotrophic status, agree with similar results observed for southern Argentinean and New Zealand lakes.

  2. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario

    USGS Publications Warehouse

    Mills, Edward L.; Chrisman, Jana R.; Baldwin, Brad; Owens, Randall W.; O'Gorman, Robert; Howell, Todd; Roseman, Edward F.; Raths, Melinda K.

    1999-01-01

    A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreissenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.

  3. A post-Calumet shoreline along southern Lake Michigan

    USGS Publications Warehouse

    Capps, D.K.; Thompson, T.A.; Booth, R.K.

    2007-01-01

    The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.

  4. New records for millipedes from southern Chile (Polydesmida: Dalodesmidae; Polyzoniida: Siphonotidae).

    PubMed

    Mesibov, Robert Evan

    2017-01-01

    Millipedes from 1983 collections by the author in southern Chile have been identified and registered as specimen lots at the Queen Victoria Museum and Art Gallery (QVMAG) in Launceston, Tasmania. Collection and specimen data from the new QVMAG specimen lots have been archived in Darwin Core format together with a KML file of occurrences. The 31 occurrence records in the Darwin Core Archive list 13 millipede taxa from 16 sites in Llanquihue and Osorno provinces, Chile.

  5. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.

    2017-05-01

    Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.

  6. Cisco (Coregonus artedii) mortalities in a southern Michigan lake, July 1968

    USGS Publications Warehouse

    Colby, Peter J.; Brooke, Larry T.

    1969-01-01

    Cisco die-offs are common in the summer in certain lakes of northern Indiana and southern Michigan, along the southern boundary of the national distribution of coregonine fishes. Although numerous cisco die-offs have been reported, few, if any, have been accompanied by environmental information at the time of the die-off. On 31 July and 1 August 1968, we investigated a cisco die-off on Halfmoon Lake, on the border of Washtenaw and Livingston Counties, Michigan.

  7. Comparative analysis of discharges into Lake Michigan, Phase I - Southern Lake Michigan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J. A.; Elcock, D.; Gasper, J. R.

    2008-06-30

    BP Products North America Inc. (BP) owns and operates a petroleum refinery located on approximately 1,700 acres in Whiting, East Chicago, and Hammond, Indiana, near the southern tip of Lake Michigan. BP provided funding to Purdue University-Calumet Water Institute (Purdue) and Argonne National Laboratory (Argonne) to conduct studies related to wastewater treatment and discharges. Purdue and Argonne are working jointly to identify and characterize technologies that BP could use to meet the previous discharge permit limits for total suspended solids (TSS) and ammonia after refinery modernization. In addition to the technology characterization work, Argonne conducted a separate project task, whichmore » is the subject of this report. In Phase I of a two-part study, Argonne estimated the current levels of discharge to southern Lake Michigan from significant point and nonpoint sources in Illinois, Indiana, and portions of Michigan. The study does not consider all of the chemicals that are discharged. Rather, it is narrowly focused on a selected group of pollutants, referred to as the 'target pollutants'. These include: TSS, ammonia, total and hexavalent chromium, mercury, vanadium, and selenium. In Phase II of the study, Argonne will expand the analysis to cover the entire Lake Michigan drainage basin.« less

  8. LANDSCAPE INFLUENCES ON LAKE CHEMISTRY AND OSTRACOD COMMUNITY STRUCTURE OF SMALL DIMICTIC LAKES IN SOUTHERN WISCONSIN DIMICTIC LAKES

    EPA Science Inventory

    The natural land cover patterns that characterize the southern part of Wisconsin are legacies of a

    glaciated past. Land cover pattern and geomorphology control the hydrologic connections between water

    resources and the land by which ecosystems, including lakes are o...

  9. Vascular flora of saline lakes in the southern high plains of Texas and eastern New Mexico

    USGS Publications Warehouse

    Rosen, David J.; Conway, Warren C.; Haukos, David A.; Caskey, Amber D.

    2013-01-01

    Saline lakes and freshwater playas form the principal surface hydrological feature of the High Plains of the Southern Great Plains. Saline lakes number less than 50 and historically functioned as discharge wetlands with relatively consistent water availability due to the presence of one or more springs. Currently, less than ten saline lakes contain functional springs. A survey of vascular plants at six saline lakes in the Southern High Plains of northwest Texas and one in eastern New Mexico during May and September 2009 resulted in a checklist of 49 species representing 16 families and 40 genera. The four families with the most species were Asteraceae (12), Amaranthaceae (8), Cyperaceae (5), and Poaceae (12). Non-native species (Bromus catharticus, Poa compressa, Polypogon monspeliensis, Sonchus oleraceus, Kochia scoparia, and Tamarix ramosissima) accounted for 10% of the total species recorded. Whereas nearly 350 species of vascular plants have been identified in playas in the Southern High Plains, saline lakes contain a fraction of this species richness. The Southern High Plains saline lake flora is regionally unique, containing taxa not found in playas, with species composition that is more similar to temperate desert wetlands of the Intermountain Region and Gulf Coastal Plain of North America.

  10. Depressions and other lake-floor morphologic features in deep water, southern Lake Michigan

    USGS Publications Warehouse

    Colman, Steven M.; Foster, D.S.; Harrison, D.W.

    1992-01-01

    The most common features are subcircular depressions, commonly compound, that are irregularly distributed across the lake floor. The depressions are most common in the southern basin of the lake where lacustrine sediments are more than a few meters thick, corresponding to water depths greater than about 90 m. We have divided the depressions into three types on the basis of their internal structure seen in seismic-reflection profiles. The depressions show varying degrees of muting, ranging from fresh to completely buried, suggesting a range in the time of their formation. The origin of the depressions is problematic, but their structure suggests collapse and(or) subsidence. -from Authors

  11. Nearshore Placement Techniques in Southern Lake Michigan

    DTIC Science & Technology

    2018-03-01

    ER D C /C HL T R- 18 -3 Regional Sediment Management (RSM) Program Nearshore Placement Techniques in Southern Lake Michigan Co as ta...online library at http://acwc.sdp.sirsi.net/client/default. Regional Sediment Management (RSM) Program ERDC/CHL TR-18-3 March 2018 Nearshore...This study was conducted for Headquarters, U.S. Army Corps of Engineers (HQUSACE), Washington, DC, under the USACE Regional Sediment Management

  12. Temporal Genetic Variance and Propagule-Driven Genetic Structure Characterize Naturalized Rainbow Trout (Oncorhynchus mykiss) from a Patagonian Lake Impacted by Trout Farming

    PubMed Central

    Seeb, Lisa W.; Seeb, James E.; Arismendi, Ivan; Hernández, Cristián E.; Gajardo, Gonzalo; Galleguillos, Ricardo; Cádiz, Maria I.; Musleh, Selim S.

    2015-01-01

    Knowledge about the genetic underpinnings of invasions—a theme addressed by invasion genetics as a discipline—is still scarce amid well documented ecological impacts of non-native species on ecosystems of Patagonia in South America. One of the most invasive species in Patagonia’s freshwater systems and elsewhere is rainbow trout (Oncorhynchus mykiss). This species was introduced to Chile during the early twentieth century for stocking and promoting recreational fishing; during the late twentieth century was reintroduced for farming purposes and is now naturalized. We used population- and individual-based inference from single nucleotide polymorphisms (SNPs) to illuminate three objectives related to the establishment and naturalization of Rainbow Trout in Lake Llanquihue. This lake has been intensively used for trout farming during the last three decades. Our results emanate from samples collected from five inlet streams over two seasons, winter and spring. First, we found that significant intra- population (temporal) genetic variance was greater than inter-population (spatial) genetic variance, downplaying the importance of spatial divergence during the process of naturalization. Allele frequency differences between cohorts, consistent with variation in fish length between spring and winter collections, might explain temporal genetic differences. Second, individual-based Bayesian clustering suggested that genetic structure within Lake Llanquihue was largely driven by putative farm propagules found at one single stream during spring, but not in winter. This suggests that farm broodstock might migrate upstream to breed during spring at that particular stream. It is unclear whether interbreeding has occurred between “pure” naturalized and farm trout in this and other streams. Third, estimates of the annual number of breeders (N b) were below 73 in half of the collections, suggestive of genetically small and recently founded populations that might experience

  13. Paleohydrologic record from lake brine on the southern High Plains, Texas

    USGS Publications Warehouse

    Sanford, W.E.; Wood, W.W.

    1995-01-01

    The timing of changes in the stage and salinity of Double Lakes of Lynn County, Texas, was estimated using dissolved-chloride profiles across an underlying shale layer. Lake conditions over the past 30 to 50 ka can be inferred from the chloride profiles by using the advective velocity of the pore water through the shale and an appropriate coefficient of molecular diffusion. The profiles suggest that net-evaporative conditions existed over the southern High Plains for the past 50 ka; a period of increasing salinity in the lake began at ~20 ka and reached current levels at ~5 ka. In addition, deflationary conditions were present for at least 4 ka, and likely began or were accelerated during the most recent altithermal period at ~5 ka. -from Authors

  14. Lake-level stratigraphy and geochronology revisited at Lago (Lake) Cardiel, Argentina, and changes in the Southern Hemispheric Westerlies over the last 25 ka

    NASA Astrophysics Data System (ADS)

    Quade, J.; Kaplan, M. R.

    2017-12-01

    Paleoshorelines around Lago (Lake) Cardiel in southern Argentina (S48.9°, W71.3°; ∼275 m) record substantial changes in lake area over the past 25 ka. Our results combined with previous research show that during the last glacial maximum (or LGM, 23-21 ka), the lake stood at near modern levels, but had nearly dried up by ∼13 ka. Between 11.3 and 10.1 ka the lake reached its highest point (+54-58 m) and greatest extent in at least the last 40 ka. Lake levels dropped thereafter and experienced two lower-lake periods: 8.5-7.5 ka and 5-3.3 ka; and two higher-lake periods: 7.4-6 and ∼5.2 ka. In the last 3.5 ka, the lake has remained generally near or slightly above its present level. The depth and surface area of Lago Cardiel are controlled mainly by precipitation onto the lake and surrounding catchment, air and water temperature, and wind-speed related to local strength of the Southern Hemispheric Westerlies (SHW). Our lake-level reconstruction combined with evidence from other studies suggest that on average the core of the SHW was located well to the north (<45°S) of the Cardiel basin during the deep lake phase associated with the LGM, and was well to the south (>55°S?) during the hydrologic maximum of Cardiel in the early Holocene. The lower phases of the lake at 20.0-11.5, 8.5-7.5, and 5.0-3.3 ka generally correspond to cold conditions in other records, when we infer that the SHW were strongly focused around the latitudes of Cardiel at 49°S.

  15. Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan

    USGS Publications Warehouse

    Bennett, J.P.; Jepsen, E.A.; Roth, J.A.

    2006-01-01

    Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed. Decreased cherry branch elongation, milkweed stem height and pod production, and foliar injury on both species occurred at sites around southern Lake Michigan at ozone exposures of 13 SUM06 ppm-h and 93a??98 ppb peak hourly.

  16. Annually resolved late Holocene paleohydrology of the southern Sierra Nevada and Tulare Lake, California

    NASA Astrophysics Data System (ADS)

    Adams, Kenneth D.; Negrini, Robert M.; Cook, Edward R.; Rajagopal, Seshadri

    2015-12-01

    Here we present 2000 year long, annually resolved records of streamflow for the Kings, Kaweah, Tule, and Kern Rivers in the southwestern Sierra Nevada of California and consequent lake-level fluctuations at Tulare Lake in the southern San Joaquin Valley. The integrated approach of using moisture-sensitive tree ring records from the Living Blended Drought Atlas to reconstruct annual discharge and then routing this discharge to an annual Tulare Lake water balance model highlights the differences between these two types of paleoclimate records, even when subject to the same forcing factors. The reconstructed streamflow in the southern Sierra responded to yearly changes in precipitation and expressed a strong periodicity in the 2-8 year range over most of the reconstruction. The storage capacity of Tulare Lake caused it to fluctuate more slowly, masking the 2-8 year streamflow periodicity and instead expressing a strong periodicity in the 32-64 year range over much of the record. Although there have been longer droughts, the 2015 water year represents the driest in the last 2015 years and the 2012-2015 drought represents the driest 4 year period in the record. Under natural conditions, simulated Tulare Lake levels would now be at about 60 m, which is not as low as what occurred multiple times over the last 2000 years. This long-term perspective of fluctuations in climate and water supply suggests that different drought scenarios that vary in terms of severity and duration can produce similar lake-level responses in closed lake basins.

  17. New insight into defining the lakes of the southern Baltic coastal zone.

    PubMed

    Cieśliński, Roman; Olszewska, Alicja

    2018-01-29

    There exist many classification systems of hydrographic entities such as lakes found along the coastlines of seas and oceans. Each system has its advantages and can be used with some success in the area of protection and management. This paper aims to evaluate whether the studied lakes are only coastal lakes or rather bodies of water of a completely different hydrological and hydrochemical nature. The attempt to create a new classification system of Polish coastal lakes is related to the incompleteness of lake information in existing classifications. Thus far, the most frequently used are classifications based solely on lake basin morphogenesis or hydrochemical properties. The classifications in this paper are based not only on the magnitude of lake water salinity or hydrochemical analysis but also on isolation from the Baltic Sea and other sources of water. The key element of the new classification system for coastal bodies of water is a departure from the existing system used to classify lakes in Poland and the introduction of ion-"tracking" methods designed to identify anion and cation distributions in each body of water of interest. As a result of the work, a new classification of lakes of the southern Baltic Sea coastal zone was created. Featured objects such as permanently brackish lakes, brackish lakes that may turn into freshwater lakes from time to time, freshwater lakes that may turn into brackish lakes from time to time, freshwater lakes that experience low levels of salinity due to specific incidents, and permanently freshwater lakes. The authors have adopted 200 mg Cl -  dm -3 as a maximum value of lake water salinity. There are many conditions that determine the membership of a lake to a particular group, but the most important is the isolation lakes from the Baltic Sea. Changing a condition may change the classification of a lake.

  18. Faulting along the southern margin of Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.

    1998-01-01

    The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.

  19. A preliminary magnetic study of Sawa lake sediments, Southern Iraq

    NASA Astrophysics Data System (ADS)

    Ameen, Nawrass

    2016-04-01

    A preliminary magnetic study combined with chemical analyses was carried out in Sawa Lake in Al-Muthanna province, southern Iraq, about 22 km south west of Samawa city (31°18'48.80"N, 45°0'25.25"E). The lake is about 4.74 km length, 1.75 km width and 5.5 m height, it is surrounded by a salt rim which is higher than the lake water by about 2.8 m and sea water by about 18.5 m (Naqash et al., 1977 in Hassan, 2007). The lake is an elongated closed basin with no surface water available to it, it may be fed by groundwater of the Euphrates and Dammam aquifers through system of joints and cracks. This study aims to investigate the concentrations of selected heavy metals as pollutants and magnetic susceptibility (MS) and other magnetic properties of sediment samples from fifty sites collected from the bottom of the lake, the study area lies in an industrial area. The results show spatial variations of MS with mean value of about 4.58 x 10-8 m3 kg-1. Scanning electron microscopy and magnetic mineralogy parameters indicate the dominance of soft magnetic phase like magnetite and presence of hard magnetic phase like hematite. Spatial variations of MS combined with the concentrations of heavy metals suggests the efficiency of magnetic methods as effective, inexpensive and non-time consuming method to outlining the heavy metal pollution. References: Hassan W.F., 2007. The Physio-chemical characteristic of Sawa lake water in Samawa city-Iraq. Marine Mesopotamica, 22(2), 167-179.

  20. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    USGS Publications Warehouse

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ???2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  1. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    NASA Astrophysics Data System (ADS)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  2. New Progress on Radiocarbon Geochronology in Southern Lake Tanganyika (East Africa)

    NASA Astrophysics Data System (ADS)

    McGlue, M. M.; Soreghan, M. J.

    2017-12-01

    Our limnogeological research in Lake Tanganyika focuses on elucidating the patterns of sediment accumulation on deepwater horsts, outer platforms, and littoral environments in the lake's southern basin ( 6-8°S latitude). Here, we present new radiocarbon (14C) dates from high-quality surface sediment cores, in order to make comparisons with previously published age models, to address the presence and spatiotemporal variability of a reservoir effect, and to constrain sedimentation rates and facies at sites that may be important targets for future scientific drilling. Plant macrofossils are rare in deepwater sediment cores, so charcoal and bulk organic matter have been the primary materials used for dating. On the Kavala Island Ridge (KIR) horst, initial core descriptions revealed variations in laminae presence, thickness, and chemistry. Sediment cores from the KIR at 172m water depth consist of thickly laminated diatom oozes. Charcoal from the bases of these cores returned median ages of 2.1-2.2 cal ka, suggesting linear accumulation rates on the order of 0.51 mm/yr. By contrast, a core from 420 m water depth on the KIR exhibited very thin laminations and diatom layers were much less prominent. Charcoal at the base of this core produced a median age of 8.1 cal ka, suggesting a linear accumulation rate of 0.11 mm/yr. These initial results suggest that sedimentation rates may vary considerably over sublacustrine horst blocks. We will test this initial discovery with additional sedimentation rate information from the Kalya and Nitiri horsts. In addition, we report new 14C dates made on both dead and live-collected shells of the endemic gastropod Neothauma tanganyicense. These shells form vast accumulations along shallow-water platforms of the lake and form an important substrate for a number of other endemic species. The discovery of living snails in southern Lake Tanganyika may allow for the development of a species-specific reservoir correction. A limited N

  3. Bioacoustic monitoring of nocturnal songbird migration in a southern great lakes ecosystem

    NASA Astrophysics Data System (ADS)

    Sanders, Claire Elizabeth

    Many species of birds produce short vocalizations during nocturnal migration. My thesis uses bioacoustic monitoring of these night flight calls to study bird migration through a southern Great Lakes ecosystem. I deployed recording devices around western Lake Erie during spring and fall migrations. Analysis of thousands of hours of recordings revealed that night flight calls accurately predicted both the magnitude of migration, as well as the timing of migrant passage, as assessed by banding. The first arrival dates for 48 species of migratory birds were significantly earlier on Pelee Island than on mainland Ontario in the spring. More flight calls were detected over Pelee Island than over mainland comparison sites. These results suggest that many birds cross Lake Erie in spring and fall, and that islands are important for migratory birds. This research provides insight into the use of acoustics for monitoring birds in active migration.

  4. Ecosystem effects of thermal manipulation of a whole lake, Lake Breisjøen, southern Norway (THERMOS project)

    NASA Astrophysics Data System (ADS)

    Lydersen, E.; Aanes, K. J.; Andersen, S.; Andersen, T.; Brettum, P.; Baekken, T.; Lien, L.; Lindstrøm, E. A.; Løvik, J. E.; Mjelde, M.; Oredalen, T. J.; Solheim, A. L.; Romstad, R.; Wright, R. F.

    2007-09-01

    We conducted a 3-year artificial deepening of the thermocline in the dimictic Lake Breisjøen, southern Norway, by means of a large submerged propeller. An adjacent lake served as untreated reference. The manipulation increased thermocline depth from 6 to 20 m, caused a significant increase in the heat content, and delayed ice-on by about 20 days. There were only minor changes in water chemistry. Concentrations of sulphate declined, perhaps due to greater reduction of sulphate at the sediment-water interface. Concentrations of particulate carbon and nitrogen decreased, perhaps due to increased sedimantation velocity. Water transparency increased. There was no significant change in concentration of phosphorus, the growth-limiting nutrient. There were few significant changes in principal biological components. Phytoplankton biomass and productivity did not change, although the chlorophyll-a concentration showed a small decrease. Phytoplankton species richness increased, and the species composition shifted. Growth of periphyton increased. There was no change in the macrophyte community. The manipulation did not affect the zooplankton biodiversity, but caused a significant shift in the relative abundance (measured as biomass) in the two major copepod species. The manipulation did not affect the individual density, but appeared to have changed the vertical distribution of zoobenthos. Fish populations were not affected. The lake is oligotrophic and clearwater and the manipulation did not change the supply of phosphorus, and thus there were only minor changes in lake chemistry and biology. Effects might be larger in eutrophic and dystrophic lakes in which internal processes are stronger.

  5. Ecosystem effects of thermal manipulation of a whole lake, Lake Breisjøen, southern Norway (THERMOS project)

    NASA Astrophysics Data System (ADS)

    Lydersen, E.; Aanes, K. J.; Andersen, S.; Andersen, T.; Brettum, P.; Baekken, T.; Lien, L.; Lindstræm, E. A.; Lævik, J. E.; Mjelde, M.; Oredalen, T. J.; Solheim, A. L.; Romstad, R.; Wright, R. F.

    2008-03-01

    We conducted a 3-year artificial deepening of the thermocline in the dimictic Lake Breisjøen, southern Norway, by means of a large submerged propeller. An adjacent lake served as untreated reference. The manipulation increased thermocline depth from 6 to 20 m, caused a significant increase in the heat content, and delayed ice-on by about 20 days. There were only minor changes in water chemistry. Concentrations of sulphate declined, perhaps due to greater reduction of sulphate at the sediment-water interface. Concentrations of particulate carbon and nitrogen decreased, perhaps due to increased sedimentation velocity. Water transparency increased. There was no significant change in concentration of phosphorus, the growth-limiting nutrient. There were few significant changes in principal biological components. Phytoplankton biomass and productivity did not change, although the chlorophyll-a concentration showed a small decrease. Phytoplankton species richness increased, and the species composition shifted. Growth of periphyton increased. There was no change in the macrophyte community. The manipulation did not affect the zooplankton biodiversity, but caused a significant shift in the relative abundance (measured as biomass) in the two major copepod species. The manipulation did not affect the individual density, but appeared to have changed the vertical distribution of zoobenthos. Fish populations were not affected. The lake is oligotrophic and clearwater and the manipulation did not change the supply of phosphorus, and thus there were only minor changes in lake chemistry and biology. Effects might be larger in eutrophic and dystrophic lakes in which internal processes are stronger.

  6. (90)Sr in fish from the southern Baltic Sea, coastal lagoons and freshwater lake.

    PubMed

    Zalewska, Tamara; Saniewski, Michał; Suplińska, Maria; Rubel, Barbara

    2016-07-01

    Activity concentrations of radioactive (90)Sr were studied in four fish species: herring, flounder, sprat and cod caught in the southern Baltic Sea in two periods: 2005-2009 and 2013-2014. The study included also perch from the coastal lagoons - Vistula Lagoon and Szczcin Lagoon and a freshwater lake - Żarnowieckie Lake as well as additional lake species: pike and bream. (90)Sr activity concentrations were compared in relation to species and to particular tissue: muscle, whole fish (eviscerated) and bones. In 2014, in the Baltic, the maximal (90)Sr concentrations were found in fishbones: herring - 0.39 Bq kg(-1) w.w., cod - 0.48 Bq kg(-1) w.w., and flounder - 0.54 Bq kg(-1) w.w. In the whole fish the maximal concentrations were found in flounder - 0.16 Bq kg(-1) w.w. and cod - 0.15 Bq kg(-1) w.w., while in herring - 0.022 Bq kg(-1) w.w. and sprat - 0.026 Bq kg(-1) w.w. they stayed at lower level. Relatively high (90)Sr concentrations were detected in whole fish from freshwater Lake Żarnowieckie: perch - 0.054 Bq kg(-1) w.w., pike - 0.062 Bq kg(-1) w.w. and bream - 0.140 Bq kg(-1) w.w. Concentration ratio (CR) determined for particular fish tissues and for whole eviscerated fish in relation to (90)Sr concentrations in seawater and lake water were showing significant variability unlike the corresponding (137)Cs concentration ratios which are stable and specific for fish species. The study corroborates with the conviction of the growing role of (90)Sr in the overall radioactivity in the southern Baltic Sea as compared to (137)Cs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Geologic and paleoseismic study of the Lavic Lake fault at Lavic Lake Playa, Mojave Desert, Southern California

    USGS Publications Warehouse

    Rymer, M.J.; Seitz, G.G.; Weaver, K.D.; Orgil, A.; Faneros, G.; Hamilton, J.C.; Goetz, C.

    2002-01-01

    Paleoseismic investigations of the Lavic Lake fault at Lavic Lake playa place constraints on the timing of a possible earlier earthquake along the 1999 Hector Mine rupture trace and reveal evidence of the timing of the penultimate earthquake on a strand of the Lavic Lake fault that did not rupture in 1999. Three of our four trenches, trenches A, B, and C, were excavated across the 1999 Hector Mine rupture; a fourth trench, D, was excavated across a vegetation lineament that had only minor slip at its southern end in 1999. Trenches A-C exposed strata that are broken only by the 1999 rupture; trench D exposed horizontal bedding that is locally warped and offset by faults. Stratigraphic evidence for the timing of an earlier earthquake along the 1999 rupture across Lavic Lake playa was not exposed. Thus, an earlier event, if there was one along that rupture trace, predates the lowest stratigraphic level exposed in our trenches. Radiocarbon dating of strata near the bottom of trenches constrains a possible earlier event to some time earlier than about 4950 B.C. Buried faults revealed in trench D are below a vegetation lineament at the ground surface. A depositional contact about 80 cm below the ground surface acts as the upward termination of fault breaks in trench D. Thus, this contact may be the event horizon for a surface-rupturing earthquake prior to 1999-the penultimate earthquake on the Lavic Lake fault. Radiocarbon ages of detrital charcoal samples from immediately below the event horizon indicate that the earthquake associated with the faulting occurred later than A.D. 260. An approximately 1300-year age difference between two samples at about the same stratigraphic level below the event horizon suggests the potential for a long residence time of detrital charcoal in the area. Coupled with a lack of bioturbation that could introduce young organic material into the stratigraphic section, the charcoal ages provide only a maximum bounding age; thus, the recognized

  8. Antarctic lakes suggest millennial reorganizations of Southern Hemisphere atmospheric and oceanic circulation.

    PubMed

    Hall, Brenda L; Denton, George H; Fountain, Andrew G; Hendy, Chris H; Henderson, Gideon M

    2010-12-14

    The phasing of millennial-scale oscillations in Antarctica relative to those elsewhere in the world is important for discriminating among models for abrupt climate change, particularly those involving the Southern Ocean. However, records of millennial-scale variability from Antarctica dating to the last glacial maximum are rare and rely heavily on data from widely spaced ice cores, some of which show little variability through that time. Here, we present new data from closed-basin lakes in the Dry Valleys region of East Antarctica that show high-magnitude, high-frequency oscillations in surface level during the late Pleistocene synchronous with climate fluctuations elsewhere in the Southern Hemisphere. These data suggest a coherent Southern Hemisphere pattern of climate change on millennial time scales, at least in the Pacific sector, and indicate that any hypothesis concerning the origin of these events must account for synchronous changes in both high and temperate latitudes.

  9. Antarctic lakes suggest millennial reorganizations of Southern Hemisphere atmospheric and oceanic circulation

    PubMed Central

    Hall, Brenda L.; Denton, George H.; Fountain, Andrew G.; Hendy, Chris H.; Henderson, Gideon M.

    2010-01-01

    The phasing of millennial-scale oscillations in Antarctica relative to those elsewhere in the world is important for discriminating among models for abrupt climate change, particularly those involving the Southern Ocean. However, records of millennial-scale variability from Antarctica dating to the last glacial maximum are rare and rely heavily on data from widely spaced ice cores, some of which show little variability through that time. Here, we present new data from closed-basin lakes in the Dry Valleys region of East Antarctica that show high-magnitude, high-frequency oscillations in surface level during the late Pleistocene synchronous with climate fluctuations elsewhere in the Southern Hemisphere. These data suggest a coherent Southern Hemisphere pattern of climate change on millennial time scales, at least in the Pacific sector, and indicate that any hypothesis concerning the origin of these events must account for synchronous changes in both high and temperate latitudes. PMID:21115838

  10. Use of 87Sr/86Sr and δ11B to Identify Slag-Affected Sediment in Southern Lake Michigan

    USGS Publications Warehouse

    Bayless, E. Randall; Bullen, Thomas D.; Fitzpatrick, John A.

    2004-01-01

    Slag is a ubiquitous byproduct of the iron-smelting industry and influences geochemistry and water quality in adjacent geologic units, ground and surface water. Despite extensive slag deposition along the Indiana shoreline of Lake Michigan, definitive evidence that slag has affected lakebed sediments has not been established. Concerns for the protection of water and ecosystem resources in the Great Lakes motivated this study to determine if strontium and boron isotopes could be used to identify and delineate slag-affected bed sediment in Lake Michigan. Sixty-five samples of bed sediment were acquired from the southern lobe of Lake Michigan and analyzed for 87Sr/86Sr and ??11B. Samples immediately offshore from Indiana steel mills and slag-disposal sites contained higher median 87Sr/86Sr values (0.70881) than shoreline sediments collected elsewhere in the basin (0.70847) and uniquely decreased with increasing distance from the shoreline. The highest ??11B values occurred in sediments from the Indiana shoreline (+12.9 to 16.4???) but were also elevated in sediments collected offshore from three Lake Michigan cities (+11.7 to 12.7???). Contoured isotope data indicated that 82-154 km2 of bed sediment along the Indiana shoreline had elevated 87Sr/86Sr and ??11B values relative to shoreline sediments elsewhere in southern Lake Michigan.

  11. Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan.

    PubMed

    Bennett, J P; Jepsen, E A; Roth, J A

    2006-07-01

    Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed.

  12. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    NASA Astrophysics Data System (ADS)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    -level time series from Lagos Argentino and Viedma yields the amplitudes and phases of the lake tides for the four major tidal constituents M2, S2, O1 and K1. The maximum amplitude, corresponding to the semi-diurnal moon tide M2 in Lago Argentino, amounts to 3 mm. For the four lakes under investigation the theoretical amplitudes and phases of seven constituents (Q1, O1, P1, K1, N2, M2 and S2) are modelled accounting for the contributions of both the solid earth's body tides and the ocean tidal loading (Marderwald 2014). Both contributions involve a deformation of the earth surface and of the equipotential surfaces of the gravity field. For the load tide computation the global ocean tide model EOT11a (Savcenko and Bosch, 2012) and the Gutenberg-Bullen A earth model (Farrell, 1972) was applied and the conservation of water volume is taken into account. The comparison of the tidal signal extracted from the lake-level observations in Lagos Argentino and Viedma with the lake tide models indicates a phase shift which is most likely explained by an 1 hour phase lag of the employed global ocean tide model in the region of the highly fragmented Pacific coast. REFERENCES: Farrell, W. E., (1972). Deformation of the Earth by Surface Loads. Rev. Geophy. Space Phy., 10(3):761-797. Ivins, E., James, T., 2004. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys. Res. Lett. 31 (L24613). Doi:10.1029/2004GL021500. Klemann, V., E. R. Ivins, Z. Martinec, and D. Wolf (2007), Models of active glacial isostasy roofing warm subduction: Case of the South Patagonian Ice Field, J. Geophys. Res., 112, B09405, doi: 10.1029/2006JB004818. Lange, H., Casassa, G., Ivins, E. R., Schröder, L., Fritsche, M., Richter, A., Groh, A., Dietrich, R., (2014). Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models. Geophysical Research Letters, DOI: 10.1002/2013GL058419. Marderwald ER, 2014. Modelado de las mareas

  13. Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Mosquera, Pablo V.; Hampel, Henrietta; Vázquez, Raúl F.; Alonso, Miguel; Catalan, Jordi

    2017-08-01

    The number, size, and shape of lakes are key determinants of the ecological functionality of a lake district. The lake area scaling relationships with lake number and volume enable upscaling biogeochemical processes and spatially considering organisms' metapopulation dynamics. These relationships vary regionally depending on the geomorphological context, particularly in the range of lake area <1 km2 and mountainous regions. The Cajas Massif (Southern Ecuador) holds a tropical mountain lake district with 5955 water bodies. The number of lakes deviates from a power law relationship with the lake area at both ends of the size range; similarly to the distributions found in temperate mountain ranges. The deviation of each distribution tail does not respond to the same cause. The marked relief limits the size of the largest lakes at high altitudes, whereas ponds are prompt to a complete infilling. A bathymetry survey of 202 lakes, selected across the full-size range, revealed a volume-area scaling coefficient larger than those found for other lake areas of glacial origin but softer relief. Water renewal time is not consistently proportional to the lake area due to the volume-area variation in midsize lakes. The 85% of the water surface is in lakes >104 m2 and 50% of the water resources are held in a few ones (˜10) deeper than 18 m. Therefore, midlakes and large lakes are by far more biogeochemically relevant than ponds and shallow lakes in this tropical mountain lake district.

  14. Paleolakes in the Gobi region of southern Mongolia

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, Frank; Grunert, Jörg; Hülle, Daniela; Batkhishig, Ochirbat; Stauch, Georg

    2018-01-01

    Numerous lakes and remnants of paleolakes exist in western and southern Mongolia. For six basins in the area, detailed geomorphological maps were compiled, based on extensive field studies and remote sensing datasets. Several phases of high and low lake levels were reconstructed and dated by radiocarbon and optically stimulated luminescence. During the marine isotope stage (MIS) 6 lakes in southern and western Mongolia mostly disappeared. In contrast, large paleolakes existed during the last interglacial (MIS 5e) and lasted probably until the beginning of the last glacial. These huge lakes were caused by a strong East Asian summer monsoon, which reached southern and even western Mongolia. During the MIS 3 the monsoon was considerably weaker and most of the lakes were relatively small or even disappeared. Higher lake levels of this period were only recorded at the Orog Nuur. However, at this time the lake was fed by glacial melt water from the Khangai Mountains. The MIS 2 was again a very dry period. The previously supposed phase of synchronous high lake levels and glaciations in southern and western Mongolia is not supported by the data presented here. During the Holocene, lakes in the western and southern part of the study area evolved differently. Early Holocene high lake levels were reconstructed for the western lakes, while most of the southern lakes had highest lake levels in the mid-Holocene. These differences can be attributed to different moisture bearing atmospheric systems. In the late Holocene lake levels were generally low and in the last 50 years most lakes completely disappeared due to a strong human usage of the water resources.

  15. Detection of pharmaceuticals and personal care products (PPCPs) in near-shore habitats of southern Lake Michigan.

    PubMed

    Ferguson, Patrick J; Bernot, Melody J; Doll, Jason C; Lauer, Thomas E

    2013-08-01

    Pharmaceuticals and personal care products (PPCPs) have been documented throughout the United States freshwaters but research has focused largely on lotic systems. Because PPCPs are designed to have a physiological effect, it is likely that they may also influence aquatic organisms. Thus, PPCPs may negatively impact aquatic ecosystems. The objectives of this research were to quantify PPCP abundance in near-shore habitats of southern Lake Michigan and identify factors related to PPCP abundance. Stratified sampling was conducted seasonally at four southern Lake Michigan sites. All sites and depths had measurable PPCP concentrations, with mean individual compound concentrations of acetaminophen (5.36 ng/L), caffeine (31.0 ng/L), carbamazepine (2.23 ng/L), cotinine (4.03 ng/L), gemfibrozil (7.03 ng/L), ibuprofen (7.88 ng/L), lincomycin (4.28 ng/L), naproxen (6.32 ng/L), paraxanthine (1,7-dimethylxanthine; 46.2 ng/L), sulfadimethoxine (0.94 ng/L), sulfamerazine (0.92 ng/L), sulfamethazine (0.92 ng/L), sulfamethoxazole (26.0 ng/L), sulfathiazole (0.92 ng/L), triclocarban (5.72 ng/L), trimethoprim (5.15 ng/L), and tylosin (3.75 ng/L). Concentrations of PPCPs varied significantly among sampling times and locations (river mouth vs offshore), with statistical interactions between the main effects of site and time as well as time and location. Concentrations of PPCPs did not differ with site or depth. Temperature, total carbon, total dissolved solids, dissolved oxygen, and ammonium concentrations were related to total pharmaceutical concentrations. These data indicate that PPCPs are ubiquitous and persistent in southern Lake Michigan, potentially posing harmful effects to aquatic organisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    NASA Astrophysics Data System (ADS)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo; Bennike, Ole; Hübscher, Christian; Clausen, Ole Rønø

    2017-12-01

    High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels in the period 10.3-9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea-level rise. The estuary existed simultaneously with the occurrence and drainage of the Ancylus Lake. The drainage of this lake occurred through the Dana River (palaeo-Great Belt channel) into the southern Kattegat and then into the study area. The level of the Ancylus Lake in the Baltic Sea region dropped significantly at about 10.2 cal. ka BP at the same time as the estuary developed in the Kattegat region. One outcome of the present study is an enhanced understanding of the Ancylus Lake drainage path. No evidence of major erosion is seen, which indicates non-catastrophic continuous water flow from the south without major drainage events of the Ancylus Lake to the southern Kattegat. During the Littorina transgression, coastal estuarine conditions characterized the Hesselø Bay area where elongated ridges formed a bar system. As the Littorina transgression continued, back-stepping of the bar system and coastline occurred. When the transgression breached the Great Belt threshold, flooding caused major erosion throughout the study area.

  17. The geographical conditions of intensity of salty waters intrusions to coastal lakes on Polish Southern Baltic coast

    NASA Astrophysics Data System (ADS)

    Cieslinski, R.

    2009-04-01

    Lakes situated on the coast of the southern Baltic function in different conditions than those in which typically inland reservoirs occur. They are situated in the contact zone of two environments: land and sea. These reservoirs together with their direct catchments form specific hydrographic arrangement, in which the course of physical, chemical and biological processes depends on the fact which of these two environments exerts a stronger influence at a given moment. This is important as the lakes situated in the shore zone of the southern Baltic are not exposed to phenomena caused by constant tides, as it is the case in open seas (Ataie-Ashtiani et al., 1999), but only to extreme hydrometeorological conditions, which lead to the formation of the phenomenon of intrusions of sea waters and of damming the free outflow of potamic waters (Demirel, 2004; Cieśliński, Drwal, 2005). What should also be remembered are the local hydrographic, hydrological and morphometric conditions. As a result of intrusions, in the waters of coastal lakes, apart from inland waters there are also waters of sea origin. The proportions of these genetically distinct waters are variable and differ in individual lakes (Grassi, Netti, 2000; Drwal, Cieśliński, 2007). Despite the difference in the causal factor triggering the phenomenon of salt water intrusions, the effect is usually the same as that observed, for instance, in lakes and lagoons of seas with tides (Ishitobi et al., 1999; De Louw, Oude Essink, 2001) and poorly flushed lagoon (Hsing-Juh et al., 2006) or estuaries (Uncles et al., 2002), though the scale of qualitative changes is greater in the case of open seas than in half-closed and closed seas. The status of the research carried out so far enables proposing a hypothesis that chlorides concentrations, as the best indicators for establishing the occurrence of the phenomenon of intrusions, depend not only on the meteorological factor but in some of the lakes on various

  18. PAHs (Polycyclic Aromatic Hydrocarbons), Nitro-PAHs, Hopanes and Steranes Biomarkers in Sediments of Southern Lake Michigan, USA

    PubMed Central

    Huang, Lei; Chernyak, Sergei M.; Batterman, Stuart A.

    2014-01-01

    PAHs in the Great Lakes basin are of concern due to their toxicity and persistence in bottom sediments. Their nitro derivatives, nitro-PAHs (NPAHs), which can have stronger carcinogenic and mutagenic activity than parent PAHs, may follow similar transport routes and also are accumulated in sediments. Limited information exists regarding the current distribution, trends and loadings of these compounds, especially NPAHs, in Lake Michigan sediments. This study characterizes PAHs, NPAHs, and biomarkers steranes and hopanes in surface sediments collected at 24 offshore sites in southern Lake Michigan. The ΣPAH14 (sum of 14 compounds) ranged from 213 to 1291 ng/g dry weight (dw) across the sites, levels that are 2 to 10 times lower than those reported 20 to 30 years earlier. Compared to consensus-based sediment quality guidelines, PAH concentrations suggest very low risk to benthic organisms. The ΣNPAH5 concentration ranged from 2.9 to 18.6 ng/g dw, and included carcinogenic compounds 1-nitropyrene and 6-nitrochrysene. ΣSterane6 and ΣHopane5 concentrations ranged from 6.2 to 36 and 98 to 355 ng/g dw, respectively. Based on these concentrations, Lake Michigan is approximately receiving 11, 0.16, 0.25 and 3.6 metric tons per year (t/yr) of ΣPAH14, ΣNPAH5, ΣSterane6 and ΣHopane5, respectively. Maps of OC-adjusted concentrations display that concentrations decline with increasing off-shore distance. The major sources of PAHs and NPAHs are pyrogenic in nature, based on diagnostic ratios. Using chemical mass balance models, sources were apportioned to emissions from diesel engines (56±18%), coal power plants (27±14%), coal-tar pavement sealants (16±11%), and coke ovens (7±12%). The biomarkers identify a combination of petrogenic and biogenic sources, with the southern end of the lake more impacted by petroleum. This first report of NPAHs levels in sediments of Lake Michigan reveals several carcinogenic compounds at modest concentrations, and a need for further work

  19. Biomagnification of mercury and selenium in two lakes in southern Norway.

    PubMed

    Økelsrud, Asle; Lydersen, Espen; Fjeld, Eirik

    2016-10-01

    We have investigated bioaccumulation and trophic transfer of both mercury (Hg) and selenium (Se) in two lakes in southern Norway to reveal a suggested mitigating effect of Se on Hg biota accumulation. The study included analysis of total Se (Se), total Hg (Hg), and methyl-mercury (MeHg) in water, littoral and pelagic invertebrates and perch (Perca fluviatilis), together with stable isotope analysis (δ(15)N and δ(13)C) in biota. Mean dissolved Se ranged from 22 to 59ngL(-1), while Hg and MeHg in lake water ranged from 1 to 3ngL(-1) and 0.01 to 0.06ngL(-1). Biota Se and Hg concentrations (dry weight) ranged from 0.41mgSekg(-1) and 0.06mgHgkg(-1) in primary littoral invertebrates and up to 2.9mg Sekg(-1) and 3.6mgHgkg(-1) in perch. Both Hg and Se biomagnified in the food web, with a trophic magnification factor (TMF) of 4.64 for Hg and 1.29 for Se. The reported positive transfer of Se in the food web, despite the low measured dissolved Se, suggest that a major proportion of the Se in these lakes are both highly bioavailable and bioaccumulative. However, we did not find support for a Se-facilitated inhibition in the accumulation of Hg in perch, as Se and Hg concentrations in perch muscle correlated positively and Se did not explain any variations in Hg after we controlled for the effects of other important covariates. We postulate that this may be a result of insufficient concentrations of dissolved Se and subsequently in biota in our studied lakes for an efficient Hg sequestration up the food web. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Palaeoenvironmental evolution of Lake Gacko (Southern Bosnia and Herzegovina): Impact of the Middle Miocene Climatic Optimum on the Dinaride Lake System

    PubMed Central

    Mandic, Oleg; de Leeuw, Arjan; Vuković, Boško; Krijgsman, Wout; Harzhauser, Mathias; Kuiper, Klaudia F.

    2011-01-01

    In the Early to Middle Miocene, a series of lakes, collectively termed the Dinaride Lake System (DLS), spread out across the north-western part of the Dinaride–Anatolian continental block. Its deposits, preserved in numerous intra-montane basins, allow a glimpse into the palaeoenvironmental, palaeobiogeographic and geodynamic evolution of the region. Lake Gacko, situated in southern Bosnia and Herzegovina, is one of the constituent lakes of the DLS, and its deposits are excellently exposed in the Gračanica open-cast coal-mine. A detailed study of the sedimentary succession that addresses facies, sediment petrography, geophysical properties, and fossil mollusc palaeoecology reveals repetitive changes in lake level. These are interpreted to reflect changes in the regional water budget. First-order chronologic constraints arise from the integration of radio-isotopic and palaeomagnetic data. 40Ar/39Ar measurements on feldspar crystals from a tephra bed in the upper part of the sedimentary succession indicate a 15.31 ± 0.16 Ma age for this level. The reversed magnetic polarity signal that characterises the larger part of the investigated section correlates to chron C5Br of the Astronomically Tuned Neogene Timescale. Guided by these chronologic data and a detailed cyclostratigraphic analysis, the observed variations in lake-level, evident as two ~ 40-m and seven ~ 10-m scale transgression–regression cycles, are tuned to ~ 400-kyr and ~ 100-kyr eccentricity cycles. From the tuning, it can be inferred that the sediments in the Gacko Basin accumulated between ~ 15.8 and ~ 15.2 Ma. The economically valuable lignite accumulations in the lower part of the succession are interpreted to indicate the development of swamp forests in conjunction with lake-level falls corresponding to ~ 100-kyr eccentricity minima. Pedogenesis, rhizoliths and palustrine carbonate breccias in the upper part of the section reveal long-term aridity coinciding with a ~ 400-kyr

  1. The food of the lake trout (Cristivomer namaycush namaycush) and of the lawyer (Lota maculosa) of Lake Michigan

    USGS Publications Warehouse

    Van Oosten, John; Deason, Hilary J.

    1938-01-01

    This paper reports on a qualitative and quantitative analysis of the contents of 4,979 lake trout stomachs (593 examined in 1930 and 1,253 collected in 1931 from southern Lake Michigan, 1,446 from northern Lake Michigan and 1,687 from Green Bay in 1932), and of a total of 1,528 lawyer stomachs (172 examined in 1930 and 734 collected in 1931 from southern Lake Michigan, 612 from northern Lake Michigan and 10 from Green Bay in 1932). The food of the trout consisted of 98 per cent by volume of fish of which Cottidae and Coregonidae were the principal constituents. Cottidae were dominant in southern Lake Michigan (72 per cent by volume), Coregonidae in northern Lake Michigan (51 per cent) but the lake shiner, Notropis atherinides, was most important in Green Bay in the spring of the year (64 per cent). The lawyer food consisted of 74 per cent by volume of fish and 26 per cent invertebrates. Dominant items were Cottidae (76 per cent by volume) in southern Lake Michigan, Coregonidae (51 per cent) and Pontoporeia (37 per cent) in northern Lake Michigan, and Percopsis (34 per cent) and Mysis (26 per cent) in Green Bay. Data are also presented on the frequency of occurrence (number of stomachs) of the food items and its variation with the sizes of the trout and lawyers, depths of water, seasons, and localities; on the number of individual fish of each species destroyed by the trout and lawyers; and on the calculated volume of the food fishes preceding digestion. The lake trout and lawyer are competitors for the same food, are both predators of the commercially important Coregonidae, and the lawyer through its consumption of invertebrates is a food competitor of the Coregonidae.

  2. Ecology of playa lakes

    USGS Publications Warehouse

    Haukos, David A.; Smith, Loren M.

    1992-01-01

    Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.

  3. Increased piscivory by lake whitefish in Lake Huron

    USGS Publications Warehouse

    Pothoven, Steven A.; Madenjian, Charles P.

    2013-01-01

    We evaluated the diet of Lake Whitefish Coregonus clupeaformis in Lake Huron during 2002–2011 to determine the importance of Round Goby Neogobius melanostomus and other fish as prey items. Lake Whitefish that had reached approximately 400 mm in length incorporated fish into their diets. The overall percentage of adult Lake Whitefish in Lake Huron that had eaten fish increased from 10% in 2002–2006 to 20% in 2007–2011, with a corresponding decrease in the frequency of Lake Whitefish that ate Dreissena spp. from 52% to 33%. During 2002–2006, Round Goby (wet mass, 38%), sculpins (Cottidae) (34%), and Ninespine Stickleback Pungitius pungitius (18%) were the primary fish eaten, whereas Round Goby accounted for 92% of the fish eaten in 2007–2011. Overall, Round Goby were found in the fewest Lake Whitefish stomachs in the north region of Lake Huron (6%) and in the most in the central (23%) and south (19%) regions of the lake. In the central region, Round Goby were eaten during all seasons that were sampled (spring through fall). In the south region, Round Goby were eaten only in the winter and spring but not in the summer when Dreissena spp. and spiny water flea Bythotrephes longimanus dominated the diet. Based on the 2007–2011 diet composition, an individual Lake Whitefish would need to have increased their consumption relative to that in 1983–1994 by 6% in the north region, 12% in the central region, and 41% in the southern region in order to achieve the same growth that was observed before dreissenid mussels arrived. However, Lake Whitefish weight adjusted for length only increased by 2% between 2002–2006 and 2007–2011 in the central region, decreased by 4% in the northern region, and remained constant in the southern region. This suggests that a shift toward more frequent piscivory does not necessarily improve the condition of a generalist feeder like Lake Whitefish.

  4. Geomorphology context and characterization of dunefields developed by the southern westerlies at drying Colhué Huapi shallow lake, Patagonia Argentina

    NASA Astrophysics Data System (ADS)

    Montes, Alejandro; Rodríguez, Silvana Soledad; Domínguez, Carlos Eduardo

    2017-10-01

    Patagonia is the only continental territory exposed to the southern westerlies. The speed and frequency of these westerly winds generate a landscape strongly influenced by aeolian processes. This research shows a characterization of depositional and erosive aeolian landforms developed in dunefields associated to Lake Colhué Huapi, in the Extra-Andean Patagonia. Dunefields are located at 45°-46°S and moved in west-east direction due to the southern westerlies. We identified two big groups of active dunefields, one migrating through the dry lakebed of Colhué Huapi and the other migrating eastwards from the lakeshore. The dunefields mainly consist of transverse dunes, barchans, sand shadows and sand sheets. Yardangs, desert pavements, exhumed roots and decapitated soils were recognized in interdune areas. Longitudinal sand ridges, parallel to the prevailing wind direction, often remain preserved after the dunefields have passed. This allows to recognize the path of the dunes in the past. Sand ridges are recognized up to 28 km east from the present coast of the lake and evidenced former dunefields development. We describe the geomorphology context, landforms and sediments supply of dunefields related to the lake dynamics subject to clear tendency to desiccation.

  5. Invasive Ponto-Caspian hydrozoan Cordylophora caspia (hydrozoa: Cnidaria) in southern Baltic coastal lakes

    NASA Astrophysics Data System (ADS)

    Obolewski, Krystian; Jarosiewicz, Anna; Ożgo, Małgorzata

    2015-12-01

    Cordylophora caspia Pall. is a highly invasive Ponto-Caspian colonial hydroid with a worldwide distribution. It is a biofouling organism colonizing industrial water installations and causing serious economic problems. Here, we give the first report of its occurrence in southern Baltic coastal lakes, and analyze its distribution in relation to environmental factors and likely colonization routes. Samples were collected from the stalks of Phragmites australis at the total of 102 sites in 15 lakes and lagoons. The species was most numerous in lagoons, i.e. ß-oligohaline water bodies with a surface hydrological connection with the sea, where it reached mean densities of 1200-4800 hydranths m-2. In regression tree analysis, chloride concentration, followed by pH, were the strongest explanatory variables for its occurrence, with highest densities observed at chloride concentration above 1.18 g Cl L-1 and pH 8.05-9.26. At pH 5.77-8.04 higher densities were observed at temperatures above 20.3 °C. Generally, within the range of parameters observed in our study, high densities of C. caspia were associated with high chloride concentration, pH, temperature and electrical conductivity values. The species was also present in freshwater lakes; these colonies may have the highest capacity for future invasions of such habitats. Within lakes, high densities were observed at canals connecting these water bodies with the sea, and at sites close to the inflow of rivers. This distribution pattern can facilitate its further spread into inland waters.

  6. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining

  7. Response of slimy sculpins to predation by juvenile lake trout in southern Lake Ontario

    USGS Publications Warehouse

    Owens, Randall W.; Bergstedt, Roger A.

    1994-01-01

    Abundance and biomass of slimy sculpin Cottus cognatus declined in Lake Ontario at depths most frequently occupied by juvenile lake trout Salvelinus namaycush (<70 m), but not at greater depths, during 1980–1987. The abundance of juvenile lake trout increased at depths less than 70 m between 1980 and 1987, and slimy sculpin abundance was negatively correlated with lake trout abundance. The size of slimy sculpins caught at depths less than 70 m decreased between 1980 and 1987, fish 50–99 mm becoming less common and fish 100 mm or longer becoming rare. The size of slimy sculpins at depths greater than 70 m did not change, Because slimy sculpins are the principal fish eaten by juvenile lake trout, and because juvenile lake trout were most abundant at depths where the greatest changes in the slimy sculpin population took place, we conclude that juvenile lake trout in Lake Ontario altered the slimy sculpin population. No significant negative correlations were found between abundance of slimy sculpins and those of the two most abundant fishes in Lake Ontario: Alewife Alosa pseudoharengus and rainbow smeltOsmerus mordax.

  8. Coseismic slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake and earthquake-triggered marine turbidites

    NASA Astrophysics Data System (ADS)

    Witter, Robert C.; Zhang, Yinglong; Wang, Kelin; Goldfinger, Chris; Priest, George R.; Allan, Jonathan C.

    2012-10-01

    We test hypothetical tsunami scenarios against a 4,600-year record of sandy deposits in a southern Oregon coastal lake that offer minimum inundation limits for prehistoric Cascadia tsunamis. Tsunami simulations constrain coseismic slip estimates for the southern Cascadia megathrust and contrast with slip deficits implied by earthquake recurrence intervals from turbidite paleoseismology. We model the tsunamigenic seafloor deformation using a three-dimensional elastic dislocation model and test three Cascadia earthquake rupture scenarios: slip partitioned to a splay fault; slip distributed symmetrically on the megathrust; and slip skewed seaward. Numerical tsunami simulations use the hydrodynamic finite element model, SELFE, that solves nonlinear shallow-water wave equations on unstructured grids. Our simulations of the 1700 Cascadia tsunami require >12-13 m of peak slip on the southern Cascadia megathrust offshore southern Oregon. The simulations account for tidal and shoreline variability and must crest the ˜6-m-high lake outlet to satisfy geological evidence of inundation. Accumulating this slip deficit requires ≥360-400 years at the plate convergence rate, exceeding the 330-year span of two earthquake cycles preceding 1700. Predecessors of the 1700 earthquake likely involved >8-9 m of coseismic slip accrued over >260 years. Simple slip budgets constrained by tsunami simulations allow an average of 5.2 m of slip per event for 11 additional earthquakes inferred from the southern Cascadia turbidite record. By comparison, slip deficits inferred from time intervals separating earthquake-triggered turbidites are poor predictors of coseismic slip because they meet geological constraints for only 4 out of 12 (˜33%) Cascadia tsunamis.

  9. Fin degeneration of young-of-the-year Alosa pseudoharengus (Clupeidae) in southern Lake Michigan

    USGS Publications Warehouse

    Brown, Edward H.; Norden, Carroll R.

    1970-01-01

    Young-of-the-year alewives, Alosa pseudoharengus, with extremely shortened caudal fins were observed at four locations in southern Lake Michigan between 1964 and 1968. Some of the fins appeared stunted or underdeveloped, but microscopic examination revealed a deterioration of the fins and not an ontogenetic abnormality. Deterioration of the caudal fin was frequently accompanied by degeneration of the dorsal and anal fins. Degenerate fins were not found on other species nor on older alewives, with the exception of one known yearling alewife at Waukegan and possibly a few of the larger fish at Milwaukee.

  10. ERTS: A multispectral image analysis contribution for the geomorphological evaluation of southern Maracaibo Lake Basin. [geological survey and drainage patterns

    NASA Technical Reports Server (NTRS)

    Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.

    1974-01-01

    Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.

  11. New insights into North America-Pacific Plate boundary deformation from Lake Tahoe, Salton Sea and southern Baja California

    NASA Astrophysics Data System (ADS)

    Brothers, Daniel Stephen

    Five studies along the Pacific-North America (PA-NA) plate boundary offer new insights into continental margin processes, the development of the PA-NA tectonic margin and regional earthquake hazards. This research is based on the collection and analysis of several new marine geophysical and geological datasets. Two studies used seismic CHIRP surveys and sediment coring in Fallen Leaf Lake (FLL) and Lake Tahoe to constrain tectonic and geomorphic processes in the lakes, but also the slip-rate and earthquake history along the West Tahoe-Dollar Point Fault. CHIRP profiles image vertically offset and folded strata that record deformation associated with the most recent event (MRE). Radiocarbon dating of organic material extracted from piston cores constrain the age of the MRE to be between 4.1--4.5 k.y. B.P. Offset of Tioga aged glacial deposits yield a slip rate of 0.4--0.8 mm/yr. An ancillary study in FLL determined that submerged, in situ pine trees that date to between 900-1250 AD are related to a medieval megadrought in the Lake Tahoe Basin. The timing and severity of this event match medieval megadroughts observed in the western United States and in Europe. CHIRP profiles acquired in the Salton Sea, California provide new insights into the processes that control pull-apart basin development and earthquake hazards along the southernmost San Andreas Fault. Differential subsidence (>10 mm/yr) in the southern sea suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline. In contrast to previous models, the rapid subsidence and fault architecture observed in the southern part of the sea are consistent with experimental models for pull-apart basins. Geophysical surveys imaged more than 15 ˜N15°E oriented faults, some of which have produced up to 10 events in the last 2-3 kyr. Potentially 2 of the last 5 events on the southern San Andreas Fault (SAF) were synchronous with rupture on offshore faults, but it appears that ruptures on

  12. Sediment Transforms Lake Michigan

    NASA Image and Video Library

    2011-01-11

    NASA image acquired December 17, 2010 In mid-December 2010, suspended sediments transformed the southern end of Lake Michigan. Ranging in color from brown to green, the sediment filled the surface waters along the southern coastline and formed a long, curving tendril extending toward the middle of the lake. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured these natural-color images on December 17, 2010 (top), and December 10, 2010 (bottom). Such sediment clouds are not uncommon in Lake Michigan, where winds influence lake circulation patterns. A scientificpaper published in 2007 described a model of the circulation, noting that while the suspended particles mostly arise from lake-bottom sediments along the western shoreline, they tend to accumulate on the eastern side. When northerly winds blow, two circulation gyres, rotating in opposite directions, transport sediment along the southern shoreline. As the northerly winds die down, the counterclockwise gyre predominates, and the smaller, clockwise gyre dissipates. Clear water—an apparent remnant of the small clockwise gyre—continues to interrupt the sediment plume. George Leshkevich, a researcher with the U.S. National Oceanic and Atmospheric Administration, explains that the wind-driven gyres erode lacustrine clay (very fine lakebed sediment) on the western shore before transporting it, along with re-suspended lake sediments, to the eastern shore. On the eastern side, the gyre encounters a shoreline bulge that pushes it toward the lake’s central southern basin, where it deposits the sediments. The sediment plume on December 17 followed a windy weather front in the region on December 16. NASA image courtesy MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Aqua - MODIS NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard

  13. Evolution and hazard analysis of high-mountain lakes in the Cordillera Vilcabamba (Southern Peru) from 1991 to 2014

    NASA Astrophysics Data System (ADS)

    Guardamino, Lucía; Drenkhan, Fabian

    2015-04-01

    In recent decades, glaciers in high-mountain regions have experienced unprecedented glacier retreat since the Little Ice Age (LIA). This development triggers the formation and growth of glacier lakes, which in combination with changes in glacier parameters might produce more frequent conditions for the occurrence of disasters, such as Glacier Lake Outburst Floods (GLOF). Facing such a scenario, the analysis of changing lake characteristics and identification of new glacier lakes are imperative in order to identify and reduce potential hazards and mitigate or prevent future disasters for adjacent human settlements. In this study, we present a multi-temporal analysis with Landsat TM 5 and OLI 8 images between 1991 and 2014 in the Cordillera Vilcabamba region (Southern Peru), a remote area with difficult access and climate and glaciological in-situ data scarcity. A semi-automatic model was developed using the band ratios Normalized Difference Snow Index (NDSI) and Normalized Difference Water Index (NDWI) in order to identify glacier and lake area changes. Results corroborate a strong glacier area reduction of about 51% from 1991 (200.3 km²) to 2014 (98.4 km²). At the same time, the number of lakes (total lake surface) has increased at an accelerated rate, from 0.77% (0.48%) in 1991 to 2.31% (2.49%) in 2014. In a multiple criteria analysis to identify potential hazards, 90 out of a total of 329 lakes in 2014 have been selected for further monitoring. Additionally, 29 population centers have been identified as highly exposed to lake related hazards from which 25 indicate a distance less than 1 km to an upstream lake and four are situated in a channel of potential debris flow. In these areas human risks are particularly high in view of a low HDI below Peru's average and hence pronounced vulnerability. We suggest more future research on measurements and monitoring of glacier and lake characteristics in these remote high-mountain regions, which include comprehensive risk

  14. The microbial plankton of Lake Fryxell, southern Victoria Land, Antarctica during the summers of 1992 and 1994

    USGS Publications Warehouse

    Laybourn-Parry, J.; James, M.R.; McKnight, Diane M.; Priscu, J.; Spaulding, S.A.; Shiel, R.

    1997-01-01

    Samples collected from Lake Fryxell, southern Victoria Land, Antarctica in January 1992 and 1994 were analysed for the abundance of bacterioplankton and the diversity and abundance of protistan plankton. At the times of sampling, 14 ciliate species and 10 species of autotrophic flagellate were recorded. The samples contained two species of rotifer (Philodina spp.), which formed the first record of planktonic metazoans in the Dry Valley lakes of this region of Antarctica. Bacterial concentrations ranged between 1.0 and 3.8 x 108 l-1 in the upper oxic waters increasing to 20 x 08 l-1 in the anoxic waters. Heterotrophic flagellates decreased in abundance down the oxygenated water column, disappearing completely at 9 m, and ranged between 0.28 and 7.39 x 105 l-1 in abundance. Autotrophic flagellates were much more abundant exhibiting a number of distinct peaks down the water column (1.89 25.3 x 108 l-1). The ciliated protozoa were very abundant (up to 7720 l-1) in relation to flagellate and bacterial numbers, typical of oligotrophic lakes world-wide. The distribution of the protistan plankton showed marked zonation, probably in response to the differing salinity and temperature gradients in the water column. Possible trophic interactions are discussed and comparisons with other continental Antarctic lakes made.

  15. Eolian transport, saline lake basins, and groundwater solutes

    USGS Publications Warehouse

    Wood, Warren W.; Sanford, Ward E.

    1995-01-01

    Eolian processes associated with saline lakes are shown to be important in determining solute concentration in groundwater in arid and semiarid areas. Steady state mass balance analyses of chloride in the groundwater at Double Lakes, a saline lake basin in the southern High Plains of Texas, United States, suggest that approximately 4.5 × 105 kg of chloride is removed from the relatively small (4.7 km2) basin floor each year by deflation. This mass enters the groundwater down the wind gradient from the lake, degrading the water quality. The estimates of mass transport were independently determined by evaluation of solutes in the unsaturated zone and by solute mass balance calculations of groundwater flux. Transport of salts from the lake was confirmed over a short term (2 years) by strategically placed dust collectors. Results consistent with those at Double Lake were obtained from dune surfaces collected upwind and downwind from a sabkha near the city of Abu Dhabi in the United Arab Emirates. The eolian transport process provides an explanation of the degraded groundwater quality associated with the 30–40 saline lake basins on the southern half of the southern High Plains of Texas and New Mexico and in many other arid and semiarid areas.

  16. Crater Lake revealed

    USGS Publications Warehouse

    Ramsey, David W.; Dartnell, Peter; Bacon, Charles R.; Robinson, Joel E.; Gardner, James V.

    2003-01-01

    Around 500,000 people each year visit Crater Lake National Park in the Cascade Range of southern Oregon. Volcanic peaks, evergreen forests, and Crater Lake’s incredibly blue water are the park’s main attractions. Crater Lake partially fills the caldera that formed approximately 7,700 years ago by the eruption and subsequent collapse of a 12,000-foot volcano called Mount Mazama. The caldera-forming or climactic eruption of Mount Mazama drastically changed the landscape all around the volcano and spread a blanket of volcanic ash at least as far away as southern Canada.Prior to the climactic event, Mount Mazama had a 400,000 year history of cone building activity like that of other Cascade volcanoes such as Mount Shasta. Since the climactic eruption, there have been several less violent, smaller postcaldera eruptions within the caldera itself. However, relatively little was known about the specifics of these eruptions because their products were obscured beneath Crater Lake’s surface. As the Crater Lake region is still potentially volcanically active, understanding past eruptive events is important to understanding future eruptions, which could threaten facilities and people at Crater Lake National Park and the major transportation corridor east of the Cascades.Recently, the lake bottom was mapped with a high-resolution multibeam echo sounder. The new bathymetric survey provides a 2m/pixel view of the lake floor from its deepest basins virtually to the shoreline. Using Geographic Information Systems (GIS) applications, the bathymetry data can be visualized and analyzed to shed light on the geology, geomorphology, and geologic history of Crater Lake.

  17. Lakes: recent research and restoration strategies

    Treesearch

    Karen L. Pope; Jonathan W. Long

    2014-01-01

    The Sierra Nevada and southern Cascade Range support thousands of montane lakes, from small, remote tarns to iconic destinations such as Lake Tahoe. Their beauty and recreational opportunities instill high social value, in particular by serving as destinations for hiking, camping, swimming, and fishing. Lakes also have high ecological value because they support a...

  18. A detailed 2,000-year late holocene pollen record from lower Pahranagat Lake, Southern Nevada, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemphill, M L; Wigand, P E

    Preliminary analysis of 128 pollen samples and seven radiocarbon dates from a 5-meter long, 10-cm diameter sediment core retrieved from Lower Pahranagat Lake (elevation - 975 in), Lincoln County, Nevada, gives us a rare, continuous, record of vegetation change at an interval of every 14 years over the last 2,000 years. During this period increasing Pinus (pine) pollen values with respect to Juniperus Ouniper pollen values reflect the increasing dominance of pinyon in southern Nevada woodlands during the last 2,000 years. Today Pinus pollen values indicate that pinyon pine is more frequent in the southern Great Basin since the endmore » of the Neoglacial 2,000 years ago. During the same time frame, a general decrease in Poaceae (grass) pollen values with respect to Artemisia (sagebrush) pollen values reflect the general trend of increasing dominance of steppe and desert scrub species with respect to grasses. Variations in these two species reflect not only the generally more xeric nature of climate during the last 2,000 years, but also periods of summer shifted rainfall - 1,500 years ago that encouraged both a period of grass and pinyon expansion. The ratio of aquatic to littoral pollen types indicates generally deeper water conditions 2 to 1 ka and more variable, but predominately more marshy, conditions at the site during most of the last 1 ka. Investigation of ostracodes from the same record being conducted by Dr. R. Forester at the USGS corroborate the pollen record by evidencing shifts between open and closed hydrologic systems including lake, marsh and even stream habitats. Analysis of an additional 10 meters of core recovered in the summer of 1994 with a basal date of 5.6 ka promises to provide the best record of middle through late Holocene vegetation and climate history for southern Nevada.« less

  19. Southern California climate, hydrology and vegetation over the past ~96 ka from Baldwin Lake, San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    Glover, K. C.; Kirby, M. E.; Rhodes, E. J.; Silveira, E.; Stevens, L. R.; Lydon, S. E.; Whitaker, A.; MacDonald, G. M.

    2015-12-01

    Continuous paleoclimate records are scarce from terrestrial sites in Southern California beyond the Last Glacial Period (i.e. Marine Isotope Stage 2, MIS 2). Baldwin Lake in the Big Bear Valley, San Bernardino Mountains (SBM), is a playa lake in the ecotone between desert and Mediterranean climate and vegetation. We recovered a 27 m core from the site in 2012, which spans ~96 - 10 ka, based upon radiocarbon dating, infrared stimulated luminescence dating, and orbital tuning. Total organic content, total carbonate content, density, magnetic susceptibility, x-ray fluorescence, and grain size data show a lake system that responded in tandem with Marine Isotope State transitions. After the basin closed during MIS 5b, Baldwin Lake was productive for MIS 5a, then cycled through an inorganic phase to a highly organic lowstand by the end of MIS 4. A stratified lake of rapidly-deposited organic silt prevailed throughout MIS 3, then shifted to an inorganic, slow sedimentation regime during MIS 2. Paleoecological data (charcoal and fossil pollen) suggest that the Valley was most prone to wildfire during climate transitions (e.g. the end of the Last Glacial Maximum, ~21 ka). Forest cover was dominated by pine for much of the basin's history, save for the dry period at the onset of MIS 2, and a greater presence of oak woodland at the beginning of MIS 3. The reduced pine cover and increased sagebrush steppe in early MIS 2 suggests a more arid landscape of sagebrush steppe c. 29 - 25 ka, before reverting to wet conditions by the LGM. Throughout MIS 5a - 2, lake organic content fluctuates in tandem with solar radiation values; a possible link between lake productivity and insolation is currently being explored with biogenic silica (BiSi) analysis. The lake was desiccated by ~10 ka, perhaps driven by increasing insolation rates at the onset of MIS 1.

  20. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    USGS Publications Warehouse

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  1. Lake Powell

    NASA Image and Video Library

    2007-09-20

    The white ring around Lake Powell tells the story. The surface is down 98 feet. This is critical, because Powell, Lake Mead, and other lakes along the Colorado River provide water for millions of people in five states. We are in the eighth year of a drought on the Colorado River. This year was the driest year ever reported in Southern California, and there is a severe drought in Northern California, down to less than 30-percent of snow pack. This ASTER image of part of Lake Powell was acquired in 2001. The gray area depicts the shrunken, reduced 2007 lake extent compared to the extended, larger black area in 2001. The image covers an area of 24 x 30 km, and is centered near 37.1 degrees north latitude, 111.3 degrees west longitude. This image from NASA Terra satellite. http://photojournal.jpl.nasa.gov/catalog/PIA10614

  2. Annual Conference of Southern California and Arizona Community College Superintendents and Presidents (Lake Arrowhead Conference Center, California, October 6-8, 1970).

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Junior Coll. Leadership Program.

    An address on "Public Confidence in Higher Education" by the chairman of the board of the Bank of America opended the 1970 Lake Arrowhead Conference of Southern California and Arizona community college superintendents and presidents. A summary of this speech and the questions and answers that followed it are included here. Comments from conference…

  3. Lake Powell

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The white ring around Lake Powell tells the story. The surface is down 98 feet. This is critical, because Powell, Lake Mead, and other lakes along the Colorado River provide water for millions of people in five states. We are in the eighth year of a drought on the Colorado River. This year was the driest year ever reported in Southern California, and there is a severe drought in Northern California, down to less than 30-percent of snow pack. This ASTER image of part of Lake Powell was acquired in 2001. The gray area depicts the shrunken, reduced 2007 lake extent compared to the extended, larger black area in 2001.

    The image covers an area of 24 x 30 km, and is centered near 37.1 degrees north latitude, 111.3 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  4. Unravelling aquifer-wetland interaction using CSAMT and gravity methods: the Mollina-Camorra aquifer and the Fuente de Piedra playa-lake, southern Spain

    NASA Astrophysics Data System (ADS)

    Pedrera, A.; Martos-Rosillo, S.; Galindo-Zaldívar, J.; Rodríguez-Rodríguez, M.; Benavente, J.; Martín-Rodríguez, J. F.; Zúñiga-López, M. I.

    2016-06-01

    The hydrological regime of Fuente de Piedra playa-lake (Málaga, southern Spain) has been significantly affected by the intensive exploitation of groundwater in the area. The playa-lake is situated above clays, marls, and gypsum, and under unaltered conditions received surface-subsurface runoff within the watershed as well as groundwater discharge from two carbonate aquifers. We have analyzed the structure of the main one, the Mollina-Camorra carbonate aquifer, by combining controlled source audio magnetotellurics (CSAMT), gravity prospecting, and time-domain electromagnetic (TDEM) soundings. This geophysical information, together with new structural and hydrogeological data, was gathered to develop a new conceptual hydrogeological model. This model allows the hydrological linkage of the carbonate aquifer with the playa-lake system to be established. Moreover, the intensive exploitation in the carbonate aquifer, even outside the watershed of the playa-lake, has affected the hydrological regime of the system. This multidisciplinary work demonstrates the potential of geophysical methods for understanding wetland-aquifer interaction, having important groundwater management implications.

  5. Atmospheric transport of toxaphene from the southern United States to the Great Lakes Region.

    PubMed

    James, Ryan R; Hites, Ronald A

    2002-08-15

    Toxaphene was used extensively as an insecticide on cotton in the southern United States until its use was restricted in 1982. Toxaphene has been found in the water and fishes from the Great Lakes, and several authors have qualitatively linked this observation to atmospheric transport from the southern United States, although no detailed field study has been done to confirm this suggestion. We implemented a sampling network to measure the gas-phase concentrations of toxaphene near Lake Michigan at Sleeping Bear Dunes, MI; Bloomington, IN; Lubbock, TX; and Rohwer, AR. The toxaphene concentrations referenced to 288 K were 11 +/- 1, 25 +/- 1, 160 +/- 3, and 950 +/- 30 pg/ m3, respectively. We combined these concentration data with a nonparametric, backward trajectory, multiple regression model of the following form: ln(P) = a0 + a1/T + a2theta where P is the partial pressure of toxaphene (in atm) in a given sample, T is the atmospheric temperature at the sampling site during sampling (in degrees Kelvin), and theta is 0 if the backward trajectory comes from the north and 1 if the trajectory comes from the south. The parameters of this model were generally significant, giving a temperature coefficient (a1) corresponding to 45 +/- 8 kJ/mol and a positive directional coefficient (a2) of 0.6 +/- 0.2 (except for Texas, which was not significant). The positive sign and magnitude of the directional coefficient indicates that the sources of toxaphene are located south of the sampling sites. We also compared the chemical behavior of toxaphene in the atmosphere and found that the congener ratios were similar at the different sampling sites but slightly different from various toxaphene standards.

  6. Water quality of least-impaired lakes in eastern and southern Arkansas

    USGS Publications Warehouse

    Justus, B.

    2010-01-01

    A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former. ?? 2009 Springer Science+Business Media B.V.

  7. Water quality of least-impaired lakes in eastern and southern Arkansas.

    PubMed

    Justus, Billy

    2010-09-01

    A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former.

  8. Distribution and dynamics of nitrogen and microbial plankton in southern Lake Michigan during spring transition 1999-2000

    NASA Astrophysics Data System (ADS)

    Gardner, Wayne S.; Lavrentyev, Peter J.; Cavaletto, Joann F.; McCarthy, Mark J.; Eadie, Brian J.; Johengen, Thomas H.; Cotner, James B.

    2004-03-01

    Ammonium and amino acid fluxes were examined as indicators of N and microbial food web dynamics in southern Lake Michigan during spring. Either 15NH4+ or a mixture of 15N-labelled amino acids (both at 4 μM N final concentration) was added to Lake Michigan water. Net fluxes were measured over 24 h under natural light and dark conditions using deck-top incubators and compared to microbial food web characteristics. Isotope dilution experiments showed similar light and dark NH4+ regeneration rates at lake (6 versus 5 nM N h-1) and river-influenced (20 versus 24 nM N h-1) sites. Ammonium uptake rates were similar to regeneration rates in dark bottles. Dark uptake (attributed mainly to bacteria) accounted for ˜70% of total uptake (bacteria plus phytoplankton) in the light at most lake sites but only ˜30% of total uptake at river-influenced sites in or near the St. Joseph River mouth (SJRM). Cluster analysis grouped stations having zero, average, or higher than average N-cycling rates. Discriminant analysis indicated that chlorophyll concentration, oligotrich ciliate biomass, and total P concentration could explain 66% of N-cycling rate variation on average. Heterotrophic bacterial N demand was about one third of the NH4+ regeneration rate. Results suggest that, with the exception of SJRM stations, bacterial uptake and protist grazing mediated much of the N dynamics during spring transition. Since NH4+ is more available to bacteria than NO3-, regenerated NH4+ may have a strong influence on spring, lake biochemical energetics by enhancing N-poor organic matter degradation in this NO3- -replete ecosystem.

  9. The Hardwood Gneiss: Evidence for high P-T Archean metamorphism in the southern province of the Lake Superior region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.W.; Geiger, C.A.

    1990-03-01

    The Hardwood Gneiss is an areally small unit of Precambrian granulite-grade rocks exposed in the Archean gneiss terrane of the southern Lake Superior region. The rocks are located in the southwestern portion of the Upper Peninsula of Michigan and consist of a structurally conformable package of quartzitic, metapelitic, amphibolitic, and metabasic units. Three texturally distinct garnet types are present in the metabasites and are interpreted to represent two metamorphic events. Geothermobarometry indicates conditions of {approximately}8.2-11.6 kbar and {approximately}770C for M1, and conditions of {approximately}6.0-10.1 kbar and {approximately}610-740C for M2. It is proposed that M1 was Archean and contemporaneous with amore » high-grade metamorphic event recorded in the Minnesota River Valley. The M2 event was probably Early Proterozoic and pre-Penokean, with metamorphic conditions more intense than those generally ascribed to the Penokean Orogeny in Michigan, but similar to the conditions reported for the Kapuskasing zone of Ontario. The high paleopressures and temperatures of the M1 event make the Hardwood Gneiss distinct from any rocks previously described in the southern Lake Superior region, and suggest intense tectonic activity during the Archean.« less

  10. Lake trout in northern Lake Huron spawn on submerged drumlins

    USGS Publications Warehouse

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  11. Distribution of pollutants from a new paper plant in southern Lake Champlain, Vermont and New York

    USGS Publications Warehouse

    Mason, D.L.; Folger, D.W.; Haupt, R.S.; McGirr, R.R.; Hoyt, W.H.

    1977-01-01

    From November of 1973 to May of 1974, 15 arrays of sediment traps were placed along 33 km of southern Lake Champlain to sample the distribution of effluent from a large paper plant located on the western shore which had commenced operation in 1971. In the arrays located near the effluent diffuser pipeline as much as 2.3 cm of sediment accumulated, whereas elsewhere in the lake less than 1 cm accumulated. In the area of accelerated accumulation, sediments contained high concentrations of several components used in or derived from paper manufacturing. Values for kaolinite, expressed as the ratio of kaolinite to chlorite, for example, were as high as 1.4, anatase (TiO2) concentrations were as high as 0.8%, organic carbon 8.7%, and phosphorus 254 ??g/g; all were more abundant than in sediments collected in traps to the south or north. In surficial bottom sediments collected near each array organic carbon and phosphorus were also higher (4.2% and 127 ??g/g respectively) near the diffuser than elsewhere. Thus, the new plant after three years of production measurably affected the composition of suspended sediment and surficial bottom sediment despite the construction and use of extensive facilities to reduce the flow of pollutants to the lake. ?? 1977 Springer-Verlag New York Inc.

  12. Movements of hatchery-reared lake trout in Lake Superior

    USGS Publications Warehouse

    Pycha, Richard L.; Dryer, William R.; King, George R.

    1965-01-01

    The history of stocking of lake trout (Salvelinus namaycush) in the Great Lakes is reviewed. The study of movements is based on capture of 24,275 fin-clipped lake trout taken in experimental gill nets and trawls and commercial gill nets. Yearling lake trout planted from shore dispersed to 15-fath (27-m) depths in 3A? hr. Most fish remained within 2 miles (3.2 km) of the planting site 2 months, but within 4 months some fish had moved as much as 17 miles (27 km). The highest abundance of planted lake trout was in areas 2-4 miles (3.2-6.4 km) from the planting site even 3 years after release. Distance moved and size of fish were not correlated. Dispersal of lake trout begins at planting and probably continues until the fish are mature. Most movement was eastward in southern Lake Superior and followed the counterclockwise surface currents. Movement is most rapid in areas of strong currents and slowest in areas of weak currents or eddies. Movement to areas west of the Keweenaw Peninsula was insignificant from plantings in Keweenaw Bay and nil from other plantings farther east. Lake trout planted in the eastern third of the lake dispersed more randomly than those planted farther west. Few fish moved farther offshore than the 50-fath (91-m) contour. Lake trout planted in Canadian waters made insignificant contributions to populations in US waters.

  13. Ultra-distal fine ash occurrences of the Icelandic Askja-S Plinian eruption deposits in Southern Carpathian lakes: New age constraints on a continental scale tephrostratigraphic marker

    NASA Astrophysics Data System (ADS)

    Kearney, R.; Albert, P. G.; Staff, R. A.; Pál, I.; Veres, D.; Magyari, E.; Bronk Ramsey, C.

    2018-05-01

    Here we present the results of the first cryptotephra investigation of two Late glacial-Holocene lake records from the Southern Carpathian Mountains in Romania, Lake Brazi and Lake Lia. The discovery of an important Icelandic tephrostratigraphic marker, the Askja-S, in the sedimentary records of both sites significantly extends the known ash dispersal from this Plinian eruption. Bayesian age-depth modelling of available radiocarbon (14C) data from both sedimentary records allows us to further refine the depositional age of this ultra-distal tephra. In combination with age constraints on the tephra from other well-dated European sites, we produce an updated age for this key tephrostratigraphic marker of 10,824 ± 97 cal yrs BP (95.4% range). The Askja-S tephra is stratigraphically positioned after the palaeoenvironmental proxy response to the Preboreal Oscillation at both sites. The widespread distribution of this tephra across Europe offers the potential to assess spatio-temporal variability of this climatic signal. The discovery of the Askja-S in lake records from the Southern Carpathians highlights the likelihood of finding other ultra-distal (Icelandic) cryptotephra marker layers within the region. Additionally, given the location of the Carpathian region, it offers the opportunity to further enhance and integrate tephrostratigraphic frameworks of north-western Europe with those of the Mediterranean and Anatolia regions, which will enable a more precise comparison of palaeoenvironmental archives across Europe.

  14. Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods.

    PubMed

    Fusé, Victoria S; Priano, M Eugenia; Williams, Karen E; Gere, José I; Guzmán, Sergio A; Gratton, Roberto; Juliarena, M Paula

    2016-10-01

    The global methane (CH 4 ) emission of lakes is estimated at between 6 and 16 % of total natural CH 4 emissions. However, these values have a high uncertainty due to the wide variety of lakes with important differences in their morphological, biological, and physicochemical parameters and the relatively scarse data from southern mid-latitude lakes. For these reasons, we studied CH 4 fluxes and CH 4 dissolved in water in a typical shallow lake in the Pampean Wetland, Argentina, during four periods of consecutive years (April 2011-March 2015) preceded by different rainfall conditions. Other water physicochemical parameters were measured and meteorological data were reported. We identified three different states of the lake throughout the study as the result of the irregular alternation between high and low rainfall periods, with similar water temperature values but with important variations in dissolved oxygen, chemical oxygen demand, water turbidity, electric conductivity, and water level. As a consequence, marked seasonal and interannual variations occurred in CH 4 dissolved in water and CH 4 fluxes from the lake. These temporal variations were best reflected by water temperature and depth of the Secchi disk, as a water turbidity estimation, which had a significant double correlation with CH 4 dissolved in water. The mean CH 4 fluxes values were 0.22 and 4.09 mg/m 2 /h for periods with low and high water turbidity, respectively. This work suggests that water temperature and turbidity measurements could serve as indicator parameters of the state of the lake and, therefore, of its behavior as either a CH 4 source or sink.

  15. Seismic investigation of Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Naudts, L.; De Mol, L.; De Batist, M.

    2012-04-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan mountains in Kyrgyzstan, Central Asia. It has formed in a tectonically active region with W-E striking major thrust zones north and south of the lake. The lake's modern surface level is at 1607 m above sea level, maximum depth in the central basin of the lake is roughly 670 m, and the total water volume is around 1736 km3. The lake is elongated with 180 km in west-east and 60 km in south-north direction. With a surface area of 6232 km2, Lake Issyk-Kul is the second largest lake in the higher altitudes. The lake is characterized by two large delta areas at its western and eastern end, with the deltaic area being as wide as up to 60 km in the eastern and 40 km in the western part, and by steep slopes at the northern and southern shore with only a rather narrow shallower shelf area. The lake contains the sediments of the past up to several million years, and has been proposed as a future target for deep drilling within ICDP. Three seismic surveys by Russian and Belgian groups in 1982, 1997 and 2001 revealed a thick sediment infill in Lake Issyk-Kul. At both the western and the eastern end of the lake, large delta systems were formed by actual and previous inlets, namely the Tyup and Djyrgalan rivers in the eastern part of the lake (still active) and the Chu River at the western end (currently bypassing the lake). Large sub-aquatic channel systems are visible in the lake's bathymetry in the shallower part of the delta systems close to the river mouths. They were quite likely formed by these rivers during a former lake level lowstand. The delta system consists of stacked prograding delta lobes with a characteristic topset-foreset-bottomset configuration. These lobes together with sub-aerial terraces found at several spots around the lake witness lake level fluctuations of up to >400 m. The sediments in the central plain of Lake Issyk-Kul are mainly well-layered with many turbiditic sequences

  16. Dragon Lake, Siberia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nicknamed 'Dragon Lake,' this body of water is formed by the Bratskove Reservoir, built along the Angara river in southern Siberia, near the city of Bratsk. This image was acquired in winter, when the lake is frozen. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on December 19, 1999. This is a natural color composite image made using blue, green, and red wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  17. Sediment sequences and palynology of outer South Bay, Manitoulin Island, Ontario: Connections to Lake Huron paleohydrologic phases and upstream Lake Agassiz events

    NASA Astrophysics Data System (ADS)

    Lewis, C. F. M.; Anderson, T. W.

    2017-10-01

    South Bay on the southern coast of Manitoulin Island is a fjord-like embayment connected to Lake Huron by a natural narrow gap in the bay's outer sill 6.5-14 m above the lake. A seismic profile, pollen, plant macrofossil, grain size analyses, and other sediment properties of two piston cores from a shallow outer basin of the bay document a 9 m-thick sediment section comprising rhythmically laminated clay under silty clay containing zones with small molluscan shells and marsh detritus. A sandy pebbly layer under soft silty clay mud overlies these sediments. This stratigraphy represents inundation by deep glacial Lake Algonquin followed by the shallowing Post Algonquin series of lakes, and exposure in the early Holocene by 5 Lake Stanley lowstands in the Lake Huron basin separated by 4 Lake Mattawa highstands. Overflow from South Bay in the first lowstand is thought to have eroded the outer sill gap. Marsh environments are inferred to have formed in the bay during subsequent lowstands. The Lake Mattawa highstands are attributed to outburst floods mainly from glacial Lake Agassiz. Palynological evidence of increased spruce occurrence, an apparent regional climate reversal, during the dry pine period is attributed to cold northwest winds from the Lake Superior basin and a lake effect from the Mattawa highstands in the Lake Huron basin. Lake waters transgressed South Bay following the pine period to form the Nipissing shore on Manitoulin Island. Transfer of Lake Huron basin drainage to southern outlets and continued glacioisostatic uplift of the region led to the present configuration of South Bay and Lake Huron.

  18. Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies

    NASA Astrophysics Data System (ADS)

    Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.

    2018-02-01

    Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300-500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in radiocarbon dating, and

  19. Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from lacustrine sediment in Upper Klamath Lake, southern Oregon

    USGS Publications Warehouse

    Reynolds, R.L.; Rosenbaum, J.G.; Rapp, J.; Kerwin, M.W.; Bradbury, J.P.; Colman, S.; Adam, D.

    2004-01-01

    Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37-25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins

  20. Geochemical evolution of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Jones, B.F.; Naftz, D.L.; Spencer, R.J.; Oviatt, Charles G.

    2009-01-01

    The Great Salt Lake (GSL) of Utah, USA, is the largest saline lake in North America, and its brines are some of the most concentrated anywhere in the world. The lake occupies a closed basin system whose chemistry reflects solute inputs from the weathering of a diverse suite of rocks in its drainage basin. GSL is the remnant of a much larger lacustrine body, Lake Bonneville, and it has a long history of carbonate deposition. Inflow to the lake is from three major rivers that drain mountain ranges to the east and empty into the southern arm of the lake, from precipitation directly on the lake, and from minor groundwater inflow. Outflow is by evaporation. The greatest solute inputs are from calcium bicarbonate river waters mixed with sodium chloride-type springs and groundwaters. Prior to 1930 the lake concentration inversely tracked lake volume, which reflected climatic variation in the drainage, but since then salt precipitation and re-solution, primarily halite and mirabilite, have periodically modified lake-brine chemistry through density stratification and compositional differentiation. In addition, construction of a railway causeway has restricted circulation, nearly isolating the northern from the southern part of the lake, leading to halite precipitation in the north. These and other conditions have created brine differentiation, mixing, and fractional precipitation of salts as major factors in solute evolution. Pore fluids and diagenetic reactions have been identified as important sources and especially sinks for CaCO3, Mg, and K in the lake, depending on the concentration gradient and clays. ?? U.S. Geological Survey 2008.

  1. Variability in methane emissions from West Siberia's shallow boreal lakes on a regional scale and its environmental controls

    NASA Astrophysics Data System (ADS)

    Sabrekov, Aleksandr F.; Runkle, Benjamin R. K.; Glagolev, Mikhail V.; Terentieva, Irina E.; Stepanenko, Victor M.; Kotsyurbenko, Oleg R.; Maksyutov, Shamil S.; Pokrovsky, Oleg S.

    2017-08-01

    Small lakes represent an important source of atmospheric CH4 from northern wetlands. However, spatiotemporal variations in flux magnitudes and the lack of knowledge about their main environmental controls contribute large uncertainty into the global CH4 budget. In this study, we measured methane fluxes from small lakes using chambers and bubble traps. Field investigations were carried out in July-August 2014 within the West Siberian middle and southern taiga zones. The average and median of measured methane chamber fluxes were 0.32 and 0.30 mgCH4 m-2 h-1 for middle taiga lakes and 8.6 and 4.1 mgCH4 m-2 h-1 for southern taiga lakes, respectively. Pronounced flux variability was found during measurements on individual lakes, between individual lakes and between zones. To analyze these differences and the influences of environmental controls, we developed a new dynamic process-based model. It shows good performance with emission rates from the southern taiga lakes and poor performance for individual lakes in the middle taiga region. The model shows that, in addition to well-known controls such as temperature, pH and lake depth, there are significant variations in the maximal methane production potential between these climatic zones. In addition, the model shows that variations in gas-filled pore space in lake sediments are capable of controlling the total methane emissions from individual lakes. The CH4 emissions exhibited distinct zonal differences not only in absolute values but also in their probability density functions: the middle taiga lake fluxes were best described by a lognormal distribution while the southern taiga lakes followed a power-law distribution. The latter suggests applicability of self-organized criticality theory for methane emissions from the southern taiga zone, which could help to explain the strong variability within individual lakes.

  2. Residues of DDT in lake trout (Salvelinus namaycush) and coho salmon (Oncorhynchus kisutch) from the Great Lakes

    USGS Publications Warehouse

    Reinert, Robert E.; Bergman, Harold L.

    1974-01-01

    Concentrations of DDT residues were higher in lake trout (Salvelinus namaycush) from southern Lake Michigan in 1966–70 (average 18.1 ppm in fish 558–684 mm long) than in lake trout of the same size-class from Lake Superior in 1968–69 (4.4 ppm), and higher in adult coho salmon (Oncorhynchus kisutch) from Lake Michigan in 1968–71 (averages for different year-classes, 9.9–14.0 ppm) than in those from Lake Erie in 1969 (2.2 ppm). Residues were significantly higher in lake trout from southern Lake Michigan than in those from the northern part of the lake. In lakes Michigan and Superior, the levels increased with length of fish and percentage oil. In Lake Michigan coho salmon, the residues remained nearly stable (2–4 ppm) from September of the 1st yr of lake residence through May or early June of the 2nd yr, but increased three to four times in the next 3 mo. Residues in Lake Erie coho salmon did not increase during this period, which preceded the spawning season. Although the concentrations of total residues in whole, maturing Lake Michigan coho salmon remained unchanged from August 1968 until near the end of the spawning season in January 1969, the residues were redistributed in the tissues of the spawning-run fish; concentrations in the loin and brain were markedly higher in January than in August. This relocation of DDT residues accompanied a marked decrease in the percentage of oil in the fish, from 13.2 in August to 2.8 in January. Concentrations of residues were relatively high in eggs of both lake trout (4.6 ppm) and coho salmon (7.4–10.2 ppm) from Lake Michigan. The percentage composition of the residues (p,p′DDE, o,p′/DDT, p,p′DDT, and p,p′DDT) did not differ significantly with life stage, size, age, or locality, or date of collection of lake trout or coho salmon.

  3. A chronology for glacial Lake Agassiz shorelines along Upham's namesake transect

    NASA Astrophysics Data System (ADS)

    Lepper, Kenneth; Buell, Alex W.; Fisher, Timothy G.; Lowell, Thomas V.

    2013-07-01

    Four traditionally recognized strandline complexes in the southern basin of glacial Lake Agassiz are the Herman, Norcross, Tintah and Campbell, whose names correspond to towns in west-central Minnesota that lie on a linear transect defined by the Great Northern railroad grade; the active corridor for commerce at the time when Warren Upham was mapping and naming the shorelines of Lake Agassiz (ca.1880-1895). Because shorelines represent static water planes, their extension around the lake margin establishes time-synchronous lake levels. Transitions between shoreline positions represent significant water-level fluctuations. However, geologic ages have never been obtained from sites near the namesake towns in the vicinity of the southern outlet. Here we report the first geologic ages for Lake Agassiz shorelines obtained at field sites along the namesake transect, and evaluate the emerging chronology in light of other paleoclimate records. Our current work from 11 sampling sites has yielded 16 independent ages. These results combined with a growing OSL age data set for Lake Agassiz's southern basin provide robust age constraints for the Herman, Norcross and Campbell strandlines with averages and standard deviations of 14.1 ± 0.3 ka, 13.6 ± 0.2 ka, and 10.5 ± 0.3 ka, respectively.

  4. The origin and distribution of subbottom sediments in southern Lake Champlain.

    USGS Publications Warehouse

    Freeman-Lynde, R. P.; Hutchinson, D.R.; Folger, D.W.; Wiley, B.H.; Hewett, M.J.

    1980-01-01

    3 units, correlatable with recent Lake Champlain, late-glacial marine Champlain Sea, and proglacial Lake Vermont sediments, have been identified from seismic reflection profiles and 8 piston cores. Lake Vermont deposits are nonfossiliferous and range from thin to absent nearshore and on bedrock highs to more than 126 m thick near Split Rock Point. Champlain Sea sediments contain marine foraminifers and ostracodes and are fairly uniform in thickness (20-30 m). Recent Lake Champlain sediments range in thickness from 0 to 25 m. Average sedimentation rates for Lake Vermont are considerably higher (4-8 cm/yr) than those for the Champlain Sea (0.8-1.2 cm/yr) and Lake Champlain (0.14-0.15 cm/yr). Bedrock, till, and deltaic and alluvial deposits were also identified.- from Authors

  5. Two episodes of meltwater influx from glacial Lake Agassiz into the Lake Michigan basin and their climatic contrasts

    USGS Publications Warehouse

    Colman, Steven M.; Keigwin, L.D.; Forester, R.M.

    1994-01-01

    Two episodes of meltwater influx from glacial Lake Agassiz are recorded as prominent sedimentologic, isotopic, magnetic, and faunal signatures in southern Lake Michigan profundal sediments. As a tributary to the main path of eastward Lake Agassiz flow, southern Lake Michigan recorded only the largest, catastrophic discharges. The distinctive Wilmette Bed, a massive gray mud that interrrupts laminated red glaciolacustrine clays, marks the first episode, which occurred near the beginning of the Younger Dryas cooling events. The associated discharge may have played a role in the inception or severity of the Younger Dryas event. An oxygen isotope excursion in biogenic carbonate and changes in ostracode assemblages mark the second episode, which appears to have had at least two pulses, dated by accelerator mass spectrometer 14C ages on biogenic carbonate at about 8.9 and 8.6 ka. The second episode occurred during the early Holocene peak in global meltwater discharge and apparently had little widespread climatic or oceanographic effect. The contrast between the effects associated with these two episodes of meltwater discharge emphasizes the complexity of the ice sheet-ocean-climate system. -Authors

  6. Changes in Rongbuk lake and Imja lake in the Everest region of Himalaya

    NASA Astrophysics Data System (ADS)

    Chen, W.; Doko, T.; Liu, C.; Ichinose, T.; Fukui, H.; Feng, Q.; Gou, P.

    2014-12-01

    The Himalaya holds the world record in terms of range and elevation. It is one of the most extensively glacierized regions in the world except the Polar Regions. The Himalaya is a region sensitive to climate change. Changes in the glacial regime are indicators of global climate changes. Since the second half of the last century, most Himalayan glaciers have melted due to climate change. These changes directly affected the changes of glacial lakes in the Himalayan region due to the glacier retreat. New glacial lakes are formed, and a number of them have expanded in the Everest region of the Himalayas. This paper focuses on the two glacial lakes which are Imja Lake, located at the southern slope, and Rongbuk Lake, located at the northern slope in the Mt. Everest region, Himalaya to present the spatio-temporal changes from 1976 to 2008. Topographical conditions between two lakes were different (Kruskal-Wallis test, p < 0.05). Rongbuk Lake was located at 623 m higher than Imja Lake, and radiation of Rongbuk Lake was higher than the Imja Lake. Although size of Imja Lake was larger than the Rongbuk Lake in 2008, the growth speed of Rongbuk Lake was accelerating since 2000 and exceeds Imja Lake in 2000-2008. This trend of expansion of Rongbuk Lake is anticipated to be continued in the 21st century. Rongbuk Lake would be the biggest potential risk of glacial lake outburst flood (GLOF) at the Everest region of Himalaya in the future.

  7. Lake Garda, Italy

    NASA Image and Video Library

    2001-07-21

    This ASTER image was acquired on July 29, 2000 and covers an area of 30 by 57 km in northern Italy. Lake Garda was formed by glaciers during the last Ice Age, and is Italy's largest lake. Lago di Garda lies in the provinces of Verona, Brescia, and Trento, and is 51 kilometers (32 miles) long and from 3 to 18 kilometers (2 to 11 miles) wide. The Sarca is its chief affluent, and the lake is drained southward by the Mincio, which discharges into the Po River. Many villas are situated on its shores. On the peninsula of Sirmione, at the southern end of the lake, are the ruins of a Roman villa and a castle of the Scaligers, an Italian family of the 16th century. The RIGHT image has the land area masked out, and a harsh stretch was applied to the lake values to display variations in sediment load. Also visible are hundreds of boats and their wakes, criss-crossing the lake. The image is centered at 45.6 degrees north latitude, 10.6 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02671

  8. Climate variability during the deglaciation and Holocene in a high-altitude alpine lake deduced from the sedimentary record from Laguna Seca, Sierra Nevada, southern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Anderson, R. Scott

    2017-04-01

    High-resolution X-ray fluorescence (XRF), magnetic susceptibility (MS), color and lithological analyses have been carried out on a 3.6 m-long sediment core from Laguna Seca, a high-elevation dry lake from Sierra Nevada mountain range, southern Spain. This is the longest sedimentary record retrieved from an alpine lake in southern Iberian Peninsula. Besides, alpine lakes are very sensitive environments to climate changes and previous studies showed that Laguna Seca could provide an excellent record to identify millennial-scale climate variations during deglaciation and the whole Holocene. XRF analyses, in particular high calcium and low K/Ca ratios, show aridity phases, very well represented during Last Glacial Maximum (LGM) and the Younger Dryas (YD). Arid events are also shown at ca. 8.1 ka BP, ca. 4.4 ka BP and the latest Holocene. On the other hand, negative values in calcium and positive values in K/Ca appear in the Bølling-Allerød (BA) and during the early Holocene until ca. 6 ka BP, indicating more humidity and higher run-off. A progressive aridification trend is also observed in the Holocene, changing from more humid conditions during the early Holocene to more aridity during the late Holocene.

  9. Lake-level history of Lake Michigan for the past 12,000 years: the record from deep lacustrine sediments

    USGS Publications Warehouse

    Colman, Steven M.; Forester, Richard M.; Reynolds, Richard L.; Sweetkind, Donald S.; King, John W.; Gangemi, Paul; Jones, Glenn A.; Keigwin, Loyd D.; Foster, David S.

    1994-01-01

    Collection and analysis of an extensive set of seismic-reflection profiles and cores from southern Lake Michigan have provided new data that document the history of the lake basin for the past 12,000 years. Analyses of the seismic data, together with radiocarbon dating, magnetic, sedimentologic, isotopic, and paleontologic studies of core samples, have allowed us to reconstruct lake-level changes during this recent part of the lake's history.The post-glacial history of lake-level changes in the Lake Michigan basin begins about 11.2 ka with the fall from the high Calumet level, caused by the retreat of the Two Rivers glacier, which had blocked the northern outlet of the lake. This lake-level fall was temporarily reversed by a major influx of water from glacial Lake Agassiz (about 10.6 ka), during which deposition of the distinctive gray Wilmette Bed of the Lake Michigan Formation interrupted deposition of red glaciolacustrine sediment. Lake level then continued to fall, culminating in the opening of the North Bay outlet at about 10.3 ka. During the resulting Chippewa low phase, lake level was about 80 m lower than it is today in the southern basin of Lake Michigan.The rise of the early Holocene lake level, controlled primarily by isostatic rebound of the North Bay outlet, resulted in a prominent, planar, transgressive unconformity that eroded most of the shoreline features below present lake level. Superimposed on this overall rise in lake level, a second influx of water from Lake Agassiz temporarily raised lake levels an unknown amount about 9.1 ka. At about 7 ka, lake level may have fallen below the level of the outlet because of sharply drier climate. Sometime between 6 and 5 ka, the character of the lake changed dramatically, probably due mostly to climatic causes, becoming highly undersaturated with respect to calcium carbonate and returning primary control of lake level to the isostatically rising North Bay outlet. Post-Nipissing (about 5 ka) lake level has

  10. ERTS-1 views the Great Lakes

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Pease, S. R.

    1973-01-01

    The meteorological content of ERTS images, particularly mesoscale effects of the Great Lakes and air pollution dispersion is summarized. Summertime lake breeze frontal clouds and various winter lake-effect convection patterns and snow squalls are revealed in great detail. A clear-cut spiral vortex over southern Lake Michigan is related to a record early snow storm in the Chicago area. Marked cloud changes induced by orographic and frictional effects on Lake Michigan's lee shore snow squalls are seen. The most important finding, however, is a clear-cut example of alterations in cumulus convection by anthropogenic condensation and/or ice nuclei from northern Indiana steel mills during a snow squall situation. Jet aircraft condensation trails are also found with surprising frequency.

  11. Occurrence of phosphorus, iron, aluminum, silica, and calcium in a eutrophic lake during algae bloom sedimentation.

    PubMed

    Li, Guolian; Xie, Fazhi; Zhang, Jin; Wang, Jingrou; Yang, Ying; Sun, Ruoru

    2016-09-01

    Phosphorus (P) in a water body is mainly controlled by the interaction between surface sediment and the overlying water column after the complete control of external pollution. Significant enhancement of P in a water body would cause eutrophication of lakes. Thus, a better understanding is needed of the occurrences of P between the sediment and water column in eutrophic lakes. Here, we measured total phosphorus (TP) and major elements (Fe, Al, Ca, Mn, Si) in the water column, and total nitrogen, organic matter, TP and major oxides (Fe 2 O 3 , Al 2 O 3 , CaO, SiO 2 ) in surface sediment of Chaohu Lake, a continuously eutrophic lake. The results showed that the rank of TP levels was western lake > eastern lake > southern lake. There were significantly positive correlations between TP (including water TP and sedimentary TP) and Fe, Al, Mn, while the correlation coefficients between water TP and sedimentary TP were -0.43, -0.41 and 0.18 for the western, eastern and southern lake respectively. The negative and significant correlations of water TP and sedimentary TP may indicate that the risk of sedimentary P release was great in the western and eastern lake during algae bloom sedimentation, while the southern lake showed weak P exchange between the sediment and water column.

  12. Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies

    USGS Publications Warehouse

    Watson, Benjamin I.; Williams, John W.; Russell, James M.; Jackson, Stephen T.; Shane, Linda; Lowell, Thomas V.

    2018-01-01

    Our understanding of deglacial climate history in the southern Great Lakes region of the United States is primarily based upon fossil pollen data, with few independent and multi-proxy climate reconstructions. Here we introduce a new, well-dated fossil pollen record from Stotzel-Leis, OH, and a new deglacial temperature record based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) at Silver Lake, OH. We compare these new data to previously published records and to a regional stack of pollen-based temperature reconstructions from Stotzel-Leis, Silver Lake, and three other well-dated sites. The new and previously published pollen records at Stotzel-Leis are similar, but our new age model brings vegetation events into closer alignment with known climatic events such as the Younger Dryas (YD). brGDGT-inferred temperatures correlate strongly with pollen-based regional temperature reconstructions, with the strongest correlation obtained for a global soil-based brGDGT calibration (r2 = 0.88), lending confidence to the deglacial reconstructions and the use of brGDGT and regional pollen stacks as paleotemperature proxies in eastern North America. However, individual pollen records show large differences in timing, rates, and amplitudes of inferred temperature change, indicating caution with paleoclimatic inferences based on single-site pollen records. From 16.0 to 10.0ka, both proxies indicate that regional temperatures rose by ∼10 °C, roughly double the ∼5 °C estimates for the Northern Hemisphere reported in prior syntheses. Change-point analysis of the pollen stack shows accelerated warming at 14.0 ± 1.2ka, cooling at 12.6 ± 0.4ka, and warming from 11.6 ± 0.5ka into the Holocene. The timing of Bølling-Allerød (B-A) warming and YD onset in our records lag by ∼300–500 years those reported in syntheses of temperature records from the northern mid-latitudes. This discrepancy is too large to be attributed to uncertainties in

  13. The reproduction of lake trout in southern Lake Superior

    USGS Publications Warehouse

    Eschmeyer, Paul H.

    1955-01-01

    Thirteen fish identified by commercial fishermen as siscowets (Salvelinus namaycush siscowet) also showed extensive individual variation in numbers of eggs, although egg production tended to increase with increasing length and weight of the fish. A mature female siscowet as small as 16.5 inches long and a 15.7-inch mature male were collected about 45 miles north of Grand Marais, Michigan. Combined data from all collections showed that spawning of lake trout or siscowets may occur during at least 6 months of the year (June to November).

  14. Water-quality characteristics and contaminants in the rural karst-dominated Spring Mill Lake watershed, southern Indiana

    USGS Publications Warehouse

    Hasenmueller, N.R.; Buehler, M.A.; Krothe, N.C.; Comer, J.B.; Branam, T.D.; Ennis, M.V.; Smith, R.T.; Zamani, D.D.; Hahn, L.; Rybarczyk, J.P.

    2006-01-01

    The Spring Mill Lake watershed is located in the Mitchell Plateau, a karst area that developed on Mississippian carbonates in southern Indiana. Spring Mill Lake is a reservoir built in the late 1930s and is located in Spring Mill State Park. Within the park, groundwater from subsurface conduits issues as natural springs and then flows in surface streams to the lake. From 1998 to 2002, surface and subsurface hydrology and water quality were investigated to determine the types and sources of potential contaminants entering the lake. Water samples collected during base flow and a February 2000 storm event were analyzed for selected cations, anions, trace elements, selected U.S. Environmental Protection Agency (EPA) primary and secondary drinkingwater contaminants, nitrogen isotopes, suspended solids, Escherichia coli, and pesticides. All of the water samples met the EPA drinking-water standards for inorganic constituents, except those collected at five sites in August 1999 during a drought. Nitrate nitrogen (NO3-N) concentrations were highest during base-flow conditions and displayed a dilutional trend during peak-flow periods. The NO3-N concentrations in water samples collected during the 2001 spring fertilizer applications tended to increase from early to late spring. All of the ??15N values were low, which is indicative of either an inorganic source or soil organic matter. Storm discharge contained increased concentrations of total suspended solids; thus, storms are responsible for most of the sediment accumulation in the lake. E. coli levels in 24% of the samples analyzed contained a most probable number (MPN) greater than 235/100 mL, which is the maximum acceptable level set for recreational waters in Indiana. E. coli does appear to be a potential health risk, particularly at Rubble spring. The sources of E. coli found at this spring may include barnyard runoff from a horse barn or wastes from a wastewater treatment facility. The pesticides atrazine, metolachlor

  15. Lake trout spawning habitat in the Six Fathom Bank-Yankee Reef lake trout sanctuary, Lake Huron

    USGS Publications Warehouse

    Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; Poe, Thomas P.

    1992-01-01

    Attempts to reestablish self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes, where the species was extinguished in the 1950s and 1960s, have been largely unsuccessful. To avoid many of the problems believed to be contributing to this failure, the fishery management community recently established several sanctuaries in the offshore waters of the Great Lakes where the development and protection of self-sustaining stocks of lake trout would be a primary management objective. One of these, the Six Fathom Bank-Yankee Reef sanctuary, was created in the south-central portion of Lake Huron. This sanctuary covers 168,000 ha and includes the shallower portions of the Six Fathom and Ipperwash scarps, which are major bathymetric features in the southern half of the lake. Historical accounts describe Six Fathom Bank as the most important lake trout spawning ground in the lake. Here we present the results of lake bed surveys conducted in the sanctuary with side-scan sonar, underwater videocamera systems, and a small research submarine. Our observations of the lake bed are consistent with what is known of the bedrock stratigraphy, glacial history, and karst geomorphology of the Lake Huron basin. Most of the loose rock we found seemed to be derived from local carbonate bedrock formations, although non-carbonate rock probably from Precambrian sources to the north was also present in some areas. Much of the bedrock and loose rock displayed karst solution features described for the Bruce Peninsula on the Ontario shoreline. Our surveys revealed substantial areas of lake bed at water depths of 20–36 m that resembled suitable spawning and fry production habitat for the shallow-water strains of lake trout that are the focus of the rehabilitation effort. Low mid-lake nutrient levels documented recently by others and the extremely high abundance of Mysis relicta (an important item in the diet of young lake trout) that we documented on Yankee Reef

  16. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie.

    PubMed

    Peat, Tyler B; Hayden, Todd A; Gutowsky, Lee F G; Vandergoot, Christopher S; Fielder, David G; Madenjian, Charles P; Murchie, Karen J; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2015-10-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie

    USGS Publications Warehouse

    Peat, Tyler B; Hayden, Todd A.; Gutowsky, Lee F G; Vandergoot, Christopher S.; Fielder, David G.; Madenjian, Charles P.; Murchie, Karen J; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2015-01-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses.

  18. Tectonic, human and climate signal over the last 4000 years in the Lake Amik record (southern Turkey)

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurélia; Vander Auwera, Jacqueline; Lepoint, Gilles; Karabacak, Volkan; Schmidt, Sabine; Fagel, Nathalie

    2017-04-01

    This study investigates the upper sediments infilling the central part of the Amik Basin in Southern Turkey. The Amik Basin is located in a tectonically active area: it is crossed by the Dead Sea Fault, a major neotectonic structure in the Middle East extending from the Red Sea in the South to the East Anatolian Fault Zone in the North. Continuous human occupation is attested since 6000-7000 BC in the Amik Basin. The study focuses on the sedimentary record of the Lake Amik occupying the central part of the Basin. Our objective is to constrain major paleo-environmental changes over the last 4000 years. The lake has been drained and progressively dried up since the mid-50s. The absence of water column during the summer season allows to collect lacustrine samples along a 5 meter depth trench with a sampling resolution of 1 to 2 cm. Diverse complementary methods were applied to characterize the sedimentary record: i.e. magnetic susceptibility, grain size, organic and inorganic matter by loss-of-ignition, mineralogy by X-ray diffraction and core scanner X-ray fluorescence (XRF) geochemistry. The age of the record is constrained combining radionuclide and radiocarbon datings. Structural disturbances observed in the lacustrine sediments record are linked with major historical earthquakes from the 6th to the 9th century AD due to the Hasipasa Fault rupture. In addition to the tectonic influence, the sedimentary record clearly shows two periods indicating strong soil erosion in the lake catchment: (1) the most recent erosion phase occurs over the Roman period to Present; (2) the oldest one would have occurred during the Late Bronze period. Such changes are most probably related to change in land use. In term of climate influences, the mineralogical and geochemical results allow to evidence variations in chemical weathering conditions in the watershed and lake water level fluctuations, respectively. The clay mineral assemblages attest for significant pedogenesis

  19. Southern Illinois and Western Kentucky, USA

    NASA Image and Video Library

    1973-06-22

    SL2-81-194 (22 June 1973) --- This view of southern Illinois and Western Kentucky (37.0N, 88.5W), with the winding Ohio River in between also illustrates the rich agriculture potential of the flood plains in the river bottom lands. To the east are the waters of Lake Kentucky and Lake Barkley which flow into the Ohio at Paducah, KY and may be seen stretching for several miles. Except for the Land Between the Lakes State Park, Extensive agriculture may be seen throughout the area. Photo credit: NASA

  20. Lake Chad, Chad, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Hydrologic and ecologic changes in the Lake Chad Basin are shown in this Oct 1992 photograph. In space photo documentation, Lake Chad was at its greatest area extent (25,000 sq. km.) during Gemini 9 in June 1966 (see S66-38444). Its reduction during the severe droughts from 1968 to 1974 was first noted during Skylab (1973-1974). After the drought began again in 1982, the lake reached its minimum extent (1,450 sq. km.) in Space Shuttle photographs taken in 1984 and 1985. In this STS-52 photograph, Lake Chad has begun to recover. The area of the open water and interdunal impoundments in the southern basin (the Chari River Basin) is estimated to be 1,900 to 2100 sq. km. Note the green vegetation in the valley of the K'Yobe flow has wetted the northern lake basin for the first time in several years. There is evidence of biomass burning south of the K'Yobe Delta and in the vegetated interdunal areas near the dike in the center of the lake. Also note the dark 'Green Line' of the Sahel (the g

  1. Dynamics of playa lakes in the Texas High Plains

    NASA Technical Reports Server (NTRS)

    Reeves, C. C., Jr. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Regional viewing of ERTS-1 imagery around the test sites shows that storm paths can be accurately traced and a count made of the number of intermittent lake basins filled by the storm. Therefore, during wet years ERTS-type imagery can be used to conduct a reliable count of the tens of thousands of natural lake basins on the southern High Plains which contain water. This type of regional overview of water filled basins in the normally arid southern High Plains is illustrated by bands 6 and 7, ERTS E-1078-16524.

  2. Earthshots: Satellite images of environmental change – Lake Urmia, Iran

    USGS Publications Warehouse

    Adamson, Thomas

    2015-01-01

    The lake’s southern basin is shallower than its northern basin, so recent images show the water disappearing from the southern basin first. These Landsat images use the shortwave-infrared, near-infrared, and green wavelengths of light. Because water absorbs infrared light, water (dark blue to black) contrasts with the surrounding land areas. As the water becomes shallower, light is reflected off of the lakebed in shades of light blue. Lighter blue and bright areas immediately surrounding the lake are where the receding shoreline has exposed the lake bottom.

  3. The identification, examination and exploration of Antarctic subglacial lakes.

    PubMed

    Siegert, M J

    2000-01-01

    At the floor of the Antarctic ice sheet, 4 km below the Russian research base Vostok Station, lies a 2,000 km3 body of water, comparable in size to Lake Ontario. This remote water mass, named Lake Vostok, is the world's largest subglacial lake by an order of magnitude (Figure 1). Despite ice-surface temperatures regularly around -60 degrees C, the ice-sheet base is kept at the melting temperature by geothermal heating from the Earth's interior. The ice sheet above the lake has been in existence for at least several million years and possibly as long as 20 million years. The origins of Lake Vostok may therefore data back across geological time to the Miocene (7-26 Ma). The hydrology of Lake Vostok can be characterised by subglacial melting across its northern side, and refreezing over the southern section. A deep ice core, located over the southern end of the lake has sampled the refrozen ice. Geochemical analysis of this ice has found that it comprises virtually pure water. However, normal glacier ice contains impurities such as debris and gas hydrates. Subglacial melting and freezing over Lake Vostok may, therefore, leave the lake enriched in potential nutrients issued from the melted glacier ice. Many scientists expect microbial life to exist within the lake, adapted to the extreme conditions of low nutrient and energy levels. Indeed microbes have been found in the basal refrozen layers of the ice sheet. If Lake Vostok has been isolated from the atmosphere for several million years by the ice sheet that lays above it, the microbes within the lake must also date back several million years and may have undergone evolution over this time, yielding life that may be unique to Lake Vostok. Plans are currently being arranged to explore Lake Vostok and other Antarctic subglacial lakes, and identify life in these extraordinary places. Before this happens, however, much more needs to be known about the ice-sheet above subglacial lakes, and the rocks and sediment below them.

  4. Early observations on an emerging Great Lakes invader Hemimysis anomala in Lake Ontario

    USGS Publications Warehouse

    Walsh, Maureen G.; Lantry, Brian F.; Boscarino, Brent; Bowen, Kelly; Gerlofsma, Jocelyn; Schaner, Ted; Back, Richard; Questel, Jennifer; Smythe, A. Garry; Cap, Roberta; Goehle, Michael; Young, Bryan; Chalupnicki, Marc A.; Johnson, James H.; McKenna, James E.

    2010-01-01

    Hemimysis anomala, a Ponto-Caspian littoral mysid, is an emerging Great Lakes invader that was discovered in Lakes Michigan and Ontario in 2006. Similar to the native mysid Mysis diluviana, Hemimysis exhibits a diel vertical migration pattern but generally inhabits shallower and warmer waters than M. diluviana. Because basic information on the distribution, habitat use, and biology of Hemimysis in the Great Lakes is scarce, the potential for food web disruption by Hemimysis cannot easily be predicted. Preliminary observations indicate widespread invasion of Hemimysis in Lake Ontario. In this study, we confirm the presence of Hemimysis at sites spanning the northern and southern shores of Lake Ontario and the presence of the individuals during winter months. In one horizontal tow in November 2007, over 26,000 individuals were collected with a length range of 4.4 to 9.0. mm and an average caloric density of 611. cal/g wet weight. The most effective methods for sampling Hemimysis were horizontal tows with either a zooplankton net in the water column or a benthic sled near the lake bottom. Although more quantitative data on the life history and distribution of this species is necessary, our preliminary observations support the prediction that the potential for Hemimysis to impact the nearshore food web in Lake Ontario appears high.

  5. Assessing the El Niño/Southern Oscillation proxy potential of the sediment record from Genovesa Crater Lake, Galápagos

    NASA Astrophysics Data System (ADS)

    Conroy, J.; Overpeck, J. T.; Cole, J. E.; Collins, A.; Bush, M. B.; Steinitz-Kannan, M.

    2009-12-01

    Paleoclimate records from the tropical Pacific Ocean suggest significant changes in sea surface temperature (SST) and El Niño/Southern Oscillation (ENSO) variability during the Holocene, but there are still many spatial and temporal gaps in our understanding of past tropical Pacific climate change. Many of the annually-resolved records of past ENSO variability are short, discontinuous, or from outside the tropical Pacific, whereas those records from the tropical Pacific often do not have the temporal resolution to accurately resolve the timing of individual El Niño events. Paleoclimate records from the Galápagos Islands are ideal for reconstructing past changes in tropical Pacific climate variability, since these islands are located in the heart of the ENSO phenomenon. Records from other lakes in the Galápagos have already suggested significant changes in ENSO frequency and the mean state of the eastern tropical Pacific throughout the Holocene. However, these lake sediment records have interannual temporal resolution at best, hampering our understanding of past ENSO dynamics. Here we present our initial findings from an additional Galápagos lake: Genovesa Crater Lake. The Genovesa sediment record is finely laminated and will likely provide a high-resolution paleoclimate record for this region of the tropical Pacific, as well as a means to test the hypotheses proposed by other ENSO reconstructions. Scanning μ-XRF time series of elemental abundances in the Genovesa sediment cores indicate that peaks in Ca abundance reflect the warm/wet season and El Niño events. We hypothesize that during warm/wet periods, a reduced sea bird population around the typically guanotropic Genovesa Crater Lake reduces the guano input into the lake, allowing layers of relatively clean carbonate to precipitate. During the cool season and La Niña events, guano input dilutes the precipitated carbonate. High-resolution pollen and diatom analyses will provide additional constraints on

  6. Last Glacial vegetation and climate change in the southern Levant

    NASA Astrophysics Data System (ADS)

    Miebach, Andrea; Chen, Chunzhu; Litt, Thomas

    2015-04-01

    Reconstructing past climatic and environmental conditions is a key task for understanding the history of modern mankind. The interaction between environmental change and migration processes of the modern Homo sapiens from its source area in Africa into Europe is still poorly understood. The principal corridor of the first human dispersal into Europe and also later migration dynamics crossed the Middle East. Therefore, the southern Levant is a key area to investigate the paleoenvironment during times of human migration. In this sense, the Last Glacial (MIS 4-2) is particularly interesting to investigate for two reasons. Firstly, secondary expansions of the modern Homo sapiens are expected to occur during this period. Secondly, there are ongoing discussions on the environmental conditions causing the prominent lake level high stand of Lake Lisan, the precursor of the Dead Sea. This high stand even culminated in the merging of Lake Lisan and Lake Kinneret (Sea of Galilee). To provide an independent proxy for paleoenvironmental reconstructions in the southern Levant during the Last Glacial, we investigated pollen assemblages of the Dead Sea/Lake Lisan and Lake Kinneret. Located at the Dead Sea Transform, the freshwater Lake Kinneret is nowadays connected via the Jordan with the hypersaline Dead Sea, which occupies Earth's lowest elevation on land. The southern Levant is a transition area of three different vegetation types. Therefore, also small changes in the climate conditions effect the vegetation and can be registered in the pollen assemblage. In contrast to the Holocene, our preliminary results suggest another vegetation pattern during the Last Glacial. The vegetation belt of the fragile Mediterranean biome did no longer exist in the vicinity of Lake Kinneret. Moreover, the vegetation was rather similar in the whole study area. A steppe vegetation with dwarf shrubs, herbs, and grasses predominated. Thermophilous elements like oaks occurred in limited amounts. The

  7. Examining Lake Michigan Spring Euphotic Depth (Zeu) Anomalies: Utilizing 10 Years of MODIS-Aqua Data at 4 Kilometer Resolution

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2013-01-01

    Examination of ten years of euphotic depth anomalies in Lake Michigan during the months of March-June indicates the following: The well-known and frequently observed occurrence of a turbidity feature in the southern part of Lake Michigan during the spring season has become less common during the period 2003-2012. Overall, the clarity of Lake Michigan water in the southern end of the lake appears to have increased spring season over the period 2003-2012. Euphotic depth can be used as a primary indicator of changes in Lake Michigan lacustrine optics, and for other large lakes. Unique events, such as the heavy rains in June 2008, can have a distinct signature in the euphotic depth anomaly distribution in Lake Michigan.

  8. Acoustic estimates of abundance and distribution of spawning lake trout on Sheboygan Reef in Lake Michigan

    USGS Publications Warehouse

    Warner, D.M.; Claramunt, R.M.; Janssen, J.; Jude, D.J.; Wattrus, N.

    2009-01-01

    Efforts to restore self-sustaining lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes have had widespread success in Lake Superior; but in other Great Lakes, populations of lake trout are maintained by stocking. Recruitment bottlenecks may be present at a number of stages of the reproduction process. To study eggs and fry, it is necessary to identify spawning locations, which is difficult in deep water. Acoustic sampling can be used to rapidly locate aggregations of fish (like spawning lake trout), describe their distribution, and estimate their abundance. To assess these capabilities for application to lake trout, we conducted an acoustic survey covering 22 km2 at Sheboygan Reef, a deep reef (<40 m summit) in southern Lake Michigan during fall 2005. Data collected with remotely operated vehicles (ROV) confirmed that fish were large lake trout, that lake trout were 1–2 m above bottom, and that spawning took place over specific habitat. Lake trout density exhibited a high degree of spatial structure (autocorrelation) up to a range of ~190 m, and highest lake trout and egg densities occurred over rough substrates (rubble and cobble) at the shallowest depths sampled (36–42 m). Mean lake trout density in the area surveyed (~2190 ha) was 5.8 fish/ha and the area surveyed contained an estimated 9500–16,000 large lake trout. Spatial aggregation in lake trout densities, similarity of depths and substrates at which high lake trout and egg densities occurred, and relatively low uncertainty in the lake trout density estimate indicate that acoustic sampling can be a useful complement to other sampling tools used in lake trout restoration research.

  9. Directly dated MIS 3 lake-level record from Lake Manix, Mojave Desert, California, USA

    USGS Publications Warehouse

    Reheis, Marith; Miller, David M.; McGeehin, John P.; Redwine, Joanna R.; Oviatt, Charles G.; Bright, Jordon E.

    2015-01-01

    An outcrop-based lake-level curve, constrained by ~ 70 calibrated 14C ages on Anodonta shells, indicates at least 8 highstands between 45 and 25 cal ka BP within 10 m of the 543-m upper threshold of Lake Manix in the Mojave Desert of southern California. Correlations of Manix highstands with ice, marine, and speleothem records suggest that at least the youngest three highstands coincide with Dansgaard–Oeschger (D–O) stadials and Heinrich events 3 and 4. The lake-level record is consistent with results from speleothem studies in the Southwest that indicate cool wet conditions during D–O stadials. Notably, highstands between 43 and 25 ka apparently occurred at times of generally low levels of pluvial lakes farther north as interpreted from core-based proxies. Mojave lakes may have been supported by tropical moisture sources during oxygen-isotope stage 3, perhaps controlled by southerly deflection of Pacific storm tracks due to weakening of the sea-surface temperature gradient in response to North Atlantic climate perturbations.

  10. Holocene and latest Pleistocene oblique dextral faulting on the southern Inyo Mountains fault, Owens Lake basin, California

    USGS Publications Warehouse

    Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.

    2005-01-01

    The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.

  11. New England from Boston to Lake Champlain and up to southern Main from STS-58

    NASA Image and Video Library

    1993-10-30

    STS058-105-016 (18 Oct-1 Nov 1993) --- This photograph includes much of the heart of New England, stretching from Boston and Boston Harbor (lower left) across New Hampshire and Vermont to Lake Champlain (upper left), and up to southern Maine (Portland is just off the photo at right center). The colors in this photograph are less vivid than those in STS-58-81-038, because the color changes on the deciduous trees in central and northern New England were past their peak when this photograph was taken. North of Boston flows the Merrimack River (which forms part of the state boundary between Massachusetts and New Hampshire). It is delineated by the small industrial towns (Concord, Manchester, Nashua, Lowell) which grew up on its banks. The White Mountains of New Hampshire are seen near the center, and Mt. Washington (6,288 feet) is capped with snow.

  12. Diet of juvenile lake trout in southern Lake Ontario in relation to abundance and size of prey fishes, 1979-1987

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert

    1991-01-01

    We examined the diet of juvenile lake trout Salvelinus namaycush (<450 mm, total length) in Lake Ontario during four sampling periods (April–May, June, July–August, and October 1979–1987) in relation to changes in prey fish abundance in the depth zone where we caught the lake trout. Over all years combined, slimy sculpins Cottus cognatus contributed the most (39–52%) by wet weight to the diet, followed by alewives Alosa pseudoharengus(3–38%), rainbow smelt Osmerus mordax (17–43%), and johnny darters Etheostoma nigrum(2–10%). Over 90% of alewives eaten during April–May and June were age 1, and 98% of those eaten during October were age 0 (few alewives were eaten in July–August). Mean lengths of rainbow smelt and slimy sculpins in stomachs increased with size of lake trout. Juvenile lake trout generally fed opportunistically—seasonal and annual changes in diet usually reflected seasonal and annual changes in abundance of prey fishes near bottom where we captured the lake trout. Furthermore, diet within a given season varied with depth of capture of lake trout, and changes with depth in proportions of prey species in lake trout stomachs mirrored changes in proportions of the prey species in trawl catches at the same depth. Alewives (ages 0 and 1) were the only prey fish eaten in substantial quantities by both juvenile lake trout and other salmonines, and thus are a potential focus of competition between these predators.

  13. BIOLOGICAL ASSESSMENT OF BEACH, LEACHATE, AND EFFLUENT SITES AT LAKE TEXOMA

    EPA Science Inventory

    Lake Texoma is a large (93,000 surface acres) and economically important man-made impoundment of the Red and Washita rivers in southern Oklahoma and northern Texas. Usage of Lake Texoma for recreation, real estate, and farming can be very heavy. All of these activities may have...

  14. Bathymetry and Geology of the Floor of Yellowstone Lake, Yellowstone National Park, Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, Wayne C.; Lee, G.K.; Webring, M.W.

    2007-01-01

    High-resolution, multi-beam sonar mapping of Yellowstone Lake was conducted by the U.S. Geological Survey in conjunction with the National Park Service from 1999 to 2002. Yellowstone Lake is the largest high-altitude lake in North America, at an altitude of 2,357 m with a surface area of 341 km2. More than 140 rivers and streams flow into Yellowstone Lake. The Yellowstone River, which enters at the southern end of the lake into the Southeast Arm, dominates the inflow of water and sediment (Shanks and others, 2005). The only outlet from the lake is at Fishing Bridge where the Yellowstone River flows northward discharging 375 to 4,600 cubic feet per second. The multi-beam sonar mapping occurred over a four-year period beginning in 1999 with mapping of the northern basin, continued in 2000 in West Thumb basin, in 2001 in the central basin, and in 2002 in the southern part of the lake including the Flat Mountain, South, and Southeast Arms.

  15. 137Cs as a tracer of recent sedimentary processes in Lake Michigan

    USGS Publications Warehouse

    Cahill, R.A.; Steele, J.D.

    1986-01-01

    To determine recent sediment movement, we measured the levels of 137Cs (an artificial radionuclide produced during nuclear weapons testing) of 118 southern Lake Michigan samples and 27 in Green Bay. These samples, taken from 286 grab samples of the upper 3 cm of sediment, were collected in 1975 as part of a systematic study of Lake Michigan sediment. 137Cs levels correlated well with concentrations of organic carbon, lead, and other anthropogenic trace metals in the sediment. 137Cs had a higher correlation with silt-sized than with clay-sized sediment (0.55 and 0.46, respectively). Atmospherically derived 137Cs and trace metals are being redistributed by sedimentary processes in Lake Michigan after being incorporated in suspended sediment. We determined a distribution pattern of 137Cs that represents areas of southern Lake Michigan where sediment deposition is occurring. ?? 1986 Dr W. Junk Publishers.

  16. Demographic and Component Allee Effects in Southern Lake Superior Gray Wolves

    PubMed Central

    Stenglein, Jennifer L.; Van Deelen, Timothy R.

    2016-01-01

    Recovering populations of carnivores suffering Allee effects risk extinction because positive population growth requires a minimum number of cooperating individuals. Conservationists seldom consider these issues in planning for carnivore recovery because of data limitations, but ignoring Allee effects could lead to overly optimistic predictions for growth and underestimates of extinction risk. We used Bayesian splines to document a demographic Allee effect in the time series of gray wolf (Canis lupus) population counts (1980–2011) in the southern Lake Superior region (SLS, Wisconsin and the upper peninsula of Michigan, USA) in each of four measures of population growth. We estimated that the population crossed the Allee threshold at roughly 20 wolves in four to five packs. Maximum per-capita population growth occurred in the mid-1990s when there were approximately 135 wolves in the SLS population. To infer mechanisms behind the demographic Allee effect, we evaluated a potential component Allee effect using an individual-based spatially explicit model for gray wolves in the SLS region. Our simulations varied the perception neighborhoods for mate-finding and the mean dispersal distances of wolves. Simulation of wolves with long-distance dispersals and reduced perception neighborhoods were most likely to go extinct or experience Allee effects. These phenomena likely restricted population growth in early years of SLS wolf population recovery. PMID:26930665

  17. Demographic and Component Allee Effects in Southern Lake Superior Gray Wolves.

    PubMed

    Stenglein, Jennifer L; Van Deelen, Timothy R

    2016-01-01

    Recovering populations of carnivores suffering Allee effects risk extinction because positive population growth requires a minimum number of cooperating individuals. Conservationists seldom consider these issues in planning for carnivore recovery because of data limitations, but ignoring Allee effects could lead to overly optimistic predictions for growth and underestimates of extinction risk. We used Bayesian splines to document a demographic Allee effect in the time series of gray wolf (Canis lupus) population counts (1980-2011) in the southern Lake Superior region (SLS, Wisconsin and the upper peninsula of Michigan, USA) in each of four measures of population growth. We estimated that the population crossed the Allee threshold at roughly 20 wolves in four to five packs. Maximum per-capita population growth occurred in the mid-1990s when there were approximately 135 wolves in the SLS population. To infer mechanisms behind the demographic Allee effect, we evaluated a potential component Allee effect using an individual-based spatially explicit model for gray wolves in the SLS region. Our simulations varied the perception neighborhoods for mate-finding and the mean dispersal distances of wolves. Simulation of wolves with long-distance dispersals and reduced perception neighborhoods were most likely to go extinct or experience Allee effects. These phenomena likely restricted population growth in early years of SLS wolf population recovery.

  18. ENSURING SAFE DRINKING WATER IN LAKE ERIE: QUANTIFYING EXTREME WEATHER IMPACTS ON CYANOBACTERIA AND DISINFECTION BYPRODUCTS (DPBS)

    EPA Science Inventory

    The Great Lakes hold 95% of our Nation's and 20% of World's fresh water supply, and it is home to 30% of the US population. II million people rely on drinking water from Lake Erie, the most southern and biologicaJiy productive lake among the Great Lakes. Under incre...

  19. Environmental change in subtropical southern Africa since the Last Glacial Maximum: a case study from Etosha Pan

    NASA Astrophysics Data System (ADS)

    Mauz, Barbara

    2014-05-01

    Millennial-scale climate shifts described by Heinrich Events and Dansgard-Oeschger Cycles occurred in the Northern and Southern Hemispheres asynchronously. It has been suggested that combined influence of the oceanic bipolar seesaw and the southward displacement of the south hemisphere (SH) westerlies, both linked to northern stadials, allowed the high southern latitudes to warm as a result of melting and collapse of NH ice sheets (Denton et al. 2010). For tropical southern Africa most terrestrial records delivering observational data for such climate scenario are derived from east African rift valley lakes (e.g. Olaka et al., 2010) but further to the west data are sparse. Here we report about a palaeoclimate proxy extracted from Etosha Pan, a vast endorheic plain in southern west Africa. It is situated at the southern border of tropical Africa, at the eastern border of the coastal area influenced by the Benguela current and at the western border of inland Africa influenced by the Indian Ocean. It is therefore supposed to be sensitive to climate change and provides the opportunity to link its lake record with the drastic hydrological changes that occurred in east African rift-valley lakes during deglaciation. Using OSL dating and sediment analysis to constrain lake shorelines of perennial lakes in time and space, we found high lake levels during the late Pleistocene and a drastic drop shortly after 10 ka. This lake water-level reconstruction is not in line with the histories of ITCZ migration and strength of Benguela current upwelling. We confirm that the linkages between the evolution of the Etosha Pan and the climate mechanisms driving hydrological changes in subtropical southwest Africa are poorly resolved and need further investigation. The paper discusses these findings in the context of SH palaeoclimate records.

  20. Historical Orthoimagery of the Lake Tahoe Basin

    USGS Publications Warehouse

    Soulard, Christopher E.; Raumann, Christian G.

    2008-01-01

    The U.S. Geological Survey (USGS) Western Geographic Science Center has developed a series of historical digital orthoimagery (HDO) datasets covering part or all of the Lake Tahoe Basin. Three datasets are available: (A) 1940 HDOs for the southern Lake Tahoe Basin, (B) 1969 HDOs for the entire Lake Tahoe Basin, and (C) 1987 HDOs for the southern Lake Tahoe Basin. The HDOs (for 1940, 1969, and 1987) were compiled photogrammically from aerial photography with varying scales, camera characteristics, image quality, and capture dates. The resulting datasets have a 1-meter horizontal resolution. Precision-corrected Ikonos multispectral satellite imagery was used as a substitute for HDOs/DOQs for the 2002 imagery date, but these data are not available for download in this series due to licensing restrictions. The projection of the HDO data is set to UTM Zone 10, NAD 1983. The data for each of the three available dates are clipped into files that spatially approximate the 3.75-minute USGS quarter quadrangles (roughly 3,000 to 4,000 hectares), and have roughly 100 pixels (or 100 meters) of overlap to facilitate combining the files into larger regions without data gaps. The files are named after 3.75-minute USGS quarter quadrangles that cover the same general spatial extent. These files are available in the ERDAS Imagine (.img) format.

  1. Changes in consumption by alewives and lake whitefish after dreissenid mussel invasions in Lakes Michigan and Huron

    USGS Publications Warehouse

    Pothoven, S.A.; Madenjian, C.P.

    2008-01-01

    Growth of alewives Alosa pseudoharengus and lake whitefish Coregonus clupeaformis has declined since the arrival and spread of dreissenid mussels in Lakes Michigan and Huron. Alewives are the main forage for the salmonids in Lake Michigan, and lake whitefish are the most important commercial species in both lakes. Bioenergetics modeling was used to determine consumption by the average individual fish before and after the dreissenid invasion and to provide insight into the invasion's effects on fish growth and food web dynamics. Alewives feed on both Zooplankton and benthic macroinvertebrates, and lake whitefish are benthivores. Annual consumption of zooplankton by an average alewife in Lake Michigan was 37% lower and consumption of benthic macroinvertebrates (amphipods Diporeia spp., opossum shrimp Mysis relicta, and Chironomidae) was 19% lower during the postinvasion period (1995-2005) than during the preinvasion period (1983-1994). Reduced consumption by alewives corresponded with reduced alewife growth. In Lakes Michigan and Huron, consumption of nonmollusk macroinvertebrates (Diporeia spp., opossum shrimp, Chironomidae) by the average lake whitefish was 46-96% lower and consumption of mollusks (mainly dreissenids and gastropods) was 2-5 times greater during the postinvasion period than during the preinvasion period. Even though total food consumption by lake whitefish did not differ between the two periods in Lake Huron or the Southern Management Unit in Lake Michigan, postinvasion weight at age was at least 38% lower than preinvasion weight at age. Under the current postinvasion diet regime, consumption by lake whitefish would have to increase by up to 122% to achieve preinvasion growth rates. ?? Copyright by the American Fisheries Society 2008.

  2. Sediment pollution in margins of the Lake Guaíba, Southern Brazil.

    PubMed

    de Andrade, Leonardo Capeleto; Tiecher, Tales; de Oliveira, Jessica Souza; Andreazza, Robson; Inda, Alberto Vasconcellos; de Oliveira Camargo, Flávio Anastácio

    2017-12-02

    Sediments are formed by deposition of organic and inorganic particles on depth of water bodies, being an important role in aquatic ecosystems, including destination and potential source of essential nutrients and heavy metals, which may be toxic for living organisms. The Lake Guaíba supplies water for approximately two million people and it is located in the metropolitan region of Porto Alegre, Rio Grande do Sul State, Brazil. Thus, the aim of this study was to evaluate the sediment pollution in the margins of Lake Guaíba in the vicinity of Porto Alegre city. Surface sediment was sampled in 12 sites to assess the concentration of several elements (C, N, P, Fe, Al, Ca, Mg, Na, K, Mn, Ba, Zn, V, Pb, Cu, Cr, Ni, Cd, Mo, and Se) and the mineralogical composition. Sediment in margins of Lake Guaíba presented predominantly (> 95%) sandy fraction in all samples, but with significant differences between evaluated sites. Sediments in the margins of Lake Guaíba showed indications of punctual water pollution with Pb, Cu, Cr, Ni, TOC, TKN, and P, mainly derived from urban streams that flow into the lake. In order to solve these environmental liabilities, public actions should not focus only on Guaíba, but also in the streams that flow into the lake.

  3. Wetland vegetation establishment in L-Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeger, S.R.

    Wetland vegetation was transplanted from PAR Pond to L-Lake between January and August, 1987. Approximately 100,000 individual plants representing over 40 species were transplanted along the southern shoreline. Three zones of vegetation were created: (1) submersed/floating-leaved, (2) emergent, (3) upper emergent/shrub. During the summers of 1987, 1988, 1989, the Savannah River Ecology Laboratory sampled the vegetation in 54 permanent transects located in planted (N=32) and unplanted areas (N=22). The 1989 vegetation data from L-Lake were compared to 1985 data from PAR Pond.

  4. Wetland vegetation establishment in L-Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeger, S.R.

    1990-07-01

    Wetland vegetation was transplanted from PAR Pond to L-Lake between January and August, 1987. Approximately 100,000 individual plants representing over 40 species were transplanted along the southern shoreline. Three zones of vegetation were created: (1) submersed/floating-leaved, (2) emergent, (3) upper emergent/shrub. During the summers of 1987, 1988, 1989, the Savannah River Ecology Laboratory sampled the vegetation in 54 permanent transects located in planted (N=32) and unplanted areas (N=22). The 1989 vegetation data from L-Lake were compared to 1985 data from PAR Pond.

  5. Shifts in depth distributions of alewives, rainbow smelt, and age-2 lake trout in southern Lake Ontario following establishment of Dreissenids

    USGS Publications Warehouse

    O'Gorman, Robert; Elrod, Joseph H.; Owens, Randall W.; Schneider, Clifford P.; Eckert, Thomas H.; Lantry, Brian F.

    2000-01-01

    In the mid-1990s, biologists conducting assessments of fish stocks in Lake Ontario reported finding alewives Alosa pseudoharengus, rainbow smelt Osmerus mordax, and juvenile lake trout Salvelinus namaycush at greater depths than in the mid-1980s. To determine if depth distributions shifted coincident with the early 1990s colonization of Lake Ontario by exotic Dreissena mussels, we calculated mean depth of capture for each of the three species during trawl surveys conducted annually during 1978–1997 and examined the means for significant deviations from established patterns. We found that mean capture depth of alewives, rainbow smelt, and age-2 lake trout shifted deeper during the build up of the dreissenid population in Lake Ontario but that timing of the shift varied among seasons and species. Depth shifts occurred first for rainbow smelt and age-2 lake trout in June 1991. In 1992, alewives shifted deeper in June followed by age-2 lake trout in July–August. Finally, in 1993 and 1994, the distribution of lake trout and alewives shifted in April–May. Reasons why the three fishes moved to deeper water are not clear, but changes in distribution were not linked to temperature. Mean temperature of capture after the depth shift was significantly lower than before the depth shift except for alewives in April–May. Movement of alewives, rainbow smelt, and age-2 lake trout to colder, deeper water has the potential to alter growth and reproduction schedules by exposing the fish to different temperature regimes and to alter the food chain, increasing predation on Mysis relicta in deep water and decreasing alewife predation on lake trout fry over nearshore spawning grounds in spring.

  6. 77 FR 49712 - Amendment to Class B Airspace; Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... operating in the vicinity of SLC. The modified Class B airspace areas were designed to ensure all instrument... final Salt Lake City Class B airspace design provides operational and safety benefits to all airspace... Salt Lake City Class B airspace design also incorporated reductions to the northern and southern...

  7. Patterns in the Physical, Chemical, and Biological Composition of Icelandic Lakes and the Dominant Factors Controlling Variability Across Watersheds

    NASA Astrophysics Data System (ADS)

    Greco, A.; Strock, K.; Edwards, B. R.

    2017-12-01

    Fourteen lakes were sampled in the southern and western area of Iceland in June of 2017. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes that produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse and located in older bedrock with more extensively weathered soil. Physical variables (temperature, oxygen concentration, and water clarity), chemical variables (pH, conductivity, dissolved and total nitrogen and phosphorus concentrations, and dissolved organic carbon concentration), and biological variables (algal biomass) were compared across the lakes sampled in these geographic regions. There was a large range in lake characteristics, including five to eighteen times higher algal biomass in the southern systems that experience active ash input to lakes. The lakes located in the Eastern Volcanic Zone also had higher conductivity and lower pH, especially in systems receiving substantial geothermal input. These results were analyzed in the context of more extensive lake sampling efforts across Iceland (46 lakes) to determine defining characteristics of lakes in each region and to identify variables that drive heterogeneous patterns in physical, chemical, and biological lake features within each region. Coastal systems, characterized by high conductivity, and glacially-fed systems, characterized by high iron concentrations, were unique from lakes in all other regions. Clustering and principal component analyses revealed that lake type (plateau, valley, spring-fed, and direct-runoff) was not the primary factor explaining variability in lake chemistry outside of the coastal and glacial lake types. Instead, lakes differentiated along a gradient of iron concentration and total nitrogen concentration. The physical and chemical properties of subarctic lakes are especially susceptible to both natural and human-induced environmental impacts. However, relatively little is known about the

  8. Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition†

    PubMed Central

    Yannarell, Anthony C.; Triplett, Eric W.

    2005-01-01

    This study used a genetic fingerprinting technique (automated ribosomal intergenic spacer analysis [ARISA]) to characterize microbial communities from a culture-independent perspective and to identify those environmental factors that influence the diversity of bacterial assemblages in Wisconsin lakes. The relationships between bacterial community composition and 11 environmental variables for a suite of 30 lakes from northern and southern Wisconsin were explored by canonical correspondence analysis (CCA). In addition, the study assessed the influences of ARISA fragment detection threshold (sensitivity) and the quantitative, semiquantitative, and binary (presence-absence) use of ARISA data. It was determined that the sensitivity of ARISA was influential only when presence-absence-transformed data were used. The outcomes of analyses depended somewhat on the data transformation applied to ARISA data, but there were some features common to all of the CCA models. These commonalities indicated that differences in bacterial communities were best explained by regional (i.e., northern versus southern Wisconsin lakes) and landscape level (i.e., seepage lakes versus drainage lakes) factors. ARISA profiles from May samples were consistently different from those collected in other months. In addition, communities varied along gradients of pH and water clarity (Secchi depth) both within and among regions. The results demonstrate that environmental, temporal, regional, and landscape level features interact to determine the makeup of bacterial assemblages in northern temperate lakes. PMID:15640192

  9. Chemistry of selected high-elevation lakes in seven national parks in the western United States

    USGS Publications Warehouse

    Clow, David W.; Striegl, Robert G.; Nanus, Leora; Mast, M. Alisa; Campbell, Donald H.; Krabbenhoft, David P.

    2002-01-01

    A chemical survey of 69 high-altitude lakes in seven national parks in the western United States was conducted during the fallof 1999; the lakes were previously sampled during the fall of 1985, as part of the Western Lake Survey. Lakes in parks in the Sierra/southern Cascades (Lassen Volcanic, Yosemite, Sequoia/Kings Canyon National Parks) and in the southern RockyMountains (Rocky Mountain National Park) were very dilute; medianspecific conductance ranged from 4.4 to 12.2 μS cm-1 andmedian alkalinity concentrations ranged from 32.2 to 72.9 μeqL-1. Specific conductances and alkalinity concentrations were substantially higher in lakes in the central and northernRocky Mountains parks (Grand Teton, Yellowstone, and GlacierNational Parks), probably due to the prevalence of more reactivebedrock types. Regional patterns in lake concentrations of NO3 and SO4 were similar to regional patterns in NO3 and SO4 concentrations in precipitation, suggestingthat the lakes are showing a response to atmospheric deposition.Concentrations of NO3 were particularly high in Rocky Mountain National Park, where some ecosystems appear to be undergoing nitrogen saturation.

  10. The Geologic History of Lake of the Woods, Minnesota, Reconstructed Using Seismic-Reflection Imaging and Sediment Core Analysis

    NASA Astrophysics Data System (ADS)

    Hougardy, Devin D.

    The history of glacial Lake Agassiz is complex and has intrigued researchers for over a century. Over the course of its ˜5,000 year existence, the size, shape, and location of Lake Agassiz changed dramatically depending on the location of the southern margin of the Laurentide Ice Sheet (LIS), the location and elevation of outflow channels, and differential isostatic rebound. Some of the best-preserved sequences of Lake Agassiz sediments are found in remnant lake basins where erosional processes are less pronounced than in adjacent higher-elevation regions. Lake of the Woods (LOTW), Minnesota, is among the largest of the Lake Agassiz remnant lakes and is an ideal location for Lake Agassiz sediment accumulation. High-resolution seismic-reflection (CHIRP) data collected from the southern basin of LOTW reveal up to 28 m of stratified lacustrine sediment deposited on top of glacial diamicton and bedrock. Five seismic units (SU A-E) were identified and described based on their reflection character, reflection configuration, and external geometries. Three prominent erosional unconformities (UNCF 1-3) underlie the upper three seismic units and indicate that deposition at LOTW was interrupted by a series of relatively large fluctuations in lake level. The lowermost unconformity (UNCF-1) truncates uniformly draped reflections within SU-B at the margins of the basin, where as much as four meters of sediment were eroded. The drop in lake level is interpreted to be contemporaneous with the onset of the low-stand Moorhead phase of Lake Agassiz identified from subaerial deposits in the Red River Valley, Rainy River basin, and Lake Winnipeg. A rise in lake level, indicated by onlapping reflections within SU-C onto UNCF-1, shifted the wave base outwards and as much as 11 m of sediment were deposited (SU-C) in the middle of the basin before a second drop, and subsequent rise, in lake level resulted in the formation of UNCF-2. Reflections in the lower part of SU-D onlap onto UNCF-2

  11. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (lake Caviahue, Argentina)

    NASA Astrophysics Data System (ADS)

    Müller, Anne; Scharf, Burkhard; von Tümpling, Wolf; Pirrung, Michael

    2009-03-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout as well as from river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue Volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  12. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (Lake Caviahue, Argentina)

    NASA Astrophysics Data System (ADS)

    Mueller, A.; Pirrung, M.; Scharf, B.; von Tuempling, W.

    2007-05-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout, river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  13. Temporal patterns of glacial lake evolution in high-mountain environments

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Emmer, Adam; Viani, Cristina; Huggel, Christian

    2017-04-01

    Lakes forming at the front of retreating glaciers are characteristic features of high-mountain areas in a warming climate. Typically, lakes shift from the proglacial phase (lake is in direct contact with glacier) to a glacier-detached (no direct contact) and finally to a non-glacial phase (lake catchment is completely deglaciated) of lake evolution. Apart from changing glacier-lake interactions, each stage is characterized by particular features of lake growth, and by the lake's susceptibility to sudden drainage (lake outburst flood). While this concept appears to be valid globally, some mountain areas are rich in dynamically evolving proglacial lakes, while in others most lakes have already shifted to the glacier-detached or even non-glacial phase. In the present contribution we (i) explore and quantify the history of glacial lake formation and evolution over the past up to 70 years; (ii) assess the current situation of selected contrasting mountain areas (eastern and western European Alps, southern and northern Pamir, Cordillera Blanca); and (iii) link the patterns of lake evolution to the prevailing topographic and glaciological characteristics in order to improve the understanding of high-mountain geoenvironmental change. In the eastern Alps we identify only very few lakes in the proglacial stage. While many lakes appeared and dynamically evolved until the 1980s between 2550 m and 2800 m asl, most of them have lost glacier contact until the 2000s, whereas very few new proglacial lakes appeared at the same time. Even though a similar trend is observed in the higher western Alps, a more dynamic glacial lake evolution is observed there. The arid southern Pamir is characterized by a high number of proglacial lakes, mainly around 4500 m asl. There is strong evidence that glacial lake evolution is, after a highly dynamic phase between the 1970s and approx. 2000, decelerating. Few proglacial lakes exist in the higher and more humid, heavily glacierized northern Pamir

  14. Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards

    NASA Astrophysics Data System (ADS)

    Simonneau, A.; Chapron, E.; Vannière, B.; Wirth, S. B.; Gilli, A.; Di Giovanni, C.; Anselmetti, F. S.; Desmet, M.; Magny, M.

    2013-03-01

    High-resolution seismic profiles and sediment cores from Lake Ledro combined with soil and riverbed samples from the lake's catchment area are used to assess the recurrence of natural hazards (earthquakes and flood events) in the southern Italian Alps during the Holocene. Two well-developed deltas and a flat central basin are identified on seismic profiles in Lake Ledro. Lake sediments have been finely laminated in the basin since 9000 cal. yr BP and frequently interrupted by two types of sedimentary events (SEs): light-coloured massive layers and dark-coloured graded beds. Optical analysis (quantitative organic petrography) of the organic matter present in soil, riverbed and lacustrine samples together with lake sediment bulk density and grain-size analysis illustrate that light-coloured layers consist of a mixture of lacustrine sediments and mainly contain algal particles similar to the ones observed in background sediments. Light-coloured layers thicker than 1.5 cm in the main basin of Lake Ledro are synchronous to numerous coeval mass-wasting deposits remoulding the slopes of the basin. They are interpreted as subaquatic mass-movements triggered by historical and pre-historical regional earthquakes dated to AD 2005, AD 1891, AD 1045 and 1260, 2545, 2595, 3350, 3815, 4740, 7190, 9185 and 11 495 cal. yr BP. Dark-coloured SEs develop high-amplitude reflections in front of the deltas and in the deep central basin. These beds are mainly made of terrestrial organic matter (soils and lignocellulosic debris) and are interpreted as resulting from intense hyperpycnal flood event. Mapping and quantifying the amount of soil material accumulated in the Holocene hyperpycnal flood deposits of the sequence allow estimating that the equivalent soil thickness eroded over the catchment area reached up to 5 mm during the largest Holocene flood events. Such significant soil erosion is interpreted as resulting from the combination of heavy rainfall and snowmelt. The recurrence of

  15. Meteotsunamis in the Great Lakes and Investigation into the May 27, 2012 Event on Lake Erie

    NASA Astrophysics Data System (ADS)

    Anderson, E. J.; Bechle, A.; Wu, C. H.; Schwab, D. J.; Mann, G.

    2016-02-01

    Meteotsunami events have been documented in several countries around the world in the coastal ocean, semi-enclosed basins, and in the Great Lakes. In particular, investigations in the Great Lakes have raised the issue of dangers posed by enclosed basins due to the reflection and interaction of meteotsunami waves, in which the destructive waves can arrive several hours after the atmospheric disturbance has passed. This disassociation in time and space between the atmospheric disturbance and resultant meteotsunami wave can pose a significant threat to the public. In a recent event on May 27, 2012, atmospheric conditions gave rise to two convective systems that generated a series of waves in the meteotsunami band on Lake Erie. The resulting waves swept three swimmers a half-mile offshore, inundated a marina, and may have led to a capsized boat along the southern shoreline. Examination of the observed conditions shows that these events occurred at a time between the arrivals of these two storm systems when atmospheric conditions were relatively calm but water level displacements were at their greatest. In this work, we attempt to explain the processes that led to these conditions through a combination of atmospheric and hydrodynamic modeling and an analysis of the observed radial velocities associated with the meteotsunami-inducing front. Results from a high-resolution atmospheric model and hydrodynamic model reveal that the formation of these destructive waves resulted from a combination of wave reflection, focusing, and edge waves that impacted the southern shore of Lake Erie. This event illustrates the unique danger posed by temporal lags between the inducing atmospheric conditions and resulting dangerous nearshore wave conditions.

  16. 27 CFR 9.146 - Lake Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... City, Wis., 1975; and (2) Lodi, Wis., 1975. (c) Boundary. The Lake Wisconsin viticultural area is... River on the map, in the vicinity of the town of Merrimac, Sauk County; (3) Then continue along the southern shoreline of the Wisconsin River, west and south past Goose Egg Hill, Columbia County, on the...

  17. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    NASA Astrophysics Data System (ADS)

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong

    2016-11-01

    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (<23.7 m), medium (25.4-26.0 m), and high-elevation groups (>28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes.

  18. Determinism in fish assemblages of floodplain lakes of the vastly disturbed Mississippi Alluvial Valley

    USGS Publications Warehouse

    Miranda, L.E.; Lucas, G.M.

    2004-01-01

    The Mississippi Alluvial Valley between southern Illinois and southern Louisiana contains hundreds of floodplain lakes, most of which have been adversely affected by landscape modifications used to control flooding and support agriculture. We examined fish assemblages in lakes of this region to determine whether deterministic patterns developed in relation to prominent abiotic lake characteristics and to explore whether relevant abiotic factors could be linked to specific assemblage structuring mechanisms. The distributions of 14 taxa in 29 lakes were governed primarily by two gradients that contrasted assemblages in terms of lake area, lake elongation, and water clarity. The knowledge of whether a lake was clear or turbid, large or small, and long or short helped determine fish assemblage characteristics. Abiotic factors influenced fish assemblage structures, plausibly through limitations on foraging and physiological tolerances. Determinism in assemblage organization of floodplain lakes relative to recurrence in physicochemical features has been documented for unaltered rivers. Whereas the Mississippi Alluvial Valley has been subjected to vast anthropogenic disturbances and is not a fully functional floodplain river, fish assemblages in its floodplain lakes remain deterministic and organized by the underlying factors that also dictate assemblages in unaltered rivers. In advanced stages of lake aging, fish assemblages in these lakes are expected to largely include species that thrive in turbid, shallow systems with few predators and low oxygen concentrations. The observed patterns related to physical characteristics of these lakes suggest three general conservation foci, including (1) watershed management to control erosion, (2) removal of sediments or increases in water level to alleviate depth reductions and derived detriments to water physicochemistry, and (3) management of fish populations through stockings, removals, and harvest regulations.

  19. Holocene glacier fluctuations inferred from lacustrine sediment, Emerald Lake, Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    LaBrecque, Taylor S.; Kaufman, Darrell S.

    2016-01-01

    Physical and biological characteristics of lacustrine sediment from Emerald Lake were used to reconstruct the Holocene glacier history of Grewingk Glacier, southern Alaska. Emerald Lake is an ice-marginal threshold lake, receiving glaciofluvial sediment when Grewingk Glacier overtops the topographic divide that separates it from the lake. Sub-bottom acoustical profiles were used to locate core sites to maximize both the length and resolution of the sedimentary sequence recovered in the 4-m-long cores. The age model for the composite sequence is based on 13 14C ages and a 210Pb profile. A sharp transition from the basal inorganic mud to organic-rich mud at 11.4 ± 0.2 ka marks the initial retreat of Grewingk Glacier below the divide of Emerald Lake. The overlaying organic-rich mud is interrupted by stony mud that records a re-advance between 10.7 ± 0.2 and 9.8 ± 0.2 ka. The glacier did not spill meltwater into the lake again until the Little Ice Age, consistent with previously documented Little Ice Ages advances on the Kenai Peninsula. The retreat of Grewingk Glacier at 11.4 ka took place as temperature increased following the Younger Dryas, and the subsequent re-advance corresponds with a climate reversal beginning around 11 ka across southern Alaska.

  20. Detection and Modeling of a Meteotsunami in Lake Erie During a High Wind Event on May 27, 2012

    NASA Astrophysics Data System (ADS)

    Anderson, E. J.; Schwab, D. J.; Lombardy, K. A.; LaPlante, R. E.

    2012-12-01

    On May 27, 2012, a mesoscale convective system moved southeast across the central basin of Lake Erie (the shallowest of the Great Lakes) causing an increase in surface wind speed from 3 to 15 m/s over a few minutes. Although no significant pressure change was observed during this period (+1 mbar), the storm resulted in 3 reported edge waves on the southern shore (5 minutes apart), with wave heights up to 7 feet (2.13 m). Witnesses along the coast reported that the water receded before the waves hit, the only warning of the impending danger. After impact on the southern shore, several individuals were stranded in the water near Cleveland, Ohio. Fortunately, there were no fatalities or serious injury as a result of the edge waves. The storm event yielded two separate but similar squall line events that impacted the southern shore of Lake Erie several hours apart. The first event had little impact on nearshore conditions, however, the second event (moving south-eastward at 21.1 m/s or 41 knots), resulted in 7 ft waves near Cleveland as reported above. The thunderstorms generated three closely packed outflow boundaries that intersected the southern shore of Lake Erie between 1700 and 1730 UTC. The outflow boundaries were followed by a stronger outflow at 1800 UTC. Radial velocities on the WSR-88D in Cleveland, Ohio indicated the winds were stronger in the second outflow boundary. The radar indicated winds between 20.6 and 24.7 m/s (40 and 48 knots) within 240 meters (800 feet) above ground level. In order to better understand the storm event and the cause of the waves that impacted the southern shore, a three-dimensional hydrodynamic model of Lake Erie has been developed using the Finite Volume Coastal Ocean Model (FVCOM). The model is being developed as part of the Great Lakes Coastal Forecasting (GLCFS), a set of experimental real-time pre-operational hydrodynamic models run at the NOAA Great Lakes Research Laboratory that forecast currents, waves, temperature, and

  1. Lake Chad, Chad as seen from STS-66

    NASA Image and Video Library

    1994-11-14

    This oblique view of Lake Chad was taken by the STS-66 crew in November 1994. This lake lies mainly in the Republic of Chad and partly in Nigeria, Cameroon and Niger. The size of Lake Chad varies seasonally and is actually divided into north and south basins; neither of which is generally more than 25 feet (7.6 meters) deep. In this photograph, all the water appears to be located in the southern basin with the northern and eastern edges of both basins covered with sand dunes which have invaded the area where the water once stood. The prevailing wind direction can be seen from the agriculture burning in both basins to be from the east.

  2. Historic distribution of Common Loons in Wisconsin in relation to changes in lake characteristics and surrounding land use

    USGS Publications Warehouse

    Kenow, Kevin P.; Garrison, Paul J.; Fox, Timothy J.; Meyer, Michael W.

    2013-01-01

    A study was conducted to evaluate changes in water quality and land-use change associated with lakes that are south of the current breeding range of Common Loons in Wisconsin but that historically supported breeding loons. Museum collection records and published accounts were examined to identify lakes in southern Wisconsin with a former history of loon nesting activity. Historical and recent water quality data were obtained from state and USEPA databases for the former loon nesting lakes that were identified and paleolimnological data were acquired for these lakes from sediment cores used to infer historical total phosphorus concentrations from diatom assemblages. U.S. General Land Office notes and maps from the original land survey conducted in Wisconsin during 1832-1866 and the National Land Cover Database 2006 were utilized to assess land use changes that occurred within the drainage basins of former loon nesting lakes. Our results indicate that the landscape of southern Wisconsin has changed dramatically since Common Loons last nested in the region. A number of factors have likely contributed to the decreased appeal of southern Wisconsin lakes to breeding Common Loons, including changes to water quality, altered trophic status resulting from nutrient enrichment, and reductions in suitable nesting habitat stemming from shoreline development and altered water levels. Increased nutrient and sediment inputs from agricultural and developed areas likely contributed to a reduction in habitat quality.

  3. Movement of parasitic-phase sea lampreys in Lakes Huron and Michigan

    USGS Publications Warehouse

    Smith, Bernard R.; Elliott, Oliver R.

    1953-01-01

    A program of tagging was carrie dout in the waters of northern Lake Huron during the fall and winter of 1951-52 in order to supplement the small amount of information available on movement of sea lampreys during their parasitic phase. A total of 219 parasitic-phase sea lampreys were tagged and released at three localities. Of this number 38 or 17.2 percent were recovered. One tag was recovered near North Manitou Island, Lake Michigan. The remaining 37 were take in Lake Huron or in streams tributary to that lake. The dispersal of tagged lampreys throughout Lake Huron was wide. Five marked individuals were taken in the southern part of the lake over 150 miles from the point of tagging; 4 of these 5 were captured in Canadian waters. The marked lampreys exhibited no distinct pattern of migration other than a tendency toward a general southeasterly movement in Lake Huron.

  4. Budget analysis of Escherichia coli at a southern Lake Michigan Beach

    USGS Publications Warehouse

    Thupaki, P.; Phanikumar, M.S.; Beletsky, D.; Schwab, D.J.; Nevers, M.B.; Whitman, R.L.

    2010-01-01

    Escherichia coli (EC) concentrations at two beaches impacted by river plume dynamics in southern Lake Michigan were analyzed using three-dimensional hydrodynamic and transport models. The relative importance of various physical and biological processes influencing the fate and transport of EC were examined via budget analysis and a first-order sensitivity analysis of model parameters. The along-shore advective fluxofEC(CFU/m2·s)was found to be higher compared to its crossshore counterpart; however, the sum of diffusive and advective components was of a comparable magnitude in both directions showing the importance of cross-shore exchange in EC transport. Examination of individual terms in the EC mass balance equation showed that vertical turbulent mixing in the water column dominated the overall EC transport for the summer conditions simulated. Dilution due to advection and diffusion accounted for a large portion of the total EC budget in the nearshore, and the net EC loss rate within the water column (CFU/m3·s) was an order of magnitude smaller compared to the horizontal and vertical transport rates. This result has important implications for modeling EC at recreational beaches; however, the assessment of the magnitude of EC loss rate is complicated due to the strong coupling between vertical exchange and depth-dependent EC loss processes such as sunlight inactivation and settling. Sensitivity analysis indicated that solar inactivation has the greatest impact on EC loss rates. Although these results are site-specific, they clearly bring out the relative importance of various processes involved.

  5. The Varve Record of Puyehue Lake (Meridional Chile), AD 1412-2002 .

    NASA Astrophysics Data System (ADS)

    Boes, X.; Arnaud, F.; Fagel, N.

    2004-12-01

    Puyehue Lake is located in the Southern Volcanic Zone of Chile (Southern Lake District, 40°S). This monomictic lake is under the influence of the oceanic winter polar front (WPF) and constitutes a powerful sedimentary archive for paleoenvironmental reconstruction. The underflow (PUI) and interflow (PUII) coring sites were selected by a high resolution seismic survey (RUG). The sedimentation is driven by the annual blooms of diatoms in association with thermal lake cycles. For each site, one short core (50-60 cm) is analyzed by continuous cover of thin sections for varve counting and chronology for the AD 1412-2002 time window. The varve chronology is constrained by 210Pb,137Cs sedimentation rate estimates, and by the AD 1960 Valdivia'seismite. The sediment laminations are especially emphasized by the continuous grey-scale measurements from thin sections. Detrital clayey material characterizes the dark levels, and biogenic diatom mud defines the light levels. Varve counting is derived from the occurrence of light layers, i.e. formed at the end of winter after nutrient turn-over. In both cores, the grey-scale is influenced by instantaneous tephra layers related to the regional volcanic activity (Puyehue and Cordon Caulle volcanoes). For instance, in PUII, we identify major historical eruptions (AD 1921, 1837, 1790, 1564, and 1544) in accordance with the varve age model. In addition, we measure the total varve thickness. Lower than 500 µm until AD 1780, the varve thickness gradually increases by a factor of four in PUII. The first period suggests a decrease of lake productivity, in agreement with a cooling. The age fits with the end of Little Ice Age in Southern America. Between AD 1780-2002, the thicker varves could be driven by a reinforcement of the WPF since the 19e century. Our local observations require further investigations to be extrapolated over regional or global scale.

  6. Hydrologic reconnaissance of the southern Great Salt Lake Desert and summary of the hydrology of west-central Utah

    USGS Publications Warehouse

    Gates, Joseph S.; Kruer, Stacie A.

    1981-01-01

    This report is the last of 19 hydrologic reconnaissances of the basins in western Utah. The purposes of this series of studies are (1) to analyze available hydrologic data and describe the hydrologic system, (2) to evaluate existing and potential water-resources development, and (3) to identify additional studies that might be needed. Part 1 of this report gives an estimate of recharge and discharge, an estimate of the potential for water-resources development, and a statement on the quality of water in the southern Great Salt Lake Desert part of west-central Utah. Part 2 deals with the same aspects of west-central Utah as a whole. Part 2 also summarizes the evidence of interbasin ground-water flow in west-central Utah and presents a theory for the origin of the water discharged from Fish Springs.

  7. Measuring historic water levels of Lake Balaton and tributary wetlands using georeferenced maps

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.

    2009-04-01

    Lake Balaton is a large and relatively shallow lake located in western Hungary. The lake is joined by small wetlands on the north shore and larger water-filled valleys on the south separated by and elevated sand bar. These wetlands are assumed to have been connected with Lake Balaton before the water level was artificially lowered in 1893. No regular measurements of the water level of the lake or these wetlands were carried out before the draining of the lake. Most of the wetlands were completely isolated from the water system of the lake after the water level change as roads, railway and holiday homes were built. The low valleys of the southern shore still hold many fishponds, swamps and wet meadows, which are important sanctuaries for rare wetland species, and are often less disturbed than the lake, which is a popular holiday resort. Hydrologic restoration of these wetlands is only possible if accurate information exists on the original, natural state. The 1776 Krieger-map and the first military survey (1782-1785) are the most accurate known maps of the original state of the Lake Balaton area. These maps were surveyed using triangulation and leveling, and are accurate enough to be compared with the present-day situation. Some of the depicted buildings and landmarks still survive and can be used as control points for georeferencing and correcting these maps. Since the bathymetry of the lake and the topography of the surrounding countryside have hardly changed, existing digital elevation models of the present-day relief could be compared to these georeferenced maps. The elevation profile of the lake shore and wetland borders can be calculated by tracing these lines on a Digital Elevation Model. The shore area of Lake Balaton has been filled in and changed, so present-day land topography can not be used to estimate the water level from the elevation profile of the shore line. However, the Krieger-map also shows bathymetric contours, and previous studies have shown

  8. Glacial Lake Lind, Wisconsin and Minnesota

    USGS Publications Warehouse

    Johnson, M.D.; Addis, K.L.; Ferber, L.R.; Hemstad, C.B.; Meyer, G.N.; Komai, L.T.

    1999-01-01

    Glacial Lake Lind developed in the pre-late Wisconsinan St. Croix River valley, Minnesota and Wisconsin, and lasted more than 1000 yr during the retreat of the Superior lobe at the end of the Wisconsinan glaciation. Lake Lind sediment consists primarily of red varved silt and clay, but also includes mud-flow deposits, nearshore silt (penecontemporaneously deformed in places), nearshore rippled sand, and deltaic sand. Lake Lind varved red clay is not part of glacial Lake Grantsburg, as suggested by earlier authors, because the red varves are separated from overlying glacial Lake Grantsburg silt and clay by a unit of deltaic and fluvial sand. Furthermore, varve correlations indicate that the base of the red varves is younger to the north, showing that the basin expanded as the Superior lobe retreated and was not a lake basin dammed to the southwest by the advancing Grantsburg sublobe. Varve correlations indicate that the Superior lobe retreated at a rate of about 200 m/yr. Uniform winter-clay thickness throughout most of the varve couplets suggests thermal stratification in the lake with clay trapped in the epilimnion; some clay would exit the lake at the outlet prior to winter freeze. Zones of thicker winter-clay layers, in places associated with mud-flow layers, indicate outlet incision, lake-level fall, and shoreline erosion and resuspension of lake clay. The most likely outlet for glacial Lake Lind was in the southwest part of the lake near the present site of Minneapolis, Minnesota. Nearshore sediment indicates that the lake level of glacial Lake Lind was around 280 m. The elevation of the base of the Lake Lind sediments indicates water depth was 20 to 55 m. Evidence in the southern part of the lake basin suggests that the Superior lobe readvanced at least once during the early stages of glacial Lake Lind. Lake Lind ended not by drainage but by being filled in by prograding deltas and outwash plains composed of sand derived from the retreating Superior lobe. It

  9. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    USGS Publications Warehouse

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  10. Growth and Survival of Larval Alewife (Alosa pseudoharengus) in Southern New England Lakes

    NASA Astrophysics Data System (ADS)

    Suca, J.; Jones, A.; Llopiz, J.

    2016-02-01

    Alewives (Alosa pseudoharengus) are ecologically and commercially important anadromous fish in eastern North America, and populations have declined to close to 1% of their historic levels. Despite moratoriums in recent years in most US states, there has been little recovery of alewives. In light of this poor recovery, we examined the factors that influence the survival of alewife larvae that were spawned in multiple freshwater systems in Massachusetts. Four lakes were sampled each week throughout the spring and summer for fish larvae, zooplankton and physicochemical parameters. Abundances of larvae from the lakes were analyzed, along with environmental factors. In the lab, otoliths of larvae from two different lakes were used for age and growth rate determination, as well as examining selective mortality during the larval period. Additionally, differences in growth and selective mortality of early and late spawned larvae were analyzed to investigate the tradeoffs between spawning early versus late in the spawning season. Abundances varied greatly between lakes and sampling times. Through otolith analysis, differences in growth rates between lakes were observed. This is likely due to differences in either temperature or food availability, and ongoing work quantifying zooplankton abundances will address these potential factors. Interestingly, there was no evidence for selective mortality in the two lakes examined, a result that is consistent with the hypothesis that anadromy in this species evolved as a strategy to minimize predation during the vulnerable larval period.

  11. Sediment oxygen profiles in a super-oxygenated antarctic lake

    NASA Technical Reports Server (NTRS)

    Wharton, R. A. Jr; Meyer, M. A.; McKay, C. P.; Mancinelli, R. L.; Simmons, G. M. Jr; Wharton RA, J. r. (Principal Investigator)

    1994-01-01

    Perennially ice-covered lakes are found in the McMurdo Dry Valleys of southern Victoria Land, Antarctica. In contrast to temperate lakes that have diurnal photic periods, antarctic (and arctic) lakes have a yearly photic period. An unusual feature of the antarctic lakes is the occurrence of O2 at supersaturated levels in certain portions of the water column. Here we report the first sediment O2 profiles obtained using a microelectrode from a perennially ice-covered antarctic lake. Sediment cores collected in January and October 1987 from Lake Hoare in Taylor Valley show oxygenation down to 15, and in some cases, 25 cm. The oxygenation of sediments several centimeters below the sediment-water interface is atypical for lake sediments and may be characteristic of perennially ice-covered lakes. There is a significant difference between the observed January and October sediment O2 profiles. Several explanations may account for the difference, including seasonality. A time-dependent model is presented which tests the feasibility of a seasonal cycle resulting from the long photoperiod and benthic primary production in sediments overlain by a highly oxygenated water column.

  12. Ecology and control of an introduced population of Southern Watersnakes (Nerodia fasciata) in southern California

    USGS Publications Warehouse

    Reed, Robert; Todd, Brian D; Miano, Oliver J.; Canfield, Mark; Fisher, Robert N.; McMartin, Louanne

    2016-01-01

    Native to the southeastern United States, Southern Watersnakes (Nerodia fasciata) are known from two sites in California, but their ecological impacts are poorly understood. We investigated the ecology of Southern Watersnakes in Machado Lake, Harbor City, Los Angeles County, California, including an assessment of control opportunities. We captured 306 watersnakes as a result of aquatic trapping and hand captures. We captured snakes of all sizes (162–1063 mm snout–vent length [SVL], 3.5–873.3 g), demonstrating the existence of a well-established population. The smallest reproductive female was 490 mm SVL and females contained 12–46 postovulatory embryos (mean  =  21). Small watersnakes largely consumed introduced Western Mosquitofish (Gambusia affinis), while larger snakes specialized on larval and metamorph American Bullfrogs (Lithobates catesbeianus) and Green Sunfish (Lepomis cyanellus). Overall capture per unit effort (CPUE) in traps declined with time during an intensive 76-d trapping bout, but CPUE trends varied considerably among traplines and it is unlikely that the overall decline in CPUE represented a major decrease in the snake population size. Although we found no direct evidence that Southern Watersnakes are affecting native species in Machado Lake, this population may serve as a source for intentional or unintentional transportation of watersnakes to bodies of water containing imperiled native prey species or potential competitors.

  13. Assessing Lake Level Variability and Water Availability in Lake Tana, Ethiopia using a Groundwater Flow Model and GRACE Satellite Data

    NASA Astrophysics Data System (ADS)

    Hasan, E.; Dokou, Z.; Kirstetter, P. E.; Tarhule, A.; Anagnostou, E. N.; Bagtzoglou, A. C.; Hong, Y.

    2017-12-01

    Lake Tana is the source of the Blue Nile and Ethiopia's largest natural buffer against seasonal variations of rainfall. Assessing the interactions between the lake level fluctuation, hydroclimatic variabilities and anthropogenic factors is essential to detect drought conditions and identify the role of human management in controlling the Lake water balance. Via an extended record of Total Water Storage (TWS) anomalies for the period 1960-2016, a water budget model for the lake water inflow/outflow was developed. Estimates of Lake Level Altimetry (LLA) based on in-situ and satellite altimetry were composited from 1960-2016 and compared to the extended TWS anomalies, the self-calibrated Palmer Drought Severity Index (scPDSI), the El Niño Southern Oscillation (ENSO) and the historical lake water levels and releases. In addition, the simulated lake levels and water budget from a coupled groundwater and lake model of the Lake Tana basin were compared to the above results. Combining the different approaches, the water budget of the lake can be monitored, the drought conditions can be identified and the role of human management in the lake can be determined. For instance, three major drought periods are identified, 1970 to 1977, 1979 to 1987 and 1990 to 1998, each succeeded with an interposed flooding related recovery year, i.e. 1978, 1988 and 1999. The drought/flooding events were attributed mainly to the ENSO interactions that resulted in lake level fluctuations. The period from 2002-2006 was associated with a remarkable decline of the lake level that was attributed partly in drought conditions and the full flow regulation of the Chara Chara weir at the lake outlet, initiated in 2001.

  14. Accidental discharge of brodifacoum baits into a freshwater lake: a case study.

    PubMed

    Fisher, P; Funnell, E; Fairweather, A; Brown, L; Campion, M

    2012-02-01

    Approximately 700 kg of cereal bait containing 20 ppm of the anticoagulant rodenticide brodifacoum was spilled into a southern New Zealand lake in 2010 from a helicopter being used to transport containers of brodifacoum bait for an aerial baiting operation. In the month after the spill no residual brodifacoum was detected in samples of lake water, sediment, benthic invertebrates, eels, and two birds.

  15. Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA

    USGS Publications Warehouse

    Bacon, S.N.; Burke, R.M.; Pezzopane, S.K.; Jayko, A.S.

    2006-01-01

    Stratigraphic investigations of fluvio-deltaic and lacustrine sediments exposed in stream cuts, quarry walls, and deep trenches east of the Sierra Nevada in Owens Valley near Lone Pine, California have enabled the reconstruction of pluvial Owens Lake level oscillations. Age control for these sediments is from 22 radiocarbon (14C) dates and the identification and stratigraphic correlation of a tephra, which when plotted as a function of age versus altitude, define numerous oscillations in the level of pluvial Owens Lake during the latest Pleistocene and early Holocene. We have constructed a lake-level altitude curve for the time interval ???27,000 cal yr BP to present that is based on the integration of this new stratigraphic analysis with published surface stratigraphic data and subsurface core data. Pluvial Owens Lake regressed from its latest Pleistocene highstands from ???27,000 to ???15,300 cal yr BP, as recorded by ???15 m of down cutting of the sill from the altitudes of ???1160 to 1145 m. By ???11,600 cal yr BP, the lake had dropped ???45 m from the 1145 m sill. This lowstand was followed by an early Holocene transgression that attained a highstand near 1135 m before dropping to 1120 m at 7860-7650 cal yr BP that had not been recognized in earlier studies. The lake then lowered another ???30 m to shallow and near desiccation levels between ???6850 and 4300 cal yr BP. Fluvial cut-and-fill relations north of Lone Pine and well-preserved shoreline features at ???1108 m indicate a minor lake-level rise after 4300 cal yr BP, followed by alkaline and shallow conditions during the latest Holocene. The new latest Quaternary lake-level record of pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra Nevada and will assist regional paleoclimatic models for the western Basin and Range. ?? 2005 Elsevier Ltd. All rights reserved.

  16. New Zealand's Southern Alps

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The rugged Southern Alps extend some 650 kilometers along the western side of New Zealand's South Island. The mountains are often obscured by clouds, which is probably why the Maoris called New Zealand 'Aotearoa', the long white cloud. The higher peaks are snow-covered all year round. Westerly winds bring clouds that drop over 500 centimeters of rain annually on luxuriant rain forest along the west coast. The drier eastern seaboard is home to the majority of the island's population.

    This pair of MISR images is from April 13, 2000 (Terra orbit 1712). The upper image is a natural color view from the instrument's vertical-viewing (nadir) camera. It is presented at a resolution of 550 meters per pixel. The lower image is a stereo anaglyph generated from the instrument's 46-degree and 26-degree forward-viewing cameras, and is presented at 275-meter per pixel resolution to show the portion of the image containing the Southern Alps in greater detail. Viewing the anaglyph in 3-D requires the use of red/blue glasses with the red filter over your left eye. To facilitate stereoscopic viewing, both images have been oriented with north at the left.

    The tallest mountain in the Southern Alps is Mt. Cook, at an elevation of 3754 meters. Its snow-covered peak is visible to the left of center in each of these MISR images. From the high peaks, glaciers have gouged long, slender mountain lakes and coastal fiords. Immediately to the southeast of Mt. Cook (to the right in these images), the glacial pale-blue water of Lake Pukaki stands out. Further to the south in adjacent valleys you can easily see Lakes Hawea and Wanaka, between which (though not visible here) is the Haast Pass Road, the most southerly of the few links between the east and west coast road systems. Further to the south is the prominent 'S' shape of Lake Wakatipu, 83 kilometers long, on the northern shore of which is Queenstown, the principal resort town of the island. The remote and spectacular Fiordland National

  17. Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Dickinson, K.A.

    1988-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (??13C = +16.9) consistent with residual carbon formed during methanogenic fermentation. ?? 1988.

  18. Contribution of Lake-Effect Snow to the Catskill Mountains Snowpack

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Digirolamo, Nicolo E.; Frei, Allan

    2017-01-01

    Meltwater from snow that falls in the Catskill Mountains in southern New York contributes to reservoirs that supply drinking water to approximately nine million people in New York City. Using the NOAA National Ice Centers Interactive Multisensor Snow and Ice Mapping System (IMS) 4km snow maps, we have identified at least 32 lake-effect (LE) storms emanating from Lake Erie andor Lake Ontario that deposited snow in the CatskillDelaware Watershed in the Catskill Mountains of southern New York State between 2004 and 2017. This represents a large underestimate of the contribution of LE snow to the Catskills snowpack because many of the LE snowstorms are not visible in the IMS snow maps when they travel over snow-covered terrain. Most of the LE snowstorms that we identified originate from Lake Ontario but quite a few originate from both Erie and Ontario, and a few from Lake Erie alone. Using satellite, meteorological and reanalysis data we identify conditions that contributed to LE snowfall in the Catskills. Clear skies following some of the storms permitted measurement of the extent of snow cover in the watershed using multiple satellite sensors. IMS maps tend to overestimate the extent of snow compared to MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat-derived snow-cover extent maps. Using this combination of satellite and meteorological data, we can begin to quantify the important contribution of LE snow to the Catskills Mountain snowpack. Changes that are predicted in LE snowfall from the Great Lakes could impact the distribution of rain vs snow in the Catskills which may affect future reservoir operations in the NYC Water Supply System.

  19. Monitoring infiltration and recharge of playa lakes in the Texas Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    Preliminary results from playa lakes monitored by the Texas Water Development Board (TWDB) suggest that a small volume of deep infiltration and recharge to the Ogallala aquifer occurs along the margins of the lake beds, while the majority of infiltration associated with a typical inundation remains ...

  20. Ratosa playa lake in southern Spain. Karst pan or compound sink?

    PubMed

    Rodríguez-Rodríguez, Miguel; Martos-Rosillo, Sergio; Pedrera, Antonio; Benavente-Herrera, José

    2015-04-01

    In Andalusia (Spain), there are more than 45 semiarid playa lakes protected as natural reserves and related to karstic outcrops. Some of them are located over regional karstic aquifers and have internal drainage networks with sporadic surface outlets, such as sinkholes (compound sinks), but the majority of such playas have no internal drainage systems, so the only water output is evaporation (karst pans). Karst pans are perched and disconnected from the groundwater system. The fact that the Ratosa playa lake is partially located over a karstic Sierra, as well as other hydromorphological observations, it is suggested that the system could be of a compound type, but a detailed hydrogeological analysis showed that the playa is disconnected from the aquifer, so it is in fact a karst pan. Once the hydrological functioning had been established, a monthly water balance for a 10-year period (1998-2008), enabled us to reproduce the evolution of the water level of the playa lake. Estimations of runoff were carried out by a soil water estimate for a water holding capacity in the soil of 191 mm. Results show a good correlation (>90%) after calibration with the time series of water level in the lake for the same period confirming geological observations. Our results highlight that this water body is extremely vulnerable to hydrological alterations of its watershed caused by human activities, particularly those related to land-use change for agriculture. For this reason, we propose a new protection zone, based on hydrological knowledge, instead of the present Peripheral Area of Protection.

  1. Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99

    USGS Publications Warehouse

    Schrader, David L.; Holmes, Robert R.

    2000-01-01

    The Fox Chain of Lakes is a glacial lake system in McHenry and Lake Counties in northern Illinois and southern Wisconsin. Sedimentation and nutrient overloading have occurred in the lake system since the first dam was built (1907) in McHenry to raise water levels in the lake system. Using data collected from December 1, 1997, to June 1, 1999, suspended-sediment budgets were constructed for the most upstream lake in the system, Grass Lake, and for the lakes downstream from Grass Lake. A total of 64,900 tons of suspended sediment entered Grass Lake during the study, whereas a total of 70,600 tons of suspended sediment exited the lake, indicating a net scour of 5,700 tons of sediment. A total of 44,100 tons of suspended sediment was measured exiting the Fox Chain of Lakes at Johnsburg, whereas 85,600 tons entered the system downstream from Grass Lake. These suspended-sediment loads indicate a net deposition of 41,500 tons downstream from Grass Lake, which represents a trapping efficiency of 48.5 percent. A large amount of recreational boating takes place on the Fox Chain of Lakes during summer months, and suspended-sediment load was observed to rise from 110 tons per day to 339 tons per day during the 1999 Memorial Day weekend (May 26 ?31, 1999). Presumably, this rise was the result of the boating traffic because no other hydrologic event is known to have occurred that might have caused the rise. This study covers a relatively short period and may not represent the long-term processes of the Fox Chain of Lakes system, although the sediment transport was probably higher than an average year. The bed sediments found on the bottom of the lakes are composed of mainly fine particles in the silt-clay range. The Grass Lake sediments were characterized as black peat with an organic content of between 9 and 18 percent, and the median particle size ranged from 0.000811 to 0.0013976 inches. Other bed material samples were collected at streamflow-gaging stations on the

  2. Recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia) in western Lake Erie

    USGS Publications Warehouse

    Krieger, Kenneth A.; Schloesser, Don W.; Manny, Bruce A.; Trisler, Carmen E.; Heady, Susan E.; Ciborowski, Jan J.H.; Muth, Kenneth M.

    1996-01-01

    Burrowing mayflies (Hexagenia spp.) are native to western Lake Erie and were abundant until the 1950s, when they disappeared due to degraded water and sediment quality. Nymphs were absent from the sediments of most of western Lake Erie after the 1950s, although small, widely disjunct populations apparently persisted near shore. Sediment samples collected in 1993 revealed several small populations near the western and southern shores and beyond the mouths of the Detroit and Maumee rivers. A larger population was found in the southern island area, but nymphs were absent in the middle of the basin. By 1995, nymphs had spread throughout the western half and eastern end of the basin but remained absent from the middle of the basin. These data indicate thatHexagenia began recolonizing nearshore areas before offshore areas. Increasingly large swarms of winged Hexagenia on shore and over the lake between 1992 and 1994 further indicate that mayflies are recolonizing the basin. Factors that have permitted Hexageniarecovery in western Lake Erie probably include improved sediment and water quality attributed to pollution abatement programs implemented after the early 1970s, and perhaps environmental changes in the early 1990s attributed to effects of the exotic zebra mussel (Dreissena polymorpha).

  3. Intra-lake variation in maturity, fecundity, and spawning of slimy sculpins (Cottus cognatus) in southern Lake Ontario

    USGS Publications Warehouse

    Owens, Randall W.; Noguchi, George E.

    1998-01-01

    Knowledge of the spawning cycle and factors affecting fecundity of slimy sculpins (Cottus cognatus) are important in understanding the population dynamics of this species in large lake systems, like Lake Ontario. Fecundity and the spawning cycle of slimy sculpins were described from samples of slimy sculpins and their egg masses collected with bottom trawls during four annual surveys, April to October, 1988 to 1994. Incidence of gravid females and collections of their egg masses indicated that spawning by slimy sculpins likely occurred from late April to mid October in Lake Ontario. Protracted spawning by slimy sculpins in Lake Ontario is probably a function of the annual water temperature cycle at various depths. Mean length of gravid females was inversely related to density of slimy sculpins. Fecundity ranged from 55 to 1,157 eggs among fish 55 to 127 mm long, and for similar-sized fish, fecundity was inversely related to density of slimy sculpins. Fecundity was about 50% higher at Olcott, where population indices of slimy sculpins were low, compared with Nine Mile Point where indices were much higher. Somatic weight or total length were both good predictors of fecundity. Lipid content of slimy sculpins was lower in an area of high sculpin abundance than in an area of low sculpin abundance, suggesting that fecundity was a function of density-dependent food availability. In large aquatic ecosystems, samples from more than one area may be necessary to describe fecundity of a sedentary species like slimy sculpin, especially if fish densities vary considerably among geographic areas. Large geographic variations in fecundity may be an indicator of spatial imbalance of a species with its prey. Low fecundity may be a compensatory response to slimy sculpins to low food supplies, thereby limiting population growth.

  4. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    NASA Astrophysics Data System (ADS)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Fowle, David; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Marwoto, Ristiyanti; Melles, Martin; Crowe, Sean; Haffner, Doug; King, John

    2013-04-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the tropical Western Pacific warm pool, heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. While the Malili Lakes have long been considered high-priority drilling sites, only now do we have the requisite site survey information to propose the development of ICDP's first lake drilling target in the tropical western Pacific. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2010 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance

  5. Influence of permafrost on lake terraces of Lake Heihai (NE Tibetan Plateau)

    NASA Astrophysics Data System (ADS)

    Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd

    2013-04-01

    The Tibetan Plateau (TP) is one of the key regions for climatic global change. Besides the poles the TP is the third highest storage of frozen water in glaciers. Here global warming is three times higher than in the rest of the world. Additionally the TP provides water for billions of people and influences the moisture availability from the Indian and East Asian monsoon systems. During the Holocene extent and intensity of the monsoonal systems changed. Hence, in the last decades, a lot of work was done to reconstruct timing and frequency of monsoonal moisture, to understand the past and give a better forecast for the future. Comparative workings often show very heterogeneous patterns of timing and frequency of the Holocene precipitation and temperature maximum, emphasizing the local importance of catchment dynamics. In this study we present first results of lake Heihai (36°N, 93°15'E, 4500m a.s.l.), situated at the north-eastern border of the TP. The lake is surrounded by a broad band of near-shore lake sediments, attesting a larger lake extent in the past. These sediments were uplifted by permafrost, reaching nowadays heights ca. +8 meters above present lake level. Due to the uplift one of the main inflows was blocked and the whole hydrology of the catchment changed. To quantify the uplift of permafrost Hot Spot Analysis were accomplished at a DEM of the near-shore area. As a result regions of high permafrost uplift and those which mirror the original height of lake ground were revealed. The most obvious uplift took place in the northern and western part of the lake, where the four uplift centers are located. In contrast the southern and eastern areas show a rather degraded pattern (probably by fluvial erosion, thermokarst, etc.). The ancient lake bottom, without permafrost uplift was estimated to be 4-6 meters above the modern lake level. For a better understanding of permafrost interaction inside the terrace bodies a 5m sediment profile was sampled and

  6. The Cottage Lake Lineament, Washington: Onshore Extension of the Southern Whidbey Island Fault?

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Weaver, C. S.; Sherrod, B. L.; Troost, K. G.; Haugerud, R. A.; Wells, R. E.; McCormack, D. H.

    2003-12-01

    The northwest-striking southern Whidbey Island fault zone (SWIF) is reasonably well expressed by borehole data, marine seismic surveys, and potential-field anomalies on Whidbey Island and beneath surrounding waterways. Johnson et al. (1996) described evidence for Quaternary movement on the SWIF, suggested the fault zone is capable of a M 7 earthquake, and projected three fault strands onto the mainland between the cities of Seattle and Everett. Evidence for this onshore projection is scant, however, and the exact location of the SWIF in this populated region is unknown. Four linear, northwest-striking magnetic anomalies on the mainland may help address this issue. All of the anomalies are low in amplitude and best illuminated in residual magnetic fields. The most prominent of the magnetic anomalies extends at least 15 km, is on strike with the SWIF on Whidbey Island, and passes near Cottage Lake, about 15 km south of downtown Everett. The magnetic anomaly is associated with linear topography along its entire length, but spectral analysis indicates that the source of the anomaly lies principally beneath the topographic surface and extends to depths greater than 2 km. The anomalies are likely created by northwest-trending, faulted and folded Tertiary volcanic and sedimentary rocks of the Cascade foothills, which rise from beneath the Quaternary lowland fill to the southeast of the SWIF. High-resolution Lidar topography provided by King County shows subtle scarps cutting the latest Pleistocene glaciated surface at two locations along the magnetic anomaly; scarps are parallel to the anomaly trend. In the field, one scarp has 2 to 3 m of north-side-up offset; paleoseismic trench excavations are planned for Fall 2003 to determine their nature and history. Preliminary examination of boreholes, recently acquired as part of an ongoing sewer tunnel project, show anomalous stratigraphic and structural disturbances in the area of the magnetic anomalies. Analyses are underway

  7. LANDSCAPE INFLUENCES ON LAKE CHEMISTRY OF SMALL DIMICTIC LAKES IN THE HUMAN DOMINATED SOUTHERN WISCONSIN LANDSCAPE

    EPA Science Inventory

    Changes in landscape heterogeneity, historic landcover change, and human disturbance regimes are governed by complex interrelated landscape processes that modify lake water quality through the addition of nutrients, sediment, anthropogenic chemicals, and changes in major ion conc...

  8. Buried soils in a perched dunefield as indicators of late holecene lake-level change in the Lake Superior basin

    USGS Publications Warehouse

    Anderton, John B.; Loope, Walter L.

    1995-01-01

    A stratigraphic analysis of buried soils within the Grand Sable Dunes, a dune field perched 90 m above the southern shore of Lake Superior, reveals a history of eolian activity apparently linked with lake-level fluctuations over the last 5500 yr. A relative rise in the water plane of the Nipissing Great Lakes initially destabilized the lakeward bluff face of the Grand Sable plateau between 5400 and 4600 14C yr B.P. This led to the burial of the Sable Creek soil by eolian sediments derived from the bluff face. Subsequent episodes of eolian activity appear to be tied to similar destabilizing events; high lake levels may have initiated at least four and perhaps eleven episodes of dune building as expressed by soil burials within the dunes. Intervening low lake levels probably correlate with soil profile development, which varies from the well-developed Sable Creek Spodosol catena to thin organic layers containing in-place stumps and tree trunks. Paleoecological reconstructions available for the area do not imply enough climatic change to account for the episodic dune activity. Burial of soils by fine-fraction sediments links dune-building episodes with destabilization of the lower lake-facing bluff, which is rich in fines.

  9. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    PubMed Central

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong

    2016-01-01

    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (<23.7 m), medium (25.4–26.0 m), and high-elevation groups (>28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes. PMID:27808154

  10. An 8,000 year oxygen isotope record of hydroclimatic change from Paradise Lake, central British Columbia

    NASA Astrophysics Data System (ADS)

    Hillman, A. L.; Abbott, M. B.; Steinman, B. A.; Pompeani, D. P.; Cwiklik, J. P.

    2013-12-01

    Climate in the Pacific Northwest over the Holocene has primarily been controlled by the position of the Aleutian Low (AL), which is interconnected to the Pacific Decadal Oscillation (PDO) and the El Nino Southern Oscillation (ENSO). Stable isotopes of authigenic calcite precipitated from lake water and archived as lake sediment can be used to reconstruct changes in precipitation/evaporation (P/E) balance over timescales ranging from individual years to millennia. Several records of this type from southern British Columbia and northern Washington (e.g., Castor and Cleland Lakes), as well as from the southern Yukon Territory (e.g., Marcella and Rantin Lakes) have been produced, but few records from between these two regions exist. Here, we present a record of δ18O and δ13C measurements of authigenic calcite from Paradise Lake, British Columbia (54.68259°N, 122.61154°W), a surficially closed basin, groundwater throughflow lake located in the central interior of British Columbia. A total of 14 AMS radiocarbon dates were used to provide age control for the Paradise Lake record. In sediment from 8,000-4,500 years BP, oxygen isotope values vary around a mean value of -18.0‰. From 4,500-2,000 years BP, a general trend towards more positive oxygen isotope values occurs, with increased variability in both δ18O and δ13C. A gradual shift of ~2‰ in δ18O measurements (to a mean value of -16.0‰) occurs over the last 2,000 years of the record, likely due to lower lake levels. The large magnitude mean state shifts in oxygen isotopes over the last 8,000 years are similar to that observed in the Marcella Lake record (Anderson et al., 2007), although they are of a smaller magnitude. We hypothesize that significant groundwater throughflow at Paradise Lake likely causes a muted hydrologic and isotopic response to climate forcing relative to Marcella Lake, which has more isotopically enriched water and loses a greater proportion of water via evaporation. The Paradise lake

  11. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic

    NASA Astrophysics Data System (ADS)

    Astel, Aleksander M.; Bigus, Katarzyna; Obolewski, Krystian; Glińska-Lewczuk, Katarzyna

    2016-12-01

    Ionic profile, pH, electrolytic conductivity, chemical oxygen demand and concentration of selected heavy metals (Ni, Cu, Zn, Fe and Mn) were determined in water of 11 intermittently closed and open lakes and lagoons (ICOLLs) located in Polish coastline. Multidimensional data set was explored by the use of the self-organizing map (SOM) technique to avoid supervised and predictable division for fully isolated, partially and fully connected lakes. Water quality assessment based on single parameter's mean value allowed classification of majority of lakes to first or second class of purity according to regulation presenting classification approach applicable to uniform parts of surface waters. The SOM-based grouping revealed seven clusters comprising water samples of similar physico-chemical profile. Fully connected lakes were characterized by the highest concentration of components characteristic for sea salts (NaCl, MgCl2, MgSO4, CaSO4, K2SO4 and MgBr2), however spring samples from Łebsko were shifted to another cluster suggesting that intensive surface run-off and fresh-water inflow through Łupawa river decreases an impact of sea water intrusions. Forecasted characteristic of water collected in Resko Przymorskie lake was disturbed by high contamination by nitrites indicating accidental and local contamination due to usage of sodium nitrite for the curing of meat. Some unexpected sources of contamination was discovered in intermittently open and closed lakes. Presumably Zn contamination is due to use of wood preservatives to protect small wooden playgrounds or camping places spread around one of the lake, while increased concentration of Ni could be connected with grass and vegetation burning. Waters of Jamno lake are under the strongest anthropogenic impact due to inefficient removal of phosphates by waste water treatment plant and contamination by Fe and Mn caused by backwashing of absorption filters. Generally, the quality of ICOLLs' water was diversified, while

  12. Chemical and mineralogical proxies of erosion episodes in the dried lake sediments (Amik Lake, Southern Turkey): paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurélia; Lebeau, Héléne; Fagel, Nathalie; Vander Auwera, Jacquelinec; Karabacak, Volkan; Schmidt, Sabine

    2016-04-01

    The Amik Basin in the Eastern Mediterranean region has been continuously occupied since 6000-7000 BC. The landscape has sustained with highly variable anthropic pressure culminating during the Late Roman Period when the Antioch city reached its golden age. The basin also sustained a high seismic activity (M≥7) as it is a releasing step-over along the Dead Sea Fault. The study focuses on the sedimentary record of the Amik Lake occupying the central part of the Basin. Our objective is to constrain major paleo-environmental changes in the area over the last 4000 years and to unravel possible human impacts on the sedimentation. A diverse array of complementary methods was applied on the 6 m long record. High resolution of mineralogical (XRD) and geochemical (XRF) analyses were performed. Quantitative mineralogical phases of sediments by the Rietveld method were computed using Topaz software. The age of the record is constrained combining radionuclide and radiocarbon dating, and checked using the correlation between the earthquake history and rapidly deposited layer identified. A high sedimentation rate of 0.12 cm/yr was inferred at the coring site. The 4000 years old record shows that significant fluctuations of the lake level and the riverine system inflow into the Amik Lake occurred. The Late Bronze lowstand leaded to punctual dryings of the lake at the end of the Bronze/Iron transition marked by the collapse of the Hittite Empire and during the Dark ages. At that time, the riverine was carrying a large terrigenous input linked to strong soil erosion related to deforestation, exploitation of mineral resources and the beginning of upland cultivation. During the Roman Period and in the later periods, upland soils were partly depleted and the riverine system completely transformed by channelization that leaded to a mashification of the Amik Basin. Chemical and mineralogical composition of sediments is quite diversified reflecting the significant geological variation

  13. The biogeochemical vertical structure renders a meromictic volcanic lake a trap for geogenic CO2 (Lake Averno, Italy)

    PubMed Central

    Fazi, Stefano; Rossetti, Simona; Pratesi, Paolo; Ceccotti, Marco; Cabassi, Jacopo; Capecchiacci, Francesco; Venturi, Stefania; Vaselli, Orlando

    2018-01-01

    Volcanic lakes are characterized by physicochemical favorable conditions for the development of reservoirs of C-bearing greenhouse gases that can be dispersed to air during occasional rollover events. By combining a microbiological and geochemical approach, we showed that the chemistry of the CO2- and CH4-rich gas reservoir hosted within the meromictic Lake Averno (Campi Flegrei, southern Italy) are related to the microbial niche differentiation along the vertical water column. The simultaneous occurrence of diverse functional groups of microbes operating under different conditions suggests that these habitats harbor complex microbial consortia that impact on the production and consumption of greenhouse gases. In the epilimnion, the activity of aerobic methanotrophic bacteria and photosynthetic biota, together with CO2 dissolution at relatively high pH, enhanced CO2- and CH4 consumption, which also occurred in the hypolimnion. Moreover, results from computations carried out to evaluate the dependence of the lake stability on the CO2/CH4 ratios, suggested that the water density vertical gradient was mainly controlled by salinity and temperature, whereas the effect of dissolved gases was minor, excepting if extremely high increases of CH4 are admitted. Therefore, biological processes, controlling the composition of CO2 and CH4, contributed to stabilize the lake stratification of the lake. Overall, Lake Averno, and supposedly the numerous worldwide distributed volcanic lakes having similar features (namely bio-activity lakes), acts as a sink for the CO2 supplied from the hydrothermal/magmatic system, displaying a significant influence on the local carbon budget. PMID:29509779

  14. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART I

    EPA Science Inventory

    The southern Lake Michigan aea continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues tothese sources and their contributions to urban polluti...

  15. Modern process study on Chen Co and Ranwu Lake of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ju, J.

    2013-12-01

    Lakes are important junctions of geospheres. There are many lakes distributed on the Tibetan Plateau (TP). Lake sediment is one of the important media for retrieving the past environmental changes. Because of the uniqueness of environment of the TP, sediment, water and ecological system in lakes has local characteristic inevitably. Modern process research on different lakes will benefit interpreting the proxies more accurately. The development of observation station makes the observation and sampling more convenient. Modern process of lakes can be fulfilled in two ways, spatial or seasonal variation study, with a same aim finding out the dominant factors controlling the variations. Chen Co is a closed lake locating at inland area of southern Tibet. Ranwu Lake is an open lake locating at outflow area of SE Tibet. In this study, I studied the spatial and (or) seasonal variation of lake water and sediment in the two distinct types of lakes to make clear the mechanism of modern process. Particular attention was given to the pattern and degree of influence of rivers supplied by glaciers on lakes. Preliminary conclusions are outlined as follow: (1) In the lakes with glacier melt supplying rivers, the patterns of supply of the rivers to the lake are different. In close lake Chen Co, the influence of glacier melt is mainly reflected in the south lake area. In the open lake Ranwu Lake, the influence is comprehensive and direct. This difference influencing patterns how the lake sediments reflected the glacier melt under the past environmental changes. (2) The supply of Kaluxiong Qu River, supplied mainly by glacier melt, to Chen co has North-South difference: more directly to south lake area, reflecting by lower value of conductivity and pH, finer grain size and west to east transporting trend, greater deposition rate, more allogenic fine sediments, not obvious biological and endogenic deposition there. This enlightens the site selection for lake cores and interpretation of

  16. Solar Output Controls Periodicity in Lake Productivity and Wetness at Southernmost South America

    PubMed Central

    Pérez-Rodríguez, Marta; Gilfedder, Benjamin-Silas; Hermanns, Yvonne-Marie; Biester, Harald

    2016-01-01

    Cyclic changes in total solar irradiance (TSI) during the Holocene are known to affect global climatic conditions and cause cyclic climatic oscillations, e.g., Bond events and related changes of environmental conditions. However, the processes how changes in TSI affect climate and environment of the Southern Hemisphere, especially in southernmost South America, a key area for the global climate, are still poorly resolved. Here we show that highly sensitive proxies for aquatic productivity derived from sediments of a lake near the Chilean South Atlantic coast (53 °S) strongly match the cyclic changes in TSI throughout the Holocene. Intra-lake productivity variations show a periodicity of ~200–240 years coherent with the time series of TSI-controlled cosmogenic nuclide 10Be production. In addition TSI dependent periodicity of Bond events (~1500 years) appear to control wetness at the LH site indicated by mineral matter erosion from the catchment to the lake assumingly through shifts of the position of the southern westerly wind belt. Thus, both intra-lake productivity and wetness at the southernmost South America are directly or indirectly controlled by TSI. PMID:27869191

  17. Spatiotemporal patterns of precipitation extremes in the Poyang Lake basin, China: Changing properties and causes

    NASA Astrophysics Data System (ADS)

    Xiao, M.

    2016-12-01

    Under the background of climate change, extensive attentions have been paid on the increased extreme precipitation from the public and government. To analyze the influences of large-scale climate indices on the precipitation extremes, the spatiotemporal patterns of precipitation extremes in the Poyang Lake basin have been investigated using the Bayesian hierarchical method. The seasonal maximum one-day precipitation amount (Rx1day) was used to represent the seasonal precipitation extremes. Results indicated that spring Rx1day was affected by El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), a positive ENSO event in the same year tends to decrease the spring Rx1day in the northern part of Poyang Lake Basin while increase the spring Rx1day in southeastern Poyang Lake Basin, a positive NAO events in the same year tends to increase the spring Rx1day in the southwest and northwest part of Poyang Lake basin while decrease the spring Rx1day in the eastern part of Poyang Lake basin; summer Rx1day was affected by Indian Ocean Dipole (IOD), positive IOD events in the same year tend to increase the summer Rx1day of northern Poyang Lake basin while decrease summer Rx1day of southern Poyang Lake basin; autumn Rx1day was affected by ENSO, positive ENSO events in the same year tend to mainly increase the autumn Rx1day in the west part of Poyang Lake basin; winter Rx1day was mainly affected by the NAO, positive NAO events in the same year tend to mainly increase the winter Rx1day of southern Poyang Lake basin, while positive NAO events in the previous year tend to mainly increase the winter Rx1day in the central and northeast part of Poyang Lake basin. It is considered that the region with the negative vertical velocity is dominated by more precipitation and vice versa. Furthermore, field patterns of 500 hPa vertical velocity anomalies related to each climate index have further corroborated the influences of climate indices on the seasonal Rx1day, and

  18. Flooding in Southern Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Over the past two weeks, heavy rains have inundated southern Russia, giving rise to floods that killed up to 83 people and drove thousands from their homes. This false-color image acquired on June 23, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite shows some of the worst flooding. The Black Sea is the dark patch in the lower left-hand corner. The city of Krasnodor, Russia, which was one of the cities hardest hit, sits on the western edge of the larger lake on the left side of the image, and Stavropol, which lost more lives than any other city, sits just east of the small cluster of lakes on the right-hand side of the image. Normally, the rivers and smaller lakes in this image cannot even be seen clearly on MODIS imagery. In this false-color image, the ground is green and blue and water is black or dark brown. Clouds come across as pink and white. Credit: Image courtesy Jesse Allen, NASA GSFC, based on data provided by the MODIS Rapid Response System.

  19. Geochronology and paleoenvironment of pluvial Harper Lake, Mojave Desert, California, USA

    USGS Publications Warehouse

    Garcia, Anna L.; Knott, Jeffrey R.; Mahan, Shannon; Bright, Jordan

    2014-01-01

    Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.

  20. Thermal regimes of Rocky Mountain lakes warm with climate change

    PubMed Central

    Roberts, James J.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans. PMID:28683083

  1. Thermal regimes of Rocky Mountain lakes warm with climate change.

    PubMed

    Roberts, James J; Fausch, Kurt D; Schmidt, Travis S; Walters, David M

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  2. Thermal regimes of Rocky Mountain lakes warm with climate change

    USGS Publications Warehouse

    Roberts, James J.; Fausch, Kurt D.; Schmidt, Travis S.; Walters, David M.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  3. Examination of the watershed-wide distribution of Escherichia coli along southern Lake Michigan: An integrated approach

    USGS Publications Warehouse

    Whitman, R.L.; Nevers, M.B.; Byappanahalli, M.N.

    2006-01-01

    Recent research has highlighted the occurrence of Escherichia coli in natural habitats not directly influenced by sewage inputs. Most studies on E. coli in recreational water typically focus on discernible sources (e.g., effluent discharge and runoff) and fall short of integrating riparian, nearshore, onshore, and outfall sources. An integrated “beachshed” approach that links E. coli inputs and interactions would be helpful to understand the difference between background loading and sewage pollution; to develop more accurate predictive models; and to understand the differences between potential, net, and apparent culturable E. coli. The objective of this study was to examine the interrelatedness of E. colioccurrence from various coastal watershed components along southern Lake Michigan. The study shows that once established in forest soil, E. coli can persist throughout the year, potentially acting as a continuous non-point source of E. colito nearby streams. Year-round background stream loading of E. coli can influence beach water quality. E. coli is present in highly variable counts in beach sand to depths just below the water table and to distances at least 5 m inland from the shore, providing a large potential area of input to beach water. In summary, E. coliin the fluvial-lacustrine system may be stored in forest soils, sediments surrounding springs, bank seeps, stream margins and pools, foreshore sand, and surface groundwater. While rainfall events may increase E. coli counts in the foreshore sand and lake water, concentrations quickly decline to prerain concentrations. Onshore winds cause an increase in E. coli in shallow nearshore water, likely resulting from resuspension of E. coli-laden beach sand. When examining indicator bacteria source, flux, and context, the entire “beachshed” as a dynamic interacting system should be considered.

  4. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system

    PubMed Central

    Inagaki, Fumio; Kuypers, Marcel M. M.; Tsunogai, Urumu; Ishibashi, Jun-ichiro; Nakamura, Ko-ichi; Treude, Tina; Ohkubo, Satoru; Nakaseama, Miwako; Gena, Kaul; Chiba, Hitoshi; Hirayama, Hisako; Nunoura, Takuro; Takai, Ken; Jørgensen, Bo B.; Horikoshi, Koki; Boetius, Antje

    2006-01-01

    Increasing levels of CO2 in the atmosphere are expected to cause climatic change with negative effects on the earth's ecosystems and human society. Consequently, a variety of CO2 disposal options are discussed, including injection into the deep ocean. Because the dissolution of CO2 in seawater will decrease ambient pH considerably, negative consequences for deep-water ecosystems have been predicted. Hence, ecosystems associated with natural CO2 reservoirs in the deep sea, and the dynamics of gaseous, liquid, and solid CO2 in such environments, are of great interest to science and society. We report here a biogeochemical and microbiological characterization of a microbial community inhabiting deep-sea sediments overlying a natural CO2 lake at the Yonaguni Knoll IV hydrothermal field, southern Okinawa Trough. We found high abundances (>109 cm−3) of microbial cells in sediment pavements above the CO2 lake, decreasing to strikingly low cell numbers (107 cm−3) at the liquid CO2/CO2-hydrate interface. The key groups in these sediments were as follows: (i) the anaerobic methanotrophic archaea ANME-2c and the Eel-2 group of Deltaproteobacteria and (ii) sulfur-metabolizing chemolithotrophs within the Gamma- and Epsilonproteobacteria. The detection of functional genes related to one-carbon assimilation and the presence of highly 13C-depleted archaeal and bacterial lipid biomarkers suggest that microorganisms assimilating CO2 and/or CH4 dominate the liquid CO2 and CO2-hydrate-bearing sediments. Clearly, the Yonaguni Knoll is an exceptional natural laboratory for the study of consequences of CO2 disposal as well as of natural CO2 reservoirs as potential microbial habitats on early Earth and other celestial bodies. PMID:16959888

  5. Glacial lakes of the Central and Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  6. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART III

    EPA Science Inventory

    The southern Lake Michigan aea continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban polluti...

  7. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART II

    EPA Science Inventory

    The southern Lake Michigan area continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban pollut...

  8. Lake Pontchartrain Basin: bottom sediments and related environmental resources

    USGS Publications Warehouse

    Manheim, Frank T.; Hayes, Laura

    2002-01-01

    Lake Pontchartrain is the largest estuary southern Louisiana. It is an important recreational, commercial, and environmental resource for New Orleans and southwestern Louisiana. This publication is part of a 5-year cooperative program led by the USGS on the geological framework and sedimentary processes of the Lake Pontchartrain Basin.This presentation is divided into two main parts:- Scientific Research and Assessments- Multimedia Tools and Regional ResourcesThe scientific sections include historical information on the area; shipboard, field, and remote sensing studies; and a comprehensive sediment database with geological and chemical discussions of the region.The multimedia and resources sections include Geographic Information System (GIS) tools and data, a video demonstrating vibracore sampling techniques in Lake Pontchartrain, and abstracts from four Basics of the Basin symposia.

  9. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1987-01-01

    The acidification of lake waters from airborne pollution is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern U.S. and on the Canadian Shield is though to be enormous. How seasonal changes in lake transparency are related to annual acidic load was examined. The relationship between variations in lake acidification and ecophysical units was also examined. The utility of Thematic Mapper based observations to measure seasonal changes in the optical transparency in acid lakes was investigated. The potential for this optical response is related to a number of local ecophysical factors with bedrock geology being, perhaps, the most important. Other factors include sulfate deposition, vegetative cover, and terrain drainage/relief. The area of southern Ontario contains a wide variety of geologies from the most acid rain sensitive granite quartzite types to the least sensitive limestone dolomite sediments. Annual sulfate deposition ranges from 1.0 to 4.0 grams/sq m.

  10. Combined Effect of El Nino Southern Oscillation and Atlantic Multidecadal Oscillation on Lake Chad Level Variability Region

    NASA Technical Reports Server (NTRS)

    Okonkwo, Churchill; Demoz, Belay; Sakai, Ricardo; Ichoku, Charles; Anarado, Chigozie; Adegoke, Jimmy; Amadou, Angelina; Abdullahi, Sanusu Imran

    2015-01-01

    In this study, the combined effect of the Atlantic Multidecadal Oscillation (AMO) and El Niño Southern Oscillation (ENSO) on the Lake Chad (LC) level variability is explored. Our results show that the lake level at the Bol monitoring station has a statistically significant correlation with precipitation (R2 = 0.6, at the 99.5% confidence level). The period between the late 1960s and early 1970s marked a turning point in the response of the regional rainfall to climatic drivers, thereby severely affecting the LC level. Our results also suggest that the negative impact of the cold phase of AMO on Sahel precipitation masks and supersedes the positive effect of La Niña in the early the 1970s. The drop in the size of LC level from 282.5 m in the early 1960s to about 278.1 m in 1983/1984 was the largest to occur within the period of study (1900-2010) and coincides with the combined cold phase of AMO and strong El Niño phase of ENSO. Further analyses show that the current warm phase of AMO and increasing La Niña episodes appear to be playing a major role in the increased precipitation in the Sahel region. The LC level is responding to this increase in precipitation by a gradual recovery, though it is still below the levels of the 1960s. This understanding of the AMO-ENSO-rainfall-LC level association will help in forecasting the impacts of similar combined episodes in the future. These findings also have implications for long-term water resources management in the LC region.

  11. Characterization of dissolved organic matter in Dongjianghu Lake by UV-visible absorption spectroscopy with multivariate analysis.

    PubMed

    Zhu, Yanzhong; Song, Yonghui; Yu, Huibin; Liu, Ruixia; Liu, Lusan; Lv, Chunjian

    2017-08-08

    UV-visible absorption spectroscopy coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to characterize spectroscopic components, detect latent factors, and investigate spatial variations of dissolved organic matter (DOM) in a large-scale lake. Twelve surface water samples were collected from Dongjianghu Lake in China. DOM contained lignin and quinine moieties, carboxylic acid, microbial products, and aromatic and alkyl groups, which in the northern part of the lake was largely different from the southern part. Fifteen spectroscopic indices were deduced from the absorption spectra to indicate molecular weight or humification degree of DOM. The northern part of the lake presented the smaller molecular weight or the lower humification degree of DOM than the southern part. E 2/4 , E 3/4 , E 2/3 , and S 2 were latent factors of characterizing the molecular weight of DOM, while E 2/5 , E 3/5 , E 2/6 , E 4/5 , E 3/6 , and A 2/1 were latent factors of evaluating the humification degree of DOM. The UV-visible absorption spectroscopy combined with PCA and HCA may not only characterize DOM fractions of lakes, but may be transferred to other types of waterscape.

  12. The influence of ice on southern Lake Michigan coastal erosion

    USGS Publications Warehouse

    Barnes, P.W.; Kempema, E.W.; Reimnitz, E.; McCormick, M.

    1994-01-01

    Coastal ice does not protect the coast but enhances erosion by displacing severe winter wave energy from the beach to the shoreface and by entraining and transporting sediment alongshore and offshore. Three aspects of winter ice in Lake Michigan were studied over a 3-year period and found to have an important influence on coastal sediment dynamics and the coastal sediment budget: (1) the influence of coastal ice on shoreface morphology, (2) the transport of littoral sediments by ice, and (3) the formation of anchor and underwater ice as a frequent and important event entraining and transporting sediment. The nearshore ice complex contains a sediment load (0.2 - 1.2 t/m of coast) that is roughly equivalent to the average amount of sand eroded from the coastal bluffs and to the amount of sand ice- rafted offshore to the deep lake basin each year. -from Authors

  13. Electromagnetic Surveying in the Mangrove Lakes Region of Everglades National Park

    NASA Astrophysics Data System (ADS)

    Whitman, D.; Price, R.; Frankovich, T.; Fourqurean, J.

    2015-12-01

    The Mangrove Lakes are an interconnected set of shallow (~ 1m), brackish lake and creek systems on the southern margin of the Everglades adjacent to Florida Bay. Current efforts associated with the Comprehensive Everglades Restoration Plan (CERP) aim to increase freshwater flow into this region. This study describes preliminary results of geophysical surveys in the lakes conducted to assess changes in the groundwater chemistry as part of a larger hydrologic and geochemical study in the Everglades Lakes region. Marine geophysical profiles were conducted in Alligator Creek (West Lake) and McCormick Creek systems in May, 2014. Data included marine electromagnetic (EM) profiles and soundings, water depth measurements, surface water conductivity and salinity measurements. A GSSI Profiler EMP-400 multi-frequency EM conductivity meter continuously recorded in-phase and quadrature field components at 1, 8, and 15 KHz. The system was deployed in a flat bottomed plastic kayak towed behind a motorized skiff. Lake water depths were continuously measured with a sounder/chart plotter which was calibrated with periodic sounding rod measurements. At periodic intervals during the survey, the profiling was stopped and surface water conductivity, temperature and salinity are recorded with a portable YSI probe on the tow boat. Over 40,000 discrete 3-frequency EM measurements were collected. The data were inverted to 2-layer models representing the water layer thickness and conductivity and the lake bottom conductivity. At spot locations, models were constrained with water depth soundings and surface water conductivity measurements. At other locations along the profiles, the water depth and conductivity were allowed to be free, but the free models were generally consistent with the constrained models. Multilayer sub-bottom models were also explored but were found to be poorly constrained. In West Lake, sub-bottom conductivities decreased from 400 mS/m in the west to 200 mS/m in the

  14. Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology and sedimentation

    NASA Technical Reports Server (NTRS)

    Wharton, R. A. Jr; Simmons, G. M. Jr; McKay, C. P.; Wharton RA, J. r. (Principal Investigator)

    1989-01-01

    Lake Hoare (77 degrees 38' S, 162 degrees 53' E) is a perennially ice-covered lake at the eastern end of Taylor Valley in southern Victoria Land, Antarctica. The environment of this lake is controlled by the relatively thick ice cover (3-5 m) which eliminates wind generated currents, restricts gas exchange and sediment deposition, and reduces light penetration. The ice cover is in turn largely controlled by the extreme seasonality of Antarctica and local climate. Lake Hoare and other dry valley lakes may be sensitive indicators of short term (< 100 yr) climatic and/or anthropogenic changes in the dry valleys since the onset of intensive exploration over 30 years ago. The time constants for turnover of the water column and lake ice are 50 and 10 years, respectively. The turnover time for atmospheric gases in the lake is 30-60 years. Therefore, the lake environment responds to changes on a 10-100 year timescale. Because the ice cover has a controlling influence on the lake (e.g. light penetration, gas content of water, and sediment deposition), it is probable that small changes in ice ablation, sediment loading on the ice cover, or glacial meltwater (or groundwater) inflow will affect ice cover dynamics and will have a major impact on the lake environment and biota.

  15. Long term (1997-2014) spatial and temporal variations in nitrogen in Dongting Lake, China

    PubMed Central

    Tian, Zebin; Zheng, Binghui; Wang, Lijing; Li, Liqiang; Wang, Xing; Li, Hong; Norra, Stefan

    2017-01-01

    In order to protect the water quality of Dongting Lake, it is significant to find out its nitrogen pollution characteristics. Using long-term monthly to seasonally data (1997–2014), we investigated the spatial and temporal variations in nitrogen in Dongting Lake, the second largest freshwater lake in China. The average concentrations of total nitrogen (TN) in the eastern, southern, and western parts of the lake were 1.77, 1.56, and 1.35 mg/L, respectively, in 2014. TN pollution was generally worse in the southern area than in the western area. Concentrations showed temporal variation, and were significantly higher during the dry season than during the wet season. Based on the concentration and growth rate of TN, three different stages were identified in the long term lake data, from 1997 to 2002, from 2003 to 2008, and from 2009 to 2014, during which the concentrations and the growth rate ranged from 1.09–1.51 mg/L and 22.09%-40.03%, 1.05–1.57 mg/L and -9.05%-7.74%, and 1.68–2.02 mg/L and 57.99%-60.41%, respectively. The main controls on the lake water TN concentrations were the quality and quantity of the lake inflows, spatial and temporal variations in hydrodynamic conditions within the lake (flow velocity, flow direction), and point and nonpoint inputs from human activities. Diffuse nutrient losses from agricultural land are a significant contributor. As a priority, the local government should aim to control the pollutant inputs from upstream and non-point nutrient losses from land. PMID:28166245

  16. Notice of release of Turkey Lake germplasm of bottlebrush squirreltail

    USDA-ARS?s Scientific Manuscript database

    Turkey Lake Germplasm of bottlebrush squirreltail (Elymus elymoides ssp. californicus) was released by USDA-Agricultural Research Service in 2015 as a selected class of pre-variety germplasm (natural track). This new plant material originates in Gooding County in southern Idaho's Snake River Plain....

  17. Paper plant effluent revisited-southern Lake Champlain, Vermont and New York

    USGS Publications Warehouse

    Haupt, R.S.; Folger, D.W.

    1993-01-01

    We used geologic and geochemical techniques to document the change with time of the distribution and concentration of contaminated bottom sediments in southern Lake Champlain near an International Paper Company plant. Our work, initiated in 1972, was expanded on behalf of Vermont citizens in a class-action suit against the International Paper Company. To update our 1972-1973 results, we collected nine cores in 1988 upstream and downstream from the paper plant effluent diffuser. Water content, volatile solids, organic carbon, and three ratios, Al/Si, Cl/Si, and S/Si, in addition to megascopic and microscopic observations, were evaluated to identify and trace the distribution of effluent and to measure the thickness of sediment affected by or containing components of effluent. Analyses were carried out on samples from the cores as well as from effluent collected directly from the plant's waste treatment facility. In 1973, two years after the plant opened, we cored near the diffuser; sediment contaminated with effluent was 4.5 cm thick. In 1988, in the same area, sediment contaminated with effluent was 17 cm thick. In 15 years, water content increased from 72 to 85 percent, volatile solids from 7 to 20 percent, and organic carbon from 2 to 12 percent. Cl/Si and S/Si were high only near the diffuser and were zero elsewhere. In the area of the diffuser, contaminated sediment appears to be accumulating at a rate of about 1 cm/yr. At a control location 22 km upstream (south) from the plant, the top, poorly consoli-dated layer was only 1 cm or less thick both in 1973 and in 1988. The class-action suit was settled in favor of the plaintiffs for $5 million. ?? 1993 Springer-Verlag.

  18. Influence of geomorphic setting on sedimentation of two adjacent alpine lakes, Triglav Lakes Valley (Julian Alps, NW Slovenia)

    NASA Astrophysics Data System (ADS)

    Smuc, Andrej; Skabene, Dragomir; Muri, Gregor; Vreča, Polona; Jaćimović, Radojko; Čermelj, Branko; Turšič, Janja

    2013-04-01

    The Triglav Lakes Valley is elongated, 7km long depression, located high (at places over 2000 m.a.s.l.) in the central part of the Julian Alps (NW Slovenia). It hosts 6 small isolated lakes that formed due to the combination of Neogene tectonic and Pleistocene glaciation. The study is focused on the 5th and 6th Triglav Valley Lakes that characterize lower part of the valley. The lakes are located so close to each other that they are even connected in times of high water. Thus, they share the same bedrock geology, are subjected to the same climatic forcing and share similar vegetation communities. Despite their proximity, the lakes differ in their hydrologic and geomorphic setting. The lakes have no permanent surface tributaries; however 5th is fed periodically, at times of high water level, by the Močivec spring, while additional water flows from the swamp area near its northern shore. An underground spring on the eastern side of 5th represents the lake's only permanent freshwater inflow, while drainage takes place to the west via a small ponor. 6th has only one weak underground spring on the eastern side of the lake. Water levels may fluctuate between 2 and 3 m. Additionally, the lakes have different configuration of lakes shores; the northern shores of the 5th lake are low-angle soil and debris covered plateau, while southern shores of the 5th lake and shores of the 6th lake are represented by heavily karstified carbonate base rock and covered partly by trees. The detailed sedimentary analysis of the lakes record showed some similarities, but also some significant differences. Sediments of both lakes are represented by fine-grained turbidity current deposits that are transported from lake shores during snow melt or storms. The grain-size and sedimentary rates of the lakes are however markedly different. The 5th lake has coarser grained sediments, with mean ranging from 46 to 60 µm and records higher sedimentation rates of ~0,57 cm/year, compared to the 6th lake

  19. Geomorphological, pedological, and hydrological characteristics of karst lakes at Conversano (Apulia, southern Italy) as a basis for environmental protection

    NASA Astrophysics Data System (ADS)

    Lopez, N.; Spizzico, V.; Parise, M.

    2009-07-01

    The land around Conversano (Apulia, southern Italy) is part of the Murge karst, interesting limestones and dolomitic limestones of Upper Cretaceous age, in a flat environment with sub-horizontal setting. Dolines and karst depressions are the most typical landforms in the area. Filling of these landforms with eluvial deposits locally created the possibility of water stagnancy at the surface. The Conversano territory presents ten karst lakes that represented, until some decades ago, the only water resource available for the local people, who built the typical bell-shaped wells to collect water volumes satisfying local needs during the dry season. Currently, these lakes have no great importance as water supplies, but represent habitats of great naturalistic value that are still able to support the ecological functionality and the wet environments with self-vegetation. Hydrological and hydrogeological studies have been carried out with the aim to fully estimate the related environmental problems. For this purpose, the hydrogeologic data of historical time series have been collected and compared to those of the last 5 years; successively, according to the Thornthwaite method, a hydrological monthly balance has been evaluated to quantify the distribution of water volumes interacting annually between the surface water bodies and the underlying carbonate groundwater. This evaluation has highlighted the need to carefully consider all the parameters concurring to a right definition of water balance for a karst environment, where pedological features, climatic conditions and anthropogenic modifications to the environment represent the elements of a very delicate system. Particularly, on the basis of recent soil map and field surveys, a re-evaluation of the available water capacity, estimated in some 40 mm, has been carried out. The studies have highlighted the need to extend the environmental protection rules to larger areas around the lakes, e.g. at the catchment scale, with

  20. Deep structure beneath Lake Ontario: Crustal-scale Grenville subdivisions

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.

    1994-01-01

    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  1. Fire history in a southern Appalachian deciduous forest

    Treesearch

    Norman L., Jr. Christensen; Kurt Fesenmeyer

    2012-01-01

    Because there are few long-term dendrochronological and lake sediment data for the southern Appalachians, little is known regarding the history of fire in this region's forests through the Holocene. Radio-carbon ages for 82 soil charcoal samples collected from local depositional sites along a topographic gradient from mixed hardwood (Liriodendron...

  2. Comparative precision of age estimates from two southern reservoir populations of paddlefish [Polyodon spathula (Walbaum, 1792)

    USGS Publications Warehouse

    Long, James M.; Nealis, Ashley

    2017-01-01

    The aim of the study was to determine whether location and sex affected the age precision estimates between two southern, reservoir populations of paddlefish [Polyodon spathula (Walbaum, 1792)]. From 589 paddlefish collected in Grand Lake and Keystone Lake, Oklahoma in 2011, ages from dentaries were estimated using three independent readers and precision was compared with coefficient of variation between locations and sexes. Ages were more precisely estimated from Grand Lake and from females.

  3. Chemical fluxes and sensitivity to acidification of two high elevation catchments in southern Wyoming

    Treesearch

    J. O. Reuss; F. A. Vertucci; R. C. Musselman; R. A. Sommerfeld

    1995-01-01

    Hydrological and chemical fluxes were examined for East and West Glacier Lakes and their adjacent high-elevation (3200-3700 m) catchments in the Snowy Range of southern Wyoming. Both lakes are approximately 3 ha, but the East Glacier catchment (29 ha) is about half the size of West Glacier. Bedrock is primarily quartzite that has been heavily fractured and crossed with...

  4. Thickness of ice on perennially frozen lakes

    USGS Publications Warehouse

    McKay, C.P.; Clow, G.D.; Wharton, R.A.; Squyres, S. W.

    1985-01-01

    The dry valleys of southern Victoria Land, constituting the largest ice-free expanse in the Antarctic, contain numerous lakes whose perennial ice cover is the cause of some unique physical and biological properties 1-3. Although the depth, temperature and salinity of the liquid water varies considerably from lake to lake, the thickness of the ice cover is remarkably consistent1, ranging from 3.5 to 6m, which is determined primarily by the balance between conduction of energy out of the ice and the release of latent heat at the ice-water interface and is also affected by the transmission and absorption of sunlight. In the steady state, the release of latent heat at the ice bottom is controlled by ablation from the ice surface. Here we present a simple energy-balance model, using the measured ablation rate of 30 cm yr-1, which can explain the observed ice thickness. ?? 1985 Nature Publishing Group.

  5. A Digital 3D-Reconstruction of the Younger Dryas Baltic Ice Lake

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Alm, G.; Bjorck, S.; Lindeberg, G.; Svensson, N.

    2005-12-01

    A digital 3D-reconstruction of the final stage of the ice dammed Baltic Ice Lake (BIL), dated to the very end of the Younger Dryas cold period (ca. 11 600 cal. yr BP) has been compiled using a combined bathymetric-topographic Digital Terrain Model (DTM), Scandinavian ice sheet limits, Baltic Sea Holocene bottom sediment thickness information, and a paleoshoreline database maintained at the Lund University. The combined bathymetric-topographic Digital Terrain Model (DTM) model used to reconstruct the ice dammed lake was compiled specifically for this study from publicly available data sets. The final DTM is in the form of a digital grid on Lamberts Equal Area projection with a resolution of 500 x 500 m, which permits a much more detailed reconstruction of the BIL than previously made. The lake was constructed through a series of experiments where mathematical algorithms were applied to fit the paleolake's surface through the shoreline database. The accumulated Holocene bottom sediments in the Baltic Sea were subsequently subtracted from the present bathymetry in our reconstruction. This allows us to estimate the Baltic Ice Lake's paleobathymetry, area, volume, and hypsometry, which will comprise key input data to lake/climate modeling exercises following this study. The Scandinavian ice sheet margin eventually retreated north of Mount Billingen, which was the high point in terrain of Southern central Sweden bordering to lower terrain further to the North. As a consequence, the BIL was catastrophically drained through this area, resulting in a 25 m drop of the lake level. With our digital BIL model we estimate that approximately 7, 800 km3 of water drained during this event and that the ice dammed lake area was reduced with ca 18 percent. The digital BIL reconstruction is analyzed using 3D-visualization techniques that provide new detailed information on the paleogeography in the area, both before and after the lake drainage, with implications for interpretations of

  6. Geological setting of the Concordia Trench-Lake system in East Antarctica

    NASA Astrophysics Data System (ADS)

    Cianfarra, P.; Forieri, A.; Salvini, F.; Tabacco, I. E.; Zirizotti, A.

    2009-06-01

    This study presents the interpretation of radio echo-sounding (RES) data collected during the 2003 geophysical campaign of PNRA (Italian National Research Project in Antarctica), which focused on the exploration of the Concordia Trench-Lake system in East Antarctica. The data allow us to identify a new lake (ITL-28) at the southern edge of the Concordia Trench and a series of N-S trending subglacial troughs cutting through the Belgica Highlands. We have mapped the bedrock morphology at 3 km resolution, which led to an improved geographical and geomorphological characterization of the Concordia Trench, Concordia Ridge, Concordia Lake and South Hills. Improved knowledge of the Concordia Trench allowed us to model the 3-D geometry of the Concordia fault, suggesting that it played a role in governing the morpho-tectonic evolution of the bedrock in the Dome C region, and to propose a Cenozoic age for its activity. We recognize the importance of catchment basin morphology in hosting subglacial lakes, and discuss the role played by tectonics, glacial scouring and volcanism in the origin of the trench lakes, basin lakes and relief lakes, respectively.

  7. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    NASA Astrophysics Data System (ADS)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2017-07-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  8. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    NASA Astrophysics Data System (ADS)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2018-06-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  9. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  10. Free zinc ion and dissolved orthophosphate effects on phytoplankton from Coeur d'Alene Lake, Idaho

    USGS Publications Warehouse

    Kuwabara, J.S.; Topping, B.R.; Woods, P.F.; Carter, J.L.

    2007-01-01

    Coeur d'Alene Lake in northern Idaho is fed by two major rivers: the Coeur d'Alene River from the east and the St. Joe River from the south, with the Spokane River as its outlet to the north. This phosphorus-limited lake has been subjected to decades of mining (primarily for zinc and silver) and other anthropogenic inputs. A 32 full-factorial experimental design was used to examine the interactive effects of free (uncomplexed) zinc ion and dissolved-orthophosphate concentrations on phytoplankton that were isolated from two sites along a longitudinal zinc-concentration gradient in Coeur d'Alene Lake. The two sites displayed different dominant taxa. Chlorella minutissima, a dominant species near the southern St. Joe River inlet, exhibited greater sensitivity to free Zn ions than Asterionella formosa, collected nearer the Coeur d'Alene River mouth with elevated dissolved-zinc concentrations. Empirical phytoplankton-response models were generated to describe phytoplankton growth in response to remediation strategies in the surrounding watershed. If dissolved Zn can be reduced in the water column from >500 nM (i.e., current concentrations near and down stream of the Coeur d'Alene River plume) to <3 nM (i.e., concentrations near the southern St. Joe River inlet) such that the lake is truly phosphorus limited, management of phosphorus inputs by surrounding communities will ultimately determine the limnologic state of the lake.

  11. Physical and chemical consequences of artificially deepened thermocline in a small humic lake - a paired whole-lake climate change experiment

    NASA Astrophysics Data System (ADS)

    Forsius, M.; Saloranta, T.; Arvola, L.; Salo, S.; Verta, M.; Ala-Opas, P.; Rask, M.; Vuorenmaa, J.

    2010-05-01

    Climate change with higher air temperatures and changes in cloud cover, radiation and wind speed alters the heat balance and stratification patterns of lakes. A paired whole-lake thermocline manipulation experiment of a small (0.047 km2) shallow dystrophic lake (Halsjärvi) was carried out in southern Finland. A thermodynamic model (MyLake) was used for both predicting the impacts of climate change scenarios and for determining the manipulation target of the experiment. The model simulations assuming several climate change scenarios indicated large increases in the whole-lake monthly mean temperature (+1.4-4.4 °C in April-October for the A2 scenario), and shortening of the length of the ice covered period by 56-89 days. The thermocline manipulation resulted in large changes in the thermodynamic properties of the lake, and those were rather well consistent with the simulated future increases in the heat content during the summer-autumn season. The manipulation also resulted in changes in the oxygen stratification, and the expansion of the oxic water layer increased the spatial extent of the sediment surface oxic-anoxic interfaces. The experiment also affected several other chemical constituents; concentrations of TotN, NH4 and organic carbon showed a statistically significant decrease, likely due to both unusual hydrological conditions during the experiment period and increased decomposition and sedimentation. Changes in mercury processes and in the aquatic food web were also introduced. In comparison with the results of a similar whole-lake manipulation experiment in a deep, oligotrophic, clear-watered lake in Norway, it is evident that shallow dystrophic lakes, common in the boreal region, are more sensitive to physical perturbations. This means that projected climate change may strongly modify their physical and chemical conditions in the future.

  12. Coeur d'Alene Lake, Idaho: Insights Gained From Limnological Studies of 1991-92 and 2004-06

    USGS Publications Warehouse

    Wood, Molly S.; Beckwith, Michael A.

    2008-01-01

    More than 100 years of mining and processing of metal-rich ores in northern Idaho's Coeur d'Alene River basin have resulted in widespread metal contamination of the basin's soil, sediment, water, and biota, including Coeur d'Alene Lake. Previous studies reported that about 85 percent of the bottom of Coeur d'Alene Lake is substantially enriched in antimony, arsenic, cadmium, copper, lead, mercury, silver, and zinc. Nutrients in the lake also are a major concern because they can change the lake's trophic status - or level of biological productivity - which could result in secondary releases of metals from contaminated lakebed sediments. This report presents insights into the limnological functioning of Coeur d'Alene Lake based on information gathered during two large-scale limnological studies conducted during calendar years 1991-92 and water years 2004-06. Both limnological studies reported that longitudinal gradients exist from north to south for decreasing water column transparency, loss of dissolved oxygen, and increasing total phosphorus concentrations. Gradients also exist for total lead, total zinc, and hypolimnetic dissolved oxygen concentrations, ranging from high concentrations in the central part of the lake to lower concentrations at the northern and southern ends of the lake. In the southern end of the lake, seasonal anoxia serves as a mechanism to release dissolved constituents such as phosphorus, nitrogen, iron, and manganese from lakebed sediments and from detrital material within the water column. Nonparametric statistical hypothesis tests at a significance level of a=0.05 were used to compare analyte concentrations among stations, between lake zones, and between study periods. The highest dissolved oxygen concentrations were measured in winter in association with minimum water temperatures, and the lowest concentrations were measured in the Coeur d'Alene Lake hypolimnion during late summer or autumn as prolonged thermal stratification restricted

  13. Direct evidence of 1,900 years of indigenous silver production in the Lake Titicaca Basin of Southern Peru.

    PubMed

    Schultze, Carol A; Stanish, Charles; Scott, David A; Rehren, Thilo; Kuehner, Scott; Feathers, James K

    2009-10-13

    Archaeological excavations at a U-shaped pyramid in the northern Lake Titicaca Basin of Peru have documented a continuous 5-m-deep stratigraphic sequence of metalworking remains. The sequence begins in the first millennium AD and ends in the Spanish Colonial period ca. AD 1600. The earliest dates associated with silver production are 1960 + or - 40 BP (2-sigma cal. 40 BC to AD 120) and 1870 + or - 40 BP (2-sigma cal. AD 60 to 240) representing the oldest known silver smelting in South America. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis of production debris indicate a complex, multistage, high temperature technology for producing silver throughout the archaeological sequence. These data hold significant theoretical implications including the following: (i) silver production occurred before the development of the first southern Andean state of Tiwanaku, (ii) the location and process of silverworking remained consistent for 1,500 years even though political control of the area cycled between expansionist states and smaller chiefly polities, and (iii) that U-shaped structures were the location of ceremonial, residential, and industrial activities.

  14. Direct evidence of 1,900 years of indigenous silver production in the Lake Titicaca Basin of Southern Peru

    PubMed Central

    Schultze, Carol A.; Stanish, Charles; Scott, David A.; Rehren, Thilo; Kuehner, Scott; Feathers, James K.

    2009-01-01

    Archaeological excavations at a U-shaped pyramid in the northern Lake Titicaca Basin of Peru have documented a continuous 5-m-deep stratigraphic sequence of metalworking remains. The sequence begins in the first millennium AD and ends in the Spanish Colonial period ca. AD 1600. The earliest dates associated with silver production are 1960 ± 40 BP (2-sigma cal. 40 BC to AD 120) and 1870 ± 40 BP (2-sigma cal. AD 60 to 240) representing the oldest known silver smelting in South America. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis of production debris indicate a complex, multistage, high temperature technology for producing silver throughout the archaeological sequence. These data hold significant theoretical implications including the following: (i) silver production occurred before the development of the first southern Andean state of Tiwanaku, (ii) the location and process of silverworking remained consistent for 1,500 years even though political control of the area cycled between expansionist states and smaller chiefly polities, and (iii) that U-shaped structures were the location of ceremonial, residential, and industrial activities. PMID:19805127

  15. The age, growth, and feeding habits of the whitefish Coregonus clupeaformis (Mitchell), of Lake Champlain

    USGS Publications Warehouse

    Van Oosten, John; Deason, Hilary J.

    1939-01-01

    This study is based on 120 whitefish collected in northern Lake Champlain (Missisquoi Bay) in 1930 and on 175 whitefish taken in southern Lake Champlain in 1931. Since the whitefish population had not been exploited commercially after 1912 in United States waters and after 1915 in Canadian waters, its study should be of interest in showing the characteristics of a population practically untouched by man. Data have been presented on length frequencies, age composition, growth, coefficient of condition, sex ratio, standard length-total length relationship, and feeding habits. The data indicated that the Missisquoi Bay population was disturbed (probably by the early fall seining of 1930) before our samples were taken so that the original length distributions no longer existed. The southern Lake Champlain material, however, showed a consistency which indicated that the population had not been exploited to any extensive degree, if at all. When the northern population was compared with the southern the former was found to differ from the latter in the following respects, which differences pointed to some disturbance of the northern stock in the lake 1. By possession of lower modes and smaller grand averages of length. 2. By absence of very old individuals. 3. By absence of a series of equally abundant age groups or, in other words, by the presence of a decided dominance of one or two age groups. 4. By a radical disagreement between the sexes in their age-frequency distribution. 5. By a disagreement between the sexes with respect to maximum lengths attained. All of the differences between the two collections could, however, not be attributed to exploitation. The following characteristics indicated the presence of two distinct populations in the lake 1. Presence of a spawning ground at each end of the lake. 2. Differences in calculated lengths and increments of length (growth rates). 3. Differences in the actual lengths and weights of corresponding age groups at capture. 4

  16. The Cottage Lake Aeromagnetic Lineament: A Possible Onshore Extension of the Southern Whidbey Island Fault, Washington

    USGS Publications Warehouse

    Blakely, Richard J.; Sherrod, Brian L.; Wells, Ray E.; Weaver, Craig S.; McCormack, David H.; Troost, Kathy G.; Haugerud, Ralph A.

    2004-01-01

    The northwest-striking southern Whidbey Island fault zone (SWIF) was mapped previously using borehole data and potential-field anomalies on Whidbey Island and marine seismic surveys beneath surrounding waterways. Abrupt subsidence at a coastal marsh on south-central Whidbey Island suggests that the SWIF experienced a MW 6.5 to 7.0 earthquake about 3000 years ago. Southeast of Whidbey Island, a hypothesized southeastward projection of the SWIF would make landfall between the cities of Seattle and Everett. As part of systematic, ongoing studies by the U.S. Geological Survey, University of Washington, and other earth science organizations to evaluate potentially active faults and other earth hazards throughout the Puget Lowland, we test this hypothesis using aeromagnetic, lidar, and borehole data. Linear, northwest-striking magnetic anomalies traversing the mainland region project southeastward toward the communities of Woodinville and Maltby, Washington. All of these magnetic anomalies are low in amplitude and best illuminated in residual magnetic fields. The most prominent of the residual magnetic anomalies extends at least 16 km, lies approximately on strike with the SWIF on Whidbey Island, and passes near Crystal and Cottage Lakes, about 27 km southeast of downtown Everett. In places, this magnetic anomaly is associated with topographic lineaments, but spectral analysis indicates that the source of the anomaly extends to depths greater than 2 km and cannot be explained entirely by topographic effects. The Alderwood #1 oil exploration well located on strike with the Cottage Lake aeromagnetic lineament shows evidence of deformation over a total depth range of 3000 m; some beds within this interval exhibit intense fracturing and shearing, although deformation within the well can only be constrained as post-early Oligocene and pre-Pleistocene. Boreholes acquired as part of a wastewater tunnel project show evidence of soil disturbance at locations where some

  17. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.

    PubMed

    Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I

    2004-01-29

    Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.

  18. Tales from Two Cores: Bayesian Re-Analyses of the Summit Lake and Blue Lakes Pollen Cores

    NASA Astrophysics Data System (ADS)

    Hall, M.

    2016-12-01

    Pollen cores from Summit Lake and Blue Lakes in Humboldt Co., Nevada provide palaeoclimatic information for the last 2000 yearsin the NW Great Basin. Summit Lake is in the northern Black Rock Range (41.5 N -119.1 W) and is at an elevation of 1780 m. The Blue Lakes sit at an elevation of 2434 m in the southern Pine Forest Range (41.6 N -118.6 W). The distance between the two lakes is 33.5 km. The cores were originally taken to reconstruct the fire history in the NW Great Basin. In this study, stochastic climate histories are created using a Bayesian methodology as implemented in the Bclim program. This Bayesian approach takes: 1) a multivariate approach based on modern pollen analogs, 2) accounts for the non-linear and non-Gaussian relationship between the climate and the pollen proxy, and 3) accounts for the uncertainties in the radiocarbon record and climate histories. For both cores, the following climatic variables are reported for the last 2 kya: Mean Temperature of the Coldest month (MTCO), Growing Degree Days above 5 Centigrade (GDD5), the ratio of Actual to Potential Evapotranspiration (AET/PET). Because it was sequentially sampled,the Artemesia/Chenopodiaceae ratio (A/C), an indicator of wetness, and the Grasses/Shrubs (G/S) ratio, an indicator of thevegetation communities, is calculated for each section of the Summit Lake core. Bayesian changepoint analyses of the Summit Lake core indicates that there is no significant difference in the mean or variance of the A/C ratio for the last 2 kya cal BP, but there is a significant decrease in G/S ratio dating to circa 700 ya cal BP. At Summit Lake, a statistically significant decrease in the GDD5 occurs at 1.4-1.5 kya cal BP, and a significant increase in the GDD5 occurs for the last 200 ya cal BP. The GDD5 and MTCO for Blue Lakes has a significant increase at 600 ya cal BP, and afterwards decreases in the next century. The regional archaeological record will be discussed in light of these changes.

  19. Lake Surface Water Temperature of European Lakes retrieved from AVHRR Data - Time Series and Quality Assessment

    NASA Astrophysics Data System (ADS)

    Wunderle, S.; Lieberherr, G.; Riffler, M.

    2016-12-01

    are presented to show the reaction of different lakes (size, depth) on climate forcing. The lakes are selected to be representative for different climatic regions in Europe (northern - southern Europe, etc.). At the end of the project the data set will be accessible for the public.

  20. A multiproxy environmental investigation of Holocene wood from a submerged conifer forest in Lake Huron, USA

    Treesearch

    R. Douglas Hunter; Irina P. Panyushkina; Steven W. Leavitt; Alex C. Wiedenhoeft; John Zawiskie

    2006-01-01

    Remains of a Holocene drowned forest in southern Lake Huron discovered in 12.5 m of water (164 m above sea level), 4.5 km east of Lexington, Michigan USA (Sanilac site), provided wood to investigate environment and lake history using several proxies. Macrofossil evidence indicates a forest comprised primarily of conifers equivalent to the modern “rich conifer swamp”...

  1. Increase in lake trout reproduction in Lake Huron following the collapse of alewife: Relief from thiamine deficiency or larval predation?

    USGS Publications Warehouse

    Fitzsimons, J.D.; Brown, S.; Brown, L.; Honeyfield, D.; He, J.; Johnson, J.E.

    2010-01-01

    In the Great Lakes there is still uncertainty as to the population level effects of a thiamine deficiency on salmonines caused by high consumption of alewives Alosa pseudoharengus. A resurgence of lake trout Salvelinus namaycush reproduction in Lake Huron following the crash of alewife stocks between 2002 and 2004 provided an opportunity to evaluate the relative effects of this crash on reproduction through relief from either alewife mediated thiamine deficiency or alewife predation on larval lake trout relative to possible changes in the size of the lake trout spawning stock. Changes in mean lake trout egg thiamine concentration post crash at one spawning reef in Parry Sound, where mean thiamine concentration increased by almost two-fold, were consistent with diet switching from alewives to rainbow smelt Osmerus mordax, the next most abundant prey fish in Lake Huron. Although thiamine levels for lake trout collected at a second reef in Parry Sound did not change post-crash, levels both pre- and post-crash were consistent with a rainbow smelt diet. A reef specific fry emergence index was found to be positively related to reef specific egg thiamine concentration but negatively related to reef specific occurrence of EMS, a thiamine deficiency related mortality syndrome. We found little evidence for overlap between the timing of spring shoreward migration of alewives and lake trout emergence, suggesting that relief from alewife predation effects had relatively little effect on the observed increase in lake trout recruitment. Numbers of spawners in the north, north-central, and southern zones of the lake increased from 2000 onwards. Overall the abundance post-2003 was higher than from pre-2004, suggesting that spawner abundance may also have contributed to increased lake trout reproduction. However, predicted numbers of spawners and measured abundance of wild recruits in assessment gear were poorly correlated suggesting that the increase in reproduction was not totally

  2. Spatio-temporal spawning and larval dynamics of a zebra mussel (Dreissena polymorpha) population in a North Texas Reservoir: implications for invasions in the southern United States

    USGS Publications Warehouse

    Churchill, Christopher John

    2013-01-01

    Zebra mussels were first observed in Texas in 2009 in a reservoir (Lake Texoma) on the Texas-Oklahoma border. In 2012, an established population was found in a near-by reservoir, Ray Roberts Lake, and in June 2013, settled mussels were detected in a third north Texas reservoir, Lake Lewisville. An established population was detected in Belton Lake in September 2013. With the exception of Louisiana, these occurrences in Texas mark the current southern extent of the range of this species in the United States. Previous studies indicate that zebra mussel populations could be affected by environmental conditions, especially increased temperatures and extreme droughts, which are characteristic of surface waters of the southern and southwestern United States. Data collected during the first three years (2010–12) of a long-term monitoring program were analyzed to determine if spatio-temporal zebra mussel spawning and larval dynamics were related to physicochemical water properties in Lake Texoma. Reproductive output of the local population was significantly related to water temperature and lake elevation. Estimated mean date of first spawn in Lake Texoma was approximately 1.5 months earlier and peak veliger densities were observed two months earlier than in Lake Erie. Annual maximum veliger density declined significantly during the study period (p < 0.0001). A population crash occurred as a result of thermal stress and variability of lake elevation. In summer 2011, water temperatures peaked at 34.3°C and lake elevation declined to the lowest level recorded during the previous 18 years, which resulted in desiccation of substantial numbers of settled mussels in littoral zones. Veliger spatial distributions were associated with physicochemical stratification characteristics. Veligers were observed in the deepest oxygenated water after lake stratification, which occurred in late spring. Results of this study indicate environmental conditions can influence variability of

  3. Spatiotemporal distribution and population characteristicsof a nonnative lake trout population, with implications for suppression

    USGS Publications Warehouse

    Dux, A.M.; Guy, C.S.; Fredenberg, W.A.

    2011-01-01

    We evaluated the distribution and population characteristics of nonnative lake trout Salvelinus namaycush in Lake McDonald,Glacier National Park,Montana, to provide biological data in support of a potential suppression program. Using ultrasonic telemetry, we identified spatial and temporal distribution patterns by tracking 36 adult lake trout (1,137 relocations). Lake trout rarely occupied depths greater than 30 m and were commonly located in the upper hypolimnion directly below the metalimnion during thermal stratification. After breakdown of themetalimnion in the fall, lake trout primarily aggregated at two spawning sites. Lake trout population characteristics were similar to those of populations within the species' native range. However, lake trout in Lake McDonald exhibited lower total annual mortality (13.2%), latermaturity (age 12 formales, age 15 for females), lower body condition, and slower growth than are typically observed in the southern extent of their range. These results will be useful in determining where to target suppression activities (e.g., gillnetting, trap-netting, or electrofishing) and in evaluating responses to suppression efforts. Similar evaluations of lake trout distribution patterns and population characteristics are recommended to increase the likelihood that suppression programs will succeed. ?? American Fisheries Society 2011.

  4. Application of the MAGIC model to the Glacier Lakes catchments

    Treesearch

    John O. Reuss

    1994-01-01

    The MAGIC model (Cosby et al. 1985, 1986) was calibrated for East and West Glacier Lakes, two adjacent high-altitude (3200 m- 3700 m) catchments in the Medicine Bow National Forest of southern Wyoming. This model uses catchment characteristics including weathering rates, soil chemical characteristics, hydrological parameters, and precipitation amounts and composition...

  5. Field, petrologic and detrital zircon study of the Kings sequence and Calaveras complex, Southern Lake Kaweah Roof Pendant, Tulare County, California

    NASA Astrophysics Data System (ADS)

    Buchen, Christopher T.

    U-Pb dating of detrital zircon grains separated from elastic sedimentary rocks is combined with field, petrographic and geochemical data to reconstruct the geologic history of Mesozoic rocks exposed at the southern end of the Lake Kaweah metamorphic pendant, western Sierra Nevada. Identification of rocks exposed at Limekiln Hill, Kern County, CA, as belonging to the Calaveras complex and Kings sequence was confirmed. Detrital zircon populations from two Calaveras complex samples provide Permo-Triassic maximum depositional ages (MDA) and reveal a Laurentian provenance indicating that continental accretion of the northwest-trending Kings-Kaweah ophiolite belt was in process prior to the Jurassic Period. Rock types including radiolarian metachert, metachert-argillite, and calc-silicate rocks with marble lenses are interpreted as formed in a hemipelagic environment of siliceous radiolarian deposition, punctuated by extended episodes of lime-mud gravity flows mixing with siliceous ooze forming cafe-silicate protoliths and limestone olistoliths forming marble lenses. Two samples of the overlying Kings sequence turbidites yield detrital zircons with an MDA of 181.4 +/-3.0 Ma and an interpreted provenance similar to other Jurassic metasediments found in the Yokohl Valley, Sequoia and Boyden Cave roof pendants. Age peaks indicative of Jurassic erg heritage are also present. In contrast, detrital zircon samples from the Sequoia and Slate Mountain roof pendants bear age-probability distributions interpreted as characteristic of the Snow Lake block, a tectonic sliver offset from the Paleozoic miogeocline.

  6. TESTING A BEACH BACTERIA MODEL IN LAKE MICHIGAN AND SOUTHERN CALIFORNIA

    EPA Science Inventory

    Beach closures due to high bacterial concentrations deprive the public and disrupt the tourist industry. Almost half the Lake Michigan beaches are closed more than 10% of the time. In 1999 the six-mile long beach in Huntington Beach, California was closed in July and August. Due ...

  7. Implications of water supply for indigenous Americans during Holocene ardity phases on the Southern High Plains, USA

    USGS Publications Warehouse

    Wood, W.W.; Stokes, S.; Rich, J.

    2002-01-01

    Springs in the 40 to 50 large lake basins (>15 km2) on the southern portion of the Southern High Plains (SHP) were active during periods of aridity in the Holocene when there may have been human habitation of the area. Eolian erosion of the lake floors and lunette accretion occurred as groundwater levels declined in response to decreased groundwater recharge. The declining lake floor associated with eolian erosion allowed groundwater evaporative discharge to continue, thus maintaining a groundwater gradient toward the lake. This hydrologic condition was favorable for a relatively continuous spring discharge to the lake, independent of the elevation of the lake floor. To evaluate the postulated dynamic equilibrium critical to this conclusion, 17 optically stimulated ages were determined from a 17.7-m deep core of a lunette adjacent to Double Lakes, Texas (33??13???15???N, 101??54???08???W). The core yielded sediment accumulation dates of 11,500 ?? 1100, 6500 ?? 700, and 4900 ?? 500 yr B.P., corresponding broadly with periods of aridity known from other evidence. Based on analysis of this lunette, it is concluded that springs in Double Lakes basin probably existed throughout the Holocene with discharges similar to those observed historically. We assumed that similar dynamic equilibrium existed in the other large lake basins in the SHP and that these springs could have provided a continuous source of water for indigenous peoples during periods of prolonged aridity. The dynamic equilibrium that is proposed in this study is applicable not only to other arid and semiarid geographic areas with wind-erodible material but also over different geologic times. ?? 2002 University of Washington.

  8. Multidisciplinary distinction of mass-movement and flood-induced deposits in lacustrine environments: implications for Holocene palaeohydrology and natural hazards (Lake Ledro, Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Simonneau, A.; Chapron, E.; Vannière, B.; Wirth, S. B.; Gilli, A.; Di Giovanni, C.; Anselmetti, F. S.; Desmet, M.; Magny, M.

    2012-08-01

    High-resolution seismic profiles and sediment cores from Lake Ledro combined with soil and river-bed samples from the lake's catchment area are used to assess the recurrence of natural hazards (earthquakes and flood events) in the southern Italian Alps during the Holocene. Two well-developed deltas and a flat central basin are identified on seismic profiles in Lake Ledro. Lake sediments are finely laminated in the basin since 9000 cal. yr BP and frequently interrupted by two types of sedimentary events: light-coloured massive layers and dark-coloured graded beds. Optical analysis (quantitative organic petrography) of the organic matter occurring in soils, river beds and lacustrine samples together with lake-sediment bulk density and grain-size analysis illustrate that light-coloured layers consist of a mixture of lacustrine sediments and mainly contain algal particles similar to the ones observed in background sediments. Light-coloured layers thicker than 1.5 cm in the main basin of Lake Ledro are dense and synchronous to numerous coeval mass-wasting deposits remoulding the slopes of the basin. They are interpreted as subaquatic mass movements triggered by historical and pre-historical regional earthquakes dated to 2005 AD, 1891 AD, 1045 AD and 1260, 2545, 2595, 3350, 3815, 4740, 7190, 9185 and 11495 cal. yr BP. Dark-coloured sedimentary event are dense and develop high-amplitude reflections in front of the deltas and in the deep central basin. These beds are mainly made of terrestrial organic matter (soils and ligno-cellulosic debris) and are interpreted as resulting from intense hyperpycnal flood events. Mapping and quantifying the amount of soil material accumulated in the Holocene hyperpycnal flood deposits of the sequence and applying the De Ploey erosion model allow estimating that the equivalent soil thickness eroded over the catchment area reached up to 4 mm during the largest Holocene flood events. Such significant soil erosion is interpreted as resulting

  9. Unconsolidated sediments at the bottom of Lake Vostok from seismic data

    USGS Publications Warehouse

    Filina, I.; Lukin, V.; Masolov, V.; Blankenship, D.

    2007-01-01

    Seismic soundings of Lake Vostok have been performed by the Polar Marine Geological Research Expedition in collaboration with the Russian Antarctic Expedition since the early 1990s. The seismograms recorded show at least two relatively closely spaced reflections associated with the lake bottom. These were initially interpreted as boundaries of a layer of unconsolidated sediments at the bottom of the lake. A more recent interpretation suggests that the observed reflections are side echoes from the rough lake bottom, and that there are no unconsolidated sediments at the bottom of the lake. The major goal of this paper is to reveal the nature of those reflections by testing three hypotheses of their origin. The results show that some of the reflections, but not all of them, are consistent with the hypothesis of a non-flat lake bottom along the source-receiver line (2D case). The reflections were also evaluated as side echoes from an adjacent sloping interface, but these tests implied unreasonably steep slopes (at least 8 degrees) at the lake bottom. The hypothesis that is the most compatible with seismic data is the presence of a widespread layer of unconsolidated sediments at the bottom of Lake Vostok. The modeling suggests the presence of a two hundred meter thick sedimentary layer with a seismic velocity of 1700 -1900 m/sec in the southern and middle parts of the lake. The sedimentary layer thickens in the northern basin to ~350 m

  10. Hydrochemistry and controlling mechanism of lakes in permafrost regions along the Qinghai-Tibet Engineering Corridor, China

    NASA Astrophysics Data System (ADS)

    Gao, Zeyong; Lin, Zhanju; Niu, Fujun; Luo, Jing; Liu, Minghao; Yin, Guoan

    2017-11-01

    Lakes are the main water resource for migrating animals and herdsmen in permafrost regions along the Qinghai-Tibet Engineering Corridor (QTEC) and play a crucial role in regulating the balance between regional surface water and groundwater. Hydrochemical properties also affect the soil environment, ecological conditions, and hydrological cycle. In this study, 127 water samples were collected from lakes to analyze hydrochemistry characteristics. The results are discussed in the context of relationships between water chemistry and local conditions including climate, topography, and geology. The results showed that 43.3% of lakes are fresh, 19.7% are brackish, 18.9% are saline, 17.3% are brine, and only 0.8% are bitter. The dominant cation is Na+, followed by Mg2 +, Ca2 +, and K+. The dominant anion is Cl-, followed by SO42 - and HCO3- in the northern section of study region; whereas Ca2 +, Na+, and HCO3- are the dominant ions in the lakes of the southern section. The higher concentrations of carbonate in the southern lakes reflect contributions from groundwater discharge. In contrast, the higher concentrations of sodium, chloride, and sulfate in the northern section indicate that they are dominated by the interaction of evaporates. Additionally, cation exchange, precipitation, and dissolution have also modified the distribution of hydrochemical compositions. Thermokarst processes, in particular, have induced changes in the hydrochemistry of lake waters in the permafrost regions of the QTEC, in that the ion concentrations are closely related to ground ice content. In the context of persistent climatic warming and steadily increasing anthropogenic activities, the salinity of lakes along the QTEC is likely to increase in the future.

  11. The Cultural Resources and Geomorphology of Coralville Lake, Johnson County, Iowa. Volume 1. Technical Report.

    DTIC Science & Technology

    1984-04-01

    PERIOD COVERED THE CULTURAL RESOURCES AND GEOMORPHOLOGY OF FINAL 1984 CORALVILLE LAKE, JOHNSON COUNTY. IOWA 6 PERORMINGORG.REPORTNMBER 7. AUTHOR() 0...County, Iowa (see Figure 1). Coralville Dam Is located on the Iowa River approximately 7 miles above Iowa City, and inundates an area, at maximum flood...landform regions in Iowa . Two of these regions, namely, the Iowan Surface and the Southern Iowa Drift Plain, are in the Coralville Lake area. The

  12. Initial Results from the Deep Drilling of Lake Junin, Perú

    NASA Astrophysics Data System (ADS)

    Rodbell, D. T.; Abbott, M. B.; Weidhaas, N.; Hatfield, R. G.; Woods, A.; Hillman, A. L.; Tapia, P. M.; Chen, C. Y.; McGee, D.; Stoner, J. S.

    2016-12-01

    Lake Junín (11.0°S, 76.2°W, 4085 masl) is an intermontane, high-elevation lake in the inner-tropics of the Southern Hemisphere that spans 300 km2. With a maximum water depth of 12m, Lake Junin is dammed at its northern and southern ends by alluvial fans that emanate from glacial valleys in both cordillera. These fans can be traced to moraines that are >250 ka, indicating that the lake is at least this old. During the maximum extent of late Cenozoic glaciation, glaciers reached the lake edge but at no time over the last 1 million years, or more, has Lake Junín been overridden by ice. Lake Junín is thus one of the few lakes in the tropical Andes that predates the maximum extent of glaciation and is in a geomorphic position to record the waxing and waning of alpine glaciers in nearby cordillera. Sediment cores obtained between 1980 and 1996 reveal that sediment deposited during the last glacial cycle ( 30-16 ka) is dominated by glacial flour whereas sediment deposited during the last 16 ka consists predominantly of authigenic calcite (marl) with ostracod carapaces punctuated with intervals of gyttja and peat. In July and August of 2015, piston cores were obtained from three sites in Lake Junin. Multiple overlapping cores from the deepest water site (Site 1) extend to 100 m below lake floor (mblf), and those from two shallow water, paleoglacier-proximal sites (Sites 2 and 3) extend 23 and 51 mblf, respectively. Samples acquired at 8-cm resolution from Site 1 were analyzed for total organic carbon (TOC) and total inorganic carbon [as Ca(Mg)CO3; TIC] by coulometry. Total carbon (TC) was analyzed by combusting 10 mg samples at 1000°C and quantifying the resultant CO2 by coulometry whereas TIC was analyzed by reacting 10 mg samples in 6N H3PO4 and quantifying the resultant CO2 by coulometry; TOC was determined from TOC=TC-TIC. Over the last glacial postglacial cycle (last 30 ka), mean CaCO3 and TOC concentrations in Site 1 cores are higher ( 33% and 7

  13. Isotopic tracers of paleohydrologic change in large lakes of the Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    Placzek, Christa J.; Quade, Jay; Patchett, P. Jonathan

    2011-01-01

    We have developed an 87Sr/ 86Sr, 234U/ 238U, and δ 18O data set from carbonates associated with late Quaternary paleolake cycles on the southern Bolivian Altiplano as a tool for tracking and understanding the causes of lake-level fluctuations. Distinctive groupings of 87Sr/ 86Sr ratios are observed. Ratios are highest for the Ouki lake cycle (120-95 ka) at 0.70932, lowest for Coipasa lake cycle (12.8-11.4 ka) at 0.70853, and intermediate at 0.70881 to 0.70884 for the Salinas (95-80 ka), Inca Huasi (~ 45 ka), Sajsi (24-20.5 ka), and Tauca (18.1-14.1 ka) lake cycles. These Sr ratios reflect variable contributions from the eastern and western Cordilleras. The Laca hydrologic divide exerts a primary influence on modern and paleolake 87Sr/ 86Sr ratios; waters show higher 87Sr/ 86Sr ratios north of this divide. Most lake cycles were sustained by slightly more rainfall north of this divide but with minimal input from Lake Titicaca. The Coipasa lake cycle appears to have been sustained mainly by rainfall south of this divide. In contrast, the Ouki lake cycle was an expansive lake, deepest in the northern (Poópo) basin, and spilling southward. These results indicate that regional variability in central Andean wet events can be reconstructed using geochemical patterns from this lake system.

  14. Lake Diefenbaker: Water Quality Assessment and Modeling for Management under Environmental Change

    NASA Astrophysics Data System (ADS)

    Sereda, J.; Wheater, H. S.; Hudson, J.; Doig, L.; Liber, K.; Jones, P.; Giesy, J.; Bharadwaj, L.

    2011-12-01

    Preliminary results are presented for a comprehensive inter-disciplinary study on Lake Diefenbaker initiated by the Global Institute for Water Security to understand the physical and biogeochemical processes affecting water quality under climate change and their policy implications. Lake Diefenbaker is a large reservoir (surface area ~500km2 and Zmean ~33m) located in Southern Saskatchewan, Canada and is a critically-important water resource for Saskatchewan. It receives nearly all of its flow from the South Saskatchewan River, which flows through some of the most urbanized and intense agricultural lands of southern Alberta. As a result these waters contain high levels of nutrients [nitrogen (N) and phosphorus (P)] along with a variety of chemical contaminants characteristic of anthropogenic activity. In addition, riparian and in-lake activities provide local sources of nutrients, from domestic sewage, agriculture and fish farming. The South Saskatchewan River has been identified by the World Wildlife Fund (2009) as Canada's most threatened river in terms of environmental flow. Lake Diefenbaker has numerous large deep embayments (depth >20m) and an annual water level fluctuation of ~6m. A deep thermocline (~25m) forms infrequently. Stratification does not occur throughout the lake. Anecdotal information suggests that the frequency and severity of algal blooms are increasing; although blooms have been sporadic and localized. This localized eutrophication may be related to local stratification patterns, point source nutrient loading, and/or internal lake processes (i.e., internal nutrient loading). A paleolimnological reconstruction has begun to assess historical nutrient and contaminant loading to Lake Diefenbaker and hence the trajectory of water quality in the lake. Major point sources and diffuse sources of N and P are also under investigation. In addition, the type (N versus P) and degree of nutrient limitation of bacteria and algae are being assessed (spatially

  15. Relative abundance, site fidelity, and survival of adult lake trout in Lake Michigan from 1999 to 2001: Implications for future restoration strategies

    USGS Publications Warehouse

    Bronte, C.R.; Holey, M.E.; Madenjian, C.P.; Jonas, J.L.; Claramunt, R.M.; McKee, P.C.; Toneys, M.L.; Ebener, M.P.; Breidert, B.; Fleischer, G.W.; Hess, R.; Martell, A.W.; Olsen, E.J.

    2007-01-01

    We compared the relative abundance of lake trout Salvelinus namaycush spawners in gill nets during fall 1999–2001 in Lake Michigan at 19 stocked spawning sites with that at 25 unstocked sites to evaluate how effective site-specific stocking was in recolonizing historically important spawning reefs. The abundance of adult fish was higher at stocked onshore and offshore sites than at unstocked sites. This suggests that site-specific stocking is more effective at establishing spawning aggregations than relying on the ability of hatchery-reared lake trout to find spawning reefs, especially those offshore. Spawner densities were generally too low and too young at most sites to expect significant natural reproduction. However, densities were sufficiently high at some sites for reproduction to occur and therefore the lack of recruitment was attributable to other factors. Less than 3% of all spawners could have been wild fish, which indicates that little natural reproduction occurred in past years. Wounding by sea lamprey Petromyzon marinus was generally lower for Seneca Lake strain fish and highest for strains from Lake Superior. Fish captured at offshore sites in southern Lake Michigan had the lowest probability of wounding, while fish at onshore sites in northern Lake Michigan had the highest probability. The relative survival of the Seneca Lake strain was higher than that of the Lewis Lake or the Marquette strains for the older year-classes examined. Survival differences among strains were less evident for younger year-classes. Recaptures of coded-wire-tagged fish of five strains indicated that most fish returned to their stocking site or to a nearby site and that dispersal from stocking sites during spawning was about 100 km. Restoration strategies should rely on site-specific stocking of lake trout strains with good survival at selected historically important offshore spawning sites to increase egg deposition and the probability of natural reproduction in Lake

  16. A Systematic Study of Zerbar Lake Restoration

    NASA Astrophysics Data System (ADS)

    Hosseini, Reza; Oveis Torabi, Seyed; Forman Asgharzadeh, Deonna

    2017-04-01

    The beautiful lake of Zerbar, located near Marivan City at the west of Iran, is a freshwater lake with an area of 20 km2 and average depth of 5 meters. The lake is created by regional tectonic activities and is mainly fed with natural spring water from bottom. During the past three decades, regional development has caused much disturbance to the natural environment of the lake and its watershed. Rescuing the lake is crucial to the sustainability of the whole region. The study of Zerbar Restoration was performed with the aim to restore its health indicators. Variety of human activities in the watershed, as well as the multidisciplinary nature of lake restoration studies, made it necessary to develop a systematic approach to conduct the study. In Step I of restoration studies, satellite images were investigated to identify the historical changes of watershed during the past 30 years. Meanwhile, documents since 50 years ago were studied. Results indicate that farmland and graze land areas have been relatively constant during the past 50 years. Also, the area of lake, its riparian canes and floating plants have not changed much. In fact, the only significant land use change observed was the significant spread of Marivan City that has stretched toward the lake. The main physical variation to the lake has been elevating the southern edge of the lake by a constructing a landfill dam which was done to control the lake's overflow discharge for irrigation of downstream farmland development. Step II consists of studies performed by disciplines of water resources, hydrogeology, water quality, wetland and watershed ecology, agriculture, animal farming and fishery. Study results indicate that eutrophication (TSL>100), mainly caused by sewage from Marivan City and the surrounding rural areas has been the main reason for lake ecosystem degradation. DPSIR framework, as a novel approach in lake restoration, was applied to synthesize the study results of different disciplines in a

  17. Extremely acid Permian lakes and ground waters in North America

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.; Wopenka, B.; Burruss, R.C.; Pasteris, J.D.

    1998-01-01

    Evaporites hosted by red beds (red shales and sandstones), some 275-265 million years old, extend over a large area of the North American mid- continent. They were deposited in non-marine saline lakes, pans and mud- flats, settings that are typically assumed to have been alkaline. Here we use laser Raman microprobe analyses of fluid inclusions trapped in halites from these Permian deposits to argue for the existence of highly acidic (pH < 1) lakes and ground waters. These extremely acidic systems may have extended over an area of 200,000 km2. Modern analogues of such systems may be natural acid lake and groundwater systems (pH ~2-4) in southern Australia. Both the ancient and modern acid systems are characterized by closed drainage, arid climate, low acid-neutralizing capacity, and the oxidation of minerals such as pyrite to generate acidity. The discovery of widespread ancient acid lake and groundwater systems demands a re-evaluation of reconstructions of surface conditions of the past, and further investigations of the geochemistry and ecology of acid systems in general.

  18. Water-quality characteristics of Michigan's inland lakes, 2001-10

    USGS Publications Warehouse

    Fuller, L.M.; Taricska, C.K.

    2012-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality (MDEQ) jointly monitored for selected water-quality constituents and properties of inland lakes during 2001–10 as part of Michigan's Lake Water-Quality Assessment program. During 2001–10, 866 lake basins from 729 inland lakes greater than 25 acres were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of the monitored lakes throughout the State; the data include vertical-profile measurements, nutrient measurements at three discrete depths, Secchi-disk transparency (SDT) measurements, and chlorophyll a measurements for the spring and summer, with major ions and other chemical indicators measured during the spring at mid-depth and color during the summer from near-surface samples. In about 75 percent of inland lake deep basins (index stations), trophic characteristics were associated with oligotrophic or mesotrophic conditions; 5 percent or less were categorized as hypereutrophic, and 80 percent of hypereutrophic lakes had a maximum depth of 30 feet or less. Comparison of spring and summer measurements shows that water clarity based on SDT measurements were clearer in the spring than in the summer for 63 percent of lakes. For near-surface measurements made in spring, 97 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited; for summer measurements, 96 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited. Spatial patterns of major ions, alkalinity, and hardness measured in the spring at mid-depth all showed lower values in the Upper Peninsula of Michigan and a southward increase toward the southern areas of the Lower Peninsula, though the location of increase varied by constituent. A spatial analysis of the data based on U.S. Environmental Protection Agency Level III Ecoregions separated potassium

  19. Historical Evolution of the Hydrological Functioning of the Old Lake Xochimilco, Southern Mexico Basin

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.; Ruvalcaba, A.

    2012-12-01

    The lacustrian area of Xochimilco is one of the remnants of the old system of lakes located in the Basin of Mexico. After the Spanish conquest, began a series of actions including hydraulic-works that have changed the original landscape of this region. This region had important springs that for more than 50 years supplied water to the Mexico City. Since 1960, the excessive exploitation of the aquifer and urban growth in the region exhausted the springs. Using historical information we were able to characterize the major phenomena that have substantially changed the hydrogeological functioning of the region, in some more than 100 years. Currently, the exploitation of extraction wells has caused a gradual decrease in their static level and the existing remnant of the old lake is maintained with treated water. Observable effects are presented. The topographic gradient has been modified occurs subsidence and fractures are visible besides a severe reduction in the lake area which has been reduced to 15% of its original extent.

  20. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  1. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010.

    PubMed

    Li, Yingkui; Liao, Jingjuan; Guo, Huadong; Liu, Zewen; Shen, Guozhuang

    2014-01-01

    Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia.

  2. Ozone distributions over southern Lake Michigan: comparisons between ferry-based observations, shoreline-based DOAS observations and model forecasts

    NASA Astrophysics Data System (ADS)

    Cleary, P. A.; Fuhrman, N.; Schulz, L.; Schafer, J.; Fillingham, J.; Bootsma, H.; McQueen, J.; Tang, Y.; Langel, T.; McKeen, S.; Williams, E. J.; Brown, S. S.

    2015-05-01

    Air quality forecast models typically predict large summertime ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline differential optical absorption spectroscopy (DOAS) observations in southeastern Wisconsin and as predicted by the Community Multiscale Air Quality (CMAQ) model. From 2008 to 2009 measurements of O3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008 to 2010 measurements of ambient ozone were conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI, and Muskegon, MI, up to six times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha, with little dependence on position of the ferry or temperature and with greatest differences during evening and night. Concurrent 1-48 h forecasts from the CMAQ model in the upper Midwestern region surrounding Lake Michigan were compared to ferry ozone measurements, shoreline DOAS measurements and Environmental Protection Agency (EPA) station measurements. The bias of the model O3 forecast was computed and evaluated with respect to ferry-based measurements. Trends in the bias with respect to location and time of day were explored showing non-uniformity in model bias over the lake. Model ozone bias was consistently high over the lake in comparison to land-based measurements, with highest biases for 25-48 h after initialization.

  3. Global baseline data on phosphorus pollution of large lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Flörke, Martina; Alcamo, Joseph

    2016-04-01

    Lakes are exposed to harmful eutrophication which is the most concerning water quality issue on global scale. Eutrophication is caused by phosphorous pollution in most lakes. Hence, global consistent base line data on phosphorus loadings are needed to assess future sustainable development. We used the modeling framework WaterGAP3 to calculate present total phosphorus loadings to the world's largest lakes. Estimates of modeled total phosphorus (TP) loadings as well as the contributions of different sectors were successfully validated against measured data. Based on these findings, annual total phosphorus loadings to lakes were calculated for diffuse and point sources according to the different sectors domestic, manufacturing, urban surface runoff, agriculture and background for the time period 1990 to 2010. Our results show high phosphorus loadings into lakes in southern latitudes. On global average, industrial fertilizer is the main anthropogenic source while background loadings are low in comparison. Nevertheless, both features indicate a high potential to reduce the exposure to eutrophication in lakes which are faced with high phosphor inputs. The global average of TP loadings was 7% higher in the time period 2005-2010 than in the period 1990-1995. The global average in 2005-2010 results from an increase in TP loadings of 79% in South America, which was dampened by a decrease in Europe, North America, and Asia. Chinese lakes were exposed to massive increasing phosphorus loadings, too. Both increasing and decreasing trends are caused primarily by changing industrial fertilizer application rates. In conclusion, this study provides a consistent and model based synopsis of global trends and sources of phosphorus loadings to large lakes. The estimates of phosphorus pollution of lakes present a basis for assessing and managing the global eutrophication problem.

  4. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Tinner, Willy; van Leeuwen, Jacqueline F. N.; Colombaroli, Daniele; Vescovi, Elisa; van der Knaap, W. O.; Henne, Paul D.; Pasta, Salvatore; D'Angelo, Stefania; La Mantia, Tommaso

    2009-07-01

    We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests ( Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic ( Ficus carica-Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000-6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilex- O. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and

  5. Establishment of two invasive crustaceans (Copepoda: Harpacticoida) on the nearshore sands of Lake Michigan

    USGS Publications Warehouse

    Horvath, Thomas G.; Whitman, Richard L.; Last, Laurel L.

    2001-01-01

    Benthic copepods (Copepoda: Harpacticoida) in the nearshore sediments of southern Lake Michigan appear to be dominated by two new invasive species. We report the first occurrence in North America of Schizopera borutzkyi Montschenko, a native to the Danube River delta, and Heteropsyllus nr. nunni, likely a new species that is morphologically similar to the marine species Heteropsyllus nunni and represents the first occurrence of this genus in freshwater. Schizopera borutzkyi is a euryhaline species occurring in shallow sands in its native habitat and in deeper sands (6-15 m) in southern Lake Michigan. Based on the absence of these species from previous studies, we suggest that they are recent introductions. Heteropsyllus nr. nunni dominated (55-100%) the harpacticoid abundance to depths of 9 m, but S. borutzkyi comprised 75% of the harpacticoid abundance at 15 m. Native harpacticoids were always greatly outnumbered by invasive harpacticoids in our samples, which suggests that the natives are being replaced rapidly or that the invasive species are finding unused resources. The ecological implications of these introductions are not known, but these invasions may represent continued 'invasional meltdown' in Lake Michigan.

  6. Occurrence and Distribution of Microcystins in Lake Taihu, China

    PubMed Central

    Sakai, Hiroshi; Hao, Aimin; Iseri, Yasushi; Wang, Song; Kuba, Takahiro; Zhang, Zhenjia; Katayama, Hiroyuki

    2013-01-01

    The occurrence and distribution of microcystins were investigated in Lake Taihu, the third largest lake in China. An extensive survey, larger and broader in scale than previous studies, was conducted in summer 2010. The highest microcystin concentration was found at southern part of Taihu, which was newly included in this survey. In northern coastal areas, total cellular concentrations of 20 to 44 μg/L were observed. In northern offshore waters, levels were up to 4.8 μg/L. Microcystin occurrence was highly correlated with chemical oxygen demand, turbidity, and chlorophyll-a. Extracellular/total cellular microcystin (E/T) ratios were calculated and compared to other water quality parameters. A higher correlation was found using E/T ratios than original microcystin values. These results show that algal blooms are having a severe impact on Lake Taihu, and further and extensive monitoring and research are required to suppress blooms effectively. PMID:23853542

  7. Spatial and temporal variability in benthic invertebrate assemblages in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Stauffer-Olsen, Natalie J.; Carter, James L.; Fend, Steven V.

    2017-01-01

    Upper Klamath Lake (UKL) in southern Oregon has experienced declines in water quality due to excessive nutrient loading. This has led to annual cyanobacterial blooms, primarily of Aphanizomenon flos-aquae (AFA). Benthic invertebrates are important food resources for benthic feeding fishes; however, they can increase autochthonous nutrient cycling in lakes and as a result might be contributing to poor water quality in UKL. This study determined the density and taxonomic richness of benthic invertebrate assemblages in three geographic regions (north, central, and south) and three habitats (littoral, open-water and trench) across UKL. Sediment composition and water quality were also characterized at each of the 21 benthic invertebrate collection sites. Three sampling trips were made from May–July 2013. Mean lake-wide invertebrate density was 12 617 ± 7506 individuals m-2 (n = 63, based on 189 Ekman grabs) with oligochaetes, chironomids, and leeches representing 97% of all individuals. Mean invertebrate richness per sample was 16 ± 4 (n = 63). Two and three-way repeated measures ANOVAs identified differences in invertebrate densities and richness among regions, habitats, and sampling periods. There were no differences in total density among sampling periods. Total density was higher in littoral compared to open-water habitats, and in the northern region, proximal to all riverine inputs to the lake, compared to the central or southern regions. Although variances were heterogeneous, the number of taxa appeared to differ between habitats and regions.

  8. Geology and environments of subglacial Lake Vostok.

    PubMed

    Leitchenkov, German L; Antonov, Anton V; Luneov, Pavel I; Lipenkov, Vladimir Ya

    2016-01-28

    The reconstruction of the geological (tectonic) structure and environments of subglacial Lake Vostok is based on geophysical surveys and the study of mineral particles found in cores of accreted ice and frozen lake water (sampled after the lake was unsealed). Seismic reflection and refraction investigations conducted in the southern part of Lake Vostok show very thin (200-300 m) sedimentary cover overlying a crystalline basement. Most of this thin veneer is thought to have been deposited during temperate-glacial conditions in Oligocene to Middle Miocene time (ca 34-14 Ma). The composition of the lake-bottom sediments can be deduced from mineral inclusions found in cores of accreted ice. Inclusions are represented by soft aggregates consisting mainly of clay-mica minerals and micrometre-sized quartz grains. Some of these inclusions contain subangular to semi-rounded rock clasts (siltstones and sandstones) ranging from 0.3 to 8 mm in size. In total, 31 zircon grains have been identified in two rock clasts and dated using SHRIMP-II. The ages of the studied zircons range from 0.6 to 2.0 Ga with two distinct clusters between 0.8 and 1.15 Ga and between 1.6 and 1.8 Ga. Rock clasts obviously came from the western lake shore, which is thus composed of terrigenous strata with an age of not older than 600 Ma. The sedimentary nature of the western lake shore is also confirmed by seismic refraction data showing seismic velocities there of 5.4-5.5 km s(-1) at the bedrock surface. After Lake Vostok was unsealed, its water (frozen and sampled next season) was also studied with scanning electron microscopy and X-ray microprobe analysis. This study showed the existence of calcium carbonate and silica microparticles (10-20 μm across) in frozen water. © 2015 The Author(s).

  9. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    This paper describes a sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA for the purpose of characterizing and forecasting sediment and arsenic distributions before and after proposed dredging activitie...

  10. Lake Challa (Mt. Kilimanjaro) sediments as recorder of present and past seasonality in equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Kristen, I.; Wolff, C.; Schettler, G.; Dulski, P.; Naumann, R.; Haug, G. H.; Blaauw, M.; Verschuren, D.

    2008-12-01

    In discussions on the impact of global warming on moisture balance and human water resources, natural archives of past hydrological variability in tropical regions are attracting increasing attention. The EuroCLIMATE project CHALLACEA studies the sediment archive of Lake Challa, a 4.5 km² and ~94 m deep crater lake located on the lower eastern slope of Mt. Kilimanjaro with the aim to produce a continuous, high-resolution and multi-proxy reconstruction of past temperature and moisture-balance variability in equatorial East Africa over the past 25,000 years. Lake Challa is a freshwater lake with a water budget controlled mostly by sub-surface in- and outflow and lake-surface evaporation. Accordingly, microscopic thin-section investigation of sediment composition reveals an overall dominance of autochthonous components (diatom frustules, calcite, and organic matter). First results from an ongoing sediment trap study point to distinct seasonality in sediment input: calcite and organic matter accumulate during the warm southern hemisphere summer months (November - March), whereas the principal diatom blooms occur during the cool and windy period between June and October. Here we present the results of physical and chemical investigations of the lake water column between September 1999 and November 2007, which document the concomitant seasonal changes in lake mixing/stratification and related element cycling. High-resolution μXRF profiles of these elements in the laminated sediments of Lake Challa thus also show marked seasonal cycles, as well as longer-term variability. In particular, variability in the Mn/Fe ratio along the top 15 cm of the sediment record is interpreted to reflect changes in lake stratification during the last ~100 years. This proxy record is evaluated in comparison with records of historical weather variability in East Africa, and of potentially influencing parameters such as the El Niño Southern Oscillation and the Indian Ocean Dipole. Eventually

  11. Lake and Bog Sediment Records of Holocene Climate and Glacier Variability in the Cordillera Vilcabamba of Southern Peru

    NASA Astrophysics Data System (ADS)

    Schweinsberg, A.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.

    2013-12-01

    Records of past fluctuations in climatically sensitive tropical glaciers are among the best indicators of regional paleoclimatic trends and forcings. However, continuous sediment records in this region remain limited, particularly during the Holocene. Here we present the first continuous records of glacier activity in the Cordillera Vilcabamba (13°20'S) of southern Peru from lake and bog sediment cores in stratigraphic contact with 10Be-dated moraines. Completed analyses include sediment lithostratigraphy, magnetic susceptibility, and biogenic silica, in conjunction with AMS radiocarbon dates on charcoal. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Visually distinct sedimentological variations, magnetic susceptibility peaks, and radiocarbon dates were correlated among adjacent cores to construct one composite record representative of each coring site. Three composite cores are presented: two from the Rio Blanco valley and one from the Yanama valley. Sediment records from these two glaciated valleys suggest a series of environmental changes during the last ~12,000 calendar years BP. Clastic sediment flux trends are broadly consistent with published evidence that the early to middle Holocene was relatively warm and arid in the southern Peruvian Andes. An episode of high clastic flux in the late Holocene may reflect enhanced glacial activity in response to the onset of cooler and wetter conditions. A prominent peak in magnetic susceptibility at 1660 cal yr BP is present in all composite cores and serves as a chronostratigraphic marker. In addition, our new basal radiocarbon ages place limits on the cosmogenic 10Be production rate in the high Andes, suggesting the cosmogenic 10Be production rate is considerably lower than previously published estimates.

  12. A 150 kyr-long hydroclimate record from Southern California using Searles Lake sediments: initial findings

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Olson, K. J.; McGee, D.; Lowenstein, T. K.; Smoot, J. P.; Janick, J. J.; Lund, S.; Peaple, M.; Chen, C. Y.; Feakins, S. J.; Litwin, R.

    2017-12-01

    Over decadal to millennial scales, the southwestern U.S has experienced large shifts in hydroclimate ranging from pluvial conditions to extreme droughts. Direct observations, modeling and proxy data suggest precipitation amount and distribution are controlled by multiple factors including the position of the Hadley Cell, strength of the Aleutian Low and North Pacific High, ENSO and the path of winter storm tracks. Sediment records from closed basin lakes provide a means for assessing how hydrologic conditions have responded to past climate changes; however, long (>50 ka) paleoclimate records from lakes are rare and high-resolution age models are challenging to obtain. Searles Lake, in southeastern California, contains a sedimentary record that spans from the Holocene to the Pliocene at high resolution. Previous drill core studies from the basin used stratigraphy and sediment mineralogy to interpret paleoenvironmental changes and have demonstrated that the lake's sediments are able to be precisely dated. These results provide a strong foundation for new high-resolution investigations of the lake sediments. In January 2017, our group collected a new 80 m-long core with the aim of reconstructing hydrologic changes over the last 150 ka at millennial or better resolution. The core was split at the National Lacustrine Core Facility (LacCore) in June. The core contains alternating evaporite layers and finely laminated muds which likely indicate times of dryer and wetter conditions. Despite the challenge of alternating lithologies, core recovery and quality are extremely high. Here, we will present our initial chronological and stratigraphic findings. The core record will be dated using a combination of U/Th, 14C and magnetostratigraphy. We will compare our initial stratigraphic description to the existing Searles Lake literature as well as other records from the region, such as data from Devils Hole. These results provide the framework upon which we will develop detailed

  13. Impact of Urbanization on Precipitation Distribution and Intensity over Lake Victoria Basin

    NASA Astrophysics Data System (ADS)

    Gudoshava, M.; Semazzi, F. H. M.

    2014-12-01

    In this study, sensitivity simulations on the impact of rapid urbanization over Lake Victoria Basin in East Africa were done using a Regional Climate Model (RegCM4.4-rc29) with the Hostetler lake model activated. The simulations were done for the rainy seasons that is the long rains (March-April-May) and short rains (October-November-December). Africa is projected to have a surge in urbanization with an approximate rate of 590% in 2030 over their 2000 levels. The Northern part of Lake Victoria Basin and some parts of Rwanda and Burundi are amongst the regions with high urbanization projections. Simulations were done with the land cover for 2000 and the projected 2030 urbanization levels. The results showed that increasing the urban fraction over the northern part of the basin modified the physical parameters such as albedo, moisture and surface energy fluxes, aerodynamic roughness and surface emissivity, thereby altering the precipitation distribution, intensity and frequency in the region. The change in the physical parameters gave a response of an average increase in temperature of approximately 2oC over the urbanized region. A strong convergence zone was formed over the urbanized region and thereby accelerating the lake-breeze front towards the urbanized region center. Precipitation in the urbanized region and regions immediate to the area increased by approximately 4mm/day, while drying up the southern (non-urbanized) side of the basin. The drying up of the southern side of the basin could be a result of divergent flow and subsidence that suppresses vertical development of storms.

  14. Non-Linear Response to Holocene Insolation Forcing Recorded by High-Resolution Lake Sediment Records Across Iceland

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Miller, G. H.; Axford, Y.

    2009-12-01

    Many Icelandic lakes have sedimentation rates in excess of 1 m ka-1 throughout the Holocene. Such high rates offer the potential for decadally resolved (or better) records of environmental change at this sensitive North Atlantic site. Abundant well-defined tephra provide a secure geochronology. The fidelity of the common climate proxies biogenic silica (BSi) and total organic carbon (TOC), was tested by comparing these proxies in three lakes with very different catchment characteristics. Hestvatn (HST, 60 m deep) in southern Iceland receives overflow from a large river originating in the glaciated highlands of central Iceland, whereas the nearby lake Vestra Gislholtsvatn (VGHV, 15 m deep) has a small, low elevation catchment without glaciers. Haukadalsvatn (HAK, 42 m deep), in northwestern Iceland, has a large, high relief catchment. The BSi record from HAK has been shown to reflect April-May temperatures, with BSi highest when spring temperatures are at their maximum. The first- and second-order trends in BSi are similar in all three lakes for most of the Holocene. This supports the contention that BSi reflects primary productivity, and is less influenced by changes in sedimentation rate. In all three lakes, BSi reaches a maximum value shortly after 8 ka, and then declines gradually toward present, reflecting a relatively late Holocene thermal maximum, potentially due to the influence of meltwater from the lingering Laurentide Ice Sheet. A steady reduction in summer insolation determines this first-order trend towards lower BSi through the middle and late Holocene. Large, abrupt departures from the overall decrease in BSi characterize all three records after 8 ka. Following each rapid BSi decrease, BSi usually exhibits a step-function change, re-equilibrating at a lower BSi value. Some of the strongest departures (ca. 6 ka, 4 to 4.5 ka and ca. 3 ka) may be related to Icelandic volcanism, but the lack of a full recovery to pre-existing values after the eruptions

  15. Environmental study of ERTS-1 imagery Lake Champlain Basin and Vermont

    NASA Technical Reports Server (NTRS)

    Lind, A. O. (Principal Investigator)

    1972-01-01

    The author has idenfified the following significant results. A first approximation land-type map using three categories of classification was generated for the Burlington area. The identification and mapping of a major turbidity front separating turbid waters of the southern arm of Lake Champlain from the clearer main water mass was reported on RBV 1 and 2 imagery and on subsequent MSS bands 4 and 5. Significant industrial pollution of Lake Champlain has degraded environmental quality in certain sections of the lake. Wetlands were detected and recognized using a combination of RBV bands 2 and 3. Using first-look RBV band 2 imagery, major ice marginal features were identified by using tonal patterns associated with vegetative cover. Major rivers were detected and recognized through the use of RBV band 3 imagery and MSS bands 6 and 7.

  16. Sensitivity of the East African rift lakes to climate variability

    NASA Astrophysics Data System (ADS)

    Olaka, L.; Trauth, M. H.

    2009-04-01

    Lakes in the East African Rift have provided excellent proxies to reconstruct past climate changes in the low latitudes. The lakes occupy volcano-tectonic depressions with highly variable climate and hydrological setting, that present a good opportunity to study the climatic and hydrogeological influences on the lake water budget. Previous studies have used lake floor sediments to establish the sensitivity of the East African rift lakes. This study focuses on geomorphology and climate to offer additional or alternative record of lake history that are key to quantifying sensitivity of these lakes as archives to external and internal climatic forcings. By using the published Holocene lake areas and levels, we analyze twelve lakes on the eastern arm of the East African rift; Ziway, Awassa, Turkana, Suguta, Baringo, Nakuru, Elmenteita, Naivasha, Natron, Manyara and compare with Lake Victoria, that occupies the plateau between the east and the western arms of the rift. Using the SRTM data, Hypsometric (area-altitude) analysis has been used to compare the lake basins between latitude 80 North and 30 South. The mean elevation for the lakes, is between 524 and 2262 meters above sea level, the lakes' hypsometric integrals (HI), a measure of landmass volume above the reference plane, vary from 0.31 to 0.76. The aridity index (Ai), defined as Precipitation/ Evapotranspiration, quantifies the water available to a lake, it encompasses land cover and climatic effects. It is lowest (arid) in the basin between the Ethiopian rift and the Kenyan rift and at the southern termination of the Kenyan Rift in the catchments of lake Turkana, Suguta, Baringo and Manyara with values of 0.55, 0.43, 0.43 and 0.5 respectively. And it is highest (wet) in the catchments of, Ziway, Awassa, Nakuru and Naivasha as 1.33,1.03 and 1.2 respectively, which occupy the highest points of the rift. Lake Victoria has an index of 1.42 the highest of these lakes and receives a high precipitation. We use a

  17. Water quality of lakes and streams in Voyageurs National Park, northern Minnesota, 1977-84

    USGS Publications Warehouse

    Payne, G.A.

    1991-01-01

    Water-quality investigations in six interconnected lakes that comprise most of the surface area of Voyageurs National Park in northern Minnesota revealed substantial differences in water-quality. Three large lakes; Sand Point, Namakan, and Rainy, near the eastern and northern boundaries of the Park; are oligotrophic to mesotrophic, having low dissolved solids and alkalinity, and dimictic circulation. In contrast, Kabetogama Lake, Black Bay, and Sullivan Bay, near the western and southern boundaries of the Park, were eutrophic, having higher dissolved solids and alkalinity, and polymictic circulation. Chemical characteristics of the three lakes along the eastern and northern boundary were similar to those of the Namakan River--a major source of inflow that drains an extensive area of exposed bedrock and thin noncalcareous drift east of the Park. The lake and embayments along the western and southern boundary receive inflow from two streams that drain an area west and south of the Park that is overlain by calcareous drift. Samples from one of these streams contained dissolved-solids concentrations about five times, and total alkalinity concentrations about eight times concentrations measured in the Namakan River. The nutrient-enriched lakes and embayments had high algal productivity that produced blooms of blue-green algae in some years. Annual patterns in the levels of trophic-state indicators revealed that the shallow, polymictic lakes experienced seasonal increases in totalphosphorus concentrations in their euphotic zones that did not occur in the deeper, dimictic lakes; this indicates a link between the frequent recirculation of these lakes and internal cycling of phosphorus. Secchi-disk transparency was limited by organic color in Sand Point, Namakan, and Rainy Lakes, and resuspended bottom material reduced transparency in Black Bay. Waters in the large lakes and embayments met nearly all U.S. Environmental Protection Agency criteria for protection of freshwater

  18. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    A sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA is described. The application is meant to characterize and forecast sediment and arsenic (As) distributions before and after proposed dredging activit...

  19. Long-range transport of pollutants to the Falkland Islands and Antarctica: evidence from lake sediment fly ash particle records.

    PubMed

    Rose, Neil L; Jones, Vivienne J; Noon, Philippa E; Hodgson, Dominic A; Flower, Roger J; Appleby, Peter G

    2012-09-18

    (210)Pb-dated sediment cores taken from lakes on the Falkland Islands, the South Orkney Islands, and the Larsemann Hills in Antarctica were analyzed for fly ash particles to assess the temporal record of contamination from high temperature fossil-fuel combustion sources. Very low, but detectable, levels were observed in the Antarctic lakes. In the Falkland Island lakes, the record of fly ash extended back to the late-19th century and the scale of contamination was considerably higher. These data, in combination with meteorological, modeling, and fossil-fuel consumption data, indicate most likely sources are in South America, probably Chile and Brazil. Other southern hemisphere sources, notably from Australia, contribute to a background contamination and were more important historically. Comparing southern polar data with the equivalent from the northern hemisphere emphasizes the difference in contamination of the two circumpolar regions, with the Falkland Island sites only having a level of contamination similar to that of northern Svalbard.

  20. Decadal Trends and Common Dynamics of the Bio-Optical and Thermal Characteristics of the African Great Lakes

    PubMed Central

    Loiselle, Steven; Cózar, Andrés; Adgo, Enyew; Ballatore, Thomas; Chavula, Geoffrey; Descy, Jean Pierre; Harper, David M.; Kansiime, Frank; Kimirei, Ismael; Langenberg, Victor; Ma, Ronghua; Sarmento, Hugo; Odada, Eric

    2014-01-01

    The Great Lakes of East Africa are among the world’s most important freshwater ecosystems. Despite their importance in providing vital resources and ecosystem services, the impact of regional and global environmental drivers on this lacustrine system remains only partially understood. We make a systematic comparison of the dynamics of the bio-optical and thermal properties of thirteen of the largest African lakes between 2002 and 2011. Lake surface temperatures had a positive trend in all Great Lakes outside the latitude of 0° to 8° south, while the dynamics of those lakes within this latitude range were highly sensitive to global inter-annual climate drivers (i.e. El Niño Southern Oscillation). Lake surface temperature dynamics in nearly all lakes were found to be sensitive to the latitudinal position of the Inter Tropical Convergence Zone. Phytoplankton dynamics varied considerably between lakes, with increasing and decreasing trends. Intra-lake differences in both surface temperature and phytoplankton dynamics occurred for many of the larger lakes. This inter-comparison of bio-optical and thermal dynamics provides new insights into the response of these ecosystems to global and regional drivers. PMID:24699528

  1. State and regional water-quality characteristics and trophic conditions of Michigan's inland lakes, 2001-2005

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2008-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality are jointly monitoring selected water-quality constituents of inland lakes through 2015 as part of Michigan’s Lake Water Quality Assessment program. During 2001–2005, 433 lake basins from 364 inland lakes were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of those monitored lake basins throughout the State. Regional variation of water quality in lake basins was examined by grouping on the basis of the five Omernik level III ecoregions within Michigan. Concentrations of most constituents measured were significantly different between ecoregions. Less regional variation of phosphorus concentrations was noted between Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions during summer possibly because water samples were collected when lake productivity was high; hence the utilization of the limited amount of phosphorus by algae and macrophytes may have resulted in the more uniform concentrations between these two ecoregions. Concentrations of common ions (calcium, magnesium, potassium, sodium, chloride, and sulfate) measured in the spring typically were higher in the Michigan southern Lower Peninsula in the Eastern Corn Belt Plains (55), Southern Michigan/Northern Indiana Drift Plains (56), and Huron/Erie Lake Plains (57) ecoregions. Most ions whose concentrations were less than the minimum reporting levels or were nondetectable were from lakes in the Michigan northern Lower Peninsula and the Upper Peninsula in the Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions. Chlorophyll a concentrations followed a similar distribution pattern. Measured properties such as pH and specific conductance (indicative of dissolved solids) also showed a regional relation. The lakes with the lowest pH and specific conductance were generally in the western

  2. Nitrate Contamination in the groundwater of the Lake Acıgöl Basin, SW Turkey

    NASA Astrophysics Data System (ADS)

    Karaman, Muhittin; Budakoǧlu, Murat; Taşdelen, Suat

    2017-04-01

    The lacustrine Acıgöl basin, formed as an extensional half-graben, hosts various bodies of water, such as cold-hot springs, lakes, streams, and wells. The hydrologically closed basin contains a hypersaline lake (Lake Acıgöl) located in the southern part of the basin. The brackish springs and deep waters discharged along the Acıgöl fault zone in the southern part of the basin feed the hypersaline lake. Groundwater is used as drinking, irrigation, and domestic water in the closed Acıgöl Basin. Groundwater flows into the hypersaline lake from the highland. The Acıgöl basin hosts large plains (Hambat, Başmakçı, and Evciler). Waters in agricultural areas contain high amounts of nitrate; groundwater samples in agricultural areas contain nitrate levels higher than 10 mg/L. Nitrate concentrations in the groundwater samples varied from 0 to 487 mg/L (n=165); 25.4 % of the groundwater samples from the basin had nitrate concentrations above 10 mg/L (the WHO drinking guideline) and 52.2% of the groundwater samples from the basin had nitrate concentrations above 3.0 mg/L, and these high values were regarded as the result of human activity. The highest nitrate values were measured in the Hambat plain (480 and 100 mg/L) and Yirce Pinari spring (447 mg/L), which discharges along the Acıgöl fault zone in the southern part of the basin. The average multi-temporal nitrate concentration of the Yirce Pınarı spring was 3.3 mg/L. Extreme nitrate values were measured in the Yirce Pınarı spring during periods when sheep wool was washed (human activity). The lowest nitrate concentrations were observed in some springs that discharged along the Acıgöl fault zone in the southern part of the basin. Nitrate was not detected in deep groundwater discharged along the Acıgöl fault zone. Nitrate concentrations in deep groundwater and some springs discharged along the Acıgöl fault zone and those feeding the hypersaline lake were significantly affected by redox conditions

  3. Recent sedimentary history of Lake Monona, Wisconsin

    USGS Publications Warehouse

    Bortleson, Gilbert C.; Lee, G.F.

    1975-01-01

    Chemical analyses from two short cores in Lake Monona show that pronounced changes in chemical stratigraphy have occurred since white man moved into Madison and southern Wisconsin and began modifying the area. Since the mid to late 1800's, there has been an appreciable increase in P, Fe, Mn, Al, and K in the uppermost sediments. Maximum concentrations of P were observed near the turn of the century and in the most recent sediment layers. ?? 1975 D. Reidel Publishing Company.

  4. Bathymetry of Walker Lake, West-Central Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Smith, J. LaRue

    2007-01-01

    the shore and river mouth that could be boulders, tree stumps, logs, or other submerged objects. The echosounder detected what appeared to be mounds in the deepest parts of Walker Lake, miles from the shore and river mouth. However, side-scan sonar and divers did not confirm the presence of mounds. Anomalies occur in two northwest trending groups in northern and southern Walker Lake. It is hypothesized that some anomalies indicate spring discharge along faults based on tufa-like rocks that were observed and the northwest trend parallel to and in proximity of mapped faults. Also, evaporation measured from Walker Lake is about 50 percent more than the previous estimate, indicating more water is flowing into the lake from sources other than the Walker River. Additional studies need to be done to determine what the anomalies are and whether they are related to the hydrology of Walker Lake. Most differences in surface area and storage volume between this study and a study by Rush in 1970 were less than 1 percent. The largest differences occur at lake-surface altitudes less than 3,916 feet. In general, relations between lake-surface altitude, surface area, and storage volume from Rush's study and this study are nearly identical throughout most of the range in lake-surface altitude. The lake-surface altitude in 1882 was estimated to be between 4,080 feet and 4,086 feet with a probable altitude of 4,082 feet. This estimate compares well with two previous estimates of 4,083 feet and 4,086 feet. Researchers believe the historic highstand of Walker Lake occurred in 1868 and estimated the highstand was between 4,089 feet and 4,108 feet. By 1882, Mason Valley was predominantly agricultural. The 7-26 feet decline in lake-surface altitude between 1868 and 1882 could partially be due to irrigation diversions during this time.

  5. Patterns and Potential Drivers of Dramatic Changes in Tibetan Lakes, 1972–2010

    PubMed Central

    Li, Yingkui; Liao, Jingjuan; Guo, Huadong; Liu, Zewen; Shen, Guozhuang

    2014-01-01

    Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia. PMID:25372787

  6. A Grammar of Southern Pomo: An Indigenous Language of California

    ERIC Educational Resources Information Center

    Walker, Neil Alexander

    2013-01-01

    Southern Pomo is a moribund indigenous language, one of seven closely related Pomoan languages once spoken in Northern California in the vicinity of the Russian River drainage, Clear Lake, and the adjacent Pacific coast. This work is the first full-length grammar of the language. It is divided into three parts. Part I introduces the sociocultural…

  7. Evidence of Lake Trout reproduction at Lake Michigan's mid-lake reef complex

    USGS Publications Warehouse

    Janssen, J.; Jude, D.J.; Edsall, T.A.; Paddock, R.W.; Wattrus, N.; Toneys, M.; McKee, P.

    2006-01-01

    The Mid-Lake Reef Complex (MLRC), a large area of deep (> 40 m) reefs, was a major site where indigenous lake trout (Salvelinus namaycush) in Lake Michigan aggregated during spawning. As part of an effort to restore Lake Michigan's lake trout, which were extirpated in the 1950s, yearling lake trout have been released over the MLRC since the mid-1980s and fall gill net censuses began to show large numbers of lake trout in spawning condition beginning about 1999. We report the first evidence of viable egg deposition and successful lake trout fry production at these deep reefs. Because the area's existing bathymetry and habitat were too poorly known for a priori selection of sampling sites, we used hydroacoustics to locate concentrations of large fish in the fall; fish were congregating around slopes and ridges. Subsequent observations via unmanned submersible confirmed the large fish to be lake trout. Our technological objectives were driven by biological objectives of locating where lake trout spawn, where lake trout fry were produced, and what fishes ate lake trout eggs and fry. The unmanned submersibles were equipped with a suction sampler and electroshocker to sample eggs deposited on the reef, draw out and occasionally catch emergent fry, and collect egg predators (slimy sculpin Cottus cognatus). We observed slimy sculpin to eat unusually high numbers of lake trout eggs. Our qualitative approaches are a first step toward quantitative assessments of the importance of lake trout spawning on the MLRC.

  8. Reconstructing paleo-precipitation amounts using a terrestrial hydrologic model: Lake Titicaca and the Salar de Uyuni, Peru and Bolivia

    NASA Astrophysics Data System (ADS)

    Nunnery, J. A.; Baker, P. A.; Coe, M. T.; Fritz, S. C.

    2010-12-01

    The Peruvian/Bolivian Altiplano has provided many information-rich records bearing on the history of the South American summer monsoon (SASM), a large-scale circulation system that is responsible for much of the precipitation over the Amazon basin and the southern tropics and subtropics. Examples of these paleoclimate time series include long, drill core records from Lake Titicaca (extending back to ca. 400 Ka, Fritz et al., 2007), the long drill core record from Salar de Uyuni (> 250 Ka, Baker et al., 2001; Fritz et al., 2004), paleo-lake level records from the Salar de Uyuni (e.g. Bills et al., 2004; Placzek et al, 2006); drill core records from the Rio Desaguadero valley (Rigsby et al., 2003), and ice core records from Quelccaya, Illimani, and Sajama (Thompson et al., 2000; Ramirez et al., 2003). Several previous studies using energy and water balance models have been applied to these records in attempts to provide quantitative constraints on paleo-temperature and paleo-precipitation (e.g. Kessler, 1984; Hastenrath and Kutzbach, 1985; Cross et al, 2001; Rowe and Dunbar, 2004; Arnold, 2002; Blodgett et al., 1997). For example, Blodgett et al. concluded that high paleolake stands in the Bolivian Altiplano, dated at ca. 16,000 cal. Yr BP (Bills et al., 1994) required precipitation 20% higher than modern at temperatures 5°C colder than modern. However, their model did not take into account the major overflow from Lake Titicaca. Using the THMB hydrologic model, we show that overflow from Lake Titicaca is necessary to produce and sustain large lakes in the Salar de Uyuni basin. This hydrological connection (via the Rio Desaguadero) between the northern and southern Altiplano likely was only established about 60,000 years ago. Prior to that, there were no sustained, large and deep paleolakes on the southern Altiplano. Rather, drill core evidence indicates a very long sequence of shallow, hypersaline lakes and playas.

  9. Periodic jökulhlaups from Pleistocene glacial Lake Missoula-New evidence from varved sediment in northern Idaho and Washington

    USGS Publications Warehouse

    Waitt, Richard B.

    1984-01-01

    Newly examined exposures in northern Idaho and Washington show that catastrophic floods from glacial Lake Missoula during late Wisconsin time were repeated, brief jökulhlaups separated by decades of quiet glaciolacustrine and subaerial conditions. Glacial Priest Lake, dammed in the Priest River valley by a tongue of the Purcell trench lobe of the Cordilleran ice sheet, generally accumulated varved mud; the varved mud is sharply interrupted by 14 sand beds deposited by upvalley-running currents. The sand beds are texturally and structurally similar to slackwater sediment in valleys in southern Washington that were backflooded by outbursts from glacial Lake Missoula. Beds of varved mud also accumulated in glacial Lake Spokane (or Columbia?) in Latah Creek valley and elsewhere in northeastern Washington; the mud beds were disrupted, in places violently, during emplacement of each of 16 or more thick flood-gravel beds. This history corroborates evidence from southern Washington that only one graded bed is deposited per flood, refuting a conventional idea that many beds accumulated per flood. The total number of such floodlaid beds in stratigraphic succession near Spokane is at least 28. The mud beds between most of the floodlaid beds in these valleys each consist of between 20 and 55 silt-to-clay varves. Lacustrine environments in northern Idaho and Washington therefore persisted for two to six decades between regularly recurring, colossal floods from glacial Lake Missoula.

  10. 77 FR 41686 - Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ...-AA00 Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Sheffield Lake, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  11. TRANSPORT STUDIES IN THE LOCK LAKE TIDAL MARSH OF SOUTHERN LONG ISLAND

    EPA Science Inventory

    Ground water discharges directly into the Great South Bay and also via a sideways route into the Lock Lake tidal marsh at East Patchogue, New York. Data collected from the site were used to assess the transport of ground water contaminants into the waters of the Bay and potentia...

  12. Spatiotemporal Variability of Great Lakes Basin Snow Cover Ablation Events

    NASA Astrophysics Data System (ADS)

    Suriano, Z. J.; Leathers, D. J.

    2017-12-01

    In the Great Lakes basin of North America, annual runoff is dominated by snowmelt. This snowmelt-induced runoff plays an important role within the hydrologic cycle of the basin, influencing soil moisture availability and driving the seasonal cycle of spring and summer Lake levels. Despite this, relatively little is understood about the patterns and trends of snow ablation event frequency and magnitude within the Great Lakes basin. This study uses a gridded dataset of Canadian and United States surface snow depth observations to develop a regional climatology of snow ablation events from 1960-2009. An ablation event is defined as an inter-diurnal snow depth decrease within an individual grid cell. A clear seasonal cycle in ablation event frequency exists within the basin and peak ablation event frequency is latitudinally dependent. Most of the basin experiences peak ablation frequency in March, while the northern and southern regions of the basin experience respective peaks in April and February. An investigation into the inter-annual frequency of ablation events reveals ablation events significantly decrease within the northeastern and northwestern Lake Superior drainage basins and significantly increase within the eastern Lake Huron and Georgian Bay drainage basins. In the eastern Lake Huron and Georgian Bay drainage basins, larger ablation events are occurring more frequently, and a larger impact to the hydrology can be expected. Trends in ablation events are attributed primarily to changes in snowfall and snow depth across the region.

  13. 96. (Credit BLV) View locking West at Cross Lake dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    96. (Credit BLV) View locking West at Cross Lake dam and spillway constructed immediately west of Kansas City Southern railroad bridge. Booster station located at left. Note cribbing at bridge abutment in upper left which straddles gravity flow canduit installed in 1924-1926 and supports extra suction line (installed in 1930) on top. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  14. Stable isotope (O and C) and pollen trends in eastern Lake Erie, evidence for a locally-induced climatic reversal of Younger Dryas age in the Great Lakes basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, C.F.M.; Anderson, T.W.

    A cool period from about 11000 to 10500 BP (11 to 10.5 ka) is recognized in pollen records from the southern Great Lakes area by the return of Picea and Abies dominance and by the persistence of herbs. The area of cooling appears centred on the Upper Great Lakes. A high-resolution record (ca. 9 mm/y) from a borehole in eastern Lake Erie reveals, in the same time interval, this pollen anomaly, isotope evidence of melt-water presence (a-3 per mil shift in {delta} {sup 18}O and a + 1.1 per mil shift in {delta}{sup 13}C), increased sand, and reduced detrital calcitemore » content, all suggesting concurrent cooling of Lake Erie. The onset of cooling is mainly attributed to the effect of enhanced meltwater inflow on the relatively large upstream Main Lake Agassiz. Termination of the cooling coincides with drainage of Lake Algonquin, and is attributed to loss of its cooling effectiveness associated with a substantial reduction in its surface area. It is hypothesized that that the cold extra in-flow effectively prolonged the seasonal presence of lake ice and the period of spring overturn in Lake Algonquin. The deep mixing would have greatly increased the thermal conductive capacity of this extensive lake, causing suppression of summer surface lakewater temperatures and reduction of onshore growing-degree days. Alternatively, a rapid flow of meltwater, buoyed on sediment-charged (denser) lakewater, may have kept the lake surface cold in summer. Other factors such as wind-shifted pollen deposition and possible effects from the Younger Dryas North Atlantic cooling could have contributed to the Great Lakes climatic reversal, but further studies are needed to resolve their relative significance. 51 refs., 5 figs.« less

  15. Grand Canyon, Lake Powell, and Lake Mead

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A snowfall in the American West provides contrast to the landscape's muted earth tones and indicates changes in topography and elevation across (clockwise from top left) Nevada, Utah, Colorado, New Mexico, Arizona, and California. In Utah, the southern ranges of the Wasatch Mountains are covered in snow, and the Colorado River etches a dark ribbon across the red rock of the Colorado Plateau. In the center of the image is the reservoir created by the Glen Canyon Dam. To the east are the gray-colored slopes of Navaho Mountain, and to the southeast, dusted with snow is the region called Black Mesa. Southwest of Glen Canyon, the Colorado enters the Grand Canyon, which cuts westward through Arizona. At a deep bend in the river, the higher elevations of the Keibab Plateau have held onto snow. At the end of the Grand Canyon lies another large reservoir, Lake Mead, which is formed by the Hoover Dam. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  16. Lake trout rehabilitation in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Eckert, Thomas H.; Schaner, Ted; Bowlby, James N.; Schleen, Larry P.

    1995-01-01

    Attempts to maintain the native lake trout (Salvelinus namaycush) population in Lake Ontario by stocking fry failed and the species was extirpated by the 1950s. Hatchery fish stocked in the 1960s did not live to maturity because of sea lamprey (Petromyzon marinus) predation and incidental commercial harvest. Suppression of sea lampreys began with larvicide treatments of Lake Ontario tributaries in 1971 and was enhanced when the tributaries of Oneida Lake and Lake Erie were treated in the 1980s. Annual stocking of hatchery fish was resumed with the 1972 year class and peaked at about 1.8 million yearlings and 0.3 million fingerlings from the 1985–1990 year classes. Survival of stocked yearlings declined over 50% in the 1980 s and was negatively correlated with the abundance of lake trout > 550 mm long (r = −0.91, P < 0.01, n = 12). A slot length limit imposed by the State of New York for the 1988 fishing season reduced angler harvest. Angler harvest in Canadian waters was 3 times higher in eastern Lake Ontario than in western Lake Ontario. For the 1977–1984 year classes, mean annual survival rate of lake trout age 6 and older was 0.45 (range: 0.35–0.56). In U.S. waters during 1985–1992, the total number of lake trout harvested by anglers was about 2.4 times greater than that killed by sea lampreys. The number of unmarked lake trout < 250 mm long in trawl catches in 1978–1992 was not different from that expected due to loss of marks and failure to apply marks at the hatchery, and suggested that recruitment of naturally-produced fish was nil. However, many of the obstacles which may have impeded lake trout rehabilitation in Lake Ontario during the 1980s are slowly being removed, and there are signs of a general ecosystem recovery. Significant recruitment of naturally produced lake trout by the year 2000, one interim objective of the rehabilitation plan for the Lake, may be achieved.

  17. Monitoring and Assessment of Hydrological and Ecological Changes in Lake Manyas

    NASA Astrophysics Data System (ADS)

    Curebal, Isa; Efe, Recep; Soykan, Abdullah; Sonmez, Suleyman

    2014-05-01

    Manyas Lake in the northwest of Turkey occupies an area of 165 square kilometers. The surface area of the lake is continuously changing due to human activities, hydrologic and climatic conditions. The objective of this study is to examine the changes in water level and the area of lake and the effects of these changes on the lake's ecosystem and human economic activities. In order to determine the changes lake level measurement data, 1/25000 scale topography maps, rainfall and temperature data and bathymetry maps were used and elevation models were made. During the study period the water level fluctuated between 14.0 and 17.8 meters, and surface area changed between 124,8 km2 and 170,6 km2 respectively. Prior to the construction of a flood barrier at the southern end of the lake in 1992 the maximum surface area of the lake was calculated at 209 km2. Lake Manyas is an important wetland on the route of migration of birds from/to Europe and Africa. 64 ha of the lake and its surroundings along with the entire National Park is a Ramsar site. Irrigated and dry farming is practiced around the lake and fishing is important economic activity. The changes in the water level as result of natural and human factors brought about negative effects on the lake's ecosystem in last ten years. Result of these effects, natural fluctuation of the lake changed and the marshes around the lake destroyed and the bird population decreased. Lowering the water level in the lake is also significantly reduced the number of fish and number of migratory birds. The construction of the flood barrier destroyed vegetation and bird life in about a 25% of area of the lake on the south. The natural ecosystem in this area has been adversely affected. Moreover, when the water level is low due to low rain fall and irrigation, vegetation on the lake's shore line dies and some areas turn to swamp. The fauna and flora are negatively affected by water level changes particularly in the protected National Park

  18. Lake level variability in Silver Lake, Michigan: a response to fluctuations in lake levels of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2004-01-01

    Sediment from Silver Lake, Michigan, can be used to constrain the timing and elevation of Lake Michigan during the Nipissing transgression. Silver Lake is separated from Lake Michigan by a barrier/dune complex and the Nipissing, Calumet, and Glenwood shorelines of Lake Michigan are expressed landward of this barrier. Two Vibracores were taken from the lake in February 2000 and contain pebbly sand, sand, buried soils, marl, peat, and sandy muck. It is suggested here that fluctuations in the level of Lake Michigan are reflected in Silver Lake since the Chippewa low phase, and possibly at the end of the Algonquin phase. An age of 12,490 B.P. (10,460±50 14C yrs B.P.) on wood from a buried Entisol may record the falling Algonquin phase as the North Bay outlet opened. A local perched water table is indicated by marl deposited before 7,800 B.P. and peat between 7,760-7,000 B.P. when Lake Michigan was at the low elevation Chippewa phase. Continued deepening of the lake is recorded by the transition from peat to sandy muck at 7,000 B.P. in the deeper core, and with the drowning of an Inceptisol nearly 3 m higher at 6,410 B.P. in the shallower core. A rising groundwater table responding to a rising Lake Michigan base level during the Nipissing transgression, rather than a response to mid-Holocene climate change, explains deepening of Silver Lake. Sandy muck was deposited continually in Silver Lake between Nipissing and modern time. Sand lenses within the muck are presumed to be eolian in origin, derived from sand dunes advancing into the lake on the western side of the basin.

  19. How Might Draining Lake Campotosto Affect Stress and Seismicity on the Monte Gorzano Normal Fault, Central Italy?

    NASA Astrophysics Data System (ADS)

    Verdecchia, A.; Deng, K.; Harrington, R. M.; Liu, Y.

    2017-12-01

    It is broadly accepted that large variations of water level in reservoirs may affect the stress state on nearby faults. While most studies consider the relationship between lake impoundment and the occurrence of large earthquakes or seismicity rate increases in the surrounding region, very few examples focus on the effects of lake drainage. The second largest reservoir in Europe, Lake Campotosto, is located on the hanging wall of the Monte Gorzano fault, an active normal fault responsible for at least two M ≥ 6 earthquakes in historical times. The northern part of this fault ruptured during the August 24, 2016, Mw 6.0 Amatrice earthquake, increasing the probability for a future large event on the southern section where an aftershock sequence is still ongoing. The proximity of the Campotosto reservoir to the active fault aroused general concern with respect to the stability of the three dams bounding the reservoir if the southern part of the Monte Gorzano fault produces a moderate earthquake. Local officials have proposed draining the reservoir as hazard mitigation strategy to avoid possible future catastrophes. In efforts to assess how draining the reservoir might affect earthquake nucleation on the fault, we use a finite-element poroelastic model to calculate the evolution of stress and pore pressure in terms of Coulomb stress changes that would be induced on the Monte Gorzano fault by emptying the Lake Campotosto reservoir. Preliminary results show that an instantaneous drainage of the lake will produce positive Coulomb stress changes, mostly on the shallower part of the fault (0 to 2 km), while a stress drop of the order of 0.2 bar is expected on the Monte Gorzano fault between 0 and 8 km depth. Earthquake hypocenters on the southern portion of the fault currently nucleate between 5 and 13 km depth, with activity distributed nearby the reservoir. Upcoming work will model the effects of varying fault geometry and elastic parameters, including geological

  20. Exploring the long-term balance between net precipitation and net groundwater exchange in Florida seepage lakes

    USGS Publications Warehouse

    Lee, Terrie M.; Sacks, Laura A.; Swancar, Amy

    2014-01-01

    The long-term balance between net precipitation and net groundwater exchange that maintains thousands of seepage lakes in Florida’s karst terrain is explored at a representative lake basin and then regionally for the State’s peninsular lake district. The 15-year water budget of Lake Starr includes El Niño Southern Oscillation (ENSO)-related extremes in rainfall, and provides the longest record of Bowen ratio energy-budget (BREB) lake evaporation and lake-groundwater exchanges in the southeastern United States. Negative net precipitation averaging -25 cm/yr at Lake Starr overturns the previously-held conclusion that lakes in this region receive surplus net precipitation. Net groundwater exchange with the lake was positive on average but too small to balance the net precipitation deficit. Groundwater pumping effects and surface-water withdrawals from the lake widened the imbalance. Satellite-based regional estimates of potential evapotranspiration at five large lakes in peninsular Florida compared well with basin-scale evaporation measurements from seven open-water sites that used BREB methods. The regional average lake evaporation estimated for Lake Starr during 1996-2011 was within 5 percent of its measured average, and regional net precipitation agreed within 10 percent. Regional net precipitation to lakes was negative throughout central peninsular Florida and the net precipitation deficit increased by about 20 cm from north to south. Results indicate that seepage lakes farther south on the peninsula receive greater net groundwater inflow than northern lakes and imply that northern lakes are in comparatively leakier hydrogeologic settings. Findings reveal the peninsular lake district to be more vulnerable than was previously realized to drier climate, surface-water withdrawals from lakes, and groundwater pumping effects.

  1. Cuticular hydrocarbons and soldier defense secretions of Reticulitermes in southern California: a critical analysis of the taxonomy of the genus in North America

    Treesearch

    Lori J. Nelson; Laurence G. Cool; Christopher W. Solek; Michael I. Haverty

    2008-01-01

    Cuticular hydrocarbons (CHC) and soldier defense secretions (SDS) were characterized for collections of Reticulitermes from six counties (Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Santa Barbara) in southern California. Collection sites included the type locality for R. hesperus, Lake Arrowhead (formerly known as Little Bear Lake) in the San...

  2. The Antarctic dry valley lakes: Relevance to Mars

    NASA Technical Reports Server (NTRS)

    Wharton, R. A., Jr.; Mckay, Christopher P.; Mancinelli, Rocco L.; Clow, G. D.; Simmons, G. M., Jr.

    1989-01-01

    The similarity of the early environments of Mars and Earth, and the biological evolution which occurred on early Earth, motivates exobiologists to seriously consider the possiblity of an early Martian biota. Environments are being identified which could contain Martian life and areas which may presently contain evidence of this former life. Sediments which were thought to be deposited in large ice-covered lakes are present on Mars. Such localities were identified within some of the canyons of the Valles Marineris and more recently in the ancient terrain in the Southern Hemisphere. Perennially ice-covered Antarctic lakes are being studied in order to develop quantitative models that relate environmental factors to the nature of the biological community and sediment forming processes. These models will be applied to the Martian paleolakes to establish the scientific rationale for the exobiological study of ancient Martian sediments.

  3. Newly Collected Multibeam Swath Bathymetry Data Herald a New Phase in Gas-hydrate Research on Lake Baikal

    NASA Astrophysics Data System (ADS)

    Naudts, L.; Khlystov, O.; Khabuev, A.; Seminskiy, I.; Casier, R.; Cuylaerts, M.; 'chenko, P., General; Synaeve, J.; Vlamynck, N.; de Batist, M. A.; Grachev, M. A.

    2009-12-01

    Lake Baikal is a large rift lake in Southern Siberia (Russian Federation). It occupies the three central depressions of the Baikal Rift Zone (BRZ): i.e. the Southern, Central and Northern Baikal Basins. Rifting started ca. 30 Ma ago and is still active with a present-day average extension rate of about 4 mm/yr. With a depth of 1637 m, Lake Baikal is the deepest lake in the World. It also holds 20 % of the world’s liquid surface fresh water, which makes it the largest lake in the World in terms of volume. Lake Baikal is also the only freshwater lake in the World with demonstrated occurrences of gas hydrates in its sedimentary infill. Methane hydrates are stable at water depths below 375 m. The presence of hydrates in the sedimentary infill is evidenced by a widespread BSR. Hydrates have also been encountered locally, in the near-bottom sediments of mud-volcano-like structures. In the summer of 2009, the lake floor has been mapped with multibeam swath bathymetry for the first time during a two-month-long survey with RV Titov. Swath bathymetry data were acquired with RCMG’s mobile 50 kHz SeaBeam 1050 multibeam system. In total 12600 km of echosounder tracks were sailed covering 15000 km2, including the Academician Ridge Accommodation Zone, the Central Baikal Basin, the Selenga Delta Accommodation Zone en the South Baikal Basin. In general, the lake floor was mapped starting from water depths of about -200 m to -1637 m, with an average survey depth of -1000 m. The new bathymetric data image the lake-floor morphology in unprecedented detail, revealing many small- and large-scall morphosedimentary, morphostructural and fluid-flow-related features, many of which were hitherto unknown. Known mud-volcano provinces in the Southern and Central Baikal Basins (i.e. the Posolsky Bank mud-volcano province, the Kukuy Canyon mud volcano province and the Olkhon Gate mud-volcano province) were mapped in detail, and several new, often isolated, mud-volcano-like structures were

  4. The Hyalella (Crustacea: Amphipoda) species cloud of the ancient Lake Titicaca originated from multiple colonizations.

    PubMed

    Adamowicz, Sarah J; Marinone, María Cristina; Menu-Marque, Silvina; Martin, Jeffrey W; Allen, Daniel C; Pyle, Michelle N; De Los Ríos, Patricio; Sobel, Crystal N; Ibañez, Carla; Pinto, Julio; Witt, Jonathan D S

    2018-08-01

    Ancient lakes are renowned for their exceptional diversity of endemic species. As model systems for the study of sympatric speciation, it is necessary to understand whether a given hypothesized species flock is of monophyletic or polyphyletic origin. Here, we present the first molecular characterization of the Hyalella (Crustacea: Amphipoda) species complex of Lake Titicaca, using COI and 28S DNA sequences, including samples from the connected Small and Large Lakes that comprise Lake Titicaca as well as from a broader survey of southern South American sites. At least five evolutionarily distant lineages are present within Lake Titicaca, which were estimated to have diverged from one another 12-20 MYA. These major lineages are dispersed throughout the broader South American Hyalella phylogeny, with each lineage representing at least one independent colonization of the lake. Moreover, complex genetic relationships are revealed between Lake Titicaca individuals and those from surrounding water bodies, which may be explained by repeated dispersal into and out of the lake, combined with parallel intralacustrine diversification within two separate clades. Although further work in deeper waters will be required to determine the number of species present and modes of diversification, our results strongly indicate that this amphipod species cloud is polyphyletic with a complex geographic history. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Forecasting the evolution in the mixing regime of a deep subalpine lake under climate change scenarios through numerical modelling (Lake Maggiore, Northern Italy/Southern Switzerland)

    NASA Astrophysics Data System (ADS)

    Fenocchi, Andrea; Rogora, Michela; Sibilla, Stefano; Ciampittiello, Marzia; Dresti, Claudia

    2018-01-01

    The impact of air temperature rise is eminent for the large deep lakes in the Italian subalpine district, climate change being caused there by both natural phenomena and anthropogenic greenhouse-gases (GHG) emissions. These oligomictic lakes are experiencing a decrease in the frequency of winter full turnover and an intensification of stability. As a result, hypolimnetic oxygen concentrations are decreasing and nutrients are accumulating in bottom water, with effects on the whole ecosystem functioning. Forecasting the future evolution of the mixing pattern is relevant to assess if a reduction in GHG releases would be able to revert such processes. The study focuses on Lake Maggiore, for which the thermal structure evolution under climate change in the 2016-2085 period was assessed through numerical simulations, performed with the General Lake Model (GLM). Different prospects of regional air temperature rise were considered, given by the Swiss Climate Change Scenarios CH2011. Multiple realisations were performed for each scenario to obtain robust statistical predictions, adopting random series of meteorological data produced with the Vector-Autoregressive Weather Generator (VG). Results show that a reversion in the increasing thermal stability would be possible only if global GHG emissions started to be reduced by 2020, allowing an equilibrium mixing regime to be restored by the end of the twenty-first century. Otherwise, persistent lack of complete-mixing, severe water warming and extensive effects on water quality are to be expected for the centuries to come. These projections can be extended to the other lakes in the subalpine district.

  6. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    PubMed

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lower Mississippian trilobites from southern New Mexico

    USGS Publications Warehouse

    Brezinski, D.K.

    2000-01-01

    Twenty-three species of trilobites are recognized in the lower Mississippian Caballero and Lake Valley Formations of southern New Mexico. Species exhibit a segregation into shelf and off-shelf faunas, and can be subdivided into three distinct stratigraphic faunas. Species found in the Caballero Formation are similar to those found in the Chouteau Formation of Missouri. A second fauna, comprising species found in the Alamogordo, Nunn, and Tierra Blanca Members of the Lake Valley Formation, is correlated with the Fern Glen and Burlington Formations of Missouri. The third fauna found in the Arcente and Dona Aha Members of the Lake Valley Formation is correlated with the Warsaw and Salem Formations of the United States midcontinent region. Named species from the Kinderhookian Caballero Formation include: Dixiphopyge armata (Vogdes, 1891), Comptonaspis swallowi (Shumard, 1855), Brachymetopus indianwellsensis new species, Ameropiltonia perplexa new species, Griffithidella caballeroensis new species, and Kollarcephalus granatai new genus and new species. Named species from the Lake Valley Formation include: Pudoproetus fernglenensis (Weller, 1909), Breviphillipsia semiteretis Hessler, 1963, Griffithidella doris (Hall 1860), Phillibole planucauda (Brezinski, 1998), Piltonia carlakertisae new species, Australosutura llanoensis Brezinski, 1998, Thigriffides triangulatus new species, Thigriffides? alamogordoensis new species, Namuropyge newmexicoensis new species, Nunnaspis stitti new genus and new species, Hesslerides arcentensis new genus and new species, as well as an unnamed species of Proetides Hessler, 1962, Namuropyge Brezinski, 1988, and Thigriffides Hessler, 1965.

  8. Shell-free biomass and population dynamics of dreissenids in offshore Lake Michigan, 2001-2003

    USGS Publications Warehouse

    French, J. R. P.; Adams, J.V.; Craig, J.; Stickel, R.G.; Nichols, S.J.; Fleischer, G.W.

    2007-01-01

    The USGS-Great Lakes Science Center has collected dreissenid mussels annually from Lake Michigan since zebra mussels (Dreissena polymorpha) became a significant portion of the bottom-trawl catch in 1999. For this study, we investigated dreissenid distribution, body mass, and recruitment at different depths in Lake Michigan during 2001-2003. The highest densities of dreissenid biomass were observed from depths of 27 to 46 m. The biomass of quagga mussels (Dreissena bugensis) increased exponentially during 2001-2003, while that of zebra mussels did not change significantly. Body mass (standardized for a given shell length) of both species was lowest from depths of 27 to 37m, highest from 55 to 64 m, and declined linearly at deeper depths during 2001-2003. Recruitment in 2003, as characterized by the proportion of mussels < 11 mm in the catch, varied with depth and lake region. For quagga mussels, recruitment declined linearly with depth, and was highest in northern Lake Michigan. For zebra mussels, recruitment generally declined non-linearly with depth, although the pattern was different for north, mid, and southern Lake Michigan. Our analyses suggest that quagga mussels could overtake zebra mussels and become the most abundant mollusk in terms of biomass in Lake Michigan.

  9. Hydrogeology, hydrologic budget, and water chemistry of the Medina Lake area, Texas

    USGS Publications Warehouse

    Lambert, Rebecca B.; Grimm, Kenneth C.; Lee, Roger W.

    2000-01-01

    A three-phase study of the Medina Lake area in Texas was done to assess the hydrogeology and hydrology of Medina and Diversion Lakes combined (the lake system) and to determine what fraction of seepage losses from the lake system might enter the regional ground-water-flow system of the Edwards and (or) Trinity aquifers. Phase 1 consisted of revising the geologic framework for the Medina Lake area. Results of field mapping show that the upper member of the Glen Rose Limestone underlies Medina Lake and the intervening stream channel from the outflow of Medina Lake to the midpoint of Diversion Lake, where the Diversion Lake fault intersects Diversion Lake. A thin sequence of strata consisting primarily of the basal nodular and dolomitic members of the Kainer Formation of the Edwards Group, is present in the southern part of the study area. On the southern side of Medina Lake, the contact between the upper member of the Glen Rose Limestone and the basal nodular member is approximately 1,000 feet above mean sea level, and the contact between the basal nodular member and the dolomitic member is approximately 1,050 feet above mean sea level. The most porous and permeable part of the basal nodular member is about 1,045 feet above mean sea level. At these altitudes, Medina Lake is in hydrologic connection with rocks in the Edwards aquifer recharge zone, and Medina Lake appears to lose more water to the ground-water system along this bedding plane contact. Hydrologic budgets calculated during phase 2 for Medina Lake, Diversion Lake, and Medina/Diversion Lakes combined indicate that: (1) losses from Medina and Diversion Lakes can be quantified; (2) a portion of those losses are entering the Edwards aquifer; and (3) losses to the Trinity aquifer in the Medina Lake area are minimal and within the error of the hydrologic budgets. Hydrologic budgets based on streamflow, precipitation, evaporation, and change in lake storage were used to quantify losses (recharge) to the ground

  10. The helium isotopic chemistry of Lake Bonney, Taylor Valley, Antarctica: Timing of late holocene climate change in Antarctica

    USGS Publications Warehouse

    Poreda, R.J.; Hunt, A.G.; Berry, Lyons W.; Welch, K.A.

    2004-01-01

    To better understand the long-term climate history of Antarctica, we studied Lake Bonney in Taylor Valley, Southern Victoria Land (78?? S). Helium isotope ratios and He, Ne, Ar and N2 concentration data, obtained from hydrocasts in the East (ELB) and West (WLB) Lobesof Lake Bonney, provided important constraints on the lake's Holocene evolution. Based on very low concentrations of Ar and N2 in the ELB bottom waters, ELB was free of ice until 200 ?? 50 years ago. After which, low salinity water flowing over the sill from WLB to ELB, covered ELB and formed a perennial ice cover, inhibiting the exchange of gases with the atmosphere. In contrast to the ELB, the WLB retained an ice cover through the Holocene. The brine in the WLB bottom waters has meteoric N2 and Ar gas concentrations indicating that it has not been significantly modified by atmospheric exchange or ice formation. The helium concentrations in the deep water of WLB are the highest measured in non-thermal surface water. By fitting a diffusional loss to the 3He/4He, helium, and Cl profiles, we calculate a time of ???3000 years for the initiation of flow over the sill separating the East and West Lobes. To supply this flux of helium to the lake, a helium-rich sediment beneath the lake must be providing the helium by diffusion. If at any time during the last million years the ice cover left WLB, there would be insufficient helium available to provide the current flux to WLB. The variations in water levels in Lake Bonney can be related to climatic events that have been documented within the Southern Victoria Land region and indicate that the lakes respond significantly to regional and, perhaps, global climate forcing. ?? 2004 Kluwer Academic Publishers.

  11. Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes

    USGS Publications Warehouse

    Carl, Leon M.; McGuiness, Fiona

    2006-01-01

    This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.

  12. Water regime of Playa Lakes from southern Spain: conditioning factors and hydrological modeling.

    PubMed

    Moral, Francisco; Rodriguez-Rodriguez, Miguel; Beltrán, Manuel; Benavente, José; Cifuentes, Victor Juan

    2013-07-01

    Andalusia's lowland countryside has a network of small geographically isolated playa lakes scattered across an area of 9000 km2 whose watersheds are mostly occupied by clayey rocks. The hydrological model proposed by the authors seeks to find equilibrium among usefulness, simplicity, and applicability to isolated playas in a semiarid context elsewhere. Based in such model, the authors have used monthly climatic data, water stage measurements, and the basin morphometry of a particular case (Los Jarales playa lake) to calibrate the soil water budget in the catchment and the water inputs from the watershed (runoff plus groundwater flow) at different scales, from monthly to daily. After the hydrologic model was calibrated, the authors implemented simulations with the goal of reproducing the past hydrological dynamics and forecasting water regime changes that would be caused by a modification of the wetland morphometry.

  13. Modeling Hydrodynamics and Heat Transport in Upper Klamath Lake, Oregon, and Implications for Water Quality

    USGS Publications Warehouse

    Wood, Tamara M.; Cheng, Ralph T.; Gartner, Jeffrey W.; Hoilman, Gene R.; Lindenberg, Mary K.; Wellman, Roy E.

    2008-01-01

    The three-dimensional numerical model UnTRIM was used to model hydrodynamics and heat transport in Upper Klamath Lake, Oregon, between mid-June and mid-September in 2005 and between mid-May and mid-October in 2006. Data from as many as six meteorological stations were used to generate a spatially interpolated wind field to use as a forcing function. Solar radiation, air temperature, and relative humidity data all were available at one or more sites. In general, because the available data for all inflows and outflows did not adequately close the water budget as calculated from lake elevation and stage-capacity information, a residual inflow or outflow was used to assure closure of the water budget. Data used for calibration in 2005 included lake elevation at 3 water-level gages around the lake, water currents at 5 Acoustic Doppler Current Profiler (ADCP) sites, and temperature at 16 water-quality monitoring locations. The calibrated model accurately simulated the fluctuations of the surface of the lake caused by daily wind patterns. The use of a spatially variable surface wind interpolated from two sites on the lake and four sites on the shoreline generally resulted in more accurate simulation of the currents than the use of a spatially invariant surface wind as observed at only one site on the lake. The simulation of currents was most accurate at the deepest site (ADCP1, where the velocities were highest) using a spatially variable surface wind; the mean error (ME) and root mean square error (RMSE) for the depth-averaged speed over a 37-day simulation from July 26 to August 31, 2005, were 0.50 centimeter per second (cm/s) and 3.08 cm/s, respectively. Simulated currents at the remaining sites were less accurate and, in general, underestimated the measured currents. The maximum errors in simulated currents were at a site near the southern end of the trench at the mouth of Howard Bay (ADCP7), where the ME and RMSE in the depth-averaged speed were 3.02 and 4.38 cm

  14. Strontium isotopic signatures of the streams and lakes of Taylor Valley, Southern Victoria Land, Antarctica: Chemical weathering in a polar climate

    USGS Publications Warehouse

    Lyons, W.B.; Nezat, C.A.; Benson, L.V.; Bullen, T.D.; Graham, E.Y.; Kidd, J.; Welch, K.A.

    2002-01-01

    We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.

  15. Sedimentology and geochemistry of lacustrine sequences of the upper Pleistocene and holocene in intertropical area (Lake Magadi and Green crater lake): paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Damnati, B.

    1993-05-01

    Sedimentological and geochemical analyses have been carried out on lacustrine deposits of East Africa, at Lake Magadi (2°S, 36°E, Kenya) and at Green Crater Lake (0°S, 36°E, Kenya), to determine the parameters controlling climatic and environmental dynamics during late Pleistocene and Holocene. These sedimentary sequences were collected with a stationary piston corer. At Lake Magadi (Fig. 1), sedimentary and geochemical control show three phases of lake level variation which corresponds to climatic change occurring during the last 40 thousand years. These phases were defined by three lithostratigraphic units. Laminated deposits of Lake Magadi were formed during a wet period. Analysis of these laminae define two microfacies: a dark lamina, characterised by lacustrine organic matter and a light lamina enriched in detritus, carbonates (CaCO 3) and magadiite (NaSi 7O 13(OH) 3, 3H 2O). The formation and preservation of each couplet was favoured by climatic contrast, lake stratification and various origin of the sediments (autochthon and allochthon) in the drainage basin. Therefore a relative chronology can be derived from laminae counting and the duration of deposition of each couplet. Spectral analysis applied on variation of the laminae thickness, shows the existence of three main periods, 4-7 years, 8-14 years and 18-30 years, respectively (Fig. 2). These cyclicites of the lacustrine environment precise former determinations established on more recent lacustrine sequences from East Africa. They are related to the global climatic cycle (quasi-biannual oscillations, El Nino Southern Oscillations and the sun spot cycles). At Green Crater Lake, the study of the sedimentary sequence was completed by physico-chemical analysis of the waters and interface sediments which demonstrate the carbonate, sodium, bicarbonate composition and the thermal and chemical stratification of the modern lake. The sedimentary sequence is characterized by volcanic deposits overlain by

  16. Late glacial aridity in southern Rocky Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, O K; Pitblado, B L

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lakemore » (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.« less

  17. A 1000-year record of dry conditions in the eastern Canadian prairies reconstructed from oxygen and carbon isotope measurements on Lake Winnipeg sediment organics

    USGS Publications Warehouse

    Buhay, W.M.; Simpson, S.; Thorleifson, H.; Lewis, M.; King, J.; Telka, A.; Wilkinson, Philip M.; Babb, J.; Timsic, S.; Bailey, D.

    2009-01-01

    A short sediment core (162 cm), covering the period AD 920-1999, was sampled from the south basin of Lake Winnipeg for a suite of multi-proxy analyses leading towards a detailed characterisation of the recent millennial lake environment and hydroclimate of southern Manitoba, Canada. Information on the frequency and duration of major dry periods in southern Manitoba, in light of the changes that are likely to occur as a result of an increasingly warming atmosphere, is of specific interest in this study. Intervals of relatively enriched lake sediment cellulose oxygen isotope values (??18Ocellulose) were found to occur from AD 1180 to 1230 (error range: AD 1104-1231 to 1160-1280), 1610-1640 (error range: AD 1571-1634 to 1603-1662), 1670-1720 (error range: AD 1643-1697 to 1692-1738) and 1750-1780 (error range: AD 1724-1766 to 1756-1794). Regional water balance, inferred from calculated Lake Winnipeg water oxygen isotope values (??18Oinf-lw), suggest that the ratio of lake evaporation to catchment input may have been 25-40% higher during these isotopically distinct periods. Associated with the enriched d??18Ocellulose intervals are some depleted carbon isotope values associated with more abundantly preserved sediment organic matter (d??13COM). These suggest reduced microbial oxidation of terrestrially derived organic matter and/or subdued lake productivity during periods of minimised input of nutrients from the catchment area. With reference to other corroborating evidence, it is suggested that the AD 1180-1230, 1610-1640, 1670-1720 and 1750-1780 intervals represent four distinctly drier periods (droughts) in southern Manitoba, Canada. Additionally, lower-magnitude and duration dry periods may have also occurred from 1320 to 1340 (error range: AD 1257-1363), 1530-1540 (error range: AD 1490-1565 to 1498-1572) and 1570-1580 (error range: AD 1531-1599 to 1539-1606). ?? 2009 John Wiley & Sons, Ltd.

  18. Archaeal community changes in Lateglacial lake sediments: Evidence from ancient DNA

    NASA Astrophysics Data System (ADS)

    Ahmed, Engy; Parducci, Laura; Unneberg, Per; Ågren, Rasmus; Schenk, Frederik; Rattray, Jayne E.; Han, Lu; Muschitiello, Francesco; Pedersen, Mikkel W.; Smittenberg, Rienk H.; Yamoah, Kweku Afrifa; Slotte, Tanja; Wohlfarth, Barbara

    2018-02-01

    The Lateglacial/early Holocene sediments from the ancient lake at Hässeldala Port, southern Sweden provide an important archive for the environmental and climatic shifts at the end of the last ice age and the transition into the present Interglacial. The existing multi-proxy data set highlights the complex interplay of physical and ecological changes in response to climatic shifts and lake status changes. Yet, it remains unclear how microorganisms, such as Archaea, which do not leave microscopic features in the sedimentary record, were affected by these climatic shifts. Here we present the metagenomic data set of Hässeldala Port with a special focus on the abundance and biodiversity of Archaea. This allows reconstructing for the first time the temporal succession of major Archaea groups between 13.9 and 10.8 ka BP by using ancient environmental DNA metagenomics and fossil archaeal cell membrane lipids. We then evaluate to which extent these findings reflect physical changes of the lake system, due to changes in lake-water summer temperature and seasonal lake-ice cover. We show that variations in archaeal composition and diversity were related to a variety of factors (e.g., changes in lake water temperature, duration of lake ice cover, rapid sediment infilling), which influenced bottom water conditions and the sediment-water interface. Methanogenic Archaea dominated during the Allerød and Younger Dryas pollen zones, when the ancient lake was likely stratified and anoxic for large parts of the year. The increase in archaeal diversity at the Younger Dryas/Holocene transition is explained by sediment infilling and formation of a mire/peatbog.

  19. Utilization of GIS modeling in geoenvironmental studies of Qaroun Lake, El Fayoum Depression, Egypt

    NASA Astrophysics Data System (ADS)

    Attia, Abdelaal H.; El-Sayed, Salah Abdelwahab; El-Sabagh, Moustafa E.

    2018-02-01

    compositions of sediments were highly affected by the natural and man-mad activities. The most effective processes were the type of the water and solid materials coming from the northern geologic formations (by the northern winds) and from the eastern and southern drains. The land coverage change detection maps indicated the positive and negative changes in the lake area and its surroundings during the period of 1987-2000. The positive change in the area of the lake was about 12.63 km2 along the northern part of the lake, while the negative one was about 4.56 km2 in the southern parts. Based on the obtained results, some recommendations were presented to avoid the detrimental effects originated from the natural and human activities.

  20. Deposition and regional distribution of HCHs and p,p'-DDX in the western and southern Tibetan Plateau: records from a lake sediment core and the surface soils.

    PubMed

    Tao, Yu-Qiang; Lei, Guo-Liang; Xue, Bin; Yao, Shu-Chun; Pu, Yang; Zhang, Hu-Cai

    2014-02-01

    Tibetan Plateau is the world's highest plateau, which provides a unique location for the investigation of global fractionation of organochlorine pesticides (OCPs). In this study, deposition and regional distribution of HCHs and p,p'-DDX in the western and southern Tibetan Plateau were investigated by the records from a sediment core of Lake Zige Tangco and 24 surface soils. Concentration of ΣHCHs in the surface soils of the western Tibetan Plateau was much higher than that of the southern part. Maximum fluxes of α-, β-, and δ-HCH in the sediment core were 9.0, 222, and 21 pg cm(-2) year(-1), respectively, which appeared in the mid-1960s. Significant correlations were observed between concentrations of α- and β-HCH in both the surface soils and the sediment core. Concentrations of both α- and β-HCH increased with the inverse of the average annual temperature of these sites. γ-HCH became the dominant isomer of HCHs after the late 1970s, and reached the maximum flux of 160 pg cm(-2) year(-1) in the early 1990s. There were no significant correlations between concentrations of γ-HCH and the other isomers in both the surface soils and the sediment core. The results suggested that there was input of Lindane at scattered sites in this area. In contrast to ΣHCHs, concentration of Σp,p'-DDX in the surface soils of the southern part was much higher than that of the western part. Maximum flux of Σp,p'-DDX was 44 pg cm(-2) year(-1), which appeared in the mid-1960s. Local emission of p,p'-DDT was found at scattered sites. This study provides novel data and knowledge for the OCPs in the western and southern Tibetan Plateau, which will help understand the global fractionation of OCPs in remote alpine regions.

  1. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, Using NDVI Derived from Modis Data

    NASA Technical Reports Server (NTRS)

    Woods, Kate; Brozen, Madeline; Malik, Sadaf; Maki, Angela

    2009-01-01

    Lake Okeechobee, located in southern Florida, encompasses approximately 1,700 sq km and is a vital part of the Lake Okeechobee and Everglades ecosystem. Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, hydrilla, water hyacinth, and water lettuce have been documented in the lake and continue to threaten the ecosystem by their rapid growth. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index (NDVI) calculated on MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool (TSPT), a MATLAB-based program developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms, and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in water quality management.

  2. Distribution, abundance, and spawning season and grounds of the kiyi, Leucichthys kiyi Koelz, in Lake Michigan

    USGS Publications Warehouse

    Hile, Ralph; Deason, Hilary J.

    1947-01-01

    The depth of water on known spawning grounds (all in southern Lake Michigan) was 57.5 to 84 fathoms. There is evidence that the kiyi may spawn in more than 90 fathoms. Spawning appears to be widespread throughout waters of suitable depth.

  3. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific

    PubMed Central

    Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L

    2005-01-01

    Understanding El Niño/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an ENSO signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian–zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting ENSO responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response. PMID:17148349

  4. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific.

    PubMed

    Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L

    2006-03-22

    Understanding El Niño/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an ENSO signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian-zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting ENSO responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response.

  5. Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment

    NASA Astrophysics Data System (ADS)

    Diallo, Ismaïla; Giorgi, Filippo; Stordal, Frode

    2017-07-01

    We evaluate the performance of the regional climate model (RCM) RegCM4 coupled to a one dimensional lake model for Lake Malawi (also known as Lake Nyasa in Tanzania and Lago Niassa in Mozambique) in simulating the main characteristics of rainfall and near surface air temperature patterns over the region. We further investigate the impact of the lake on the simulated regional climate. Two RCM simulations, one with and one without Lake Malawi, are performed for the period 1992-2008 at a grid spacing of 10 km by nesting the model within a corresponding 25 km resolution run ("mother domain") encompassing all Southern Africa. The performance of the model in simulating the mean seasonal patterns of near surface air temperature and precipitation is good compared with previous applications of this model. The temperature biases are generally less than 2.5 °C, while the seasonal cycle of precipitation over the region matches observations well. Moreover, the one-dimensional lake model reproduces fairly well the geographical pattern of observed (from satellite measurements) lake surface temperature as well as its mean month-to-month evolution. The Malawi Lake-effects on the moisture and atmospheric circulation of the surrounding region result in an increase of water vapor mixing ratio due to increased evaporation in the presence of the lake, which combines with enhanced rising motions and low-level moisture convergence to yield a significant precipitation increase over the lake and neighboring areas during the whole austral summer rainy season.

  6. A new method to generate a high-resolution global distribution map of lake chlorophyll

    USGS Publications Warehouse

    Sayers, Michael J; Grimm, Amanda G.; Shuchman, Robert A.; Deines, Andrew M.; Bunnell, David B.; Raymer, Zachary B; Rogers, Mark W.; Woelmer, Whitney; Bennion, David; Brooks, Colin N.; Whitley, Matthew A.; Warner, David M.; Mychek-Londer, Justin G.

    2015-01-01

    A new method was developed, evaluated, and applied to generate a global dataset of growing-season chlorophyll-a (chl) concentrations in 2011 for freshwater lakes. Chl observations from freshwater lakes are valuable for estimating lake productivity as well as assessing the role that these lakes play in carbon budgets. The standard 4 km NASA OceanColor L3 chlorophyll concentration products generated from MODIS and MERIS sensor data are not sufficiently representative of global chl values because these can only resolve larger lakes, which generally have lower chl concentrations than lakes of smaller surface area. Our new methodology utilizes the 300 m-resolution MERIS full-resolution full-swath (FRS) global dataset as input and does not rely on the land mask used to generate standard NASA products, which masks many lakes that are otherwise resolvable in MERIS imagery. The new method produced chl concentration values for 78,938 and 1,074 lakes in the northern and southern hemispheres, respectively. The mean chl for lakes visible in the MERIS composite was 19.2 ± 19.2, the median was 13.3, and the interquartile range was 3.90–28.6 mg m−3. The accuracy of the MERIS-derived values was assessed by comparison with temporally near-coincident and globally distributed in situmeasurements from the literature (n = 185, RMSE = 9.39, R2 = 0.72). This represents the first global-scale dataset of satellite-derived chl estimates for medium to large lakes.

  7. Wetlands systems in southern Thailand: The essential resources for sustainable regional development

    Treesearch

    Rotchanatch Darnsawasdi; Prassert Chitpong

    2000-01-01

    Parts of Southern Thailand are inundated by water for months annually resulting in various wetlands including, among others, Tapi River Basin, Pak Panang River Basin, Songkhla Lake Basin, Pangnga Bay, Pattani River Basin, and Narathiwas Peat Swamp. Most wetlands perform functions such as flood retention, water filtration, bird and wildlife habitat,and tree growth....

  8. Bromine species fluxes from Lake Constance’s catchment, and a preliminary lake mass balance

    NASA Astrophysics Data System (ADS)

    Gilfedder, B. S.; Petri, M.; Wessels, M.; Biester, H.

    2011-06-01

    Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF. 190 t yr -1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr -1) and the Schussen (50 t TDBr yr -1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr -1. In comparison, only 40 t TDBr yr -1 was deposited to the lake's catchment by precipitation, and thus ˜80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (˜12 t yr -1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from

  9. LANDSAT digital data for water pollution and water quality studies in Southern Scandinavia

    NASA Technical Reports Server (NTRS)

    Hellden, U.; Akersten, I.

    1977-01-01

    Spectral diagrams, illustrating the spectral characteristics of different water types, were constructed by means of simple statistical analysis of the various reflectance properties of water areas in Southern Scandinavia as registered by LANDSAT-1. There were indications that water whose spectral reproduction is dominated by chlorophyllous matter (phytoplankton) can be distinguished from water dominated by nonchlorophyllous matter. Differences between lakes, as well as the patchiness of individual lakes, concerning secchi disc transparency could be visualized after classification and reproduction in black and white and in color by means of line printer, calcomp plotter (CRT), and ink jet plotter respectively.

  10. Satellite Observations of Drought and Falling Water Storage in the Colorado River Basin and Lake Mead

    NASA Astrophysics Data System (ADS)

    Castle, S.; Famiglietti, J. S.; Reager, J. T.; Thomas, B.

    2012-12-01

    Over the past decade the Western US has experienced extreme drought conditions, which have affected both agricultural and urban areas. An example of water infrastructure being impacted by these droughts is Lake Mead, the largest reservoir in the United States at its full capacity that provides water and energy for several states in the Western US. Once Lake Mead falls below the critical elevation of 1050 feet above sea level, the Hoover Dam, the structure that created Lake Mead by damming flow within the Colorado River, will stop producing energy for Las Vegas. The Gravity Recovery and Climate Experiment (GRACE) satellites, launched in 2002, have proven successful for monitoring changes in water storage over large areas, and give hydrologists a first-ever picture of how total water storage is changing spatially and temporally within large regions. Given the importance of the Colorado River to meet water demands to several neighboring regions, including Southern California, it is vital to understand how water is transported and managed throughout the basin. In this research, we use hydrologic remote sensing to characterize the human and natural water balance of the Colorado River basin and Lake Mead. The research will include quantifying the amount of Colorado River water delivered to Southern California, coupling the GRACE Total Water Storage signal of the Upper and Lower Colorado River with Landsat-TM satellite imagery and areal extent of Lake Mead water storage, and combining these data together to determine the current status of water availability in the Western US. We consider water management and policy changes necessary for sustainable water practices including human water use, hydropower, and ecosystem services in arid regions throughout the Western US.

  11. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    PubMed Central

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-01-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate. PMID:26869235

  12. Simulation of the shallow aquifer in the vicinity of Silver Lake, Washington County, Wisconsin, using analytic elements

    USGS Publications Warehouse

    Dunning, C.P.; Thomas, Judith Coffman; Lin, Yu-Feng

    2003-01-01

    A Silver Lake water budget was defined using both published hydrologic data and simulations using the calibrated model. Model simulations show that 1.08 cubic feet per second of ground water enters Silver Lake on the upgradient (primarily western) side and 0.08 cubic feet per second recharges to ground water on the downgradient (primarily eastern) side. Net precipitation (precipitation minus evaporation) on the lake is 0.04 cubic feet per second. Collectively, these water-budget terms provide a residual value of 1.04 cubic feet per second flow to Silver Creek at the north end of Silver Lake, which is a very good match to the range of measured flow (0.7 to 5.2 cubic feet per second). Ground-water recharge areas for Silver Lake are largely on the western side of the lake. The recharge area for the northern two-thirds of Silver Lake is west toward Big Cedar Lake. Assuming a porosity of 20 percent, model results indicate that the 50-year time-of-travel for recharge to Silver Lake does not extend to Big Cedar Lake. The recharge area for the southern one-third of Silver Lake is west toward Little Cedar Lake. Model results indicate that time of travel for recharge to Silver Lake from Little Cedar Lake is about 15 to 20 years. For travel times greater than 15 or 20 years, the ground-water recharge area for Little Cedar Lake and inflow from Big Cedar Lake also should be considered recharge affecting Silver Lake. Solute flux toward Silver Lake was calculated based on simulated ground-water flux and measured concentrations in the upgradient piezometers and observation wells.

  13. Phylogenies of Microcystin-Producing Cyanobacteria in the Lower Laurentian Great Lakes Suggest Extensive Genetic Connectivity

    PubMed Central

    Davis, Timothy W.; Watson, Susan B.; Rozmarynowycz, Mark J.; Ciborowski, Jan J. H.; McKay, Robert Michael; Bullerjahn, George S.

    2014-01-01

    Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit River and represent an overlooked source of potentially toxic Microcystis biomass to the western basin of Lake Erie. We conducted a seasonally and spatially resolved study carried out in the summer of 2013. Our goals were to: 1) track the development of the 2013 summer south-east shore bloom 2) conduct a spatial survey to characterize the extent of toxicity, taxonomic diversity of the total phytoplankton population and the phylogenetic diversity of potential MC-producing cyanobacteria (Microcystis, Planktothrix and Anabaena) during a high biomass event, and 3) compare the strains of potential MC-producers in Lake St. Clair with strains from Lake Erie and Lake Ontario. Our results demonstrated a clear predominance of cyanobacteria during a late August bloom event, primarily dominated by Microcystis, which we traced along the Lake St. Clair coastline downstream to the Detroit River's outflow at Lake Erie. Microcystin levels exceeded the Province of Ontario Drinking Water Quality Standard (1.5 µg L−1) for safe drinking water at most sites, reaching up to five times this level in some areas. Microcystis was the predominant microcystin producer, and all toxic Microcystis strains found in Lake St. Clair were genetically similar to toxic Microcystis strains found in lakes Erie and Ontario. These findings suggest extensive genetic connectivity among the three systems. PMID:25207941

  14. Double-peaked breakthrough curves as a consequence of solute transport through underground lakes: a case study of the Furfooz karst system, Belgium

    NASA Astrophysics Data System (ADS)

    Dewaide, Lorraine; Collon, Pauline; Poulain, Amaël; Rochez, Gaëtan; Hallet, Vincent

    2018-03-01

    The existence of double-peaked breakthrough curves (BTC), which are the result of the transport of a dye tracer through underground lakes, is reported. Investigations were undertaken on the Furfooz karst system in southern Belgium. In this system, the River Lesse sinks partially into a swallow hole. The water follows a solitary conduit leading to an underground lake that is directly connected to a second underground lake. Double-peaked BTCs were detected in the resurgent water, downstream of this second lake. The report first describes field data (tracer tests in various hydrologic conditions) which point towards the double peak being linked to a nonlinear process that originates within the lakes. Complementary investigations within the lakes show a complex behavior of the dye tracer related to a specific hydrodynamic feature that leads to the separation of the solute plume. A conceptual model of the solute transport within the lakes is proposed. This model emphasizes the physical effect of the lakes on the dye flow-through process.

  15. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    NASA Astrophysics Data System (ADS)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Crowe, Sean; Fowle, David; Haffner, Douglas; King, John; Marwoto, Ristiyanti; Melles, Martin; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Wattrus, Nigel

    2014-05-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the Indo-Pacific warm pool (IPWP), heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2013 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance variations in Lake Towuti during the past 60 kyr BP. In detail our datasets show that wet conditions and rainforest ecosystems in central Indonesia persisted during Marine Isotope Stage 3 (MIS3) and the Holocene, and were interrupted by severe

  16. Microcystin Prevalence throughout Lentic Waterbodies in Coastal Southern California

    PubMed Central

    Nagoda, Carey; Kudela, Raphael M.; Tatters, Avery; Caron, David A.; Busse, Lilian; Brown, Jeff; Sutula, Martha

    2017-01-01

    Toxin producing cyanobacterial blooms have increased globally in recent decades in both frequency and intensity. Despite the recognition of this growing risk, the extent and magnitude of cyanobacterial blooms and cyanotoxin prevalence is poorly characterized in the heavily populated region of southern California. Recent assessments of lentic waterbodies (depressional wetlands, lakes, reservoirs and coastal lagoons) determined the prevalence of microcystins and, in some cases, additional cyanotoxins. Microcystins were present in all waterbody types surveyed although toxin concentrations were generally low across most habitats, as only a small number of sites exceeded California’s recreational health thresholds for acute toxicity. Results from passive samplers (Solid Phase Adsorption Toxin Tracking (SPATT)) indicated microcystins were prevalent throughout lentic waterbodies and that traditional discrete samples underestimated the presence of microcystins. Multiple cyanotoxins were detected simultaneously in some systems, indicating multiple stressors, the risk of which is uncertain since health thresholds are based on exposures to single toxins. Anatoxin-a was detected for the first time from lakes in southern California. The persistence of detectable microcystins across years and seasons indicates a low-level, chronic risk through both direct and indirect exposure. The influence of toxic cyanobacterial blooms is a more complex stressor than presently recognized and should be included in water quality monitoring programs. PMID:28737685

  17. Angora Fire, Lake Tahoe

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  18. A water-quality reconnaissance of Big Bear Lake, San Bernardino County, California, 1972-1973

    USGS Publications Warehouse

    Irwin, George A.; Lemons, Michael

    1974-01-01

    A water-quality reconnaissance study of the Big Bear Lake area in southern California was made by the U.S. Geological Survey from April 1972 through April 1973. The primary purpose of the study was to measure the concentration and distribution of selected primary nutrients, organic carbon, dissolved oxygen, phytoplankton, and water temperature in the lake. Estimates of the nitrogen, phosphorus, and silica loading to the lake from surface-water tributaries and precipitation were also made.Results of the study indicate that Big Bear Lake is moderately eutrophic, at least in regard to nitrogen, phosphorus, and organic content. Nitrate was found in either trace concentrations or below detectable limits; however, ammonia nitrogen was usually detected in concentrations greater than 0.05 milligrams per liter. Orthophosphate phosphorus was detected in mean concentrations ranging from 0.01 to 0.05 milligrams per liter. Organic nitrogen and phosphorus were also detected in measurable concentrations.Seasonal levels of dissolved oxygen indicated that the nutrients and other controlling factors were optimum for relatively high primary productivity. However, production varied both seasonally and areally in the lake. Primary productivity seemed highest in the eastern and middle parts of the lake. The middle and western parts of the lake exhibited severe oxygen deficits in the deeper water during the warmer summer months of June and July 1972.

  19. Tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile

    NASA Astrophysics Data System (ADS)

    Weller, D. J.; Miranda, C. G.; Moreno, P. I.; Villa-Martínez, R.; Stern, C. R.

    2015-12-01

    Correlations among and identification of the source volcanoes for over 60 Late Glacial and Holocene tephras preserved in eight lacustrine sediment cores taken from small lakes near Coyhaique, Chile (46° S), were made based on the stratigraphic position of the tephra in the cores, lithostratigraphic data (tephra layer thickness and grain size), and tephra petrochemistry (glass color and morphology, phenocryst phases, and bulk-tephra trace element contents determined by ICP-MS). The cores preserve a record of explosive eruptions, since ˜17,800 calibrated years before present (cal years BP), of the volcanoes of the southernmost Andean Southern Volcanic Zone (SSVZ). The suggested source volcanoes for 55 of these tephras include Hudson (32 events), Mentolat (10 events), and either Macá or Cay or some of the many minor monogenetic eruptive centers (MECs; 13 events) in the area. Only four of these eruptions had been previously identified in tephra outcrops in the region, indicating the value of lake cores for identifying smaller eruptions in tephrochronologic studies. The tephra records preserved in these lake cores, combined with those in marine cores, which extend these records back to 20,000 cal years BP, prior to the Last Glacial Maximum, suggest that no significant temporal change in the frequency of explosive eruptions was associated with deglaciation. Over this time period, Hudson volcano, one of the largest and longest lived volcanoes in the Southern Andes, has had >55 eruptions (four of them were very large) and has produced >45 km3 of pyroclastic material, making it also one of the most active volcanoes in the SVZ in terms of both frequency and volume of explosive eruptions.

  20. Detection gas presence in lakes bottom sediments based on seismic investigations.

    NASA Astrophysics Data System (ADS)

    Krylov, Pavel; Nurgaliev, Danis; Yasonov, Pavel

    2017-04-01

    Seismic investigations are used for various tasks, such as the study of the bottom sediments properties, finding sunken objects, reconstruction the reservoir history, etc. Detailed seismic investigation has been carried out in the southern part of Lake Bol'shoe Yarovoe (Altai Krai), Lake Sunukul (Chelyabinsk region), Lake Kisegach to map the bottom sediments and features associated with the presence of gas. The obtained results demonstrate that various types of gas can be recognized in lakes sediments, such as pockmarks, acoustic turbidity, gas flares, seeps. These features, on the one hand, prevent the reconstruction of sequence stratigraphic patterns and, on the other hand, contribute to understanding of the processes of gas formation and migration in the sediments, possible impacts of these processes on the formation of sediments enriched in the organic matter. Also, it helps to recognize these processes in the ancient sediments. The paper points out the importance of studying the formation of methane in lake sediments, because it plays an important role in the climate change. The work was carried out according to the Russia Government's Program of Competitive Growth of Kazan Federal University, supported by the grant provided to the Kazan State University for performing the state program in the field of scientific research, and partially supported by the Russian Foundation for Basic research (grant nos. 16-35-00452).

  1. A 9,000-year-old caribou hunting structure beneath Lake Huron.

    PubMed

    O'Shea, John M; Lemke, Ashley K; Sonnenburg, Elizabeth P; Reynolds, Robert G; Abbott, Brian D

    2014-05-13

    Some of the most pivotal questions in human history necessitate the investigation of archaeological sites that are now under water. Nine thousand years ago, the Alpena-Amberley Ridge (AAR) beneath modern Lake Huron was a dry land corridor that connected northeast Michigan to southern Ontario. The newly discovered Drop 45 Drive Lane is the most complex hunting structure found to date beneath the Great Lakes. The site and its associated artifacts provide unprecedented insight into the social and seasonal organization of prehistoric caribou hunting. When combined with environmental and simulation studies, it is suggested that distinctly different seasonal strategies were used by early hunters on the AAR, with autumn hunting being carried out by small groups, and spring hunts being conducted by larger groups of cooperating hunters.

  2. Diet niches of major forage fish in Lake Michigan

    USGS Publications Warehouse

    Hunter, R. Douglas; Savino, J.F.; Ogilvie, L.M.; ,

    2007-01-01

    A large complex of coregonine species historically dominated the fish community of Lake Michigan. The current species complex is simplified with one remaining coregonine, bloater (Coregonus hoyi), deepwater sculpin (Myoxocephalus thompsoni), slimy sculpin (Cottus cognatus), and two dominant invaders, alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax). To better understand the diet relationships of the major offshore forage fishes now in Lake Michigan, diets of bloater, alewife, rainbow smelt, deepwater sculpin, and slimy sculpin were compared. The three sites, chosen to represent northern, central, and southern components of the lake, were sampled during spring, summer, and fall in 1994, and spring and fall in 1995. Forage fishes had diverse and variable diets, with niches differentiated by prey type or location. Diporeia hoyi, Mysis relicta, and zooplankton were the major diet items. The index of relative importance showed benthic (slimy and deepwater sculpins) and pelagic (alewife, rainbow smelt) feeding strategies with opportunistic bloaters incorporating both feeding strategies. Highest diet overlaps were between species of sculpin, and between large and small bloaters; both groups partitioned food by size. Though competition for food may be minimized by spatial segregation of potential competitors, the forage fish in Lake Michigan apparently partition food resources. Fishery management models incorporating food habits of pelagic forage fish would need to take into account diet variation associated with location and season. ?? 2007 E. Schweizerbart'sche Verlagsbuchhandlung.

  3. 2016 Lake Michigan Lake Trout Working Group Report

    USGS Publications Warehouse

    Madenjian, Charles P.; Breidert, Brian; Boyarski, David; Bronte, Charles R.; Dickinson, Ben; Donner, Kevin; Ebener, Mark P.; Gordon, Roger; Hanson, Dale; Holey, Mark; Janssen, John; Jonas, Jory; Kornis, Matthew; Olsen, Erik; Robillard, Steve; Treska, Ted; Weldon, Barry; Wright, Greg D.

    2017-01-01

    This report provides a review on the progression of lake trout rehabilitation towards meeting the Salmonine Fish Community Objectives (FCOs) for Lake Michigan (Eshenroder et. al. 1995) and the interim goal and evaluation objectives articulated in A Fisheries Management Implementation Strategy for the Rehabilitation of Lake Trout in Lake Michigan (Dexter et al. 2011); we also include data describing lake trout stocking and mortality to portray the present state of progress towards lake trout rehabilitation.

  4. Direct and indirect evidence for earthquakes; an example from the Lake Tahoe Basin, California-Nevada

    NASA Astrophysics Data System (ADS)

    Maloney, J. M.; Noble, P. J.; Driscoll, N. W.; Kent, G.; Schmauder, G. C.

    2012-12-01

    High-resolution seismic CHIRP data can image direct evidence of earthquakes (i.e., offset strata) beneath lakes and the ocean. Nevertheless, direct evidence often is not imaged due to conditions such as gas in the sediments, or steep basement topography. In these cases, indirect evidence for earthquakes (i.e., debris flows) may provide insight into the paleoseismic record. The four sub-basins of the tectonically active Lake Tahoe Basin provide an ideal opportunity to image direct evidence for earthquake deformation and compare it to indirect earthquake proxies. We present results from high-resolution seismic CHIRP surveys in Emerald Bay, Fallen Leaf Lake, and Cascade Lake to constrain the recurrence interval on the West Tahoe Dollar Point Fault (WTDPF), which was previously identified as potentially the most hazardous fault in the Lake Tahoe Basin. Recently collected CHIRP profiles beneath Fallen Leaf Lake image slide deposits that appear synchronous with slides in other sub-basins. The temporal correlation of slides between multiple basins suggests triggering by events on the WTDPF. If correct, we postulate a recurrence interval for the WTDPF of ~3-4 k.y., indicating that the WTDPF is near its seismic recurrence cycle. In addition, CHIRP data beneath Cascade Lake image strands of the WTDPF that offset the lakefloor as much as ~7 m. The Cascade Lake data combined with onshore LiDAR allowed us to map the geometry of the WTDPF continuously across the southern Lake Tahoe Basin and yielded an improved geohazard assessment.

  5. Mid-to-Late Holocene Hydrologic Variability in the Southeastern Mojave Desert Using Sediments from Ford Lake

    NASA Astrophysics Data System (ADS)

    Mayer, S. A.; Kirby, M. E.; Anderson, W. T., Jr.; Stout, C.; Palermo, J. A.

    2015-12-01

    The focal point of most lacustrine studies in the Mojave National Preserve (MNP) to date has been on lakes fed by the Mojave River. The source of the Mojave River is found on the northern flank of the San Bernardino Mountains. Consequently, the lakes that receive these waters are predominantly responding to the winter-only coastal southwest United States climate (e.g., Kirby et al., 2015 - Silver Lake); to a lesser degree, these lakes are also influenced by the Mojave's bimodal winter/summer climate. Ford Lake, located in the southeastern Mojave Desert is a small closed basin lake with its drainage basin located exclusively within the Mojave Desert. Therefore, sediment collected from Ford Lake contains a 100% Mojave-only climate signal. A 2.18 m sediment core was collected from the lake's depocenter in May 2015. Sediment analyses at 1 cm contiguous intervals include: magnetic susceptibility (MS), percent total organic matter, percent total carbonate content, and grain size analysis; C:N ratios, C and N isotope (δ13C and δ15N) analyses, and macrofossil counts are determined at 2 cm intervals. The site's age model is based on accelerator mass spectrometry (AMS) radiocarbon ages from discrete organic macrofossils or bulk organic carbon. To deconvolve the coastal climate, winter-only signal from the Mojave-only climate signal the data from Ford Lake will be compared to one Mojave River fed lake (Silver) and several southern California lakes (Lower Bear, Lake Elsinore, Dry Lake, and Zaca Lake). Our results will be analyzed in the context of climate forcings such as insolation and ocean - atmosphere dynamics.

  6. Estimation of a Trophic State Index for selected inland lakes in Michigan, 1999–2013

    USGS Publications Warehouse

    Fuller, Lori M.; Jodoin, Richard S.

    2016-03-11

    A 15-year estimated Trophic State Index (eTSI) for Michigan inland lakes is available, and it spans seven datasets, each representing 1 to 3 years of data from 1999 to 2013. On average, 3,000 inland lake eTSI values are represented in each of the datasets by a process that relates field-measured Secchi-disk transparency (SDT) to Landsat satellite imagery to provide eTSI values for unsampled inland lakes. The correlation between eTSI values and field-measured Trophic State Index (TSI) values from SDT was strong as shown by R2 values from 0.71 to 0.83. Mean eTSI values ranged from 42.7 to 46.8 units, which when converted to estimated SDT (eSDT) ranged from 8.9 to 12.5 feet for the datasets. Most eTSI values for Michigan inland lakes are in the mesotrophic TSI class. The Environmental Protection Agency (EPA) Level III Ecoregions were used to illustrate and compare the spatial distribution of eTSI classes for Michigan inland lakes. Lakes in the Northern Lakes and Forests, North Central Hardwood Forests, and Southern Michigan/Northern Indiana Drift Plains ecoregions are predominantly in the mesotrophic TSI class. The Huron/Erie Lake Plains and Eastern Corn Belt Plains ecoregions, had predominantly eutrophic class lakes and also the highest percent of hypereutrophic lakes than other ecoregions in the State. Data from multiple sampling programs—including data collected by volunteers with the Cooperative Lakes Monitoring Program (CLMP) through the Michigan Department of Environmental Quality (MDEQ), and the 2007 National Lakes Assessment (NLA)—were compiled to compare the distribution of lake TSI classes between each program. The seven eTSI datasets are available for viewing and download with eSDT from the Michigan Lake Water Clarity Interactive Map Viewer at http://mi.water.usgs.gov/projects/RemoteSensing/index.html.

  7. Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity

    USGS Publications Warehouse

    Lottig, Noah R.; Wagner, Tyler; Henry, Emily N.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity.

  8. Long-Term Citizen-Collected Data Reveal Geographical Patterns and Temporal Trends in Lake Water Clarity

    PubMed Central

    Lottig, Noah R.; Wagner, Tyler; Norton Henry, Emily; Spence Cheruvelil, Kendra; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity. PMID:24788722

  9. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Grove, T.L.; Lanphere, M.A.; Champion, D.E.; Ramsey, D.W.

    2008-01-01

    Medicine Lake Volcano (MLV), located in the southern Cascades ??? 55??km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ??? 2000??km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ??? 475 to 300??ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ??? 300??ka. Rhyolite eruptions were scarce post-300??ka until late Holocene time. However, a dacite episode at ??? 200 to ??? 180??ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ??? 100??ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100??ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200??years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ??? 600??km3, giving an overall effusion rate of ??? 1.2??km3 per thousand years, although the rate for the past 100??kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline

  10. Space Radar Image of Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  11. Space Radar Image of Salt Lake City, Utah

    NASA Image and Video Library

    1999-04-15

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program. http

  12. Contaminants in American alligator eggs from Lake Apopka, Lake Griffin, and Lake Okeechobee, Florida

    USGS Publications Warehouse

    Heinz, Gary H.; Percival, H. Franklin; Jennings, Michael L.

    1991-01-01

    Residues of organochlorine pesticides, polychlorinated biphenyls (PCBs), and 16 elements were measured in American alligator (Alligator mississippiensis) eggs collected in 1984 from Lakes Apopka, Griffin, and Okeechobee in central and south Florida. Organochlorine pesticides were highest in eggs from Lake Apopka. None of the elements appeared to be present at harmful concentrations in eggs from any of the lakes. A larger sample of eggs was collected in 1985, but only from Lakes Griffin, a lake where eggs were relatively clean, and Apopka, where eggs were most contaminated. In 1985, hatching success of artificially incubated eggs was lower for Lake Apopka, and several organochlorine pesticides were higher than in eggs from Lake Griffin. However, within Lake Apopka, higher levels of pesticides in chemically analyzed eggs were not associated with reduced hatching success of the remaining eggs in the clutch. Therefore, it did not appear that any of the pesticides we measured were responsible for the reduced hatching success of Lake Apopka eggs.

  13. [Research on the threshold of Chl-a in Lake Taihu based on microcystins].

    PubMed

    Wei, Dai-chun; Su, Jing; Ji, Dan-feng; Fu, Xiao-yong; Wang, Ji; Huo, Shou-liang; Cui, Chi-fei; Tang, Jun; Xi, Bei-dou

    2014-12-01

    Water samples were collected in Lake Taihu from June to October in 2013 in order to investigate the threshold of chlorophyll a (Chl-a). The concentrations of three microcystins isomers (MC-LR, MC-RR, MC-YR) were detected by means of solid phase extraction and high performance liquid chromatography-tandem mass spectrometry. The correlations between various MCs and eutrophication factors, for instance of total nitrogen (TN), total phosphorus (TP), chlorophyll a, permanganate index etc were analyzed. The threshold of Chl-a was studied based on the relationships between MC-LR, MCs and Chl-a. The results showed that Lake Taihu was severely polluted by MCs and its spatial distribution could be described as follows: the concentration in Meiliang Bay was the highest, followed by Gonghu Bay and Western Lake, and Lake Center; the least polluted areas were in Lake Xuhu and Southern Lake. The concentration of MC-LR was the highest among the 3 MCs. The correlation analysis indicated that MC-LR, MC-RR, MC-YR and MCs had very positive correlation with permanganate index, TN, TP and Chl-a (P < 0.01). The threshold value of Chl-a was 12.26 mg x m(-3) according to the standard thresholds of MC-LR and MCs in drinking water. The threshold value of Chl-a in Lake Taihu was very close to the standard in the State of North Carolina, which demonstrated that the threshold value provided in this study was reasonable.

  14. Sediment transport and deposition in Lakes Marion and Moultrie, South Carolina, 1942-85

    USGS Publications Warehouse

    Patterson, G.G.; Cooney, T.W.; Harvey, R.M.

    1996-01-01

    Lakes Marion and Moultrie, two large reservoirs in the South Carolina Coastal Plain, receive large inflows of sediment from the Santee River. The average rate of sediment deposition for both lakes during the period 1942-85 was about 0.06 inch per year, or about 800 acre-feet per year. The rate during 1983-85 was about 0.037 inch per year, or about 490 acre-feet per year, reflecting the decreasing trend in sediment inflow. This is a reversal of a trend toward increasing suspended- sediment concentrations in streams that were caused by farming practices in the southern Piedmont from about 1800 to about 1920. Only a small part of the eroded sediment has been carried out of the Piedmont, but the remaining sediment is becoming less available for transport. Sediment deposition is concentrated in several areas of upper Lake Marion where the velocity of the incoming water decreases significantly. Beds of aquatic macrophytes appear to encourage deposition which, in turn, creates favorable habitat for the plants. The rate of sediment accumulation in Lakes Marion and Moultrie averaged 650,000 tons per year during 1983-85, reflecting a trap efficiency of 79 percent of the total sediment inflow of 825,000 tons per year. Thickness of post-impoundment sediment varies from about 11 feet near the mouth of the Santee River in Lake Marion to 0 feet in Lake Moultrie near Bonneau. Sediments in Lake Marion tend to have finer texture and higher contents of organic matter, nutrients, and trace metals than those in Lake Moultrie.

  15. Anthropogenically driven changes in chloride complicate interpretation of base cation trends in lakes recovering from acidic deposition.

    PubMed

    Rosfjord, Catherine H; Webster, Katherine E; Kahl, Jeffrey S; Norton, Stephen A; Fernandez, Ivan J; Herlihy, Alan T

    2007-11-15

    Declines in Ca and Mg in low ANC lakes recovering from acidic deposition are widespread across the northern hemisphere. We report overall increases between 1984 and 2004 in the concentrations of Ca + Mg and Cl in lakes representing the statistical population of nearly 4000 low ANC lakes in the northeast U.S. Increases in Cl occurred in nearly all lakes in urbanized southern New England, but only 18% of lakes in more remote Maine had Cl increases. This spatial pattern implicates road salt application as the major source of the increased Cl salts. Among the 48% of the lake population classified as salt-affected, the median changes in Cl (+133 microeq/L) and Ca + Mg (+47 microeq/ L) were large and positive in direction over the 20 years. However, in the unaffected lakes, Cl remained stable and Ca + Mg decreased (-3 microeq/L), consistent with reported long-term trends in base cations of acid-sensitive lakes. This discrepancy between the Cl groups suggests that changes in ion exchange processes in salt-affected watersheds have altered the geochemical cycling of Ca and Mg. One policy-relevant implication is that waters influenced by Cl salts complicate regional assessments of surface water recovery from "acid rain" related to the passage of the Clean Air Act.

  16. Sanctuaries for lake trout in the Great Lakes

    USGS Publications Warehouse

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  17. Widespread Lake Highstands in the Southernmost Andean Altiplano during Heinrich Event 1: Implications for the South American Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; McGee, D.; Quade, J.

    2014-12-01

    Speleothem-based oxygen isotope records provide strong evidence of anti-phased behavior of the northern and southern hemisphere summer monsoons during Heinrich events, but we lack rigorous constraints on the amount of wetting or drying occurring in monsoon regions. Studies centered on shoreline deposits of closed-basin lakes are well suited for establishing such quantitative controls on water balance changes by providing unequivocal evidence of lake volume variations. Here we present new dating constraints on the highstands of several high-altitude (3800-4350 m) paleolakes in the southern Andean Altiplano, an outlying arid region of the Atacama Desert stretching across the Chilean-Bolivian-Argentinian border east of the Andes (20-25°S). These lakes once occupied the closed basins where only phreatic playas, dry salars, and shallow ponds exist today. Initial U-Th dating of massive shoreline tufas reveals that these deposits are dateable to within ±150 to 300 yrs due to high U concentrations and low initial Th content (as indicated by high 230Th/232Th). Our U-Th and 14C dates show that lake highstands predominantly occur between 18.5 and 14.5 kyrs BP, coinciding with Heinrich Event 1 (HE1) and the expansion of other nearby lakes, such as Lake Titicaca. Because of their (1) location at the modern-day southwestern edge of the summer monsoon, (2) intact shoreline preservation, and (3) precise age control, these lakes may uniquely enable us to reconstruct the evolution of water balance (P-E) changes associated with HE1. Hydrologic modeling constrained by temperature estimates provided by local glacial records is used to provide bounds for past precipitation changes. We also examine North Atlantic cooling as the mechanism for these changes by comparing a compilation of S. American lake level records with various hosing experiments and transient climate simulations at HE1. Our results lend us confidence in expanding our U-Th work to other shoreline tufas in the

  18. Nutrient and trace-element enrichment of Coeur d'Alene Lake, Idaho

    USGS Publications Warehouse

    Woods, P.F.; Beckwith, M.A.

    1996-01-01

    The limnological characteristics and geochemistry of lakebed sediments in Coeur d'Alene Lake, a 129-square-kilometer, natural lake in northern Idaho, were assessed during 1991-92 because of the possible interaction of nutrient enrichment with the highly enriched trace-element concentrations stored in the lakebed. The lake was classified as oligotrophic during 1991-92 on the basis of annual geometric mean concentrations, in micrograms per liter, of total phosphorus (4.1), total nitrogen (247), and chlorophyll-a (0.54). Despite its oligotrophy, the lake developed a substantial hypolimnetic dissolved-oxygen deficit in both years during the later stage of thermal stratification. The lake's current trophic state of oligotrophic differs from the mesotrophic ranking it received in 1975 during the National Eutrophication Survey. The shift in trophic state was consistent with nutrient-load reductions that have occurred within the lake's 9,690-square-kilometer drainage basin since the early 1970's. Approximately 85 percent of the lakebed's surface area was highly enriched in antimony, arsenic, cadmium, lead, mercury, silver, and zinc. Mean total concentrations, in milligrams per kilogram, for cadmium, lead, and zinc in the enriched lakebed sediments were, respectively, 62, 1,900, and 3,600. In contrast, the concentrations of cadmium, lead, and zinc in unenriched lakebed sediments in the lake's southern end were, respec- tively, 2.8, 24, and 110 milligrams per kilogram. The vast majority of the trace elements in the surficial and subsurface sediments were associated with ferric oxides, not sulfides as previously postulated. Under reducing conditions, such as within as anoxic hypolimnon, the ferric oxide- associated trace elements would be readily soluble and available for release into the overlying water column. (USGS)

  19. Oh Magadi! Interpreting isoGDGTs and n-alkanes in a saline tropical lake: Lake Magadi, Kenya

    NASA Astrophysics Data System (ADS)

    Ferland, T. M.; Werne, J. P.; Castañeda, I. S.; Cohen, A. S.; Lowenstein, T. K.; Deocampo, D.; Renaut, R.; Bernhart, O. R.

    2017-12-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP) seeks to understand the paleoclimatic and paleoenvironmental context of hominin adaptation and evolution by analysis of paleolacustrine cores taken near key hominin fossil and artifact localities in Kenya and Ethiopia. We present biomarker and compound specific isotope data from a 200 m drill core from Lake Magadi, Kenya. Located 20 km from the Koora Plain in the southern Kenya Rift, and adjacent to the Olorgesailie basin, Lake Magadi is in one of the richest Early-Late Pleistocene archaeological localities in Africa, a region that has been key in debates about the relationship between climate and evolution. Present-day Lake Magadi is a saline pan, a descendant of a series of paleolakes that have occupied its drainage basin and progressively dried for approximately one million years. Nearly 70% of samples analyzed for n-alkanes recorded a robust terrestrial signal. The majority of samples did not contain the complete suite of branched GDGTs necessary to reconstruct temperature from the Methylation of Branched Tetraethers and Cyclisation of Branched Tetraethers (MBT/CBT; Weijers et al., 2007) proxy. The TetraEther indeX with 86 carbon atoms (TEX86; Schouten et al., 2002) temperature proxy was established for 90% of samples analyzed for isoGDGTs, however the Methane and Ring Indices (Zhang et al., 2011; Zhang et al., 2016) suggest that the TEX86 is not applicable to temperature reconstruction at Magadi. Despite this, the Magadi TEX86 temperature reconstruction appears to agree with not only the trends in our n-alkane data but with other regional and global records, including the GRIP-2 δ18O record. We compare our temperature data to other records in the region, and investigate influences on our TEX86 data including microbial community turnover and lake drying.

  20. Non-native Minnows Threaten Quillwort Populations in High Mountain Shallow Lakes.

    PubMed

    Gacia, Esperança; Buchaca, Teresa; Bernal-Mendoza, Nayeli; Sabás, Ibor; Ballesteros, Enric; Ventura, Marc

    2018-01-01

    Submersed aquatic plants are a key component of shallow, clear water lakes contributing to primary production and water quality. High mountain lakes are naturally fishless although invasive trout and most recently minnows have been introduced causing a major impact on fauna richness. The Pyrenean high mountain range has preserved soft-water oligotrophic boreal isoetids in their southern limit of distribution but the recent fish introduction is a potential factor of stress that needs to be addressed. We here work under the hypothesis that due to contrasting ecological features, trout will not be heavily affecting quillwort populations while minnows will have a stronger effect on zooplankton and zoobenthos that will promote algal growth and reduce light availability for the underwater meadows. Ten Pyrenean shallow lakes representative of three scenarios -fishless, with trout and with minnows-, were sampled for meadow structure, water column and benthic environment characterization in mid-summer 2015 and 2016. Quillwort biomass allocation (above vs. belowground), epiphytic load, and composition of the algal community (abundant cyanobacteria) differed in the presence of minnows. In trout lakes biomass allocation and epiphytic load were average and the algal community composed by chlorophytes and diatoms as in fishless lakes. Biomass ratio was close to thresholds of negative buoyancy in minnow lakes indicating that meadows were at risk of uprooting and consequent de-vegetation. Total and soluble carbohydrates were lower and the sporangia contained significantly less reserves to constrain growth and expansion in the presence of minnows. Lake scenarios were coupled to physicochemical differences with low light, high phosphorus and Chl-a (mesotrophia) in minnow lakes, while trout and fishless lakes remained oligotrophic. This is the first study assessing the impact of non-native fish on soft-water isoetids from mountain lakes and shows that minnows are a major threat to

  1. Water quality of Lake Austin and Town Lake, Austin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, F.L.; Wells, F.C.; Shelby, W.J.

    1988-01-01

    Lake Austin and Town Lake are impoundments on the Colorado River in Travis County, central Texas, and are a source of water for municipal industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Small vertical temperature variations in both lakes were attributed to shallow depths in the lakes and short retention times of water in the lakes during the summer months. The largest areal variations in dissolved oxygen generally occur in Lake Austin during the summer as a result of releases of water from below the thermocline in Lake Travis. Except formore » iron, manganese, and mercury, dissolved concentrations of trace elements in water collected from Lake Austin and Town Lake did not exceed the primary or secondary drinking water standards set by the US Environmental Protection Agency. Little or no effect of stormwater runoff on temperature, dissolved oxygen, or minor elements could be detected in either Lake Austin or Town Lake. Little seasonal or areal variation was noted in nitrogen concentrations in Lake Austin or Town lake. Total phosphorus concentrations generally were small in both lakes. Increased concentrations of nitrogen and phosphorus were detected after storm runoff inflow in Town Lake, but not in Lake Austin; densities of fecal-coliform bacteria increased in Lake Austin and Town Lake, but were substantially greater in Town Lake than in Lake Austin. 18 refs., 38 figs., 59 tabs.« less

  2. Measurement of Hydrologic Streamflow Metrics and Estimation of Streamflow with Lumped Parameter Models in a Managed Lake System, Sebago Lake, Maine

    NASA Astrophysics Data System (ADS)

    Reeve, A. S.; Martin, D.; Smith, S. M.

    2013-12-01

    Surface waters within the Sebago Lake watershed (southern Maine, USA) provide a variety of economically and intrinsically valuable recreational, commercial and environmental services. Different stakeholder groups for the 118 km2 Sebago Lake and surrounding watershed advocate for different lake and watershed management strategies, focusing on the operation of a dam at the outflow from Sebago Lake. While lake level in Sebago Lake has been monitored for over a century, limited data is available on the hydrologic processes that drive lake level and therefore impact how dam operation (and other changes to the region) will influence the hydroperiod of the lake. To fill this information gap several tasks were undertaken including: 1) deploying data logging pressure transducers to continuously monitor stream stage in nine tributaries, 2) measuring stream discharge at these sites to create rating curves for the nine tributaries, and using the resulting continuous discharge records to 3) calibrate lumped parameter computer models based on the GR4J model, modified to include a degree-day snowmelt routine. These lumped parameter models have been integrated with a simple lake water-balance model to estimate lake level and its response to different scenarios including dam management strategies. To date, about three years of stream stage data have been used to estimate stream discharge in all monitored tributaries (data collection is ongoing). Baseflow separation indices (BFI) for 2010 and 2011 using the USGS software PART and the Eckhart digital filter in WHAT range from 0.80-0.86 in the Crooked River and Richmill Outlet,followed by Northwest (0.75) and Muddy (0.53-0.56) Rivers, with the lowest BFI measured in Sticky River (0.41-0.56). The BFI values indicate most streams have significant groundwater (or other storage) inputs. The lumped parameter watershed model has been calibrated for four streams (Nash-Sutcliffe = 0.4 to 0.9), with the other major tributaries containing

  3. Occurrence of Dendrocephalus brasiliensis Pesta, 1921 (Crustacea, Anostraca) in the Caras river, southern Ceara, Brazil.

    PubMed

    Freita, Francisco R V; Lucena, Isis C DE; Alencar, Damares R; Santos, Israel J M; Pinheiro, Allysson P

    2017-01-01

    Occurrence of Dendrocephalus brasiliensis Pesta, 1921 (Crustacea, Anostraca) in the Caras river, southern Ceara, Brazil. The specimens were collected in March and April 2014. The new occurrence extends the distribution and update area of occupancy of the species, which is characterized by a specific habitat: temporary lakes.

  4. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  5. Electronic archival tags provide first glimpse of bathythermal habitat use by free-ranging adult lake sturgeon Acipenser fulvescens

    USGS Publications Warehouse

    Briggs, Andrew S.; Hondorp, Darryl W.; Quinlan, Henry R.; Boase, James C.; Mohr, Lloyd C.

    2016-01-01

    Information on lake sturgeon (Acipenser fulvescens) depth and thermal habitat use during non-spawning periods is unavailable due to the difficulty of observing lake sturgeon away from shallow water spawning sites. In 2002 and 2003, lake sturgeon captured in commercial trap nets near Sarnia, Ontario were implanted with archival tags and released back into southern Lake Huron. Five of the 40 tagged individuals were recaptured and were at large for 32, 57, 286, 301, and 880 days. Temperatures and depths recorded by archival tags ranged from 0 to 23.5 ºC and 0.1 to 42.4 m, respectively. For the three lake sturgeon that were at large for over 200 days, temperatures occupied emulated seasonal fluctuations. Two of these fish occupied deeper waters during winter than summer while the other occupied similar depths during non-spawning periods. This study provides important insight into depth and thermal habitat use of lake sturgeon throughout the calendar year along with exploring the feasibility of using archival tags to obtain important physical habitat attributes during non-spawning periods.

  6. Regionalization of precipitation characteristics in Iran's Lake Urmia basin

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn

    2018-04-01

    Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.

  7. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China.

    PubMed

    Sun, Shiwei; Kang, Shichang; Huang, Jie; Li, Chengding; Guo, Junming; Zhang, Qianggong; Sun, Xuejun; Tripathee, Lekhendra

    2016-06-01

    The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin. Copyright © 2016. Published by Elsevier B.V.

  8. Evidence of offshore lake trout reproduction in Lake Huron

    USGS Publications Warehouse

    DeSorcie, Timothy J.; Bowen, Charles A.

    2003-01-01

    Six Fathom Bank-Yankee Reef, an offshore reef complex, was an historically important spawning area believed to represent some of the best habitat for the rehabilitation of lake trout Salvelinus namaycush in Lake Huron. Since 1986, lake trout have been stocked on these offshore reefs to reestablish self-sustaining populations. We sampled with beam trawls to determine the abundance of naturally reproduced age-0 lake trout on these offshore reefs during May-July in 1994-1998 and 2000-2002. In total, 123 naturally reproduced lake trout fry were caught at Six Fathom Bank, and 2 naturally reproduced lake trout fry were caught at nearby Yankee Reef. Our findings suggest that this region of Lake Huron contains suitable habitat for lake trout spawning and offers hope that lake trout rehabilitation can be achieved in the main basin of Lake Huron.

  9. High resolution analysis of northern Patagonia lake sediments

    NASA Astrophysics Data System (ADS)

    Jarvis, S. W.; Croudace, I. W.; Langdon, P. G.; Rindby, A.

    2009-04-01

    Sediment cores covering the period from the last glacial maximum through the Holocene to the present have been collected from sites in the Chacubuco valley, southern Chile (around 47°08'S, 72°25'W, to the east of the North Patagonian Icecap). Cores were taken from five lakes and one recently dried lake bed. Short cores (0.2 to 0.5m), covering approximately the last two hundred years, were taken from all the lakes. Additionally, long sequences were obtained from one of the lakes and from the dried lake bed, the latter sequence extending back to the last glacial maximum as indicated by thick clay at the base. Each of the lakes are small-medium sized and are open systems situated at 300-1000m above sea level. The shorter cores comprise predominantly clastic gyttja but show a number of distinct changes in colour and chemical composition that suggest major environmental changes over the period of sediment accumulation. This is also reflected in variations in the loss on ignition of samples from the cores and in elemental profiles produced by scanning the cores with the Itrax micro-XRF corescanner at 200μm resolution. The long sequence from the dried lake bed has very low organic content glacial clay at the base, interpreted as last glacial maximum basal clay following determination in the field that this layer exceeded 2m in thickness. Similar sediments occur within a stratigraphically discrete section of approximately 14cm and may relate to a stadial event. The latter section also shows a drop in organic content and appears to be glacial clay incorporating some coarse sandy components indicative of detrital input from the catchment. The second long sequence, from a carbonate lake, includes two mineral layers indicating increased detrital input from the catchment. The deeper and thicker of these layers appears similar to the 14cm layer in the first long sequence, while the upper layer comprises a fine grain size indicative of rock flour and hence also of glacial

  10. The Lake Tahoe Basin Land Use Simulation Model

    USGS Publications Warehouse

    Forney, William M.; Oldham, I. Benson

    2011-01-01

    This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.

  11. Ground-water flow and quality near the Upper Great Lakes connecting channels, Michigan

    USGS Publications Warehouse

    Gillespie, J.L.; Dumouchelle, D.H.

    1989-01-01

    The Upper Great Lakes connecting channels are the St. Marys, St. Clair and Detroit Rivers, and Lake St. Clair. The effect of ground water on the connecting channels is largely unknown, and the controls on its movement and quality are undefined. Geologic, hydrologic, and environmental conditions near the channels have been examined.for this investigation. Included in the study area is a 50-mile reach of channel beginning at Whitefish Bay and extending to Neebish Island, and a 90-mile reach of channel between Port Huron and Pointe Mouillee in Lake Erie. Glacial deposits, which transmit most ground water to the channels, range from less than 100 feet in thickness in the southern part of the St. Clair-Detroit River area to more than 250 feet in thickness in the northern part. Marine seismic surveys were used at some locations to determine the thickness of deposits. Glacial deposits in the St. Marys River area range from less than 10 feet to more than 300 feet in thickness. Permeable bedrock in the southern reach of the Detroit River area and throughout most of the St. Marys River area may contribute substantial amounts of water to the channels. Total ground-water discharge to the channels, by area, is estimated as follows! St. Marys area, 76 cubic feet per second; St. Clair area, 11 cubic feet per second; Lake St. Clair area, 46 cubic feet per second; and Detroit area, 54 cubic feet per second. Analyses of water from 31 wells, 25 of which were installed by the U.S. Geological Survey, were made for organic compounds, trace metals, and other substances. Volatile hydrocarbons, and base neutral, acid extractable, and chlorinated neutral compounds were not detectable in water at most locations. Concentrations of trace metals, however, were higher than common in natural waters at some locations.

  12. Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt

    NASA Astrophysics Data System (ADS)

    Redwan, Mostafa; Elhaddad, Engy

    2017-10-01

    This study was carried out to investigate the seasonal variability and distribution of heavy metals ;HMs; (Fe, Mn, Co, Cr, Cu, Ni, Pb, Zn and V) in the bottom sediments of Lake Qaroun, in Egypt. The samples were collected from 10 sites in summer and winter seasons in 2015. Total metals concentrations were measured using inductively coupled plasma spectrometer. Multivariate techniques were applied to analyse the distribution and potential source of heavy metals. The mean seasonal concentrations follow a descending order of Fe > Mn > V > Zn > Cr > Ni > Cu > Co > Pb. The mean concentrations of HMs in sediments during summer were higher than the concentrations during winter and above the average world shale values, except for Pb, suggesting potential adverse toxicity to aquatic organisms. All metals showed enrichment during summer and winter at sites S3 and S5 in the southeastern parts of the lake due to the heavy discharge of contaminants from El-Bats and El-Wadi drains. Principal component analysis results suggested two principal components controlling HMs variability in sediments, which accounted for 63.9% (factor 1: Co, Cr, Cu, Ni, Zn, Pb and V), 15.9% (factor 2: Mn and Fe) during summer, and 76.7% (factor 1: Fe, Co, Cr, Cu, Ni, Zn, Pb and V), 13.8% (factor 2: Mn) during winter of the total variance. Geo-accumulation index (Igeo) showed some pollution risk at the southeastern and southern parts (sites S3 and S5). Dilution during winter, concentration during summer, impact of non-point sources from different agricultural, industrial, municipal sewage and fish farms in the southern part of Lake Qaroun, adsorption and salt dissolution reactions and lithogenic sources are the main controlling factors for HMs in the study area. Monitoring of contaminant discharge at Lake Qaroun should be introduced for future remediation and management strategies.

  13. Lake Nasser and Toshka Lakes, Egypt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Nasser (center) and the Toshka Lakes (center left) glow emerald green and black in this MODIS true-color image acquired March 8, 2002. Located on and near the border of Egypt and Norther Sudan, these lakes are an oasis of water in between the Nubian (lower right) and Libyan Deserts (upper left). Also visible are the Red Sea (in the upper right) and the Nile River (running north from Lake Nasser). Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  14. Recent increases in the large glacial-relict calanoid Limnocalanus macrurus in Lake Michigan

    USGS Publications Warehouse

    Barbiero, R.P.; Bunnell, D.B.; Rockwell, D.C.; Tuchman, M.L.

    2009-01-01

    Since 2004, population density of the large hypolimnetic calanoid Limnocalanus macrurus Sars. has increased dramatically in Lake Michigan. The average summer biomass of this species between 2004 and 2006 was roughly three times that of the period 1984–2003, and at levels unprecedented in our 22-year dataset, making L. macrurus the dominant zooplankter in the lake in terms of biomass. These increases have been accentuated by coincident population declines of the main daphnid, Daphnia mendotae, in the lake with the result that in 2006, L. macrurus accounted for 75% and 50% of the large (> 0.9 mm) crustacean biomass in the northern and southern basins of Lake Michigan, respectively. The increases in L. macrurus populations have closely coincided with equally dramatic increases in summer water clarity. Recent extinction coefficients are among the lowest recorded for the lake, and deepening light penetration has permitted increases in the size of the deep chlorophyll layer. In addition, planktivorous fish populations have declined coincidently with the increases in L. macrurus. It seems likely that an increase in sub-epilimnetic production has resulted in increased food resources for the deep-living L. macrurus, while low planktivore abundances have reduced predation loss, permitting L. macrurus to respond to these increases in sub-epilimnetic production.

  15. Acidophilic Halophilic Microorganisms in Fluid Inclusions in Halite from Lake Magic, Western Australia

    PubMed Central

    Conner, Amber J.

    2013-01-01

    Abstract Lake Magic is one of the most extreme of hundreds of ephemeral acid-saline lakes in southern Western Australia. It has pH as low as 1.7, salinity as high as 32% total dissolved solids, temperatures ranging from 0°C to 50°C, and an unusually complex aqueous composition. Optical petrography, UV-vis petrography, and laser Raman spectrometry were used to detect microorganisms and organic compounds within primary fluid inclusions in modern bedded halite from Lake Magic. Rare prokaryotes appear as 1–3 μm, bright cocci that fluoresce green with UV-vis illumination. Dimpled, 5–7 μm yellow spherules that fluoresce blue with UV-vis illumination are interpreted as Dunaliella algae. Yellow-orange beta-carotene crystals, globules, and coatings are characterized by orange-red fluorescence and three distinct Raman peaks. Because acid saline lakes are good Mars analogues, the documentation of prokaryotes, eukaryotes, and organic compounds preserved in the halite here has implications for the search for life on Mars. Missions to Mars should incorporate such in situ optical and chemical examination of martian evaporites for possible microorganisms and/or organic compounds in fluid inclusions. Key Words: Acid—Extremophiles—Western Australia—Fluid inclusions—Lake Magic—Dunaliella. Astrobiology 13, 850–860. PMID:23971647

  16. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    NASA Astrophysics Data System (ADS)

    Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis

    2018-02-01

    groundwater discharge sites located mainly in the eastern part of the lake with a single site in the southern part. Observations from the eastern part of the lake revealed an impermeable clay layer that promotes discharge during heavy precipitation events, which would otherwise be difficult to identify using traditional hydrological methods. In comparison to the lake concentrations, high tracer concentrations in the southern part showed that only a smaller fraction of water could originate from this area, thereby confirming the model results. A Euclidean cluster analysis of δ18O isotopes identified recharge sites corresponding to areas adjacent to drainage channels, and a cluster analysis of the microbially influenced FDOM component C4 further identified five sites that showed a tendency towards high groundwater recharge rate. In conclusion, it was found that this methodology can be applied to smaller lakes within a short time frame, providing useful information regarding the WRT of the lake and more importantly the groundwater recharge and discharge sites around the lake. Thus, it is a tool for specific management of the catchment.

  17. Onset and Evolution of Southern Annular Mode-Like Changes at Centennial Timescale.

    PubMed

    Moreno, P I; Vilanova, I; Villa-Martínez, R; Dunbar, R B; Mucciarone, D A; Kaplan, M R; Garreaud, R D; Rojas, M; Moy, C M; De Pol-Holz, R; Lambert, F

    2018-02-22

    The Southern Westerly Winds (SWW) are the surface expression of geostrophic winds that encircle the southern mid-latitudes. In conjunction with the Southern Ocean, they establish a coupled system that not only controls climate in the southern third of the world, but is also closely connected to the position of the Intertropical Convergence Zone and CO 2 degassing from the deep ocean. Paradoxically, little is known about their behavior since the last ice age and relationships with mid-latitude glacier history and tropical climate variability. Here we present a lake sediment record from Chilean Patagonia (51°S) that reveals fluctuations of the low-level SWW at mid-latitudes, including strong westerlies during the Antarctic Cold Reversal, anomalously low intensity during the early Holocene, which was unfavorable for glacier growth, and strong SWW since ~7.5 ka. We detect nine positive Southern Annular Mode-like events at centennial timescale since ~5.8 ka that alternate with cold/wet intervals favorable for glacier expansions (Neoglaciations) in southern Patagonia. The correspondence of key features of mid-latitude atmospheric circulation with shifts in tropical climate since ~10 ka suggests that coherent climatic shifts in these regions have driven climate change in vast sectors of the Southern Hemisphere at centennial and millennial timescales.

  18. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice.

    PubMed

    Lipenkov, Vladimir Ya; Ekaykin, Alexey A; Polyakova, Ekaterina V; Raynaud, Dominique

    2016-01-28

    Deep drilling at the Vostok Station has reached the surface of subglacial Lake Vostok (LV) twice-in February 2012 and January 2015. As a result, three replicate cores from boreholes 5G-1, 5G-2 and 5G-3 became available for detailed and revalidation analyses of the 230 m thickness of the accreted ice, down to its contact with water at 3769 m below the surface. The study reveals that the concentration of gases in the lake water beneath Vostok is unexpectedly low. A clear signature of the melt water in the surface layer of the lake, which is subject to refreezing on the icy ceiling of LV, has been discerned in the three different properties of the accreted ice: the ice texture, the isotopic and the gas content of the ice. These sets of data indicate in concert that poor mixing of the melt (and hydrothermal) water with the resident lake water and pronounced spatial and/or temporal variability of local hydrological conditions are likely to be the characteristics of the southern end of the lake. The latter implies that the surface water may be not representative enough to study LV's behaviour, and that direct sampling of the lake at different depths is needed in order to move ahead with our understanding of the lake's hydrological regime. © 2015 The Author(s).

  19. Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.

    PubMed

    McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer

    2016-09-06

    Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study.

  20. Serum antileptospiral agglutinins in freshwater turtles from Southern Brazil

    PubMed Central

    Silva, Éverton F; Seyffert, Núbia; Cerqueira, Gustavo M.; Leihs, Karl P.; Athanazio, Daniel A.; Valente, Ana L. S.; Dellagostin, Odir A.; Brod, Claudiomar S.

    2009-01-01

    In this study, we observed the presence of antileptospiral agglutinins in freshwater turtles of two urban lakes of Pelotas, Southern Brazil. Forty animals (29 Trachemys dorbigny and 11 Phrynops hilarii) were captured and studied. Attempts to isolate leptospires from blood and urine samples were unsuccessful. Serum samples (titer > 100) reactive to pathogenic strains were observed in 11 animals. These data encourage surveys of pet turtles to evaluate the risk of transmission of pathogenic leptospires to humans. PMID:24031348

  1. Geochemical speciation and pollution assessment of heavy metals in surface sediments from Nansi Lake, China.

    PubMed

    Yang, Liyuan; Wang, Longfeng; Wang, Yunqian; Zhang, Wei

    2015-05-01

    Sixteen surface sediment samples were collected from Nansi Lake to analyze geochemical speciation of heavy metals including Cd, As, Pb, Cr, and Zn, assess their pollution level, and determine the spatial distribution of the non-residual fraction. Results showed that Cd had higher concentrations in water-soluble and exchangeable fractions. As and Pb were mainly observed as humic acid and reducible fractions among the non-residual fractions, while Cr and Zn were mostly locked up in a residual fraction. The mean pollution index (P i) values revealed that the lower lake generally had a higher enrichment degree than the upper lake. Cd (2.73) and As (2.05) were in moderate level of pollution, while the pollution of Pb (1.80), Cr (1.27), and Zn (1.02) appeared at low-level pollution. The calculated pollution load index (PLI) suggested the upper lake suffered from borderline moderate pollution, while the lower lake showed moderate to heavy pollution. Spatial principle component analysis showed that the first principal component (PC1) including Cd, As, and Pb could explain 56.18 % of the non-residual fraction. High values of PC1 were observed mostly in the southern part of Weishan Lake, which indicated greater bioavailability and toxicity of Cd, As, and Pb in this area.

  2. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    USGS Publications Warehouse

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  3. The 1.5-ka varved record of Lake Montcortès (southern Pyrenees, NE Spain)

    NASA Astrophysics Data System (ADS)

    Corella, Juan Pablo; Brauer, Achim; Mangili, Clara; Rull, Valentí; Vegas-Vilarrúbia, Teresa; Morellón, Mario; Valero-Garcés, Blas L.

    2012-09-01

    The karstic Lake Montcortès sedimentary sequence spanning the last 1548 yr constitutes the first continuous, high-resolution, multi-proxy varved record in northern Spain. Sediments consist of biogenic varves composed of calcite, organic matter and detrital laminae and turbidite layers. Calcite layer thickness and internal sub-layering indicate changes in water temperature and seasonality whereas the frequency of detrital layers reflects rainfall variability. Higher temperatures occurred in Lake Montcortès in AD 555-738, 825-875, 1010-1322 and 1874-present. Lower temperatures and prolonged winter conditions were recorded in AD 1446-1598, 1663-1711 and 1759-1819. Extreme and multiple precipitation events dominated in AD 571-593, 848-922, 987-1086, 1168-1196, 1217-1249, 1444-1457, 1728-1741 and 1840-1875, indicating complex hydrological variability in NE Spain since AD 463. The sedimentary record of Lake Montcortès reveals a short-term relation between rainfall variability and the detrital influx, pronounced during extended periods of reduced anthropogenic influences. In pre-industrial times, during warm climate episodes, population and land use increased in the area. After the onset of the industrialization, the relationship between climate and human activities decoupled and population dynamics and landscape modifications were therefore mostly determined by socio-economic factors.

  4. Geomorphic constraints on the evolution of the Kern Gorge, southern Sierra Nevada, California.

    NASA Astrophysics Data System (ADS)

    Foreshee, B. C.; Krugh, W. C.

    2016-12-01

    The Kern River is uniquely positioned to respond to tectonic activity that occurs within the southern Sierra Nevada and southern San Joaquin Basin, CA. The North and South forks of the upper Kern River (above Lake Isabella) are fed by tributaries that primarily drain the high-elevation low-relief landscape of the Kern Plateau. These south flowing trunk streams switch to a dominantly southwest flow direction at the Lake Isabella Reservoir and South Lake Valley respectively. Downstream from Lake Isabella, the Kern River steepens as it flows through the Kern Gorge and then crosses the Kern Arch region of the San Joaquin Basin. Clark et al., (2005) used low-temperature thermochronometry and trunk and tributary channel profiles from the upper Kern River catchment to identify two periods of rapid incision that occurred from 32.0 to 3.5 Ma and from 3.5 Ma to present. Cecil et al., (2014) used low-temperature thermochronometry from well cores of Oligocene-Miocene sandstones to investigate the time-temperature history of the Kern Arch and identified a period of subsidence and sedimentation between 6.0 and 1.0 Ma that was immediately followed by rapid exhumation. They attributed these results to the northwest migration of a delaminating lithospheric root. In this study we examine the erosional and depositional history within the Kern Gorge to investigate the response of the Kern River to Pliocene-Pleistocene tectonic activity within the Kern Arch and southern Sierra Nevada. Quantitative stream profile analyses and geomorphic mapping within the Kern Gorge are being conducted using USGS 10m DEM data, satellite and aerial imagery, and field based observations and measurements. Reconnaissance mapping efforts have so far identified several strath terraces, alluvial fill terraces, colluvial deposits, and multiple debris flow and landslide deposits that have been incised by the Kern River and are now preserved above the active channel. These geomorphic landforms are currently being

  5. Spatial patterns in PCB concentrations of Lake Michigan lake trout

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; Stedman, Ralph M.; Brown, Edward H.; Eck, Gary W.; Schmidt, Larry J.; Hesselberg, Robert J.; Chernyak, Sergei M.; Passino-Reader, Dora R.

    1999-01-01

    Most of the PCB body burden in lake trout (Salvelinus namaycush) of the Great Lakes is from their food. PCB concentrations were determined in lake trout from three different locations in Lake Michigan during 1994–1995, and lake trout diets were analyzed at all three locations. The PCB concentrations were also determined in alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), and deepwater sculpin (Myoxocephalus thompsoni), five species of prey fish eaten by lake trout in Lake Michigan, at three nearshore sites in the lake. Despite the lack of significant differences in the PCB concentrations of alewife, rainbow smelt, bloater, slimy sculpin, and deepwater sculpin from the southeastern nearshore site near Saugatuck (Michigan) compared with the corresponding PCB concentrations from the northwestern nearshore site near Sturgeon Bay (Wisconsin), PCB concentrations in lake trout at Saugatuck were significantly higher than those at Sturgeon Bay. The difference in the lake trout PCB concentrations between Saugatuck and Sturgeon Bay could be explained by diet differences. The diet of lake trout at Saugatuck was more concentrated in PCBs than the diet of Sturgeon Bay lake trout, and therefore lake trout at Saugatuck were more contaminated in PCBs than Sturgeon Bay lake trout. These findings were useful in interpreting the long-term monitoring series for contaminants in lake trout at both Saugatuck and the Wisconsin side of the lake.

  6. 1986 Great Lakes Seismic refraction survey (GLIMPCE): Line A - refraction mode

    USGS Publications Warehouse

    Morel-a-l'Huissier, Patrick; Karl, John H.; Tréhu, Anne M.; Hajnal, Zoltan; Mereu, Robert F.; Meyer, Robert P.; Sexton, John L.; Ervin, C. Patrick; Green, Alan G.; Hutchinson, Deborah

    1990-01-01

    In the fall of 1986, the Geological Survey of Canada (GSC), the United States Geological Survey (USGS), two Canadian universities -- University of Western Ontario and University of Saskatchewan, and four American universities -- Northern Illinois University, Southern Illinois University, University of Wisconsin-Madison and University of Wisconsin-Oshkosh participated in a major deep seismic experiment in Lake Superior under the GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) umbrella. This Open-File Report presents the seismic sections for line A, which was shot specifically for refraction recording. The main target for study by this line was the Mid-Continent Rift System. All recording stations, 31 in total (26 land stations and 5 OBSs), recorded energy from shots fired every two minutes (333 m spacing) by a tuned airgun array towed by a contracted ship along line A in Lake Superior. These data are the densest such data ever recorded in the continental North America over such distances. It is also unique since coincident seismic reflection and refraction are available.

  7. Production of sea lamprey larvae from nests in two Lake Superior streams

    USGS Publications Warehouse

    Manion, Patrick J.

    1968-01-01

    The life history of the landlocked sea lamprey, Petromyzon marinus, has been described by several authors, the two most recent of which are Applegate and Wigley. The only information on the production of larvae from nests of the sea lamprey was reported by Applegate, who counted the larvae from three nests in the Ocqueoc River, a tributary of Lake Huron. The present report presents data on the hatching success of sea lamprey larvae from 19 nests in two small tributaries of southern Lake Superior and indicates greater production per nest than that recorded by Applegate. Studies were conducted by personnel of the U.S. Bureau of Commercial Fisheries on the Little Garlic River, Marquette County, Michigan, and on the Traverse River, Keweenaw County, Michigan.

  8. Potential strategies for recovery of lake whitefish and lake herring stocks in eastern Lake Erie

    USGS Publications Warehouse

    Oldenburg, K.; Stapanian, M.A.; Ryan, P.A.; Holm, E.

    2007-01-01

    Lake Erie sustained large populations of ciscoes (Salmonidae: Coregoninae) 120 years ago. By the end of the 19th century, abundance of lake whitefish (Coregonus clupeaformis) had declined drastically. By 1925, the lake herring (a cisco) population (Coregonus artedii) had collapsed, although a limited lake herring fishery persisted in the eastern basin until the 1950s. In the latter part of the 20th century, the composition of the fish community changed as oligotrophication proceeded. Since 1984, a limited recovery of lake whitefish has occurred, however no recovery was evident for lake herring. Current ecological conditions in Lake Erie probably will not inhibit recovery of the coregonine species. Recovery of walleye (Sander vitreus) and efforts to rehabilitate the native lake trout (Salvelinus namaycush) in Lake Erie will probably assist recovery because these piscivores reduce populations of alewife (Alosa psuedoharengus) and rainbow smelt (Osmerus mordax), which inhibit reproductive success of coregonines. Although there are considerable spawning substrates available to coregonine species in eastern Lake Erie, eggs and fry would probably be displaced by storm surge from most shoals. Site selection for stocking or seeding of eggs should consider the reproductive life cycle of the stocked fish and suitable protection from storm events. Two potential sites in the eastern basin have been identified. Recommended management procedures, including commercial fisheries, are suggested to assist in recovery. Stocking in the eastern basin of Lake Erie is recommended for both species, as conditions are adequate and the native spawning population in the eastern basin is low. For lake herring, consideration should be given to match ecophenotypes as much as possible. Egg seeding is recommended. Egg seeding of lake whitefish should be considered initially, with fingerling or yearling stocking suggested if unsuccessful. Spawning stocks of whitefish in the western basin of Lake

  9. Understanding and Predicting the Fate of Semivolatile Organic Pesticides in a Glacier-Fed Lake Using a Multimedia Chemical Fate Model.

    PubMed

    Wu, Xiaolin; Davie-Martin, Cleo L; Steinlin, Christine; Hageman, Kimberly J; Cullen, Nicolas J; Bogdal, Christian

    2017-10-17

    Melting glaciers release previously ice-entrapped chemicals to the surrounding environment. As glacier melting accelerates under future climate warming, chemical release may also increase. This study investigated the behavior of semivolatile pesticides over the course of one year and predicted their behavior under two future climate change scenarios. Pesticides were quantified in air, lake water, glacial meltwater, and streamwater in the catchment of Lake Brewster, an alpine glacier-fed lake located in the Southern Alps of New Zealand. Two historic-use pesticides (endosulfan I and hexachlorobenzene) and three current-use pesticides (dacthal, triallate, and chlorpyrifos) were frequently found in both air and water samples from the catchment. Regression analysis indicated that the pesticide concentrations in glacial meltwater and lake water were strongly correlated. A multimedia environmental fate model was developed for these five chemicals in Brewster Lake. Modeling results indicated that seasonal lake ice cover melt, and varying contributions of input from glacial melt and streamwater, created pulses in pesticide concentrations in lake water. Under future climate scenarios, the concentration pulse was altered and glacial melt made a greater contribution (as mass flux) to pesticide input in the lake water.

  10. A 9,000-year-old caribou hunting structure beneath Lake Huron

    PubMed Central

    O’Shea, John M.; Lemke, Ashley K.; Sonnenburg, Elizabeth P.; Reynolds, Robert G.; Abbott, Brian D.

    2014-01-01

    Some of the most pivotal questions in human history necessitate the investigation of archaeological sites that are now under water. Nine thousand years ago, the Alpena-Amberley Ridge (AAR) beneath modern Lake Huron was a dry land corridor that connected northeast Michigan to southern Ontario. The newly discovered Drop 45 Drive Lane is the most complex hunting structure found to date beneath the Great Lakes. The site and its associated artifacts provide unprecedented insight into the social and seasonal organization of prehistoric caribou hunting. When combined with environmental and simulation studies, it is suggested that distinctly different seasonal strategies were used by early hunters on the AAR, with autumn hunting being carried out by small groups, and spring hunts being conducted by larger groups of cooperating hunters. PMID:24778246

  11. Glacial lake inventory and lake outburst potential in Uzbekistan.

    PubMed

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The seismic stratigraphy of Okanagan Lake, British Columbia; a record of rapid deglaciation in a deep 'fiord-lake' basin

    NASA Astrophysics Data System (ADS)

    Eyles, Nicholas; Mullins, Henry T.; Hine, Albert C.

    1991-09-01

    This paper presents the first detailed data regarding the newly discovered deep infill of Okanagan Lake. Okanagan Lake (50°00'N, 119°30'W) is 120 km long, ˜ 3-5 km wide and occupies a glacially overdeepened bedrock basin in the southern interior of British Columbia. This basin, and other elongate lakes of the region (e.g. Shuswap, Kootenay, Kalamalka, Canim and Mahood lakes), mark the site of westward flowing ice streams within successive Cordilleran ice sheets. An air gun seismic survey of Okanagan Lake shows that the bedrock floor is nearly 650 m below sea-level, more than 2000 m below the rim of the surrounding plateau. The maximum thickness of Pleistocene sediment in Okanagan Lake basin approaches 800 m. Forty-six seismic reflection traverses and an axial profile show a relatively simple stratigraphy composed of three seismic sequences argued to be no older than the last glacial cycle (< 30 ka). A discontinuous basal unit (sequence I) characterized by large-scale diffractions, and up to 460 m thick, infills the narrow, V-shaped bedrock floor of the basin and is interpreted as a boulder gravel deposited by subglacial meltwaters. Overlying seismic sequence II is composed of two sub-sequences. Sub-sequence IIa is a chaotic to massive facies up to 736 m thick. Lakeshore exposures close to where this unit reaches lake level show deformed and chaotically-bedded glaciolacustrine silts containing gravel lens and large ice-rafted boulders. The surface topography of this sub-sequence is irregular and in general mimics the form of the underlying bedrock as a result of compaction. This sequence passes laterally into stratified facies (sub-sequence IIb) at the northern end of the basin. Seismic sequence II appears to record rapid ice-proximal dumping of glaciolacustrine silt as the Okanagan glacier backwasted upvalley in a deep lake. A thin (60 m max.) laminated seismic sequence (III) drapes the hummocky surface of sequence II and represents postglacial sedimentation

  13. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    USGS Publications Warehouse

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  14. Chronic genetic damages in Geophagus brasiliensis exposed to anthropic impact in estuarine lakes at Santa Catarina coast--southern of Brazil.

    PubMed

    Benincá, Cristiane; Ramsdorf, Wanessa; Vicari, Taynah; de Oliveira Ribeiro, Ciro A; de Almeida, Marina I; Silva de Assis, Helena C; Cestari, Marta Margarete

    2012-04-01

    Biological monitoring through animals exposed to pollutants using biomarkers provides a promising tool for the identification of pollutants that may cause damage to human health and/or to sustainability of ecosystems. The effects of pollutants in fish tissues are important tools to understand the impact of human activities in natural ecosystems. The aim of this work was to study the water quality of two estuarine lakes in Santa Catarina, Brazil (Camacho Lake and Santa Marta Lake). Geophagus brasiliensis is a species widely distributed in Brazil and was used in this work. Comet assays in peripheral red blood and kidney cells, micronucleus tests in peripheral red blood cells, measurements of acetylcholinesterase activity in axial muscle and histopathological analysis of liver were used as biomarkers. Three sampling campaigns were undertaken in November 2004, June 2005 and November 2005. Thirty adult animals were sampled from each of three different sites (P1--Santa Marta Lake, P2 and P3--Camacho Lake). A negative control was sampled in a non-polluted site at Costa Ecological Park, Paraná. The positive control for genotoxicity was obtained by treating animals with copper sulphate. The results showed that both studied lakes are impacted by potential genotoxic substances. Severe lesions in liver of G. brasiliensis were also observed. The inhibition of acetylcholinesterase activity suggests the presence of pesticides or metals in the studied sites. This work shows that the water quality of Santa Marta and Camacho Lakes have been compromised and further control source of pollutants into these ecosystems is required.

  15. Lake Afrera, a structural depression in the Northern Afar Rift (Red Sea).

    PubMed

    Bonatti, Enrico; Gasperini, Elia; Vigliotti, Luigi; Lupi, Luca; Vaselli, Orlando; Polonia, Alina; Gasperini, Luca

    2017-05-01

    The boundary between the African and Arabian plates in the Southern Red Sea region is displaced inland in the northern Afar rift, where it is marked by the Red Sea-parallel Erta Ale, Alaita, and Tat Ali volcanic ridges. The Erta Ale is offset by about 20 and 40 km from the two en echelon ridges to the south. The offset area is highly seismic and marked by a depression filled by lake Afrera, a saline body of water fed by hydrothermal springs. Acoustic bathymetric profiles show ≈80 m deep canyons parallel to the NNW shore of the lake, part of a system of extensional normal faults striking parallel to the Red Sea. This system is intersected by oblique structures, some with strike-slip earthquakes, in what might evolve into a transform boundary. Given that the lake's surface lies today about 112 m below sea level, the depressed (minus ≈190 m below sea level) lake's bottom area may be considered the equivalent of the "nodal deep" in slow-slip oceanic transforms. The chemistry of the lake is compatible with the water having originated from hydrothermal liquids that had reacted with evaporites and basalts, rather than residual from evaporation of sea water. Bottom sediments include calcitic grains, halite and gypsum, as well as ostracod and diatom tests. The lake's level appears to have dropped by over 10 m during the last ≈50 years, continuing a drying up trend of the last few thousand years, after a "wet" stage 9,800 and 7,800 years before present when according to Gasse (1973) Lake Afrera covered an area several times larger than at present. This "wet" stage corresponds to an early Holocene warm-humid climate that prevailed in Saharan and Sub Saharan Africa. Lake Abhé, located roughly 250 km south of Afrera, shows similar climate-driven oscillations of its level.

  16. Progress toward lake trout restoration in Lake Michigan

    USGS Publications Warehouse

    Holey, Mark E.; Rybicki, Ronald W.; Eck, Gary W.; Brown, Edward H.; Marsden, J. Ellen; Lavis, Dennis S.; Toneys, Michael L.; Trudeau, Tom N.; Horrall, Ross M.

    1995-01-01

    Progress toward lake trout restoration in Lake Michigan is described through 1993. Extinction of the native lake trout fishery by sea lamprey predation, augmented by exploitation and habitat destruction, resulted in an extensive stocking program of hatchery-reared lake trout that began in 1965. Sea lamprey abundance was effectively controlled using selective chemical toxicants. The initial stocking produced a measurable wild year class of lake trout by 1976 in Grand Traverse Bay, but failed to continue probably due to excessive exploitation. The overall lack of successful reproduction lakewide by the late 1970s led to the development and implementation in 1985 of a focused inter-agency lakewide restoration plan by a technical committee created through the Lake Committee structure of the Great Lakes Fishery Commission. Strategies implemented in 1985 by the plan included setting a 40% total mortality goal lakewide, creating two large refuges designed to encompass historically the most productive spawning habitat and protect trout stocked over their home range, evaluating several lake trout strains, and setting stocking priorities throughout the lake. Target levels for stocking in the 1985 Plan have never been reached, and are much less than the estimated lakewide recruitment of yearlings by the native lake trout stocks. Since 1985, over 90% of the available lake trout have been stocked over the best spawning habitat, and colonization of the historically productive offshore reefs has occurred. Concentrations of spawning lake trout large enough for successful reproduction, based on observations of successful hatchery and wild stocks, have developed at specific reefs. Continued lack of recruitment at these specific sites suggests that something other than stotk abundance has limited success. Poor survival of lake trout eggs, assumed to be related to contaminant burden, occurred in the late 1970s and early 1980s, but survival has since increased to equal survival in the

  17. Lake trout rehabilitation in Lake Huron

    USGS Publications Warehouse

    Eshenroder, Randy L.; Payne, N. Robert; Johnson, James E.; Bowen, Charles; Ebener, Mark P.

    1995-01-01

    Efforts to restore lake trout (Salvelinus namaycush) in Lake Huron after their collapse in the 1940s were underway in the early 1970s with completion of the first round of lampricide applications in tributary streams and the stocking of several genotypes. We assess results of rehabilitation and establish a historical basis for comparison by quantifying the catch of spawning lake trout from Michigan waters in 1929-1932. Sixty-eight percent of this catch occurred in northern waters (MH-1) and most of the rest (15%) was from remote reefs in the middle of the main basin. Sea lampreys (Petromyzon marinus) increased in the early 1980s in the main basin and depressed spawning populations of lake trout. This increase was especially severe in northern waters and appeared to be associated with untreated populations in the St. Marys River. Excessive commercial fishing stemming from unresolved treaty rights also contributed to loss of spawning fish in northern Michigan waters. Seneca-strain lake trout did not appear to be attacked by sea lampreys until they reached a size > 532 mm. At sizes > 632 mm, Seneca trout were 40-fold more abundant than the Marquette strain in matched-planting experiments. Natural reproduction past the fry stage has occurred in Thunder Bay and South Bay, but prospects for self-sustaining populations of lake trout in the main basin are poor because sea lampreys are too abundant, only one side of the basin is stocked, and stocking is deferred to allow commercial gillnetting in areas where most of the spawning occurred historically. Backcross lake trout, a lake trout x splake (s. Fontinalis x s. Namaycush) hybrid, did not reproduce in Georgian Bay, but this genotype is being replaced with pure-strain lake trout, whose early performance appears promising.

  18. Rapid Late Holocene glacier fluctuations reconstructed from South Georgia lake sediments using novel analytical and numerical techniques

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; Bakke, Jostein; Werner, Johannes; Paasche, Øyvind; Rosqvist, Gunhild

    2016-04-01

    The collapse of ice shelves, rapidly retreating glaciers and a dramatic recent temperature increase show that Southern Ocean climate is rapidly shifting. Also, instrumental and modelling data demonstrate transient interactions between oceanic and atmospheric forcings as well as climatic teleconnections with lower-latitude regions. Yet beyond the instrumental period, a lack of proxy climate timeseries impedes our understanding of Southern Ocean climate. Also, available records often lack the resolution and chronological control required to resolve rapid climate shifts like those observed at present. Alpine glaciers are found on most Southern Ocean islands and quickly respond to shifts in climate through changes in mass balance. Attendant changes in glacier size drive variations in the production of rock flour, the suspended product of glacial erosion. This climate response may be captured by downstream distal glacier-fed lakes, continuously recording glacier history. Sediment records from such lakes are considered prime sources for paleoclimate reconstructions. Here, we present the first reconstruction of Late Holocene glacier variability from the island of South Georgia. Using a toolbox of advanced physical, geochemical (XRF) and magnetic proxies, in combination with state-of-the-art numerical techniques, we fingerprinted a glacier signal from glacier-fed lake sediments. This lacustrine sediment signal was subsequently calibrated against mapped glacier extent with the help of geomorphological moraine evidence and remote sensing techniques. The outlined approach enabled us to robustly resolve variations of a complex glacier at sub-centennial timescales, while constraining the sedimentological imprint of other geomorphic catchment processes. From a paleoclimate perspective, our reconstruction reveals a dynamic Late Holocene climate, modulated by long-term shifts in regional circulation patterns. We also find evidence for rapid medieval glacier retreat as well as a

  19. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan

    USGS Publications Warehouse

    Nevers, Meredith B.; Whitman, Richard L.

    2005-01-01

    Predictive modeling for Escherichia coli concentrations at effluent-dominated beaches may be a favorable alternative to current, routinely criticized monitoring standards. The ability to model numerous beaches simultaneously and provide real-time data decreases cost and effort associated with beach monitoring. In 2004, five Lake Michigan beaches and the nearby Little Calumet River outfall were monitored for E. coli 7 days a week; on nine occasions, samples were analyzed for coliphage to indicate a sewage source. Ambient lake, river, and weather conditions were measured or obtained from independent monitoring sources. Positive tests for coliphage analysis indicated sewage was present in the river and on bathing beaches following heavy rainfall. Models were developed separately for days with prevailing onshore and offshore winds due to the strong influence of wind direction in determining the river's impact on the beaches. Using regression modeling, it was determined that during onshore winds, E. coli   could be adequately predicted using wave height, lake chlorophyll and turbidity, and river turbidity (R2=0.635, N=94); model performance decreased for offshore winds using wave height, wave period, and precipitation (R2=0.320, N=124). Variation was better explained at individual beaches. Overall, the models only failed to predict E. coli levels above the EPA closure limit (235 CFU/100 ml) on five of eleven occasions, indicating that the model is a more reliable alternative to the monitoring approach employed at most recreational beaches.

  20. Evolution of alkaline lakes - Lake Van case study

    NASA Astrophysics Data System (ADS)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction < 63 µm assuming that it represents only carbonates precipitating in the water column. Microfossil assemblage consists of three different species of ostracods (Candona spp, Loxoconcha sp, Amnicythere spp.), diatoms, gastropods and bivalves. Brakish-water ostracods, Loxoconcha sp and Amnicythere sp occur more often after 530 ka. Additionaly, Loxoconcha sp is a shallow-water species relaying on plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic

  1. Simulating restoration strategies for a southern boreal forest landscape with complex land ownership patterns

    Treesearch

    Douglas J. Shinneman; Meredith W. Cornett; Brian J. Palik

    2010-01-01

    Restoring altered forest landscapes toward their ranges of natural variability (RNV) may enhance ecosystem sustainability and resiliency, but such efforts can be hampered by complex land ownership and management patterns. We evaluated restoration potential for southern-boreal forests in the ~2.1 million ha Border Lakes Region of northern Minnesota (U.S.A.) and...

  2. The influence of the Great Lakes on MCS formation and development in the warm season

    NASA Astrophysics Data System (ADS)

    Srock, Alan F.

    This study focuses on how near-surface thermal boundaries that form near the Great Lakes during the warm season can contribute to the formation of mesoscale convective systems (MCSs). Differential heating across land-water interfaces can create a cold dome of air over the lake; convection may develop when the relatively-cold dome of air becomes deep enough to enable air parcels that intersect these boundaries to reach their level of free convection. A radar-based climatology of MCS events surrounding the Great Lakes for 2002-2005 showed that MCSs frequently form in the vicinity of the Great Lakes. Composites of MCS events over the Great Lakes and in sub-regions defined by proximity to a Great Lake showed that the most important synoptic-scale precursor for MCS initiation is the presence of a low-level moisture plume, which is often (but not always) provided by a low-level jet (LLJ). Case studies of two MCSs that formed along the eastern shore of Lake Michigan showed how differential heating across the land-lake interface enabled the development of a near-surface mesoscale thermal boundary along which forced ascent was able to trigger convection. A third case study of an MCS that formed along the southern shore of Lake Superior showed that a strong land-lake thermal boundary provided a focus for long-lived MCS development beneath a plume of warm, moist air along the LLJ. High-resolution WRF-modeling studies were used to test the effect of the presence of a Great Lake on land-lake thermal boundary development and MCS generation. In one pair of simulations, differential heating in the control run created an over-lake cold dome that grew stronger and deeper during the day. Removing the lake removed the differential heating, so the no-lake run became comparatively warmer and moister in the lowest 1000 m over the "lake". Convection focused and organized along the near-lake mesoscale boundary in the control run, but was less organized and forced by larger-scale processes

  3. Embryotoxicity of an extract from Great Lakes lake trout to rainbow trout and lake trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, P.J.; Tillitt, D.E.

    1995-12-31

    Aquatic ecosystems such as the Great Lakes are known to be contaminated with chemicals that are toxic to fish. However, the role of these contaminants in reproductive failures of fishes, such as lake trout recruitment, has remained controvertible. It was the objective to evaluate dioxin-like embryotoxicity of a complex mixture of chemicals and predict their potential to cause the lack of recruitment in Great Lakes lake trout. Graded doses of a complex environmental extract were injected into eggs of both rainbow trout and lake trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988.more » The extract was embryotoxic in rainbow trout, with LD50 values for Arlee strain and Erwin strain of 33 eggEQ and 14 eggEQ respectively. The LOAEL for hemorrhaging, yolk-sac edema, and craniofacial deformities in rainbow trout were 2, 2, and 4 eggEQ, respectively. Subsequent injections of the extract into lake trout eggs were likewise embryotoxic, with an LD50 value of 7 eggEQ. The LOAEL values for the extract in lake trout for hemorrhaging, yolk-sac edema, and craniofacial deformities were 0.1, 1, and 2 eggEQ, respectively. The current levels of contaminants in lake trout eggs are above the threshold for hemorrhaging and yolk-sac edema. The results also support the use of an additive model of toxicity to quantify PCDDs, PCDFs, Non-o-PCBs, and Mono-o-PCBs in relation to early life stage mortality in Lake Michigan lake trout.« less

  4. Lake sediment-based Late Holocene glacier reconstruction reveals medieval retreat and two-phase Little Ice Age on subantarctic South Georgia

    NASA Astrophysics Data System (ADS)

    van der Bilt, W. G. M.; Bakke, J.; Werner, J.; Paasche, O.; Rosqvist, G. N.; Vatle, S. S.

    2016-12-01

    Southern Ocean climate is rapidly changing. Yet beyond the instrumental period (± 100 years), our comprehension of climate variability in the region is restricted by a lack of high-resolution paleoclimate records. Alpine glaciers, ubiquitous on Southern Ocean islands, may provide such data as they rapidly respond to climate shifts, recording attendant changes in extent by variations in glacial erosion. Rock flour, the fine-grained fraction of this process, is suspended in meltwater streams and transfers this signal to the sediments of downstream lakes, continuously recording glacier history. Here, we use this relationship and present the first reconstruction of the Late Holocene (1250 cal. yr BP - present) glacier history of the Southern Ocean island of South Georgia, using sediments from the glacier-fed Middle Hamberg lake. Variations are resolved on multi-centennial scales due to robust chronological control. To fingerprint a glacial erosion signal, we employed a set of routinely used physical, geochemical and magnetic parameters. Using Titanium counts, validated against changes in sediment density and grain size distribution, we continuously reconstruct glacier variations over the past millennium. Refining local moraine evidence and supporting evidence from other Southern Hemisphere sites, this study shows a progressive diminishing of consecutive Late Holocene advances. These include a two-stage Little Ice Age, in agreement with other Southern Hemisphere glacier evidence. The presented record furthermore captures an unreported retreat phase behind present limits around 500 cal. yr BP.

  5. Hydrogeologic Controls on Lake Level at Mountain Lake, Virginia

    NASA Astrophysics Data System (ADS)

    Roningen, J. M.; Burbey, T. J.

    2011-12-01

    Mountain Lake in Giles County, Virginia has a documented history of severe natural lake-level changes involving groundwater seepage that extend over the past 4200 years. Featured in the 1986 movie Dirty Dancing, the natural lake dried up completely in September 2008 and levels have not yet recovered. A hydrogeologic investigation was undertaken in an effort to determine the factors influencing lake level changes. A daily water balance, dipole-dipole electrical resistivity surveying, well logging and chemical sampling have shed light on: 1) the influence of a fault not previously discussed in literature regarding the lake, 2) the seasonal response to precipitation of a forested first-order drainage system in fractured rock, and 3) the possibility of flow pathways related to karst features. Geologic controls on lake level were investigated using several techniques. Geophysical surveys using dipole-dipole resistivity located possible subsurface flowpaths both to and from the lake. Well logs, lineament analysis, and joint sampling were used to assess structural controls on lake hydrology. Major ions were sampled at wells, springs, streams, and the lake to evaluate possible mixing of different sources of water in the lake. Groundwater levels were monitored for correlation to lake levels, rainfall events, and possible seismic effects. The hydrology of the lake was quantified with a water balance on a daily time step. Results from the water balance indicate steady net drainage and significant recharge when vegetation is dormant, particularly during rain-on-snow melt events. The resistivity survey reveals discrete areas that represent flow pathways from the lake, as well as flowpaths to springs upgradient of the lake located in the vicinity of the fault. The survey also suggests that some flowpaths may originate outside of the topographic watershed of the lake. Chemical evidence indicates karst may underlie the lakebed. Historical data suggest that artificial intervention

  6. Lake-level frequency analysis for Devils Lake, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  7. Lake-level frequency analysis for Devils Lake, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, Aldo V.

    1995-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow.Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lake-volume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lakevolume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines.The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  8. Empirical models of wind conditions on Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Wood, Tamara M.

    2010-01-01

    Upper Klamath Lake is a large (230 square kilometers), shallow (mean depth 2.8 meters at full pool) lake in southern Oregon. Lake circulation patterns are driven largely by wind, and the resulting currents affect the water quality and ecology of the lake. To support hydrodynamic modeling of the lake and statistical investigations of the relation between wind and lake water-quality measurements, the U.S. Geological Survey has monitored wind conditions along the lakeshore and at floating raft sites in the middle of the lake since 2005. In order to make the existing wind archive more useful, this report summarizes the development of empirical wind models that serve two purposes: (1) to fill short (on the order of hours or days) wind data gaps at raft sites in the middle of the lake, and (2) to reconstruct, on a daily basis, over periods of months to years, historical wind conditions at U.S. Geological Survey sites prior to 2005. Empirical wind models based on Artificial Neural Network (ANN) and Multivariate-Adaptive Regressive Splines (MARS) algorithms were compared. ANNs were better suited to simulating the 10-minute wind data that are the dependent variables of the gap-filling models, but the simpler MARS algorithm may be adequate to accurately simulate the daily wind data that are the dependent variables of the historical wind models. To further test the accuracy of the gap-filling models, the resulting simulated winds were used to force the hydrodynamic model of the lake, and the resulting simulated currents were compared to measurements from an acoustic Doppler current profiler. The error statistics indicated that the simulation of currents was degraded as compared to when the model was forced with observed winds, but probably is adequate for short gaps in the data of a few days or less. Transport seems to be less affected by the use of the simulated winds in place of observed winds. The simulated tracer concentration was similar between model results when

  9. Status of important prey fishes in the U.S. waters of Lake Ontario, 2013: Introduction and methods, alewife, rainbow smelt, sculpins, and round goby

    USGS Publications Warehouse

    Walsh, Maureen; Weidel, Brian C.; Connerton, Michael J.

    2014-01-01

    Lake Ontario has a mean depth of 86 m (282 ft) and a maximum depth of 244 m (801 ft) (Herdendorf 1982). The southern, New York portion of the lake has the deepest water (Figure 1). In New York waters, about 67% of the lake is <160 m (525 ft) deep and about 82% of the lake is <180 m (591 ft) deep. The U.S. Geological Survey (USGS) and New York State Department of Environmental Conservation (NYSDEC) have cooperatively assessed Lake Ontario prey fishes each year since 1978. Bottom trawl assessments were initially focused on Alewife Alosa pseudoharengus (April), Rainbow Smelt Osmerus mordax (June), and Slimy Sculpin Cottus cognatus (October). Seasonal survey timing corresponded to the peak catches in 1972 when collections were made every month May to October (Owens et al. 2003). Twelve transects were established at approximately 25-km intervals along the U.S. shoreline (Figure 2). Alewife assessment was conducted at all transects, Rainbow Smelt assessment at all transects except Fair Haven, and six transects representing eastern, southern, and western lake areas were sampled for Slimy Sculpin (Figure 2). Changes in the Lake Ontario ecosystem (species invasion, oligotrophication, native species rebound) require ongoing evaluation of current methods which sometimes necessitate redistribution of trawl effort, or changes in sampling designs and/or gear. For instance, the spring Alewife assessment is now used also to assess invasive Round Goby Neogobius melanostomus population dynamics. Likewise, the fall benthic fish assessment (formerly sculpin assessment) now also tracks dynamics of the rebounding native Deepwater Sculpin Myoxocephalus thompsonii population, the apparent declining population of Slimy Sculpin, and fall distribution of Round Goby.

  10. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    USGS Publications Warehouse

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  11. Vegetation and climate of the southern Levant during the last Interglacial

    NASA Astrophysics Data System (ADS)

    Chen, Chunzhu; Litt, Thomas

    2015-04-01

    Sediments in the Dead Sea basin are outstanding archives for understanding the paleoenvironment of the southern Levant because of their locations at the boundary between the Mediterranean and Arabian-Sahara climate zones. During the past decades, extensive investigations have demonstrated high lake levels during the last Glacial but low lake levels during the present and last Interglacial. However, palynological results from Lake Kinneret and Birkat Ram suggested a dry last Glacial and wet Holocene (Schiebel, 2013; Chen and Miebach, unpublished). Studies on Lake Samra (last interglacial precursor of the modern Dead Sea) became a focus after deep drilling cores were retrieved in 2011. Core 5017-1A encompasses the most complete Samra profile in the region, which exhibits thick halite layers indicating extremely low lake levels (Neugebauer et al., 2014). As interpreted based on lithological and hydrological results, the marine isotope stage (MIS) 5e was the most arid period (work in progress). In this case, pollen analysis would provide independent evidence of the regional climate changes. Our preliminary result shows that late MIS 6 was characterized by an expansion of goosefoot (Chenopodiaceae)-dominated desert/semi-desert. During the MIS 6/5 transition, an abrupt increase of grasses and a corresponding decline of goosefoot suggest the occurrence of a more humid grass steppe, whereas the woodlands were still open. The MIS 5e has witnessed higher woodland density and moisture availability provided high values of Mediterranean woodland components (mainly olives and deciduous oaks). From MIS 5d to 5a, a drying trend was recorded from the contraction of the Mediterranean biome and the expansion of steppe/semi-steppe. As a key time interval of our study, MIS 5e comprised a typical vegetation succession process that is also prevalent in other Mediterranean pollen records. Therefore, in biostratigraphical terms, high abundances of woody taxa marks the MIS 5e, although the

  12. Sedimentology and geochemistry of a perennially ice-covered epishelf lake in Bunger Hills Oasis, East Antarctica.

    PubMed

    Doran, P T; Wharton, R A; Lyons, W B; Des Marais, D J; Andersen, D T

    2000-01-01

    A process-oriented study was carried out in White Smoke lake, Bunger Hills, East Antarctica, a perennially ice-covered (1.8 to 2.8 m thick) epishelf (tidally-forced) lake. The lake water has a low conductivity and is relatively well mixed. Sediments are transferred from the adjacent glacier to the lake when glacier ice surrounding the sediment is sublimated at the surface and replaced by accumulating ice from below. The lake bottom at the west end of the lake is mostly rocky with a scant sediment cover. The east end contains a thick sediment profile. Grain size and delta 13C increase with sediment depth, indicating a more proximal glacier in the past. Sedimentary 210Pb and 137Cs signals are exceptionally strong, probably a result of the focusing effect of the large glacial catchment area. The post-bomb and pre-bomb radiocarbon reservoirs are c. 725 14C yr and c. 1950 14C yr, respectively. Radiocarbon dating indicates that the east end of the lake is >3 ka BP, while photographic evidence and the absence of sediment cover indicate that the west end has formed only over the last century. Our results indicate that the southern ice edge of Bunger Hills has been relatively stable with only minor fluctuations (on the scale of hundreds of metres) over the last 3000 years.

  13. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska

    USGS Publications Warehouse

    Edwards, Mary E.; Grosse, Guido; Jones, Benjamin M.; McDowell, Patricia F.

    2016-01-01

    Thermokarst processes characterize a variety of ice-rich permafrost terrains and often lead to lake formation. The long-term evolution of thermokarst landscapes and the stability and longevity of lakes depend upon climate, vegetation and ground conditions, including the volume of excess ground ice and its distribution. The current lake status of thermokarst-lake landscapes and their future trajectories under climate warming are better understood in the light of their long-term development. We studied the lake-rich southern marginal upland of the Yukon Flats (northern interior Alaska) using dated lake-sediment cores, observations of river-cut exposures, and remotely-sensed data. The region features thick (up to 40 m) Quaternary deposits (mainly loess) that contain massive ground ice. Two of three studied lakes formed ~ 11,000–12,000 cal yr BP through inferred thermokarst processes, and fire may have played a role in initiating thermokarst development. From ~ 9000 cal yr BP, all lakes exhibited steady sedimentation, and pollen stratigraphies are consistent with regional patterns. The current lake expansion rates are low (0 to < 7 cm yr− 1 shoreline retreat) compared with other regions (~ 30 cm yr− 1 or more). This thermokarst lake-rich region does not show evidence of extensive landscape lowering by lake drainage, nor of multiple lake generations within a basin. However, LiDAR images reveal linear “corrugations” (> 5 m amplitude), deep thermo-erosional gullies, and features resembling lake drainage channels, suggesting that highly dynamic surface processes have previously shaped the landscape. Evidently, widespread early Holocene permafrost degradation and thermokarst lake initiation were followed by lake longevity and landscape stabilization, the latter possibly related to establishment of dense forest cover. Partial or complete drainage of three lakes in 2013 reveals that there is some contemporary landscape dynamism. Holocene landscape

  14. Diatom succession trends in recent sediments from Lake Baikal and their relation to atmospheric pollution and to climate change

    PubMed Central

    Mackay, A. W.

    1998-01-01

    Recent environmental change in Lake Baikal has been attributed to anthropogenic influences on the ecosystem, especially through pollution and cultural eutrophication. These hypotheses are tested in this paper principally by diatom analyses in 20 short sediment cores. Most of the cores were collected with a new type of box corer specifically designed for use on Lake Baikal. Most cores contain a good sediment record but turbidites occur in some sediment profiles which may be best recognized using a combination of techniques, such as radiometric dating and percentage dry weight analyses. The most recent sediments, especially those in the southern basin and in the very north of Baikal, contain a record of anthropogenic contamination in the form of lead and spheroidal carbonaceous particles, which confirms that the southern basin of Baikal is most affected by atmospheric sources of pollution. However, there is no sedimentary diatom evidence indicating offshore water quality deterioration in Baikal owing to air pollution or eutrophication. Small increases in diatoms which indicate nutrient enrichment (e.g. Stephanodiscus minutulus, Synedra acus v. radians and Synedra acus v. acus) may reflect local eutrophication of the shallow waters close to the Selenga Delta and certain coastal sites in the southern basin near to the Baikalsk paper and pulp mill. By using numerical techniques, Lake Baikal can be split into at least four regions on the basis of its surface sediment flora: the south, middle and north basins, and the shallow waters surrounding the Selenga Delta region. Diatom analyses reveal that the endemic flora of Lake Baikal has been constantly changing over at least the last 2000 years and that these fluctuations are probably responses to natural climatic variability. Recent sediments of Baikal may be affected by taphanomic processes (e.g. dissolution) and turbidite deposition, and these must be taken into account when interpreting the sedimentary diatom record. The

  15. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping

    2017-11-01

    The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.

  16. Lake Level Variation in Small Lakes: Not a Clear Picture

    NASA Astrophysics Data System (ADS)

    Starratt, S.

    2017-12-01

    Lake level is a useful tool for identifying regional changes in precipitation and evaporation. Due to the volume of water in large lakes, they may only record large-scale changes in water balance, while smaller lakes may record more subtle variations. However, the record of water level in small lakes is affected by a number of factors including elevation, bathymetry, nutrient load, and aquatic macrophyte abundance. The latest Quaternary diatom records from three small lakes with areas of <10 ha (Hobart Lake, OR, 1458 masl; Swamp Lake, CA, 1554 masl; Favre Lake, NV, 2899 masl) and a larger lake (Medicine Lake, CA, 2036 masl, 154 ha) were compared in this study. All the lakes have a deep central basin (>10 m) surrounded by a shallow (1-2 m) shelf. Changes in the abundance of diatoms representing different life habits (benthic, tychoplanktic, planktic) were used to identify lake level variation. Benthic taxa dominate the assemblage when only the central basin is occupied. As the shallow shelf is flooded, the abundance of tychoplanktic taxa increases. Planktic taxa increase with the establishment of stratification. Favre Lake presents the clearest indication of initial lake level rise (7600-5750 cal yr BP) and intermittent flooding of the shelf for the remainder of the record. Stratification appears to become established only in the last few hundred years. Higher nutrient levels in the early part of the Hobart Lake record lead to a nearly monotypic planktic assemblage which is replaced by a tychoplanktic-dominated assemblage as the lake floods the shelf at about 3500 cal yr BP. The last 500 years is dominated by benthic taxa associated with aquatic macrophytes. The consistent presence of planktic taxa in the Swamp Lake record suggests that the lake was stratified during most of its history, although slight variations in the relative abundances of planktic and tychoplanktic groups occur. The Medicine Lake record shows a gradual increase in planktic species between 11

  17. Pollution monitoring in Lake Champlain using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Lind, A. O. (Principal Investigator); Henson, E. B.

    1973-01-01

    The author has identified the following significant results. Band 4 imagery of April 7 and 25 show contrasting pollution effects due to seasonal and discharge variations. The pollution plume emanating from the International Paper Co. mill just north of Fort Ticonderoga was first detected on October 10 ERTS-1 imagery and now has been documented during spring high lake level conditions. The plume was observed extending further to the north and east than under low water conditions of October 10. This northward extension reflects a stronger northward current flow expected in the turbid southern leg of Lake Champlain. The extensive plume of April 25 represents full plant operation while the April 5 scene shows some plume traces directly over the submerged diffuser, discharge pipe representing minimal discharge during weekend plant operation. The ERTS-1 documentation will be used in developing a model of plume behavior under varying environmental conditions and will hopefully serve to assist in a major resource decision pending at U.S. Supreme Court level.

  18. Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Jiménez-Moreno, G.; Carrión, J. S.; Pérez-Martínez, C.

    2011-06-01

    The Sierra Nevada of southern Spain is a landscape with a rich biological and cultural heritage. The range was extensively glaciated during the late Pleistocene. However, the postglacial paleoecologic history of the highest range in southern Europe is nearly completely unknown. Here we use sediments from a small lake above present treeline - Laguna de Río Seco at 3020 m elevation - in a paleoecological study documenting over 11,500 calendar years of vegetation, fire and climate change, addressing ecological and paleoclimatic issues unique to this area through comparison with regional paleoecological sequences. The early record is dominated by Pinus pollen, with Betula, deciduous Quercus, and grasses, with an understory of shrubs. It is unlikely that pine trees grew around the lake, and fire was relatively unimportant at this site during this period. Aquatic microfossils indicate that the wettest conditions and highest lake levels at Laguna de Río Seco occurred before 7800 cal yr BP. This is in contrast to lower elevation sites, where wettest conditions occurred after ca 7800. Greater differences in early Holocene seasonal insolation may have translated to greater snowpack and subsequently higher lake levels at higher elevations, but not necessarily at lower elevations, where higher evaporation rates prevailed. With declining seasonality after ca 8000 cal yr BP, but continuing summer precipitation, lake levels at the highest elevation site remained high, but lake levels at lower elevation sites increased as evaporation rates declined. Drier conditions commenced regionally after ca 5700 cal yr BP, shown at Laguna de Río Seco by declines in wetland pollen, and increases in high elevation steppe shrubs common today ( Juniperus, Artemisia, and others). The disappearance or decline of mesophytes, such as Betula from ca 4000 cal yr BP is part of a regional depletion in Mediterranean Spain and elsewhere in Europe from the mid to late Holocene. On the other hand

  19. 78 FR 53675 - Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...-AA00 Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in-Bay... temporary safety zone in the waters of Lake Erie in the vicinity of Put-In-Bay, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during Battle of Lake Erie Reenactment near Put-In...

  20. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800

  1. Fall diet and bathymetric distribution of deepwater sculpin (Myoxocephalus thompsonii) in Lake Huron

    USGS Publications Warehouse

    O'Brien, T. P.; Roseman, E.F.; Kiley, C.S.; Schaeffer, J.S.

    2009-01-01

    Deepwater sculpin Myoxocephalus thompsonii are an important component of Great Lake's offshore benthic food webs. Recent declines in deepwater sculpin abundance and changes in bathymetric distribution may be associated with changes in the deepwater food web of Lake Huron, particularly, decreased abundance of benthic invertebrates such as Diporeia. To assess how deepwater sculpins have responded to recent changes, we examined a fifteen-year time series of spatial and temporal patterns in abundance as well as the diets of fish collected in bottom trawls during fall of 2003, 2004, and 2005. During 1992-2007, deepwater sculpin abundance declined on a lake-wide scale but the decline in abundance at shallower depths and in the southern portion of Lake Huron was more pronounced. Of the 534 fish examined for diet analysis, 97% had food in the stomach. Mysis, Diporeia, and Chironomidae were consumed frequently, while sphaerid clams, ostracods, fish eggs, and small fish were found in only low numbers. We found an inverse relationship between prevalence of Mysis and Diporeia in diets that reflected geographic and temporal trends in abundance of these invertebrates in Lake Huron. Because deepwater sculpins are an important trophic link in offshore benthic food webs, declines in population abundance and changes in distribution may cascade throughout the food web and impede fish community restoration goals.

  2. New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Lauer, Tobias; Winsemann, Jutta

    2018-01-01

    A comprehensive palaeogeographic reconstruction of ice sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-ice flow data, till provenance, facies analysis, geomorphology and new luminescence ages of ice-marginal deposits. Three major ice advances with different ice-advance directions and source areas are indicated by palaeo-ice flow directions and till provenance. The first ice advance was characterised by a southwards directed ice flow and a dominance of clasts derived from southern Sweden. The second ice advance was initially characterised by an ice flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third ice advance) was characterised by ice streaming (Hondsrug ice stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first ice advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of ice-marginal deposits attributed to the second ice advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The ice sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive ice-dammed lakes. The formation of proglacial lakes was mainly controlled by ice-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated ice advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. Ice-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events.

  3. Overview for geologic field-trip guides to Mount Mazama, Crater Lake Caldera, and Newberry Volcano, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Donnelly-Nolan, Julie M.; Jensen, Robert A.; Wright, Heather M.

    2017-08-16

    These field-trip guides were written for the occasion of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial scientific assembly in Portland, Oregon, in August 2017. The guide to Mount Mazama and Crater Lake caldera is an updated and expanded version of the guide (Bacon, 1989) for part of an earlier IAVCEI trip to the southern Cascade Range. The guide to Newberry Volcano describes the stops included in the 2017 field trip. Crater Lake and Newberry are the two best-preserved and most recent calderas in the Cascades Volcanic Arc. Although located in different settings in the arc, with Crater Lake on the arc axis and Newberry in the rear-arc, both volcanoes are located at the intersection of the arc and the northwest corner region of the extensional Basin and Range Province.

  4. Fluorescent components and spatial patterns of chromophoric dissolved organic matters in Lake Taihu, a large shallow eutrophic lake in China.

    PubMed

    Yao, Bo; Hu, Chunming; Liu, Qingquan

    2016-11-01

    Water samples at both surface and bottom layers were taken from 102 sites in Lake Taihu to study the fluorescent components and spatial patterns of chromophoric dissolved organic matters (CDOM). Three-dimensional excitation-emission matrix data obtained from the samples were analyzed by parallel factor approach in which four humic-like and two protein-like fluorescent components (named C1-C6) were identified. The results showed that fluorescence intensities were higher in the northern and western lake regions, and notable declines of fluorescence maxima (F max ) were observed from the northwest to the center and then to the southeast of the lake. Calculated biological index (BIX) values ranged from 0.88 to 1.44 and humification index (HIX) values from 0.64 to 3.37 for all the samples. The spatial variations of BIX and HIX values suggested stronger allochthonous CDOM characteristics in Zhushan Bay and the western area and autochthonous characteristics in the southern and eastern areas. Vertically, the average F max value of the surface samples was about 6 % less than that of the bottom samples, but noticeable variations existed among different sampling sites and components. These distribution characteristics of CDOM were mainly attributed to the spatial heterogeneity of sources and wind-induced transportation process. Interestingly, the C6 component (Ex max /Em max  = 250/455 nm) seemed to be unique in samples from Zhushan Bay and probably resulted from the discharge of the Taige River. Therefore, it could be used as an indicator of point-source discharge and a tracer to study the fate of CDOM in the lake.

  5. Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarnecki, J.B.

    1997-12-31

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspirationmore » at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.« less

  6. Lake Life.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This quarterly publication of the State Historical Society of Iowa features articles and activities for elementary school students. This summer issue focuses on the topic of lake life. The issue includes the following features: (1) "Where the Lakes Are Map"; (2) "Letter from the Lake"; (3) "Lake People"; (4)…

  7. Planning applications in east central Florida. [resources management and planning, land use, and lake algal blooms in Brevard County from Skylab imagery

    NASA Technical Reports Server (NTRS)

    Hannah, J. W.; Thomas, G. L.; Esparza, F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Lake Apopka and three lakes downstream of it (Dora, Eustis, and Griffin) are in an advanced state of eutrophication with high algal concentrations. This feature has shown up consistently on ERTS-1 images in the form of a characteristic water color for those lakes. As expected, EREP photographs also show a characteristic color for those lakes. What was not expected is that Lake Griffin shows a clear pattern of this coloration. Personnel familiar with the lake believe that the photograph does, indeed, show an algal bloom. It is reported that the algal concentration is often significantly higher in the southern portion of the lake. What the photograph shows that was not otherwise known is the pattern of the algal bloom. A similar, but less pronounced, effect is seen in Lake Tohopekaliga. Personnel stationed at Kissimmee reported that there was an algal bloom on that lake at the time of the EREP pass and that its extent corresponded approximately to that shown on the photograph. Again, the EREP photograph gives information about the extent of the bloom that could not be obtained practically by sampling. ERTS-1 images give some indication of this algal distribution on Lake Griffin in some cases, but are inconclusive.

  8. The spatial scale for cisco recruitment dynamics in Lake Superior during 1978-2007

    USGS Publications Warehouse

    Rook, Benjamin J.; Hansen, Michael J.; Gorman, Owen T.

    2012-01-01

    The cisco Coregonus artedi was once the most abundant fish species in the Great Lakes, but currently cisco populations are greatly reduced and management agencies are attempting to restore the species throughout the basin. To increase understanding of the spatial scale at which density‐independent and density‐dependent factors influence cisco recruitment dynamics in the Great Lakes, we used a Ricker stock–recruitment model to identify and quantify the appropriate spatial scale for modeling age‐1 cisco recruitment dynamics in Lake Superior. We found that the recruitment variation of ciscoes in Lake Superior was best described by a five‐parameter regional model with separate stock–recruitment relationships for the western, southern, eastern, and northern regions. The spatial scale for modeling was about 260 km (range = 230–290 km). We also found that the density‐independent recruitment rate and the rate of compensatory density dependence varied among regions at different rates. The density‐independent recruitment rate was constant among regions (3.6 age‐1 recruits/spawner), whereas the rate of compensatory density dependence varied 16‐fold among regions (range = −0.2 to −2.9/spawner). Finally, we found that peak recruitment and the spawning stock size that produced peak recruitment varied among regions. Both peak recruitment (0.5–7.1 age‐1 recruits/ha) and the spawning stock size that produced peak recruitment (0.3–5.3 spawners/ha) varied 16‐fold among regions. Our findings support the hypothesis that the factors driving cisco recruitment operate within four different regions of Lake Superior, suggest that large‐scale abiotic factors are more important than small‐scale biotic factors in influencing cisco recruitment, and suggest that fishery managers throughout Lake Superior and the entire Great Lakes basin should address cisco restoration and management efforts on a regional scale in each lake.

  9. Reevaluation of lake trout and lake whitefish bioenergetics models

    USGS Publications Warehouse

    Madenjian, Charles P.; Pothoven, Steve A.; Kao, Yu-Chun

    2013-01-01

    Using a corrected algorithm for balancing the energy budget, we reevaluated the Wisconsin bioenergetics model for lake trout (Salvelinus namaycush) in the laboratory and for lake whitefish (Coregonus clupeaformis) in the laboratory and in the field. For lake trout, results showed that the bioenergetics model slightly overestimated food consumption by the lake trout when they were fed low and intermediate rations, whereas the model predicted food consumption by lake trout fed ad libitum without any detectable bias. The slight bias in model predictions for lake trout on restricted rations may have been an artifact of the feeding schedule for these fish, and we would therefore recommend application of the Wisconsin lake trout bioenergetics model to lake trout populations in the field without any revisions to the model. Use of the Wisconsin bioenergetics model for coregonids resulted in overestimation of food consumption by lake whitefish both in the laboratory and in the field by between 20 and 30%, on average. This overestimation of food consumption was most likely due to overestimation of respiration rate. We therefore adjusted the respiration component of the bioenergetics model to obtain a good fit to the observed consumption in our laboratory tanks. The adjusted model predicted the consumption in the laboratory and the field without any detectable bias. Until a detailed lake whitefish respiration study can be conducted, we recommend application of our adjusted version of the Wisconsin generalized coregonid bioenergetics model to lake whitefish populations in the field.

  10. Design and production of an atlas for diplomacy in Zimbabwe and the Southern African Development Community

    USGS Publications Warehouse

    Crawford, T.W.; Larson, Charles R.; Granneman, Brian J.; Evans, Gayla A.; Gacke, Carolyn; Pearson, D.R.

    1999-01-01

    An atlas of Zimbabwe and the Southern African Development Community was designed and produced for use by American diplomats in Zimbabwe. Two copies of the bound atlas are used by the Embassy of the United States of America (U.S. Embassy) and the Mission of the U.S. Agency for International Development (USAID) in Harare, Zimbabwe, to orient visitors and discuss matters of diplomacy and development in Zimbabwe and the Southern African Development Community. The atlas contains maps derived from satellite images showing features of the physical geography of Southern Africa and Zimbabwe and plastic overlays showing rivers and lakes and manmade features, such as major roads, railroads, and cities. The atlas is an important tool that American diplomats can use to orient participants in discussions of the environment and to develop agreements for management of the environment in Zimbabwe and Southern Africa.

  11. Dead Sea pollen provides new insights into the paleoenvironment of the southern Levant during MIS 6-5

    NASA Astrophysics Data System (ADS)

    Chen, Chunzhu; Litt, Thomas

    2018-05-01

    The paleoclimate of the southern Levant, especially during the last interglacial (LIG), is still under debate. Reliable paleovegetation information for this period, as independent evidence to the paleoenvironment, was still missing. In this study, we present a high-resolution pollen record encompassing 147-89 ka from the Dead Sea deep drilling core 5017-1A. The sediment profile is marked by alternations of laminated marl deposits and thick massive halite, indicating lake-level fluctuations. The pollen record suggests that steppe and desert components predominated in the Dead Sea surroundings during the whole investigated interval. The late penultimate glacial (147.3-130.9 ka) and early last glacial (115.5-89.1 ka) were cool and relatively dry, with sub-humid conditions confined to the mountains that sustained moderate amounts of deciduous oaks. Prior to the LIG optimum, a prevalence of desert components and a concomitant increase in frost-sensitive pistachio trees demonstrate the occurrence of an arid initial warming phase (130.9-124.2 ka). The LIG optimum (124.2 ka-115.5 ka) was initiated by an abrupt grass expansion that was followed by a rapid spread of woodlands in the mountains due to increased moisture availability. The remarkable sclerophyllous expansion points to a strong seasonal moisture deficit. These results contradict previous Dead Sea lake-level investigations that suggested pluvial glacials and a warm, dry LIG in the southern Levant. Prominent discrepancies between vegetation and Dead Sea lake stands are also registered at 128-115 ka, and the potential causes are discussed. In particular, while the pollen spectra mirror increased effective moisture during the LIG optimum, the massive halite deposition is indicative of an extremely low lake level. Given that the climate amelioration triggered the migration of early modern humans to the southern Levant, we speculate that the diverse ecosystems in the region provided great potential for their residence

  12. Late Holocene lake-level fluctuations in Walker Lake, Nevada, USA

    USGS Publications Warehouse

    Yuan, F.; Linsley, B.K.; Howe, S.S.; Lund, S.P.; McGeehin, J.P.

    2006-01-01

    Walker Lake, a hydrologically closed, saline, and alkaline lake, is situated along the western margin of the Great Basin in Nevada of the western United States. Analyses of the magnetic susceptibility (??), total inorganic carbon (TIC), and oxygen isotopic composition (??18O) of carbonate sediments including ostracode shells (Limnocythere ceriotuberosa) from Walker Lake allow us to extend the sediment record of lake-level fluctuations back to 2700??years B.P. There are approximately five major stages over the course of the late Holocene hydrologic evolution in Walker Lake: an early lowstand (> 2400??years B.P.), a lake-filling period (??? 2400 to ??? 1000??years B.P.), a lake-level lowering period during the Medieval Warm Period (MWP) (??? 1000 to ??? 600??years B.P.), a relatively wet period (??? 600 to ??? 100??years B.P.), and the anthropogenically induced lake-level lowering period (< 100??years B.P.). The most pronounced lowstand of Walker Lake occurred at ??? 2400??years B.P., as indicated by the relatively high values of ??18O. This is generally in agreement with the previous lower resolution paleoclimate results from Walker Lake, but contrasts with the sediment records from adjacent Pyramid Lake and Siesta Lake. The pronounced lowstand suggests that the Walker River that fills Walker Lake may have partially diverted into the Carson Sink through the Adrian paleochannel between 2700 to 1400??years B.P. ?? 2006 Elsevier B.V. All rights reserved.

  13. Recent glacier retreat and lake formation in the Querecocha watershed, Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    López Moreno, J.; Valero-Garces, B.; Revuelto, J.; Azorín-Molina, C.; Bazo, J.; Cochachin, A.; Fontaneda, S.; Mark, B. G.

    2013-12-01

    watershed during the analysed period. There is strong evidence that the Southern Oscillation Index drives much of the reported variability in glacier and lakes evolution in the studied area.

  14. Bathythermal habitat use by strains of Great Lakes- and Finger Lakes-origin lake trout in Lake Huron after a change in prey fish abundance and composition

    USGS Publications Warehouse

    Bergstedt, Roger A.; Argyle, Ray L.; Krueger, Charles C.; Taylor, William W.

    2012-01-01

    A study conducted in Lake Huron during October 1998–June 2001 found that strains of Great Lakes-origin (GLO) lake trout Salvelinus namaycush occupied significantly higher temperatures than did Finger Lakes-origin (FLO; New York) lake trout based on data from archival (or data storage) telemetry tags that recorded only temperature. During 2002 and 2003, we implanted archival tags that recorded depth as well as temperature in GLO and FLO lake trout in Lake Huron. Data subsequently recorded by those tags spanned 2002–2005. Based on those data, we examined whether temperatures and depths occupied by GLO and FLO lake trout differed during 2002–2005. Temperatures occupied during those years were also compared with occupied temperatures reported for 1998–2001, before a substantial decline in prey fish biomass. Temperatures occupied by GLO lake trout were again significantly higher than those occupied by FLO lake trout. This result supports the conclusion of the previous study. The GLO lake trout also occupied significantly shallower depths than FLO lake trout. In 2002–2005, both GLO and FLO lake trout occupied significantly lower temperatures than they did in 1998–2001. Aside from the sharp decline in prey fish biomass between study periods, the formerly abundant pelagic alewife Alosa pseudoharengus virtually disappeared and the demersal round goby Neogobius melanostomus invaded the lake and became locally abundant. The lower temperatures occupied by lake trout in Lake Huron during 2002–2005 may be attributable to changes in the composition of the prey fish community, food scarcity (i.e., a retreat to cooler water could increase conversion efficiency), or both.

  15. Chemours Pompton Lakes Works Site, Pompton Lakes, NJ

    EPA Pesticide Factsheets

    E.I. DuPont De Nemours & Company is located at 2000 Cannonball Road, Pompton Lakes, New Jersey. The DuPont Pompton Lakes Works site (DuPont) occupies approximately 570 acres of land in Pompton Lakes and Wanaque.

  16. A Four Lake Latitudinal Comparison Along Coastal Southern to Central California: A Late-Holocene Perspective on the Western US Precipitation Dipole.

    NASA Astrophysics Data System (ADS)

    Kirby, M.; Nichols, K. E.; Ramezan, R.; Palermo, J. A.; Hiner, C.; Bonuso, N.; Patterson, W. P.; Silveira, E.

    2016-12-01

    One of the dominant hydroclimatic features of the western United States is the winter season precipitation dipole. The dipole is characterized by a N-S antiphased precipitation regime presently centered on 40° N latitude (Cayan et al., 1998; Dettinger et al., 1998; Wise, 2010). For example, the position of the dipole dictates where CA receives its winter precipitation; thus, it is critical to understand the dipole from a paleoperspective, which at present is poorly known. Here, we present four lake sites spanning 33°-36° N latitude along coastal CA. These sites include: Lake Elsinore, Crystal Lake, Zaca Lake, and Abbott Lake. All four of these sites are located south of the dipole's average historic (since 1950 AD) latitude. The predominant hydroclimatic indicator is similar for each basin (i.e., grain size); although, several other indicators are used for independent verification/assessment of the grain size interpretation. Notably, these lakes contain varied age control, which limits site-to-site correlation without consideration of age model dependence. Following a Bayesian framework, MCMC algorithms in conjuction with radiocarbon dating will be used to estimate timestamps of sediment deposits with a degree of statistical uncertainty. Samples from the posterior distribution will be used to correlate hydroclimatic features between sites. Included in this analysis are tree ring records from the region to assess the similarities and differences as recorded in annually resolved tree ring drought reconstructions and decadally resolved lake sediment hydroclimatic records. Finally, the four sites are assessed in the context of tropical and north Pacific SST forcing.

  17. Second-Year Results from the Circumarctic Lakes Observation Network (CALON) Project

    NASA Astrophysics Data System (ADS)

    Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Eisner, W. R.; Frey, K. E.; Gaglioti, B.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2013-12-01

    temperatures in small shallow lakes and more southern latitudes. Most lakes are well-mixed and largely isothermal, with short periods of thermal stratification occurring in deeper lakes during calm, sunny periods. Over the ice-free season, the majority of the available energy from net radiation goes into evaporation, followed by sensible heat flux and warming of bottom sediments. Thermal bands of MODIS and Landsat imagery were fused using a spatio-temporal cokriging method to generate daily surface temperature estimates at Landsat spatial resolution. The close correspondence between satellite-derived and in situ measured near-surface lake temperature suggests that this approach yields viable results. Biogeochemical and inorganic geochemical constituents measured include dissolved greenhouse gas concentrations (CO2, CH4, and N2O), inorganic N, DON and DOC, alkalinity, chlorophyll-a, major ions, and CDOM. The greatest difference in the dissolved CH4:CO2 ratio in summer was longitudinal, with several lakes in western Alaskan Arctic exhibiting CH4 concentrations hundreds of times more supersaturated than air. Stable isotope analyses of CH4 (δ13C and δ2H) show that several of these lakes have natural gas methane sources. Methane concentrations under ice (April) were several thousand times higher than in open-water conditions (August). Data collected during this 4-year project are archived at A-CADIS.

  18. Progress and plans of a remote sensing program for the International Field Year for the Great Lakes (IFYGL)

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Wagner, T. W. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. ERTS-1 coverage of the 32,000 square mile Lake Ontario Basin is being used to study short term and seasonal changes which affect many aspects of water problems in the Great Lakes. As part of the International Field Year for the Great Lakes (IFYGL), a coordinated, synoptic study of the Lake Ontario Basin, processed ERTS-1 imagery will contribute to the data base of synchronized observations being made by investigators from many U.S. and Canadian government agencies and universities. The first set of ERTS data has been received and will be processed shortly for parameters of hydrological and limnological significance such as land use, terrain features, and water quality. When complete, nine ERTS-1 frames recorded during a substantially clear period will provide coverage of the entire Basin. Seven frames show all but a small portion of the southern and eastern end of the Basin. Many drainage basin characteristics are clearly identifiable on the imagery.

  19. Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project

    NASA Astrophysics Data System (ADS)

    Fritz, Sherilyn C.; Baker, Paul A.; Seltzer, Geoffrey O.; Ballantyne, Ashley; Tapia, Pedro; Cheng, Hai; Edwards, R. Lawrence

    2007-11-01

    A 136-m-long drill core of sediments was recovered from tropical high-altitude Lake Titicaca, Bolivia-Peru, enabling a reconstruction of past climate that spans four cycles of regional glacial advance and retreat and that is estimated to extend continuously over the last 370,000 yr. Within the errors of the age model, the periods of regional glacial advance and retreat are concordant respectively with global glacial and interglacial stages. Periods of ice advance in the southern tropical Andes generally were periods of positive water balance, as evidenced by deeper and fresher conditions in Lake Titicaca. Conversely, reduced glaciation occurred during periods of negative water balance and shallow closed-basin conditions in the lake. The apparent coincidence of positive water balance of Lake Titicaca and glacial growth in the adjacent Andes with Northern Hemisphere ice sheet expansion implies that regional water balance and glacial mass balance are strongly influenced by global-scale temperature changes, as well as by precessional forcing of the South American summer monsoon.

  20. [Hydrogen and oxygen isotopes of lake water and geothermal spring water in arid area of south Tibet].

    PubMed

    Xiao, Ke; Shen, Li-Cheng; Wang, Peng

    2014-08-01

    The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of delta18O and deltaD in Daggyaima lake water (-17.0 per thousand for delta18O and -138. 6 per thousand for deltaD), Langcuo lake water (-6.4 per thousand for delta18O and -87.4 per thousand for deltaD) and Dagejia geothermal water (-19.2 per thousand for delta18 and -158.2 per thousand for deltaD) all showed negative delta18O and deltaD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes.

  1. Porewater salinity reveals past lake-level changes in Lake Van, the Earth's largest soda lake.

    PubMed

    Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Kwiecien, Olga; Randlett, Marie-Ève; Stockhecke, Mona; Unwin, Katie; Anselmetti, Flavio S; Beer, Jürg; Haug, Gerald H; Schubert, Carsten J; Sturm, Mike; Kipfer, Rolf

    2017-03-22

    In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about -200 m at about 30 ka BP during the last ice age.

  2. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds.

    PubMed

    Byappanahalli, Muruleedhara N; Sawdey, Richard; Ishii, Satoshi; Shively, Dawn A; Ferguson, John A; Whitman, Richard L; Sadowsky, Michael J

    2009-02-01

    The bacterial pathogens Shigella, Salmonella, Campylobacter, and shiga toxin-producing E. coli (STEC) were recently found to be associated with Cladophora growing in southern Lake Michigan. Preliminary results indicated that the Salmonella strains associated with Cladophora were genetically identical to each other. However, because of the small sample size (n=37 isolates) and a lack of information on spatial-temporal relationships, the nature of the association between Cladophora and Salmonella remained speculative. In this study, we investigated the population structure and genetic relatedness of a large number of Cladophora-borne Salmonella isolates from Lake Michigan (n=133), as well as those isolated from stream and lake water (n=31), aquatic plants (n=8), and beach sands and sediments (n=8) from adjacent watersheds. Salmonella isolates were collected during 2005-2007 between May and August from Lake Michigan beachsheds in Wisconsin, Illinois, and Indiana. The genetic relatedness of Salmonella isolates was examined by using the horizontal, fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting technique. While the Salmonella isolates associated with Cladophora exhibited a high degree of genetic relatedness (>or=92% similarity), the isolates were not all genetically identical. Spatial and temporal relationships were evident in the populations examined, with tight clustering of the isolates both by year and location. These findings suggest that the relationship between Salmonella and Cladophora is likely casual and is related to input sources (e.g. wastewater, runoff, birds) and the predominant Salmonella genotype surviving in the environment during a given season. Our studies indicate that Cladophora is likely an important reservoir for Salmonella and other enteric bacterial pathogens in Lake Michigan beachsheds, which in turn may influence nearshore water quality.

  3. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds

    USGS Publications Warehouse

    Byappanahalli, M.N.; Sawdey, R.; Ishii, S.; Shively, D.A.; Ferguson, J.A.; Whitman, R.L.; Sadowsky, M.J.

    2009-01-01

    The bacterial pathogens Shigella, Salmonella, Campylobacter, and shiga toxin-producing E. coli (STEC) were recently found to be associated with Cladophora growing in southern Lake Michigan. Preliminary results indicated that the Salmonella strains associated with Cladophora were genetically identical to each other. However, because of the small sample size (n = 37 isolates) and a lack of information on spatial-temporal relationships, the nature of the association between Cladophora and Salmonella remained speculative. In this study, we investigated the population structure and genetic relatedness of a large number of Cladophora-borne Salmonella isolates from Lake Michigan (n = 133), as well as those isolated from stream and lake water (n = 31), aquatic plants (n = 8), and beach sands and sediments (n = 8) from adjacent watersheds. Salmonella isolates were collected during 2005-2007 between May and August from Lake Michigan beachsheds in Wisconsin, Illinois, and Indiana. The genetic relatedness of Salmonella isolates was examined by using the horizontal, fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting technique. While the Salmonella isolates associated with Cladophora exhibited a high degree of genetic relatedness (???92% similarity), the isolates were not all genetically identical. Spatial and temporal relationships were evident in the populations examined, with tight clustering of the isolates both by year and location. These findings suggest that the relationship between Salmonella and Cladophora is likely casual and is related to input sources (e.g. wastewater, runoff, birds) and the predominant Salmonella genotype surviving in the environment during a given season. Our studies indicate that Cladophora is likely an important reservoir for Salmonella and other enteric bacterial pathogens in Lake Michigan beachsheds, which in turn may influence nearshore water quality. ?? 2008 Elsevier Ltd.

  4. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  5. Diameter growth models using FIA data from the Northeastern, Southern, and North Central Research Stations

    Treesearch

    Veronica C. Lessard; Ronald E. McRoberts; Margaret R. Holdaway

    2000-01-01

    Nonlinear, individual-tree, distance-independent annual diameter growth models are presented for species in two ecoregions defined by R.G. Bailey in the northern Lake States and in parts of the central and southern regions of the U.S. The models were calibrated using Forest Inventory and Analysis (FIA) data from undisturbed plots on land classified as timberland across...

  6. MX Siting Investigation. Geotechnical Evaluation. Aggregate Resources Study, Lake Valley, Nevada.

    DTIC Science & Technology

    1981-02-27

    KILOMETERS Mx SITING INVESTIGATION IGURE IPARTMENT OF TNt Ag1 FORCE - GMO 2 -_ONiO NATIONAL INC. FlU It FN-TR-37-f 5 2. Aerial and ground reconnaissance...fine, or crushed rock) and potential construction use ( con - crete and/or road base). TOM. FN-TR -37-f 6 2.0 STUDY APPROACH 2.1 EXISTING DATA Collection...2 the southwestern part of Lake Valley. This formation also pro - vides Class I crushed rock aggregate material in the southern White Rock Mountains

  7. Direct and indirect effects of vertical mixing, nutrients and ultraviolet radiation on the bacterioplankton metabolism in high-mountain lakes from southern Europe

    NASA Astrophysics Data System (ADS)

    Durán, C.; Medina-Sánchez, J. M.; Herrera, G.; Villar-Argaiz, M.; Villafañe, V. E.; Helbling, E. W.; Carrillo, P.

    2014-05-01

    As a consequence of global change, modifications in the interaction among abiotic stressors on aquatic ecosystems have been predicted. Among other factors, UVR transparency, nutrient inputs and shallower epilimnetic layers could alter the trophic links in the microbial food web. Currently, there are some evidences of higher sensitiveness of aquatic microbial organisms to UVR in opaque lakes. Our aim was to assess the interactive direct and indirect effects of UVR (through the excretion of organic carbon - EOC - by algae), mixing regime and nutrient input on bacterial metabolism. We performed in situ short-term experiments under the following treatments: full sunlight (UVR + PAR, >280 nm) vs. UVR exclusion (PAR only, >400 nm); ambient vs. nutrient addition (phosphorus (P; 30 μg PL-1) and nitrogen (N; up to final N : P molar ratio of 31)); and static vs. mixed regime. The experiments were conducted in three high-mountain lakes of Spain: Enol [LE], Las Yeguas [LY] and La Caldera [LC] which had contrasting UVR transparency characteristics (opaque (LE) vs. clear lakes (LY and LC)). Under ambient nutrient conditions and static regimes, UVR exerted a stimulatory effect on heterotrophic bacterial production (HBP) in the opaque lake but not in the clear ones. Under UVR, vertical mixing and nutrient addition HBP values were lower than under the static and ambient nutrient conditions, and the stimulatory effect that UVR exerted on HBP in the opaque lake disappeared. By contrast, vertical mixing and nutrient addition increased HBP values in the clear lakes, highlighting for a photoinhibitory effect of UVR on HBP. Mixed regime and nutrient addition resulted in negative effects of UVR on HBP more in the opaque than in the clear lakes. Moreover, in the opaque lake, bacterial respiration (BR) increased and EOC did not support the bacterial carbon demand (BCD). In contrast, bacterial metabolic costs did not increase in the clear lakes and the increased nutrient availability even

  8. Relative contribution of hemlock pollen to the phosphorus loading of the clear lake ecosystem near Minden, Ontario

    Treesearch

    Hugh H. Banks; James E. Nighswander

    2000-01-01

    The forest stand composition within the terrestrial watershed of a small lake on the southern Precambrian Shield was assessed. Total phosphorus inputs from the terrestrial watersheds were obtained for two sub inflows by measuring flow rates and phosphorus concentrations. Direct aerial phosphorus fallout was estimated from nearby sites sampled by the Ontario Ministry of...

  9. Historical accumulation and ecological risk assessment of heavy metals in sediments of a drinking water lake.

    PubMed

    Wang, Guoqiang; Hu, Xinqi; Zhu, Yi; Jiang, Hong; Wang, Hongqi

    2018-06-21

    Heavy metal contamination in sediments is progressively being recognized as a challenging problem in large parts of the developing world, particularly in Asian countries. A drinking water lake in Yunnan-Guizhou plateau, China named Hongfeng Lake was selected as the research target. Forty surface sediment samples and 4 sediment cores were collected to reveal the accumulation of heavy metals in the sediments of the lake. The mean concentrations of Cr, Cu, Pb, Cd, As, and Hg in surface sediments were 81.67, 45.61, 29.78, 0.53, 22.71, and 0.25 mg/kg, respectively, which exceeded the background levels of sediment 1.1~3.3 times. The calculation of geoaccumulation (I geo ) and potential ecological risk (PER) index analysis were preformed, and the results showed a considerable risk for Cd and Hg on the whole. Spatially, the northern part showed a higher risk than the southern part and tributaries of the lake, and a moderate risk in the overall sediment of the lake. The historical level of heavy metals in Hongfeng Lake was traced by vertical sediments study and it was dated back approximately 35 years. The EF trends of a feature sampling site HF8 showed strong temporal variations, and peaked in the year 1995. After that, the EFs exhibited a declining trend, which reflects productive environmental protection and management by the local government. For the Hongfeng Lake, a typical lake with heavy metal-contaminated sediments, the in-situ remediation technique could be a suitable method for its remediation.

  10. The hydrogeochemical and isotopic investigations of the two-layered Shiraz aquifer in the northwest of Maharlou saline lake, south of Iran

    NASA Astrophysics Data System (ADS)

    Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr

    2018-03-01

    Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.

  11. Phylogenetic status of brown trout Salmo trutta populations in five rivers from the southern Caspian Sea and two inland lake basins, Iran: a morphogenetic approach.

    PubMed

    Hashemzadeh Segherloo, I; Farahmand, H; Abdoli, A; Bernatchez, L; Primmer, C R; Swatdipong, A; Karami, M; Khalili, B

    2012-10-01

    Interrelationships, origin and phylogenetic affinities of brown trout Salmo trutta populations from the southern Caspian Sea basin, Orumieh and Namak Lake basins in Iran were analysed from complete mtDNA control region sequences, 12 microsatellite loci and morphological characters. Among 129 specimens from six populations, seven haplotypes were observed. Based on mtDNA haplotype data, the Orumieh and southern Caspian populations did not differ significantly, but the Namak basin-Karaj population presented a unique haplotype closely related to the haplotypes of the other populations (0·1% Kimura two-parameter, K2P divergence). All Iranian haplotypes clustered as a distinct group within the Danube phylogenetic grouping, with an average K2P distance of 0·41% relative to other Danubian haplotypes. The Karaj haplotype in the Namak basin was related to a haplotype (Da26) formerly identified in the Tigris basin in Turkey, to a Salmo trutta oxianus haplotype from the Aral Sea basin, and to haplotype Da1a with two mutational steps, as well as to other Iranian haplotypes with one to two mutational steps, which may indicate a centre of origin in the Caspian basin. In contrast to results of the mtDNA analysis, more pronounced differentiation was observed among the populations studied in the morphological and microsatellite DNA data, except for the two populations from the Orumieh basin, which were similar, possibly due to anthropogenic causes. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  12. Contribution of PAHs from coal-tar pavement sealcoat and other sources to 40 U.S. lakes

    USGS Publications Warehouse

    Van Metre, Peter C.; Mahler, Barbara J.

    2010-01-01

    Contamination of urban lakes and streams by polycyclic aromatic hydrocarbons (PAHs) has increased in the United States during the past 40 years. We evaluated sources of PAHs in post-1990 sediments in cores from 40 lakes in urban areas across the United States using a contaminant mass-balance receptor model and including as a potential source coal-tar-based (CT) sealcoat, a recently recognized source of urban PAH. Other PAH sources considered included several coal- and vehicle-related sources, wood combustion, and fuel-oil combustion. The four best modeling scenarios all indicate CT sealcoat is the largest PAH source when averaged across all 40 lakes, contributing about one-half of PAH in sediment, followed by vehicle-related sources and coal combustion. PAH concentrations in the lakes were highly correlated with PAH loading from CT sealcoat (Spearman's rho=0.98), and the mean proportional PAH profile for the 40 lakes was highly correlated with the PAH profile for dust from CT-sealed pavement (r=0.95). PAH concentrations and mass and fractional loading from CT sealcoat were significantly greater in the central and eastern United States than in the western United States, reflecting regional differences in use of different sealcoat product types. The model was used to calculate temporal trends in PAH source contributions during the last 40 to 100 years to eight of the 40 lakes. In seven of the lakes, CT sealcoat has been the largest source of PAHs since the 1960s, and in six of those lakes PAH trends are upward. Traffic is the largest source to the eighth lake, located in southern California where use of CT sealcoat is rare.

  13. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    USGS Publications Warehouse

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  14. The role of geophysical modeling of glacio-isostasy in paleohydrological reconstructions of the glacial Great Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.A.; Ehlers, T.A.

    The volume and chronology of late-glacial and postglacial lakes of the Great Lakes region were controlled by the elevation of their outlets which moved vertically relative to the geoid because of glacial isostasy. The shorelines of these lakes and their drainages are now tilted and deformed so that correlation of these discontinuous features usually requires an estimate of the amount of vertical movement throughout the region. The authors approach is to use a computer model of a spherical viscoelastic and self-gravitating earth to simulate earth deformation as the Laurentide ice sheet advanced into its glacial maximum and subsequently retreated. Becausemore » neither the earth's viscosity structure nor the ice sheet thickness are well known, they have used a range of likely ice/earth models each resulting in predicted shoreline deformation that can be compared directly to observations. Results indicate that many of the shorelines as well as present rates of tilt determined from lake-level gauges can be understood through the modeling. The chronology of the various lakes is also explained through predictions of the time-dependent changes in the elevation of the various outlets relative to each other. In contrast to common interpretations none of their results indicate that the southern part of the Great Lakes region is now or ever has been geodynamically stable''.« less

  15. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    USGS Publications Warehouse

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  16. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    USGS Publications Warehouse

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  17. Future volcanic lake research: revealing secrets from poorly studied lakes

    NASA Astrophysics Data System (ADS)

    Rouwet, D.; Tassi, F.; Mora-Amador, R. A.

    2012-04-01

    Volcanic lake research boosted after the 1986 Lake Nyos lethal gas burst, a limnic rather than volcanic event. This led to the formation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990's. At Lake Nyos, a degassing pipe is functional since 2001, and two additional pipes were added in 2011, aimed to prevent further limnic eruption events. There are between 150 and 200 volcanic lakes on Earth. Some acidic crater lakes topping active magmatic-hydrothermal systems are monitored continuously or discontinuously. Such detailed studies have shown their usefulness in volcanic surveillance (e.g. Ruapehu, Yugama-Kusatsu-Shiran, Poás). Others are "Nyos-type" lakes, with possible gas accumulation in bottom waters and thus potentially hazardous. "Nyos-type" lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term gas build-up and thus higher potential risk. In temperate climates, such lakes tend to turn over in winter (monomictic), and thus liberating its gas charge yearly. We line out research strategies for the different types of lakes. We believe a complementary, multi-disciplinary approach (geochemistry, geophysics, limnology, biology, statistics, etc.) will lead to new insights and ideas, which can be the base for future following-up and monitoring. After 25 years of pioneering studies on rather few lakes, the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazard, based on probabilistic approaches.

  18. Gas exchange on Mono Lake and Crowley Lake, California

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik; Ledwell, James R.; Broecker, Wallace S.

    1987-01-01

    Gas exchange coefficients (k) have been determined for freshwater Crowley Lake and saline Mono Lake through the use of a man-made purposefully injected gas, SF6. The concentration decreased from an initial value of 40 to 4 pmol/L for Mono Lake and from 20 to 1 pmol/L for Crowley lake over a period of 6 wks. Wind-speed (u) records from anemometers on the shore of each lake made it possible to determine the relationship between k and u. The average u and k values for the experiment were identical for the two lakes, despite the large chemical differences. It is estimated that, for the u values observed over Mono Lake from July to December 1984, the exchange of CO2 occurred 2.5 times faster than without chemical enhancement. This is a factor of 4 lower than needed to explain the high invasion rate of C-14 produced by nuclear bomb tests.

  19. [Distribution and Pollution Assessment of Nutrient and Heavy Metals in Surface Sediments from Lake Gehu in Southern Jiangsu Province, China].

    PubMed

    Xiong, Chun-hui; Zhagn, Rui-lei; Wu, Xiao-dong; Feng, Li-hui; Wang, Li-qing

    2016-03-15

    This study investigated the horizontal distribution characteristics of nutrients and heavy metals (Zn, As, Cr, Cu, Ni, Pb, Cd and Hg) in January, 2014, and assessed the potential ecological risk of Lake Gehu. It was found that the average contents of TN and TP were 2,207.94 and 708.62 mg · kg⁻¹ respectively. TN and TP contents of the sediments at the centre were significantly highei than those in the north, while the TN content in the south was also significantly higher than that in the north of Lake Gehu. The average contents of Zn, As, Cr, Cu, Ni, Pb, Cd, Hg were 766.59, 350.66, 307.98, 59.54, 122.67, 168.97, 2.34, 0.41 mg · kg⁻¹, respectively. The content of Cu at the centre was significantly higher than that in the north, and the Zn content at the centre was significantly greater than that in the south of Lake Gehu, however the difference in the content of other heavy metals at these three areas was not significant. Furthermore, the obvious correlation between elements and granularity was only found in the aspect of TP, Cu and Hg. The comprehensive pollution index (PI) indicated that the Lake Gehu was heavily polluted, especially the centre and south areas. The potential ecological risk index (RI) showed that Cd, As and Hg had caused serious pollution in Lake Gehu while the other heavy metals only induced slight or medium pollution. According to the contribution of Cd, As and Hg to RI, it was concluded that the sediments in Lake Gehu were at a serious potential ecological risk.

  20. Geologic framework and hydrogeologic characteristics of the outcrops of the Edwards and Trinity aquifers, Medina Lake area, Texas

    USGS Publications Warehouse

    Small, Ted A.; Lambert, Rebecca B.

    1998-01-01

    The Trinity aquifer, which crops out in the northern part of the Medina Lake area and underlies the Edwards aquifer in the southern part, is much less permeable and productive than the Edwards aquifer. Where the Trinity aquifer underlies the Edwards, the Trinity acts as a lower confining unit on the Edwards.

  1. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  2. Guide to the littoral zone vascular flora of Carolina bay lakes (U.S.A.)

    PubMed Central

    Howell, Nathan; Braham, Richard R

    2016-01-01

    Abstract Background Carolina bays are elliptic, directionally aligned basins of disputed origin that occur on the Atlantic Coastal Plain from the Delmarva Peninsula to southern Georgia. In southeastern North Carolina, several large, natural, lacustrine systems (i.e., Carolina bay lakes) exist within the geomorphological features known as Carolina bays. Within the current distribution of Carolina bays, Bladen and Columbus counties (North Carolina) contain the only known examples of Carolina bay lakes. The Carolina bay lakes can be split into two major divisions, the “Bladen Lakes Group” which is characterized as being relatively unproductive (dystrophic – oligotrophic), and Lake Waccamaw, which stands alone in Columbus County and is known for its high productivity and species richness. Although there have been several studies conducted on these unique lentic systems, none have documented the flora comprehensively. New information Over the 2013−2014 growing seasons, the littoral zone flora of Carolina bay lakes was surveyed and vouchered. Literature reviews and herbarium crawls complemented this fieldwork to produce an inventory of the vascular plant species. This survey detected 205 taxa (species/subspecies and varieties) in 136 genera and 80 vascular plant families. Thirty-one species (15.2%) are of conservation concern. Lake Waccamaw exhibited the highest species richness with 145 catalogued taxa and 26 species of conservation concern. Across all sites, the Cyperaceae (25 spp.), Poaceae (21 spp.), Asteraceae (13 spp.), Ericaceae (8 spp.), Juncaceae (8 spp.), and Lentibulariaceae (6 spp.) were the six most species-rich vascular plant families encountered. A guide to the littoral zone flora of Carolina bay lakes is presented herein, including dichotomous keys, species accounts (including abundance, habitat, phenology, and exsiccatae), as well as images of living species and vouchered specimens. PMID:27350764

  3. Reconnaissance data on lakes in the Alpine Lakes Wilderness Area, Washington

    USGS Publications Warehouse

    Dethier, David P.; Heller, Paul L.; Safioles, Sally A.

    1979-01-01

    Sixty lakes in the Alpine Lakes Wilderness Area have been sampled from rubber rafts or helicopter to obtain information on their physical setting and on present water-quality conditions. The lakes are located near the crest of the Cascade Range in Chelan and King Counties, Washington. Basic data from these lakes will be useful for planners concerned with lake and wilderness management, and of interest to hikers and other recreationists who use the lakes.

  4. An emerging c. 100 ka record of climate change from Baldwin Lake, San Bernardino Mountains, CA, U.S

    NASA Astrophysics Data System (ADS)

    Glover, K. C.; MacDonald, G. M.; Kirby, M. E.; Rhodes, E. J.

    2013-12-01

    Big Bear Valley (elevation ~2060 m) is situated in the east-west trending San Bernardino Mountains of California, close to the transition between Mediterranean and Mojave Desert ecoregions. Baldwin Lake is the older of two basins occupying the valley, with a sediment sequence that demonstrates a high rate of deposition and an apparent synchronicity with marine isotope and global paleoclimate records. Chronology has been established with both AMS radiocarbon and infra-red stimulated luminescence (IRSL) dates. This offers the potential to further investigate paleoclimate change over the past c. 100 ka for Southern California at a high temporal resolution. Baldwin Lake's basal date of 95.9 +/- 6.7 ka is derived from IRSL on feldspar grains, placing the onset of sedimentation into the modern basin during cool MIS 5(b). Phases of high productivity in the lake, including values of up to 35% total organic matter and marl facies, correlate with warm events MIS 5(a) and MIS 3. Glacial stages are largely defined by inorganic sedimentation, though depositional regime varies between high-energy MIS 5(b) and MIS 4, and a relatively quiescent MIS 2. Future work will reconstruct vegetation change prior to MIS 1, in order to elucidate millennial-scale changes in alpine groundcover and forests in Southern California during these globally pervasive Stages.

  5. The glacial/deglacial history of sedimentation in Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Rosenbaum, J.G.; Heil, C.W.

    2009-01-01

    Bear Lake, in northeastern Utah and southern Idaho, lies in a large valley formed by an active half-graben. Bear River, the largest river in the Great Basin, enters Bear Lake Valley ???15 km north of the lake. Two 4-m-long cores provide a lake sediment record extending back ???26 cal k.y. The penetrated section can be divided into a lower unit composed of quartz-rich clastic sediments and an upper unit composed largely of endogenic carbonate. Data from modern fluvial sediments provide the basis for interpreting changes in provenance of detrital material in the lake cores. Sediments from small streams draining elevated topography on the east and west sides of the lake are characterized by abundant dolomite, high magnetic susceptibility (MS) related to eolian magnetite, and low values of hard isothermal remanent magnetization (HIRM, indicative of hematite content). In contrast, sediments from the headwaters of the Bear River in the Uinta Mountains lack carbonate and have high HIRM and low MS. Sediments from lower reaches of the Bear River contain calcite but little dolomite and have low values of MS and HIRM. These contrasts in catchment properties allow interpretation of the following sequence from variations in properties of the lake sediment: (1) ca. 26 cal ka-onset of glaciation; (2) ca. 26-20 cal ka-quasicyclical, millennial-scale variations in the concentrations of hematite-rich glacial fl our derived from the Uinta Mountains, and dolomite- and magnetite-rich material derived from the local Bear Lake catchment (reflecting variations in glacial extent); (3) ca. 20-19 cal ka-maximum content of glacial fl our; (4) ca. 19-17 cal ka-constant content of Bear River sediment but declining content of glacial fl our from the Uinta Mountains; (5) ca. 17-15.5 cal ka-decline in Bear River sediment and increase in content of sediment from the local catchment; and (6) ca. 15.5-14.5 cal ka-increase in content of endogenic calcite at the expense of detrital material. The onset

  6. 75 FR 20920 - Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ...-AA00 Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ AGENCY: Coast Guard, DHS. ACTION: Temporary... of Lake Havasu on the Colorado River in Lake Havasu City, Arizona for the Lake Havasu Grand Prix... established in support of the Lake Havasu Grand Prix, a marine event that includes participating vessels...

  7. Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California

    NASA Astrophysics Data System (ADS)

    Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.

    2009-12-01

    Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty

  8. Flood of June 1972: Seneca Lake Inlet at Watkins Glen, New York

    USGS Publications Warehouse

    Wagner, L.A.; Hamecher, P.H.

    1972-01-01

    In June 1972, tropical storm Agnes caused sever flooding in Pennsylvania and southern New York. The flood, on many major streams were the highest known since the river valleys were settled. Maximum discharges were as much as twice the discharge of a 50-year flood. In southern New York, large areas in Corning, Elmire, Wellsville, Salamanca, and in many smaller communities were inundated to depths of several feet. Levels of all of the Finger Lakes were higher than any previously recorded, and extensive flooding of lakeside properties resulted. The extent of flooding shown on the map was delineated by the U.S. Geological Survey from earlier photography and limited field survey. The investigation was conducted in cooperation with the State of New York and the U.S. Army Corps of Engineers.

  9. An overview of the Southern Nevada Agency Partnership science and research synthesis: Chapter 1 in The Southern Nevada Agency Partnership science and research synthesis: science to support land management in southern Nevada

    USGS Publications Warehouse

    Chambers, Jeanne C.; Brooks, Matthew L.; Turner, Kent; Raish, Carol B.; Ostoja, Steven M.

    2013-01-01

    Maintaining and restoring the diverse ecosystems and resources that occur in southern Nevada in the face of rapid socio-economic and ecological change presents numerous challenged to Federal land managers. Rapid population growth since the 1980s, the land uses associated with that growth, and the interactions of those uses with the generally dry and highly variable climate result in numerous stresses to ecosystems, species, and cultural resource. In addition, climate models predict that the rate of temperature increase and, thus, changes in ecological processes, will be highest for ecosystems like the Mojave Desert. The Southern Nevada Agency Partnership (SNAP; http:www.SNAP.gov) was established in 1999 to address common issues pertaining to public lands in southern Nevada. Partners include the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, and USDA Forest Service and they work with each other, the local community, and other partners. SNAP agencies manage more than seven million acres of public lands in southern Nevada (95% of the land area). Federal land includes two national recreation areas, two national conservation area, four national wildlife refuges, 18 congressionally designated wilderness areas, five wilderness study areas, and 22 areas of critical environmental concern. The partnership's activities are mainly centered in Southern Nevada's Clark County (fig. 1.1), but lands managed by SNAP partner agencies also include portions of Lake Mead National Recreation Area in Mohave County, Arizona, U.S. Fish and Wildlife Service, and USDA Forest Service-managed lands in Lincoln and Nye Counties, Nevada, and all lands and activities managed by the Southern Nevada District Office of the Bureau of Land Management. These lands encompass nine distinct ecosystem types (fig. 1.2), support multiple species of management concern an 17 listed species, and are rich in cultural and historic resource. This introductory executive summary

  10. Freshwater control of ice-rafted debris in the last glacial period at Mono Lake, California, USA

    NASA Astrophysics Data System (ADS)

    Zimmerman, Susan R. H.; Pearl, Crystal; Hemming, Sidney R.; Tamulonis, Kathryn; Hemming, N. Gary; Searle, Stephanie Y.

    2011-09-01

    The type section silts of the late Pleistocene Wilson Creek Formation at Mono Lake contain outsized clasts, dominantly well-rounded pebbles and cobbles of Sierran lithologies. Lithic grains > 425 μm show a similar pattern of variability as the > 10 mm clasts visible in the type section, with decreasing absolute abundance in southern and eastern outcrops. The largest concentrations of ice-rafted debris (IRD) occur at 67-57 ka and 46-32 ka, with strong millennial-scale variability, while little IRD is found during the last glacial maximum and deglaciation. Stratigraphic evidence for high lake level during high IRD intervals, and a lack of geomorphic evidence for coincidence of lake and glaciers, strongly suggests that rafting was by shore ice rather than icebergs. Correspondence of carbonate flux and IRD implies that both were mainly controlled by freshwater input, rather than disparate non-climatic controls. Conversely, the lack of IRD during the last glacial maximum and deglacial highstands may relate to secondary controls such as perennial ice cover or sediment supply. High IRD at Mono Lake corresponds to low glacial flour flux in Owens Lake, both correlative to high warm-season insolation. High-resolution, extra-basinal correlation of the millennial peaks awaits greatly improved age models for both records.

  11. Lead isotope ratios in six lake sediment cores from Japan Archipelago: Historical record of trans-boundary pollution sources.

    PubMed

    Hosono, Takahiro; Alvarez, Kelly; Kuwae, Michinobu

    2016-07-15

    Sediment cores from six lakes situated from north to south on the Japanese Archipelago were collected during 2009-2010 to investigate the hypothesis that deposition of lead (Pb) was coming from East Asia (including China, South Korea and eastern part of Russia). Accumulation rates and ages of the lake sediment were estimated by the (210)Pb constant rate of supply model and (137)Cs inputs to reconstruct the historical trends of Pb accumulation. Cores from four lakes located in the north and central Japan, showed clear evidence of Pb pollution with a change in the (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios in the recent sediment as compared to the deeper sediment. Among the six studied lakes, significant inputs of anthropogenic lead emissions were observed at Lake Mikazuki (north Hokkaido in north Japan), Lake Chokai (north of Honshu), and Lake Mikuriga (central part of Honshu). Pb isotopic comparison of collected core sediment and previously reported data for wet precipitation and aerosols from different Asian regions indicate that, before 1900, Pb accumulated in these three lakes was not affected by trans-boundary sources. Lake Mikazuki started to receive Pb emissions from Russia in early 1900s, and during the last two decades, this lake has been affected by trans-boundary Pb pollution from northern China. Lake Chokai has received Pb pollutant from northern China since early 1900s until 2009, whereas for the Lake Mikuriga the major Pb contaminant was transported from southern China during the past 100years. The results of our study demonstrate that Japan Archipelago has received trans-boundary Pb emissions from different parts of East Asian region depending on location, and the major source region has changed historically. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Summer temperatures inferred from varved lacustrine sediment at Iceberg Lake in southcentral Alaska

    NASA Astrophysics Data System (ADS)

    Diedrich, K.; Loso, M. G.

    2010-12-01

    Iceberg Lake, a glacier-dammed lake in southcentral Alaska, has been previously shown to record over 1,500 years of continuous laminated lacustrine sediment deposition. Because previous work was based on examination of subaerial outcrops exposed by stream incision in the bed of the jökulhlaup-drained lake, the length of the record was limited by the extent of the outcrops. In August of 2010, we returned to core the remote lake; our goal was recovery of the complete sedimentary record in the lake, extending perhaps back to the onset of late Holocene glaciation—around 3-5 ka in this region. We used a Vibarcorer system to recover sediment cores from two locations, one near the site of previous work and another at the distal end of the lake. The longest cores recovered were 5.2 meters and 6.2 meters at the proximal and distal sites, respectively. Based on the average lamination thickness established previously at the proximal site (4.7 mm), these cores should each represent over 1000 years of sediment accumulation, and likely much longer at the distal site, where laminations are expected to be thinner. Having established previously that the lake’s laminations are annual varves and that they are positively correlated with summer (melt-season) temperatures, our analysis is focused on documenting a long time-series of annual sediment accumulation and summer-layer particle size. Both measurements will be used to interpret the history of summer temperatures. The cores may also provide sedimentary evidence of the timing of advances/retreats of nearby glaciers, including the Tana Glacier and Bagley Icefield, helping to clarify the poorly-constrained timing of neoglaciation in Southern Alaska. The paleoclimate record produced at Iceberg Lake will be included in the Arctic System Science 8ka project

  13. White Lake AOC

    EPA Pesticide Factsheets

    White Lake is in Muskegon County along the eastern shore of Lake Michigan. It was named an Area of Concern on the Great Lakes under the Great Lakes Water Quality Agreement of 1987 and delisted in 2014.

  14. Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?

    NASA Astrophysics Data System (ADS)

    Brahney, Janice; Mahowald, Natalie; Ward, Daniel S.; Ballantyne, Ashley P.; Neff, Jason C.

    2015-09-01

    Anthropogenic activities have significantly altered atmospheric chemistry and changed the global mobility of key macronutrients. Here we show that contemporary global patterns in nitrogen (N) and phosphorus (P) emissions drive large hemispheric variation in precipitation chemistry. These global patterns of nutrient emission and deposition (N:P) are in turn closely reflected in the water chemistry of naturally oligotrophic lakes (r2 = 0.81, p < 0.0001). Observed increases in anthropogenic N deposition play a role in nutrient concentrations (r2 = 0.20, p < 0.05) however, atmospheric deposition of P appears to be major contributor to this pattern (r2 = 0.65, p < 0.0001). Atmospheric simulations indicate a global increase in P deposition by 1.4 times the preindustrial rate largely due to increased dust and biomass burning emissions. Although changes in the mass flux of global P deposition are smaller than for N, the impacts on primary productivity may be greater because, on average, one unit of increased P deposition has 16 times the influence of one unit of N deposition. These stoichiometric considerations, combined with the evidence presented here, suggest that increases in P deposition may be a major driver of alpine Lake trophic status, particularly in the Southern Hemisphere. These results underscore the need for the broader scientific community to consider the impact of atmospheric phosphorus deposition on the water quality of naturally oligotrophic lakes.

  15. Fish status survey of Nordic lakes: effects of acidification, eutrophication and stocking activity on present fish species composition.

    PubMed

    Tammi, Jouni; Appelberg, Magnus; Beier, Ulrika; Hesthagen, Trygve; Lappalainen, Antti; Rask, Martti

    2003-03-01

    The status of fish populations in 3821 lakes in Norway, Sweden and Finland was assessed in 1995-1997. The survey lakes were chosen by stratified random sampling from all (126 482) Fennoscandian lakes > or = 0.04 km2. The water chemistry of the lakes was analyzed and information on fish status was obtained by a postal inquiry. Fish population losses were most frequent in the most highly acidified region of southern Norway and least common in eastern Fennoscandia. According to the inquiry results, the number of lost stocks of brown trout (Salmo trutta), roach (Rutilus rutilus), Arctic char (Salvelinus alpinus) and perch (Perca fluviatilis) was estimated to exceed 10000. The number of stocks of these species potentially affected by the low alkalinity of lake water was estimated to exceed 11000. About 3300 lakes showed high total phosphorus (> 25 microg L(-1)) and cyprinid dominance in eastern Fennoscandia, notably southwestern Finland. This survey did not reveal any extinction of fish species due to eutrophication. One-third of the lakes had been artificially stocked with at least one new species, most often brown trout, whitefish (Coregonus lavaretus s.l.), Arctic char, rainbow trout (Oncorhynchus mykiss), pike-perch (Stizostedion lucioperca), grayling (Thymallus thymallus), pike (Esox lucius), bream (Abramis brama), tench (Tinca tinca) and European minnow (Phoxinus phoxinus). The number of artificially manipulated stocks of these species in Fennoscandian lakes was estimated to exceed 52000. Hence, the number of fish species occurring in Nordic lakes has recently been changed more by stockings than by losses of fish species through environmental changes such as acidification.

  16. Nest success of snowy plovers (Charadrius nivosus) in the Southern high plains of Texas

    USGS Publications Warehouse

    Saalfeld, S.T.; Conway, Warren C.; Haukos, D.A.; Johnson, W.P.

    2011-01-01

    Snowy Plovers (Charadrius nivosus) nesting on edges of saline lakes within the Southern High Plains (SHP) of Texas are threatened by habitat degradation due to reduced artesian spring flow, making many saline lakes unsuitable for nesting and migrating shorebirds. Factors influencing nest success were evaluated, current nest success estimates in the SHP of Texas were compared to estimates obtained ten years prior, and causes and timing of nest failures determined. Overall, 215 nests were monitored from three saline lakes in 20082009, with nest success estimates from Program MARK ranging from 7-33% ( x??= 22%). The leading causes of nest failures were attributed to predation (40%) and weather (36%). Nest success was negatively influenced by number of plants within 707-cm 2 plot, positively influenced by percent surface water availability, and at one saline lake, negatively influenced by day during the nesting season (i.e., nest success declined later in the nesting season). When compared to estimates ten years prior (19981999), mean nest success has declined by 31%. If nesting Snowy Plovers continue to experience increased predation rates, decreased hydrological integrity, and habitat alterations, populations will continue to decline throughout this region.

  17. Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America

    USGS Publications Warehouse

    Boyle, T.P.; Caziani, S.M.; Waltermire, R.G.

    2004-01-01

    The diverse set of wetlands in southern altiplano of South America supports a number of endemic and migratory waterbirds. These species include endangered endemic flamingos and shorebirds that nest in North America and winter in the altiplano. This research developed maps from nine Landsat Thematic Mapper (TM) images (254,300 km2) to provide an inventory of aquatic waterbird habitats. Image processing software was used to produce a map with a classification of wetlands according to the habitat requirements of different types of waterbirds. A hierarchical procedure was used to, first, isolate the bodies of water within the TM image; second, execute an unsupervised classification on the subsetted image to produce 300 signatures of cover types, which were further subdivided as necessary. Third, each of the classifications was examined in the light of field data and personal experience for relevance to the determination of the various habitat types. Finally, the signatures were applied to the entire image and other adjacent images to yield a map depicting the location of the various waterbird habitats in the southern altiplano. The data sets referenced with a global positioning system receiver were used to test the classification system. Multivariate analysis of the bird communities censused at each lake by individual habitats indicated a salinity gradient, and then the depth of the water separated the birds. Multivariate analysis of the chemical and physical data from the lakes showed that the variation in lakes were significantly associated with difference in depth, transparency, latitude, elevation, and pH. The presence of gravel bottoms was also one of the qualities distinguishing a group of lakes. This information will be directly useful to the Flamingo Census Project and serve as an element for risk assessment for future development.

  18. Hydroclimate variability and regional atmospheric circulation over the past 1,350 years reconstructed from Lake Ohau, New Zealand

    NASA Astrophysics Data System (ADS)

    Roop, H. A.; Levy, R. H.; Vandergoes, M.; Dunbar, G. B.; Howarth, J. D.; Lorrey, A.; Phipps, S. J.

    2016-12-01

    Comprehensive understanding of natural climate-system dynamics requires high-resolution paleoclimate records extending beyond the instrumental period. This is particularly the case for the sparsely-instrumented Southern Hemisphere mid-latitudes, where the timing and amplitude of regional and hemispheric-scale climatic events are poorly constrained. Here we present a 1,350-year record of hydroclimatic variability and regional circulation derived from an annually laminated sediment record from Lake Ohau, South Island, New Zealand (44.23°S, 169.85°E). The climate of New Zealand is influenced by climatological patterns originating in both the tropics (e.g. El-Niño-Southern Oscillation, Interdecadal Pacific Oscillation) and the Antarctic (Southern Annular Mode, SAM). Utilizing the annually resolved Lake Ohau hydroclimate record in combination with a tree-ring record of summer temperature from Oroko Swamp, New Zealand (Cook et al., 2002), we generate a circulation index for the Western South Island of New Zealand. This index utilizes the temperature and precipitation anomalies defined by the Regional Climate Regime Classification scheme for New Zealand to assign synoptic scale circulation patterns to 25-year intervals from 900-2000 AD. This circulation index shows significant periods of change, most notably 835 - 985 AD when northerly airflow dominated and from 1385 - 1710 AD when strong southerly airflow persisted. Comparisons with regional SAM and ENSO reconstructions show that dry, warm conditions at Lake Ohau are consistently associated with strengthened tropical teleconnections to New Zealand and a positive SAM, while cold and wet conditions are driven by increased southerly airflow and negative phase SAM. A persistent negative SAM dominates the Little Ice Age (LIA; 1385-1710 AD) interval in the Western South Island. This same period coincides with the Northern Hemisphere LIA.

  19. In-lake Modeling Recommendation Report for Lake Champlain TMDL

    EPA Pesticide Factsheets

    This report describes the recommended modeling approach for the in-lake modeling component of the Lake Champlain TMDL project. The report was prepared by Tetra Tech, with input from the Lake Champlain modeling workgroup. (TetraTech, 2012b)

  20. Under trees and water at Crater Lake National Park, Oregon

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Wayne, Chris

    2012-01-01

    Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-ft-high volcano known as Mount Mazama. The caldera-forming, or climactic, eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000-year history of volcanic activity similar to other large Cascade volcanoes such as Mounts Shasta, Hood, and Rainier. Since the caldera formed, many smaller, less violent eruptions occurred at volcanic vents below Crater Lake's surface, including Wizard Island. A survey of Crater Lake National Park with airborne LiDAR (Light Detection And Ranging) resulted in a digital elevation map of the ground surface beneath the forest canopy. The average resolution is 1.6 laser returns per square meter yielding vertical and horizontal accuracies of ±5 cm. The map of the floor beneath the surface of the 1,947-ft-deep (593-m-deep) Crater Lake was developed from a multibeam sonar bathymetric survey and was added to the map to provide a continuous view of the landscape from the highest peak on Mount Scott to the deepest part of Crater Lake. Four enlarged shaded-relief views provide a sampling of features that illustrate the resolution of the LiDAR survey and illustrate its utility in revealing volcanic landforms and subtle features of the climactic eruption deposits. LiDAR's high precision and ability to "see" through the forest canopy reveal features that may not be easily recognized-even when walked over-because their full extent is hidden by vegetation, such as the 1-m-tall arcuate scarp near Castle Creek.

  1. Water quality of Lake Austin and Town Lake, Austin, Texas

    USGS Publications Warehouse

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Water-quality data collected from Lake Austin and Town Lake, following runoff, generally were not adequate to fully determine the effects of runoff on the lakes. Data collection should not to be limited to fixed-station sampling following runoff, and both lakes need to be sampled simultaneously as soon as possible following significant precipitation.

  2. Bathymetry of Bonnie Doone Lake, Kornbow Lake, Mintz Pond, and Glenville Lake, Cumberland County, North Carolina, 1996-98

    USGS Publications Warehouse

    Giorgino, M.J.; Strain, R.E.

    1999-01-01

    Bathymetric surveys were conducted at four water-supply impoundments of Little Cross Creek in Cumberland County, North Carolina. The surveys were conducted in April 1996 at Mintz Pond and Glenville Lake, and in January 1998 at Bonnie Doone Lake and Kornbow Lake. The resulting bathymetric maps are the first to cover the entire range in depth for these reservoirs and provide a framework for future evaluations of bathymetry and storage capacity. Bathymetric maps were constructed from depth and position data collected at each reservoir. A boat-mounted, research-grade fathometer was used to record water depths with a vertical accuracy of 0.1 foot. At Mintz Pond and Glenville Lake, position was measured by using a wide-band laser tracking system interfaced with a total station survey instrument. This positioning method required multiple land-based control points to be established and was hampered by line-of-sight restrictions between the control points and the boat. At Bonnie Doone Lake and Kornbow Lake, a global positioning system was used to collect differentially corrected location data. This positioning method enabled more rapid data collection, eliminated the need for land-based control points, and provided improved data coverage. Spillway elevations range from 172.8 feet above mean sea level at Bonnie Doone Lake to 113.1 feet at Glenville Lake. Surface area and storage volume were computed for each reservoir and were related to water-surface elevations at 1-foot intervals. The combined surface acreage of the four Little Cross Creek reservoirs at their full-pool elevations is 120.97 acres, consisting of 21.20 acres at Bonnie Doone Lake, 47.09 acres at Kornbow Lake, 15.56 acres at Mintz Pond, and 37.12 acres at Glenville Lake. The four reservoirs have a combined usable storage capacity of 674.91 acre-feet, which is the sum of 127.93 acre-feet in Bonnie Doone Lake, 320.62 acre-feet in Kornbow Lake, 53.25 acre-feet in Mintz Pond, and 173.11 acre-feet in Glenville Lake.

  3. 3D simulation of the influence of internal mixing dynamics on the propagation of river plumes in Lake Constance

    NASA Astrophysics Data System (ADS)

    Pflugbeil, Thomas; Pöschke, Franziska; Noffke, Anna; Winde, Vera; Wolf, Thomas

    2017-04-01

    Lake Constance is one of most important drinking water resources in southern Germany. Furthermore, the lake and its catchment is a meaningful natural habitat as well as economical and cultural area. In this context, sustainable development and conservation of the lake ecosystem and drinking water quality is of high importance. However, anthropogenic pressures (e.g. waste water, land use, industry in catchment area) on the lake itself and its external inflows are high. The project "SeeZeichen" (ReWaM-project cluster by BMBF, funding number 02WRM1365) is investigating different immission pathways (groundwater, river, superficial inputs) and their impact on the water quality of Lake Constance. The investigation includes the direct inflow areas as well as the lake-wide context. The present simulation study investigates the mixing dynamics of Lake Constance and its impacts on river inflows and vice versa. It considers different seasonal (mixing and stratification periods), hydrological (flood events, average and low discharge) and transport conditions (sediment loads). The simulations are focused on two rivers: The River Alpenrhein delivers about 60 % of water and material input into Lake Constance. The River Schussen was chosen since it is highly anthropogenic influenced. For this purpose, a high-resolution three-dimensional hydrodynamic model of the Lake Constance is set up with Delft3D-Flow model system. The model is calibrated and validated with long term data sets of water levels, discharges and temperatures. The model results will be analysed for residence times of river water within the lake and particle distributions to evaluate potential impacts of river plume water constituents on the general water quality of the lake.

  4. Rise and Demise of a Southern Laramide Hinterland Plateau, US-Mexico Border Region

    NASA Astrophysics Data System (ADS)

    Lawton, T. F.; Clinkscales, C. A.; Jennings, G. R.

    2011-12-01

    New U-Pb geochronology and stratigraphic data sets suggest that an elevated, altiplano-like plateau existed in the backarc region of what is now southern Arizona and southern New Mexico during Late Cretaceous through Paleogene (~28 Ma) time, and indicate that the Laramide province of the US was thus flanked on both its western and southern sides by hinterland plateaus. The Laramide stratigraphic record of southwestern New Mexico and southeastern Arizona formed during a short time period spanning 75-70 Ma, as indicated by numerous, newly-dated, interbedded tuff beds. The Laramide deposits (Fort Crittenden Formation of Arizona, Ringbone and Skunk Ranch Formations of Arizona, Cabullona Group of Sonora), which contain growth strata developed adjacent to steep thrust faults, accumulated in lake and lake-margin fan-delta and alluvial-fan settings on the northern margin of a volcanic arc whose main magmatic locus lay in northeastern Sonora and northwestern Chihuahua. By the end of basin development, the arc had migrated northward to occupy the former depocenters, such that intermediate volcanic rocks interfinger with and overlie the lacustrine deposits, and subvolcanic plutons, one with an age of 69 Ma, intrude and cross-cut thrust faults. Laramide strata unconformably overlie lowermost Upper Cretaceous (~97 Ma) strata and contractional structures are unconformably truncated beneath Oligocene (~33 Ma) volcaniclastic rocks. Detritus derived from the Cretaceous arc is abundant in Campanian fluvial strata (Kaiparowits Formation and Mesaverde Group) of the southern Colorado Plateau. East-west normal faults with as much as 3 km of displacement and a related array of conjugate NW- and NE-striking normal faults, many of these previously interpreted as reverse and transcurrent faults, are widespread in ranges of southern New Mexico and southeastern Arizona. These faults post-date Laramide contractional structures and are in turn cut by Neogene N-S normal faults. The east

  5. Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents.

    PubMed

    Alahuhta, Janne; Virtala, Antti; Hjort, Jan; Ecke, Frauke; Johnson, Lucinda B; Sass, Laura; Heino, Jani

    2017-05-01

    Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.

  6. Lake trout in the Great Lakes: Basin-wide stock collapse and binational restoration

    USGS Publications Warehouse

    Hansen, Michael J.; Taylor, William W.; Ferreri, C. Paola

    1999-01-01

    The lake trout (Salvelinus namaycush) was important to the human settlement of each of the Great Lakes, and underwent catastrophic collapses in each lake in the nineteenth and twentieth centuries. The timing of lake trout stock collapses were different in each lake, as were the causes of the collapses, and have been the subject of much scientific inquiry and debate. The purpose of this chapter is to summarize and review pertinent information relating historical changes in Great Lakes lake trout stocks, binational efforts to restore those stocks, and progress toward stock restoration. This presentation attempts to generalize patterns across the Great Lakes, rather than to focus within each lake. Lake specific analyses have been used to understand lake specific causes and effects, but there is continuing debate about some of these causes and effects. A basinwide review may suggest mechanisms for observed changes that are not evident by lake specific analysis.

  7. Climate-Induced Mortality of Siberian Pine and Fir in the Lake Baikal Watershed, Siberia

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Im, Sergei T.; Petrova, IIya A.; Golyukov, Alexei S.; Ranson, Kenneth J.; Yagunov, Mikhail N.

    2016-01-01

    Siberian pine (Pinus sibirica) and fir (Abies sibirica) (so called "dark needle conifers", DNC) showed decreased radial growth increment within the Lake Baikal watershed since the 1980s with increasing mortality recorded since the year 2000. Tree ring width was strongly correlated with vapor pressure deficit, aridity and root zone moisture. Water stress from droughts made trees more susceptible to insect attacks causing mortality in about 10% of DNC stands within the Lake Baikal watershed. Within Siberia DNC mortality increased in the southern part of the DNC range. Biogeographically, tree mortality was located within the DNC - forest-steppes transition. Tree mortality was significantly correlated with drought and soil moisture anomalies. Within the interior of the DNC range mortality occurred within relief features with high water stress risk (i.e., steep convex south facing slopes with shallow well-drained soils). In general, DNC mortality in Siberia was induced by increased aridity and severe drought (inciting factors) in synergy with biotic attacks (contributing factor). In future climate scenarios with predicted increase in aridity DNC could be eliminated from the southern part of its current range and will be replaced by drought-resistant conifers and broadleaf species (e.g., Larix sibirica, Pinus silvestris, and Betula pubescence).

  8. Climate-Induced Mortality of Siberian Pine and Fir in the Lake Baikal Watershed, Siberia

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Ilya A.; Golyukov, Alexei S.; Ranson, Kenneth J.; Yagunov, Mikhail N.

    2016-01-01

    Siberian pine (Pinus sibirica) and fir (Abies sibirica) (so called ''dark needle conifers", DNC) showed decreased radial growth increment within the Lake Baikal watershed since the 1980s with increasing mortality recorded since the year 2000. Tree ring width was strongly correlated with vapor pressure deficit, aridity and root zone moisture. Water stress from droughts made trees more susceptible to insect attacks causing mortality in about 10% of DNC stands within the Lake Baikal watershed. Within Siberia DNC mortality increased in the southern part of the DNC range. Biogeographically, tree mortality was located within the DNC - forest-steppes transition. Tree mortality was significantly correlated with drought and soil moisture anomalies. Within the interior of the DNC range mortality occurred within relief features with high water stress risk (i.e., steep convex south facing slopes with shallow well-drained soils). In general, DNC mortality in Siberia was induced by increased aridity and severe drought (inciting factors) in synergy with biotic attacks (contributing factor). In future climate scenarios with predicted increase in aridity DNC could be eliminated from the southern part of its current range and will be replaced by drought-resistant conifers and broadleaf species (e.g., Larix sibirica, Pinus silvestris, and Betula pubescence).

  9. Characteristics of Lake Chad Level Variability and Links to ENSO, Precipitation, and River Discharge

    PubMed Central

    Demoz, Belay; Gebremariam, Sium

    2014-01-01

    This study used trend, correlation, and wavelet analysis to characterize Lake Chad (LC) level fluctuations, river discharge, El Niño Southern Oscillation (ENSO), and precipitation regimes and their interrelationships. Linear correlation results indicate a negative association between ENSO and LC level, river discharge and precipitation. Trend analysis shows increasing precipitation in the Lake Chad Basin (LCB) but decreasing LC level. The mode of interannual variability in LC level, rainfall, and ENSO analyzed using wavelet analysis is dominated by 3-4-year periods. Results show that variability in ENSO could explain only 31% and 13% of variations in LC level at Kindjeria and precipitation in the northern LCB, respectively. The wavelet transform coherency (WTC) between LC level of the southern pool at Kalom and ENSO is statistically significant at the 95% confidence level and phase-locked, implying a cause-and-effect association. These strong coherencies coincide with the La Niña years with the exception of 1997-1998 El Niño events. The WTC shows strong covariance between increasing precipitation and LC level in the northern pool at a 2- to 4-year band and 3- to 4-year band localized from 1996 to 2010. Implications for water resource planning and management are discussed. PMID:25538946

  10. Hydrological Response and Complex Impact Pathways of the 2015/2016 El Niño in Eastern and Southern Africa

    NASA Astrophysics Data System (ADS)

    Siderius, C.; Gannon, K. E.; Ndiyoi, M.; Opere, A.; Batisani, N.; Olago, D.; Pardoe, J.; Conway, D.

    2018-01-01

    The 2015/2016 El Niño has been classified as one of the three most severe on record. El Niño teleconnections are commonly associated with droughts in southern Africa and high precipitation in eastern Africa. Despite their relatively frequent occurrence, evidence for their hydrological effects and impacts beyond agriculture is limited. We examine the hydrological response and impact pathways of the 2015/2016 El Niño in eastern and southern Africa, focusing on Botswana, Kenya, and Zambia. We use in situ and remotely sensed time series of precipitation, river flow, and lake levels complemented by qualitative insights from interviews with key organizations in each country about awareness, impacts, and responses. Our results show that drought conditions prevailed in large parts of southern Africa, reducing runoff and contributing to unusually low lake levels in Botswana and Zambia. Key informants characterized this El Niño through record high temperatures and water supply disruption in Botswana and through hydroelectric load shedding in Zambia. Warnings of flood risk in Kenya were pronounced, but the El Niño teleconnection did not materialize as expected in 2015/2016. Extreme precipitation was limited and caused localized impacts. The hydrological impacts in southern Africa were severe and complex, strongly exacerbated by dry antecedent conditions, recent changes in exposure and sensitivity and management decisions. Improved understanding of hydrological responses and the complexity of differing impact pathways can support design of more adaptive, region-specific management strategies.

  11. Lake Baikal isotope records of Holocene Central Asian precipitation

    NASA Astrophysics Data System (ADS)

    Swann, George E. A.; Mackay, Anson W.; Vologina, Elena; Jones, Matthew D.; Panizzo, Virginia N.; Leng, Melanie J.; Sloane, Hilary J.; Snelling, Andrea M.; Sturm, Michael

    2018-06-01

    Climate models currently provide conflicting predictions of future climate change across Central Asia. With concern over the potential for a change in water availability to impact communities and ecosystems across the region, an understanding of historical trends in precipitation is required to aid model development and assess the vulnerability of the region to future changes in the hydroclimate. Here we present a record from Lake Baikal, located in the southern Siberian region of central Asia close to the Mongolian border, which demonstrates a relationship between the oxygen isotope composition of diatom silica (δ18Odiatom) and precipitation to the region over the 20th and 21st Century. From this, we suggest that annual rates of precipitation in recent times are at their lowest for the past 10,000 years and identify significant long-term variations in precipitation throughout the early to late Holocene interval. Based on comparisons to other regional records, these trends are suggested to reflect conditions across the wider Central Asian region around Lake Baikal and highlight the potential for further changes in precipitation with future climate change.

  12. GloboLakes: A global observatory of lake responses to environmental change.

    NASA Astrophysics Data System (ADS)

    Groom, Steve; Tyler, Andrew; Hunter, Peter; Spyrakos, Evangelos; Martinez-Vicente, Victor; Merchant, Chris; Cutler, Mark; Rowan, John; Dawson, Terry; Maberly, Stephen; Cavalho, Laurence; Elliot, Alex; Thackery, Stephen; Miller, Claire; Scott, Marian

    2014-05-01

    The world's freshwater ecosystems are vital components of the global biosphere, yet are vulnerable to climate and other human-induced change. There is increasing recognition that lakes play an important role in global biogeochemical cycling and provide key ecosystem services. However, our understanding of how lakes respond to environmental change at a global scale, and how this impacts on their status and function, is hampered by limited information on their chemical, physical and ecological condition. There are estimated to be over 300 million lakes globally, of which over 17,000 are greater than 10 km2 in surface area. These numbers have limited the systematic study of lake ecosystems. GloboLakes is a five-year UK research programme investigating the state of lakes and their response to climatic and other environmental drivers of change. It will establish a satellite-based observatory with archive and near-real time data processing to produce a time series of observed biogeochemical parameters and lake temperature for over 1000 lakes globally. This will be supported by linked ancillary data on climate and catchment land-use. The ability to monitor a large number of lakes consistently at high frequency and globally will facilitate a paradigm shift in our understanding of how lakes respond to environmental change at different spatial and temporal scales. A key requirement is to validate satellite retrieval algorithms and test the time-series of resulting lake properties such as chlorophyll-a by comparison with in situ data. To support the former extensive bio-optical and constituent data were taken in year 1 of the project in a number of UK lakes with a variety of trophic states. Furthermore, for wider validation activities GloboLakes has established the LIMNADES initiative to create a centralised database of ground bio-optical measurements of worldwide lakes through voluntary cooperation across the international scientific community. This presentation will

  13. Epiphytic invertebrate patterns in coastal lakes along a gradient of salinity and water exchange with the sea

    NASA Astrophysics Data System (ADS)

    Obolewski, Krystian; Bąkowska, Martyna

    2017-10-01

    The species composition and abundance of epiphytic fauna inhabiting common reed (Phragmites australis (Cav.) Trin. ex Steud.) was performed in five coastal lakes in Słowiński National Park (southern Baltic coast in northern Poland). The lakes represent a salinity gradient (from freshwater to β-oligohaline waters) and four types of coastal lakes: (1) lagoon, L (Lake Łebsko, seawater enters it permanently); (2) coastal lake with periodically brackish water, CLB (Lake Gardno); (3) freshwater costal lake, CLF (Lake Smołdzińskie); and (4) coastal dune lakes, CLD (Dołgie Wielkie and Dołgie Małe). Using statistical ordination techniques, we found that the structure of epiphytic fauna (microinvertebrates and macroinvertebrates) is determined primarily by hydrological connectivity (water exchange) with the sea. Canonical Correspondence Analysis, coupled with variance partitioning, showed that hydrological connectivity accounted for 24% of the variation in the invertebrate community, followed by physico-chemical (19%) and trophic (8%) factors. Our results indicate that the assemblages of Ciliata-libera and Cnidaria are characteristic for L (β-oligohaline), Rotifera, Suctoria, Chaetogaster sp., Gastropoda and Trichoptera are characteristic for CLB (limnetic/β-oligohaline), but no taxonomic groups are characteristic for CLF and CLD (both limnetic). The index of multivariate dispersion showed a decreasing trend with the increasing lake isolation from the open sea, except for CLD. However, in terms of the structure of epiphytic fauna, Multi-Response Permutation Procedures showed that CLD significantly differed only from CLB. Our results suggest that the identified characteristic taxonomic groups of plant-associated macroinvertebrates have a high potential to be used as bioindicators of salinity and water exchange with the sea, due to their sensitivity to environmental stress.

  14. Pollen-based evidence of extreme drought during the last Glacial (32.6-9.0 ka) in coastal southern California

    NASA Astrophysics Data System (ADS)

    Heusser, Linda E.; Kirby, Matthew E.; Nichols, Jonathan E.

    2015-10-01

    High resolution pollen analyses of sediment core LEDC10-1 from Lake Elsinore yield the first well-dated, terrestrial record of sub-centennial-scale ecologic change in coastal southern California between ˜32 and 9 ka. In the Lake Elsinore watershed, the initial, mesic montane conifer forests dominated by Pinus, and Cupressaceae with trace amounts of Abies and Picea were replaced by a sequence of multiple, extended severe mega-droughts between ˜27.5 and ˜25.5 ka, in which halophytic and xerophytic herbs and shrubs occupied an ephemeral lake. This prolonged and extended dry interval, which corresponds with warm waters offshore, imply strengthening of the North Pacific High and persistent below-average winter precipitation. The subsequent, contrasting monotonic occurrence of montane conifers reflects little variation in cold, mesic climate until ˜15 ka. Postglacial development of Quercus woodland and chaparral mark the return to more xeric, warmer conditions at this time. A brief reversal at ˜13.1-˜12.1 ka, as reflected by an expansion of Pinus, is correlative with the Younger Dryas and interrupts development of warm, postglacial climate. Subsequent gradual expansion of xeric vegetation post - Younger Dryas denotes the establishment of a winter hydroclimate regime in coastal southern California that is more similar to modern conditions. Pollen-based reconstructions of temperature and precipitation at Lake Elsinore are generally correlative with pollen-based paleoclimatic reconstructions and foraminifera-based sea surface temperatures from Santa Barbara Basin in marine core ODP 893. The conspicuous absence of the ˜27.5-˜25.5 ka glacial "mega-drought" in the Santa Barbara Basin pollen record highlights the sensitivity of Lake Elsinore to hydroclimate change, and thus, the importance of this new record that indicates that mega-drought can occur during the full glacial when climatic boundary conditions and forcings differed substantially from the present.

  15. Characterization Report to Support the Phytoremediation Efforts for Southern Sector, Savannah River Site, Aiken, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome, K.M.

    1999-06-08

    In February, 1999, we conducted a small-scale characterization effort to support future remediation decisions for the Southern Sector of the upper Three Runs watershed. The study concentrated on groundwater adjacent to the seepline at Tim's Branch above and below Steed's Pond. the primary compounds of interest were the volatile organic contaminants (VOCs), trichlorethylene (TCE) and tetrachloroethylene (PCE). Due to the site topography and hydrogeology, samples collected north of Steed's Pond were from the M-Area (water table) aquifer; while those locations south of Steed's Pond provided samples from the Lost Lake aquifer. Results of the study suggest that the leading edgemore » of the A/M Area plume in the Lost Lake aquifer may be approaching the seepline at Tim's Branch below Steed's Pond, south of Road 2. Neither TCE nor PCE were detected int he samples targeting the seepline of the water table aquifer. The concentrations found for both TCE and PCE associated with the Lost Lake aquifer outcrop region were slightly above the detection limit of the analytical instrument used. The findings of this study are consistent with the conceptual model for the organic contaminant plume in the A/M Area of the Savannah River Site (SRS) -- the plume in the Southern Sector is known to be depth discrete and primarily in the Lost lake Aquifer. The sites with detected VOCs are in the most upstream accessible reaches of Tim's Branch where water from the Lost Lake Aquifer crops out. Additional characterization efforts should be directed near this region to confirm the results and to support future planning for the dilute-distal portions of the A/M Area plume. These data, combined with existing groundwater plume data and future characterization results will provide key information to estimate potential contaminant flux to the seepline and to assess the effectiveness of potential clean-up activities such as phytoremediation.« less

  16. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.

    PubMed

    Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B

    2017-10-01

    Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often

  17. Multi-Decadal to Millennial Scale Holocene Hydrologic Variation in the Southern Hemisphere Tropics of South America

    NASA Astrophysics Data System (ADS)

    Ekdahl, E. J.; Fritz, S. C.; Baker, P. A.; Burns, S. J.; Coley, K.; Rigsby, C. A.

    2005-12-01

    Numerous sites in the Northern Hemisphere show multi-decadal to millennial scale climate variation during the Holocene, many of which have been correlated with changes in atmospheric radiocarbon production or with changes in North Atlantic oceanic circulation. The manifestation of such climate variability in the hydrology of the Southern Hemisphere tropics of South America is unclear, because of the limited number of records at suitably high resolution. In the Lake Titicaca drainage basin of Bolivia and Peru, high-resolution lacustrine records reveal the overall pattern of Holocene lake-level change, the influence of precessional forcing of the South American Summer Monsoon, and the effects of high-frequency climate variability in records of lake productivity and lake ecology. Precessional forcing of regional precipitation is evident in the Lake Titicaca basin as a massive (ca. 85 m) mid-Holocene decline in lake level beginning about 7800 cal yr BP and a subsequent rise in lake level after 4000 cal yr BP. Here we show that multi-decadal to millennial-scale climate variability, superimposed upon the envelope of change at orbital time scales, is similar in timing and pattern to the ice-rafted debris record of Holocene Bond events in the North Atlantic. A high-resolution carbon isotopic record from Lake Titicaca that spans the entire Holocene suggests that cold intervals of Holocene Bond events are periods of increased precipitation, thus indicating an anti-phasing of precipitation variation on the Altiplano relative to the Northern Hemisphere tropics. A similar pattern of variation is also evident in high-resolution (2-30 yr spacing) diatom and geochemical records that span the last 7000 yr from two smaller lakes, Lagos Umayo and Lagunillas, in the Lake Titicaca drainage basin.

  18. 78 FR 17097 - Safety Zone; Lake Havasu Triathlon; Lake Havasu City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ...-AA00 Safety Zone; Lake Havasu Triathlon; Lake Havasu City, AZ AGENCY: Coast Guard, DHS. ACTION... waters of Lake Havasu and the London Bridge Channel for the Lake Havasu Triathlon. This temporary safety... participants. The waterside swim course consists of 1500 meters in Lake Havasu and the London Bridge Channel...

  19. Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation

    NASA Astrophysics Data System (ADS)

    Baker, P. A.; Fritz, S. C.; Garland, J.; Ekdahl, E.

    2005-10-01

    A growing number of sites in the Northern Hemisphere show centennial- to millennial-scale climate variation that has been correlated with change in solar variability or with change in North Atlantic circulation. However, it is unclear how (or whether) these oscillations in the climate system are manifest in the Southern Hemisphere because of a lack of sites with suitably high sampling resolution. In this paper, we reconstruct the lake-level history of Lake Titicaca, using the carbon isotopic content of sedimentary organic matter, to evaluate centennial- to millennial-scale precipitation variation and its phasing relative to sites in the Northern Hemisphere. The pattern and timing of lake-level change in Lake Titicaca is similar to the ice-rafted debris record of Holocene Bond events, demonstrating a possible coupling between precipitation variation on the Altiplano and North Atlantic sea-surface temperatures (SSTs). The cold periods of the Holocene Bond events correspond with periods of increased precipitation on the Altiplano. Holocene precipitation variability on the Altiplano is anti-phased with respect to precipitation in the Northern Hemisphere monsoon region. More generally, the tropical Andes underwent large changes in precipitation on centennial-to-millennial timescales during the Holocene.

  20. Competition between larval lake herring (Coregonus artedi) and lake whitefish (Coregonus clupeaformis) for zooplankton

    USGS Publications Warehouse

    Davis, Bruce M.; Todd, Thomas N.

    1998-01-01

    Diet and growth of larval lake herring (Coregonus artedi) and lake whitefish (Coregonus clupeaformis) were compared in mesocosm experiments in a small mesotrophic lake in southeastern Michigan. Fish were sampled from single-species and mixed assemblages in 2-m3 cages for 8 weeks during April and May. Both species initially ate mostly cyclopoid copepodites and small cladocerans (Bosmia spp.). Schoener's index of diet overlap showed considerable overlap (70-90%). Lake whitefish ate Daphnia spp. and adult copepods about 2 weeks earlier than did lake herring, perhaps related to their larger mean mouth gape. Lake whitefish were consistently larger than lake herring until the eighth week, especially in the sympatric treatments. Lake whitefish appeared to have a negative effect on the growth of lake herring, as lake herring in mixed-species treatments were smaller and weighed less than lake herring reared in single-species treatments. The diet similarities of lake whitefish and lake herring larvae could make them competitors for food in the Great Lakes. The greater initial size of lake whitefish could allow them to eat larger prey earlier and thereby limit availability of these prey to lake herring at a crucial period of development.

  1. The Morphometry of Lake Palmas, a Deep Natural Lake in Brazil

    PubMed Central

    Barroso, Gilberto F.; Gonçalves, Monica A.; Garcia, Fábio da C.

    2014-01-01

    Lake Palmas (A = 10.3km2) is located in the Lower Doce River Valley (LDRV), on the southeastern coast of Brazil. The Lake District of the LDRV includes 90 lakes, whose basic geomorphology is associated with the alluvial valleys of the Barreiras Formation (Cenozoic, Neogene) and with the Holocene coastal plain. This study aimed to investigate the relationship of morphometry and thermal pattern of a LDRV deep lake, Lake Palmas. A bathymetric survey carried out in 2011 and the analysis of hydrographic and wind data with a geographic information system allowed the calculation of several metrics of lake morphometry. The vertical profiling of physical and chemical variables in the water column during the wet/warm and dry/mild cold seasons of 2011 to 2013 has furnished a better understanding of the influence of the lake morphometry on its structure and function. The overdeepened basin has a subrectangular elongated shape and is aligned in a NW-SE direction in an alluvial valley with a maximum depth (Zmax) of 50.7m, a volume of 2.2×108 m3 (0.22km3) and a mean depth (Zmv) of 21.4m. These metrics suggest Lake Palmas as the deepest natural lake in Brazil. Water column profiling has indicated strong physical and chemical stratification during the wet/warm season, with a hypoxic/anoxic layer occupying one-half of the lake volume. The warm monomictic pattern of Lake Palmas, which is in an accordance to deep tropical lakes, is determined by water column mixing during the dry and mild cold season, especially under the influence of a high effective fetch associated with the incidence of cold fronts. Lake Palmas has a very long theoretical retention time, with a mean of 19.4 years. The changes observed in the hydrological flows of the tributary rivers may disturb the ecological resilience of Lake Palmas. PMID:25406062

  2. Embryotoxicity of Great Lakes lake trout extracts to developing rainbow trout

    USGS Publications Warehouse

    Wright, Peggy J.; Tillitt, Donald E.

    1999-01-01

    Planar halogenated hydrocarbons (PHHs), such as polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls are present in aquatic systems, and are known to produce adverse effects in fish. This study investigated the embryotoxicity of PHH mixtures through the nanoinjection of environmental extracts into newly fertilized eggs from two strains of rainbow trout. Organic extracts were obtained from whole adult lake trout collected from Lake Michigan in 1988 and Lake Superior in 1994. The graded doses of the final extracts used for injection were quantified as 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic-equivalents (TEQs) based on the concentrations of dioxins, furans and non-o-PCBs in each, and as equivalent amounts found in the eggs of the original lake trout (eggEQ). Total TEQs in the lake trout were 14.7 pg TEQ/g in the Lake Michigan sample and 7.3 pg TEQ/g in the Lake Superior sample. The extract of the Lake Michigan lake trout was embryotoxic to rainbow trout; LD50 values were 35 eggEQ (15–90, 95% F.L.) in the Arlee strain and 14 eggEQ (5–99, 95% F.L.) in the Erwin strain of rainbow trout. The LD50 values of the Lake Michigan extract in either of these strains of rainbow trout fall within the actual range of TCDD LD50values based on TEQs. This indicates that an additive model of toxicity is appropriate to quantify PHHs in relation to early life stage mortality in fish. Gross lesions characteristic of exposure to PHHs (i.e. yolk-sac edema, craniofacial deformities, and hemorrhaging) increased in a dose-related manner. The lowest observable adverse effect concentrations (LOAEC) for these gross lesions and cumulative mortalities suggests that current concentrations of PHHs in lake trout from Lake Michigan are above a threshold for adverse effects and these compounds may have implications on the lack of recruitment in certain Great Lakes lake trout populations.

  3. A new species of Moraria (Crustacea: Copepoda: Harpacticoida) from the Laurentian Great Lakes

    USGS Publications Warehouse

    Reid, Janet W.; Lesko, Lynn T.

    2003-01-01

    Moraria hudsoni n. sp. is described from Trails End Bay in Lake Michigan and Prentiss Bay in Lake Huron, Michigan, USA. The new species differs from its congeners in chaetotaxy, body ornamentation, and other characters. We review published records of members of Moraria from North and Central America; no species is known from South America. Species of this genus have been found in the mountains of southern Mexico, Guatemala, and Honduras, but none of these has been validly described. In North America, eight species have been recorded from Alaska, Canada, and the conterminous USA as far south as North Carolina. We report new geographical records of M. affinis from Virginia, and of both M. cristata and M. virginiana from Maryland and Virginia. We provide a tabular key to aid in identification of the named species of Moraria in North America.

  4. Great Lakes

    NASA Image and Video Library

    2017-12-08

    Bands of lake effect snow drift eastward from the western Great Lakes in this true-color image captured by the NOAA/NASA Suomi NPP satellite's Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on January 5, 2017. National Weather Service forecasters expect light to moderate lake effect snow showers to continue throughout the day today and into Saturday (1/7). Lake-effect snow forms when cold air passes over the warmer waters of a lake. This causes some lake water to evaporate into the air and warm it. This warmer, wetter air rises and cools as it moves away from the lake. When it cools, it releases that moisture and, if it’s cold enough, that moisture turns into snow. Although true-color images like this may appear to be photographs of Earth, they aren't. They are created by combining data from the three color channels on the VIIRS instrument sensitive to the red, green and blue (or RGB) wavelengths of light into one composite image. In addition, data from several other channels are often also included to cancel out or correct atmospheric interference that may blur parts of the image. Credit: NOAA/NASA/Suomi NPP via NOAA's Environmental Visualization Laboratory

  5. Lake Michigan lake trout PCB model forecast post audit

    EPA Science Inventory

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  6. Water-quality and lake-stage data for Wisconsin lakes, water year 2005

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. The purpose of this report is to provide information about the chemical and physical charac-teristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measure-ments of in-lake water quality and lake stage. Time series graphs of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive infor-mation for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks.

  7. Mesoscale spiral vortex embedded within a Lake Michigan snow squall band - High resolution satellite observations and numerical model simulations

    NASA Technical Reports Server (NTRS)

    Lyons, Walter A.; Keen, Cecil S.; Hjelmfelt, Mark; Pease, Steven R.

    1988-01-01

    It is known that Great Lakes snow squall convection occurs in a variety of different modes depending on various factors such as air-water temperature contrast, boundary-layer wind shear, and geostrophic wind direction. An exceptional and often neglected source of data for mesoscale cloud studies is the ultrahigh resolution multispectral data produced by Landsat satellites. On October 19, 1972, a clearly defined spiral vortex was noted in a Landsat-1 image near the southern end of Lake Michigan during an exceptionally early cold air outbreak over a still very warm lake. In a numerical simulation using a three-dimensional Eulerian hydrostatic primitive equation mesoscale model with an initially uniform wind field, a definite analog to the observed vortex was generated. This suggests that intense surface heating can be a principal cause in the development of a low-level mesoscale vortex.

  8. Visualization of drifting buoy deployments on upper Detroit River within the Great Lakes Waterway from August 28-30, 2001

    USGS Publications Warehouse

    Holtschlag, David J.; Aichele, Steve A.

    2002-01-01

    Detroit River is a connecting channel on the Great Lakes waterway that joins Lake St. Clair with Lake Erie. The river forms part of the international boundary between the United States and Canada in southeastern Michigan and southern Ontario. Drifting buoys were deployed on Detroit River to help investigate flow characteristics of four selected reaches as part of a source water assessment study of public water intakes. The drifting buoys contained global positioning system (GPS) receivers to help track their movements following their deployment. In some deployments, buoys were released across a transect at approximately uniform intervals to better understand flow patterns. In other deployments, buoys were released in clusters to investigate turbulent dispersion characteristics. Computer animations of buoy movements, which can be viewed through the Internet, are developed to help visualize the results of the buoy deployments.

  9. Density of Trematocranus placodon (Pisces: Cichlidae): a predictor of density of the schistosome intermediate host, Bulinus nyassanus (Gastropoda: Planorbidae), in Lake Malaŵi.

    PubMed

    Madsen, Henry; Stauffer, Jay R

    2011-06-01

    From the mid-1980s, we recorded a significant increase in urinary schistosomiasis infection rate and transmission among inhabitants of lakeshore communities in the southern part of Lake Malaŵi, particularly on Nankumba peninsula in Mangochi District. We suggested that the increase was due to over-fishing, which reduced the density of snail-eating fishes, thereby allowing schistosome intermediate host snails to increase to higher densities. In this article, we collected data to test this hypothesis. The density of both Bulinus nyassanus, the intermediate host of Schistosoma haematobium, and Melanoides spp. was negatively related to density of Trematocranus placodon, the most common of the snail-eating fishes in the shallow water of Lake Malaŵi. Both these snails are consumed by T. placodon. Transmission of S. haematobium through B. nyassanus only occurs in the southern part of the lake and only at villages where high density of the intermediate host is found relatively close to the shore. Thus, we believe that implementation of an effective fish ban up to 100-m offshore along these specific shorelines in front of villages would allow populations of T. placodon to increase in density and this would lead to reduced density of B. nyassanus and possibly schistosome transmission. To reduce dependence on natural fish populations in the lake and still maintain a source of high quality food, culture of indigenous fishes may be a viable alternative.

  10. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  11. A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

    NASA Astrophysics Data System (ADS)

    Pan, Hai

    1999-08-01

    Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide

  12. Elastic-wave propagation and site amplification in the Salt Lake Valley, Utah, from simulated normal faulting earthquakes

    USGS Publications Warehouse

    Benz, H.M.; Smith, R.B.

    1988-01-01

    The two-dimensional seismic response of the Salt Lake valley to near- and far-field earthquakes has been investigated from simulations of vertically incident plane waves and from normal-faulting earthquakes generated on the basin-bounding Wasatch fault. The plane-wave simulations were compared with observed site amplifications in the Salt Lake valley, based on seismic recordings from nuclear explosions in southern Nevada, that show 10 times greater amplification with the basin than measured values on hard-rock sites. Synthetic seismograms suggest that in the frequency band 0.3 to 1.5 Hz at least one-half the site amplitication can be attributed to the impedance contrast between the basin sediments and higher velocity basement rocks. -from Authors

  13. Bathymetric Surveys of Lake Arthur and Raccoon Lake, Pennsylvania, June 2007

    USGS Publications Warehouse

    Hittle, Clinton D.; Ruby, A. Thomas

    2008-01-01

    In spring of 2007, bathymetric surveys of two Pennsylvania State Park lakes were performed to collect accurate data sets of lake-bed elevations and to develop methods and techniques to conduct similar surveys across the state. The lake-bed elevations and associated geographical position data can be merged with land-surface elevations acquired through Light Detection and Ranging (LIDAR) techniques. Lake Arthur in Butler County and Raccoon Lake in Beaver County were selected for this initial data-collection activity. In order to establish accurate water-surface elevations during the surveys, benchmarks referenced to NAVD 88 were established on land at each lake by use of differential global positioning system (DGPS) surveys. Bathymetric data were collected using a single beam, 210 kilohertz (kHz) echo sounder and were coupled with the DGPS position data utilizing a computer software package. Transects of depth data were acquired at predetermined intervals on each lake, and the shoreline was delineated using a laser range finder and compass module. Final X, Y, Z coordinates of the geographic positions and lake-bed elevations were referenced to NAD 83 and NAVD 88 and are available to create bathymetric maps of the lakes.

  14. A simple method to model the reduced environment of lake bottom sapropel formation

    NASA Astrophysics Data System (ADS)

    Gaskova, Olga L.; Strakhovenko, Vera D.; Ermolaeva, Nadezhda I.; Zarubina, Eugene Yu.; Ovdina, Ekaterina A.

    2017-07-01

    The Kambala and Barchin brackish lakes (Baraba steppe, southern West Siberia) contain an organic-rich sapropel layer that was formed in oxygen-depleted waters. We measured the bulk sediment elemental composition, the water chemistry and determined the mineralogical composition and predominant biota species (Diatoms and Cyanobacteria in phytoplankton community respectively) in the lakes. The result indicates that the first lake has a siliceous type of sapropel and the second a carbonaceous one. A computer thermodynamic model was developed for chemical interaction in water-bottom sediment systems of the Kambala and Barchin Lakes. The surface sodium bicarbonate waters are supersaturated with respect to calcite, magnesite (or low Mg-calcite), quartz and chlorite with minor strontianite, apatite and goethite (pH 8.9-9.3, Eh 0.3 V). Nevertheless, it is shown that during sapropel deposition, deep silt waters should be anoxic (Eh<0 V). The virtual component CH2O has been used to create an anoxic environment suitable for pyrite formation due to the biotic community impact and abiotic reduction. Thermodynamic calculation has shown that silt water is not necessarily euxinic (anoxic and sulfidic). Depending on Eh, sulfate sulfur can dominate in solution, causing the formation of gypsum together with pyrite. An attempt was made to find a reason for solution supersaturation with respect to Ca and Mg ions due to their complexation with humic acids.

  15. Comparison of catch and lake trout bycatch in commercial trap nets and gill nets targeting lake whitefish in northern Lake Huron

    USGS Publications Warehouse

    Johnson, James E.; Ebener, Mark P.; Gebhardt, Kenneth; Bergstedt, Roger

    2004-01-01

    We compared seasonal lake whitefish catch rates, lake trout bycatch, and gearinduced lake trout mortality between commercial trap nets and gill nets in north-central Lake Huron. Onboard monitors recorded catches from 260 gill net and 96 trap net lifts from October 1998 through December 1999. Catch rates for lake whitefish were highest in fall for both gear types, reflecting proximity of spawning sites to the study area. Lake whitefish catch rates were also relatively high in spring but low in both gear types in summer. Lake trout were the principal bycatch species in both gears. The lake trout bycatch was lowest in both gear types in fall, highest in gill nets in spring, and highest in trap nets in summer. The ratio of lake trout to legal whitefish (the target species) was highest in summer and lowest in fall in both gear types. The high lake trout ratio in summer was due principally to low catch rates of lake whitefish. All but 3 of 186 live lake trout removed from trap net pots survived for at least two days of observation in laboratory tanks. Therefore, we estimated that post-release survival of trap netted lake trout that had not been entangled in the mesh was 98.4%. In addition, we accounted for stress-induced mortality for lake trout that were live at capture but entangled in the mesh of either gear type. Resulting estimates of lake trout survival were higher in trap nets (87.8%) than in gill nets (39.6%). The number of lake trout killed per lift was highest during summer in trap nets and during spring in gill nets. In trap nets, 85% of dead lake trout were observed to be entangled in the mesh of the pot or tunnels. Survival rates of lake trout in gill nets were higher in our study than reported by others, probably because our nets were hand lifted in a small boat. Our trap net-induced mortality estimates on lake trout were higher than those reported by others because we adjusted our estimates to account for post-release mortality caused by handling and

  16. Lake levels, streamflow, and surface-water quality in the Devils Lake area, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.

    1996-01-01

    The Devils Lake Basin is a 3,810-square-mile (mi2) closed basin (fig. 1) in the Red River of the North Basin. About 3,320 mi2 of the total 3,810 mi2 is tributary to Devils Lake; the remainder is tributary to Stump Lake.Since glaciation, the lake level of Devils Lake has fluctuated from about 1,457 feet (ft) above sea level (asl), the natural spill elevation of the lake to the Sheyenne River, to 1,400 ft asl (Aronow, 1957). Although no documented records of lake levels are available before 1867, Upham (1895, p. 595), on the basis of tree-ring chronology, indicated that the lake level was 1,441 ft asl in 1830. Lake levels were recorded sporadically from 1867 to 1901 when the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 to the present (1996), the lake level has fluctuated between a maximum of 1,438.4 ft asl in 1867 and a minimum of 1,400.9 ft asl in 1940 (fig. 2). On July 31, 1996, the lake level was 1,437.8 ft asl, about 15.2 ft higher than the level recorded in February 1993 and the highest level in about 120 years.Since 1993, the lake level of Devils Lake (fig. 2) has risen rapidly in response to above-normal precipitation from the summer of 1993 to the present, and 30,000 acres of land around the lake have been flooded. The above-normal precipitation also has caused flooding elsewhere in the Devils Lake Basin. State highways near Devils Lake are being raised, and some local roads have been closed because of flooding.In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) solutions to reduce the effects of high lake levels. In addition to various planning studies being conducted by Federal agencies, the North Dakota State Water Commission has implemented a project to store water on small tracts of land and in the chain of lakes (Sweetwater Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake

  17. Genetic diversity of Diporeia in the Great Lakes: comparison of Lake Superior to the other Great Lakes

    EPA Science Inventory

    Abundances of Diporeia have dropped drastically in the Great Lakes, except in Lake Superior, where data suggest that population counts actually have risen. Various ecological, environmental, or geographic hypotheses have been proposed to explain the greater abundance of Lake Supe...

  18. Water-quality and lake-stage data for Wisconsin lakes, water year 1996

    USGS Publications Warehouse

    ,

    1997-01-01

    The purpose of this report is to provide information about the physical and chemical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected includes measurements of lake stage and in-lake water quality. Graphs of Secchi depths, surface totalphosphorus and chlorophyll-a concentrations versus time are included for lakes with two or more years of data. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, drainage area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: "Water Resources Data-Wisconsin, 1996."

  19. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations.

    PubMed

    Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E

    2009-01-01

    Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.

  20. Halobacillus alkaliphilus sp. nov., a halophilic bacterium isolated from a salt lake in Fuente de Piedra, southern Spain.

    PubMed

    Romano, Ida; Finore, Ilaria; Nicolaus, Giancarlo; Huertas, F Javier; Lama, Licia; Nicolaus, Barbara; Poli, Annarita

    2008-04-01

    A Gram-positive, spore-forming, halophilic bacterial strain, FP5T, was isolated from a salt lake in southern Spain and subjected to a polyphasic taxonomic study. Strain FP5T was strictly aerobic. Cells were coccoidal, occurring singly or in clusters. The cell-wall peptidoglycan type of strain FP5T was A4 beta based on l-Orn-d-Asp. Strain FP5T was characterized chemotaxonomically by having MK-7 as the major menaquinone and anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C16 : 0 as the main fatty acids. The isolate grew optimally at 37 degrees C and in presence of 10 % NaCl; no growth was observed in the absence of NaCl. The DNA G+C content was 43.5 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain FP5T falls within the evolutionary radiation of species of the genus Halobacillus. Levels of 16S rRNA gene sequence similarity between strain FP5T and the type strains of nine recognized Halobacillus species were in the range 97.0-99.0 %. Levels of DNA-DNA relatedness indicated that strain FP5T represents a genomic species that is distinct from recognized Halobacillus species. Strain FP5T could be differentiated from recognized Halobacillus species based on several phenotypic characteristics. On the basis of phenotypic, phylogenetic and genomic data, strain FP5T is considered to represent a novel species of the genus Halobacillus, for which the name Halobacillus alkaliphilus sp. nov. is proposed. The type strain is FP5T (=DSM 18525T =ATCC BAA-1361T).