Sample records for lake surface emissions

  1. Methane emission from high-latitude (>50N) lakes: Annual cycle of climatological emissions using satellite-derived lake-ice phenology and freeze-thaw dynamics

    NASA Astrophysics Data System (ADS)

    Matthews, E.; Romanski, J.; Du, J.; Watts, J. D.

    2017-12-01

    Lakes are increasingly recognized as potentially important contributors to global methane emissions despite occupying only a few percent of Earth's ice-free land surface. More than 40% of the global lake area lies in regions of amplified warming north of 50˚N. As with wetlands, lake emissions are sensitive to interannual fluctuations in, e.g., temperature and duration of thaw season. Several estimates of CH4emission from high-latitude lakes have been published but none relies on geospatial lake distributions and satellite-based duration and timing of thaw seasons. We report on a climatology of weekly, spatially-explicit methane emissions from high-latitude lakes. Lake break-up and freeze-up dates for lakes >50km^2 were determined from a lake-ice phenology data set derived from brightness temperature (Tb) observations of space-borne Advanced Microwave Scanning Radiometer (AMSR-E/2) sensors. The lake-ice conditions for smaller lakes were estimated using an Earth System Data Record for Land Surface Freeze-Thaw State derived from Tb observations of Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I), and SSM/I Sounder (SSMIS). Climatologies encompass 2002-2015 for lake ice phenology and 1979 to 2010 for the land surface freeze-thaw state. Climatologies encompass 2003-2014 for ice phenology and 1979 to 2010 for freeze-thaw dynamics. Length and timing of typical methane-emission periods, derived from the satellite data, were integrated with daily diffusive and ebulliative methane fluxes for lake types following the work of Wik et al. (Nature, 2016) to estimate a full annual cycle of emissions from lakes >50˚N. We explored several approaches to estimate the large bursts of emissions observed over short periods during lake-ice breakup immediately prior to full lake thaw since several studies suggest that a substantial fraction of total annual emissions may occur at this time. While highly uncertain, we plan to investigate whether

  2. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing

  3. Subarctic Lake Sediment Microbial Community Contributions to Methane Emission Patterns

    NASA Astrophysics Data System (ADS)

    Emerson, J. B.; Varner, R. K.; Parks, D.; Wik, M.; Neumann, R.; Johnson, J. E.; Singleton, C. M.; Woodcroft, B. J.; Tollerson, R., II; Owusu-Dommey, A.; Binder, M.; Freitas, N. L.; Crill, P. M.; Saleska, S. R.; Tyson, G. W.; Rich, V. I.

    2017-12-01

    Northern post-glacial lakes have recently been identified as a significant and increasing source of carbon to the atmosphere, largely through ebullition (bubbling) of microbially produced methane from the sediments. Ebullitive methane flux has been shown to correlate significantly with sediment surface temperatures, suggesting that solar radiation is the primary driver of methane emissions from these lakes. However, the slope of this relationship (i.e., the extent to which increasing temperature increases ebullitive methane emissions) differs spatially, both within and among lakes. As microbes are responsible for both methane generation and removal in lakes, we hypothesized that microbial communities—previously uncharacterized in post-glacial lake sediments—could be contributing to spatiotemporal differences in methane emission responses to temperature. We compared methane emission data with sediment microbial (metagenomic and amplicon), isotopic, and geochemical characterizations across two post-glacial lakes in Northern Sweden. With increasing temperatures, the increase in methane emissions was greater in lake middles (deeper water) than lake edges (shallower water), consistent with higher abundances of methanogens in sediments from lake middles than edges, along with significant differences in microbial community composition between these regions. Using sparse partial least squares statistical modeling, microbial abundances (including the abundances of methane-cycling microorganisms and of reconstructed population genomes, e.g., from Planctomycetes, Thermoplasmatales, and Candidate Phylum Aminicenantes) were better predictors of porewater methane concentrations than abiotic variables. These results suggest that, although temperature controls methane emissions, microbial community composition and function may drive the rate and magnitude of this temperature response in subarctic post-glacial lakes.

  4. Methane Emissions from Small Lakes: Dynamics and Distribution Patterns

    NASA Astrophysics Data System (ADS)

    Encinas Fernández, J. M.; Peeters, F.; Hofmann, H.

    2014-12-01

    The dynamics of dissolved methane were measured during three years in five small lakes with different surface areas and maximum water depth. We analyze and compare the horizontal and vertical distribution of dissolved methane within these lakes during different time periods: the stratified period in summer, the autumn overturn, the winter mixing period, and the period from spring to summer stratification. The horizontal distributions of dissolved methane within the lakes suggest that the relation between surface area and maximum water-depth is a key factor determining the heterogeneity of methane concentrations in the surface water. During most of the year littoral zones are the main source of the methane that is emitted to the atmosphere except for the overturn periods. The vertical distributions of temperature and dissolved oxygen within the different seasons affect the vertical distribution of dissolved methane and thus the methane budget within lakes. Anoxic conditions in the hypolimnion and the intense mixing during overturn periods are key factors for the overall annual methane emissions from lakes.

  5. Methane emission by bubbling from Gatun Lake, Panama

    NASA Technical Reports Server (NTRS)

    Keller, Michael; Stallard, Robert F.

    1994-01-01

    We studied methane emission by bubbling from Gatun Lake, Panama, at water depths of less than 1 m to about 10 m. Gas bubbles were collected in floating traps deployed during 12- to 60-hour observation periods. Comparison of floating traps and floating chambers showed that about 98% of methane emission occurred by bubbling and only 2% occurred by diffusion. Average methane concentration of bubbles at our sites varied from 67% to 77%. Methane emission by bubbling occurred episodically, with greatest rates primarily between the hours of 0800 and 1400 LT. Events appear to be triggered by wind. The flux of methane associated with bubbling was strongly anticorrelated with water depth. Seasonal changes in water depth caused seasonal variation of methane emission. Bubble methane fluxes through the lake surface into the atmosphere measured during 24-hour intervals were least (10-200 mg/m2/d) at deeper sites (greater than 7 m) and greatest (300-2000 mg/m2/d) at shallow sites (less than 2 m).

  6. Model Estimates of Pan-Arctic Lake and Wetland Methane Emissions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Bohn, T. J.; Glagolev, M.; Maksyutov, S.; Lettenmaier, D. P.

    2012-12-01

    Lakes and wetlands are important sources of the greenhouse gases CO2 and CH4, whose emission rates are sensitive to climate. The northern high latitudes, which are especially susceptible to climate change, contain about 50% of the world's lakes and wetlands. With the predicted changes in the regional climate for this area within the next century, there is concern about a possible positive feedback resulting from greenhouse gas emissions (especially of methane) from the region's wetlands and lakes. To study the climate response to emissions from northern hemisphere lakes and wetlands, we have coupled a large-scale hydrology and carbon cycling model (University of Washington's Variable Infiltration Capacity model; VIC) with the atmospheric chemistry and transport model (CTM) of Japan's National Institute for Environmental Studies and have applied this modelling framework over the Pan-Arctic region. In particular, the VIC model simulates the land surface hydrology and carbon cycling across a dynamic lake-wetland continuum. The model includes a distributed wetland water table that accounts for microtopography and simulates variations in inundated area that are calibrated to match a passive microwave based inundation product. Per-unit-area carbon uptake and methane emissions have been calibrated using extensive in situ observations. In this paper, the atmospheric methane concentrations from a coupled run of VIC and CTM are calibrated and verified for the Pan-Arctic region with satellite observations from Aqua's Atmospheric Infrared Sounder (AIRS) and Envisat's Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instruments. We examine relative emissions from lakes and wetlands, as well as their net greenhouse warming potential, over the last half-century across the Pan-Arctic domain. We also assess relative uncertainties in emissions from each of the sources.

  7. Model Estimate of Pan-Arctic Lakes and Wetlands Methane Emissions and Their Future Climate Response

    NASA Astrophysics Data System (ADS)

    Chen, X.; Bohn, T. J.; Maksyutov, S. S.; Lettenmaier, D. P.

    2013-12-01

    Lakes and wetlands are important sources of the greenhouse gas CH4, whose emission rate is sensitive to climate. The northern high latitudes, which are especially susceptible to climate change, contain about 50% of the world's lakes and wetlands. Given predicted changes in the climate of this region over the next century (IPCC AR5 scenarios), there is concern about a possible positive feedback resulting from methane emissions from the region's wetlands and lakes. To study the climate response of emissions from northern high latitude lakes and wetlands, we employed a large-scale hydrology and carbon cycling model (Variable Infiltration Capacity model; VIC) over the Pan-Arctic domain, which was linked to an atmospheric model (Japan's National Institute of Environmental Studies transport model; NIES TM). In particular, the VIC model simulates the land surface hydrology and carbon cycling across a dynamic lake-wetland continuum, while NIES TM models the atmospheric mixing and 3-dimension transport of methane emitted. The VIC model includes a distributed wetland water table scheme, which accounts for microtopography around the lakes and simulates variations in inundated area that are calibrated to match a passive microwave based inundation product. Per-unit-area carbon uptake and methane emissions at the land surface have been calibrated using extensive in situ observations at West Siberia. Also, the atmospheric methane concentration from this linked model run was verified for the recent 5 years with satellite observations from Aqua's Atmospheric Infrared Sounder (AIRS) and Envisat's Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instruments. Using RCP4.5 and RCP8.5 future climate scenarios, we examine CH4 emissions from high latitude lakes and wetlands, as well as their net greenhouse warming potential, over the next 3 centuries across the Pan-Arctic domain. We also assess relative uncertainties in emissions from each of the sources.

  8. Methane emissions from western Canadian peatland lakes: assessing interactive effects of groundwater connectivity and permafrost thaw

    NASA Astrophysics Data System (ADS)

    Kuhn, M. A.; Riechert, C.; Estop Aragones, C.; Broder, T.; Bastviken, D.; Knorr, K. H.; Olefeldt, D.

    2017-12-01

    Rising temperatures and the submergence of recently thawed permafrost into lakes has been identified as a major driver of methane (CH4) emissions in northern regions. Lakes on the vast Taiga Plains in western Canada represent a vital unknown with respect to CH4 fluxes and their sensitivity to permafrost thaw. The Taiga Plains has several characteristics that could influence magnitude and controls on lake CH4 emissions in comparison to other regions, including high soil organic carbon stores, distinct permafrost history, and complex groundwater interactions that influence availability of terminal electron acceptor concentrations among lakes. The goal of this research is to describe the similarities and differences in processes governing lake CH4 emissions between western Canada and other northern regions. We carried out biweekly diffusive and ebullition flux measurements and monitored sediment redox profiles from two lakes near the border between Alberta and the Northwest Territories. The two lakes differ in contributions of surface water and groundwater inputs, respectively. Floating chamber-based fluxes were measured leading from the edges to the centers of the lakes from ice-out in early May until ice-cover in the fall. Preliminary redox profile analyses suggest the groundwater-fed lake has extremely high concentrations of sulfides (>200 µmol L-1) down to a depth of 30 cm, while the surface water lake has little to no sulfide, but high concentrations of reduced iron (>200 µmol L-1 ). Despite high sulfide concentrations in the sediments, the groundwater-fed lake had generally higher diffusive fluxes compared to the surface water lake, but there were no differences between the center and along the actively collapsing thermokarst edges. However, ebullition fluxes were highest from a recently thawed lake edge compared to the center of the lake and stable, non-thaw influenced edges. The results of this project will help improve current regional CH4 models by

  9. Year-Round Carbon Fluxes in a Subarctic Landscape Show the Importance of Lake Emissions According to Season

    NASA Astrophysics Data System (ADS)

    Jammet, M.; Crill, P. M.; Friborg, T.

    2014-12-01

    Lakes are increasingly recognized as important components of the global terrestrial carbon budget. Northern lakes are especially of interest due to a high density of open-water ecosystems in Northern latitudes and a potential increase in lake areal extent where permafrost is thawing. A better understanding of lake-atmosphere interactions requires long-term and direct measurement of surface fluxes. This is rarely achieved in Northern landscapes where seasonally ice-covered lakes are mostly studied during the open water season, and measurement methods do not always allow an integration of all gas transport pathways to the atmosphere. We present here ecosystem-scale data from Stordalen (68°20'N, 19°03'E), a thawing permafrost peatland in subarctic Sweden, where an eddy covariance system is used in an innovative way to quantify the importance of methane (CH4) emissions from a shallow lake. After more than a year of surface flux monitoring, it is found that spring is a crucial season for lake-atmosphere CH4 exchange. Despite its shallow depth, more than half of annual CH4 emissions from the lake were recorded at ice-out, suggesting significant winter CH4 production in lake sediments. Lake water dynamics seemed to drive the observed spring release rates. In contrast, summer methane emissions in Stordalen were dominated by the minerotrophic fens. This underlines the importance of considering the full annual budget when assessing the carbon source strength of seasonally ice-covered lakes. Carbon dioxide fluxes were also monitored and will be briefly discussed, as well as the significance of northern lakes spring burst for global atmospheric CH4 budget.

  10. Modeling methane emissions from Arctic lakes under warming conditions

    NASA Astrophysics Data System (ADS)

    Zhuang, Qianlai; Tan, Zeli

    2014-05-01

    To investigate the response of methane emissions from arctic lakes, a process-based climate-sensitive lake methane model is developed. The processes of methane production, oxidation and transport are modeled within a one-dimensional water and sediment column. Dynamics of point-source ebullition seeps are explicitly modeled. The model was calibrated and verified using observational data in the region. The model was further used to estimate the lake methane emissions from the Arctic from 2002 to 2004. We estimate that the total amount of methane emissions is 24.9 Tg CH4 yr-1, which is consistent with a recent estimation of 24±10 Tg CH4 yr-1 and two-fold of methane emissions from natural wetlands in the north of 60 oN. The methane emission rate of lakes spatially varies over high latitudes from 170.5 mg CH4 m-2 day-1 in northern Siberia to only 10.1 mg CH4 m-2 day-1 in northern Europe. A projection assuming 2-7.5oC warming and 15-25% expansion of lake coverage shows that the total amount of methane emitted from Arctic lakes will increase to 29.8-35.6 Tg CH4 yr-1.

  11. Toward an annual estimate of methane emissions from Lake Erie

    NASA Astrophysics Data System (ADS)

    Fernandez, J.; Townsend-Small, A.

    2017-12-01

    Lake Erie is the shallowest, warmest, and most eutrophic of all of the North American Great Lakes. The central basin of Lake Erie exhibits seasonally hypoxic bottom waters, which contributes to biological methane (CH4) production. Leaks from extensive natural gas wells and pipelines in Canadian waters are a potential source of thermogenic CH4 to the lake. The shallow western basin lacks water column hypoxia, but experiences increasingly frequent algal blooms and hypoxic sediments. Our past research, focused on the central basin, indicated that Lake Erie is a positive source of CH4 during late summer (August - September), emitting 1.3 ± 0.6 × 105 kg CH4-C day. Here, we present a seasonal dataset of CH4 fluxes measured throughout a 16-month period starting in the spring of 2015 and ending late summer in 2016 to estimate an annual lake wide CH4 emission. Our results indicate that the western basin experienced the greatest CH4 emissions, and the highest rates of CH4 flux co-occur with the highest rates of nutrient loading and largest algal blooms near the mouth of the Maumee River. Winter CH4 fluxes were minimal and similar throughout the lake, indicating that natural gas wells are a minimal source of CH4 emissions. Emissions were highest in August and tapered off through the fall and winter, rising again in spring. The estimated annual CH4 emission in Lake Erie was 4.41 × 107 kg CH4-C yr-1. We compared this to other CH4 sources in Michigan and Ohio in the USEPA Greenhouse Gas Reporting Program Database, and found that Lake Erie is second largest emitter of CH4 in Ohio (a landfill in Cincinnati is a larger source), and the largest in Michigan. Recent work has shown that eutrophication in lakes such as Lake Erie may be on the rise due to climate change induced increases in precipitation. If so, these large CH4 emissions may have positive feedback consequences to climate warming. Therefore, more research is needed to indicate whether or not these CH4 emissions are

  12. A Modeling Framework for Inference of Surface Emissions Using Mobile Observations

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Crosman, E.; Mendoza, D. L.; Lin, J. C.

    2016-12-01

    Our ability to quantify surface emissions depends on the precision of observations and the spatial density of measurement networks. Mobile measurement techniques offer a cost effective strategy for quantifying atmospheric conditions over space without requiring a dense network of in-situ sites. However, interpretation of these data and inversion of dispersed measurements to estimate surface emissions can be difficult. We introduce a framework using the Stochastic Time-Inverted Lagrangian Transport (STILT) model that assimilates both spatially resolved observations and an emissions inventory to better estimate surface fluxes. Salt Lake City is a unique laboratory for the study of urban carbon emissions. It is the only U.S. city that utilizes light-rail trains to continuously measure high frequency carbon dioxide (CO2) and methane (CH4); it is home to one of the longest and most spatially resolved high precision CO2 measurement networks (air.utah.edu); and it is one of four cities in the world for which the Hestia anthropogenic emissions inventory has been produced which characterizes CO2 emissions at the scale of individual buildings and roadways. Using these data and modeling resources, we evaluate spatially resolved CO2 measurements and transported CO2 emissions on hourly timescales at a dense spatial resolution across Salt Lake City.

  13. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China.

    PubMed

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-07

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  14. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Lee, Xuhui; Xiao, Wei; Liu, Shoudong; Schultz, Natalie; Wang, Yongwei; Zhang, Mi; Zhao, Lei

    2018-06-01

    Lake evaporation is a sensitive indicator of the hydrological response to climate change. Variability in annual lake evaporation has been assumed to be controlled primarily by the incoming surface solar radiation. Here we report simulations with a numerical model of lake surface fluxes, with input data based on a high-emissions climate change scenario (Representative Concentration Pathway 8.5). In our simulations, the global annual lake evaporation increases by 16% by the end of the century, despite little change in incoming solar radiation at the surface. We attribute about half of this projected increase to two effects: periods of ice cover are shorter in a warmer climate and the ratio of sensible to latent heat flux decreases, thus channelling more energy into evaporation. At low latitudes, annual lake evaporation is further enhanced because the lake surface warms more slowly than the air, leading to more long-wave radiation energy available for evaporation. We suggest that an analogous change in the ratio of sensible to latent heat fluxes in the open ocean can help to explain some of the spread among climate models in terms of their sensitivity of precipitation to warming. We conclude that an accurate prediction of the energy balance at the Earth's surface is crucial for evaluating the hydrological response to climate change.

  15. Dust emission at Franklin Lake Playa, Mojave Desert (USA): Response to meteorological and hydrologic changes 2005-2008

    USGS Publications Warehouse

    Reynolds, Richard L.; Bogle, Rian; Vogel, John; Goldstein, Harland L.; Yount, James

    2009-01-01

    Playa type, size, and setting; playa hydrology; and surface-sediment characteristics are important controls on the type and amount of atmospheric dust emitted from playas. Soft, evaporite-rich sediment develops on the surfaces of some Mojave Desert (USA) playas (wet playas), where the water table is shallow (< 4 m). These areas are sources of atmospheric dust because of continuous or episodic replenishment of wind-erodible salts and disruption of the ground surface during salt formation by evaporation of ground water. Dust emission at Franklin Lake playa was monitored between March 2005 and April 2008. The dust record, based on day-time remote digital camera images captured during high wind, and compared with a nearby precipitation record, shows that aridity suppresses dust emission. High frequency of dust generation appears to be associated with relatively wet periods, identified as either heavy precipitation events or sustained regional precipitation over a few months. Several factors may act separately or in combination to account for this relation. Dust emission may respond rapidly to heavy precipitation when the dissolution of hard, wind-resistant evaporite mineral crusts is followed by the development of soft surfaces with thin, newly formed crusts that are vulnerable to wind erosion and (or) the production of loose aggregates of evaporite minerals that are quickly removed by even moderate winds. Dust loading may also increase when relatively high regional precipitation leads to decreasing depth to the water table, thereby increasing rates of vapor discharge, development of evaporite minerals, and temporary softening of playa surfaces. The seasonality of wind strength was not a major factor in dust-storm frequency at the playa. The lack of major dust emissions related to flood-derived sediment at Franklin Lake playa contrasts with some dry-lake systems elsewhere that may produce large amounts of dust from flood sediments. Flood sediments do not commonly

  16. Eutrophication exacerbates the impact of climate warming on lake methane emission.

    PubMed

    Sepulveda-Jauregui, Armando; Hoyos-Santillan, Jorge; Martinez-Cruz, Karla; Walter Anthony, Katey M; Casper, Peter; Belmonte-Izquierdo, Yadira; Thalasso, Frédéric

    2018-04-27

    Net methane (CH 4 ) emission from lakes depends on two antagonistic processes: CH 4 production (methanogenesis) and CH 4 oxidation (methanotrophy). It is unclear how climate warming will affect the balance between these processes, particularly among lakes of different trophic status. Here we show that methanogenesis is more sensitive to temperature than methanotrophy, and that eutrophication magnifies this temperature sensitivity. Using laboratory incubations of water and sediment from ten tropical, temperate and subarctic lakes with contrasting trophic states, ranging from oligotrophic to hypereutrophic, we explored the temperature sensitivity of methanogenesis and methanotrophy. We found that both processes presented a higher temperature sensitivity in tropical lakes, followed by temperate, and subarctic lakes; but more importantly, we found that eutrophication triggered a higher temperature sensitivity. A model fed by our empirical data revealed that increasing lake water temperature by 2 °C leads to a net increase in CH 4 emissions by 101-183% in hypereutrophic lakes and 47-56% in oligotrophic lakes. We conclude that climate warming will tilt the CH 4 balance towards higher lake emission and that this impact will be exacerbated by the eutrophication of the lakes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    PubMed Central

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-01-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively. PMID:26947748

  18. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    NASA Astrophysics Data System (ADS)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  19. Preliminary results of dust emission data from Yellow Lake Playa, West Texas, USA

    USDA-ARS?s Scientific Manuscript database

    We investigated the relationship between groundwater and dust emission rates at Yellow Lake, a saline “wet” playa in West Texas with a long history of wind erosion. Deflation of the playa surface has generated lunettes composed of silt-clay aggregates and gypsum. Saltation sensors indicate that most...

  20. The predominance of young carbon in Arctic whole-lake CH4 and CO2 emissions and implications for Boreal yedoma lakes.

    NASA Astrophysics Data System (ADS)

    Elder, C.; Xu, X.; Walker, J. C.; Walter Anthony, K. M.; Pohlman, J.; Arp, C. D.; Townsend-Small, A.; Hinkel, K. M.; Czimczik, C. I.

    2017-12-01

    Lakes in Arctic and Boreal regions are hotspots for atmospheric exchange of the greenhouse gases CO2 and CH4. Thermokarst lakes are a subset of these Northern lakes that may further accelerate climate warming by mobilizing ancient permafrost C (> 11,500 years old) that has been disconnected from the active C cycle for millennia. Northern lakes are thus potentially powerful agents of the permafrost C-climate feedback. While they are critical for projecting the magnitude and timing these feedbacks from the rapidly warming circumpolar region, we lack datasets capturing the diversity of northern lakes, especially regarding their CH4contributions to whole-lake C emissions and their ability to access and mobilize ancient C. We measured the radiocarbon (14C) ages of CH4 and CO2 emitted from 60 understudied lakes and ponds in Arctic and Boreal Alaska during winter and summer to estimate the ages of the C sources yielding these gases. Integrated mean ages for whole-lake emissions were inferred from the 14C-age of dissolved gases sampled beneath seasonal ice. Additionally, we measured concentrations and 14C values of gases emitted by ebullition and diffusion in summer to apportion C emission pathways. Using a multi-sourced mass balance approach, we found that whole-lake CH4 and CO2 emissions were predominantly sourced from relatively young C in most lakes. In Arctic lakes, CH4 originated from 850 14C-year old C on average, whereas dissolved CO2 was sourced from 400 14C-year old C, and represented 99% of total dissolved C flux. Although ancient C had a minimal influence (11% of total emissions), we discovered that lakes in finer-textured aeolian deposits (Yedoma) emitted twice as much ancient C as lakes in sandy regions. In Boreal, yedoma-type lakes, CH4 and CO2 were fueled by significantly older sources, and mass balance results estimated CH4-ebullition to comprise 50-60% of whole-lake CH4 emissions. The mean 14C-age of Boreal emissions was 6,000 14C-years for CH4-C, and 2

  1. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  2. Dust emissions from undisturbed and disturbed, crusted playa surfaces: cattle trampling effects

    USDA-ARS?s Scientific Manuscript database

    Dry playa lake beds can be significant sources of fine dust emission. This study used a portable field wind tunnel to quantify the PM10 emissions from a bare, fine-textured playa surface located in the far northern Chihuahua Desert. The natural, undisturbed crust and its subjection to two levels of ...

  3. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH 4) and carbon dioxide (CO 2) emissions from northern lakes. Here we assessed the relationship between CH 4 and CO 2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH 4 and CO 2, butmore » the climate warming impact of lake CH 4 emissions was 2 times higher than that of CO 2. Ebullition and diffusion were the dominant modes of CH 4 and CO 2 emissions, respectively. IBS, ~10% of total annual CH 4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH 4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO 2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO 2 emissions (e.g., catchment waters, pH equilibrium). Total CH 4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. In conclusion, our findings suggest that permafrost type plays important roles in determining CH 4 emissions from lakes by both supplying organic matter to

  4. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE PAGES

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; ...

    2015-06-02

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH 4) and carbon dioxide (CO 2) emissions from northern lakes. Here we assessed the relationship between CH 4 and CO 2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH 4 and CO 2, butmore » the climate warming impact of lake CH 4 emissions was 2 times higher than that of CO 2. Ebullition and diffusion were the dominant modes of CH 4 and CO 2 emissions, respectively. IBS, ~10% of total annual CH 4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH 4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO 2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO 2 emissions (e.g., catchment waters, pH equilibrium). Total CH 4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. In conclusion, our findings suggest that permafrost type plays important roles in determining CH 4 emissions from lakes by both supplying organic matter to

  5. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH 4) and carbon dioxide (CO 2) emissions from northern lakes. Here we assessed the relationship between CH 4 and CO 2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH 4 and CO 2, but themore » climate warming impact of lake CH 4 emissions was two times higher than that of CO 2. Ebullition and Diffusion were the dominant modes of CH 4 and CO 2 emissions respectively. IBS, ~ 10% of total annual CH 4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH 4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH 4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH 4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  6. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE PAGES

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; ...

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH 4) and carbon dioxide (CO 2) emissions from northern lakes. Here we assessed the relationship between CH 4 and CO 2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH 4 and CO 2, but themore » climate warming impact of lake CH 4 emissions was two times higher than that of CO 2. Ebullition and Diffusion were the dominant modes of CH 4 and CO 2 emissions respectively. IBS, ~ 10% of total annual CH 4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH 4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH 4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH 4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  7. Atmospheric Transference of the Toxic Burden of Atmosphere-Surface Exchangeable Pollutants to the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Perlinger, J. A.; Giang, A.; Zhang, H.; Selin, N. E.; Wu, S.

    2016-12-01

    Toxic pollutants that share certain chemical properties undergo repeated emission and deposition between Earth's surfaces and the atmosphere. Following their emission through anthropogenic activities, they are transported locally, regionally or globally through the atmosphere, are deposited, and impact local ecosystems, in some cases as a result of bioaccumulation in food webs. We call them atmosphere-surface exchangeable pollutants or "ASEPs", wherein this group is comprised of thousands of chemicals. We are studying potential future contamination in the Great Lakes region by modeling scenarios of the future for three compounds/compound classes, mercury, polychlorinated biphenyl compounds, and polycyclic aromatic hydrocarbons. In this presentation we focus on mercury and future scenarios of contamination of the Great Lake region. The atmospheric transport of mercury under specific scenarios will be discussed. The global 3-D chemical transport model GEOS-Chem has been applied to estimate future atmospheric concentrations and deposition rates of mercury in the Great Lakes region for selected future scenarios of emissions and climate. We find that, assuming no changes in climate, annual mean net deposition flux of mercury to the Great Lakes Region may increase by approximately 50% over 2005 levels by 2050, without global or regional policies addressing mercury, air pollution, and climate. In contrast, we project that the combination of global and North American action on mercury could lead to a 21% reduction in deposition from 2005 levels by 2050. US action alone results in a projected 18% reduction over 2005 levels by 2050. We also find that, assuming no changes in anthropogenic emissions, climate change and biomass burning emissions would, respectively, cause annual mean net deposition flux of mercury to the Great Lakes Region to increase by approximately 5% and decrease by approximately 2% over 2000 levels by 2050.

  8. Diel Surface Temperature Range Scales with Lake Size

    PubMed Central

    Woolway, R. Iestyn; Jones, Ian D.; Maberly, Stephen C.; French, Jon R.; Livingstone, David M.; Monteith, Donald T.; Simpson, Gavin L.; Thackeray, Stephen J.; Andersen, Mikkel R.; Battarbee, Richard W.; DeGasperi, Curtis L.; Evans, Christopher D.; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P.; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C.; Rusak, James A.; Ryves, David B.; Scott, Daniel R.; Shilland, Ewan M.; Smyth, Robyn L.; Staehr, Peter A.; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A.

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  9. An integrated approach for estimation of methane emissions from wetlands and lakes in high latitude regions

    NASA Astrophysics Data System (ADS)

    Chiu, C.; Bowling, L. C.; Podest, E.; Bohn, T. J.; Lettenmaier, D. P.; Schroeder, R.; McDonald, K. C.

    2009-04-01

    In recent years, there has been increasing evidence of significant alteration in the extent of lakes and wetlands in high latitude regions due in part to thawing permafrost, as well as other changes governing surface and subsurface hydrology. Methane is a 23 times more efficient greenhouse gas than carbon dioxide; changes in surface water extent, and the associated subsurface anaerobic conditions, are important controls on methane emissions in high latitude regions. Methane emissions from wetlands vary substantially in both time and space, and are influenced by plant growth, soil organic matter decomposition, methanogenesis, and methane oxidation controlled by soil temperature, water table level and net primary productivity (NPP). The understanding of spatial and temporal heterogeneity of surface saturation, thermal regime and carbon substrate in northern Eurasian wetlands from point measurements are limited. In order to better estimate the magnitude and variability of methane emissions from northern lakes and wetlands, we present an integrated assessment approach based on remote sensing image classification, land surface modeling and process-based ecosystem modeling. Wetlands classifications based on L-band JERS-1 SAR (100m) and ALOS PALSAR (~30m) are used together with topographic information to parameterize a lake and wetland algorithm in the Variable Infiltration Capacity (VIC) land surface model at 25 km resolution. The enhanced VIC algorithm allows subsurface moisture exchange between surface water and wetlands and includes a sub-grid parameterization of water table position within the wetland area using a generalized topographic index. Average methane emissions are simulated by using the Walter and Heimann methane emission model based on temporally and spatially varying soil temperature, net primary productivity and water table generated from the modified VIC model. Our five preliminary study areas include the Z. Dvina, Upper Volga, Yeloguy, Syum, and Chaya

  10. On the methane paradox: Transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes

    NASA Astrophysics Data System (ADS)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2016-10-01

    Estimates of global methane (CH4) emissions from lakes and the contributions of different pathways are currently under debate. In situ methanogenesis linked to algae growth was recently suggested to be the major source of CH4 fluxes from aquatic systems. However, based on our very large data set on CH4 distributions within lakes, we demonstrate here that methane-enriched water from shallow water zones is the most likely source of the basin-wide mean CH4 concentrations in the surface water of lakes. Consistently, the mean surface CH4 concentrations are significantly correlated with the ratio between the surface area of the shallow water zone and the entire lake, fA,s/t, but not with the total surface area. The categorization of CH4 fluxes according to fA,s/t may therefore improve global estimates of CH4 emissions from lakes. Furthermore, CH4 concentrations increase substantially with water temperature, indicating that seasonally resolved data are required to accurately estimate annual CH4 emissions.

  11. Fugitive dust emissions from paved road travel in the Lake Tahoe basin.

    PubMed

    Zhu, Dongzi; Kuhns, Hampden D; Brown, Scott; Gillies, John A; Etyemezian, Vicken; Gertler, Alan W

    2009-10-01

    The clarity of water in Lake Tahoe has declined substantially over the past 40 yr. Causes of the degradation include nitrogen and phosphorous fertilization of the lake waters and increasing amounts of inorganic fine sediment that can scatter light. Atmospheric deposition is a major source of fine sediment. A year-round monitoring study of road dust emissions around the lake was completed in 2007 using the Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) system developed at the Desert Research Institute (DRI). Results of this study found that, compared with the summer season, road dust emissions increased by a factor of 5 in winter, on average, and about a factor of 10 when traction control material was applied to the roads after snow events. For winter and summer, road dust emission factors (grams coarse particulate matter [PM10] per vehicle kilometer traveled [g/vkt]) showed a decreasing trend with the travel speed of the road. The highest emission factors were observed on very low traffic volume roads on the west side of the lake. These roads were composed of either a 3/8-in. gravel material or had degraded asphalt. The principle factors influencing road dust emissions in the basin are season, vehicle speed (or road type), road condition, road grade, and proximity to other high-emitting roads. Combined with a traffic volume model, an analysis of the total emissions from the road sections surveyed indicated that urban areas (in particular South Lake Tahoe) had the highest emitting roads in the basin.

  12. Shallow outgassing changes disrupt steady lava lake activity, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T. R.; Swanson, D. A.; Lev, E.

    2015-12-01

    Persistent lava lakes are a testament to sustained magma supply and outgassing in basaltic systems, and the surface activity of lava lakes has been used to infer processes in the underlying magmatic system. At Kilauea Volcano, Hawai`i, the lava lake in Halema`uma`u Crater has been closely studied for several years with webcam imagery, geophysical, petrological and gas emission techniques. The lava lake in Halema`uma`u is now the second largest on Earth, and provides an unprecedented opportunity for detailed observations of lava lake outgassing processes. We observe that steady activity is characterized by continuous southward motion of the lake's surface and slow changes in lava level, seismic tremor and gas emissions. This normal, steady activity can be abruptly interrupted by the appearance of spattering - sometimes triggered by rockfalls - on the lake surface, which abruptly shifts the lake surface motion, lava level and gas emissions to a more variable, unstable regime. The lake commonly alternates between this a) normal, steady activity and b) unstable behavior several times per day. The spattering represents outgassing of shallowly accumulated gas in the lake. Therefore, although steady lava lake behavior at Halema`uma`u may be deeply driven by upwelling of magma, we argue that the sporadic interruptions to this behavior are the result of shallow processes occurring near the lake surface. These observations provide a cautionary note that some lava lake behavior is not representative of deep-seated processes. This behavior also highlights the complex and dynamic nature of lava lake activity.

  13. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

    USGS Publications Warehouse

    Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John; Gaglioti, Benjamin V.; Czimzik, Claudia I.

    2018-01-01

    Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3–4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

  14. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

    NASA Astrophysics Data System (ADS)

    Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John W.; Gaglioti, Benjamin V.; Czimczik, Claudia I.

    2018-01-01

    Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3-4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

  15. Satellite-based observations of rain-induced NOx emissions from soils around Lake Chad in the Sahel

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Penning de Vries, Marloes; Dörner, Steffen; Sihler, Holger; Beirle, Steffen; Wagner, Thomas

    2017-04-01

    Rain-induced emission pulses of NOx (≡ NO + NO2) from soils have been observed in many semi-arid regions over the world. They are induced by the first precipitation of the wet season and are mainly caused by the sudden re-activation of microbes in the soil releasing reactive nitrogen. In this study, a single intense event of pulsed NOx emissions from soils around Lake Chad is investigated. This is achieved by analysing daily tropospheric NO2 vertical column densities (VCDs) as observed by the satellite-based OMI instrument together with other satellite and model data on precipitation, lightning, fire and wind. The study region of Lake Chad and its ecosystems are indispensable to life in the Sahel region. Climate variability and unsustainable water utilization, however, caused a drastic decrease in the lakes' surface area which, in turn, lead to extensive land cover changes converting former lake area to shrub land and fertile farm land. The results indicate that the region of Lake Chad does not only show consistent enhancements in average NO2 VCDs in the early months of the wet season compared to its surrounding desert but also exhibits particularly strong NOx emissions shortly after a single large-scale precipitation event in June 2007. NO2 VCDs measured 14 hours after this precipitation event show strong enhancements (2.5*1015 molecules cm-2) compared to the seasonal background VCDs and, moreover, represent the highest detected NO2 VCDs of the entire year. Detailed analysis of potential contributors to the observed NO2 VCDs strongly indicate that fire, lightning and retrieval artefacts cannot explain the NO2 pulse. The estimated emission flux from the soil, calculated based on mass balance, amounts to about 32.3 ng N m-2 s-1, which corresponds to about 65 tonnes of nitrogen released to the atmosphere within one day.

  16. Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry

    NASA Astrophysics Data System (ADS)

    Tan, Zeli; Zhuang, Qianlai

    2015-12-01

    The importance of methane emissions from pan-Arctic lakes in the global carbon cycle has been suggested by recent studies. These studies indicated that climate change influences this methane source mainly in two ways: the warming of lake sediments and the evolution of thermokarst lakes. Few studies have been conducted to quantify the two impacts together in a unified modeling framework. Here we adapt a region-specific lake evolution model to the pan-Arctic scale and couple it with a lake methane biogeochemical model to quantify the change of this freshwater methane source in the 21st century. Our simulations show that the extent of thaw lakes will increase throughout the 21st century in the northern lowlands of the pan-Arctic where the reworking of epigenetic ice in drained lake basins will continue. The projected methane emissions by 2100 are 28.3 ± 4.5 Tg CH4 yr-1 under a low warming scenario (Representative Concentration Pathways (RCPs) 2.6) and 32.7 ± 5.2 Tg CH4 yr-1 under a high warming scenario (RCP 8.5), which are about 2.5 and 2.9 times the simulated present-day emissions. Most of the emitted methane originates from nonpermafrost carbon stock. For permafrost carbon, the methanogenesis will mineralize a cumulative amount of 3.4 ± 0.8 Pg C under RCP 2.6 and 3.9 ± 0.9 Pg C under RCP 8.5 from 2006 to 2099. The projected emissions could increase atmospheric methane concentrations by 55.0-69.3 ppb. This study further indicates that the warming of lake sediments dominates the increase of methane emissions from pan-Arctic lakes in the future.

  17. CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China

    NASA Astrophysics Data System (ADS)

    Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo

    2018-01-01

    Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission

  18. Mapping pan-Arctic CH4 emissions using an adjoint method by integrating process-based wetland and lake biogeochemical models and atmospheric CH4 concentrations

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.

    2015-12-01

    Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.

  19. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  20. Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Zeli; Zhuang, Qianlai; Henze, Daven K.

    Understanding methane emissions from the Arctic, a fast-warming carbon reservoir, is important for projecting future changes in the global methane cycle. Here we optimized methane emissions from north of 60° N (pan-Arctic) regions using a nested-grid high-resolution inverse model that assimilates both high-precision surface measurements and column-average SCanning Imaging Absorption spectroMeter for Atmospheric CHartogrphY (SCIAMACHY) satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes were integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated with six biogeochemical models. In our estimates, in 2005, global methane emissions were in the range ofmore » 496.4–511.5 Tg yr −1, and pan-Arctic methane emissions were in the range of 11.9–28.5 Tg yr −1. Methane emissions from pan-Arctic wetlands and lakes were 5.5–14.2 and 2.4–14.2 Tg yr −1, respectively. Methane emissions from Siberian wetlands and lakes are the largest and also have the largest uncertainty. Our results indicate that the uncertainty introduced by different wetland models could be much larger than the uncertainty of each inversion. We also show that assimilating satellite retrievals can reduce the uncertainty of the nested-grid inversions. The significance of lake emissions cannot be identified across the pan-Arctic by high-resolution inversions, but it is possible to identify high lake emissions from some specific regions. In contrast to global inversions, high-resolution nested-grid inversions perform better in estimating near-surface methane concentrations.« less

  1. Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?

    DOE PAGES

    Tan, Zeli; Zhuang, Qianlai; Henze, Daven K.; ...

    2016-10-12

    Understanding methane emissions from the Arctic, a fast-warming carbon reservoir, is important for projecting future changes in the global methane cycle. Here we optimized methane emissions from north of 60° N (pan-Arctic) regions using a nested-grid high-resolution inverse model that assimilates both high-precision surface measurements and column-average SCanning Imaging Absorption spectroMeter for Atmospheric CHartogrphY (SCIAMACHY) satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes were integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated with six biogeochemical models. In our estimates, in 2005, global methane emissions were in the range ofmore » 496.4–511.5 Tg yr −1, and pan-Arctic methane emissions were in the range of 11.9–28.5 Tg yr −1. Methane emissions from pan-Arctic wetlands and lakes were 5.5–14.2 and 2.4–14.2 Tg yr −1, respectively. Methane emissions from Siberian wetlands and lakes are the largest and also have the largest uncertainty. Our results indicate that the uncertainty introduced by different wetland models could be much larger than the uncertainty of each inversion. We also show that assimilating satellite retrievals can reduce the uncertainty of the nested-grid inversions. The significance of lake emissions cannot be identified across the pan-Arctic by high-resolution inversions, but it is possible to identify high lake emissions from some specific regions. In contrast to global inversions, high-resolution nested-grid inversions perform better in estimating near-surface methane concentrations.« less

  2. Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect

    USDA-ARS?s Scientific Manuscript database

    Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the...

  3. Variability of passive gas emissions, seismicity, and deformation during crater lake growth at White Island Volcano, New Zealand, 2002-2006

    NASA Astrophysics Data System (ADS)

    Werner, C.; Hurst, T.; Scott, B.; Sherburn, S.; Christenson, B. W.; Britten, K.; Cole-Baker, J.; Mullan, B.

    2008-01-01

    We report on 4 years of airborne measurements of CO2, SO2, and H2S emission rates during a quiescent period at White Island volcano, New Zealand, beginning in 2003. During this time a significant crater lake emerged, allowing scrubbing processes to be investigated. CO2 emissions varied from a baseline of 250 to >2000 t d-1 and demonstrated clear annual cycling that was consistent with numbers of earthquake detections and annual changes in sea level. The annual variability was found to be most likely related to increases in the strain on the volcano during sea level highs, temporarily causing fractures to reduce in size in the upper conduit. SO2 emissions varied from 0 to >400 t d-1 and were clearly affected by scrubbing processes within the first year of lake development. Scrubbing caused increases of SO42- and Cl- in lake waters, and the ratio of carbon to total sulphur suggested that elemental sulphur deposition was also significant in the lake during the first year. Careful measurements of the lake level and chemistry allowed estimates of the rate of H2O(g) and HCl(g) input into the lake and suggested that the molar abundances of major gas species (H2O, CO2, SO2, and HCl) during this quiescent phase were similar to fumarolic ratios observed between earlier eruptive periods. The volume of magma estimated from CO2 emissions (0.015-0.04 km3) was validated by Cl- increases in the lake, suggesting that the gas and magma are transported from deep to shallow depths as a closed system and likely become open in the upper conduit region. The absence of surface deformation further leads to a necessity of magma convection to supply and remove magma from the degassing depths. Two models of convection configurations are discussed.

  4. Spatial and temporal variability of greenhouse gas emissions from a small and shallow temperate lake

    NASA Astrophysics Data System (ADS)

    Praetzel, Leandra; Schmiedeskamp, Marcel; Broder, Tanja; Hüttemann, Caroline; Jansen, Laura; Metzelder, Ulrike; Wallis, Ronya; Knorr, Klaus-Holger; Blodau, Christian

    2017-04-01

    Small inland waters (< 1 km2) have recently been discovered as significant sources and sinks in the global carbon cycle because they cover larger areas than previously assumed and exhibit a higher metabolic activity than larger lakes. They are further expected to be susceptible to changing climate conditions. So far, little is known about the spatial and temporal variability of carbon dioxide (CO2) and methane (CH4) emissions and in-lake dynamics of CH4 production and oxidation in small, epilimnetic lakes in the temperate zone. Of particular interest is the potential occurrence of "hot spots" and "hot moments" that could contribute significantly to total emissions. To address this knowledge gap, we determined CO2 and CH4 emissions and dynamics to identify their controlling environmental factors in a polymictic small (1.4 ha) and shallow (max. depth approx. 1.5 m) crater lake ("Windsborn") in the Eifel uplands in south-west Germany. As Lake Windsborn has a small catchment area (8 ha) and no surficial inflows, it serves well as a model system for the identification of factors and processes controlling emissions. In 2015, 2016 and 2017 we measured CO2 and CH4 gas fluxes with different techniques across the sediment/water and water/atmosphere interface. Atmospheric exchange was measured using mini-chambers equipped with CO2 sensors and with an infra-red greenhouse gas analyzer for high temporal resolution flux measurements. Ebullition of CH4 was quantified with funnel traps. Sediment properties were examined using pore-water peepers. All measurements were carried out along a transect covering both littoral and central parts of the lake. Moreover, a weather station on a floating platform in the center of the lake recorded meteorological data as well as CO2 concentration in different depths of the water column. So far, Lake Windsborn seems to be a source for both CO2 and CH4 on an annual scale. CO2 emissions generally increased from spring to summer. Even though CO2

  5. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  6. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    PubMed

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  7. Biogeochemical diversity, O2-supersaturation and hot moments of GHG emissions from shallow alkaline lakes in the Pantanal of Nhecolândia, Brazil.

    PubMed

    Barbiero, Laurent; Siqueira Neto, Marcos; Braz, Rosangela Rodrigues; Carmo, Janaina Braga do; Rezende Filho, Ary Tavares; Mazzi, Edmar; Fernandes, Fernando Antonio; Damatto, Sandra Regina; Camargo, Plinio Barbosa de

    2018-04-01

    Nhecolândia is a vast sub-region of the Pantanal wetland in Brazil with great diversity in surface water chemistry evolving in a sodic alkaline pathway under the influence of evaporation. In this region, >15,000 shallow lakes are likely to contribute an enormous quantity of greenhouse gas to the atmosphere, but the diversity of the biogeochemical scenarios and their variability in time and space is a major challenge to estimate the regional contribution. From 4 selected alkaline lakes, we compiled measurements of the physico-chemical characteristics of water and sediments, gas fluxes in floating chambers, and sedimentation rates to illustrate this diversity. Although these lakes have a similar chemical composition, the results confirm a difference between the black-water and green-water alkaline lakes, corresponding to distinct biogeochemical functioning. This difference does not appear to affect lake sedimentation rates, but is reflected in gas emissions. Black-water lakes are CO 2 and CH 4 sources, with fairly constant emissions throughout the seasons. Annual carbon dioxide and methane emissions approach 0.86molm -2 y -1 and 0.07molm -2 y -1 , respectively, and no clear trend towards N 2 O capture or emission was observed. By contrast, green-water lakes are CO 2 and N 2 O sinks but important CH 4 sources with fluxes varying significantly throughout the seasons, depending on the magnitude of the phytoplankton bloom. The results highlight important daily and seasonal variations in gas fluxes, and in particular a hot moments for methane emissions, when the O 2 -supersaturation is reached during the afternoon under extreme bloom and sunny weather conditions, provoking an abrupt O 2 purging of the lakes. Taking into account the seasonal variability, annual methane emissions are around 10.2molm -2 y -1 , i.e., much higher than reported in previous studies for alkaline lakes in Nhecolândia. Carbon dioxide and nitrous oxide consumption is estimated about 1.9molm -2 y

  8. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance

    USGS Publications Warehouse

    Parsekian, Andrew D.; Grosse, Guido; Walbrecker, Jan O.; Müller-Petke, Mike; Keating, Kristina; Liu, Lin; Jones, Benjamin M.; Knight, Rosemary

    2013-01-01

    A talik is a layer or body of unfrozen ground that occurs in permafrost due to an anomaly in thermal, hydrological, or hydrochemical conditions. Information about talik geometry is important for understanding regional surface water and groundwater interactions as well as sublacustrine methane production in thermokarst lakes. Due to the direct measurement of unfrozen water content, surface nuclear magnetic resonance (NMR) is a promising geophysical method for noninvasively estimating talik dimensions. We made surface NMR measurements on thermokarst lakes and terrestrial permafrost near Fairbanks, Alaska, and confirmed our results using limited direct measurements. At an 8 m deep lake, we observed thaw bulb at least 22 m below the surface; at a 1.4 m deep lake, we detected a talik extending between 5 and 6 m below the surface. Our study demonstrates the value that surface NMR may have in the cryosphere for studies of thermokarst lake hydrology and their related role in the carbon cycle.

  9. Methane Emissions from the Inland Waters of Alaska

    NASA Astrophysics Data System (ADS)

    Striegl, R. G.; Butman, D. E.; Stackpoole, S. M.; Dornblaser, M.

    2017-12-01

    Inland waters at high latitudes generally emit methane (CH4) continuously to the atmosphere during the open water season and build-up CH4 under ice during winter that is released over a short period following ice melt. Landscape position, stream and river size, water source, and turbulence created by water flow largely control CH4 emissions from streams and rivers. Organic carbon sources for CH4 production in lakes vary widely among lakes and landscapes and include hydrologic inputs from terrestrial sources, releases from permafrost thaw (thermokarst), and autochthonous inputs from aquatic macrophytes and algae. Lake emissions are therefore controlled by the balance between within-lake CH4 production and consumption, surface turbulence at the water-air interface, and CH4 ebullition. This creates a complex range of conditions that are difficult to characterize, where dissolved CH4 concentrations may vary by up to 4 orders of magnitude among lakes and/or within a single lake over an annual seasonal cycle. Moreover, large inputs of organic matter from permafrost thaw or other sources commonly result in high rates of bubble production and ebullition from some lakes, while other lakes have negligible ebullition. We quantified water surface areas and estimated CH4 emission rates for lakes, streams and rivers for the six major hydrologic regions of Alaska and determined that they collectively emit about 0.124 Tg C per year as CH4 to the atmosphere. Lake emissions comprise about 75% of the total. When adjusted for total land surface area in Alaska, our lake emission estimate is substantially smaller than previous global estimates for inland waters north of 50 degrees North latitude. We attribute this to incorporation of results that cover a broad range of lake conditions in interior Alaska and to new data from lakes in southwest Alaska that have very low CH4 concentration but very large surface area.

  10. Characterizing Methane Emission Response to the Past 60 Years of Permafrost Thaw in Thermokarst Lakes

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Walter Anthony, K. M.; Regmi, P.; Engram, M. J.; Wirth, L.; Grosse, G.

    2016-12-01

    In this NASA ABoVE-funded project, we combine geospatial data products derived from airborne and spaceborne remote sensing (RS) data with targeted field observations and modeling in order to quantify ecosystem responses to Arctic and boreal environmental change. Specifically, we quantify methane (CH4) ebullition (bubbling) emissions associated with 60 years of permafrost thaw in thousands of Alaskan and NW Canadian lakes by direct observation with RS systems. To achieve our goals, we have developed statistically-significant models that are using SAR, optical and infrared RS data in order to detect and quantify CH4 ebullition emissions at intra-, whole- and regional-lake scales. We also established a relationship between observed CH4 ebullition and average annual soil organic carbon (SOC) inputs to a handful of Alaskan lakes via thermokarst-margin expansion during recent decades using field data, radiocarbon dating and modeling. Our paper we will provide an overview of the goals, datasets, and methods used for the various components of this project. We will present on (1) the collection of new and synthesis of existing field data on CH4 ebullition, thaw-bulbs and SOC; (2) the analysis of existing data from aerial surveys, SAR and optical RS of CH4 in lake ice; (3) the orthorectification of historic aerial photos for comparison to high-resolution satellite imagery to produce fine-scale regional maps of lake area change, (4) the modelling of permafrost SOC quantities eroded into lakes; (5) the radiocarbon dating of CH4 and SOC, (6) GIS modeling to produce multi-temporal regional maps of historic lake area change, associated CH4 emissions, and permafrost SOC stocks; and (7) outreach to stakeholders at Alaska village and rural community field sites. To demonstrate the scientific relevance of our work we will also showcase a set of research results that we have been able to achieve so far. These will include (1) first regional-scale RS-based estimates of lake-borne CH4

  11. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    USGS Publications Warehouse

    Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  12. Carbon Cycling of Lake Kivu (East Africa): Net Autotrophy in the Epilimnion and Emission of CO2 to the Atmosphere Sustained by Geogenic Inputs

    PubMed Central

    Borges, Alberto V.; Morana, Cédric; Bouillon, Steven; Servais, Pierre; Descy, Jean-Pierre; Darchambeau, François

    2014-01-01

    We report organic and inorganic carbon distributions and fluxes in a large (>2000 km2) oligotrophic, tropical lake (Lake Kivu, East Africa), acquired during four field surveys, that captured the seasonal variations (March 2007–mid rainy season, September 2007–late dry season, June 2008–early dry season, and April 2009–late rainy season). The partial pressure of CO2 (pCO2) in surface waters of the main basin of Lake Kivu showed modest spatial (coefficient of variation between 3% and 6%), and seasonal variations with an amplitude of 163 ppm (between 579±23 ppm on average in March 2007 and 742±28 ppm on average in September 2007). The most prominent spatial feature of the pCO2 distribution was the very high pCO2 values in Kabuno Bay (a small sub-basin with little connection to the main lake) ranging between 11213 ppm and 14213 ppm (between 18 and 26 times higher than in the main basin). Surface waters of the main basin of Lake Kivu were a net source of CO2 to the atmosphere at an average rate of 10.8 mmol m−2 d−1, which is lower than the global average reported for freshwater, saline, and volcanic lakes. In Kabuno Bay, the CO2 emission to the atmosphere was on average 500.7 mmol m−2 d−1 (∼46 times higher than in the main basin). Based on whole-lake mass balance of dissolved inorganic carbon (DIC) bulk concentrations and of its stable carbon isotope composition, we show that the epilimnion of Lake Kivu was net autotrophic. This is due to the modest river inputs of organic carbon owing to the small ratio of catchment area to lake surface area (2.15). The carbon budget implies that the CO2 emission to the atmosphere must be sustained by DIC inputs of geogenic origin from deep geothermal springs. PMID:25314144

  13. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Lev, Einat

    2016-01-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering – a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  14. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, M. R.; Orr, T.; Swanson, D. A.; Lev, E.

    2016-12-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering - a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  15. Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation

  16. Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: a reevaluation from lake-sediment archives.

    PubMed

    Engstrom, Daniel R; Fitzgerald, William F; Cooke, Colin A; Lamborg, Carl H; Drevnick, Paul E; Swain, Edward B; Balogh, Steven J; Balcom, Prentiss H

    2014-06-17

    Human activities over the last several centuries have transferred vast quantities of mercury (Hg) from deep geologic stores to actively cycling earth-surface reservoirs, increasing atmospheric Hg deposition worldwide. Understanding the magnitude and fate of these releases is critical to predicting how rates of atmospheric Hg deposition will respond to future emission reductions. The most recently compiled global inventories of integrated (all-time) anthropogenic Hg releases are dominated by atmospheric emissions from preindustrial gold/silver mining in the Americas. However, the geophysical evidence for such large early emissions is equivocal, because most reconstructions of past Hg-deposition have been based on lake-sediment records that cover only the industrial period (1850-present). Here we evaluate historical changes in atmospheric Hg deposition over the last millennium from a suite of lake-sediment cores collected from remote regions of the globe. Along with recent measurements of Hg in the deep ocean, these archives indicate that atmospheric Hg emissions from early mining were modest as compared to more recent industrial-era emissions. Although large quantities of Hg were used to extract New World gold and silver beginning in the 16th century, a reevaluation of historical metallurgical methods indicates that most of the Hg employed was not volatilized, but rather was immobilized in mining waste.

  17. Influence of Lake Stratification Onset on Summer Surface Water Temperature

    NASA Astrophysics Data System (ADS)

    Woolway, R. I.; Merchant, C. J.

    2016-12-01

    Summer lake surface water temperatures (LSSWT) are sensitive to climatic warming and have previously been shown to increase at a faster rate than surface air temperatures in some lakes, as a response to thermal stratification occurring earlier in spring. We explore this relationship using a combination of in situ, satellite derived, and simulated temperatures from 144 lakes. Our results demonstrate that LSSWTs of high-latitude and large deep lakes are particularly sensitive to changes in stratification onset and can be expected to display an amplified response to climatic changes in summer air temperature. Climatic modification of LSSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response is important.

  18. Variability in methane emissions from West Siberia's shallow boreal lakes on a regional scale and its environmental controls

    NASA Astrophysics Data System (ADS)

    Sabrekov, Aleksandr F.; Runkle, Benjamin R. K.; Glagolev, Mikhail V.; Terentieva, Irina E.; Stepanenko, Victor M.; Kotsyurbenko, Oleg R.; Maksyutov, Shamil S.; Pokrovsky, Oleg S.

    2017-08-01

    Small lakes represent an important source of atmospheric CH4 from northern wetlands. However, spatiotemporal variations in flux magnitudes and the lack of knowledge about their main environmental controls contribute large uncertainty into the global CH4 budget. In this study, we measured methane fluxes from small lakes using chambers and bubble traps. Field investigations were carried out in July-August 2014 within the West Siberian middle and southern taiga zones. The average and median of measured methane chamber fluxes were 0.32 and 0.30 mgCH4 m-2 h-1 for middle taiga lakes and 8.6 and 4.1 mgCH4 m-2 h-1 for southern taiga lakes, respectively. Pronounced flux variability was found during measurements on individual lakes, between individual lakes and between zones. To analyze these differences and the influences of environmental controls, we developed a new dynamic process-based model. It shows good performance with emission rates from the southern taiga lakes and poor performance for individual lakes in the middle taiga region. The model shows that, in addition to well-known controls such as temperature, pH and lake depth, there are significant variations in the maximal methane production potential between these climatic zones. In addition, the model shows that variations in gas-filled pore space in lake sediments are capable of controlling the total methane emissions from individual lakes. The CH4 emissions exhibited distinct zonal differences not only in absolute values but also in their probability density functions: the middle taiga lake fluxes were best described by a lognormal distribution while the southern taiga lakes followed a power-law distribution. The latter suggests applicability of self-organized criticality theory for methane emissions from the southern taiga zone, which could help to explain the strong variability within individual lakes.

  19. Variability of passive gas emissions, seismicity, and deformation during crater lake growth at White Island Volcano, New Zealand, 2002-2006

    USGS Publications Warehouse

    Werner, C.; Hurst, T.; Scott, B.; Sherburn, S.; Christenson, B.W.; Britten, K.; Cole-Baker, J.; Mullan, B.

    2008-01-01

    We report on 4 years of airborne measurements of CO2, SO2, and H2S emission rates during a quiescent period at White Island volcano, New Zealand, beginning in 2003. During this time a significant crater lake emerged, allowing scrubbig processes to be investigated. CO2 emissions varied from a baseline of 250 to >2000 t d-1 and demonstrated clear annual cycling that was consistent with numbers of earthquake detections and annual changes in sea level. The annual variability was found to be most likely related to increases in the strain on the volcano during sea level highs, temporarily causing fractures to reduce in size in the upper conduit. SO2 emissions varied from 0 to >400 t d-1 and were clearly affected by scrubbing processes within the first year of take development. Scrubbing caused increases of SO42- and Cl- in lake waters, and the ratio of carbon to total sulphur suggested that elemental sulphur deposition was also significant in the lake during the first year. Careful measurements of the lake level and chemistry allowed estimates of the rate of H2O(g) and HCl(g) input into the lake and suggested that the molar abundances of major gas species (H2O, CO2, SO2, and HCl) during this quiescent phase were similar to fumarolic ratios observed between earlier eruptive periods. The volume of magma estimated from CO2 emissions (0.0 15-0.04 km3) was validated by Cl- increases in the lake, suggesting that the gas and magma are transported from deep to shallow depths as a closed system and likely become open in the upper conduit region. The absence of surface deformation further leads to a necessity of magma convection to supply and remove magma from the degassing depths. Two models of convection configurations are discussed. Copyright 2008 by the American Geophysical Union.

  20. DEPOSITION AND EMISSION OF GASEOUS MERCURY TO AND FROM LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY (JULY, 1994 - OCTOBER, 1995)

    EPA Science Inventory

    This paper presents measurements of dissolved gaseous mercury (DGM) concentrations in Lake Michigan and the application of a mechanistic approach to estimate deposition and emission fluxes of gaseous mercury (Hg2+ and Hg0) to and from Lake Michigan. Measurements of DGM concentr...

  1. Operational tracking of lava lake surface motion at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.

    2018-03-08

    Surface motion is an important component of lava lake behavior, but previous studies of lake motion have been focused on short time intervals. In this study, we implement the first continuous, real-time operational routine for tracking lava lake surface motion, applying the technique to the persistent lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i. We measure lake motion by using images from a fixed thermal camera positioned on the crater rim, transmitting images to the Hawaiian Volcano Observatory (HVO) in real time. We use an existing optical flow toolbox in Matlab to calculate motion vectors, and we track the position of lava upwelling in the lake, as well as the intensity of spattering on the lake surface. Over the past 2 years, real-time tracking of lava lake surface motion at Halema‘uma‘u has been an important part of monitoring the lake’s activity, serving as another valuable tool in the volcano monitoring suite at HVO.

  2. Groundwater and surface water interaction in flow-through gravel pit lakes.

    NASA Astrophysics Data System (ADS)

    Nella Mollema, Pauline; Antonellini, Marco

    2015-04-01

    Gravel pits are excavated in aquifers to fulfill the need for construction materials. Flow-through lakes form when the gravel pits are below the water table and fill with groundwater. In certain areas there are more than 60 of these lakes close together and their presence changes the drainage patterns and water- and hydrochemical budgets of a watershed. In flow-through gravel pit lakes, groundwater mixes with surface water and interacts with the atmosphere; outflow occurs only via groundwater. The lifespan of gravel pit lakes may be up to thousands of years as their depth to surface ratio is typically large and sedimentation rates are low. We have studied two gravel pit lake systems, a fluvial freshwater system in the Netherlands and a coastal brackish lake system in Italy. One Dutch gravel pit lake studied in detail is in part artificially replenished with Meuse River water for drinking water production that occurs downstream of the lake by water pumps. The Italian gravel pit lakes are fed by brackish groundwater that is a mix of freshwater from precipitation, Apennine Rivers and brackish (Holocene) Adriatic Sea water. Here, the drainage system of the low lying land enhances groundwater flow into the lake. Surface water evaporation is larger in temperate and Mediterranean climates than the actual evapotranspiration of pre-existing grassland and forests. The lakes, therefore, cause a loss of freshwater. The creation of water surfaces allows algae and other flora and fauna to develop. In general, water becomes gradually enriched in certain chemical constituents on its way through the hydrological cycle, especially as groundwater due to water-rock interactions. When groundwater ex-filtrates into gravel pit lakes, the natural flow of solutes towards the sea is interrupted. Hydrochemical analysis of ground- and surface waters, as well as chemical analysis of lake bottom sediments and stable H and O isotope data, show that gravel pit lake water is characterized (among

  3. Integrating time-series and spatial surveys to assess annual, lake-wide emissions of carbon dioxide and methane from a eutrophic lake

    NASA Astrophysics Data System (ADS)

    Loken, L. C.; Crawford, J.; Schramm, P.; Stadler, P.; Stanley, E. H.

    2017-12-01

    Lakes are important regulators of global carbon cycling and conduits of greenhouse gases to the atmosphere; however, most efflux estimates for individual lakes are based on extrapolations from a limited number of locations. Within-lake variability in carbon dioxide (CO2) and methane (CH4) arises from differences in water sources, physical mixing, and biogeochemical transformations; all of which can vary at multiple temporal and spatial scales. We mapped surface water concentrations of CO2 and CH4 weekly across Lake Mendota (a 39.9 km2 eutrophic lake in Wisconsin, USA) spanning the majority of the 2016 ice-free season (249 days). Combining these maps with a spatially explicit gas transfer velocity (k) model, we estimated the diffusive exchange of both gases with the atmosphere taking into account both spatial and temporal heterogeneity. The cumulative efflux of CO2 (85.3 Mmol) and CH4 (9.47 Mmol) was positive, indicating that on the annual scale Lake Mendota was a net-source of both gases to the atmosphere. Although our model included variability in k, flux patterns reflected the patterns in gas concentrations. During the stratified period, CO2 was generally undersaturated throughout the pelagic zone due to high primary production and differed near river inlets and shorelines. The lake was routinely extremely supersaturated with CH4 with elevated concentrations in expansive littoral areas. During fall mixis, concentrations of both gases increased and became more variable across the lake surface, and their spatial arrangement changed reflecting hypolimentic mixing. In this system, samples collected from the lake center reasonably well-represented the lake-wide mean CO2 concentration, but they poorly represented CH4. While metabolic processes driving CO2 varied across the lake surface, pelagic phytoplankton contributed extensively to overall primary production, which acted at the lake-wide scale. Additionally Lake Mendota's high alkalinity may have masked the

  4. Sources of fatty acids in Lake Michigan surface microlayers and subsurface waters

    NASA Astrophysics Data System (ADS)

    Meyers, Philip A.; Owen, Robert M.

    1980-11-01

    Fatty acid and organic carbon contents have been measured in the particulate and dissolved phases of surface microlayer and subsurface water samples collected from Lake Michigan. Concentrations are highest close to fluvial sources and lowest in offshore areas, yet surface/subsurface fractionation is lowest near river mouths and highest in open lake locations. These gradients plus accompanying fatty acid compositional changes indicate that river-borne organic materials are important constituents of coastal Lake Michigan microlayers and that sinking and turbulent resuspension of particulates affect surface film characteristics. Lake neuston and plankton contribute organic components which partially replace potamic materials removed by sinking.

  5. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments of two lakes of the Dongting Lake district in Hunan, China

    NASA Astrophysics Data System (ADS)

    He, Jiang; Yang, Yajing; Zhang, Lugang; Luo, Yushuang; Liu, Fei; Yang, Pinhong

    2018-04-01

    In this paper, 18 and 12 surface sediment samples were collected from Datong Lake and Shanpo Lake, respectively, and the 16 USEPA priority Polycyclic aromatic hydrocarbons (PAHs) in these samples were detected. The result indicated that the Σ16PAHs ranged from 206.56 to 1058.98 ng.g-1 with an average concentration of 667.22 ng.g-1 in sediments from Datong Lake, whereas it ranged from 90.62 to 900.70 ng.g-1 with an average concentration of 364.97 ng.g-1 in sediments from Shanpo Lake. The concentrations of individual PAHs in sediments ranged from 5.50 to 85.23 and from 4.39 to 52.74 ng.g-1 in Datong Lake and Shanpo Lake, respectively. According to the indexes such as HMW/LMW, Ant/(Ant+Phe), Flua/(Flua+Pyr), IcdP/(IcdP+BghiP), and BaA/(BaA+Chr), the PAHs in sediments from both lakes are mainly of pyrogenic origin. The total BaP equivalent in the surface sediment samples from Datong Lake and Shanpo Lake is 42.77 and 33.35 ng.g-1, respectively.

  6. [Temporal and Spatial Characteristics of Lake Taihu Surface Albedo and Its Impact Factors].

    PubMed

    Cao, Chang; Li, Xu-hui; Zhang, Mi; Liu, Shou-dong; Xiao, Wei; Xiao, Qi-tao; Xu, Jia-ping

    2015-10-01

    Lake surface albedo determines energy balance of water-atmospheric interface and water physical environment. Solar elevation angle, cloudiness, wind speed, water quality and other factors can affect lake surface albedo. Using solar radiation, wind speed, and water quality data (turbidity and chlorophyll-a concentration) which were observed in four eddy covariance sites (Meiliangwan, Dapukou, Bifenggang and Xiaoleishan i. e. MLW, DPK, BFG and XLS) in Lake Taihu and clearness index (k(t)), the influence of these factors on Lake Taihu surface albedo and the reasons that led to its spatial difference were investigated. The results showed that solar elevation angle played a leading role in the diurnal and seasonal change of lake surface albedo; lake surface albedo reached two peaks in 0 < k(t) < 0.1 and 0.4 < k(t) < 0.6 respectively, when solar elevation angle was below 35 degrees. The surface albedo increased with the increasing wind speed, turbidity and chlorophyll-a concentration. However, wind could indirectly affect surface albedo through leading to the changes in sediment resuspension and chlorophyll-a distribution. The sequence of albedo in the four sites was XLS > BFG > DPK > MLW. XLS and BFG belonged to the higher albedo group, while DPK and MLW belonged to the lower albedo group. The different biological environments caused by aquatic macrophytes and algae resulting in the spatial variation of Lake Taihu surface albedo. The relationship between albedo and chlorophyll-a concentration was not a very sensitive factor for indicating the outbreak of algae. This study can provide theoretical reference for lake albedo parameterization.

  7. Microplastics in surface waters of Dongting Lake and Hong Lake, China.

    PubMed

    Wang, Wenfeng; Yuan, Wenke; Chen, Yuling; Wang, Jun

    2018-08-15

    Microplastics pollution is an environmental issue of increasing concern. Much work has been done on the microplastics pollution in the marine environments. Although freshwaters are potential sources and transport pathways of plastic debris to the oceans, there is a lack of knowledge regarding the presence of microplastics in freshwater systems, especially in China, the world's largest producer of plastics. This study investigated the occurrence and properties of microplastics in surface waters of two important lakes in the middle reaches of the Yangtze River. The concentration ranges of microplastics in Dongting Lake and Hong Lake were 900-2800 and 1250-4650n/m 3 , respectively. Fiber was the dominant shape. Colored items occupied the majority. Particles with a size of <330μm comprised >20% of total microplastics collected in both lakes. Most of the selected particles were identified as plastics, with polyethylene (PE) and polypropylene (PP) being the major components. This study can provide valuable reference for better understanding the microplastics pollution in inland freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The Dynamics of Laurentian Great Lakes Surface Energy Budgets

    NASA Astrophysics Data System (ADS)

    Spence, C.; Blanken, P.; Lenters, J. D.; Gronewold, A.; Kerkez, B.; Xue, P.; Froelich, N.

    2015-12-01

    The Laurentian Great Lakes constitute the largest freshwater surface in the world and are a valuable North American natural and socio-economic resource. In response to calls for improved monitoring and research on the energy and water budgets of the lakes, there has been a growing ensemble of in situ measurements - including offshore eddy flux towers, buoy-based sensors, and vessel-based platforms -deployed through an ongoing, bi-national collaboration known as the Great Lakes Evaporation Network (GLEN). The objective of GLEN is to reduce uncertainty in Great Lakes seasonal and 6-month water level forecasts, as well as climate change projections of the surface energy balance and water level fluctuations. Although It remains challenging to quantify and scale energy budgets and fluxes over such large water bodies, this presentation will report on recent successes in three areas: First, in estimating evaporation rates over each of the Great Lakes; Second, defining evaporation variability among the lakes, especially in winter and; Third, explaining the interaction between ice cover, water temperature, and evaporation across a variety of temporal and spatial scales. Research gaps remain, particularly those related to spatial variability and scaling of turbulent fluxes, so the presentation will also describe how this will be addressed with enhanced instrument and platform arrays.

  9. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives

    NASA Astrophysics Data System (ADS)

    Prats, Jordi; Reynaud, Nathalie; Rebière, Delphine; Peroux, Tiphaine; Tormos, Thierry; Danis, Pierre-Alain

    2018-04-01

    The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost. We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs, ponds, gravel pit lakes and quarry lakes) for the period 1999-2016. We assessed the quality of the satellite temperature measurements by comparing them to in situ measurements and taking into account the cool skin and warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about -0.3 and -0.6 °C most of time, while the warm layer effect at 0.55 m was negligible on average, but could occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the satellite-derived temperature measurements was about 1.2 °C, similar to other applications of satellite images to estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available at https://doi.org/10.5281/zenodo.1193745.

  10. The Effect of Lake Temperatures and Emissions on Ozone Exposure in the Western Great Lakes Region

    Treesearch

    Jerome D. Fast; Warren E. Heilman

    2003-01-01

    A meteorological-chemical model with a 12-km horizontal grid spacing was used to simulate the evolution of ozone over the western Great Lakes region during a 30-day period in the summer of 1999. Lake temperatures in the model were based on analyses derived from daily satellite measurements. The model performance was evaluated using operational surface and upper-air...

  11. The Summertime Warming Trends in Surface Water Temperature of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Kravtsov, S.; Roebber, P.

    2014-12-01

    Over the past 30 years, the Laurentian Great Lakes have exhibited summertime warming trends in surface water temperature which were greater than those in surface air temperature of the surrounding land, by as much as an order of magnitude over some of the regions. For the years 1995-2012, Lake Superior exhibited the most dramatic warming trend in July-mean temperature, of 0.27±0.15 deg. C yr-1, based on the NOAA's GLSEA satellite observations. Shallower lakes, such as Lake Erie, exhibited smaller warming trends. In addition, within each lake, the warming was also the greatest in the regions of larger water depth; for example, some regions of Lake Superior deeper than 200m exhibited surface-water July-mean warming trends which exceeded 0.3 deg. C yr-1. We used a three-column lake model based on the one developed by Hostetler and Barnstein (1990) coupled with a two-layer atmospheric energy balance model to explore the physics behind these warming trends. We found that, as suggested by Austin and Colman (2007), the ice-albedo feedback plays an important role in amplifying the overlake warming trends. Our particular emphasis was on the question of whether the ice-albedo feedback alone is enough to account for lacustrine amplification of surface warming observed over the Great Lakes region. We found that the answer to this question depends on a number of model parameters, including the diffusion and light attenuation coefficients, which greatly affect the model's skill in reproducing the observed ice coverage of the deep lakes.

  12. Diminished mercury emission from waters with duckweed cover

    NASA Astrophysics Data System (ADS)

    Wollenberg, Jennifer L.; Peters, Stephen C.

    2009-06-01

    Duckweeds (Lemnaceae) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and limits gas exchange at the water-air interface by decreasing the area of open water surface. Experiments were conducted to determine whether duckweed decreases mercury emission by limiting gas diffusion across the water-air interface and attenuating light, or, conversely, enhances emission via transpiration of mercury vapor. Microcosm flux chamber experiments indicate that duckweed decreases mercury emission from the water surface compared to open water controls. Fluxes under duckweed were 17-67% lower than in controls, with lower fluxes occurring at higher percent cover. The decrease in mercury emission suggests that duckweed may limit emission through one of several mechanisms, including limited gas transport across the air-water interface, decreased photoreactions due to light attenuation, and plant-mercury interactions. The results of this experiment were applied to a model lake system to illustrate the magnitude of potential effects on mercury cycling. The mercury retained in the lake as a result of hindered emission may increase bioaccumulation potential in lakes with duckweed cover.

  13. Rapid and highly variable warming of lake surface waters around the globe

    USGS Publications Warehouse

    O'Reilly, Catherine; Sharma, Sapna; Gray, Derek; Hampton, Stephanie; Read, Jordan S.; Rowley, Rex J.; Schneider, Philipp; Lenters, John D.; McIntyre, Peter B.; Kraemer, Benjamin M.; Weyhenmeyer, Gesa A.; Straile, Dietmar; Dong, Bo; Adrian, Rita; Allan, Mathew G.; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John L.; Baron, Jill S.; Brookes, Justin D; de Eyto, Elvira; Dokulil, Martin T.; Hamilton, David P.; Havens, Karl; Hetherington, Amy L.; Higgins, Scott N.; Hook, Simon; Izmest'eva, Lyubov R.; Jöhnk, Klaus D.; Kangur, Külli; Kasprzak, Peter; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; Livingstone, David M.; MacIntyre, Sally; May, Linda; Melack, John M.; Mueller-Navara, Doerthe C.; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; North, Ryan P.; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Schindler, Daniel E.; Schladow, Geoffrey; Schmid, Martin; Schmidt, Silke R.; Silow, Eugene A.; Soylu, M. Evren; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Williamson, Craig E.; Zhang, Guoqing

    2015-01-01

    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.

  14. Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and ages

    Treesearch

    K.M. Walter; J.P. Chanton; F.S. Chapin III; E.A.G. Schuur; S.A. Zimov

    2008-01-01

    This study reports an atmospheric methane (CH4) source term previously uncharacterized regarding strength and isotopic composition. Methane emissions from 14 Siberian lakes and 9 Alaskan lakes were characterized using stable isotopes (13C and D) and radiocarbon (14C) analyses. We classified ebullition...

  15. Chemical quality of surface waters in Devils Lake basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  16. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.

    PubMed

    Rasilo, Terhi; Prairie, Yves T; Del Giorgio, Paul A

    2015-03-01

    Lakes are a major component of boreal landscapes, and whereas lake CO2 emissions are recognized as a major component of regional C budgets, there is still much uncertainty associated to lake CH4 fluxes. Here, we present a large-scale study of the magnitude and regulation of boreal lake summer diffusive CH4 fluxes, and their contribution to total lake carbon (C) emissions, based on in situ measurements of concentration and fluxes of CH4 and CO2 in 224 lakes across a wide range of lake type and environmental gradients in Québec. The diffusive CH4 flux was highly variable (mean 11.6 ± 26.4 SD mg m(-2)  d(-1) ), and it was positively correlated with temperature and lake nutrient status, and negatively correlated with lake area and colored dissolved organic matter (CDOM). The relationship between CH4 and CO2 concentrations fluxes was weak, suggesting major differences in their respective sources and/or regulation. For example, increasing water temperature leads to higher CH4 flux but does not significantly affect CO2 flux, whereas increasing CDOM concentration leads to higher CO2 flux but lower CH4 flux. CH4 contributed to 8 ± 23% to the total lake C emissions (CH4  + CO2 ), but 18 ± 25% to the total flux in terms of atmospheric warming potential, expressed as CO2 -equivalents. The incorporation of ebullition and plant-mediated CH4 fluxes would further increase the importance of lake CH4 . The average Q10 of CH4 flux was 3.7, once other covarying factors were accounted for, but this apparent Q10 varied with lake morphometry and was higher for shallow lakes. We conclude that global climate change and the resulting shifts in temperature will strongly influence lake CH4 fluxes across the boreal biome, but these climate effects may be altered by regional patterns in lake morphometry, nutrient status, and browning. © 2014 John Wiley & Sons Ltd.

  17. [Characterizing chromophoric dissolved organic matter (CDOM) in Lake Honghu, Lake Donghu and Lake Liangzihu using excitation-emission matrices (EEMs) fluorescence and parallel factor analysis (PARAFAC)].

    PubMed

    Zhou, Yong-Qiang; Zhang, Yun-Lin; Niu, Cheng; Wang, Ming-Zhu

    2013-12-01

    Little is known about DOM characteristics in medium to large sized lakes located in the middle and lower reaches of Yangtze River, like Lake Honghu, Lake Donghu and Lake Liangzihu. Absorption, fluorescence and composition characteristics of chromophoric dissolved organic matter (CDOM) are presented using the absorption spectroscopy, the excitation-emission ma trices (EEMs) fluorescence and parallel factor analysis (PARAFAC) model based on the data collected in Sep-Oct. 2007 including 15, 9 and 10 samplings in Lake Honghu, Lake Donghu and Lake Liangzihu, respectively. CDOM absorption coefficient at 350 nm a(350) coefficient in Lake Honghu was significantly higher than those in Lake Donghu and Lake Liangzihu (t-test, p< 0. 001). A significant negative correlation was found between CDOM spectral slope in the wavelength range of 280-500 nm (S280-500) and a(350) (R2 =0. 781, p<0. 001). The mean value of S280-500 in Lake Honghu was significantly lower than those in Lake Donghu (t-test, pLake Liangzihu (t-test, p<0. 001). The mean value of spectral slope ratio SR in Lake Honghu was also significantly lower than those in Lake Donghu and Lake Liangzihu (t-test, p<0. 05). Two humic-like (C1, C2) and two protein-like fluorescent components (C3, C4) were identified by PARAFAC model, among which significant positive correlations were found between C1 and C2 (R2 =0. 884, p<0. 001), C3 and C4 (R2 =0. 677, p<0.001), respectively, suggesting that the sources of the two humic-like components as well as the two protein-like components were similar. However, no significant correlation has been found between those 4 fluorescent components and DOC concentration. Th e fluorescenceindices of FI255 (HIX), Fl265, FI310 (BIX) and Fl370 in Lake Donghu were all significantly higher than those in Lake Liangzihu (t-test, p <0.05) and Lake Honghu (t-test, p<0. 01), indicating that the eutrophication status in Lake Donghu was higher than Lake Honghu and Lake Liangzihu.

  18. The use of total lake-surface area as an indicator of climatic change: Examples from the Lahontan basin

    USGS Publications Warehouse

    Benson, L.V.; Paillet, Frederick L.

    1989-01-01

    Variation in the size of lakes in the Lahontan basin is topographically constrained. River diversion also has played a major role in regulating lake size in Lahontan subbasins. The proper gage of lake response to change in the hydrologic balance is neither lake depth (level) nor lake volume but instead lake-surface area. Normalization of surface area is necessary when comparing surface areas of lakes in basins having different topographies. To a first approximation, normalization can be accomplished by dividing the paleosurface area of a lake by its mean-historical, reconstructed surface area. ?? 1989.

  19. Methane distribution and transportation in Lake Chaohu: a shallow eutrophic lake in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shen, Q.

    2016-12-01

    Global warming and eutrophication are two world widely concerned environmental problems. Methane is the second important greenhouse gas, and lake has been proven as a quite important natural source of methane emission. More methane may emit from eutrophic lake due to the higher organic matter deposition in the lake sediment. Lake Chaohu is a large and shallow eutrophic lake in eastern China (N31°25' 31°43', E117°16' 117°05'), with an area of 770 km2 and a mean depth of 2.7 m. To examine methane distribution and transportation in this eutrophic lake, field study across different seasons was carried out with 20 study sites in the lake. Samples from the different water and sediment depth was collected using headspace bottle, and methane content was measured by gas chromatography using a flame ionization detector. The potential methane production in the sediment was examined by an indoor incubation experiment. Methane flux from sediment to the overlying water was calculated by Fick's law, and methane emission from surface to the air was calculated at the same time. The results indicates that more methane accumulated in the water of northwestern bay in this lake, and higher methane release rates was also found at this area. Methane increases gradually with depth in the top 10 cm in sediment cores, then it almost keeps at constant state in the deeper sediment. In the sediment from northwestern bay, more methane content and the higher potential methane production was found compared to the sediment from the east area of this lake.

  20. CO2 and CH4 emissions from streams in a lake-rich landscape: Patterns, controls, and regional significance

    USGS Publications Warehouse

    Crawford, John T.; Lottig, Noah R.; Stanley, Emily H.; Walker, John F.; Hanson, Paul C.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Aquatic ecosystems are important components of landscape carbon budgets. In lake-rich landscapes, both lakes and streams may be important sources of carbon gases (CO2 and CH4) to the atmosphere, but the processes that control gas concentrations and emissions in these interconnected landscapes have not been adequately addressed. We use multiple data sets that vary in their spatial and temporal extent during 2001–2012 to investigate the carbon gas source strength of streams in a lake-rich landscape and to determine the contribution of lakes, metabolism, and groundwater to stream CO2 and CH4. We show that streams emit roughly the same mass of CO2 (23.4 Gg C yr−1; 0.49 mol CO2 m−2 d−1) as lakes at a regional scale (27 Gg C yr−1) and that stream CH4 emissions (189 Mg C yr−1; 8.46 mmol CH4 m−2 d−1) are an important component of the regional greenhouse gas balance. Gas transfer velocity variability (range = 0.34 to 13.5 m d−1) contributed to the variability of gas flux in this landscape. Groundwater inputs and in-stream metabolism control stream gas supersaturation at the landscape scale, while carbon cycling in lakes and deep groundwaters does not control downstream gas emissions. Our results indicate the need to consider connectivity of all aquatic ecosystems (lakes, streams, wetlands, and groundwater) in lake-rich landscapes and their connections with the terrestrial environment in order to understand the full nature of the carbon cycle.

  1. In-lake carbon dioxide concentration patterns in four distinct phases in relation to ice cover dynamics

    NASA Astrophysics Data System (ADS)

    Denfeld, B. A.; Wallin, M.; Sahlee, E.; Sobek, S.; Kokic, J.; Chmiel, H.; Weyhenmeyer, G. A.

    2014-12-01

    Global carbon dioxide (CO2) emission estimates from inland waters include emissions at ice melt that are based on simple assumptions rather than evidence. To account for CO2 accumulation below ice and potential emissions into the atmosphere at ice melt we combined continuous CO2 concentrations with spatial CO2 sampling in an ice-covered small boreal lake. From early ice cover to ice melt, our continuous surface water CO2 concentration measurements at 2 m depth showed a temporal development in four distinct phases: In early winter, CO2 accumulated continuously below ice, most likely due to biological in-lake and catchment inputs. Thereafter, in late winter, CO2 concentrations remained rather constant below ice, as catchment inputs were minimized and vertical mixing of hypolimnetic water was cut off. As ice melt began, surface water CO2 concentrations were rapidly changing, showing two distinct peaks, the first one reflecting horizontal mixing of CO2 from surface and catchment waters, the second one reflecting deep water mixing. We detected that 83% of the CO2 accumulated in the water during ice cover left the lake at ice melt which corresponded to one third of the total CO2 storage. Our results imply that CO2 emissions at ice melt must be accurately integrated into annual CO2 emission estimates from inland waters. If up-scaling approaches assume that CO2 accumulates linearly under ice and at ice melt all CO2 accumulated during ice cover period leaves the lake again, present estimates may overestimate CO2 emissions from small ice covered lakes. Likewise, neglecting CO2 spring outbursts will result in an underestimation of CO2 emissions from small ice covered lakes.

  2. Shallowly driven fluctuations in lava lake outgassing (gas pistoning), Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Patrick, Matthew R.; Orr, Tim; Sutton, A. J.; Lev, Einat; Thelen, Wes; Fee, David

    2016-01-01

    Lava lakes provide ideal venues for directly observing and understanding the nature of outgassing in basaltic magmatic systems. Kīlauea Volcano's summit lava lake has persisted for several years, during which seismic and infrasonic tremor amplitudes have exhibited episodic behavior associated with a rise and fall of the lava surface (;gas pistoning;). Since 2010, the outgassing regime of the lake has been tied to the presence or absence of gas pistoning. During normal behavior (no gas pistoning), the lake is in a ;spattering; regime, consisting of higher tremor amplitudes and gas emissions. In comparison, gas piston events are associated with an abrupt rise in lava level (up to 20 m), during which the lake enters a ;non-spattering; regime with greatly decreased tremor and gas emissions. We study this episodic behavior using long-term multidisciplinary monitoring of the lake, including seismicity, infrasound, gas emission and geochemistry, and time-lapse camera observations. The non-spattering regime (i.e. rise phase of a gas piston cycle) reflects gas bubbles accumulating near the top of the lake, perhaps as a shallow foam, while spattering regimes represent more efficient decoupling of gas from the lake. We speculate that the gas pistoning might be controlled by time-varying porosity and/or permeability in the upper portions of the lava lake, which may modulate foam formation and collapse. Competing models for gas pistoning, such as deeply sourced gas slugs, or dynamic pressure balances, are not consistent with our observations. Unlike other lava lakes which have cyclic behavior that is thought to be controlled by deeply sourced processes, external to the lake itself, we show an example of lava lake fluctuations driven by cycles of activity at shallow depth and close to the lake's surface. These observations highlight the complex and unsteady nature of outgassing from basaltic magmatic systems.

  3. Hidden Outgassing Dynamics at Kilauea (Hawaii) Lava Lake

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; Orr, T. R.; Houghton, B. F.; Scarlato, P.; Patrick, M. R.

    2014-12-01

    Lava lakes offer unique opportunities for understanding how magmatic volatiles physically escape from low-viscosity, vesicular magma in open-vent conditions, a process often referred to as magma outgassing. Large-scale lava convection movements and meter-scale bubble explosions, sometimes triggered by rock falls, are acknowledged outgassing processes but may not be the only ones. In 2013 we used high-frequency (50-500 Hz) thermal and visible imaging to investigate the short-timescale dynamics of the currently active Halema`uma`u lava lake. At that time, besides the dominant release of large bubbles, three types of peculiar outgassing features were observed on the lava lake surface. The first, diffusely observed throughout the observation experiment, consisted of prolonged (up to seconds) gas venting from 'spot vents'. These vents appeared to open and close without the ejection of material or bubble bursting, and were the site of hot gas emission. Spot vents were located both between and inside cooling plates, and followed the general circulation pattern together with the rest of the lava lake surface. The second feature, observed only once, consisted of the transient wobbling of the whole lava lake surface. This wobbling, with a wavelength of meters to tens of meters, was not related to any external trigger, and dampened soon without apparent consequences on the other lake dynamics. Finally, we observed large (meters) doming areas of the lake surface randomly fluctuating over seconds to minutes. These areas were either stationary or moved independently of the general lake surface circulation, and usually were not affected by other lake surface features (e.g., cooling plate boundaries). These three features, though trivial for the overall lake outgassing, testify that the lava lake has a complex shallow subsurface architecture, in which permeable channels and gas pockets act independently of the more common bubble bursts.

  4. A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009.

    PubMed

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O'Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest'eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  5. Desktop Techniques for Analyzing Surface-Ground Water Interactions. The Reelfoot Lake Case Study

    DTIC Science & Technology

    1988-05-01

    Reelfoot Lake Case Study DTlCSELECTE JUN 13 M Research Document No. 28 May 1988 Approved for Public Release. Distribution Unlimited. 86 , l~ g DESKTOP...TECHNIQUES FOR ANALYZING SURFACE-GROUND WATER INTERACTIONS The Reelfoot Lake Case Study Prepared by Dennis B. McLaughlin ’ Ia Prepared for The...Engineers became involved in a study of Reelfoot Lake , a large natural lake in northwestern Tennessee. Although modeling studies of the lake and its

  6. Evaluating Anthropogenic Carbon Emissions in the Urban Salt Lake Valley through Inverse Modeling: Combining Long-term CO2 Observations and an Emission Inventory using a Multiple-box Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Catharine, D.; Strong, C.; Lin, J. C.; Cherkaev, E.; Mitchell, L.; Stephens, B. B.; Ehleringer, J. R.

    2016-12-01

    The rising level of atmospheric carbon dioxide (CO2), driven by anthropogenic emissions, is the leading cause of enhanced radiative forcing. Increasing societal interest in reducing anthropogenic greenhouse gas emissions call for a computationally efficient method of evaluating anthropogenic CO2 source emissions, particularly if future mitigation actions are to be developed. A multiple-box atmospheric transport model was constructed in conjunction with a pre-existing fossil fuel CO2 emission inventory to estimate near-surface CO2 mole fractions and the associated anthropogenic CO2 emissions in the Salt Lake Valley (SLV) of northern Utah, a metropolitan area with a population of 1 million. A 15-year multi-site dataset of observed CO2 mole fractions is used in conjunction with the multiple-box model to develop an efficient method to constrain anthropogenic emissions through inverse modeling. Preliminary results of the multiple-box model CO2 inversion indicate that the pre-existing anthropogenic emission inventory may over-estimate CO2 emissions in the SLV. In addition, inversion results displaying a complex spatial and temporal distribution of urban emissions, including the effects of residential development and vehicular traffic will be discussed.

  7. Lake Surface Water Temperature of European Lakes retrieved from AVHRR Data - Time Series and Quality Assessment

    NASA Astrophysics Data System (ADS)

    Wunderle, S.; Lieberherr, G.; Riffler, M.

    2016-12-01

    Data analysis of the recent years showed an increase of lake surface water temperature for many lakes around the world. But due to sparse in-situ measurements, which are often not well documented, only satellite data can provide the needed information of the last decades. The importance of lakes for climate research was also highlighted by the Global Climate Observing System (GCOS) defining lakes as Essential Climate Variables (ECVs). Within the frame of a research project funded by the Swiss National Science Foundation a procedure was developed to retrieve lake surface water temperature with high accuracy based on our archived AVHRR data at the University of Bern, Switzerland. The data archive starts in 1985 and is continuously filled with NOAA-/MetOp-AVHRR data received by our antenna resulting in a time series of more than 30 years (WMO definition of a climate period). The data set covering Europe is also used by other teams for climate related studies resulting in improved pre-processing to guarantee precise calibration and geocoding. The first part of our presentation will be dedicated to the quality of the LSWT retrieval comparing various in-situ measurements from lakes in Switzerland with varying sizes (150km2 - 9km2). The quality of the used split-window approach is sensitive to the derived split-window coefficients. The influence of water vapor, view angle, temporal and spatial validity and day vs. night data will be shown. In addition, some information will be presented about the influence of topography and climatic regions (e.g. Scandinavia vs. Greece) on the quality of the LSWT product. Based on these findings compiling time series for different lakes in Europe will be the focus of the second part of our presentation with details of the applied quality assessment to avoid erroneous signals. Hence, some information is given about hierarchical quality checks which are needed to guarantee a dataset without artefacts. Finally, some results of time series

  8. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake.

    PubMed

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2014-07-01

    Changes in the budget of dissolved methane measured in a small temperate lake over 1 year indicate that anoxic conditions in the hypolimnion and the autumn overturn period represent key factors for the overall annual methane emissions from lakes. During periods of stable stratification, large amounts of methane accumulate in anoxic deep waters. Approximately 46% of the stored methane was emitted during the autumn overturn, contributing ∼80% of the annual diffusive methane emissions to the atmosphere. After the overturn period, the entire water column was oxic, and only 1% of the original quantity of methane remained in the water column. Current estimates of global methane emissions assume that all of the stored methane is released, whereas several studies of individual lakes have suggested that a major fraction of the stored methane is oxidized during overturns. Our results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period. However, the fraction of stored methane emitted to the atmosphere during overturn may be substantially larger and the fraction of stored methane oxidized may be smaller than in the previous studies suggesting high oxidation losses of methane. The development or change in the vertical extent and duration of the anoxic hypolimnion, which can represent the main source of annual methane emissions from small lakes, may be an important aspect to consider for impact assessments of climate warming on the methane emissions from lakes.

  9. OMI observations of bromine monoxide emissions from salt lakes

    NASA Astrophysics Data System (ADS)

    Suleiman, R. M.; Chance, K.; Liu, X.; Gonzalez Abad, G.; Kurosu, T. P.

    2015-12-01

    In this study, we analyze bromine monoxide (BrO) data from the Ozone Monitoring Instrument (OMI) over various salt lakes. We used OMI data from 2005 to 2014 to investigate BrO signatures from salt lakes. The salt lakes regions we cover include Dead Sea; Salt Lake City, US; Salar de Uyuni, Bolivia; and Namtso, Tibet. Elevated signatures of BrO was found in July and August BrO monthly averages over the Dead Sea. Similar results were found in the BrO monthly averages for August 2006 for the Bolivian Salt Flats. We present a detailed description of the retrieval algorithm for the OMI operational bromine monoxide (BrO) product. The algorithm is based on direct fitting of radiances from 319.0-347.5 nm, within the UV-2 channel of OMI. Radiances are modeled from the solar irradiance, attenuated by contributions from the target gas and interfering gases, rotational Raman scattering, additive and multiplicative closure polynomials and a common mode spectrum. The common mode spectra (one per cross-track position, computed on-line) are the average of several hundred fitting residuals. They include any instrument effects that are unrelated to molecular scattering and absorption cross sections. The BrO retrieval uses albedo- and wavelength-dependent air mass factors (AMFs), which have been pre-computed using climatological BrO profiles. The wavelength-dependent AMF is applied pre-fit to the BrO cross-sections so that vertical column densities are retrieved directly. We validate OMI BrO with ground-based measurements from three stations (Harestua, Lauder, and Barrow) and with chemical transport model simulations. We analyze the global distribution and seasonal variation of BrO and investigate BrO emissions from volcanoes and salt lakes.

  10. Coupled Atmosphere-Surface Modeling of Lake Levels of the North American Great Lakes under Climate Change

    NASA Astrophysics Data System (ADS)

    Lofgren, B. M.; Xiao, C.

    2016-12-01

    The influence of projected climate change on the water levels of the Great Lakes is subject to considerable uncertainty, and methods that have long been used to determine this sensitivity have been discredited. A strong candidate, albeit expensive, to replace problematic methods is to use outputs that result from dynamical downscaling of future climate simulations, focused on the hydroclimate of the Great Lakes basin. We have produced initial estimates of Great Lakes water levels in the mid- and late 21st century using the Weather Research and Forecasting (WRF) model, including its lake module, driven by lateral boundary conditions from the Geophysical Fluid Dynamics Lab Climate Model version 3.0 (GFDL CM3), under RCP4.5 and 8.5 scenarios. Future lake levels are influenced by the balance between projected general increases in precipitation and increases in evapotranspiration from both land and lake in the basin, driven primarily by the surface radiative energy budget and secondarily by air temperature. The net result was drops in lake level of up to 15 cm, in contrast to the results from much-used older methods, which often projected drops exceeding 1 m. Future plans include increased detail in the simulation of water flow overland and in river channels using WRF-Hydro, and full coupling of regional atmospheric systems with 3-dimensional dynamical lake implementation of the Finite Volume Community Ocean Model (FVCOM).

  11. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    PubMed Central

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O’Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest’eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues. PMID:25977814

  12. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    USGS Publications Warehouse

    Sharma, Sapna; Gray, Derek; Read, Jordan S.; O'Reilly, Catherine; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie; Hook, Simon; Lenters, John; Livingstone, David M.; McIntyre, Peter B.; Adrian, Rita; Allan, Mathew; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John E.; Baron, Jill S.; Brookes, Justin D; Chen, Yuwei; Daly, Robert; Ewing, Kye; de Eyto, Elvira; Dokulil, Martin; Hamilton, David B.; Havens, Karl; Haydon, Shane; Hetzenaeur, Harald; Heneberry, Jocelyn; Hetherington, Amy; Higgins, Scott; Hixson, Eric; Izmest'eva, Lyubov; Jones, Benjamin M.; Kangur, Kulli; Kasprzak, Peter; Kraemer, Benjamin; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Dörthe Müller-Navarra,; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Pius Niederhauser,; North, Ryan P.; Andrew Paterson,; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Daniel E. Schindler,; Geoffrey Schladow,; Schmidt, Silke R.; Tracey Schultz,; Silow, Eugene A.; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A.; Craig E. Williamson,; Kara H. Woo,

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  13. Reconstructing turbidity in a glacially influenced lake using the Landsat TM and ETM+ surface reflectance climate data record archive, Lake Clark, Alaska

    USGS Publications Warehouse

    Baughman, Carson; Jones, Benjamin M.; Bartz, Krista K.; Young, Daniel B.; Zimmerman, Christian E.

    2015-01-01

    Lake Clark is an important nursery lake for sockeye salmon (Oncorhynchus nerka) in the headwaters of Bristol Bay, Alaska, the most productive wild salmon fishery in the world. Reductions in water clarity within Alaska lake systems as a result of increased glacial runoff have been shown to reduce salmon production via reduced abundance of zooplankton and macroinvertebrates. In this study, we reconstruct long-term, lake-wide water clarity for Lake Clark using the Landsat TM and ETM+ surface reflectance products (1985–2014) and in situwater clarity data collected between 2009 and 2013. Analysis of a Landsat scene acquired in 2009, coincident with in situ measurements in the lake, and uncertainty analysis with four scenes acquired within two weeks of field data collection showed that Band 3 surface reflectance was the best indicator of turbidity (r2 = 0.55,RMSE << 0.01). We then processed 151 (98 partial- and 53 whole-lake) Landsat scenes using this relation and detected no significant long-term trend in mean turbidity for Lake Clark between 1991 and 2014. We did, however, detect interannual variation that exhibited a non-significant (r2 = 0.20) but positive correlation (r = 0.20) with regional mean summer air temperature and found the month of May exhibited a significant positive trend (r2 = 0.68, p = 0.02) in turbidity between 2000 and 2014. This study demonstrates the utility of hindcasting turbidity in a glacially influenced lake using the Landsat surface reflectance products. It may also help land and resource managers reconstruct turbidity records for lakes that lack in situ monitoring, and may be useful in predicting future water clarity conditions based on projected climate scenarios.

  14. Holocene depositional environments and surface-level changes at Lake Fryxell, Antarctica

    USGS Publications Warehouse

    Whittaker, T.E.; Hall, B.L.; Hendy, C.H.; Spaulding, S.A.

    2008-01-01

    We report on Holocene surface-level variations of Lake Fryxell, Antarctica, as determined from multi-proxy analyses of 18 sediment cores. During this time accumulating sediments were predominantly aeolian sand with algal and carbonate laminae. Based on stratigraphy, mineralogy and diatom assemblages we suggest some carbonate laminae were deposited when lake level dropped, leading to concentration and subsequent precipitation of salts. Although lake level appears to have remained relatively stable throughout the Holocene, minor (<4.5 m below present) lowstands occurred at approximately 6400, 4700, 3800 and ??? 1600 cal. yr BP. The stability of Lake Fryxell during the Holocene contrasts with large-scale variability at other Dry Valleys lakes (eg, Lake Vanda) and with suggestions from chemical diffusion models of a near-desiccation at ???1200 cal. yr BP. The reason for the comparative stability of Lake Fryxell is uncertain, but may be the result of basin morphology and the number, aspect and proximity of meltwater sources. ?? 2008 SAGE Publications.

  15. Modern processes of sediment formation in Lake Towuti, Indonesia, as derived from the composition of lake surface sediments

    NASA Astrophysics Data System (ADS)

    Hasberg, Ascelina; Melles, Martin; Morlock, Marina; Vogel, Hendrik; Russel, James M.; Bijaksana, Satria

    2016-04-01

    In summer 2015, a drilling operation funded by the International Continental Scientific Drilling Program (ICDP) was conducted at Lake Towuti (2.75°S, 121.5°E), the largest tectonically formed lake (surface area: 561 km²) of the Republic Indonesia. The Towuti Drilling Project (TDP) recovered more than 1000 meters of sediment core from three sites. At all three sites replicate cores down to 133, 154, and 174 m below lake floor have penetrated the entire lake sediment record, which is expected to comprise the past ca. 650.000 years continuously. Lake Towutís sediment record thus can provide unique information for instance concerning the climatic and environmental history in the Indo-Pacific-Warm-Pool (IPWP) and concerning the evolutionary biology in SE Asia. For a better understanding of the palaeoenvironmental proxies to be analyzed on the drill cores, the modern processes of sediment formation in the lake and in its catchment - under known environmental conditions - were investigated on a set of 84 lake sediment surface samples. Sampling was conducted by grab sampler (UWITEC Corp., Austria) in a grid of 1 to 4 km resolution that covers the entire lake. The samples were analyzed for inorganic geochemical composition (XRF powder scans and ICP-MS), magnetic susceptibility (Kappabridge), grain-size distribution (laser scanner), biogenic components (smear-slide analyses), biogenic silica contents (leaching), and carbonate, total organic carbon (TOC), nitrogen (TN), and sulfur (TS) concentrations (elemental analyzer). The sediments close to the lake shores and in front of the major river inlets are characterized by mean grain sizes coarser than average and high magnetic susceptibilities presented by high ratios of Cr, Ni, Co, and Zr. This reflects higher energies due to wave action and fluvial sediment supply, as well as the occurrence of magnetic minerals particularly in the sand and gravel fractions of the sediments. In regions of deeper waters and more distal to

  16. Surface ozone in the Lake Tahoe Basin

    Treesearch

    Joel D. Burley; Sandra Theiss; Andrzej Bytnerowicz; Alan Gertler; Susan Schilling; Barbara Zielinska

    2015-01-01

    Surface ozone (O3) concentrations were measured in and around the Lake Tahoe Basin using both active monitors (2010) and passive samplers (2002, 2010). The 2010 data from active monitors indicate average summertime diurnal maxima of approximately 50–55 ppb. Some site-to-site variability is observed within the Basin during the well-mixed hours of...

  17. Monitoring monthly surface water dynamics of Dongting Lake using Sentinel-1 data at 10 m.

    PubMed

    Xing, Liwei; Tang, Xinming; Wang, Huabin; Fan, Wenfeng; Wang, Guanghui

    2018-01-01

    High temporal resolution water distribution maps are essential for surface water monitoring because surface water exhibits significant inner-annual variation. Therefore, high-frequency remote sensing data are needed for surface water mapping. Dongting Lake, the second-largest freshwater lake in China, is famous for the seasonal fluctuations of its inundation extents in the middle reaches of the Yangtze River. It is also greatly affected by the Three Gorges Project. In this study, we used Sentinel-1 data to generate surface water maps of Dongting Lake at 10 m resolution. First, we generated the Sentinel-1 time series backscattering coefficient for VH and VV polarizations at 10 m resolution by using a monthly composition method. Second, we generated the thresholds for mapping surface water at 10 m resolution with monthly frequencies using Sentinel-1 data. Then, we derived the monthly surface water distribution product of Dongting Lake in 2016, and finally, we analyzed the inner-annual surface water dynamics. The results showed that: (1) The thresholds were -21.56 and -15.82 dB for the backscattering coefficients for VH and VV, respectively, and the overall accuracy and Kappa coefficients were above 95.50% and 0.90, respectively, for the VH backscattering coefficient, and above 94.50% and 0.88, respectively, for the VV backscattering coefficient. The VV backscattering coefficient achieved lower accuracy due to the effect of the wind causing roughness on the surface of the water. (2) The maximum and minimum areas of surface water were 2040.33 km 2 in July, and 738.89 km 2 in December. The surface water area of Dongting Lake varied most significantly in April and August. The permanent water acreage in 2016 was 556.35 km 2 , accounting for 19.65% of the total area of Dongting Lake, and the acreage of seasonal water was 1525.21 km 2 . This study proposed a method to automatically generate monthly surface water at 10 m resolution, which may contribute to monitoring surface

  18. Links between type E botulism outbreaks, lake levels, and surface water temperatures in Lake Michigan, 1963-2008

    USGS Publications Warehouse

    Lafrancois, Brenda Moraska; Riley, Stephen C.; Blehert, David S.; Ballmann, Anne E.

    2011-01-01

    Relationships between large-scale environmental factors and the incidence of type E avian botulism outbreaks in Lake Michigan were examined from 1963 to 2008. Avian botulism outbreaks most frequently occurred in years with low mean annual water levels, and lake levels were significantly lower in outbreak years than in non-outbreak years. Mean surface water temperatures in northern Lake Michigan during the period when type E outbreaks tend to occur (July through September) were significantly higher in outbreak years than in non-outbreak years. Trends in fish populations did not strongly correlate with botulism outbreaks, although botulism outbreaks in the 1960s coincided with high alewife abundance, and recent botulism outbreaks coincided with rapidly increasing round goby abundance. Botulism outbreaks occurred cyclically, and the frequency of outbreaks did not increase over the period of record. Climate change scenarios for the Great Lakes predict lower water levels and warmer water temperatures. As a consequence, the frequency and magnitude of type E botulism outbreaks in the Great Lakes may increase.

  19. Secondary electron emission from textured surfaces

    NASA Astrophysics Data System (ADS)

    Huerta, C. E.; Patino, M. I.; Wirz, R. E.

    2018-04-01

    In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.

  20. Eruptive behavior of the Marum/Mbwelesu lava lake, Vanuatu and comparisons with lava lakes on Earth and Io

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani; Lopes, Rosaly M.; Howell, Robert R.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-08-01

    Observations from field remote sensing of the morphology, kinematics and temperature of the Marum/Mbwelesu lava lake in the Vanuatu archipelago in 2014 reveal a highly active, vigorously erupting lava lake. Active degassing and fountaining observed at the 50 m lava lake led to large areas of fully exposed lavas and rapid ( 5 m/s) movement of lava from the centers of upwelling outwards to the lake margins. These rapid lava speeds precluded the formation of thick crust; there was never more than 30% non-translucent crust. The lava lake was observed with several portable, handheld, low-cost, near-infrared imagers, all of which measured temperatures near 1000 °C and one as high as 1022 °C, consistent with basaltic temperatures. Fine-scale structure in the lava fountains and cooled crust was visible in the near infrared at 5 cm/pixel from 300 m above the lake surface. The temperature distribution across the lake surface is much broader than at more quiescent lava lakes, peaking 850 °C, and is attributed to the highly exposed nature of the rapidly circulating lake. This lava lake has many characteristics in common with other active lava lakes, such as Erta Ale in Ethiopia, being confined, persistent and high-temperature; however it was much more active than is typical for Erta Ale, which often has > 90% crust. Furthermore, it is a good analogue for the persistent, high-temperature lava lakes contained within volcanic depressions on Jupiter's moon Io, such as Pele, also believed from spacecraft and ground-based observations to exhibit similar behavior of gas emission, rapid overturn and fountaining.

  1. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  2. Modeling CO 2 emissions from Arctic lakes: Model development and site-level study

    DOE PAGES

    Tan, Zeli; Zhuang, Qianlai; Shurpali, Narasinha J.; ...

    2017-09-14

    Recent studies indicated that Arctic lakes play an important role in receiving, processing, and storing organic carbon exported from terrestrial ecosystems. To quantify the contribution of Arctic lakes to the global carbon cycle, we developed a one-dimensional process-based Arctic Lake Biogeochemistry Model (ALBM) that explicitly simulates the dynamics of organic and inorganic carbon in Arctic lakes. By realistically modeling water mixing, carbon biogeochemistry, and permafrost carbon loading, the model can reproduce the seasonal variability of CO 2 fluxes from the study Arctic lakes. The simulated area-weighted CO 2 fluxes from yedoma thermokarst lakes, nonyedoma thermokarst lakes, and glacial lakes aremore » 29.5, 13.0, and 21.4 g C m -2 yr -1, respectively, close to the observed values (31.2, 17.2, and 16.5 ± 7.7 g C m -2 yr -1, respectively). The simulations show that the high CO 2 fluxes from yedoma thermokarst lakes are stimulated by the biomineralization of mobilized labile organic carbon from thawing yedoma permafrost. The simulations also imply that the relative contribution of glacial lakes to the global carbon cycle could be the largest because of their much larger surface area and high biomineralization and carbon loading. According to the model, sunlight-induced organic carbon degradation is more important for shallow nonyedoma thermokarst lakes but its overall contribution to the global carbon cycle could be limited. Overall, the ALBM can simulate the whole-lake carbon balance of Arctic lakes, a difficult task for field and laboratory experiments and other biogeochemistry models.« less

  3. Far-infrared surface emissivity and climate.

    PubMed

    Feldman, Daniel R; Collins, William D; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-18

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8-2.0 W m(-2) difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m(-2), and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.

  4. Far-infrared surface emissivity and climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less

  5. Far-infrared surface emissivity and climate

    PubMed Central

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-01-01

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m−2 difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m−2, and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change. PMID:25368189

  6. Far-infrared surface emissivity and climate

    DOE PAGES

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; ...

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less

  7. A Multiscale Surface Water Temperature Data Acquisition Platform: Tests on Lake Geneva, Switzerland

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Irani Rahaghi, A.; Lemmin, U.; Riffler, M.; Wunderle, S.

    2015-12-01

    An improved understanding of surface transport processes is necessary to predict sediment, pollutant and phytoplankton patterns in large lakes. Lake surface water temperature (LSWT), which varies in space and time, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Satellite data can be suitable for detecting large-scale thermal patterns, but not meso- or small scale processes. Lake surface thermography, investigated in this study, has finer resolution compared to satellite images. Thermography at the meso-scale provides the ability to ground-truth satellite imagery over scales of one to several satellite image pixels. On the other hand, thermography data can be used as a control in schemes to upscale local measurements that account for surface energy fluxes and the vertical energy budget. Independently, since such data can be collected at high frequency, they can be also useful in capturing changes in the surface signatures of meso-scale eddies and thus to quantify mixing processes. In the present study, we report results from a Balloon Launched Imaging and Monitoring Platform (BLIMP), which was developed in order to measure the LSWT at meso-scale. The BLIMP consists of a small balloon that is tethered to a boat and equipped with thermal and RGB cameras, as well as other instrumentation for location and communication. Several deployments were carried out on Lake Geneva. In a typical deployment, the BLIMP is towed by a boat, and collects high frequency data from different heights (i.e., spatial resolutions) and locations. Simultaneous ground-truthing of the BLIMP data is achieved using an autonomous craft that collects a variety of data, including in situ surface/near surface temperatures, radiation and meteorological data in the area covered by the BLIMP images. With suitable scaling, our results show good consistency

  8. Ground-water/surface-water interaction in nearshore areas of Three Lakes on the Grand Portage Reservation, northeastern Minnesota, 2003-04

    USGS Publications Warehouse

    Jones, Perry M.

    2006-01-01

    Knowledge of general water-flow directions in lake watersheds and how they may change seasonally can help water-quality specialists and lake managers address a variety of water-quality and aquatic habitat protection issues for lakes. Results from this study indicate that ground-water and surface-water interactions at the study lakes are complex, and the ability of the applied techniques to identify ground-water inflow and surface-water outseepage locations varied among the lakes. Measurement of lake-sediment temperatures proved to be a reliable and relatively inexpensive reconnaissance technique that lake managers may apply in complex settings to identify general areas of ground-water inflow and surface-water outseepage.

  9. Spatial and Temporal Variation of PATMOS-x AVHRR Lake Surface Temperatures in the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    White, C.; Heidinger, A. K.; Ackerman, S. A.; McIntyre, P. B.

    2017-12-01

    A thirty-four year lake surface water temperature (LSWT) time series over the North American Great Lakes was extracted from NOAA's Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC). The time series was cloud-cleared using the NOAA Pathfinder Atmospheres Extended (PATMOS-x) climate dataset and the Clouds from AVHRR Extended System (CLAVR-x) processing system, and was subsampled to a regular 0.05° grid. LSWT coefficients for each AVHRR platform were fit to NOAA National Data Buoy Center buoys with historical records spanning 1982 to 2016. Satellite to buoy matchups indicate an RMSE of 0.72 K for the entire time series across all five lakes. An empirically fit diurnal correction was applied to correct for orbital drift and varying observation times of NOAA-7,9,11,12,14-19, Metop-1 and Metop-2. Ordinary linear regression slopes on monthly mean LSWT show strong spatial heterogeneity in the long-term LSWT trends both within each lake and between lakes. Differences in long-term trends using nighttime only, daytime only, and both day and night are examined. Additionally, a coastal upwelling signal can be identified from the time series along with the indication of an earlier onset of spring stratification.

  10. The history of Cesium-137 liquid emissions by Mühleberg Nuclear Power Plant (Switzerland) is recorded in Lake Biel sediments

    NASA Astrophysics Data System (ADS)

    Girardclos, Stéphanie; Faessler, Jérôme; Loizeau, Jean-Luc; Zehringer, Markus

    2014-05-01

    Lake sediments record changes happening in their upstream river catchment and regional environment which includes traces of artificial radionuclides emissions deriving from human activities. 137Cs emissions started worldwide in the early 1950's and peaked in 1963-64 due to nuclear bomb tests in the high atmosphere. A second 137Cs activity peak, due to the 1986 Chernobyl catastrophe is recorded in sediment archives from central Europe. These two events (1963/64 and 1986) serve routinely as time markers for recent lake records. Nuclear Power Plants (NPPs) are often constructed along river course for cooling purposes. Since 1972, Mühleberg NPP (central Switzerland) lies 18 km upstream Lake Biel and releases radioactive liquid emissions into the Aare river which adds to the diffuse - above mentioned - radioactive pollution, as revealed by Albrecht et al. (1995; 1998) and recently confirmed by Thevenon et al. (2013) from Lake Biel sediments. The water of Lake Biel is used as drinking water for ca. 60'000 inhabitants and its outflowing water is further used by downstream cities lying on the Aare-Rhine course such as Basel (200'000 inhab.) In this study, the 137Cs activity curve of a 90-cm-long sediment core (BIE10-8), retrieved in April 2010 from the central Lake Biel basin at ca. 50 m depth, and measured by gamma ray spectrometry using high resolution germanium detectors, confirms previous work and reveals a new peak for the year 1998-2000, as observed by Thevenon et al. (2013). This peak is most certainly due to Mühleberg NPP as shown by the good correlation with declared 137Cs liquid emissions indicating a significant increase in 1998-99. Decay corrected activity data, converted into 137Cs fluxes, point to water pollution by Mühleberg NPP in 1975-1985 as being similar to those linked to the catastrophic events in 1963-64 and 1986 (about 75%). As former study showed that Lake Biel sediments scavenge only a portion of the total radionuclide in water, i.e. 30-55% for

  11. Diffuse CO2 fluxes from Santiago and Congro volcanic lakes (São Miguel, Azores archipelago)

    NASA Astrophysics Data System (ADS)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael

    2017-04-01

    Diffuse CO2 degassing occurring in Santiago and Congro lakes, both located in depressions associated to maars from São Miguel Island (Azores, Portugal), was studied through detailed flux measurements. Four sampling campaigns were developed between 2013 and 2016 in each water body, split by the cold and wet seasons. São Miguel has an area of 744.6 km2, being the largest island of the archipelago. The geology of the island is dominated by three quiescent central volcanoes (Sete Cidades, Fogo and Furnas), linked by volcanic fissural zones (Picos and Congro Fissural Volcanic systems). The oldest volcanic systems of the island are located in its eastern part (Povoação-Nordeste). Santiago lake, with a surface area of 0.26 km2 and a depth of 30.5 m, is located inside a maar crater in the Sete Cidades volcano at an altitude of 355 m. The watershed of the lake has an area of 0.97 km2 and a surface flow estimated as 1.54x10 m3/a. A total of 1612 CO2 flux measurements using the accumulation chamber method were made at Santiago lake, 253 in the first campaign (November 2013), and 462, 475 and 422 in the three other campaigns, respectively, in April 2014, September 2016 and December 2016. The total CO2 flux estimated for this lake varies between 0.4 t d-1 and 0.59 t d-1, for the surveys performed, respectively, in November 2013 and September 2016; higher CO2 outputs of 1.57 and 5.87 t d-1 were calculated for the surveys carried out in April 2014 and December 2016. These higher CO2 emissions were associated with a period without water column stratification. Similarly to Santiago lake, Congro lake is located inside a maar, in the Congro Fissural Volcanic system, and has a surface area of 0.04 km2 with 18.5 m depth and a storage of about 2.4x105 m3/a. The lake, located at an altitude of 420 m, is fed by a watershed with an area of 0.33 km2 and a runoff estimated as about 8x104 m3/a. In Congro lake a total of 713 CO2 flux measurements were performed during four surveys from

  12. Changes in surface area of the Böön Tsagaan and Orog lakes (Mongolia, Valley of the Lakes, 1974-2013) compared to climate and permafrost changes

    NASA Astrophysics Data System (ADS)

    Szumińska, Danuta

    2016-07-01

    The main aim of the study is the analysis of changes in surface area of lake Böön Tsagaan (45°35‧N, 99°8‧E) and lake Orog (45°3‧N, 100°44‧E) taking place in the last 40 years in the context of climate conditions and permafrost degradation. The lakes, located in Central Mongolia, at the borderline of permafrost range are fed predominantly by river waters and groundwater from the surrounding mountain areas, characterized by continuous and discontinuous permafrost occurrence - mostly the Khangai. The analysis of the Böön Tsagaan and Orog lake surface area in 1974-2013 was conducted based on satellite images, whereas climate conditions were analysed using the NOAA climate data and CRU dataset. Principal Component Analysis (PCA) was used to study the relationship patterns between the climatic factors and changes in the surface area of the lakes. A tendency for a decrease in surface area, intermittent with short episodes of resupply, was observed in both studied lakes. Climate changes recorded in the analysed period had both direct and indirect impacts on water supply to lakes. Taking into account the results of PCA analysis, the most significant factors include: fluctuation of annual precipitation, increase in air temperature and thickness of snow cover. The extended duration of snow cover in the last decades of the 20th century may constitute a key factor in relation to permafrost degradation.

  13. Effects of lake surface elevation on shoreline-spawning Lost River Suckers

    USGS Publications Warehouse

    Burdick, Summer M.; Hewitt, David A.; Rasmussen, J.E.; Hayes, Brian; Janney, Eric; Harris, Alta C.

    2015-01-01

    We analyzed remote detection data from PIT-tagged Lost River Suckers Deltistes luxatus at four shoreline spawning areas in Upper Klamath Lake, Oregon, to determine whether spawning of this endangered species was affected by low water levels. Our investigation was motivated by the observation that the surface elevation of the lake during the 2010 spawning season was the lowest in 38 years. Irrigation withdrawals in 2009 that were not replenished by subsequent winter-spring inflows caused a reduction in available shoreline spawning habitat in 2010. We compared metrics of skipped spawning, movement among spawning areas, and spawning duration across 8 years (2006-2013) that had contrasting spring water levels. Some aspects of sucker spawning were similar in all years, including few individuals straying from the shoreline areas to spawning locations in lake tributaries and consistent effects of increasing water temperatures on the accumulation of fish at the spawning areas. During the extreme low water year of 2010, 14% fewer female and 8% fewer male suckers joined the shoreline spawning aggregation than in the other years. Both males and females visited fewer spawning areas within Upper Klamath Lake in 2010 than in other years, and the median duration at spawning areas in 2010 was at least 36% shorter for females and 20% shorter for males relative to other years. Given the imperiled status of the species and the declining abundance of the population in Upper Klamath Lake, any reduction in spawning success and egg production could negatively impact recovery efforts. Our results indicate that lake surface elevations above 1,262.3-1,262.5 m would be unlikely to limit the number of spawning fish and overall egg production.

  14. Spatial versus Day-To-Day Within-Lake Variability in Tropical Floodplain Lake CH4 Emissions – Developing Optimized Approaches to Representative Flux Measurements

    PubMed Central

    Peixoto, Roberta B.; Machado-Silva, Fausto; Marotta, Humberto; Enrich-Prast, Alex; Bastviken, David

    2015-01-01

    Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period. CH4 flux was dominated by frequent and ubiquitous ebullition. A strong but predictable spatial variability (decreasing flux with increasing distance to the shore or to littoral vegetation) was found, and this pattern can be addressed by sampling along transects from the shore to the center. Although no distinct day-to-day variability were found, a significant increase in flux was identified from measurement day 1 to measurement day 5, which was likely attributable to a simultaneous increase in temperature. Our study demonstrates that representative emission assessments requires consideration of spatial variability, but also that spatial variability patterns are predictable for lakes of this type and may therefore be addressed through limited sampling efforts if designed properly (e.g., fewer chambers may be used if organized along transects). Such optimized assessments of spatial variability are beneficial by allowing more of the available sampling resources to focus on assessing temporal variability, thereby improving overall flux assessments. PMID:25860229

  15. Conditions affecting the release of phosphorus from surface lake sediments.

    PubMed

    Christophoridis, Christophoros; Fytianos, Konstantinos

    2006-01-01

    Laboratory studies were conducted to determine the effect of pH and redox conditions, as well as the effect of Fe, Mn, Ca, Al, and organic matter, on the release of ortho-phosphates in lake sediments taken from Lakes Koronia and Volvi (Northern Greece). Results were evaluated in combination with experiments to determine P fractionation in the sediment. The study revealed the major effect of redox potential and pH on the release of P from lake sediments. Both lakes showed increased release rates under reductive conditions and high pH values. The fractionation experiments revealed increased mobility of the reductive P fraction as well as of the NaOH-P fraction, indicating participation of both fractions in the overall release of sediment-bound P, depending on the prevailing environmental conditions. The results were assessed in combination with the release patterns of Fe, Mn, Ca, Al, and organic matter, enabling the identification of more specific processes of P release for each lake. The basic release patterns included the redox induced reductive dissolution of P-bearing metal oxides and the competitive exchange of phosphate anions with OH- at high pH values. The formation of an oxidized surface microlayer under oxic conditions acted as a protective film, preventing further P release from the sediments of Lake Volvi, while sediments from Lake Koronia exhibited a continuous and increased tendency to release P under various physicochemical conditions, acting as a constant source of internal P loading.

  16. Microplastic pollution in the surface waters of Italian Subalpine Lakes.

    PubMed

    Sighicelli, Maria; Pietrelli, Loris; Lecce, Francesca; Iannilli, Valentina; Falconieri, Mauro; Coscia, Lucia; Di Vito, Stefania; Nuglio, Simone; Zampetti, Giorgio

    2018-05-01

    Plastic debris incidence in marine environment was already highlighted in the early 1970s. Over the last decade, microplastic pollution in the environment has received increasing attention and is now an emerging research area. Many studies have focused on quantifying microplastic abundance in the marine environment, while there are relatively few data on microplastic occurrence in freshwater environment. Recent studies have reported high concentrations of microplastics in lakes and rivers, although the understanding of several factors influencing source, transport and fate is still limited. This study compares different lakes and the common factors, which could influence the occurrence and distribution of microplastics. The three subalpine lakes monitored include Lake Maggiore, Iseo and Garda. The selected sampling transects reflect the hydrologic conditions, the morphometric characteristics of these lakes, and other factors influencing the release of plastics debris in lakes. Particles of microplastics (<5 mm) were found in all sampled surfaces. The particles collected were classified depending on their number, shape and composition. The shape distribution showed the dominating occurrence of fragments (73.7%). The chemical composition of all examined samples clearly shows dominating presence of polyethylene (45%), polystyrene (18%) and polypropylene (15%). The results provide significant relations among the different contribution of direct and diffuse sources to the quantity of microplastics, highlighting the importance of understanding the spatial distribution dynamics of microplastics within a lake system that acts as a sink and source of plastic particles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  18. Projection of Changes in Regional Climate and Air Quality in the Great Lakes Basin between 2000 and 2050 for the RCP8.5 Emissions Scenario using the GEM-AQ Model

    NASA Astrophysics Data System (ADS)

    Lupu, A.; Semeniuk, K.; McConnell, J. C.; Kaminski, J. W.; Toyota, K.; Neary, L.

    2012-12-01

    The Global Environmental Multiscale Air Quality (GEM-AQ) model was run in global and limited area model (LAM) modes for the baseline year 2000 and one future year, 2050, on three different horizontal grids of increasing resolution from global (1.5°) to North American (LAM, 0.45°) to Ontario regional scale (LAM, 0.15°). For the future simulation we used the high greenhouse emissions scenario RCP8.5. Boundary conditions for the LAM runs were taken from the coarser resolution runs. All simulations had 54 vertical sigma-pressure hybrid levels from the ground to the stratopause (˜50 km), which should give a good representation of ozone injection to the troposphere from the stratosphere. The model uses the interactive land surface scheme ISBA. Sea surface and lake temperatures are prescribed, but ice cover is partially interactive based on prescribed fields. A lake model, FLAKE, was coupled to GEM-AQ in order to capture the impacts of the Great Lakes on the meteorology when the model is run at high resolution. For the Ontario regional simulation the interactive lake model allowed for self-consistent water temperatures and moisture fluxes. The simulation for the year 2000 shows that the model is able to reproduce the observed monthly surface temperatures across the US. The monthly surface ozone is reproduced at the level of detail of most other air quality models with year 2000 weather as opposed to a free run forced by SSTs. Our year 2050 simulation shows that ozone levels during the summer throughout most of Ontario and Canada will increase. Regions south of the latitude of Lake Superior will generally see decreased levels of summer (JJA) ozone, except for around large urban areas such as Toronto, Chicago and Montreal. However, NOx levels will decrease during the summer, reflecting decreased emissions. Ozone levels in the US will generally improve. Other indices rather than simple averages yield a different perspective. If the MDA8 ozone metric and NO2 one-hour 98th

  19. The influence of a land-lake surface discontinuity on the convective boundary layer flow

    NASA Astrophysics Data System (ADS)

    Martinez, Daniel; Bange, Jens; Lang, Andreas

    2013-04-01

    The current work addresses the effects of surface discontinuities into the atmospheric boundary layer (ABL) with free convection using data collected during the STINHO 2002 and LITFASS 2003 experimental campaigns. These field experiments were performed during two consecutive summers in the area of Branderburg, Germany, over a heterogeneous area located around the Meteorological Observatory Lindenberg (MOL) of the German Weather Service (DWD). The terrain can be considered flat with areas of pine forests and agricultural fields, where lakes and villages are irregularly distributed to form a heterogeneous landscape representative of central Europe. Specific measurements collected by the helicopter-borne turbulence probe Helipod were selected to focus on the water-land surface transition over lake Scharnuetzel, a small-scale lake of 10 km x 2 km length scale. Four flights with a similar pattern were performed, with heights that range from 70 to 900 m above ground level (a.g.l.), in order to characterise the vertical extent of the surface discontinuity influence to the turbulent flow. The concepts of blending height and internal boundary layer (IBL) have been applied to the experimental data as a theoretical background. In general, the presence of the lake is reflected in the statistical second-order moments of the time series collected below 100 m a.g.l., specially for those time series related with the potential temperature. However, none of the parametrizations found in the literature related with the blending height or IBL seem to be appropriate for this special case, where a small-scale lake is the responsible of the surface heterogeneity. An analysis of the downstream propagation of the IBL depth shows that it depends on (i) the air stability downwind of the surface discontinuity and (ii) the wind speed in the surface layer. These preliminary results should be confirmed with the performance of new experiments.

  20. Carbon dioxide supersaturation in the surface waters of lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, J.J.; Caraco, N.F.; Kling, G.W.

    1994-09-09

    Data on the partial pressure of carbon dioxide (CO{sub 2}) in the surface waters from a large number of lakes (1835) with a worldwide distribution show that only a small proportion of the 4665 samples analyzed (less than 10 percent) were within {+-}20 percent of equilibrium with the atmosphere and that most samples (87 percent) were supersaturated. The mean partial pressure of CO{sub 2} averaged 1036 microatmospheres, about three times the value in the overlying atmosphere, indicating that lakes are sources rather than sinks of atmospheric CO{sub 2}. On a global scale, the potential efflux of CO{sub 2} from lakesmore » (about 0.14 x 10{sup 15} grams of carbon per year) is about half as large as riverine transport of organic plus inorganic carbon to the ocean. Lakes are a small but potentially important conduit for carbon for terrestrial sources to the atmospheric sink. 18 refs., 2 figs., 1 tab.« less

  1. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake

    PubMed Central

    Attermeyer, K.; Flury, S.; Jayakumar, R.; Fiener, P.; Steger, K.; Arya, V.; Wilken, F.; van Geldern, R.; Premke, K.

    2016-01-01

    Floating macrophytes, including water hyacinth (Eichhornia crassipes), are dominant invasive organisms in tropical aquatic systems, and they may play an important role in modifying the gas exchange between water and the atmosphere. However, these systems are underrepresented in global datasets of greenhouse gas (GHG) emissions. This study investigated the carbon (C) turnover and GHG emissions from a small (0.6 km2) water-harvesting lake in South India and analysed the effect of floating macrophytes on these emissions. We measured carbon dioxide (CO2) and methane (CH4) emissions with gas chambers in the field as well as water C mineralization rates and physicochemical variables in both the open water and in water within stands of water hyacinths. The CO2 and CH4 emissions from areas covered by water hyacinths were reduced by 57% compared with that of open water. However, the C mineralization rates were not significantly different in the water between the two areas. We conclude that the increased invasion of water hyacinths and other floating macrophytes has the potential to change GHG emissions, a process that might be relevant in regional C budgets. PMID:26846590

  2. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake

    NASA Astrophysics Data System (ADS)

    Attermeyer, K.; Flury, S.; Jayakumar, R.; Fiener, P.; Steger, K.; Arya, V.; Wilken, F.; van Geldern, R.; Premke, K.

    2016-02-01

    Floating macrophytes, including water hyacinth (Eichhornia crassipes), are dominant invasive organisms in tropical aquatic systems, and they may play an important role in modifying the gas exchange between water and the atmosphere. However, these systems are underrepresented in global datasets of greenhouse gas (GHG) emissions. This study investigated the carbon (C) turnover and GHG emissions from a small (0.6 km2) water-harvesting lake in South India and analysed the effect of floating macrophytes on these emissions. We measured carbon dioxide (CO2) and methane (CH4) emissions with gas chambers in the field as well as water C mineralization rates and physicochemical variables in both the open water and in water within stands of water hyacinths. The CO2 and CH4 emissions from areas covered by water hyacinths were reduced by 57% compared with that of open water. However, the C mineralization rates were not significantly different in the water between the two areas. We conclude that the increased invasion of water hyacinths and other floating macrophytes has the potential to change GHG emissions, a process that might be relevant in regional C budgets.

  3. Three-year decline of magmatic CO2 emissions from soils of a Mammoth Mountain tree kill: Horseshoe Lake, CA, 1995-1997

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1998-01-01

    We used the closed chamber method to measure soil CO2 efflux over a three-year period at the Horseshoe Lake tree kill (HLTK) - the largest tree kill on Mammoth Mountain in central eastern California. Efflux contour maps show a significant decline in the areas and rates of CO2 emission from 1995 to 1997. The emission rate fell from 350 t d-1 (metric tons per day) in 1995 to 130 t d-1 in 1997. The trend suggests a return to background soil CO2 efflux levels by early to mid 1999 and may reflect exhaustion of CO2 in a deep reservoir of accumulated gas and/or mechanical closure or sealing of fault conduits transmitting gas to the surface. However, emissions rose to 220 t d-1 on 23 September 1997 at the onset of a degassing event that lasted until 5 December 1997. Recent reservoir recharge and/or extension-enhanced gas flow may have caused the degassing event.

  4. Application of a combined measurement and modeling method to quantify windblown dust emissions from the exposed playa at Mono Lake, California.

    PubMed

    Ono, Duane; Kiddoo, Phill; Howard, Christopher; Davis, Guy; Richmond, Kenneth

    2011-10-01

    Particulate matter < or =10 microm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K(f)) were found to change seasonally, ranging from 1.3 x 10(-5) to 5.1 x 10(-5) for sand flux measured at 15 cm above the surface (q15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F = K(f) x q15). The maximum hourly PM10 emission rate from the study area was 76 g/m2 x hr (10-m wind speed = 23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2 x day, and annual emissions at 1095 g/m2 x yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10

  5. Patterns of in-soil methane production and atmospheric emission among different land covers of a Lake Erie estuarine wetland

    NASA Astrophysics Data System (ADS)

    Rey Sanchez, C.; Morin, T. H.; Stefanik, K. C.; Angle, J.; Wrighton, K. C.; Bohrer, G.

    2017-12-01

    Wetland soils store a great amount of carbon, but also accumulate and emit methane (CH4), a powerful greenhouse gas. To better understand the vertical and horizontal spatial variability of CH4 emissions, we monitored production and fluxes of CH4 in Old Woman Creek, an estuarine wetland of Lake Erie, Ohio, during the growing seasons of 2015 and 2016. Our combined observation methods targeted three different scales: 1) the eddy covariance technique provided continuous high frequency observations integrated over a large spatial footprint; 2) monthly chamber measurements provided sparse point measurements of fluxes in four distinct land-cover types in the wetland: open water, emergent vegetation (Typha spp.), floating vegetation (Nelumbo spp.) and mud flats; and 3) in-situ porewater dialysis samplers, "peepers", provided vertical CH4 concentration data in the soil at the same locations and temporal time steps as the chambers. In addition, we studied gene transcripts to quantify methanogenesis activity along the vertical soil profile. Using integrated chamber and EC measurements, we found an average surface emission rate from Typha, the most abundant vegetated land cover, of 219.4 g CH4-C m-2 y-1, which was much higher than rates reported in similar emergent vegetation types in other wetlands. There was large spatial variation of flux rates, with mud flats having the highest rates of CH4 emission, followed by Nelumbo and Typha patches, and with open water having the lowest emissions. Within the soil column, we applied a numerical model to convert soil methane concentrations to emissions rates. We found that, contrary to current ideas of methane production, most methane was being produced in the well-oxygenated surface soils, probably in anoxic microsites within the oxic layer. Our metatranscriptomic data supported these findings, clearly showing nine times greater methanogenic activity in oxic surface soils relative to deeper anoxic soils. Combined, our results provide

  6. [GIS Spatial Distribution and Ecological Risk Assessment of Heavy Metals in Surface Sediments of Shallow Lakes in Jiangsu Province].

    PubMed

    Li, Ying-jie; Zhang, Lie-yu; Wu, Yi-wen; Li, Cao-le; Yang, Tian-xue; Tang, Jun

    2016-04-15

    To understand pollution of heavy metals in surface sediments of shallow lakes, surface sediments samples of 11 lakes in Jiangsu province were collected to determine the content of six heavy metals including As, Cr, Cu, Pb, Zn and Ni. GIS was used to analyze the spatial distribution of heavy metals, and geological accumulation index (Igeo), modified contamination index (mCd) pollution load index (PLI) and potential ecological risk index (RI) were used to evaluate heavy metal contamination in the sediments. The results showed that: in the lakes' surface sediments, the average content of As, Cu, Zn, Cr, Pb, Ni in multiples of soil background of Jiangsu province were 1.74-3.85, 0.65-2.66, 0.48-3.56, 0.43-1.52, 0.02-1.49 and 0.12-1.42. According to the evaluation results of Igeo and RI, As, which had high degree of enrichment and great potential ecological risk, was the main pollutant, followed by Cu, and pollution of the rest of heavy metals was relatively light. Combining the results of several evaluation methods, in surface sediments of Sanjiu Lake, Gaoyou Lake and Shaobo Lake, these heavy metals had the most serious pollution, the maximum pollution loading and moderate potential ecological risk; in surface sediments of Gehu Lake, Baima Lake and Hongze Lake, some regions were polluted by certain metals, the overall trend of pollution was aggravating, the pollution loading was large, and the potential ecological risk reached moderate; in the other 5 lakes, the risk of sediments polluted by heavy metals, as well as the pollution loading, was small, and the overall was not polluted.

  7. Chemical quality of surface waters in Devils Lake basin North Dakota, 1952-60

    USGS Publications Warehouse

    Mitten, Hugh T.; Scott, C.H.; Rosene, Philip G.

    1968-01-01

    Above-normal precipitation in 1954, 1956, and 1957 caused the water surface of Devils Lake to rise to an altitude of 1,419.3 feet, its highest in 40 years. Nearly all the water entering the lake flowed through Big Coulee, and about three-fourths of that inflow was at rates greater than 100 cubic feet per second. At these rates, the inflow contained less than 600 ppm (parts per million) dissolved solids and was of the calcium bicarbonate type.Because the inflow was more dilute than the lake water, the dissolved solids in the lake decreased from 8,680 ppm in 1952 to about 6,000 ppm in 1956 and 1957. Subsequently, however, they increased to slightly more than 8,000 ppm and averaged 6,800 ppm for the 1954-60 period. Sodium and sulfate were the principal dissolved constituents in the lake water. Although the concentration of dissolved solids varied significantly from time to time, the relative proportions of the chief constituents remained nearly the same.Water flowed from Devils Lake to Mission Bay in 1956,1957, and 1958, and some flowed from Mission Bay into East Bay. However, no water moved between East Devils Lake, western Stump Lake, and eastern Stump Lake during 1952-60; these lakes received only local runoff, and the variations in their water volume caused only minor variations in dissolved solids. For the periods sampled, concentrations averaged 60,700 ppm for East Devils Lake, 23,100 ppm for western Stump Lake, and 127,000 ppm for eastern Stump Lake.Sodium and sulfate were the chief dissolved constituents in all the lakes of the Devils Lake chain. Water in eastern Stump Lake was saturated with sodium sulfate and precipitated large quantities of granular, hydrated sodium sulfate crystals on the lakebed and shore in fall and winter. A discontinuous layer of consolidated sodium sulfate crystals formed a significant part of the bed throughout the year.Measured concentrations! of zinc, iron, manganese, fluoride, arsenic, boron, copper, and lead were not high enough

  8. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  9. Predicting water-surface fluctuation of continental lakes: A RS and GIS based approach in Central Mexico

    USGS Publications Warehouse

    Mendoza, M.E.; Bocco, G.; Bravo, M.; Lopez, Granados E.; Osterkamp, W.R.

    2006-01-01

    Changes in the water-surface area occupied by the Cuitzeo Lake, Mexico, during the 1974-2001 period are analysed in this study. The research is based on remote sensing and geographic information techniques, as well as statistical analysis. High-resolution satellite image data were used to analyse the 1974-2000 period, and very low-resolution satellite image data were used for the 1997-2001 period. The long-term analysis (1974-2000) indicated that there were temporal changes in the surface area of the Cuitzeo Lake and that these changes were related to precipitation and temperatures that occurred in the previous year. Short-term monitoring (1997-2001) showed that the Cuitzeo Lake surface is lowering. Field observations demonstrated also that yearly desiccation is recurrent, particularly, in the western section of the lake. Results suggested that this behaviour was probably due to a drought period in the basin that began in the mid 1990s. Regression models constructed from long-term data showed that fluctuations of lake level can be estimated by monthly mean precipitation and temperatures of the previous year. ?? Springer Science + Business Media, Inc. 2006.

  10. Multiple Emission Angle Surface-Atmosphere Separations of MGS Thermal Emission Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Bandfield, J. L.; Smith, M. D.

    2001-01-01

    Multiple emission angle observations taken by MGS-TES have been used to derive atmospheric opacities and surface temperatures and emissivities with increased accuracy and wavelength coverage. Martian high albedo region surface spectra have now been isolated. Additional information is contained in the original extended abstract.

  11. Lake surface area variation and its responses to climatic change in Yamzhog Yumco Basin, South Tibet during 1970-2010

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Tian, Y.; Sun, R.

    2015-12-01

    The research on lake extraction from multi-source and multi-temporal satellite images and the lake size variation can provide reliable method and indispensable information to deepen the understanding about alpine lake changes with the accelerating warming. With field survey experience in the Yamzhog Yumco Basin, South Tibet, the outlines of five lakes (i.e., Yamzhog Yumco, Chen Co, Kongmu Co, Bajiu Co and Puma Yumco) were delineated by the adoption of 42 scenes of satellite images from Landsat, CBERS and HJ from 1970 to 2010, basing on which the responses of alpine lakes to climate change at different timescales were explored. The results are summarized as follows. (1) The seasonal fluctuation of lake surface area was similar with different trend for the five alpine lakes. As for the last 41 years, the annual variation of lake surface area exhibited two kinds of patterns for the five alpine lakes. And the Yamzhog Yumco declined by 9.41%, while the rest four lakes expanded. (2) The responses of alpine lakes to climate change rely on different timescale and water replenishment types. On the one hand, the precipitation change was the predominant driving forces for the seasonal fluctuation and variation trend of lake size, and the rising temperature accounted for the inter-annual lake surface variation. On the other hand, the two kinds of alpine lakes behaviors were well correspondent with the warming temperature over the Qinghai-Tibetan Plateau. The lakes supplied mainly by precipitation shrunk as a result of increased evaporation, and lakes supplied mainly by glacier and snow meltwater, however, expanded because of the remarkable glacier recession. (3) The quantification of hydrological components would hopefully be improved, according to uncertainties analysis, with the adoption of microwave satellite images and higher resolution ones to disclose the interaction mechanism among climate, glacier, and lake in alpine regions.

  12. Lake levels, streamflow, and surface-water quality in the Devils Lake area, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.

    1996-01-01

    The Devils Lake Basin is a 3,810-square-mile (mi2) closed basin (fig. 1) in the Red River of the North Basin. About 3,320 mi2 of the total 3,810 mi2 is tributary to Devils Lake; the remainder is tributary to Stump Lake.Since glaciation, the lake level of Devils Lake has fluctuated from about 1,457 feet (ft) above sea level (asl), the natural spill elevation of the lake to the Sheyenne River, to 1,400 ft asl (Aronow, 1957). Although no documented records of lake levels are available before 1867, Upham (1895, p. 595), on the basis of tree-ring chronology, indicated that the lake level was 1,441 ft asl in 1830. Lake levels were recorded sporadically from 1867 to 1901 when the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 to the present (1996), the lake level has fluctuated between a maximum of 1,438.4 ft asl in 1867 and a minimum of 1,400.9 ft asl in 1940 (fig. 2). On July 31, 1996, the lake level was 1,437.8 ft asl, about 15.2 ft higher than the level recorded in February 1993 and the highest level in about 120 years.Since 1993, the lake level of Devils Lake (fig. 2) has risen rapidly in response to above-normal precipitation from the summer of 1993 to the present, and 30,000 acres of land around the lake have been flooded. The above-normal precipitation also has caused flooding elsewhere in the Devils Lake Basin. State highways near Devils Lake are being raised, and some local roads have been closed because of flooding.In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) solutions to reduce the effects of high lake levels. In addition to various planning studies being conducted by Federal agencies, the North Dakota State Water Commission has implemented a project to store water on small tracts of land and in the chain of lakes (Sweetwater Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake

  13. Abundance and δ13C values of fatty acids in lacustrine surface sediments: Relationships with in-lake methane concentrations

    NASA Astrophysics Data System (ADS)

    Stötter, Tabea; Bastviken, David; Bodelier, Paul L. E.; van Hardenbroek, Maarten; Rinta, Päivi; Schilder, Jos; Schubert, Carsten J.; Heiri, Oliver

    2018-07-01

    Proxy-indicators in lake sediments provide the only approach by which the dynamics of in-lake methane cycling can be examined on multi-decadal to centennial time scales. This information is necessary to constrain how lacustrine methane production, oxidation and emissions are expected to respond to global change drivers. Several of the available proxies for reconstructing methane cycle changes of lakes rely on interpreting past changes in the abundance or relevance of methane oxidizing bacteria (MOB), either directly (e.g. via analysis of bacterial lipids) or indirectly (e.g. via reconstructions of the past relevance of MOB in invertebrate diet). However, only limited information is available about the extent to which, at the ecosystem scale, variations in abundance and availability of MOB reflect past changes in in-lake methane concentrations. We present a study examining the abundances of fatty acids (FAs), particularly of 13C-depleted FAs known to be produced by MOB, relative to methane concentrations in 29 small European lakes. 39 surface sediment samples were obtained from these lakes and FA abundances were compared with methane concentrations measured at the lake surface, 10 cm above the sediments and 10 cm within the sediments. Three of the FAs in the surface sediment samples, C16:1ω7c, C16:1ω5c/t, and C18:1ω7c were characterized by lower δ13C values than the remaining FAs. We show that abundances of these FAs, relative to other short-chain FAs produced in lake ecosystems, are related with sedimentary MOB concentrations assessed by quantitative polymerase chain reaction (qPCR). We observed positive relationships between methane concentrations and relative abundances of C16:1ω7c, C16:1ω5c/t, and C18:1ω7c and the sum of these FAs. For the full dataset these relationships were relatively weak (Spearman's rank correlation (rs) of 0.34-0.43) and not significant if corrected for multiple testing. However, noticeably stronger and statistically significant

  14. Variation laws and release characteristics of phosphorus on surface sediment of Dongting Lake.

    PubMed

    Zhu, Guangrui; Yang, Ying

    2018-05-01

    The variation trend and growth rate of P were analyzed by the concentration of the phosphorus fraction on surface sediment of Dongting Lake from 2012 to 2016, to reveal the cumulative effect of P in the actual environment. Meanwhile, the adsorption kinetics and adsorption isotherm were employed to examine the P-release possibility of sediment, which predicts the yearly released sediment phosphorus in Dongting Lake. The actual growth rate of TP (Total Phosphorus) is 53 mg·(kg·year) -1 in East Dongting Lake, 39 mg·(kg·year) -1 in South Dongting Lake, and 29 mg·(kg·year) -1 in West Dongting Lake, while the sum of the phosphorus fraction growth rates has little difference from the rate of TP in sediments of the three areas of Dongting Lake. Furthermore, the Elovich model and the Langmuir crossover-type equations are established to present the adsorption characteristic of sediment in Dongting Lake; the result shows that the sediments play a source role for phosphorus in East and South Dongting Lake from zero equilibrium phosphorus concentration (EPC 0 ) in the present situation, but an adsorption effect on TP is shown in West Dongting Lake. When the conditions of environment change are ignored, the maximum P-sorption level in sediments of East Dongting Lake will reach in 2040 according to the actual growth rate of sediments, while that in West Dongting Lake and South Dongting Lake will be in 2046 and 2061, respectively.

  15. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  16. Dongting Lake, China

    NASA Image and Video Library

    2002-09-15

    These images show dramatic change in the water at Dongting Lake in Hunan province, China. A flood crest surged down the Yangtze River in late August of this year, but the embankments made by residents there held. The left image was acquired on September 2, 2002 and shows the extent of the lake. The right image was obtained March 19, 2002 before the flooding began. These images were acquired on September 2, 2002 and March 19, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03858

  17. Passive microwave studies of frozen lakes

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Foster, J. L.; Rango, A.; Chang, A. T. C.

    1978-01-01

    Lakes of various sizes, depths and ice thicknesses in Alaska, Utah and Colorado were overflown with passive microwave sensors providing observations at several wavelengths. A layer model is used to calculate the microwave brightness temperature, T sub B (a function of the emissivity and physical temperatures of the object), of snowcovered ice underlain with water. Calculated T sub B's are comparable to measured T sub B's. At short wavelengths, e.g., 0.8 cm, T sub B data provide information on the near surface properties of ice covered lakes where the long wavelength, 21.0 cm, observations sense the entire thickness of ice including underlying water. Additionally, T sub B is found to increase with ice thickness. 1.55 cm observations on Chandalar Lake in Alaska show a T sub B increase of 38 K with an approximate 124 cm increase in ice thickness.

  18. Hyperspectrally-Resolved Surface Emissivity Derived Under Optically Thin Clouds

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Surface spectral emissivity derived from current and future satellites can and will reveal critical information about the Earth s ecosystem and land surface type properties, which can be utilized as a means of long-term monitoring of global environment and climate change. Hyperspectrally-resolved surface emissivities are derived with an algorithm utilizes a combined fast radiative transfer model (RTM) with a molecular RTM and a cloud RTM accounting for both atmospheric absorption and cloud absorption/scattering. Clouds are automatically detected and cloud microphysical parameters are retrieved; and emissivity is retrieved under clear and optically thin cloud conditions. This technique separates surface emissivity from skin temperature by representing the emissivity spectrum with eigenvectors derived from a laboratory measured emissivity database; in other words, using the constraint as a means for the emissivity to vary smoothly across atmospheric absorption lines. Here we present the emissivity derived under optically thin clouds in comparison with that under clear conditions.

  19. Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve

    2013-01-01

    Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period

  20. Lakes and lake-like waters of the Hawaiian Archipelago

    USGS Publications Warehouse

    Maciolek, J.A.

    1982-01-01

    This summary of Hawaiian lacustrine limnology is based on 12 years of field and literature surveys of archipelagic inland waters. Lakes here are distinguished from other standing waters by limits on surface oceanic area (> 0.1 ha) and depth (> 2 m), and by the absence of flatural surface oceanic connection. A variety of extinct and existing water bodies, sometimes referred to as lakes, are noted. Six lakes are described. Five of them are in crater basins, 3 are freshwater, and 2 are elevated (highest = 3969 m). The scarcity of elevated lakes results from general permeability of the substrata. Among the 6 lakes, surface areas range from 0.22 to 88 ha and maximum depths from 3 to 248 m. Naturally occurring aquatic biota generally is low in species diversity except for phytoplankton; fishes and submersed vascular plants are absent. Two lowland lakes, freshwater Green (Wai a Pele) and saline Kauhak6, are described for the first time. Profundal Kauhak6, 248 m deep, has a surface area of only 0.35 ha, which results in an extraordinary relative depth of 370%. It is permanently stratified, a condition apparently due primarily to the unique morphometry of its basin. 

  1. Surface exciton emission of MgO crystals

    NASA Astrophysics Data System (ADS)

    Kuang, Wen-Jian; Li, Qing; Chen, Yu-Xiang; Hu, Kai; Wang, Ning-Hui; Xing, Fang-Li; Yan, Qun; Sun, Shuai-Shuai; Huang, Yan; Tao, Ye; Tolner, Harm

    2013-09-01

    MgO crystals have been exposed to vacuum ultraviolet (VUV) radiation from a synchrotron, with energies up to 9 eV, and the emitted light, at wavelengths above 200 nm, was observed. It is concluded that bulk excitons, play an important role in the diffusion of energy inside MgO crystals, resulting in 5.85 eV (212 nm) emission from the MgO terraces of large (0.2-2 µm) MgO : F crystals. In the case of aliovalent impurity doping, then the bulk exciton energy is also transferred to the Vk centres and 5.3 eV (235 nm) light is emitted. Both fluorine and silicon doping appear to promote UV surface emission, acting similarly to an ns2 ion inside MgO, while strong scandium doping is killing the surface emission completely. The 212 nm surface UV emission and the 235 nm bulk UV emission can be excited only at the bandgap edge. Broadband visible light, centred around 400 nm, is also emitted. Contrary to the UV emission, this is not generated when excited at the bandgap edge; instead, we find that it is only excited at sub-bandgap energies, with a maximum at the 5C surface excitation energy of 5.71 eV (217 nm) for the MgO terraces.

  2. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    PubMed

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Surface spectral emissivity derived from MODIS data

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.

    2003-04-01

    Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.

  4. Evaluation of stream water quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake.

    PubMed

    Ayana, Essayas K; Worqlul, Abeyou W; Steenhuis, Tammo S

    2015-08-01

    Modeling of suspended sediment emission into freshwater lakes is challenging due to data gaps in developing countries. Existing models simulate sediment concentration at a gauging station upstream and none of these studies had modeled total suspended solids (TSS) emissions by inflowing rivers to freshwater lakes as there are no TSS measurements at the river mouth in the upper Blue Nile basin. In this study a 10year TSS time series data generated from remotely sensed MODIS/Terra images using established empirical relationship is applied to calibrate and validate a hydrology model for Lake Tana in Upper Blue Nile Basin. The result showed that at a monthly time scale TSS at the river mouth can be replicated with Nash-Sutcliffe efficiency (NS) of 0.34 for calibration and 0.21 for validation periods. Percent bias (PBIAS) and ratio of the root-mean-square error to the standard deviation of measured data (RSR) are all within range. Given the inaccessibility and costliness to measure TSS at river mouths to a lake the results found here are considered useful for suspended sediment budget studies in water bodies of the basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  6. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  7. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes.

    PubMed

    Eagles-Smith, Collin A; Herring, Garth; Johnson, Branden; Graw, Rick

    2016-05-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish. Published by Elsevier

  8. Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods.

    PubMed

    Fusé, Victoria S; Priano, M Eugenia; Williams, Karen E; Gere, José I; Guzmán, Sergio A; Gratton, Roberto; Juliarena, M Paula

    2016-10-01

    The global methane (CH 4 ) emission of lakes is estimated at between 6 and 16 % of total natural CH 4 emissions. However, these values have a high uncertainty due to the wide variety of lakes with important differences in their morphological, biological, and physicochemical parameters and the relatively scarse data from southern mid-latitude lakes. For these reasons, we studied CH 4 fluxes and CH 4 dissolved in water in a typical shallow lake in the Pampean Wetland, Argentina, during four periods of consecutive years (April 2011-March 2015) preceded by different rainfall conditions. Other water physicochemical parameters were measured and meteorological data were reported. We identified three different states of the lake throughout the study as the result of the irregular alternation between high and low rainfall periods, with similar water temperature values but with important variations in dissolved oxygen, chemical oxygen demand, water turbidity, electric conductivity, and water level. As a consequence, marked seasonal and interannual variations occurred in CH 4 dissolved in water and CH 4 fluxes from the lake. These temporal variations were best reflected by water temperature and depth of the Secchi disk, as a water turbidity estimation, which had a significant double correlation with CH 4 dissolved in water. The mean CH 4 fluxes values were 0.22 and 4.09 mg/m 2 /h for periods with low and high water turbidity, respectively. This work suggests that water temperature and turbidity measurements could serve as indicator parameters of the state of the lake and, therefore, of its behavior as either a CH 4 source or sink.

  9. Dust emission from wet and dry playas in the Mojave Desert, USA

    USGS Publications Warehouse

    Reynolds, R.L.; Yount, J.C.; Reheis, M.; Goldstein, H.; Chavez, P.; Fulton, R.; Whitney, J.; Fuller, C.; Forester, R.M.

    2007-01-01

    The interactions between playa hydrology and playa-surface sediments are important factors that control the type and amount of dust emitted from playas as a result of wind erosion. The production of evaporite minerals during evaporative loss of near-surface ground water results in both the creation and maintenance of several centimeters or more of loose sediment on and near the surfaces of wet playas. Observations that characterize the texture, mineralogic composition and hardness of playa surfaces at Franklin Lake, Soda Lake and West Cronese Lake playas in the Mojave Desert (California), along with imaging of dust emission using automated digital photography, indicate that these kinds of surface sediment are highly susceptible to dust emission. The surfaces of wet playas are dynamic - surface texture and sediment availability to wind erosion change rapidly, primarily in response to fluctuations in water-table depth, rainfall and rates of evaporation. In contrast, dry playas are characterized by ground water at depth. Consequently, dry playas commonly have hard surfaces that produce little or no dust if undisturbed except for transient silt and clay deposited on surfaces by wind and water. Although not the dominant type of global dust, salt-rich dusts from wet playas may be important with respect to radiative properties of dust plumes, atmospheric chemistry, windborne nutrients and human health.

  10. Small-scale and mesoscale lake surface water temperature structure: Thermography and in situ measurements from Lake Geneva, Switzerland

    NASA Astrophysics Data System (ADS)

    Irani Rahaghi, Abolfazl; Lemmin, Ulrich; Bouffard, Damien; Riffler, Michael; Wunderle, Stefan; Barry, Andrew

    2017-04-01

    Lake surface water temperature (LSWT), which varies spatially and temporarily, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Depending on cloud cover, satellite data can depict large-scale thermal patterns, but not the meso- or small-scale processes. Meso-scale thermography allows complementing (and hence ground-truth) satellite imagery at the sub-pixel scale. A Balloon Launched Imaging and Monitoring Platform (BLIMP) was used to measure the LSWT at the meso-scale. The BLIMP consists of a small balloon tethered to a boat and is equipped with thermal and RGB cameras, as well as other instrumentation for geo-location and communication. A feature matching-based algorithm was implemented to create composite thermal images. Simultaneous ground-truthing of the BLIMP data were achieved using an autonomous craft measuring among other in situ surface/near surface temperatures, radiation and meteorological data. Latent and sensible surface heat fluxes were calculated using the bulk parameterization algorithm based on similarity theory. Results are presented for the day-time stratified low wind speed (up to 3 ms-1) conditions over Lake Geneva for two field campaigns, each of 6 h on 18 March and 19 July 2016. The meso-scale temperature field ( 1-m pixel resolution) had a range and standard deviation of 2.4°C and 0.3°C, respectively, over a 1-km2 area (typical satellite pixel size). Interestingly, at the sub-pixel scale, various temporal and spatial thermal structures are evident - an obvious example being streaks in the along-wind direction during March, which we hypothesize are caused by the steady 3 h wind condition. The results also show that the spatial variability of the estimated total heat flux is due to the corresponding variability of the longwave cooling from the water surface and the latent heat flux.

  11. Physical effects of thermal pollution in lakes

    NASA Astrophysics Data System (ADS)

    Râman Vinnâ, Love; Wüest, Alfred; Bouffard, Damien

    2017-05-01

    Anthropogenic heat emissions into inland waters influence water temperature and affect stratification, heat and nutrient fluxes, deep water renewal, and biota. Given the increased thermal stress on these systems by growing cooling demands of riparian/coastal infrastructures in combination with climate warming, the question arises on how to best monitor and manage these systems. In this study, we investigate local and system-wide physical effects on the medium-sized perialpine Lake Biel (Switzerland), influenced by point-source cooling water emission from an upstream nuclear power plant (heat emission ˜700 MW, ˜18 W m-2 lake wide). We use one-dimensional (SIMSTRAT) and three-dimensional (Delft3D-Flow) hydrodynamic numerical simulations and provide model resolution guidelines for future studies of thermal pollution. The effects on Lake Biel by the emitted excess heat are summarized as: (i) clear seasonal trend in temperature increase, locally up to 3.4°C and system-wide volume mean ˜0.3°C, which corresponds to one decade of regional surface water climate warming; (ii) the majority of supplied thermal pollution (˜60%) leaves this short residence time (˜58 days) system via the main outlet, whereas the remaining heat exits to the atmosphere; (iii) increased length of stratified period due to the stabilizing effects of additional heat; (iv) system-wide effects such as warmer temperature, prolonged stratified period, and river-caused epilimnion flushing are resolved by both models whereas local raised temperature and river short circuiting was only identifiable with the three-dimensional model approach. This model-based method provides an ideal tool to assess man-made impacts on lakes and their downstream outflows.

  12. Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico

    USGS Publications Warehouse

    Casadevall, Thomas J.; De la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.

    1984-01-01

    Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.

  13. Early steroid sulfurization in surface sediments of a permanently stratified lake (Ace Lake, Antarctica)

    NASA Astrophysics Data System (ADS)

    Kok, Marika D.; Rijpstra, W. Irene C.; Robertson, Lisette; Volkman, John K.; Sinninghe Damstéé, Jaap S.

    2000-04-01

    Surface sediments (0-25 cm) from Ace Lake (eastern Antarctica), a saline euxinic lake, were analyzed to study the early incorporation of reduced inorganic sulfur species into organic matter. The apolar fractions were shown to consist predominantly of dimeric (poly)sulfide linked C 27-C 29 steroids. These steroid moieties were identified by GC-MS analysis of the apolar fractions after cleavage of polysulfide linkages using MeLi and MeI and after desulfurisation. The polar fractions contained the oligomeric analogues. The S-bound steroids are most likely formed by sulfur incorporation into steroidal ketones formed from Δ 5 sterols by biohydrogenation by anaerobic bacteria. The concentrations of these sulfurised steroids increased with depth in the sediment. The sulfurisation reaction is completed in 1000-3000 years. Despite a wide range of functionalised lipids present in these sediments that are potentially available for sulfurisation, there is a very strong preference for the incorporation of sulfur into steroidal compounds. A predominance of sulfurised C 27 steroids contrasted with the distribution of free sterols, which showed a strong predominance of C 29 sterols. This indicates that the incorporation of sulfur is biased towards C 27 sterols. The results demonstrate that intermolecular sulfurisation of organic matter can occur in surface sediments at low temperatures and in the absence of light.

  14. Temperate Lakes Discovered on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul

    2012-04-01

    We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a

  15. Remote sensing assessment of oil lakes and oil-polluted surfaces at the Greater Burgan oil field, Kuwait

    NASA Astrophysics Data System (ADS)

    Kwarteng, Andy Yaw

    A heinous catastrophe imposed on Kuwait's desert environment during the 1990 to 1991 Arabian Gulf War was the formation of oil lakes and oil-contaminated surfaces. Presently, the affected areas consist of oil lakes, thick light and disintegrated tarmats, black soil and vegetation. In this study, Landsat TM, Spot, colour aerial photographs and IRS-1D digital image data acquired between 1989 and 1998 were used to monitor the spatial and temporal changes of the oil lakes and polluted surfaces at the Greater Burgan oil field. The use of multisensor datasets provided the opportunity to observe the polluted areas in different wavelengths, look angles and resolutions. The images were digitally enhanced to optimize the visual outlook and improve the information content. The data documented the gradual disappearance of smaller oil lakes and soot/black soil from the surface with time. Even though some of the contaminants were obscured by sand and vegetation and not readily observed on the surface or from satellite images, the harmful chemicals still remain in the soil. Some of the contaminated areas displayed a remarkable ability to support vegetation growth during the higher than average rainfall that occurred between 1992 to 1998. The total area of oil lakes calculated from an IRS-1D panchromatic image acquired on 16 February 1998, using supervised classification applied separately to different parts, was 24.13 km 2.

  16. Is there widespread metal contamination from in-situ bitumen extraction at Cold Lake, Alberta heavy oil field?

    PubMed

    Skierszkan, Elliott K; Irvine, Graham; Doyle, James R; Kimpe, Linda E; Blais, Jules M

    2013-03-01

    The extraction of oil sands by in-situ methods in Alberta has expanded dramatically in the past two decades and will soon overtake surface mining as the dominant bitumen production process in the province. While concerns regarding regional metal emissions from oil sand mining and bitumen upgrading have arisen, there is a lack of information on emissions from the in-situ industry alone. Here we show using lake sediment records and regionally-distributed soil samples that in the absence of bitumen upgrading and surface mining, there has been no significant metal (As, Cd, Cu, Hg, Ni, Pb, V) enrichment from the Cold Lake in-situ oil field. Sediment records demonstrate post-industrial Cd, Hg and Pb enrichment beginning in the early Twentieth Century, which has leveled off or declined since the onset of commercial in-situ bitumen production at Cold Lake in 1985. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Physics and chemistry of sulfur lakes on Io

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Stevenson, D. J.

    1985-01-01

    Based on data from Loki and other hot spot regions, a model for a convecting sulfur lake that is heated from below is constructed. Temperature profiles and fluxes in the silicate and sulfur regions are consistent with the observed Loki highest-temperature component and excess flux. Evaporatin of sulfur sets a strong upper limit on the lake surface temperature, and the intermediate temperature in the Loki region is identified with sulfur vapor condensing primarily along lake shores. Simple models of sulfur vapor transport can be used to match the Voyager IRIS data, assuming sulfur vapor condensed on the shore radiates like a blackbody. The 1 - 100 year lifetime of such a lake in steady state implies that long-term earth-based observations interpreted with this model could detect variations in the Loki thermal output. The sodium-sulfur phase diagram is also presented and used to show that evaporated lakes may leave behind sodium-rich residue which could supply the torus with sodium. Finally, uncertainties in the model are assessed, including the lack of sulfur emission features in the Loki spectrum.

  18. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China.

    PubMed

    Ding, Huijun; Wu, Yixiao; Zhang, Weihao; Zhong, Jiayou; Lou, Qian; Yang, Ping; Fang, Yuanyuan

    2017-10-01

    SPE-UPLC-MS/MS was used to investigate the occurrence of 18 target antibiotics in the surface water of Poyang Lake over different seasons of 2014-2015. The maximum concentrations of sulfadiazine, oxytetracycline, and doxycycline were 56.2, 48.7, and 39.7 ng/L, respectively. Compared with those in the other lakes or surface waters, the surface water of Poyang Lake contained moderate or below-average levels of antibiotics. The significantly lower concentrations (P < 0.01) of roxithromycin in June 2015 likely resulted from the dilution effect of water flow during the flood season. Antibiotic concentrations were higher in site P3-1 than in other sites (P < 0.01), whereas those in other sites (P1-1, P2-1, P5-1, P6-1, P7-1, P13-1, P16-1, P17-1, P18-1) were not significantly different (P > 0.05). Given that tetracyclines and sulfonamides are common veterinary medicines, the high concentrations of oxytetracycline, doxycycline, and sulfadiazine in site P3-1 might be closely related to agricultural production in the surrounding areas. The risk assessment of the main antibiotic contaminants revealed that the majority of the risk quotients of the target antibiotics were below 0.01, thereby indicating the minimal risk of these antibiotics to organisms at three different trophic levels. Sulfadimidine and sulfadiazine were identified as the main antibiotics that contribute to ecological risk in Poyang Lake, and that the daphnid is the main model organism exposed to these risks. This study provides important data for antibiotic pollution control and environmental protection in the study area and enriches environmental monitoring data on a global scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Lake Urmia environmental disaster in Iran: A look at aerosol pollution.

    PubMed

    Hossein Mardi, Ali; Khaghani, Ali; MacDonald, Alexander B; Nguyen, Phu; Karimi, Neamat; Heidary, Parisa; Karimi, Nima; Saemian, Peyman; Sehatkashani, Saviz; Tajrishy, Massoud; Sorooshian, Armin

    2018-08-15

    Lake Urmia (LU) once was the second largest hypersaline lake in the world, covering up to 6000km 2 , but has undergone catastrophic desiccation in recent years resulting in loss of 90% of its area and extensive coverage by playas and marshlands that represent a source of salt and dust. This study examines daily Aerosol Optical Depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2001 and 2015 over northwestern Iran, which encompasses LU. Intriguingly, salt emissions from the LU surface associated with ongoing desiccation do not drive the study region's AOD profile, whereas pollution transported from other regions and emissions around LU are more important. Signatures of increasing local crustal emissions are most evident outside of the peak dust season (January, February, and October) and on the periphery of LU. AOD has generally increased in the latter half of the study period with the onset of the AOD ramp-up starting a month earlier in the spring season when comparing 2009-2015 versus earlier years. Results indicate that suppression of emissions on the LU border is critical as the combined area of salt and salty soil bodies around LU have increased by two orders of magnitude in the past two decades, and disturbing these areas via activities such as grazing and salt harvesting on the lake surface can have more detrimental impacts on regional pollution as compared to benefits. These results have important implications for public health, climate, the hydrological cycle, and pollution control efforts. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Derived Land Surface Emissivity From Suomi NPP CrIS

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.

  1. Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage

    NASA Astrophysics Data System (ADS)

    Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.

    2017-12-01

    Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.

  2. Directional Emissivity Effects on Martian Surface Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clancy, R. T.; Clayton, G. C.

    2001-11-01

    The angular dependence of thermal emission from the surface of Mars has not been well characterized. Although nadir sequences constitute most of the MGS/TES Martian surface observations [1,2], a significant number scans of Martian surfaces at multiple emission angles (emission phase function (EPF) sequences) also exist. Such data can provide insight into surface structures, thermal inertias, and non-isotropic corrections to thermal emission measurements [3]. The availability of abundant EPF data as well as the added utility of such observations for atmospheric characterization provide the impetus for examining the phenomenon of directional emissivity. We present examples of directional emissivity effects on brightness temperature spectra for a variety of typical Martian surfaces. We examine the theoretical development by Hapke (1993, 1996) [4,5] and compare his algorithm to that of Mishchenko et al. (1999) [6]. These results are then compared to relevant TES EPF data. This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC). [1] Smith et al. (1998), AAS-DPS meeting # 30, # 11.P07. [2] Kieffer, Mullins, & Titus (1998), EOS, 79, 533. [3] Jakosky, Finiol, & Henderson (1990), JGR, 17, 985--988. [4] Hapke, B. (1993), Theory of Reflectance & Emittance Spectroscopy, Cambridge Univ. Press, NY. [5] Hapke, B. (1996), JGR, 101, E7, 16817--16831. [6] Mishchenko et al. (1999), JQSRT, 63, 409--432.

  3. Surface slope characteristics from Thermal Emission Spectrometer emission phase function observations

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.

    2006-12-01

    It is possible to obtain surface roughness characteristics, by measuring a single surface from multiple emission angles and azimuths in the thermal infrared. Surfaces will have different temperatures depending on their orientation relative to the sun. A different proportion of sunlit versus shaded surfaces will be in the field of view based on the viewing orientation, resulting in apparent temperature differences. This difference in temperature can be utilized to calculate the slope characteristics for the observed area. This technique can be useful for determining surface slope characteristics not resolvable by orbital imagery. There are two main components to this model, a surface DEM, in this case a synthetic, two dimensional sine wave surface, and a thermal model (provided by H. Kieffer). Using albedo, solar longitude, slope, azimuth, along with several other parameters, the temperature for each cell of the DEM is calculated using the thermal model. A temperature is then predicted using the same observation geometries as the Thermal Emission Spectrometer (TES) observations. A temperature difference is calculated for the two complementary viewing azimuths and emission angles from the DEM. These values are then compared to the observed temperature difference to determine the surface slope. This method has been applied to TES Emission Phase Function (EPF) observations for both the spectrometer and bolometer data, with a footprint size of 10s of kilometers. These specialized types of TES observations measure nearly the same surface from several angles. Accurate surface kinetic temperatures are obtained after the application of an atmospheric correction for the TES bolometer and/or spectrometer. Initial results include an application to the northern circumpolar dunes. An average maximum slope of ~33 degrees has been obtained, which makes physical sense since this is near the angle of repose for sand sized particles. There is some scatter in the data from separate

  4. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  5. Third Stokes parameter emission from a periodic water surface

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.

    1991-01-01

    An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.

  6. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    USGS Publications Warehouse

    Bergfeld, D.; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-01-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007–2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10–14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of − 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  7. Quantification of surface emissions: An historical perspective from GEIA

    NASA Astrophysics Data System (ADS)

    Granier, C.; Denier Van Der Gon, H.; Doumbia, E. H. T.; Frost, G. J.; Guenther, A. B.; Hassler, B.; Janssens-Maenhout, G. G. A.; Lasslop, G.; Melamed, M. L.; Middleton, P.; Sindelarova, K.; Tarrason, L.; van Marle, M.; W Kaiser, J.; van der Werf, G.

    2015-12-01

    Assessments of the composition of the atmosphere and its evolution require accurate knowledge of the surface emissions of atmospheric compounds. The first community development of global surface emissions started in 1990, when GEIA was established as a component of the International Global Atmospheric Chemistry (IGAC) project. At that time, GEIA meant "Global Emissions Inventory Activity". Since its inception, GEIA has brought together people to understand emissions from anthropogenic, biomass burning and natural sources. The first goal of GEIA was to establish a "best" inventory for the base year 1985 at 1x1 degree resolution. Since then many inventories have been developed by various groups at the global and regional scale at different temporal and spatial resolutions. GEIA, which now means the "Global Emissions Initiative", has evolved into assessing, harmonizing and distributing emissions datasets. We will review the main achievements of GEIA, and show how the development and evaluation of surface emissions has evolved during the last 25 years. We will discuss the use of surface, in-situ and remote sensing observations to evaluate and improve the quantification of emissions. We will highlight the main uncertainties currently limiting emissions datasets, such as the spatial and temporal evolution of emissions at different resolutions, the quantification of emerging emission sources (such as oil/gas extraction and distribution, biofuels, etc.), the speciation of the emissions of volatile organic compounds and of particulate matter, the capacity building necessary for organizing the development of regional emissions across the world, emissions from shipping, etc. We will present the ECCAD (Emissions of Atmospheric Compounds and Compilation of Ancillary Data) database, developed as part of GEIA to facilitate the access and evaluation of emission inventories.

  8. Interpretation of Passive Microwave Imagery of Surface Snow and Ice: Harding Lake, Alaska

    DTIC Science & Technology

    1991-06-01

    Circle conditions in microwave imagery depends on the char- (Fig. 1). The lake is roughly circular in shape and has a acteristics of the sensor system...local oscillator frequency 33.6 0Hz IF bandwidth Greaterthan 500 MHz cracks in the ice sheet. The incursion process is de - video bandwidth 1.7 kHz...using pas- surface snow had oct.urred on these similarly sized sive microwave sensors . IEEE/Transactions on Geo- lakes. Additional field verifications

  9. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets

    USGS Publications Warehouse

    Stets, E.G.; Striegl, Robert G.; Aiken, G.R.; Rosenberry, D.O.; Winter, T.C.

    2009-01-01

    Freshwater lakes are an important component of the global carbon cycle through both organic carbon (OC) sequestration and carbon dioxide (CO 2) emission. Most lakes have a net annual loss of CO2 to the atmosphere and substantial current evidence suggests that biologic mineralization of allochthonous OC maintains this flux. Because net CO 2 flux to the atmosphere implies net mineralization of OC within the lake ecosystem, it is also commonly assumed that net annual CO2 emission indicates negative net ecosystem production (NEP). We explored the relationship between atmospheric CO2 emission and NEP in two lakes known to have contrasting hydrologie characteristics and net CO2 emission. We calculated NEP for calendar year 2004 using whole-lake OC and inorganic carbon (IC) budgets, NEPoc and NEPIC, respectively, and compared the resulting values to measured annual CO 2 flux from the lakes. In both lakes, NEPIc and NEP Ic were positive, indicating net autotrophy. Therefore CO2 emission from these lakes was apparently not supported by mineralization of allochthonous organic material. In both lakes, hydrologie CO2 inputs, as well as CO2 evolved from netcalcite precipitation, could account for the net CO2 emission. NEP calculated from diel CO2 measurements was also affected by hydrologie inputs of CO2. These results indicate that CO2 emission and positive NEP may coincide in lakes, especially in carbonate terrain, and that all potential geologic, biogeochemical, and hydrologie sources of CO2 need to be accounted for when using CO2 concentrations to infer lake NEP. Copyright 2009 by the American Geophysical Union.

  10. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes.

    PubMed

    Yang, Jian; Ma, Li'an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang

    2016-04-26

    Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P < 0.001) with lake salinity instead of geographic distance. This suggests that lake salinity is more important than geographic distance in shaping the microbial diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.

  11. ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya

    USGS Publications Warehouse

    Wessels, R.L.; Kargel, J.S.; Kieffer, H.H.

    2002-01-01

    We demonstrate an application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images to detect and monitor supraglacial lakes on glaciers in the Mount Everest region in Tibet (Xizang) and Nepal. ASTER offers powerful capabilities to monitor supraglacial lakes in terms of (1) surface area, growth and disappearance (spatial resolution = 15 m), (2) turbidity (15 m resolution), and (3) temperature (90 m resolution). Preliminary results show an overall similarity of supraglacial lakes on three glaciers. Lakes have widely varying turbidity as indicated by color in visible/near-infrared bands 1-3, the largest lakes being bright blue (highly turbid), cold (near 0??C) and hydrautically connected with other lakes and supraglacial streams, while small lakes are mostly dark blue (relatively clear water), warmer (>4??C), and appear hydrautically isolated. High levels of turbidity in supraglacial lakes indicate high rates of meltwater input from streams or erosion of ice cliffs, and thus are an indirect measure relating to the activity and hydraulic integration of the lake with respect to other lakes and streams in the glacier.

  12. Progress report: chemical character of surface waters in the Devils Lake Basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert A.

    1950-01-01

    Devils Lake in northeastern North Dakota was at one time the most popular summer resort in the state. With decline in lake level the lake has become a shallow body pf vary saline water, which scenic value and recreational appeal completely destroyed. Under the Missouri River development program, it is proposed to restore the lake level to an altitude of 1,425 feet by diversion of Missouri River water. The chemical character of the water in Devils Lake and in other surface bodies in Devils Lake Basin is determined from the analyses of 95 samples. The physical and chemical properties of lake bed deposits are also shown. Lake water in the basin vary considerable in both concentration and composition, ranging from fresh bicarbonate waters of 300 parts per million dissolved solids to sulfate waters of over 100,000 parts per million of soluble salts. Twenty-four samples indicates the chemical character of water in the Red River of the North and its tributaries. The probable concentration of dissolved solids in water of Devils Lake at altitude 1,425 feet has been estimated as ranging from 3,000 to 7,600 parts per million. Final concentration will largely depend upon the percentage of deposited salts reentering solution and the quality of the inflow water. The possible effects of lake effluents on downstream developments, with particular reference to sanitation and pollution problems, are also discussed in this report.

  13. The Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki

    For the last couple of decades, the Great Lakes have undergone rapid surface warming. In particular, the magnitude of the summer surface-warming trends of the Great Lakes have been much greater than those of surrounding land (Austin and Colman, 2007). Among the Great Lakes, the deepest Lake Superior exhibited the strongest warming trend in its annual, as well as summer surface water temperature. We find that many aspects of this behavior can be explained in terms of the tendency of deep lakes to exhibit multiple regimes characterized, under the same seasonally varying forcing, by the warmer and colder seasonal cycles exhibiting different amounts of wintertime lake-ice cover and corresponding changes in the summertime lake-surface temperatures. In this thesis, we address the problem of the Great Lakes' warming using one-dimensional lake modeling to interpret diverse observations of the recent lake behavior. (Abstract shortened by ProQuest.).

  14. Hydrology of the Lake Deaton and Lake Okahumpka area, Northeast Sumter County, Florida

    USGS Publications Warehouse

    Simonds, Edward P.; German, E.R.

    1980-01-01

    The Floridan aquifer in the Lake Deaton and Lake Okahumpka area is 50 to 130 feet below land surface. During the 16-year period 1963-78 lake evaporation exceeded rainfall by 0.4 inches. Drainage from Lake Deaton and its surrounding area goes into Chitty Chatty Creek and on the Hogeye Sink when the altitude of the potentiometric surface of the Floridan aquifer is low. During a higher altitude of the Floridan potentiometric surface, Hogeye Sink may discharge water; this water, along with the normal runoff, goes into Lake Okahumpka. Average lake fluctuation is 1.5 to 2.0 feet per year. Lake Deaton supports a large population of blue-green algae and Lake Okahumpka is choked with aquatic plants. The water quality of the two lakes differ, with Lake Deaton having a sodium chloride water and Lake Okahumpka having a calcium bicarbonate water. Analysis of water and bottom material samples showed that only cadmium and mercury exceeded the Florida Department of Environmental Regulation 's criteria for Class III waters; however, the amounts detected were at or slightly above the limits of the analytical method. (USGS)

  15. Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Kratz, David P.; Gupta, Shashi K.

    1999-01-01

    Accurate accounting of surface emissivity is essential for the retrievals of surface temperature from remote sensing measurements, and for the computations of longwave (LW) radiation budget of the Earth?s surface. Past studies of the above topics assumed that emissivity for all surface types, and across the entire LW spectrum is equal to unity. There is strong evidence, however, that emissivity of many surface materials is significantly lower than unity, and varies considerably across the LW spectrum. We have developed global maps of surface emissivity for the broadband LW region, the thermal infrared window region (8-12 micron), and 12 narrow LW spectral bands. The 17 surface types defined by the International Geosphere Biosphere Programme (IGBP) were adopted as such, and an additional (18th) surface type was introduced to represent tundra-like surfaces. Laboratory measurements of spectral reflectances of 10 different surface materials were converted to corresponding emissivities. The 10 surface materials were then associated with 18 surface types. Emissivities for the 18 surface types were first computed for each of the 12 narrow spectral bands. Emissivities for the broadband and the window region were then constituted from the spectral band values by weighting them with Planck function energy distribution.

  16. The lakes of Titan

    USGS Publications Warehouse

    Stofan, E.R.; Elachi, C.; Lunine, J.I.; Lorenz, R.D.; Stiles, B.; Mitchell, K.L.; Ostro, S.; Soderblom, L.; Wood, C.; Zebker, H.; Wall, S.; Janssen, M.; Kirk, R.; Lopes, R.; Paganelli, F.; Radebaugh, J.; Wye, L.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Paillou, P.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Vetrella, S.; West, R.

    2007-01-01

    The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70?? north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table. ??2007 Nature Publishing Group.

  17. Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; van Pelt, R.; Fredrickson, E. L.

    2009-12-01

    Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the dust emissions from a bare, fine-textured playa surface located in the Chihuahua Desert at the Jornada Experimental Range, near Las Cruces, New Mexico, USA. We tested natural, undisturbed crusted surfaces and surfaces that had been subjected to two levels of domestic animal disturbance. The animal disturbance was provided by trampling produced from one and ten passes along the length of the wind tunnel by a 630 kg Angus-Hereford cross cow. The trampling broke the durable crust and created loose erodible material. Each treatment (natural crust, one pass, and ten passes) was replicated three times. A push-type wind tunnel with a 6 m long, 0.5 m wide, and 1 m high test section was used to generate dust emissions under controlled conditions. Clean medium sand was dropped onto the playa surface to act as an abrader material. The tunnel wind speed was equivalent to 15 m/s at a height of 2 m over a smooth soil surface. The tunnel was initially run for ten minutes, with no abrader added. A second 30 minute run was subsequently sampled as abrader was added to the wind stream. Dust and saltating material were collected using an isokinetic slot sampler at the end of the tunnel. Total airborne dust was collected on two 25 cm x 20 cm glass fiber filters (GFF) and measured using a GRIMM particle monitor every 6 sec throughout each test run. Disturbance by trampling generated increased saltating material and airborne dust. The amount of saltating material measured during the initial (no abrader added) run was approximately 70% greater and 5.8 times the amount of saltating material measured on the one pass and ten pass plots, respectively, compared with that observed on the undisturbed

  18. Frequency and Angular Variations of Land Surface Microwave Emissivities: Can we Estimate SSM/T and AMSU Emissivities from SSM/I Emissivities?

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Wigneron, Jean-Pierre; Rossow, William B.; Pardo-Carrion, Juan R.

    1999-01-01

    To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.

  19. The role of metabolism in modulating CO2 fluxes in boreal lakes

    NASA Astrophysics Data System (ADS)

    Bogard, Matthew J.; del Giorgio, Paul A.

    2016-10-01

    Lake CO2 emissions are increasingly recognized as an important component of the global CO2 cycle, yet the origin of these emissions is not clear, as specific contributions from metabolism and in-lake cycling, versus external inputs, are not well defined. To assess the coupling of lake metabolism with CO2 concentrations and fluxes, we estimated steady state ratios of gross primary production to respiration (GPP:R) and rates of net ecosystem production (NEP = GPP-R) from surface water O2 dynamics (concentration and stable isotopes) in 187 boreal lakes spanning long environmental gradients. Our findings suggest that internal metabolism plays a dominant role in regulating CO2 fluxes in most lakes, but this pattern only emerges when examined at a resolution that accounts for the vastly differing relationships between lake metabolism and CO2 fluxes. Fluxes of CO2 exceeded those from NEP in over half the lakes, but unexpectedly, these effects were most common and typically largest in a subset ( 30% of total) of net autotrophic lakes that nevertheless emitted CO2. Equally surprising, we found no environmental characteristics that distinguished this category from the more common net heterotrophic, CO2 outgassing lakes. Excess CO2 fluxes relative to NEP were best predicted by catchment structure and hydrologic properties, and we infer from a combination of methods that both catchment inputs and internal anaerobic processes may have contributed this excess CO2. Together, our findings show that the link between lake metabolism and CO2 fluxes is often strong but can vary widely across the boreal biome, having important implications for catchment-wide C budgets.

  20. Ground-water and surface-water flow and estimated water budget for Lake Seminole, southwestern Georgia and northwestern Florida

    USGS Publications Warehouse

    Dalton, Melinda S.; Aulenbach, Brent T.; Torak, Lynn J.

    2004-01-01

    Lake Seminole is a 37,600-acre impoundment formed at the confluence of the Flint and Chattahoochee Rivers along the Georgia?Florida State line. Outflow from Lake Seminole through Jim Woodruff Lock and Dam provides headwater to the Apalachicola River, which is a major supply of freshwater, nutrients, and detritus to ecosystems downstream. These rivers,together with their tributaries, are hydraulically connected to karst limestone units that constitute most of the Upper Floridan aquifer and to a chemically weathered residuum of undifferentiated overburden. The ground-water flow system near Lake Seminole consists of the Upper Floridan aquifer and undifferentiated overburden. The aquifer is confined below by low-permeability sediments of the Lisbon Formation and, generally, is semiconfined above by undifferentiated overburden. Ground-water flow within the Upper Floridan aquifer is unconfined or semiconfined and discharges at discrete points by springflow or diffuse leakage into streams and other surface-water bodies. The high degree of connectivity between the Upper Floridan aquifer and surface-water bodies is limited to the upper Eocene Ocala Limestone and younger units that are in contact with streams in the Lake Seminole area. The impoundment of Lake Seminole inundated natural stream channels and other low-lying areas near streams and raised the water-level altitude of the Upper Floridan aquifer near the lake to nearly that of the lake, about 77 feet. Surface-water inflow from the Chattahoochee and Flint Rivers and Spring Creek and outflow to the Apalachicola River through Jim Woodruff Lock and Dam dominate the water budget for Lake Seminole. About 81 percent of the total water-budget inflow consists of surface water; about 18 percent is ground water, and the remaining 1 percent is lake precipitation. Similarly, lake outflow consists of about 89 percent surface water, as flow to the Apalachicola River through Jim Woodruff Lock and Dam, about 4 percent ground water

  1. Bathymetry of Walker Lake, West-Central Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Smith, J. LaRue

    2007-01-01

    Walker Lake lies within a topographically closed basin in west-central Nevada and is the terminus of the Walker River. Much of the streamflow in the Walker River is diverted for irrigation, which has contributed to a decline in lake-surface altitude of about 150 feet and an increase in dissolved solids from 2,500 to 16,000 milligrams per liter in Walker Lake since 1882. The increase in salinity threatens the fresh-water ecosystem and survival of the Lahontan cutthroat trout, a species listed as threatened under the Endangered Species Act. Accurately determining the bathymetry and relations between lake-surface altitude, surface area, and storage volume are part of a study to improve the water budget for Walker Lake. This report describes the updated bathymetry of Walker Lake, a comparison of results from this study and a study by Rush in 1970, and an estimate of the 1882 lake-surface altitude. Bathymetry was measured using a single-beam echosounder coupled to a differentially-corrected global positioning system. Lake depth was subtracted from the lake-surface altitude to calculate the altitude of the lake bottom. A Lidar (light detection and ranging) survey and high resolution aerial imagery were used to create digital elevation models around Walker Lake. The altitude of the lake bottom and digital elevation models were merged together to create a single map showing land-surface altitude contours delineating areas that are currently or that were submerged by Walker Lake. Surface area and storage volume for lake-surface altitudes of 3,851.5-4,120 feet were calculated with 3-D surface-analysis software. Walker Lake is oval shaped with a north-south trending long axis. On June 28, 2005, the lake-surface altitude was 3,935.6 feet, maximum depth was 86.3 feet, and the surface area was 32,190 acres. The minimum altitude of the lake bottom from discrete point depths is 3,849.3 feet near the center of Walker Lake. The lake bottom is remarkably smooth except for mounds near

  2. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.

    PubMed

    Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L

    2013-08-21

    Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.

  3. Radiative decay engineering 3. Surface plasmon-coupled directional emission

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold. The phenomenon of surface plasmon-coupled emission (SPCE) occurs for fluorophores 20–250 nm from the metal surface, allowing detection of fluorophores over substantial distances beyond the metal–sample interface. SPCE depends on interactions of the excited fluorophore with the metal surface. This interaction is independent of the mode of excitation; that is, it does not require evanescent wave or surface-plasmon excitation. In a sense, SPCE is the inverse process of the surface plasmon resonance absorption of thin metal films. Importantly, SPCE occurs over a narrow angular distribution, converting normally isotropic emission into easily collected directional emission. Up to 50% of the emission from unoriented samples can be collected, much larger than typical fluorescence collection efficiencies near 1% or less. SPCE is due only to fluorophores near the metal surface and may be regarded as emission from the induced surface plasmons. Autofluorescence from more distal parts of the sample is decreased due to decreased coupling. SPCE is highly polarized and autofluorescence can be further decreased by collecting only the polarized component or only the light propagating with the appropriate angle. Examples showing how simple optical configurations can be used in diagnostics, sensing, or biotechnology applications are presented. Surface plasmon-coupled emission is likely to find widespread applications throughout the biosciences. PMID:14690679

  4. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    USGS Publications Warehouse

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  5. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2

  6. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada.

    PubMed

    Metcalfe, Chris D; Miao, Xiu-Sheng; Koenig, Brenda G; Struger, John

    2003-12-01

    Prescription and nonprescription drugs have been detected in rivers and streams in Europe and the United States. Sewage treatment plants (STPs) are an important source of these contaminants, but few data exist on the spatial distribution of drugs in surface waters near STPs. Samples of surface water were collected in the summer and fall of 2000 at open-water sites in the lower Great Lakes (Lake Ontario and Lake Erie), at sites near the two STPs for the city of Windsor (ON, Canada), and at sites in Hamilton Harbour (ON, Canada), an embayment of western Lake Ontario that receives discharges from several STPs. In a follow-up study in the summer of 2002, samples of surface water and final effluent from adjacent STPs were collected from sites in Hamilton Harbour and Windsor. In addition, surface water and STP effluent samples were collected in Peterborough (ON, Canada). All samples of surface water and STP effluents were analyzed for selected acidic and neutral drugs. In the survey of Hamilton Harbour and Windsor conducted in 2000, acidic drugs and the antiepileptic drug carbamazepine were detected at ng/L concentrations at sites that were up to 500 m away from the STP, but the hydrological conditions of the receiving waters strongly influenced the spatial distribution of these compounds. Drugs were not detected at open-water locations in western Lake Erie or in the Niagara River near the municipality of Niagara-on-the-Lake (ON, Canada). However, clofibric acid, ketoprofen, fenoprofen, and carbamazepine were detected in samples collected in the summer of 2000 at sites in Lake Ontario and at a site in the Niagara River (Fort Erie, ON, Canada) that were relatively remote from STP discharges. Follow-up studies in the summer of 2002 indicated that concentrations of acidic and neutral drugs in surface waters near the point of sewage discharge into the Little River (ON, Canada) STP were approximately equal to the concentrations in the final effluent from the STP. Caffeine and

  7. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk.

    PubMed

    Yan, Zhengyu; Liu, Yanhua; Yan, Kun; Wu, Shengmin; Han, Zhihua; Guo, Ruixin; Chen, Meihong; Yang, Qiulian; Zhang, Shenghu; Chen, Jianqiu

    2017-10-01

    Compared to Bisphenol A (BPA), current knowledge on the spatial distribution, potential sources and environmental risk assessment of other bisphenol analogues (BPs) remains limited. The occurrence, distribution and sources of seven BPs were investigated in the surface water and sediment from Taihu Lake and Luoma Lake, which are the Chinese shallow freshwater lakes. Because there are many industries and living areas around Taihu Lake, the total concentrations of ∑BPs were much higher than that in Luoma Lake, which is away from the industry-intensive areas. For the two lakes, BPA was still the dominant BPs in both surface water and sediment, followed by BPF and BPS. The spatial distribution and principal component analysis showed that BPs in Luoma Lake was relatively homogeneous and the potential sources were relatively simple than that in Taihu Lake. The spatial distribution of BPs in sediment of Taihu Lake indicated that ∑BPs positively correlated with the TOC content. For both Taihu Lake and Luoma Lake, the risk assessment at the sampling sites showed that no high risk in surface water and sediment (RQ t  < 1.0, and EEQ t  < 1.0 ng E 2 /L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Methane emissions from tundra environments in the Yukon-Kuskokwin Delta, Alaska

    NASA Technical Reports Server (NTRS)

    Bartlett, Karen B.; Crill, Patrick M.; Sass, Ronald L.; Harriss, Robert C.; Dise, Nancy B.

    1992-01-01

    This paper reports CH4 flux to the atmosphere from a variety of tundra environments near Bethel, Alaska during the summer months of 1988. Emissions from wet meadow tundra averaged 144 +/- 31 mg/sq m/d and ranged from 15.6 to 426 mg/sq m/d varying with soil moisture and temperature. Flux from the drier upland tundra was about two orders of magnitude lower and averaged 2.3 +/- 1.1 mg/sq m/d. Tundra lakes emit CH4 from the open water surface as well as from fringing aquatic vegetation; the presence of vegetation significantly enhanced flux over open water rates. Calculated diffusive fluxes from open water varied with lake size, the large lakes emitting 3.8 mg/sq m/d and small lakes emitting an average of 77 mg/sq m/d. An updated estimate of global emissions from tundra indicates an annual fluxes of approximately 11 +/- 3 Tg CH4.

  9. Spatial and temporal variations of Rb/Sr ratios of the bulk surface sediments in Lake Qinghai

    PubMed Central

    2010-01-01

    The Rb/Sr ratios of lake sediments have been suggested as indicators of weathering intensity by increasing work. However, the geochemistry of Rb/Sr ratios of lake sediments is variable between different lakes. In this study, we investigated the spatial and temporal patterns of Rb/Sr ratios, as well as those of other major elements in surface sediments of Lake Qinghai. We find that the spatial pattern of Rb/Sr ratios of the bulk sediments correlates well with that of the mass accumulation rate, and those of the terrigenous fractions, e.g., SiO2, Ti, and Fe. The temporal variations of Rb/Sr ratios also synchronize with those of SiO2, Ti, and Fe of each individual core. These suggest that Rb/Sr ratios of the surface sediments are closely related to terrigenous input from the catchment. Two out of eight cores show similar trends between Rb/Sr ratios and precipitation indices on decadal scales; however, the other cores do not show such relationship. The result of this study suggests that physical weathering and chemical weathering in Lake Qinghai catchment have opposite influence on Rb/Sr ratios of the bulk sediments, and they compete in dominating the Rb/Sr ratios of lake sediments on different spatial and temporal scales. Therefore, it is necessary to study the geochemistry of Rb/Sr ratio of lake sediments (especially that on short term timescales) particularly before it is used as an indicator of weathering intensity of the catchment. PMID:20615264

  10. Recreational fishing in surface mine lakes - a case study in St. Clair County, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannz, R.H.

    1985-12-09

    Recent mining legislation mandates the reclamation of surface-mined areas to the pre-mining contour, eliminating the potential of many new lakes. However, many pre-law mine lakes have considerable recreational value benefiting the surrounding regions. During 1983, 5296 anglers participated in Peabody Coal Company's Coal Company's recreational fishing program in St. Clair County, Illinois. A random sample of participants were mailed a questionnaire designed to identify user/area characteristics economic implications, and sport fishing resources of the program lakes. Sample data indicated 62,760 angling days spent on 600 acres of program waters during 1983. The single most sought after fish was the largemore » mouth bass. Expenditures by 1983 program users were estimated at $753,120 or $1255 per acre of surface water. Opportunity cost calculations indicated that recreational fishing was an equal or better trade-off to the regional economy when compared to income that could have been produced from rowcrop agriculture. Reclamation techniques designed for fish and wildlife purposes and leaving such areas should be encouraged. Returning surface-mined areas to the pre-mining contour and use is not necessarily the most cost effective or desirable method of reclamation. 14 references, 4 tables.« less

  11. Bathymetric contour map, surface area and capacity table, and bathymetric difference map for Clearwater Lake near Piedmont, Missouri, 2017

    USGS Publications Warehouse

    Richards, Joseph M.; Huizinga, Richard J.

    2018-06-19

    Clearwater Lake, on the Black River near Piedmont in Reynolds County, Missouri, was constructed in 1948 and is operated by the U.S. Army Corps of Engineers for flood-risk reduction, recreation, and fish and wildlife habitat. The lake area is about 1,800 acres with about 34 miles of shoreline at the conservation pool elevation of 498 feet. Since the completion of the lake in 1948, sedimentation likely has caused the storage capacity of the lake to decrease gradually. The loss of storage capacity can decrease the effectiveness of the lake to mitigate flooding, and excessive sediment accumulation also can reduce aquatic habitat in some areas of the lake. Many lakes operated by the U.S. Army Corps of Engineers have periodic bathymetric and sediment surveys to monitor the status of the lake. The U.S. Geological Survey completed one such survey of Clearwater Lake in 2008 during a period of high lake level using bathymetric surveying equipment consisting of a multibeam echosounder, a singlebeam echosounder, 1/3 arc-second National Elevation Dataset data (used outside the multibeam echosounder survey extent), and the waterline derived from 2008 aerial light detection and ranging (lidar) data. In May 2017, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, surveyed the bathymetry of Clearwater Lake to prepare an updated bathymetric map and a surface area and capacity table. The 2008 survey was contrasted with the 2017 survey to document the changes in the bathymetric surface of the lake.

  12. Modeling electron emission and surface effects from diamond cathodes

    DOE PAGES

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; ...

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less

  13. Modeling electron emission and surface effects from diamond cathodes

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-01

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass, and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.

  14. Near-Surface Geophysical Character of a Holocene Fault Carrying Geothermal Flow Near Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Dudley, C.; Dorsey, A.; Louie, J. N.; Schwering, P. C.; Pullammanappallil, S.

    2012-12-01

    Lines of calcium carbonate tufa columns mark recent faults that cut 11 ka Lake Lahontan sediments at Astor Pass, north of Pyramid Lake, Nevada. Throughout the Great Basin, faults appear to control the location of geothermal resources, providing pathways for fluid migration. Reservoir-depth (greater than 1 km) seismic imaging at Astor Pass shows a fault that projects to one of the lines of tufa columns at the surface. The presence of the tufa deposits suggests this fault carried warm geothermal waters through the lakebed clay sediments in recent time. The warm fluids deposited the tufa when they hit cold Lake Lahontan water at the lakebed. Lake Lahontan covered this location to a depth of at least 60 m at 11 ka. In collaboration with the Pyramid Lake Paiute Tribe, an Applied Geophysics class at UNR investigated the near-surface geophysical characteristics of this fault. The survey comprises near-surface seismic reflection and refraction, nine near-surface refraction microtremor (SeisOpt® ReMi™) arrays, nine near-surface direct-current resistivity soundings, magnetic surveys, and gravity surveys at and near the tufa columns. The refraction microtremor results show shear velocities near tufa and faults to be marginally lower, compared to Vs away from the faults. Overall, the 30-m depth-averaged shear velocities are low, less than 300 m/s, consistent with the lakebed clay deposits. These results show no indication of any fast (> 500 m/s) tufa below the surface at or near the tufa columns. Vs30 averages were 274 ± 13 m/s on the fault, 287 ± 2 m/s at 150 m east of the fault, and 290 ± 15 m/s at 150 m west of the fault. The P-velocity refraction optimization results also show no indication of high-velocity tufa buried below the surface in the Lahontan sediments, reinforcing the idea that all tufa was deposited above the lakebed surface. The seismic results provide a negative test of the hypothesis that deposition of the lakebeds in the Quaternary buried and

  15. Testing a high resolution CO2 and CO emission inventory against atmospheric observations in Salt Lake City, Utah for policy applications

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Mallia, D. V.; Fasoli, B.; Bares, R.; Catharine, D.; O'Keeffe, D.; Song, Y.; Huang, J.; Horel, J.; Crosman, E.; Hoch, S.; Ehleringer, J. R.

    2016-12-01

    We address the need for robust highly-resolved emissions and trace gas concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are the result of proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria air pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present a contemporary (2010-2015) emissions inventory and modeled CO2 and carbon monoxide (CO) concentrations for Salt Lake County, Utah. We compare emissions transported by a dispersion model against stationary measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at hourly, building and road-link resolutions, as well as on an hourly gridded scale. The emissions were scaled using annual Energy Information Administration (EIA) fuel consumption data. We derived a CO emissions inventory using methods similar to Hestia, downscaling total county emissions from the 2011 Environmental Protection Agency's (EPA) National Emissions Inventory (NEI). The gridded CO emissions were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The Stochastic Time-Inverted Lagrangian Trasport (STILT) dispersion model was used to transport emissions and estimate pollutant concentrations at an hourly resolution. Modeled results were compared against stationary measurements in the Salt Lake County area. This comparison highlights spatial locations and hours of high variability and uncertainty. Sensitivity to biological fluxes as well as to specific economic sectors was tested by varying their contributions to

  16. Spatial and Temporal Variations in the Partial Pressure and Emission of CO2 and CH4 in and Amazon Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.

    2015-12-01

    The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times

  17. Modeling carbon dioxide emissions reductions for three commercial reference buildings in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Lucich, Stephen M.

    In the United States, the buildings sector is responsible for approximately 40% of the national carbon dioxide (CO2) emissions. CO2 is created during the generation of heat and electricity, and has been linked to climate change, acid rain, a variety of health threats, surface water depletion, and the destruction of natural habitats. Building energy modeling is a powerful educational tool that building owners, architects, engineers, city planners, and policy makers can use to make informed decisions. The aim of this thesis is to simulate the reduction in CO2 emissions that may be achieved for three commercial buildings located in Salt Lake City, UT. The following two questions were used to guide this process: 1. How much can a building's annual CO2 emissions be reduced through a specific energy efficiency upgrade or policy? 2. How much can a building's annual CO2 emissions be reduced through the addition of a photovoltaic (PV) array? How large should the array be? Building energy simulations were performed with the Department of Energy's EnergyPlus software, commercial reference building models, and TMY3 weather data. The chosen models were a medium office building, a primary school, and a supermarket. Baseline energy consumption data were simulated for each model in order to identify changes that would have a meaningful impact. Modifications to the buildings construction and operation were considered before a PV array was incorporated. These modifications include (1) an improved building envelope, (2) reduced lighting intensity, and (3) modified HVAC temperature set points. The PV array sizing was optimized using a demand matching approach based on the method of least squares. The arrays tilt angle was optimized using the golden section search algorithm. Combined, energy efficiency upgrades and the PV array reduced building CO2 emissions by 58.6, 54.0, and 52.2% for the medium office, primary school, and supermarket, respectively. However, for these models, it was

  18. Bathymetry of Bonnie Doone Lake, Kornbow Lake, Mintz Pond, and Glenville Lake, Cumberland County, North Carolina, 1996-98

    USGS Publications Warehouse

    Giorgino, M.J.; Strain, R.E.

    1999-01-01

    Bathymetric surveys were conducted at four water-supply impoundments of Little Cross Creek in Cumberland County, North Carolina. The surveys were conducted in April 1996 at Mintz Pond and Glenville Lake, and in January 1998 at Bonnie Doone Lake and Kornbow Lake. The resulting bathymetric maps are the first to cover the entire range in depth for these reservoirs and provide a framework for future evaluations of bathymetry and storage capacity. Bathymetric maps were constructed from depth and position data collected at each reservoir. A boat-mounted, research-grade fathometer was used to record water depths with a vertical accuracy of 0.1 foot. At Mintz Pond and Glenville Lake, position was measured by using a wide-band laser tracking system interfaced with a total station survey instrument. This positioning method required multiple land-based control points to be established and was hampered by line-of-sight restrictions between the control points and the boat. At Bonnie Doone Lake and Kornbow Lake, a global positioning system was used to collect differentially corrected location data. This positioning method enabled more rapid data collection, eliminated the need for land-based control points, and provided improved data coverage. Spillway elevations range from 172.8 feet above mean sea level at Bonnie Doone Lake to 113.1 feet at Glenville Lake. Surface area and storage volume were computed for each reservoir and were related to water-surface elevations at 1-foot intervals. The combined surface acreage of the four Little Cross Creek reservoirs at their full-pool elevations is 120.97 acres, consisting of 21.20 acres at Bonnie Doone Lake, 47.09 acres at Kornbow Lake, 15.56 acres at Mintz Pond, and 37.12 acres at Glenville Lake. The four reservoirs have a combined usable storage capacity of 674.91 acre-feet, which is the sum of 127.93 acre-feet in Bonnie Doone Lake, 320.62 acre-feet in Kornbow Lake, 53.25 acre-feet in Mintz Pond, and 173.11 acre-feet in Glenville Lake.

  19. Physical Controls on Carbon Flux from a Temperate Lake During Autumn Cooling

    NASA Astrophysics Data System (ADS)

    Czikowsky, M. J.; Miller, S. D.; Tedford, E. W.; MacIntyre, S.

    2011-12-01

    Seasonally-stratified temperate lakes are a source of carbon dioxide to the atmosphere during autumn overturning as CO2 trapped below the thermocline becomes available to the surface for release to the atmosphere. We made continuous measurements of the vertical profile of pCO2 in a ~600 ha temperate lake (Lake Pleasant, maximum depth ~24 m) in southwestern Adirondack Park, New York from mid-September to mid-October 2010 from a moored pontoon boat. Continuous eddy covariance flux measurements of momentum, sensible and latent heat, and CO2 were made in situ, and the water column thermal structure was measured using thermistor chains. The spatial variability (horizontal and vertical) of pCO2 throughout the lake was characterized periodically using a roving profiling system. At the beginning of the study interval, pCO2 at the pontoon boat varied from 500 ppm at the surface to > 3000 ppm below the thermocline. The vertical profile of pCO2 changed markedly during the campaign due to the effects of wind forcing and evaporation (buoyancy), with nearly uniform, high pCO2 throughout the water column at the end of the campaign (Figure 1). The elevated surface water pCO2 increased CO2 emission to the atmosphere.

  20. Minor methane emissions from an Alpine hydropower reservoir based on monitoring of diel and seasonal variability.

    PubMed

    Sollberger, Sébastien; Wehrli, Bernhard; Schubert, Carsten J; DelSontro, Tonya; Eugster, Werner

    2017-10-18

    We monitored CH 4 emissions during the ice-free period of an Alpine hydropower reservoir in the Swiss Alps, Lake Klöntal, to investigate mechanisms responsible for CH 4 variability and to estimate overall emissions to the atmosphere. A floating eddy-covariance platform yielded total CH 4 and CO 2 emission rates at high temporal resolution, while hydroacoustic surveys provided no indication of CH 4 ebullition. Higher CH 4 fluxes (2.9 ± 0.1 mg CH 4 per m 2 per day) occurred during the day when surface water temperatures were warmer and wind speeds higher than at night. Piston velocity estimates (k 600 ) showed an upper limit at high wind speeds that may be more generally valid also for other lakes and reservoirs with limited CH 4 dissolved in the water body: above 2.0 m s -1 a further increase in wind speed did not lead to higher CH 4 fluxes, because under such conditions it is not the turbulent mixing and transport that limits effluxes, but the resupply of CH 4 to the lake surface. Increasing CH 4 fluxes during the warm season showed a clear spatial gradient once the reservoir started to fill up and flood additional surface area. The warm period contributed 27% of the total CH 4 emissions (2.6 t CH 4 per year) estimated for the full year and CH 4 accounted for 63% of carbonic greenhouse gas emissions. Overall, the average CH 4 emissions (1.7 to 2.2 mg CH 4 per m 2 per day determined independently from surface water samplings and eddy covariance, respectively) were small compared to most tropical and some temperate reservoirs. The resulting greenhouse gas (GHG) emissions in CO 2 -equivalents revealed that electricity produced in the Lake Klöntal power plant was relatively climate-friendly with a low GHG-to-power output ratio of 1.24 kg CO 2,eq per MW h compared to 6.5 and 8.1 kg CO 2,eq per MW h associated with the operation of solar photovoltaics and wind energy, respectively, or about 980 kg CO 2,eq per MW h for coal-fired power plants.

  1. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  2. Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.

    2012-01-01

    Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.

  3. A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

    NASA Astrophysics Data System (ADS)

    Pan, Hai

    1999-08-01

    Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide

  4. Highly-resolved Modeling of Emissions and Concentrations of Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides, and Fine Particulate Matter in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Ehleringer, J. R.

    2014-12-01

    Accurate, high-resolution data on air pollutant emissions and concentrations are needed to understand human exposures and for both policy and pollutant management purposes. An important step in this process is also quantification of uncertainties. We present a spatially explicit and highly resolved emissions inventory for Salt Lake County, Utah, and trace gas concentration estimates for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and fine particles (PM2.5) within Salt Lake City. We assess the validity of this approach by comparing measured concentrations against simulated values derived from combining the emissions inventory with an atmospheric model. The emissions inventory for the criteria pollutants was constructed using the 2011 National Emissions Inventory (NEI). The spatial and temporal allocation methods from the Emission Modeling Clearinghouse data set are used to downscale the NEI data from annual to hourly scales and from county-level to 500 m x 500 m resolution. Onroad mobile source emissions were estimated by combining a bottom-up emissions calculation approach for large roadway links with a top-down spatial allocation approach for other roadways. Vehicle activity data for road links were derived from automatic traffic responder data. The emissions inventory for CO2 was obtained from the Hestia emissions data product at an hourly, building, facility, and road link resolution. The AERMOD and CALPUFF dispersion models were used to transport emissions and estimate air pollutant concentrations at an hourly temporal and 500 m x 500 m spatial resolution. Modeled results were compared against measurements from a mobile lab equipped with trace gas measurement equipment traveling on pre-determined routes in the Salt Lake City area. The comparison between both approaches to concentration estimation highlights spatial locations and hours of high variability/uncertainty. Results presented here will inform understanding of variability and

  5. Bathymetric Surveys of Lake Arthur and Raccoon Lake, Pennsylvania, June 2007

    USGS Publications Warehouse

    Hittle, Clinton D.; Ruby, A. Thomas

    2008-01-01

    In spring of 2007, bathymetric surveys of two Pennsylvania State Park lakes were performed to collect accurate data sets of lake-bed elevations and to develop methods and techniques to conduct similar surveys across the state. The lake-bed elevations and associated geographical position data can be merged with land-surface elevations acquired through Light Detection and Ranging (LIDAR) techniques. Lake Arthur in Butler County and Raccoon Lake in Beaver County were selected for this initial data-collection activity. In order to establish accurate water-surface elevations during the surveys, benchmarks referenced to NAVD 88 were established on land at each lake by use of differential global positioning system (DGPS) surveys. Bathymetric data were collected using a single beam, 210 kilohertz (kHz) echo sounder and were coupled with the DGPS position data utilizing a computer software package. Transects of depth data were acquired at predetermined intervals on each lake, and the shoreline was delineated using a laser range finder and compass module. Final X, Y, Z coordinates of the geographic positions and lake-bed elevations were referenced to NAD 83 and NAVD 88 and are available to create bathymetric maps of the lakes.

  6. On the relationship between land surface infrared emissivity and soil moisture

    NASA Astrophysics Data System (ADS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2018-01-01

    The relationship between surface infrared (IR) emissivity and soil moisture content has been investigated based on satellite measurements. Surface soil moisture content can be estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temperature, vegetation coverage, and soil texture. It is possible to separate IR emissivity from other parameters affecting surface soil moisture estimation. The main objective of this paper is to examine the correlation between land surface IR emissivity and soil moisture. To this end, we have developed a simple yet effective scheme to estimate volumetric soil moisture (VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measurements, assuming those other parameters impacting the radiative transfer (e.g., temperature, vegetation coverage, and surface roughness) are known for an acceptable time and space reference location. This scheme is applied to a decade of global IR emissivity data retrieved from MetOp-A infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are then assembled to compare with those routinely provided from satellite microwave (MW) multisensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between IR- and MW-VSM (i.e., R2 = 0.85). IR land surface emissivity contains surface water content information. So, when IR measurements are used to estimate soil moisture, this correlation produces results that correspond with those customarily achievable from MW measurements. A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate its seasonal-cycle and interannual variation, which is spatially

  7. Paragenesis of thermal denudation with gas-emission crater and lake formation, Yamal Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Babkina, Elena; Khomutov, Artem; Leibman, Marina; Dvornikov, Yury; Kizyakov, Alexander; Babkin, Evgeny

    2017-04-01

    Gas-emission craters (GECs) found in the North of West Siberia in 2014 occur in an area of wide tabular ground ice (TGI) distribution. TGI observed in the GEC walls also provokes thermal denudation: a complex of processes responsible for formation of thermocirques (TCs). TCs are semi-circle shaped depressions resulting from TGI thaw and removal of detached material downslope. Shores of many lakes are terraced and have ancient to recent traces of thermal denudation activity. TCs are numerous in the GEC area giving reason to assume that GEC, TGI, TC, and lakes are interrelated. First found Yamal crater (GEC-1) expanded from initial 18 m wide deep hole in 2013 to an irregularly-shaped lake up to 85 meters wide in 2016. Expansion of the GEC was controlled by TGI thaw. This can be considered in terms of thermal denudation and analyzed on the basis of TC study in the adjacent area. In summer 2014 and 2015 (the lifetime of the GEC-1) its wall retreat covered the area of 1730 square meters, which gives 865 square meters per year. In 2016, which was the warmest for the period of observation at weather station Marre-Sale, retreat area increased to 2200 square meters per year. TC, which exposed TGI similar to that in the walls of GEC-1, is observed on the nearest lakeshore. TC activation probably started in 2012 as elsewhere on Yamal. In 2015 its area according to GPS survey reached 4400 square meters (a four-year average 1100 square meters). Since September 2015 and till October 2016 its area expanded by 2600 square meters, thus increased by 59%, and more than twice compared to previous annual average. Lake adjacent to GEC-1 in 2016 was separated from crater edge by only a 13 meter wide isthmus, most likely both GEC-1 lake and adjacent lake merge in few years. Therefore, single basis of erosion for thermal denudation appear. After lakes merge, it would become hard to determine what the initial process for the lake formation was if not for the occasional discovery of the GEC

  8. Evaluating Urban Methane Emissions with a Light Rail Vehicle Platform in Salt Lake City, UT

    NASA Astrophysics Data System (ADS)

    Mitchell, L.; Fasoli, B.; Crosman, E.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2016-12-01

    Urban environments are characterized by both spatial complexity and temporal variability, each of which present challenges for measurement strategies aimed at constraining estimates of greenhouse gas emissions and air quality. To address these challenges we initiated a project in December 2014 to measure trace species (CO2, CH4, O3, and Particulate Matter) by way of a Utah Transit Authority (UTA) electricity-powered light rail vehicle whose route traverses the metropolitan Salt Lake Valley in Utah, USA on an hourly basis, retracing the same route through commercial, residential, suburban, and rural typologies. Light rail vehicles present advantages as a measurement platform, including the absence of in-situ fossil fuel emissions, regular repeated transects across an urban region that provide both spatial and temporal information, and relatively low operating costs. We will present initial results investigating methane point sources and evaluating the magnitude and temporal characteristics of these emissions.

  9. Quantification of the CO2 emitted from volcanic lakes in Pico Island (Azores)

    NASA Astrophysics Data System (ADS)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael

    2017-04-01

    This study shows the results of the diffuse CO2 degassing surveys performed in lakes from Pico volcanic Island (Azores archipelago, Portugal). Detailed flux measurements using the accumulation chamber method were made at six lakes (Capitão, Caiado, Paul, Rosada, Peixinho and Negra) during two field campaigns, respectively, in winter (February 2016) and late summer (September 2016). Pico is the second largest island of the Azores archipelago with an area of 444.8 km2; the oldest volcanic unit is dated from about 300,000 years ago. The edification of Pico was mainly due to Hawaiian and Strombolian type volcanic activity, resulting in pahoehoe and aa lava flows of basaltic nature, as well as scoria and spatter cones. Three main volcanic complexes are identified in the island, namely (1) the so-called Montanha Volcanic Complex, corresponding to a central volcano located in the western side of the island that reaches a maximum altitude of 2351 m, (2) the São Roque-Piedade Volcanic Complex, and (3) the Topo-Lajes Volcanic Complex, this last one corresponding to the remnants of a shield volcano located in the south coast. The studied lakes are spread along the São Roque-Piedade Volcanic Complex at altitudes between 785 m and 898 m. Three are associated with depressions of undifferentiated origin (Caiado, Peixinho, Negra), two with depressions of tectonic origin (Capitão, Paul), while Rosada lake is located inside a scoria cone crater. The lakes surface areas vary between 1.25x10-2 and 5.38x10-2 km2, and the water column maximum depth is 7.9 m (3.5-7.9 m). The water storage ranges between 3.6x104 to 9.1x104 m3, and the estimated residence time does not exceed 1.8x10-1 years. A total of 1579 CO2 flux measurements were made during both surveys (868 in summer and 711 in the winter campaign), namely 518 in Caiado lake (293; 225), 358 in Paul (195; 163), 279 in Capitão (150, 129), 200 in Rosada (106, 94), 171 in Peixinho (71, 100) and 53 measurements in Negra lake. Negra

  10. Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt

    USGS Publications Warehouse

    Striegl, Robert G.; Kortelainen, Pirkko; Chanton, J.P.; Wickland, K.P.; Bugna, G.C.; Rantakari, M.

    2001-01-01

    Carbon dioxide (CO2) accumulates under lake ice in winter and degasses to the atmosphere after ice melt. This large springtime CO2 pulse is not typically considered in surface-atmosphere flux estimates, because most field studies have not sampled through ice during late winter. Measured CO2 partial pressure (pCO2) of lake surface water ranged from 8.6 to 4,290 Pa (85-4,230 ??atm) in 234 north temperate and boreal lakes prior to ice melt during 1998 and 1999. Only four lakes had surface pCO2 less than or equal to atmospheric pCO2, whereas 75% had pCO2 >5 times atmospheric. The ??13CDIC (DIC = ??CO2) of 142 of the lakes ranged from -26.28??? to +0.95.???. Lakes with the greatest pCO2 also had the lightest ??13CDIC, which indicates respiration as their primary CO2 source. Finnish lakes that received large amounts of dissolved organic carbon from surrounding peatlands had the greatest pCO2. Lakes set in noncarbonate till and bedrock in Minnesota and Wisconsin had the smallest pCO2 and the heaviest ??13CDIC, which indicates atmospheric and/or mineral sources of C for those lakes. Potential emissions for the period after ice melt were 2.36 ?? 1.44 mol CO2 m-2 for lakes with average pCO2 values and were as large as 13.7 ?? 8.4 mol CO2 m-2 for lakes with high pCO2 values.

  11. Modelling nutrient fluxes from diffuse and point emissions to river loads: the Estonian part of the transboundary Lake Peipsi/Chudskoe drainage basin (Russia/Estonia/Latvia).

    PubMed

    Mourad, D; van der Perk, M

    2004-01-01

    First results are presented of a large-scale GIS-based nutrient transport modelling for the 1985-1999 period in the Estonian part of the transboundary drainage basin of Lake Peipsi (Estonian)/Chudskoe (Russian), one of the largest lakes in Europe, shared by Russia and Estonia. Although the lake is relatively undisturbed by human pollution, it is vulnerable for eutrophication by increased river loads, as shown in the past, when the north-eastern part of the former Soviet Union suffered from intensive agriculture. The collapse of the Soviet Union caused a dramatic decline in fertilizer application rates and widespread abandonment of agricultural land. Although concentration measurements and modelling results indicate a general decrease in nutrient loads, modelling is complicated by the transfer of nutrients from diffuse emissions, which is strongly governed by retention and assumed periodic release from storages within the river basin, like the root zone, tile drains, ditches, channels, bed sediments, floodplains and lakes. Modelling diffuse emission contribution to river loads can be improved by better knowledge about the spatial and temporal distribution of this retention and release within the drainage basin.

  12. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    NASA Astrophysics Data System (ADS)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study

  13. Potential and limitations of satellite laser altimetry for monitoring water surface dynamics: ICESat for US lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Liu; Qigang, Jiang; Zhang, Xuesong

    Elevation measurements from the Ice, Cloud and Land Elevation Satellite (ICESat) have been applied to monitor dynamics of lakes and other surface water bodies. Despite such potential, the true utility of ICESat--more generally, satellite laser altimetry--for tracking surface water dynamics over time has not been adequately assessed, especially in the continental or global contexts. Here, we analyzed ICESat elevation data for the conterminous United States and examined the potential and limitations of satellite laser altimetry in measuring water-level dynamics. Owing to a lack of spatially-explicit ground-based water-level data, we first resorted to high-fidelity land elevation data acquired by airborne lidarmore » to quantify ICESat’s ranging accuracy. We then performed trend and frequency analyses to evaluate how reliably ICESat could capture water-level dynamics over a range of temporal scales, as compared to in-situ gauge measurements. Our analyses showed that ICESat had a vertical ranging error of 0.16 m at the footprint level—a limit on the detectable range of water-level dynamics. The sparsity of data over time was identified as a major factor limiting the use of ICESat for water dynamics studies. Of all the US lakes, only 361 had quality ICESat measurements for more than two flight passes. Even for those lakes with sufficient temporal coverage, ICESat failed to capture the true interannual water-level dynamics in 68% of the cases. Our frequency analysis suggested that even with a repeat cycle of two months, ICESat could capture only 60% of the variations in water-level dynamics for at most 34 % of the US lakes. To capture 60% of the water-level variation for most of the US lakes, a weekly repeat cycle (e.g., less than 5 days) is needed – a requirement difficult to meet in current designs of spaceborne laser altimetry. Overall, our results highlight that current or near-future satellite laser missions, though with high ranging accuracies, are unlikely

  14. The surface emissions trap: a new approach in indoor air purification.

    PubMed

    Markowicz, Pawel; Larsson, Lennart

    2012-11-01

    A new device for stopping or reducing potentially irritating or harmful emissions from surfaces indoors is described. The device is a surface emissions trap prototype and consists of an adsorbent sheet with a semipermeable barrier surrounded by two thin nonwoven layers. The trap may be applied directly at the source of the emissions e.g. at moisture-affected floors and walls, surfaces contaminated by chemical spills etc. This results in an immediate stop or reduction of the emitting pollutants. The trap has a very low water vapor resistance thus allowing drying of wet surfaces. In laboratory experiments typically 98% reduction of air concentrations of volatile organic compounds and a virtually total reduction of mold particle-associated mycotoxins was observed. The surface emissions trap may represent a convenient and efficient way of restoring indoor environments polluted by microbial and other moisture-associated emissions. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Distribution and diversity of anaerobic ammonium oxidation (anammox) bacteria in the sediment of a eutrophic freshwater lake, Lake Kitaura, Japan.

    PubMed

    Yoshinaga, Ikuo; Amano, Teruki; Yamagishi, Takao; Okada, Kentaro; Ueda, Shingo; Sako, Yoshihiko; Suwa, Yuichi

    2011-01-01

    Although the emission of N(2) via anaerobic ammonium oxidation (anammox) is a key process in the elimination of nitrogenous compounds from aquatic environments, little information is available regarding its significance and the relevant microorganisms (anammox bacteria) in eutrophic freshwater lakes. In the present study, the anammox bacteria in the sediment of a eutrophic lake in Japan, Lake Kitaura, were examined using a (15)N-tracer technique to measure their potential anammox activity. Potential anammox activity was localized to the northern region of the lake where a stable supply of both NH(4)(+) and NO(3)(-) existed in the sediment. These results suggest the contribution of anammox bacteria to the total emission of N(2) from sediment in this eutrophic lake to not be negligible. Moreover, selective PCR successfully amplified anammox bacteria-related (Brocadiales-related) 16S rRNA genes from sediment samples in which potential anammox activity was observed. The clone libraries consisted of diverse phylotypes except the genus "Scalindua"-lineages, and the lineages of genus "Brocadia" were dominantly recovered, followed by the genus "Kuenenia"-lineages. Most of them, however, were novel and phylogenetically distinguishable from known Brocadiales species. A unique population of anammox bacteria inhabits and potentially contributes to the emission of N(2) from Lake Kitaura.

  16. ERTS-1 observes algal blooms in Lake Erie and Utah Lake

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1973-01-01

    During late summer when the surface waters of Lake Erie reach their maximum temperature an algal bloom is likely to develop. Such phenomena have been noticed on other shallow lakes using ERTS-1 and characterize eutrophic conditions. The concentration of the algae into long streamers provides additional information on surface circulations. To augment the ERTS-1 MSS data of Lake Erie an aircraft was flown to provide correlative thermal-IR and additional multiband photographs. The algal bloom is highly absorptive in the visible wavelengths but reverses contrast with the surrounding water in the near-IR bands. The absorption of shortwave energy heats the dark brown algal mass, providing a hot surface target for the thermal-IR scanner.

  17. Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification

    NASA Astrophysics Data System (ADS)

    Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.

    1993-04-01

    Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish

  18. On the effect of surface emissivity on temperature retrievals. [for meteorology

    NASA Technical Reports Server (NTRS)

    Kornfield, J.; Susskind, J.

    1977-01-01

    The paper is concerned with errors in temperature retrieval caused by incorrectly assuming that surface emissivity is equal to unity. An error equation that applies to present-day atmospheric temperature sounders is derived, and the bias errors resulting from various emissivity discrepancies are calculated. A model of downward flux is presented and used to determine the effective downward flux. In the 3.7-micron region of the spectrum, emissivities of 0.6 to 0.9 have been observed over land. At a surface temperature of 290 K, if the true emissivity is 0.6 and unit emissivity is assumed, the error would be approximately 11 C. In the 11-micron region, the maximum deviation of the surface emissivity from unity was 0.05.

  19. Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984-2013

    NASA Astrophysics Data System (ADS)

    Chernos, M.; Koppes, M.; Moore, R. D.

    2016-01-01

    Bridge Glacier is a lake-calving glacier in the Coast Mountains of British Columbia and has retreated over 3.55 km since 1972. The majority of this retreat has occurred since 1991. This retreat is substantially greater than what has been inferred from regional climate indices, suggesting that it has been driven primarily by calving as the glacier retreated across an overdeepened basin. In order to better understand the primary drivers of ablation, surface melt (below the equilibrium line altitude, ELA) and calving were quantified during the 2013 melt season using a distributed energy balance model (DEBM) and time-lapse imagery. Calving, estimated using areal change, velocity measurements, and assuming flotation were responsible for 23 % of the glacier's ablation below the ELA during the 2013 melt season and were limited by modest flow speeds and a small terminus cross-section. Calving and surface melt estimates from 1984 to 2013 suggest that calving was consistently a smaller contributor of ablation. Although calving was estimated to be responsible for up to 49 % of the glacier's ablation for individual seasons, averaged over multiple summers it accounted between 10 and 25 %. Calving was enhanced primarily by buoyancy and water depths, and fluxes were greatest between 2005 and 2010 as the glacier retreated over the deepest part of Bridge Lake. The recent rapid rate of calving is part of a transient stage in the glacier's retreat and is expected to diminish within 10 years as the terminus recedes into shallower water at the proximal end of the lake. These findings are in line with observations from other lake-calving glacier studies across the globe and suggest a common large-scale pattern in calving-induced retreat in lake-terminating alpine glaciers. Despite enhancing glacial retreat, calving remains a relatively small component of ablation and is expected to decrease in importance in the future. Hence, surface melt remains the primary driver of ablation at Bridge

  20. The response of Lake Tahoe to climate change

    USGS Publications Warehouse

    Sahoo, G.B.; Schladow, S.G.; Reuter, J.E.; Coats, R.; Dettinger, M.; Riverson, J.; Wolfe, B.; Costa-Cabral, M.

    2013-01-01

    Meteorology is the driving force for lake internal heating, cooling, mixing, and circulation. Thus continued global warming will affect the lake thermal properties, water level, internal nutrient loading, nutrient cycling, food-web characteristics, fish-habitat, aquatic ecosystem, and other important features of lake limnology. Using a 1-D numerical model - the Lake Clarity Model (LCM) - together with the down-scaled climatic data of the two emissions scenarios (B1 and A2) of the Geophysical Fluid Dynamics Laboratory (GFDL) Global Circulation Model, we found that Lake Tahoe will likely cease to mix to the bottom after about 2060 for A2 scenario, with an annual mixing depth of less than 200 m as the most common value. Deep mixing, which currently occurs on average every 3-4 years, will (under the GFDL B1 scenario) occur only four times during 2061 to 2098. When the lake fails to completely mix, the bottom waters are not replenished with dissolved oxygen and eventually dissolved oxygen at these depths will be depleted to zero. When this occurs, soluble reactive phosphorus (SRP) and ammonium-nitrogen (both biostimulatory) are released from the deep sediments and contribute approximately 51 % and 14 % of the total SRP and dissolved inorganic nitrogen load, respectively. The lake model suggests that climate change will drive the lake surface level down below the natural rim after 2085 for the GFDL A2 but not the GFDL B1 scenario. The results indicate that continued climate changes could pose serious threats to the characteristics of the Lake that are most highly valued. Future water quality planning must take these results into account.

  1. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001-2015.

    PubMed

    Wan, Wei; Li, Huan; Xie, Hongjie; Hong, Yang; Long, Di; Zhao, Limin; Han, Zhongying; Cui, Yaokui; Liu, Baojian; Wang, Cunguang; Yang, Wenting

    2017-07-25

    Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km 2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as 'the Roof of the World' and 'Asia's water towers', exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001-2015) nighttime and daytime LSWT for 374 lakes (≥10 km 2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc.

  2. Exoelectronic emission of particles of lunar surface material

    NASA Technical Reports Server (NTRS)

    Mints, R. I.; Alimov, V. I.; Melekhin, V. P.; Milman, I. I.; Kryuk, V. I.; Kunin, L. L.; Tarasov, L. S.

    1974-01-01

    A secondary electron multiplier was used to study the thermostimulated exoelectronic emission of particles of lunar surface material returned by the Soviet Luna 16 automatic station. The natural exoemission from fragments of slag, glass, anorthosite, and a metallic particle was recorded in the isochronic and isothermal thermostimulation regimes. The temperature of emission onset depended on the type of regolith fragment. For the first three particles the isothermal drop in emission is described by first-order kinetic equations. For the anorthosite fragment, exoemission at constant temperature is characterized by a symmetric curve with a maximum. These data indicate the presence of active surface defects, whose nature can be due to the prehistory of the particles.

  3. Monitoring the cooling of the 1959 Kīlauea Iki lava lake using surface magnetic measurements

    USGS Publications Warehouse

    Gailler, Lydie; Kauahikaua, James P.

    2017-01-01

    Lava lakes can be considered as proxies for small magma chambers, offering a unique opportunity to investigate magma evolution and solidification. Repeated magnetic ground surveys over more than 50 years each show a large vertical magnetic intensity anomaly associated with Kīlauea Iki Crater, partly filled with a lava lake during the 1959 eruption of Kīlauea Volcano (Island of Hawai’i). The magnetic field values recorded across the Kīlauea Iki crater floor and the cooling lava lake below result from three simple effects: the static remnant magnetization of the rocks forming the steep crater walls, the solidifying lava lake crust, and the hot, but shrinking, paramagnetic non-magnetic lens (>540 °C). We calculate 2D magnetic models to reconstruct the temporal evolution of the geometry of this non-magnetic body, its depth below the surface, and its thickness. Our results are in good agreement with the theoretical increase in thickness of the solidifying crust with time. Using the 2D magnetic models and the theoretical curve for crustal growth over a lava lake, we estimate that the former lava lake will be totally cooled below the Curie temperature in about 20 years. This study shows the potential of magnetic methods for detecting and monitoring magmatic intrusions at various scales.

  4. Geochemical speciation and pollution assessment of heavy metals in surface sediments from Nansi Lake, China.

    PubMed

    Yang, Liyuan; Wang, Longfeng; Wang, Yunqian; Zhang, Wei

    2015-05-01

    Sixteen surface sediment samples were collected from Nansi Lake to analyze geochemical speciation of heavy metals including Cd, As, Pb, Cr, and Zn, assess their pollution level, and determine the spatial distribution of the non-residual fraction. Results showed that Cd had higher concentrations in water-soluble and exchangeable fractions. As and Pb were mainly observed as humic acid and reducible fractions among the non-residual fractions, while Cr and Zn were mostly locked up in a residual fraction. The mean pollution index (P i) values revealed that the lower lake generally had a higher enrichment degree than the upper lake. Cd (2.73) and As (2.05) were in moderate level of pollution, while the pollution of Pb (1.80), Cr (1.27), and Zn (1.02) appeared at low-level pollution. The calculated pollution load index (PLI) suggested the upper lake suffered from borderline moderate pollution, while the lower lake showed moderate to heavy pollution. Spatial principle component analysis showed that the first principal component (PC1) including Cd, As, and Pb could explain 56.18 % of the non-residual fraction. High values of PC1 were observed mostly in the southern part of Weishan Lake, which indicated greater bioavailability and toxicity of Cd, As, and Pb in this area.

  5. Monitoring the cooling of the 1959 Kīlauea Iki lava lake using surface magnetic measurements

    NASA Astrophysics Data System (ADS)

    Gailler, Lydie; Kauahikaua, Jim

    2017-06-01

    Lava lakes can be considered as proxies for small magma chambers, offering a unique opportunity to investigate magma evolution and solidification. Repeated magnetic ground surveys over more than 50 years each show a large vertical magnetic intensity anomaly associated with Kīlauea Iki Crater, partly filled with a lava lake during the 1959 eruption of Kīlauea Volcano (Island of Hawai'i). The magnetic field values recorded across the Kīlauea Iki crater floor and the cooling lava lake below result from three simple effects: the static remnant magnetization of the rocks forming the steep crater walls, the solidifying lava lake crust, and the hot, but shrinking, paramagnetic non-magnetic lens (>540 °C). We calculate 2D magnetic models to reconstruct the temporal evolution of the geometry of this non-magnetic body, its depth below the surface, and its thickness. Our results are in good agreement with the theoretical increase in thickness of the solidifying crust with time. Using the 2D magnetic models and the theoretical curve for crustal growth over a lava lake, we estimate that the former lava lake will be totally cooled below the Curie temperature in about 20 years. This study shows the potential of magnetic methods for detecting and monitoring magmatic intrusions at various scales.

  6. Surface emissivity and temperature retrieval for a hyperspectral sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borel, C.C.

    1998-12-01

    With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrievesmore » emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.« less

  7. Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.

    2017-12-01

    We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface

  8. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming.

    PubMed

    Walter, K M; Zimov, S A; Chanton, J P; Verbyla, D; Chapin, F S

    2006-09-07

    Large uncertainties in the budget of atmospheric methane, an important greenhouse gas, limit the accuracy of climate change projections. Thaw lakes in North Siberia are known to emit methane, but the magnitude of these emissions remains uncertain because most methane is released through ebullition (bubbling), which is spatially and temporally variable. Here we report a new method of measuring ebullition and use it to quantify methane emissions from two thaw lakes in North Siberia. We show that ebullition accounts for 95 per cent of methane emissions from these lakes, and that methane flux from thaw lakes in our study region may be five times higher than previously estimated. Extrapolation of these fluxes indicates that thaw lakes in North Siberia emit 3.8 teragrams of methane per year, which increases present estimates of methane emissions from northern wetlands (< 6-40 teragrams per year; refs 1, 2, 4-6) by between 10 and 63 per cent. We find that thawing permafrost along lake margins accounts for most of the methane released from the lakes, and estimate that an expansion of thaw lakes between 1974 and 2000, which was concurrent with regional warming, increased methane emissions in our study region by 58 per cent. Furthermore, the Pleistocene age (35,260-42,900 years) of methane emitted from hotspots along thawing lake margins indicates that this positive feedback to climate warming has led to the release of old carbon stocks previously stored in permafrost.

  9. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    NASA Astrophysics Data System (ADS)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  10. Isotopic Estimation of Water Balance and Groundwater-Surface Water Interactions of Tropical Wetland Lakes in the Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, J.; Johnson, M. S.; Weiler, M.; Couto, E. G.

    2009-12-01

    The Pantanal is the largest and most pristine wetland of the world, yet hydrological research there is still in its infancy. In particular the water balance of the millions of lakes and ponds and their interaction with the groundwater and the rivers are not known. The aim of this study was to assess the hydrological behaviour between different water bodies in the dry season of the northern Pantanal wetland, Brazil, to provide a more general understanding of the hydrological functioning of tropical floodplain lakes and surface water-groundwater interactions of wetlands. In the field 6-9 water sample of seven different lakes were taken during 3 months and were analyzed for stable water isotopes and chloride. In addition meteorological data from a nearby station was used to estimate daily evaporation from the water surface. This information was then used to predict the hydrological dynamics to determine whether the lakes are evaporation-controlled or throughflow-dominated systems. A chloride mass balance served to evaluate whether Cl- enrichment took place due to evaporation only, or whether the system has significant inflow and/or outflow rates. The results of those methods showed that for all lakes the water budget in the dry season, output was controlled by strong evaporation while significant inflow rates were also apparent. Inflow rates and their specific concentrations in stable isotopes and chloride were successfully estimated using the simple mass balance model MINA TrêS. This approach enabled us to calculate the water balance for the lakes as well as providing an information on source water flowing into the lakes.

  11. Heat Capacity Mapping Mission (HCMM) thermal surface water mapping and its correlation to LANDSAT. [Lake Anna, Virginia

    NASA Technical Reports Server (NTRS)

    Colvocoresses, A. P. (Principal Investigator)

    1980-01-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C.

  12. A Theoretical and Experimental Study of Emission Spectroscopy of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Henderson, Bradley Gray

    1995-01-01

    This thesis explores the spectral emissivity of particulate materials on planetary surfaces through theoretical modeling and supporting laboratory and field investigations. In the first part of the thesis, I develop a Monte Carlo ray tracing model to calculate the directional and spectral emissivity and the polarization state of the radiation emitted from a particulate, isothermal surface for emission angles 0^circ-90^ circ and wavelengths 7-16 mu m. The results show that roughness and scattering significantly affect the character of the emitted radiation field and should be taken into account when interpreting the physical properties of a planetary surface from IR spectrophotometry or spectropolarimetry. The remainder of the thesis focuses on understanding near-surface thermal gradients and their effects on emission spectra for different planetary environments. These gradients are formed by radiative cooling in the top few hundred microns of low conductivity particulate materials on planetary surfaces with little or no atmosphere. I model the heat transfer by conduction and radiation in the top few millimeters of a planetary regolith for scattering and non-scattering media. In conjunction with the modeling, I measure emission spectra of fine-grained quartz in an environment chamber designed to simulate the conditions on other planetary surfaces. The results show that significant thermal gradients will form in the near surface of materials on the surface of the Moon and Mercury. Their presence increases spectral contrast and creates emission maxima in the transparent regions of the spectrum. Thermal gradients are shown to be responsible for the observed wavelength shifts of the Christiansen emission peak with variations in thermal conductivity and grain size. The results are also used to analyze recent telescopic spectra of the Moon and Mercury and can explain certain features seen in those data. Thermal gradients are shown to be minor for the surface of Mars and

  13. Spatial Evaluation of Heavy Metals Concentrations in the Surface Sediment of Taihu Lake.

    PubMed

    Niu, Yong; Jiao, Wei; Yu, Hui; Niu, Yuan; Pang, Yong; Xu, Xiangyang; Guo, Xiaochun

    2015-11-27

    With regard to the size of China's freshwater lakes, Taihu Lake ranks third and it plays an important role in the supply of drinking water, flood prevention, farming and navigation, as well as in the travelling industry. The problem of environmental pollution has attracted widespread attention in recent years. In order to understand the levels, distribution and sources of heavy metals in sediments of Taihu Lake, random selection was carried out to obtain 59 samples of surface sediment from the entire lake and study the concentrations of Pb, Cd, Cu, Zn, Cr and Ni. Toxic units were also calculated to normalize the toxicities caused by various heavy metals. As a result, Cd and Cu in sediment were considered lower than the effect range low (ERL) at all regions where samples were gathered, while Pb and Ni were categorized into ERL-effect range median (ERM) at over 22% of the regions where samples were obtained. Nevertheless, all average concentrations of the samples were below the level of potential effect. According to the findings of this research, significant spatial heterogeneity existed in the above heavy metals. In conclusion, the distribution areas of heavy metals with higher concentrations were mainly the north bays, namely Zhushan Bay, Meiliang Bay as well as Gonghu Bay. The distribution areas of Cu, Zn, Cr and Ni with higher concentration also included the lake's central region, whereas the uniform distribution areas of those with lower concentrations were the lake's southeast region. In addition, it was most probable that the spatial distribution of heavy metals was determined by river inputs, whereas atmospheric precipitation caused by urban and traffic contamination also exerted considerable effects on the higher concentrations of Pb and Cd. Through evaluating the total amount of toxic units (ΣTU), it was found that higher toxicity existed primarily in the north bays and central region of the lake. If the heavy metals were sorted by the reduction of mean

  14. Linking land use changes to surface water quality variability in Lake Victoria: some insights from remote sensing

    NASA Astrophysics Data System (ADS)

    Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.

    2016-12-01

    The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.

  15. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality - A case study of Dianchi Lake.

    PubMed

    Yang, Kun; Yu, Zhenyu; Luo, Yi; Yang, Yang; Zhao, Lei; Zhou, Xiaolu

    2018-05-15

    Global warming and rapid urbanization in China have caused a series of ecological problems. One consequence has involved the degradation of lake water environments. Lake surface water temperatures (LSWTs) significantly shape water ecological environments and are highly correlated with the watershed ecosystem features and biodiversity levels. Analysing and predicting spatiotemporal changes in LSWT and exploring the corresponding impacts on water quality is essential for controlling and improving the ecological water environment of watersheds. In this study, Dianchi Lake was examined through an analysis of 54 water quality indicators from 10 water quality monitoring sites from 2005 to 2016. Support vector regression (SVR), Principal Component Analysis (PCA) and Back Propagation Artificial Neural Network (BPANN) methods were applied to form a hybrid forecasting model. A geospatial analysis was conducted to observe historical LSWTs and water quality changes for Dianchi Lake from 2005 to 2016. Based on the constructed model, LSWTs and changes in water quality were simulated for 2017 to 2020. The relationship between LSWTs and water quality thresholds was studied. The results show limited errors and highly generalized levels of predictive performance. In addition, a spatial visualization analysis shows that from 2005 to 2020, the chlorophyll-a (Chla), chemical oxygen demand (COD) and total nitrogen (TN) diffused from north to south and that ammonia nitrogen (NH 3 -N) and total phosphorus (TP) levels are increases in the northern part of Dianchi Lake, where the LSWT levels exceed 17°C. The LSWT threshold is 17.6-18.53°C, which falls within the threshold for nutritional water quality, but COD and TN levels fall below V class water quality standards. Transparency (Trans), COD, biochemical oxygen demand (BOD) and Chla levels present a close relationship with LSWT, and LSWTs are found to fundamentally affect lake cyanobacterial blooms. Copyright © 2017 Elsevier B.V. All

  16. Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique.

    PubMed

    Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar

    2016-01-01

    Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer.

  17. Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique

    PubMed Central

    Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar

    2016-01-01

    Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer. PMID:28002477

  18. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Nathaniel W.; Olson, Nicole E.; Panas, Mark

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSAmore » autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.« less

  19. Soil surface lowering due to soil erosion in villages near Lake Victoria, Uganda

    NASA Astrophysics Data System (ADS)

    de Meyer, A.; Deckers, J.; Poesen, J.; Isabirye, M.

    2009-04-01

    In the effort to pinpoint the sources of sediment pollution in Lake Victoria, the contribution of sedi-ment from compounds, landing sites, main roads and footpaths is determined in the catchment of Na-bera Bay and Kafunda Bay at the northern shore of Lake Victoria in southern Uganda. The amount of soil loss in compounds and landing sites is determined by the reconstruction of the original and current soil surface according to botanical and man-made datable objects. The soil erosion rate is then deter-mined by dividing the eroded soil volume (corrected for compaction) by the age of the oldest datable object. In the study area, the average soil erosion rate in compounds amounts to 107 Mg ha-1 year-1 (per unit compound) and in landing sites to 207 Mg ha-1 year-1 (per unit landing site). Although com-pounds and landing sites occupy a small area of the study area (1.1 %), they are a major source of sediment to Lake Victoria (63 %). The soil loss on footpaths and main roads is calculated by multip-lying the total length of footpaths and main roads with the average width and depth (measured towards a reference surface). After the correction for compaction is carried out, the soil erosion rate on foot-paths amounts to 34 Mg ha-1 year-1 and on main roads to 35 Mg ha-1 year-1. Also footpaths and main roads occupy a small area of the study area (1.1 %), but contribute disproportionately to the total soil loss in the catchment (22 %). In this research, the information about the village/compound given by the villager/owner is indispensable. In accordance to an adaptation of the model of McHugh et al. (2002), 32 % of the sediment that is generated in the catchment, is deposited in Lake Victoria (i.e. 2 209 Mg year-1 or 0.7 Mg ha-1 year-1). The main buffer in the study area is papyrus at the shore of Lake Victoria. Also sugarcane can be a major buffer. However, the sugarcane-area is intersected by com-pounds, landing sites, footpaths and main roads that generate large amounts of

  20. Secondary Electron Emission Spectroscopy of Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.; Asnin, Vladimir M.; Petukhov, Andre G.

    1999-01-01

    This report presents the results of the secondary electron emission spectroscopy study of hydrogenated diamond surfaces for single crystals and chemical vapor-deposited polycrystalline films. One-electron calculations of Auger spectra of diamond surfaces having various hydrogen coverages are presented, the major features of the experimental spectra are explained, and a theoretical model for Auger spectra of hydrogenated diamond surfaces is proposed. An energy shift and a change in the line shape of the carbon core-valence-valence (KVV) Auger spectra were observed for diamond surfaces after exposure to an electron beam or by annealing at temperatures higher than 950 C. This change is related to the redistribution of the valence-band local density of states caused by hydrogen desorption from the surface. A strong negative electron affinity (NEA) effect, which appeared as a large, narrow peak in the low-energy portion of the spectrum of the secondary electron energy distribution, was also observed on the diamond surfaces. A fine structure in this peak, which was found for the first time, reflected the energy structure of the bottom of the conduction band. Further, the breakup of the bulk excitons at the surface during secondary electron emission was attributed to one of the features of this structure. The study demonstrated that the NEA type depends on the extent of hydrogen coverage of the diamond surface, changing from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surface.

  1. Map showing flood and surface water information in the Sugar House quadrangle, Salt Lake County, Utah

    USGS Publications Warehouse

    Van Horn, Richard; Fields, F.K.

    1974-01-01

    In the past man has built on land that might be covered by floodwaters, with little consideration of the consequences. The result has been disastrous to those in the path of floodwaters and has cost the loss of thousands of lives and untold billions of dollars in property damage in the United States. Salt Lake County, of which the Sugar House quadrangle is a part, has had many floods in the past and can be expected to have more in the future. Construction has taken place in filled or dried-up marshes and lakes, in spring areas, and even in stream channels. Lack of prior knowledge of these and other forms of surface water (water at the surface of the ground) can increase construction and maintenance costs significantly.The map shows the area that probably will be covered by floods at least once in every 100 years on the long-term average (unit IRF, intermediate regional flood), the area that probably will be covered by floods from the worst possible combination of very wet weather and high streamflow reasonably expected of the area (unit SPF, standard project flood), the mapped extent of streamflow by channel shifting or flooding in the past 5,000 years (unit fa), and the probable maximum extent of damaging flash floods and mudflows from small valleys in the Wasatch Range. The map also shows the location of water at the surface of the ground: lakes, streams, springs, weep holes, canals, and reservoirs. Lakes and marshes that existed within the past 100 years, but now are drained, filled, or dried up, are also shown.The following examples show that the presence of water can be desirable or undesirable, depending on how the water occurs. Floods, the most spectacular form of surface water, may result in great property damage and loss of life. Lakes normally are beneficial, in that they may support plant growth and provide habitats for fish and other wildlife, provide water for livestock, and can be used for recreation. Springs may or may not be desirable: they may

  2. Towards monitoring surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    NASA Astrophysics Data System (ADS)

    Miles, Katie E.; Willis, Ian C.; Benedek, Corinne L.; Williamson, Andrew G.; Tedesco, Marco

    2017-07-01

    Supraglacial lakes are an important component of the Greenland Ice Sheet’s mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days versus daily) but a higher spatial resolution (25-40 m versus 250-500 m), is then used together with a fully-automated lake drainage detection algorithm. Rapid (< 4 days) and slow (> 4 days) drainages are investigated for both small (< 0.125 km2, the minimum size detectable by MODIS) and large (≥ 0.125 km2) lakes through the summer. Drainage events of small lakes occur at lower elevations (mean 159 m), and slightly earlier (mean 4.5 days) in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1270 m mean elevation). Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1593 m and 1185 m, respectively). Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  3. Reporting central tendencies of chamber measured surface emission and oxidation.

    PubMed

    Abichou, Tarek; Clark, Jeremy; Chanton, Jeffery

    2011-05-01

    Methane emissions, concentrations, and oxidation were measured on eleven MSW landfills in eleven states spanning from California to Pennsylvania during the three year study. The flux measurements were performed using a static chamber technique. Initial concentration samples were collected immediately after placement of the flux chamber. Oxidation of the emitted methane was evaluated using stable isotope techniques. When reporting overall surface emissions and percent oxidation for a landfill cover, central tendencies are typically used to report "averages" of the collected data. The objective of this study was to determine the best way to determine and report central tendencies. Results showed that 89% of the data sets of collected surface flux have lognormal distributions, 83% of the surface concentration data sets are also lognormal. Sixty seven percent (67%) of the isotope measured percent oxidation data sets are normally distributed. The distribution of data for all eleven landfills provides insight of the central tendencies of emissions, concentrations, and percent oxidation. When reporting the "average" measurement for both flux and concentration data collected at the surface of a landfill, statistical analyses provided insight supporting the use of the geometric mean. But the arithmetic mean can accurately represent the percent oxidation, as measured with the stable isotope technique. We examined correlations between surface CH(4) emissions and surface air CH(4) concentrations. Correlation of the concentration and flux values using the geometric mean proved to be a good fit (R(2)=0.86), indicating that surface scans are a good way of identifying locations of high emissions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Emission of dimers from a free surface of heated water

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. A.; Polyakova, V. I.

    2014-09-01

    The emission rate of water dimers from a free surface and a wetted solid surface in various cases was calculated by a simplified Monte Carlo method with the use of the binding energy of water molecules. The binding energy of water molecules obtained numerically assuming equilibrium between the free surface of water and vapor in the temperature range of 298-438 K corresponds to the coordination number for liquid water equal to 4.956 and is close to the reference value. The calculation results show that as the water temperature increases, the free surface of water and the wetted solid surface become sources of free water dimers. At a temperature of 438 K, the proportion of dimers in the total flow of water molecules on its surface reaches 1%. It is found that in the film boiling mode, the emission rate of dimers decreases with decreasing saturation vapor. Two mechanisms of the emission are described.

  5. Preliminary Cosmogenic Surface Exposure Ages on Laurentide Ice-sheet Retreat and Opening of the Eastern Lake Agassiz Outlets

    NASA Astrophysics Data System (ADS)

    Leydet, D.; Carlson, A. E.; Sinclair, G.; Teller, J. T.; Breckenridge, A. J.; Caffee, M. W.; Barth, A. M.

    2015-12-01

    The chronology for the eastern outlets of glacial Lake Agassiz holds important consequences for the cause of Younger Dryas cold event during the last deglaciation. Eastward routing of Lake Agassiz runoff was originally hypothesized to have triggered the Younger Dryas. However, currently the chronology of the eastern outlets is only constrained by minimum-limiting radiocarbon ages that could suggest the eastern outlets were still ice covered at the start of the Younger Dryas at ~12.9 ka BP, requiring a different forcing of this abrupt climate event. Nevertheless, the oldest radiocarbon ages are still consistent with an ice-free eastern outlet at the start of the Younger Dryas. Here we will present preliminary 10-Be cosmogenic surface exposure ages from the North Lake, Flat Rock Lake, glacial Lake Kaministiquia, and Lake Nipigon outlets located near Thunder Bay, Ontario. These ages will date the timing of the deglaciation of the Laurentide ice sheet in the eastern outlet region of glacial Lake Agassiz. This will provide an important constraint for the hypothesized freshwater forcing of the cause of Younger Dryas cold event.

  6. Tracking surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    NASA Astrophysics Data System (ADS)

    Miles, Katie; Willis, Ian; Benedek, Corinne; Williamson, Andrew; Tedesco, Marco

    2017-04-01

    Supraglacial lakes (SGLs) on the Greenland Ice Sheet (GrIS) are an important component of the ice sheet's mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) to investigate SGLs in West Greenland. SAR can image through cloud and in darkness, overcoming some of the limitations of commonly used optical sensors. A semi automated algorithm is developed to detect surface lakes from Sentinel images during the 2015 summer. It generally detects water in all locations where a Landsat-8 NDWI classification (with a relatively high threshold value) detects water. A combined set of images from Landsat-8 and Sentinel-1 is used to track lake behaviour at a comparable temporal resolution to that which is possible with MODIS, but at a higher spatial resolution. A fully automated lake drainage detection algorithm is used to investigate both rapid and slow drainages for both small and large lakes through the summer. Our combined Landsat-Sentinel dataset, with a temporal resolution of three days, could track smaller lakes (mean 0.089 km2) than are resolvable in MODIS (minimum 0.125 km2). Small lake drainage events (lakes smaller than can be detected using MODIS) were found to occur at lower elevations ( 200 m) and slightly earlier in the melt season than larger events, as were slow lake drainage events compared to rapid events. The Sentinel imagery allows the analysis to be extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August, 1270 m mean elevation). Finally, the Sentinel imagery allows subsurface lakes (which are invisible to optical sensors) to be detected, and, for the first time, their dates of appearance and freeze-through to be calculated (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface

  7. Hydrology of Lake Carroll, Hillsborough County, Florida

    USGS Publications Warehouse

    Henderson, S.E.; Hayes, R.D.; Stoker, Y.E.

    1985-01-01

    Lakeshore property around Lake Carroll has undergone extensive residential development since 1960. This development increased the lake shoreline, altered surface water flow to and from the lake, and may have affected lake-stage characteristics. Some areas of the lake were dredged to provide fill material for lakefront property. Water-balance analyses for 1952-60, a predevelopment period, and 1961-80, a period of residential development, indicate that both net surface water flow to the lake and downward leakage from the lake to the Floridan aquifer were greater after 1960. These changes were due more to changes in the regional climate and related changes in ground-water levels than to changes associated with residential development. Results of water quality analyses in 1980-81 are within State limits for surface waters used for recreation and wildlife propagation. (USGS)

  8. Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Lieberherr, G.; Wunderle, S.

    2015-02-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of -0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite

  9. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015

    PubMed Central

    Wan, Wei; Li, Huan; Xie, Hongjie; Hong, Yang; Long, Di; Zhao, Limin; Han, Zhongying; Cui, Yaokui; Liu, Baojian; Wang, Cunguang; Yang, Wenting

    2017-01-01

    Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as ‘the Roof of the World’ and ‘Asia’s water towers’, exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001–2015) nighttime and daytime LSWT for 374 lakes (≥10 km2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc. PMID:28742066

  10. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  11. Copper content in lake sediments as a tracer of urban emissions: evaluation through a source-transport-storage model.

    PubMed

    Cui, Qing; Brandt, Nils; Sinha, Rajib; Malmström, Maria E

    2010-06-01

    A coupled source-transport-storage model was developed to determine the origin and path of copper from materials/goods in use in the urban drainage area and the fate of copper in local recipient lakes. The model was applied and tested using five small lakes in Stockholm, Sweden. In the case of the polluted lakes Råcksta Träsk, Trekanten and Långsjön, the source strengths of copper identified by the model were found to be well linked with independently observed copper contents in the lake sediments through the model. The model results also showed that traffic emissions, especially from brake linings, dominated the total load in all five cases. Sequential sedimentation and burial proved to be the most important fate processes of copper in all lakes, except Råcksta Träsk, where outflow dominated. The model indicated that the sediment copper content can be used as a tracer of the urban diffuse copper source strength, but that the response to changes in source strength is fairly slow (decades). Major uncertainties in the source model were related to management of stormwater in the urban area, the rate of wear of brake linings and weathering of copper roofs. The uncertainty of the coupled model is in addition affected mainly by parameters quantifying the sedimentation and bury processes, such as particulate fraction, settling velocity of particles, and sedimentation rate. As a demonstration example, we used the model to predict the response of the sediment copper level to a decrease in the copper load from the urban catchment in one of the case study lakes. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Discrimination among spawning concentrations of Lake Superior lake herring based on trace element profiles in sagittae

    USGS Publications Warehouse

    Bronte, Charles R.; Hesselberg, Robert J.; Shoesmith, John A.; Hoff, Michael H.

    1996-01-01

    Little is known about the stock structure of lake herring Coregonus artedi in Lake Superior, and recent increases in harvestable stock sizes has led to expanded exploitation in some areas. Research on marine teleosts has demonstrated that chemical differences in sagittal otoliths can be used for identification of fish stocks. We used plasma emission spectrophotometry to measure the concentrations of 10 trace elements in the sagittal otoliths from lake herring captured at eight spawning sites in Lake Superior and from Little Star Lake, an inland lake outside the Lake Superior basin. Discriminant function analysis indicated that elemental concentrations provided site-specific information but that considerable overlap existed among some locations, especially those in western Lake Superior. Correct classification rates varied from 12.0% to 86.1% and were generally higher for spawning locations from embayments in eastern Lake Superior and for the outgroup population from Little Star Lake. The results presented here demonstrate the potential usefulness of this technique for strictly freshwater species, especially those that live in highly oligotrophic waters such as Lake Superior.

  13. The Great Lakes

    EPA Pesticide Factsheets

    The Great Lakes form the largest surface freshwater system on Earth. The U.S. and Canada work together to restore and protect the environment in the Great Lakes Basin. Top issues include contaminated sediments, water quality and invasive species.

  14. Surface currents of Lake Michigan, 1931 and 1932

    USGS Publications Warehouse

    Van Oosten, John

    1963-01-01

    Seven hundred fourty-five bottles containing post cards for recording of information were released at stations in Lake Michigan; 283 were released June 17 to August 17, 1931, south of a line from Frankfort, Michigan, to Algoma, Wisconsin, and 462 during May 9 to August 25, 1932, both south and north of that line. One hundred eighty-six bottles or 65.7 percent of those released in 1931, 331 bottles or 71.6 percent of 1932 releases, and 517 bottles or 69.4 percent of releases in the 2 years were recovered. Recoveries of bottles from both years indicated that the surface currents were somewhat variable, but their general direction was from west to east and predominately northeast in 1931 and northeast and southeast in 1932.

  15. Dust emissions created by low-level rotary-winged aircraft flight over desert surfaces

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Etyemezian, V.; Kuhns, H.; McAlpine, J. D.; King, J.; Uppapalli, S.; Nikolich, G.; Engelbrecht, J.

    2010-03-01

    There is a dearth of information on dust emissions from sources that are unique to U.S. Department of Defense testing and training activities. Dust emissions of PM 10 and PM 2.5 from low-level rotary-winged aircraft travelling (rotor-blade ≈7 m above ground level) over two types of desert surfaces (i.e., relatively undisturbed desert pavement and disturbed desert soil surface) were characterized at the Yuma Proving Ground (Yuma, AZ) in May 2007. Fugitive emissions are created by the shear stress of the outflow of high speed air created by the rotor-blade. The strength of the emissions was observed to scale primarily as a function of forward travel speed of the aircraft. Speed affects dust emissions in two ways: 1) as speed increases, peak shear stress at the soil surface was observed to decline proportionally, and 2) as the helicopter's forward speed increases its residence time over any location on the surface diminishes, so the time the downward rotor-generated flow is acting upon that surface must also decrease. The state of the surface over which the travel occurs also affects the scale of the emissions. The disturbed desert test surface produced approximately an order of magnitude greater emission than the undisturbed surface. Based on the measured emission rates for the test aircraft and the established scaling relationships, a rotary-winged aircraft similar to the test aircraft traveling 30 km h -1 over the disturbed surface would need to travel 4 km to produce emissions equivalent to one kilometer of travel by a light wheeled military vehicle also traveling at 30 km h -1 on an unpaved road. As rotary-winged aircraft activity is substantially less than that of off-road vehicle military testing and training activities it is likely that this source is small compared to emissions created by ground-based vehicle movements.

  16. Microplastic pollution in the surface waters of the Laurentian Great Lakes.

    PubMed

    Eriksen, Marcus; Mason, Sherri; Wilson, Stiv; Box, Carolyn; Zellers, Ann; Edwards, William; Farley, Hannah; Amato, Stephen

    2013-12-15

    Neuston samples were collected at 21 stations during an ~700 nautical mile (~1300 km) expedition in July 2012 in the Laurentian Great Lakes of the United States using a 333 μm mesh manta trawl and analyzed for plastic debris. Although the average abundance was approximately 43,000 microplastic particles/km², station 20, downstream from two major cities, contained over 466,000 particles/km², greater than all other stations combined. SEM analysis determined nearly 20% of particles less than 1 mm, which were initially identified as microplastic by visual observation, were aluminum silicate from coal ash. Many microplastic particles were multi-colored spheres, which were compared to, and are suspected to be, microbeads from consumer products containing microplastic particles of similar size, shape, texture and composition. The presence of microplastics and coal ash in these surface samples, which were most abundant where lake currents converge, are likely from nearby urban effluent and coal burning power plants.

  17. Influence of lake surface area and total phosphorus on annual bluegill growth in small impoundments of central Georgia

    USGS Publications Warehouse

    Jennings, Cecil A.; Sundmark, Aaron P.

    2017-01-01

    The relationships between environmental variables and the growth rates of fishes are important and rapidly expanding topics in fisheries ecology. We used an informationtheoretic approach to evaluate the influence of lake surface area and total phosphorus on the age-specific growth rates of Lepomis macrochirus (Bluegill) in 6 small impoundments in central Georgia. We used model averaging to create composite models and determine the relative importance of the variables within each model. Results indicated that surface area was the most important factor in the models predicting growth of Bluegills aged 1–4 years; total phosphorus was also an important predictor for the same age-classes. These results suggest that managers can use water quality and lake morphometry variables to create predictive models specific to their waterbody or region to help develop lake-specific management plans that select for and optimize local-level habitat factors for enhancing Bluegill growth.

  18. Variability of Plant Wax Concentrations and Carbon Isotope Values in Surface Lake Sediments Provide Clues into Their Transport and Deposition

    NASA Astrophysics Data System (ADS)

    Bates, B.; Lowell, T. V.; Diefendorf, A. F.; Freimuth, E. J.; Stewart, A. K.

    2017-12-01

    Plant wax compounds preserved in lake sediments are used as proxies for paleohydrologic reconstructions. Despite their presence in lake sediments, little is known about their transport from plants to their deposition in lake sediments. By drawing on the leaf and pollen taphonomy literature combined with sediment focusing models, it is possible to develop several working hypotheses for the transport and deposition of plant waxes in lake sediments. An improved understanding of plant wax transport and deposition into lake sediments is necessary to increase the accuracy of paleohydrologic reconstructions. To better understand the controls on plant wax transport and deposition in lake sediment, we analyzed the sedimentary plant waxes from 3 lakes in the Adirondack Mountains of New York. These lakes were chosen to capture a range of basin-specific properties to evaluate their influences on the transport and deposition of plant wax compounds in surface sediments. We spatially characterized sediment properties with surface sediment samples and high-resolution underwater imaging, acoustically profiled the sub-bottom, and measured temperature profiles. From each site, we measured n-alkanes, bulk organic content (loss-on-ignition), bulk carbon and nitrogen concentrations, C:N ratios, and bulk carbon isotopes. Preliminary n-alkane concentrations and chain length distributions, as well as bulk carbon isotopes, are variable within each lake basin suggesting a mix of aquatic and terrestrial sources. The bulk carbon isotope values for two of the three lakes show a similar range of -2‰ compared to a range of -6.3‰ at the third lake. Likewise, the range of total n-alkane concentrations is much higher in the third lake suggesting that the controls on the distribution of n-alkanes and organic carbon are different between lakes. For terrestrial plant waxes, we find low n-alkane concentrations in sandy nearshore sediments relative to higher n-alkane concentrations in deeper fine

  19. Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams

    PubMed Central

    McCallister, S. Leigh; del Giorgio, Paul A.

    2012-01-01

    Northern rivers and lakes process large quantities of organic and inorganic carbon from the surrounding terrestrial ecosystems. These external carbon inputs fuel widespread CO2 supersaturation in continental waters, and the resulting CO2 emissions from lakes and rivers are now recognized as a globally significant loss of terrestrial production to the atmosphere. Whereas the magnitude of emissions has received much attention, the pathways of C delivery and processing that generate these emissions are still not well-understood. CO2 outgassing in aquatic systems has been unequivocally linked to microbial degradation and respiration of terrestrial organic carbon (OC), but the nature (i.e., age and source) of this OC respired in surface waters is largely unknown. We present direct radiocarbon measurements of OC respired by bacteria in freshwater aquatic systems, specifically temperate lakes and streams in Québec. Terrestrial OC fuels much of the respiration in these systems, and our results show that a significant fraction of the respired terrestrial OC is old (in the range of 1,000–3,000 y B.P.). Because the bulk OC pools in these lakes is relatively young, our results also suggest selective removal of an old but highly bioreactive terrestrial OC pool and its conversion to CO2 by bacteria. The respiration of ancient 14C-depleted terrestrial C in northern lakes and rivers provides a biological link between contemporary aquatic carbon biogeochemistry and paleo-conditions in the watershed, and it implies the aquatic-mediated return to the atmosphere of C putatively considered permanently stored, thus challenging current models of long-term C storage in terrestrial reservoirs. PMID:23027957

  20. Satellite monitoring of dramatic changes at Hawai'i's only alpine lake: Lake Waiau on Mauna Kea volcano

    USGS Publications Warehouse

    Patrick, Matthew R.; Kauahikaua, James P.

    2015-01-01

    Lake Waiau is a small, typically 100-meter-long lake, located near the summit of Mauna Kea volcano, on the Island of Hawaiʻi. It is Hawaiʻi’s only alpine lake and is considered sacred in Hawaiian cultural tradition. Over the past few years, the lake has diminished in size, and, by October 2013, surface water had almost completely disappeared from the lake. In this study, we use high-resolution satellite images and aerial photographs to document recent changes at the lake. Based on our reconstructions covering the past 200 years, the historical lake surface area has typically ranged from 5,000 to 7,000 square meters, but in 2010 a dramatic plunge in lake area ensued. The lake area rebounded significantly in early 2014, following heavy winter storms. This near disappearance of the lake, judging from analysis of visitor photographs and field reports, appears to be highly unusual, if not unprecedented, in the historical record. The unusually low water levels in the lake are consistent with a recent severe drought in Hawaiʻi.

  1. Combining Natural Attenuation Capacity and use of Targeted Technological Mitigation Measures for Reducing Diffuse Nutrient Emissions to Surface Waters: The Danish Way

    NASA Astrophysics Data System (ADS)

    Kronvang, B.; Højberg, A. L.; Hoffmann, C. C.; Windolf, J.; Blicher-Mathiesen, G.

    2015-12-01

    Excess nitrogen (N) and phosphorus (P) emissions to surface waters are a high priority environmental problem worldwide for protection of water resources in times of population growth and climate change. As clean water is a scarce resource the struggle for reducing nutrient emissions are an ongoing issue for many countries and regions. Since the mid1980s a wide range of national regulatory general measures have been implemented to reduce land based nitrogen (N) and phosphorus (P) loadings of the Danish aquatic environment. These measures have addressed both point source emissions and emissions from diffuse sources especially from agricultural production. Following nearly 4 decades of combating nutrient pollution our surface waters such as lakes and estuaries are only slowly responding on the 50% reduction in N and 56% reduction in P. Therefore, the implementation of the EU Water Framework Directive in Danish surface waters still call for further reductions of N and P loadings. Therefore, a new era of targeted implemented measures was the outcome of a Commission on Nature and Agriculture established by the Danish Government in 2013. Their White Book points to the need of increased growth and better environment through more targeted and efficient regulation using advanced technological mitigation methods that are implemented intelligently according to the local natural attenuation capacity for nutrients in the landscape. As a follow up a national consensus model for N was established chaining existing leaching, 3D groundwater and surface water models that enable a calculation of the N dynamics and attenuation capacity within a scale of 15 km2. Moreover, several research projects have been conducted to investigate the effect of a suite of targeted mitigation measures such as restored natural wetlands, constructed wetlands, controlled drainage, buffer strips and constructed buffer strips. The results of these studies will be shared in this presentation.

  2. Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu.

    PubMed

    Zhou, Li-Jun; Zhang, Bei-Bei; Zhao, Yong-Gang; Wu, Qinglong L

    2016-07-01

    Steroids have been frequently detected in surface waters, and might pose adverse effects on aquatic organisms. However, little information is available regarding the occurrence and spatiotemporal distribution of steroids in lake environments. In addition to pollution sources, the occurrence and spatiotemporal distribution of steroids in lake environments might be related to lake types (shallow or deep), lake hydrodynamics, and sorption-desorption processes in the water-sediment systems. In this study, the occurrence, spatiotemporal distribution, and ecological risks of 36 steroids in a large shallow lake were evaluated by investigating surface water and sediment samples at 32 sites in Lake Taihu over two seasons. Twelve and 15 analytes were detected in aqueous and sedimentary phases, respectively, with total concentrations ranging from 0.86 to 116ng/L (water) and from 0.82 to 16.2ng/g (sediment, dry weight). Temporal variations of steroid concentrations in the water and sediments were statistically significant, with higher concentrations in winter. High concentrations of steroids were found in the seriously polluted bays rather than in the pelagic zone of the lake. Strong lake currents might mix pelagic waters, resulting in similar concentrations of steroids in the pelagic zone. Mass balance analysis showed that sediments in shallow lakes are in general an important sink for steroids. Steroids in the surface water and sediments of Lake Taihu might pose potential risks to aquatic organisms. Overall, our study indicated that the concentrations and spatiotemporal distribution of steroids in the large shallow lake are influenced simultaneously by pollution sources and lake hydrodynamics. Steroids in the large shallow Lake Taihu showed clear temporal and spatial variations and lake sediments may be a potential sink of steroids. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  4. National Surface Water Survey, western wilderness area lakes: environmental assessment. Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-03-01

    The US Environmental Protection Agency (EPA) is proposing to sample 498 lakes in federally designated wilderness areas and national parks during the western part of the National Surface Water Survey (NSW). The NSWS has been undertaken to provide high quality data for evaluating the nature and extent of acid deposition throughout the United States. Sampling protocols established for the national survey call for the use of helicopters to gain access to lakes for sampling. Helicopters have already been used in the eastern and midwestern parts of the survey. The US Forest Service (FS) and the National Park Service (NPS) willmore » have to decide which sampling plan for wilderness areas, if any, can be approved under the Wilderness Act of 1964. This Environmental Assessment (EA) has been prepared to evaluate the environmental consequences of alternative means of gaining access to wilderness areas to meet the objectives of the NSWS. Based on this evaluation, EPA has reviewed the possible sampling alternatives and reached a conclusion on the preferred alternative. This assessment is being provided to the FS and the NPS for their use in evaluating the alternatives, including EPA's preferred one. As a result of its evaluation, EPA believes that wilderness area lakes should be included in the survey and that the preferred means of access is using helicopters. 94 references, 14 figures, 18 tables.« less

  5. Sources of mercury in sediments, water, and fish of the lakes of Whatcom County, Washington

    USGS Publications Warehouse

    Paulson, Anthony J.

    2004-01-01

    Concerns about mercury (Hg) contamination in Lake Whatcom, Washington, were raised in the late 1990s after a watershed protection survey reported elevated concentrations of Hg in smallmouth bass. The U.S. Geological Survey, the Whatcom County Health Department, and the Washington State Department of Ecology (Ecology) cooperated to develop a study to review existing data and collect new data that would lead to a better understanding of Hg deposition to Lake Whatcom and other lakes in Whatcom County, Washington. A simple atmospheric deposition model was developed that allowed comparisons of the deposition of Hg to the surfaces of each lake. Estimates of Hg deposition derived from the model indicated that the most significant deposition of Hg would have occurred to the lakes north of the City of Bellingham. These lakes were in the primary wind pattern of two municipal waste incinerators. Of all the lakes examined, basin 1 of Lake Whatcom would have been most affected by the Hg emissions from the chlor-alkali plant and the municipal sewage-sludge incinerator in the City of Bellingham. The length-adjusted concentrations of Hg in largemouth and smallmouth bass were not related to estimated deposition rates of Hg to the lakes from local atmospheric sources. Total Hg concentrations in the surface sediments of Lake Whatcom are affected by the sedimentation of fine-grained particles, whereas organic carbon regulates the concentration of methyl-Hg in the surface sediments of the lake. Hg concentrations in dated sediment core samples indicate that increases in Hg sedimentation were largest during the first half of the 20th century. Increases in Hg sedimentation were smaller after the chlor-alkali plant and the incinerators began operating between 1964 and 1984. Analysis of sediments recently deposited in basin 1 of Lake Whatcom, Lake Terrell, and Lake Samish indicates a decrease in Hg sedimentation. Concentrations of Hg in Seattle precipitation and in tributary waters were

  6. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    NASA Astrophysics Data System (ADS)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g., surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS (high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry) analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent-extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26 carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs

  7. Long-term simulations of dissolved oxygen concentrations in Lake Trout lakes

    NASA Astrophysics Data System (ADS)

    Jabbari, A.; Boegman, L.; MacKay, M.; Hadley, K.; Paterson, A.; Jeziorski, A.; Nelligan, C.; Smol, J. P.

    2016-02-01

    Lake Trout are a rare and valuable natural resource that are threatened by multiple environmental stressors. With the added threat of climate warming, there is growing concern among resource managers that increased thermal stratification will reduce the habitat quality of deep-water Lake Trout lakes through enhanced oxygen depletion. To address this issue, a three-part study is underway, which aims to: analyze sediment cores to understand the past, develop empirical formulae to model the present and apply computational models to forecast the future. This presentation reports on the computational modeling efforts. To this end, a simple dissolved oxygen sub-model has been embedded in the one-dimensional bulk mixed-layer thermodynamic Canadian Small Lake Model (CSLM). This model is currently being incorporated into the Canadian Land Surface Scheme (CLASS), the primary land surface component of Environment Canada's global and regional climate modelling systems. The oxygen model was calibrated and validated by hind-casting temperature and dissolved oxygen profiles from two Lake Trout lakes on the Canadian Shield. These data sets include 5 years of high-frequency (10 s to 10 min) data from Eagle Lake and 30 years of bi-weekly data from Harp Lake. Initial results show temperature and dissolved oxygen was predicted with root mean square error <1.5 °C and <3 mgL-1, respectively. Ongoing work is validating the model, over climate-change relevant timescales, against dissolved oxygen reconstructions from the sediment cores and predicting future deep-water temperature and dissolved oxygen concentrations in Canadian Lake Trout lakes under future climate change scenarios. This model will provide a useful tool for managers to ensure sustainable fishery resources for future generations.

  8. Estimating lake-atmosphere CO2 exchange

    USGS Publications Warehouse

    Anderson, D.E.; Striegl, Robert G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.

    1999-01-01

    Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.

  9. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images

    PubMed Central

    Zhong, Xinke; Labed, Jelila; Zhou, Guoqing; Shao, Kun; Li, Zhao-Liang

    2015-01-01

    The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product. PMID:26061199

  10. Temperature and thermal emissivity of the surface of Neptune's satellite Triton

    NASA Technical Reports Server (NTRS)

    Nelson, Robert M.; Smythe, William D.; Wallis, Brad D.; Horn, Linda J.; Lane, Arthur L.; Mayo, Marvin J.

    1990-01-01

    Analysis of the preliminary results from the Voyager mission to the Neptune system has provided the scientific community with several methods by which the temperature of Neptune's satellite Triton may be determined. If the 37.5 K surface temperature reported by several Voyager investigations is correct, then the photometry reported by the imaging experiment on Voyager requires that Triton's surface have a remarkably low emissivity. Such a low emissivity is not required in order to explain the photometry from the photopolarimeter experiment on Voyager. A low emissivity would be inconsistent with Triton having a rough surface at the about 100-micron scale as might be expected given the active renewal processes which appear to dominate Triton's surface.

  11. Small ponds play big role in greenhouse gas emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Holgerson, M.; Raymond, P. A.

    2017-12-01

    Inland waters are an important part of the global carbon cycle, but there is uncertainty in estimating their greenhouse gas emissions. Uncertainty stems from different models and variable estimates of surface water gas concentrations, gas exchange rates, and the global size distribution of water bodies. Emissions from small water bodies are especially difficult to estimate because they are not globally mapped and few studies have assessed their greenhouse gas concentrations and gas exchange rates. To overcome these limitations, we studied greenhouse gases and gas exchange rates in small ponds in temperate forests of the northeastern United States. We then compiled our data with direct measurements of CO2 and CH4 concentrations from 427 ponds and lakes worldwide, and upscaled to estimate greenhouse gas emissions using estimates of gas exchange rates and the size distribution of lakes. We found that small ponds play a disproportionately large role in greenhouse gas emissions. While small ponds only account for about 9% of global lakes and ponds by area, they contribute 15% of CO2 and 41% of diffusive CH4 emissions from inland freshwaters. Secondly, we measured gas exchange velocities (k) in small ponds and compiled direct measurements of k from 67 global water bodies. We found that k is low but highly variable in small ponds, and increases and becomes even more variable with lake size, a finding that is not currently included in global carbon models. In a third study, we found that gas exchange in small ponds is highly sensitive to overnight cooling, which can lead to short bursts of increased k at night, with implications for greenhouse gas emissions. Overall, these studies show that small ponds are a critical part of the global carbon cycle, and also highlight many knowledge gaps. Therefore, understanding small pond carbon cycling is an important research priority.

  12. The Application of Methane Clumped Isotope Measurements to Determine the Source of Large Methane Seeps in Alaskan Lakes

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Stolper, D. A.; Eiler, J. M.; Sessions, A. L.; Walter Anthony, K. M.

    2014-12-01

    Natural methane emissions from the Arctic present an important potential feedback to global warming. Arctic methane emissions may come from either active microbial sources or from deep fossil reservoirs released by the thawing of permafrost and melting of glaciers. It is often difficult to distinguish between and quantify contributions from these methane sources based on stable isotope data. Analyses of methane clumped isotopes (isotopologues with two or more rare isotopes such as 13CH3D) can complement traditional stable isotope-based classifications of methane sources. This is because clumped isotope abundances (for isotopically equilibrated systems) are a function of temperature and can be used to identify pathways of methane generation. Additionally, distinctive effects of mixing on clumped isotope abundances make this analysis valuable for determining the origins of mixed gasses. We find large variability in clumped isotope compositions of methane from seeps in several lakes, including thermokarst lakes, across Alaska. At Lake Sukok in northern Alaska we observe the emission of dominantly thermogenic methane, with a formation temperature of at least 100° C. At several other lakes we find evidence for mixing between thermogenic methane and biogenic methane that forms in low-temperature isotopic equilibrium. For example, at Eyak Lake in southeastern Alaska, analysis of three methane samples results in a distinctive isotopic mixing line between a high-temperature end-member that formed between 100-170° C, and a biogenic end-member that formed in isotopic equilibrium between 0-20° C. In this respect, biogenic methane in these lakes resembles observations from marine gas seeps, oil degradation, and sub-surface aquifers. Interestingly, at Goldstream Lake in interior Alaska, methane with strongly depleted clumped-isotope abundances, indicative of disequilibrium gas formation, is found, similar to observations from methanogen culture experiments.

  13. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake.

    PubMed

    Xiong, Xiong; Zhang, Kai; Chen, Xianchuan; Shi, Huahong; Luo, Ze; Wu, Chenxi

    2018-04-01

    Microplastic pollution was studied in China's largest inland lake - Qinghai Lake in this work. Microplastics were detected with abundance varies from 0.05 × 10 5 to 7.58 × 10 5 items km -2 in the lake surface water, 0.03 × 10 5 to 0.31 × 10 5 items km -2 in the inflowing rivers, 50 to 1292 items m -2 in the lakeshore sediment, and 2 to 15 items per individual in the fish samples, respectively. Small microplastics (0.1-0.5 mm) dominated in the lake surface water while large microplastics (1-5 mm) are more abundant in the river samples. Microplastics were predominantly in sheet and fiber shapes in the lake and river water samples but were more diverse in the lakeshore sediment samples. Polymer types of microplastics were mainly polyethylene (PE) and polypropylene (PP) as identified using Raman Spectroscopy. Spatially, microplastic abundance was the highest in the central part of the lake, likely due to the transport of lake current. Based on the higher abundance of microplastics near the tourist access points, plastic wastes from tourism are considered as an important source of microplastics in Qinghai Lake. As an important area for wildlife conservation, better waste management practice should be implemented, and waste disposal and recycling infrastructures should be improved for the protection of Qinghai Lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Electron reflection and secondary emission characteristics of sputter-textured pyrolytic graphite surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Curren, A. N.; Sovey, J. S.

    1981-01-01

    Low secondary and reflected primary electron emission from the collector electrode surfaces is important for optimum collector efficiency and hence for high overall efficiency of microwave amplifier tubes used in communication satellites and in military systems. Ion sputter texturing of the surface effectively suppresses electron emission from pyrolytic graphite, which is a promising collector electrode material. Secondary and reflected primary electron emission characteristics of sputter textured pyrolytic graphite surfaces with microstructures of various sizes and densities are presented. The microstructure with the lowest electron emission levels, less than those of soot, consists of a dense array of tall, thin spires.

  15. Fluorescent components and spatial patterns of chromophoric dissolved organic matters in Lake Taihu, a large shallow eutrophic lake in China.

    PubMed

    Yao, Bo; Hu, Chunming; Liu, Qingquan

    2016-11-01

    Water samples at both surface and bottom layers were taken from 102 sites in Lake Taihu to study the fluorescent components and spatial patterns of chromophoric dissolved organic matters (CDOM). Three-dimensional excitation-emission matrix data obtained from the samples were analyzed by parallel factor approach in which four humic-like and two protein-like fluorescent components (named C1-C6) were identified. The results showed that fluorescence intensities were higher in the northern and western lake regions, and notable declines of fluorescence maxima (F max ) were observed from the northwest to the center and then to the southeast of the lake. Calculated biological index (BIX) values ranged from 0.88 to 1.44 and humification index (HIX) values from 0.64 to 3.37 for all the samples. The spatial variations of BIX and HIX values suggested stronger allochthonous CDOM characteristics in Zhushan Bay and the western area and autochthonous characteristics in the southern and eastern areas. Vertically, the average F max value of the surface samples was about 6 % less than that of the bottom samples, but noticeable variations existed among different sampling sites and components. These distribution characteristics of CDOM were mainly attributed to the spatial heterogeneity of sources and wind-induced transportation process. Interestingly, the C6 component (Ex max /Em max  = 250/455 nm) seemed to be unique in samples from Zhushan Bay and probably resulted from the discharge of the Taige River. Therefore, it could be used as an indicator of point-source discharge and a tracer to study the fate of CDOM in the lake.

  16. High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen

    NASA Astrophysics Data System (ADS)

    Franz, Daniela; Koebsch, Franziska; Larmanou, Eric; Augustin, Jürgen; Sachs, Torsten

    2016-05-01

    Drained peatlands often act as carbon dioxide (CO2) hotspots. Raising the groundwater table is expected to reduce their CO2 contribution to the atmosphere and revitalise their function as carbon (C) sink in the long term. Without strict water management rewetting often results in partial flooding and the formation of spatially heterogeneous, nutrient-rich shallow lakes. Uncertainties remain as to when the intended effect of rewetting is achieved, as this specific ecosystem type has hardly been investigated in terms of greenhouse gas (GHG) exchange. In most cases of rewetting, methane (CH4) emissions increase under anoxic conditions due to a higher water table and in terms of global warming potential (GWP) outperform the shift towards CO2 uptake, at least in the short term.Based on eddy covariance measurements we studied the ecosystem-atmosphere exchange of CH4 and CO2 at a shallow lake situated on a former fen grassland in northeastern Germany. The lake evolved shortly after flooding, 9 years previous to our investigation period. The ecosystem consists of two main surface types: open water (inhabited by submerged and floating vegetation) and emergent vegetation (particularly including the eulittoral zone of the lake, dominated by Typha latifolia). To determine the individual contribution of the two main surface types to the net CO2 and CH4 exchange of the whole lake ecosystem, we combined footprint analysis with CH4 modelling and net ecosystem exchange partitioning.The CH4 and CO2 dynamics were strikingly different between open water and emergent vegetation. Net CH4 emissions from the open water area were around 4-fold higher than from emergent vegetation stands, accounting for 53 and 13 g CH4 m-2 a-1 respectively. In addition, both surface types were net CO2 sources with 158 and 750 g CO2 m-2 a-1 respectively. Unusual meteorological conditions in terms of a warm and dry summer and a mild winter might have facilitated high respiration rates. In sum, even after 9

  17. Surface Emissivity Maps for Satellite Retrieval of the Longwave Radiation Budget

    NASA Technical Reports Server (NTRS)

    Gupta, Shashi K.; Wilber, Anne C.; Kratz, David P.

    1999-01-01

    This paper presents a brief description of the procedure used to produce global surface emissivity maps for the broadband LW, the 8-12 micrometer window, and 12 narrow LW bands. For a detailed description of the methodology and the input data, the reader is referred to Wilber et al. (1999). These maps are based on a time-independent surface type map published by the IGBP, and laboratory measurements of spectral reflectances of surface materials. These maps represent a first attempt to characterize emissivity based on surface types, and many improvements to the methodology presented here are already underway. Effects of viewing zenith angle and sea state on the emissivity of ocean surface (Smith et al. 1996, Wu and Smith 1997, Masuda et al. 1988) will be taken into account. Measurements form ASTER and MODIS will be incorporated as they become available. Seasonal variation of emissivity based on changes in the characteristics of vegetation will be considered, and the variability of emissivity of barren land areas will be accounted for with the use of Zobler World Soil Maps (Zobler 1986). The current maps have been made available to the scientific community from the web site: http://tanalo.larc.nasa.gov:8080/surf_htmls/ SARB_surf.html

  18. Direction of Arrival Measurements of Auroral Medium Frequency Burst Radio Emissions at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J. W.; Hughes, J. M.; Weatherwax, A. T.; Ye, S.; Lummerzheim, D.

    2007-12-01

    MF burst is an impulsive radio emission of auroral origin detected by ground-based instruments approximately between 1,300 and 3,700 kHz, and associated with substorm onsets. Its exact generation mechanism is unknown, though it has been speculated that it arises from mode conversion radiation. To discover the generation mechanism and the relation of MF burst to auroral processes, Dartmouth has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed at Toolik Lake Field Station in Alaska in 2006. This instrument measured spectra, amplitudes, and directions of arrival (DOA's) of over 47 MF burst events occurring between November 30, 2006 and May 26, 2007. These represent the first DOA measurements ever reported for the impulsive MF burst phenomenon. Preliminary analysis shows that the events originated from a wide range of directions in the sky, with all azimuths represented in the distribution of DOA's. The DOA of each individual event is well-defined, however. Many events show apparent motion, with southward motions more common than northward among the subset of events analyzed so far. Some of the events were detected simultaneously on an interferometer deployed at Kaktovik, Alaska, 400 km away. The all-sky imager at Toolik Lake was also operational for some events. Further analysis of these data promises to reveal first information about the locations and motions of MF burst sources, a first step towards discovering the generation mechanism of this mysterious radio emission and its relation to auroral processes.

  19. Great Lakes in January

    NASA Image and Video Library

    2017-12-08

    This image taken on January 13, 2015 from the Suomi NPP satellite's VIIRS instrument shows the Great Lakes and surrounding areas. The latest Great Lakes Surface Environmental Analysis (GLSEA) from the NOAA Great Lakes Environmental Research Laboratory shows total ice cover of 29.3% as of January 13th. Credit: NOAA/NASA/NPP Via NOAA Environmental Visualization Laboratory

  20. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery.

    PubMed

    Giardino, C; Pepe, M; Brivio, P A; Ghezzi, P; Zilioli, E

    2001-03-14

    Some bio-physical parameters, such as chlorophyll a concentration, Secchi disk depth and water surface temperature were mapped in the sub-alpine Lake Iseo (Italy) using Landsat Thematic Mapper (TM) data acquired on the 7 March 1997. In order to adequately investigate the water-leaving radiance, TM data were atmospherically corrected using a partially image-based method, and the atmospheric transmittance was measured in synchrony with the satellite passage. An empirical approach of relating atmospherically corrected TM spectral reflectance values to in situ measurements, collected during the satellite data acquisition, was used. The models developed were used to map the chlorophyll concentration and Secchi disk depth throughout the lake. Both models gave high determination coefficients (R2 = 0.99 for chlorophyll and R2 = 0.85 for the Secchi disk) and the spatial distribution of chlorophyll concentration and Secchi disk depth was mapped with contour intervals of 1 mg/m3 and 1 m, respectively. A scene-independent procedure was used to derive the surface temperature of the lake from the TM data with a root mean square error of 0.3 degrees C.

  1. Directional Thermal Emission and Absorption from Surface Microstructures in Metalized Plastics

    DTIC Science & Technology

    2013-09-01

    conductive surfaces for directional emission is presented. First, key accomplishments in exploiting surface plasmons for coherent thermal emission from...than as an absorbing coating . In the 2005 design proposed by Lee et al., thermally excited surface waves at a silicon carbide to photonic crystal stack...sufficiently to significantly effect the film durability and thermal conductivity , the profile of the cavity begins to change shape. Although a case

  2. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    USGS Publications Warehouse

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  3. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, S.; Walter Anthony, K. M.; Archer, D.

    Microbial methane (CH 4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH 4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH 4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH 4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We findmore » that summertime ebullition dominates annual CH 4 emissions to the atmosphere. Eighty percent of CH 4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH 4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH 4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH 4 dissolution from trapped bubbles, and greater CH 4 emissions from northern lakes.« less

  4. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE PAGES

    Greene, S.; Walter Anthony, K. M.; Archer, D.; ...

    2014-12-08

    Microbial methane (CH 4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH 4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH 4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH 4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We findmore » that summertime ebullition dominates annual CH 4 emissions to the atmosphere. Eighty percent of CH 4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH 4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH 4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH 4 dissolution from trapped bubbles, and greater CH 4 emissions from northern lakes.« less

  5. Hydrology of Central Florida Lakes - A Primer

    USGS Publications Warehouse

    Schiffer, Donna M.

    1998-01-01

    INTRODUCTION Lakes are among the most valued natural resources of central Florida. The landscape of central Florida is riddled with lakeswhen viewed from the air, it almost seems there is more water than land. Florida has more naturally formed lakes than other southeastern States, where many lakes are created by building dams across streams. The abundance of lakes on the Florida peninsula is a result of the geology and geologic history of the State. An estimated 7,800 lakes in Florida are greater than 1 acre in surface area. Of these, 35 percent are located in just four counties (fig. 1): Lake, Orange, Osceola, and Polk (Hughes, 1974b). Lakes add to the aesthetic and commercial value of the area and are used by many residents and visitors for fishing, boating, swimming, and other types of outdoor recreation. Lakes also are used for other purposes such as irrigation, flood control, water supply, and navigation. Residents and visitors commonly ask questions such as Whyare there so many lakes here?, Why is my lake drying up (or flooding)?, or Is my lake spring-fed? These questions indicate that the basic hydrology of lakes and the interaction of lakes with ground water and surface water are not well understood by the general population. Because of the importance of lakes to residents of central Florida and the many questions and misconceptions about lakes, this primer was prepared by the U.S. Geological Survey (USGS) in cooperation with the St. Johns River Water Management District and the South Florida Water Management District. The USGS has been collecting hydrologic data in central Florida since the 1920s, obtaining valuable information that has been used to better understand the hydrology of the water resources of central Florida, including lakes. In addition to data collection, as of 1994, the USGS had published 66 reports and maps on central Florida lakes (Garcia and Hoy, 1995). The main purpose of this primer is to describe the hydrology of lakes in central

  6. Climate of a high altitude lake basin and lake-atmosphere interactions - observations and atmospheric modelling

    NASA Astrophysics Data System (ADS)

    Maussion, F.; Kropacek, J.; Finkelnburg, R.; Scherer, D.

    2012-04-01

    Large lakes and inland water bodies have a significant influence on their local climate. The hydrometeorological effect of inland water bodies is varying greatly between seasons, years and contrasting climatic conditions. It is generally hypothesised that the cool air above the lake will inhibit convection in summer; conversely, the relatively warm lake in late-autumn will initiate convective instability that may generate strong snowfalls. In this study we focus on the lake Nam Co (2'000 sq.km, 4700 m a.s.l). Located in a transition zone between the continental climate of Central Asia and the Indian Monsoon system, the Nam Co lake is covered by ice from mid-January to end of April and reaches surface temperatures of 13 °C in summer. We address three main research questions: (i) what is the influence of the Nam Co lake on local meteorological variables over the course of the year, (ii) what is the impact of the timing of the lake freezing on late-autumn and winter precipitation fields and (iii) how will the influence of the lake evolve in the context of a changing climate? In order to answer these questions, we combine satellite observations of lake surface temperatures from the ARC-Lake product and atmospheric modelling using the WRF model. The spatio-temporal variability of temperature, wind and precipitation fields during the last decade are analyzed using high-resolution (up to 2 km) simulations. The positive impact of the assimilation of the lake surface temperatures for the initialization of the model is analysed and discussed, as well as the combined influences of the large scale (westerlies, monsoon) and local (orographic) forcings. Our results are of relevance for any regional climate or hydrological modelling study and bring new insights in our understanding of the complex hydrometeorological processes taking place on the Tibetan Plateau.

  7. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    NASA Astrophysics Data System (ADS)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  8. Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  9. Multi-component gas emission measurements of the active lava lake of Nyiragongo, DR Congo

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; Giuffrida, G. B.; Yalire, M.; Lübcke, P.; Arellano, S.; Balagizi, C.; Calabrese, S.; Galle, B.; Tedesco, D.

    2017-10-01

    Between 2007 and 2011 four measurement campaigns (June 2007, July 2010, June 2011, and December 2011) were carried out at the crater rim of Nyiragongo volcano, DR Congo. Nyiragongo is one of the most active volcanoes in Africa. The ground-based remote sensing technique Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS), which uses scattered sunlight, the in-situ Multi-Component Gas Analyzer System (Multi-GAS) and alkaline impregnated filter were simultaneously applied during all field trips. The bromine monoxide to sulfur dioxide (BrO/SO2) and carbon dioxide to sulfur dioxide (CO2/SO2) molar ratios were determined, among other ratios. During the different field trips variations of the level of the lava lake up to several tens of meters were observed during intervals of the order of minutes up to days and also between the years. The measured gas ratios presented covariations with the lava lake level changes. BrO/SO2 ratios and CO2/SO2 ratios showed similar behavior. Annual CO2/SO2 and BrO/SO2 average values are generally positively correlated. In June 2011 increased BrO/SO2 as well as increased CO2/SO2 ratios have been observed before a sudden decrease of the lava lake. Overall the Cl/S ratio, determined by filter-pack sampling, shows an increasing trend with time, which is accompanied by a decreasing sulfur dioxide flux, the later measured nearly continuously by automated MAX-DOAS instruments since 2004. Mean gas emission fluxes of CO2, Cl and 'minimum-BrO' fluxes are calculated using their ratio to SO2. The first two show an increase with time, in contrast to the SO2 fluxes. A simple conceptual model is proposed which can explain in particular the June 2011 data, but as well our entire data set. The proposed model takes up the idea of convective magma cells inside the conduit and the possible temporary interruption of part of the cycling. We propose than two alternatives to explain the observed gas emission variation: 1. It is assumed that the

  10. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    NASA Astrophysics Data System (ADS)

    Wang, Xun; Lin, Che-Jen; Yuan, Wei; Sommar, Jonas; Zhu, Wei; Feng, Xinbin

    2016-09-01

    Mercury (Hg) emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0) from natural surfaces in China. The development implements recent advancements in the understanding of air-soil and air-foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr-1, including 565.5 Mg yr-1 from soil surfaces, 9.0 Mg yr-1 from water bodies, and -100.4 Mg yr-1 from vegetation. The air-surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air-surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake) during April-October (rice planting) to a net source when the farmland is not flooded (November-March). Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %), followed by spring (28 %), autumn (13 %), and winter (8 %). Model verification is accomplished using observational data of air-soil/air-water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008) that reported large emission from vegetative surfaces using an evapotranspiration approach, the estimate in

  11. Surface plasmon amplification by stimulated emission of radiation (SPASER)

    DOEpatents

    Stockman, Mark I [Atlanta, GA; Bergman, David J [Ramat Hasharon, IL

    2009-08-04

    A nanostructure is used to generate a highly localized nanoscale optical field. The field is excited using surface plasmon amplification by stimulated emission of radiation (SPASER). The SPASER radiation consists of surface plasmons that undergo stimulated emission, but in contrast to photons can be localized within a nanoscale region. A SPASER can incorporate an active medium formed by two-level emitters, excited by an energy source, such as an optical, electrical, or chemical energy source. The active medium may be quantum dots, which transfer excitation energy by radiationless transitions to a resonant nanosystem that can play the same role as a laser cavity in a conventional laser. The transitions are stimulated by the surface plasmons in the nanostructure, causing the buildup of a macroscopic number of surface plasmons in a single mode.

  12. Spatial Evaluation of Heavy Metals Concentrations in the Surface Sediment of Taihu Lake

    PubMed Central

    Niu, Yong; Jiao, Wei; Yu, Hui; Niu, Yuan; Pang, Yong; Xu, Xiangyang; Guo, Xiaochun

    2015-01-01

    With regard to the size of China’s freshwater lakes, Taihu Lake ranks third and it plays an important role in the supply of drinking water, flood prevention, farming and navigation, as well as in the travelling industry. The problem of environmental pollution has attracted widespread attention in recent years. In order to understand the levels, distribution and sources of heavy metals in sediments of Taihu Lake, random selection was carried out to obtain 59 samples of surface sediment from the entire lake and study the concentrations of Pb, Cd, Cu, Zn, Cr and Ni. Toxic units were also calculated to normalize the toxicities caused by various heavy metals. As a result, Cd and Cu in sediment were considered lower than the effect range low (ERL) at all regions where samples were gathered, while Pb and Ni were categorized into ERL-effect range median (ERM) at over 22% of the regions where samples were obtained. Nevertheless, all average concentrations of the samples were below the level of potential effect. According to the findings of this research, significant spatial heterogeneity existed in the above heavy metals. In conclusion, the distribution areas of heavy metals with higher concentrations were mainly the north bays, namely Zhushan Bay, Meiliang Bay as well as Gonghu Bay. The distribution areas of Cu, Zn, Cr and Ni with higher concentration also included the lake’s central region, whereas the uniform distribution areas of those with lower concentrations were the lake’s southeast region. In addition, it was most probable that the spatial distribution of heavy metals was determined by river inputs, whereas atmospheric precipitation caused by urban and traffic contamination also exerted considerable effects on the higher concentrations of Pb and Cd. Through evaluating the total amount of toxic units (ΣTU), it was found that higher toxicity existed primarily in the north bays and central region of the lake. If the heavy metals were sorted by the reduction of

  13. Water-quality and lake-stage data for Wisconsin lakes, water year 1996

    USGS Publications Warehouse

    ,

    1997-01-01

    The purpose of this report is to provide information about the physical and chemical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected includes measurements of lake stage and in-lake water quality. Graphs of Secchi depths, surface totalphosphorus and chlorophyll-a concentrations versus time are included for lakes with two or more years of data. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, drainage area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: "Water Resources Data-Wisconsin, 1996."

  14. "Feathered" fractal surfaces to minimize secondary electron emission for a wide range of incident angles

    NASA Astrophysics Data System (ADS)

    Swanson, Charles; Kaganovich, Igor D.

    2017-07-01

    Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a "feathered" surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow angles of incidence more effectively than velvet. We find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.

  15. A satellite-based climatology of European alpine lake surface water temperature for the period 1989-2013

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Lieberherr, G.; Wunderle, S.

    2014-12-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. At some European lakes LWT has been observed over several decades, but the majority of lakes is not monitored, or only on a non-regular basis, which is insufficient to track a climate signal. Satellite observations might be utilized to fill these gaps, however, only few satellite sensors offer the possibility to analyze time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. We present a satellite-based lake surface water temperature (LSWT) data set for European (pre-alpine) water bodies based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern, Switzerland. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and Metop-A) day and night time data. We will discuss the processing steps (e.g. geolocation, calibration, LSWT algorithm, etc.) which are necessary to obtain the accuracy needed for climate related studies. The resulting climatology covers pre-alpine and alpine lakes with sizes between 14 and 580 km2. We will present and discuss the analysis of trends for some sample lakes in various regions of the Alps.

  16. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI

    PubMed Central

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km2. The lake area decreased by -9.3% at an annual rate of -53.7 km2 yr-1 during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability. PMID:27007233

  17. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI.

    PubMed

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km(2). The lake area decreased by -9.3% at an annual rate of -53.7 km(2) yr(-1) during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability.

  18. Lake Powell

    NASA Image and Video Library

    2007-09-20

    The white ring around Lake Powell tells the story. The surface is down 98 feet. This is critical, because Powell, Lake Mead, and other lakes along the Colorado River provide water for millions of people in five states. We are in the eighth year of a drought on the Colorado River. This year was the driest year ever reported in Southern California, and there is a severe drought in Northern California, down to less than 30-percent of snow pack. This ASTER image of part of Lake Powell was acquired in 2001. The gray area depicts the shrunken, reduced 2007 lake extent compared to the extended, larger black area in 2001. The image covers an area of 24 x 30 km, and is centered near 37.1 degrees north latitude, 111.3 degrees west longitude. This image from NASA Terra satellite. http://photojournal.jpl.nasa.gov/catalog/PIA10614

  19. Monitoring ground-surface heating during expansion of the Casa Diablo production well field at Mammoth Lakes, California

    USGS Publications Warehouse

    Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric

    2015-01-01

    The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.

  20. Global Occurrence and Emission of Rotaviruses to Surface Waters

    PubMed Central

    Kiulia, Nicholas M.; Hofstra, Nynke; Vermeulen, Lucie C.; Obara, Maureen A.; Medema, Gertjan; Rose, Joan B.

    2015-01-01

    Group A rotaviruses (RV) are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model) to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management. PMID:25984911

  1. Variations in gas emissions in correlation with lava lake level changes at Nyiragono volcano, DR Congo

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; Giuffrida, G. B.; Yalire, M.; Tedesco, D.; Arellano, S.; Galle, B.; Aiuppa, A.

    2012-04-01

    Between 2007 and 2011 four measurement campaigns (June 2007, July 2010, June 2011 and December 2011) were carried out at the crater rim of Nyiragongo volcano (1° 31'S, 29°15'E, 3470 m.a.s.l.). Nyiragongo volcano is located 15 km north of the million inhabitants strong city of Goma, North Kivu region (DRC) and belongs to the Virunga volcanic chain which is associated with the western branch of the Great Rift Valley. The volcanic activity of Niyragongo is the result caused by the rifting of the Earth's crust where two parts of the African plates are breaking apart. Nyiragongo is considered one of the most active volcanoes in Africa. The ground - based remote sensing technique - MAX-DOAS (Multi Axis Differential Optical Absorption Spectroscopy) using scattered sunlight and a Multi-gas-instrument have been simultaneously applied during all field trips and among others BrO/SO2 and CO2/SO2 ratios were determined. At the various field trips we could observe that the lava lake level frequently changes in height (in the order of minutes up to days and also between the years) and also our measured gas ratios showed variations. Higher CO2/SO2 and BrO2/SO2 levels were generally observed at higher lava lake levels and a decrease of the lava lake was accompanied by a decrease in the BrO/SO2 as well as CO2/SO2 ratio. Ideas to explain the correlation of gas ratios and the lava lake level will be discussed in this presentation and we will especially focus on the June 2011 campaign, because it contains the largest changes, observed during these campaigns. Gas emission changes in correlation with a change in the lava lake level might help to give insights within the magma plumbing system of Nyiragongo volcano and therefore leading to a better understanding of the volcanic behavior and improving the possibilities of forecasting a future eruption.

  2. Contribution of GIS to evaluate surface water pollution by heavy metals: Case of Ichkeul Lake (Northern Tunisia)

    NASA Astrophysics Data System (ADS)

    Yazidi, Amira; Saidi, Salwa; Ben Mbarek, Nabiha; Darragi, Fadila

    2017-10-01

    The concentrations of nutrients and heavy elements in the surface water of the lake Ichkeul, main wadis which feed directly and thermal springs that flow into the lake, are measured to evaluate these chemical elements. There are used to highlight the interactions between these different aquatic compartments of Ichkeul. All metal concentrations in lake water, except Cu, were lower than the maximum permitted concentration for the protection of aquatic life. The results show that the highest concentrations are located in the eastern and south-eastern part of the lake where the polluted water comes from the lagoon of Bizerte through the wadi Tinja as well as from the city of Mateur through the wadi Joumine. The pollution indices and especially the heavy metal evaluation index (HEI) show high pollution specially located at the mouths of wadis and an increase of heavy metal concentrations, as a result of uncontrolled releases of domestic and industrial wastewater.

  3. Occurrence and distribution of antibiotics in surface water impacted by crab culturing: a case study of Lake Guchenghu, China.

    PubMed

    Wang, Wenxia; Zhou, Lijun; Gu, Xiaohong; Chen, Huihui; Zeng, Qingfei; Mao, Zhigang

    2018-05-30

    The objective of this study was to evaluate the occurrence, distribution, potential sources, and ecological risk of antibiotics in aqueous phase of Lake Guchenghu, China. Target antibiotics in surface water of Lake Guchenghu, adjacent streams, and crab ponds were detected seasonally. The results showed that erythromycin-H 2 O (1.60-2450 ng/L), sulfadiazine (ND-654 ng/L), and florfenicol (ND-919 ng/L) were the predominant antibiotics in Lake Guchenghu. The concentrations of antibiotics in Lake Guchenghu Basin showed obvious seasonal variation, with the highest concentration in summer. In general, the concentrations of antibiotics in crab ponds and streams were higher than those in the lake and spatial distributions of antibiotics were affected by pollution sources. The types and origins of antibiotics indicated that wastewater from ponds was the main source of antibiotics in the lake. Risk assessment suggested that as individual compound, erythromycin-H 2 O and clarithromycin posed a high risk to algae while other compounds might pose low or no risk. The mixture of antibiotics may pose a high risk to aquatic organisms in Lake Guchenghu. Overall, our study revealed the occurrence and spatiotemporal variation of antibiotics in Lake Guchenghu, which was related with crab culturing.

  4. Influence of recent climatic events on the surface water storage of the Tonle Sap Lake.

    PubMed

    Frappart, F; Biancamaria, S; Normandin, C; Blarel, F; Bourrel, L; Aumont, M; Azemar, P; Vu, P-L; Le Toan, T; Lubac, B; Darrozes, J

    2018-09-15

    Lakes and reservoirs have been identified as sentinels of climate change. Tonle Sap is the largest lake in both the Mekong Basin and Southeast Asia and because of the importance of its ecosystem, it is has been described as the "heart of the lower Mekong". Its seasonal cycle depends on the annual flood pulse governed by the flow of the Mekong River. This study provides an impact analysis of recent climatic events from El Niño 1997/1998 to El Niño 2015/2016 on surface storage variations in the Tonle Sap watershed determined by combining remotely sensed observations, multispectral images and radar altimetry from 1993 to 2017. The Lake's surface water volume variations are highly correlated with rainy season rainfall in the whole Mekong River Basin (R = 0.84) at interannual time-scale. Extreme droughts and floods can be observed when precipitation deficit and excess is recorded in both the Tonle Sap watershed and the Mekong River Basin during moderate to very strong El Niño/La Niña events (R = -0.70) enhanced by the Pacific Decadal Oscillation (R = -0.68). Indian and Western North Pacific Monsoons were identified as having almost equal influence. Below normal vegetation activity was observed during the first semester of 2016 due to the extreme drought in 2015. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Water-quality and lake-stage data for Wisconsin lakes, water year 2005

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. The purpose of this report is to provide information about the chemical and physical charac-teristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measure-ments of in-lake water quality and lake stage. Time series graphs of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive infor-mation for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks.

  6. Occurrence, distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater Lake, China.

    PubMed

    Xing, Liqun; Zhang, Qin; Sun, Xu; Zhu, Hongxia; Zhang, Shenghu; Xu, Huaizhou

    2018-04-30

    Organophosphate esters (OPEs) are ubiquitous in the environment and pose a potential threat to ecosystem and human health. This study investigated the concentrations, distributions and risk of 12 OPEs in surface water and sediment from Luoma Lake, Fangting River and Yi River. Solid-phase extraction (SPE) method were used to extract OPEs from water samples, ultrasonic process and SPE method were used to extract OPEs from sediment samples, and the extracts were finally analyzed using the HPLC-MS/MS. The results revealed that the median and maximum concentrations of ΣOPEs were 73.9 and 1066 ng/L in surface water, and were 28.7 and 35.9 ng/g in sediment, respectively. Tris(2-chloroethyl) phosphate (TCEP) and trimethyl phosphate (TMP) were the most abundant OPEs in the surface water with median concentrations of 24.3 and 16.4 ng/L in Luoma Lake, respectively. Triethyl phosphate (TEP) was the most abundant OPE in the sediment with a median concentrations of 28.9 ng/g. However, tricresyl phosphate (TCrP) and ethylhexyl diphenyl phosphate (EHDPP) predominantly contributed to the ecological risk with respective median risk quotients 0.07 and 0.01 for surface water in Luoma Lake. TEP and TCrP were the most significant contributors to the ecological risk with respective median risk quotients of 6.4 × 10 -4 and 5.6 × 10 -4 for sediment. It was also found that inflowing Fangting River could be the major pollution source to Luoma Lake. The no-cancer and carcinogenic risks of OPEs were lower than the theoretical threshold of risk. The study found that the ecological and human health risks due to the exposure to OPEs were currently acceptable. In other words, the Luoma Lake was relatively safer to use as a drinking water source in urban areas in the context of OPEs pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Does Terrestrial Carbon Explain Lake Superior Model-Data pCO2 Discrepancy?

    NASA Astrophysics Data System (ADS)

    Bennington, V.; McKinley, G. A.; Atilla, N.; Kimura, N.; Urban, N.; Wu, C.; Desai, A.

    2008-12-01

    As part of the CyCLeS project, a three-dimensional hydrodynamic model (MITgcm) was coupled to a medium- complexity ecosystem model and applied to Lake Superior in order to constrain the seasonal cycle of lake pCO2 and air-lake fluxes of CO2. Previous estimates of CO2 emissions from the lake, while very large, were based on field measurements of very limited spatial and temporal extent. The model allows a more realistic extrapolation from the limited data by incorporation of lake-wide circulation and food web dynamics. A large discrepancy (200 uatm) between observations and model-predicted pCO2 during spring suggests a significant input of terrestrial carbon into the lake. The physical model has 10-km horizontal resolution with 29 vertical layers, ten of which are in the top 50 m of the water column. The model is forced by interpolated meteorological data obtained from land-based weather stations, buoys, and other measurements. Modeled surface temperatures compare well to satellite- based surface water temperature images derived from NOAA AVHRR (Advanced Very High Resolution Radiometer), though there are regional patterns of bias that suggest errors in the heat flux forcing. Growth of two classes of phytoplankton is modeled as a function of temperature, light, and nutrients. One grazer preys upon all phytoplankton. The cycles of carbon and phosphorous are explicitly modeled throughout the water column. The model is able to replicate the observed seasonal cycle of lake chlorophyll and the deep chlorophyll maximum. The model is unable to capture the magnitude of observed CO2 super-saturation during spring without considering external carbon inputs to the lake. Simple box model results suggest that the estimated pool of terrestrial carbon in the lake (17 TgC) must remineralize with a timescale of months during spring in order to account for the model/data pCO2 difference. River inputs and enhanced remineralization in spring due to photo-oxidation are other mechanisms

  8. Lava lake activity at the summit of Kīlauea Volcano in 2016

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Donald A.; Elias, Tamar; Shiro, Brian

    2018-04-10

    The ongoing summit eruption at Kīlauea Volcano, Hawai‘i, began in March 2008 with the formation of the Overlook crater, within Halema‘uma‘u Crater. As of late 2016, the Overlook crater contained a large, persistently active lava lake (250 × 190 meters). The accessibility of the lake allows frequent direct observations, and a robust geophysical monitoring network closely tracks subtle changes at the summit. These conditions present one of the best opportunities worldwide for understanding persistent lava lake behavior and the geophysical signals associated with open-vent basaltic eruptions. In this report, we provide a descriptive and visual summary of lava lake activity during 2016, a year consisting of continuous lava lake activity. The lake surface was composed of large black crustal plates separated by narrow incandescent spreading zones. The dominant motion of the surface was normally from north to south, but spattering produced transient disruptions to this steady motion. Spattering in the lake was common, consisting of one or more sites on the lake margin. The Overlook crater was continuously modified by the deposition of spatter (often as a thin veneer) on the crater walls, with frequent collapses of this adhered lava into the lake. Larger collapses, involving lithic material from the crater walls, triggered several small explosive events that deposited bombs and lapilli around the Halema‘uma‘u Crater rim, but these did not threaten public areas. The lava lake level varied over several tens of meters, controlled primarily by changes in summit magma reservoir pressure (in part driven by magma supply rates) and secondarily by fluctuations in spattering and gas release from the lake (commonly involving gas pistoning). The lake emitted a persistent gas plume, normally averaging 1,000–8,000 metric tons per day (t/d) of sulfur dioxide (SO2), as well as a constant fallout of small juvenile and lithic particles, including Pele’s hair and tears. The

  9. Quantifying Uncertainties in Land Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2012-01-01

    Uncertainties in the retrievals of microwave land surface emissivities were quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including SSM/I, TMI and AMSR-E, were studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors in the retrievals. Generally these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 14% (312 K) over desert and 17% (320 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.52% (26 K). In particular, at 85.0/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are mostly likely caused by rain/cloud contamination, which can lead to random errors up to 1017 K under the most severe conditions.

  10. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  11. Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudley, Colton; Dorsey, Alison; Louie, John

    Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013, Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada: presented at Amer. Assoc. Petroleum Geologists, Pacific Section Annual Meeting, Monterey, Calif., April 19-25.

  12. Glacial lake monitoring in the Karakoram Range using historical Landsat Thematic Mapper archive (1982 - 2014)

    NASA Astrophysics Data System (ADS)

    Chan, J. Y. H.; Kelly, R. E. J.; Evans, S. G.

    2014-12-01

    Glacierized regions are one of the most dynamic land surface environments on the planet (Evans and Delaney, In Press). They are susceptible to various types of natural hazards such as landslides, glacier avalanches, and glacial lake outburst floods (GLOF). GLOF events are increasingly common and present catastrophic flood hazards, the causes of which are sensitive to climate change in complex high mountain topography (IPCC, 2013). Inundation and debris flows from GLOF events have repeatedly caused significant infrastructure damages and loss of human lives in the high mountain regions of the world (Huggel et al, 2002). The research is designed to develop methods for the consistent detection of glacier lakes formation during the Landsat Thematic Mapper (TM) era (1982 - present), to quantify the frequency of glacier lake development and estimate lake volume using Landsat imagery and digital elevation model (DEM) data. Landsat TM scenes are used to identify glacier lakes in the Shimshal and Shaksgam valley, particularly the development of Lake Virjeab in year 2000 and Kyagar Lake in 1998. A simple thresholding technique using Landsat TM infrared bands, along with object-based segmentation approaches are used to isolate lake extent. Lake volume is extracted by intersecting the lake extent with the DEM surface. Based on previous studies and DEM characterization in the region, Shuttle Radar Topography Mission (SRTM) DEM is preferred over Advanced Spaceborne Thermal Emission and Reflection (ASTER) GDEM due to higher accuracy. Calculated errors in SRTM height estimates are 5.81 m compared with 8.34 m for ASTER. SRTM data are preferred because the DEM measurements were made over short duration making the DEM internally consistent. Lake volume derived from the Landsat TM imagery and DEM are incorporated into a simple GLOF model identified by Clague and Matthews (1973) to estimate the potential peak discharge (Qmax) of a GLOF event. We compare the simple Qmax estimates with

  13. Secondary electron emission characteristics of ion-textured copper and high-purity isotropic graphite surfaces

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.

  14. Arctic lakes are continuous methane sources to the atmosphere under warming conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zeli; Zhuang, Qianlai

    2015-05-01

    Methane is the second most powerful carbon-based greenhouse gas in the atmosphere and its production in the natural environment through methanogenesis is positively correlated with temperature. Recent field studies showed that methane emissions from Arctic thermokarst lakes are significant and could increase by two- to four-fold due to global warming. But the estimates of this source are still poorly constrained. By using a process-based climate-sensitive lake biogeochemical model, we estimated that the total amount of methane emissions from Arctic lakes is 11.86 Tg yr-1, which is in the range of recent estimates of 7.1-17.3 Tg yr-1 and is on the same order of methane emissions from northern high-latitude wetlands. The methane emission rate varies spatially over high latitudes from 110.8 mg CH4 m-2 day-1 in Alaska to 12.7 mg CH4 m-2 day-1 in northern Europe. Under Representative Concentration Pathways (RCP) 2.6 and 8.5 future climate scenarios, methane emissions from Arctic lakes will increase by 10.3 and 16.2 Tg CH4 yr-1, respectively, by the end of the 21st century.

  15. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  16. Movements of hatchery-reared lake trout in Lake Superior

    USGS Publications Warehouse

    Pycha, Richard L.; Dryer, William R.; King, George R.

    1965-01-01

    The history of stocking of lake trout (Salvelinus namaycush) in the Great Lakes is reviewed. The study of movements is based on capture of 24,275 fin-clipped lake trout taken in experimental gill nets and trawls and commercial gill nets. Yearling lake trout planted from shore dispersed to 15-fath (27-m) depths in 3A? hr. Most fish remained within 2 miles (3.2 km) of the planting site 2 months, but within 4 months some fish had moved as much as 17 miles (27 km). The highest abundance of planted lake trout was in areas 2-4 miles (3.2-6.4 km) from the planting site even 3 years after release. Distance moved and size of fish were not correlated. Dispersal of lake trout begins at planting and probably continues until the fish are mature. Most movement was eastward in southern Lake Superior and followed the counterclockwise surface currents. Movement is most rapid in areas of strong currents and slowest in areas of weak currents or eddies. Movement to areas west of the Keweenaw Peninsula was insignificant from plantings in Keweenaw Bay and nil from other plantings farther east. Lake trout planted in the eastern third of the lake dispersed more randomly than those planted farther west. Few fish moved farther offshore than the 50-fath (91-m) contour. Lake trout planted in Canadian waters made insignificant contributions to populations in US waters.

  17. Microwave thermal emission from periodic surfaces

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lin, S. L.; Chuang, S. L.

    1984-01-01

    The emissivity of a periodic surface is calculated from one minus the reflectivity by using the reciprocity principle. The reflectivity consists of the sum of all scattered power as determined from the modal theory which obeys both the principle of reciprocity and the principle of energy conservation. The theoretical results are matched to experimental data obtained from brightness temperature measurements as functions of viewing angle for soil moisture in plowed fields. The threshold phenomenon with regard to the appearing and disappearing of modes in their contributions to the scattered field amplitudes is discussed in connection with the theoretical results. It is shown that this approach for calculating the emissivity greatly reduces computational efforts by requiring substantially smaller matrix sizes.

  18. Lake Powell

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The white ring around Lake Powell tells the story. The surface is down 98 feet. This is critical, because Powell, Lake Mead, and other lakes along the Colorado River provide water for millions of people in five states. We are in the eighth year of a drought on the Colorado River. This year was the driest year ever reported in Southern California, and there is a severe drought in Northern California, down to less than 30-percent of snow pack. This ASTER image of part of Lake Powell was acquired in 2001. The gray area depicts the shrunken, reduced 2007 lake extent compared to the extended, larger black area in 2001.

    The image covers an area of 24 x 30 km, and is centered near 37.1 degrees north latitude, 111.3 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  19. Infrared camera assessment of skin surface temperature--effect of emissivity.

    PubMed

    Bernard, V; Staffa, E; Mornstein, V; Bourek, A

    2013-11-01

    Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Quantum theory of spontaneous and stimulated emission of surface plasmons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archambault, Alexandre; Marquier, Francois; Greffet, Jean-Jacques

    2010-07-15

    We introduce a quantization scheme that can be applied to surface waves propagating along a plane interface. An important result is the derivation of the energy of the surface wave for dispersive nonlossy media without invoking any specific model for the dielectric constant. Working in Coulomb's gauge, we use a modal representation of the fields. Each mode can be associated with a quantum harmonic oscillator. We have applied the formalism to derive quantum mechanically the spontaneous emission rate of surface plasmon by a two-level system. The result is in very good agreement with Green's tensor approach in the nonlossy case.more » Green's approach allows also to account for losses, so that the limitations of a quantum approach of surface plasmons are clearly defined. Finally, the issue of stimulated versus spontaneous emission has been addressed. Because of the increasing density of states near the asymptote of the dispersion relation, it is quantitatively shown that the stimulated emission probability is too small to obtain gain in this frequency region.« less

  1. A Unified and Coherent Land Surface Emissivity Earth System Data Record

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Borbas, E. E.; Hulley, G. C.; Hook, S. J.; Anderson, M. C.; Pinker, R. T.; Hain, C.; Guillevic, P. C.

    2014-12-01

    Land Surface Temperature and Emissivity (LST&E) data are essential for a wide variety of studies from calculating the evapo-transpiration of plant canopies to retrieving atmospheric water vapor. LST&E products are generated from data acquired by sensors in low Earth orbit (LEO) and by sensors in geostationary Earth orbit (GEO). Although these products represent the same measure, they are produced at different spatial, spectral and temporal resolutions using different algorithms. The different approaches used to retrieve the temperatures and emissivities result in discrepancies and inconsistencies between the different products. NASA has identified a major need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. This poster will introduce the land surface emissivity product of the NASA MEASUREs project called A Unified and Coherent Land Surface Temperature and Emissivity (LST&E) Earth System Data Record (ESDR). To develop a unified high spectral resolution emissivity database, the MODIS baseline-fit emissivity database (MODBF) produced at the University of Wisconsin-Madison and the ASTER Global Emissivity Database (ASTER GED) produced at JPL will be merged. The unified Emissivity ESDR will be produced globally at 5km in mean monthly time-steps and for 12 bands from 3.6-14.3 micron and extended to 417 bands using a PC regression approach. The poster will introduce this data product. LST&E is a critical ESDR for a wide variety of studies in particular ecosystem and climate modeling.

  2. Using surface water application to reduce 1,3-dichloropropene emission from soil fumigation.

    PubMed

    Gao, Suduan; Trout, Thomas J

    2006-01-01

    High emissions from soil fumigants increase the risk of detrimental impact on workers, bystanders, and the environment, and jeopardize future availability of fumigants. Efficient and cost-effective approaches to minimize emissions are needed. This study evaluated the potential of surface water application (or water seal) to reduce 1,3-dichloropropene (1,3-D) emissions from soil (Hanford sandy loam) columns. Treatments included dry soil (control), initial water application (8 mm of water just before fumigant application), initial plus a second water application (2.6 mm) at 12 h, initial plus two water applications (2.6 mm each time) at 12 and 24 h, standard high density polyethylene (HDPE) tarp, initial water application plus HDPE tarp, and virtually impermeable film (VIF) tarp. Emissions from the soil surface and distribution of 1,3-D in the soil-gas phase were monitored for 2 wk. Each water application abruptly reduced 1,3-D emission flux, which rebounded over a few hours. Peak emission rates were substantially reduced, but total emission reduction was small. Total fumigant emission was 51% of applied for the control, 46% for initial water application only, and 41% for the three intermittent water applications with the remaining water treatment intermediate. The HDPE tarp alone resulted in 45% emission, while initial water application plus HDPE tarp resulted in 38% emission. The most effective soil surface treatment was VIF tarp (10% emission). Surface water application can be as effective, and less expensive than, standard HDPE tarp. Frequent water application is required to substantially reduce emissions.

  3. Process Produces Low-Secondary-Electron-Emission Surfaces

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.; Roman, R. F.

    1986-01-01

    Textured carbon layer applied to copper by sputtering. Carbon surface characterized by dense, random array of needle-like spires or peaks that extend perpendicularly from local copper surface. Spires approximately 7 micrometers in height and spaced approximately 3 micrometers apart, on average. Copper substrate essentially completely covered by carbon layer, is tenacious and not damaged by vibration loadings representative of multistage depressed collector (MDC) applications. Process developed primarily to provide extremely low-secondary-electron-emission surface for copper for use as highefficiency electrodes in MDC's for microwave amplifier traveling-wave tubes (TWT's). Tubes widely used in space communications, aircraft, and terrestrial applications.

  4. Hydrology of the Reelfoot Lake basin, Obion and Lake counties, northwestern Tennessee

    USGS Publications Warehouse

    Robbins, C.H.

    1985-01-01

    Nine maps describe the following water resources aspects of the Reelfoot Lake watershed: Map 1-Surface water gaging stations, lake level, and locations of observation wells, rainfall stations and National Weather Service rainfall stations; Maps 2 and 3-water level contours, river stage, groundwater movement; Maps 4 and 5-grid blocks simulating constant head on the Mississippi River, Reelfoot Lake, Running Reelfoot Bayou, Reelfoot Creek, and Running Slough; Maps 6 and 7-difference between model calculated and observed water levels; and Maps 8 and 9-line of equal groundwater level increase and approximate lake area at pool elevation. (Lantz-PTT)

  5. Indirect estimation of emission factors for phosphate surface mining using air dispersion modeling.

    PubMed

    Tartakovsky, Dmitry; Stern, Eli; Broday, David M

    2016-06-15

    To date, phosphate surface mining suffers from lack of reliable emission factors. Due to complete absence of data to derive emissions factors, we developed a methodology for estimating them indirectly by studying a range of possible emission factors for surface phosphate mining operations and comparing AERMOD calculated concentrations to concentrations measured around the mine. We applied this approach for the Khneifiss phosphate mine, Syria, and the Al-Hassa and Al-Abyad phosphate mines, Jordan. The work accounts for numerous model unknowns and parameter uncertainties by applying prudent assumptions concerning the parameter values. Our results suggest that the net mining operations (bulldozing, grading and dragline) contribute rather little to ambient TSP concentrations in comparison to phosphate processing and transport. Based on our results, the common practice of deriving the emission rates for phosphate mining operations from the US EPA emission factors for surface coal mining or from the default emission factor of the EEA seems to be reasonable. Yet, since multiple factors affect dispersion from surface phosphate mines, a range of emission factors, rather than only a single value, was found to satisfy the model performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The rare earth element geochemistry on surface sediments, shallow cores and lithological units of Lake Acıgöl basin, Denizli, Turkey

    NASA Astrophysics Data System (ADS)

    Budakoglu, Murat; Abdelnasser, Amr; Karaman, Muhittin; Kumral, Mustafa

    2015-11-01

    The sediments in Lake Acıgöl, located in SW Anatolia, Turkey, were formed under tectono-sedimentary events. REE geochemical investigations of the Lake Acıgöl sediments, from surface and shallow core sediments at different depths (0-10 cm, 10-20 cm and 20-30 cm) are presented to clarify the characteristics of REE and the nature of source rocks in the lake sediments' and to deduce their paleoenvironmental proxies. The chondrite-normalized REE patterns of these sediments are shown as light enrichment in LREE and flat HREE with a negative Eu anomaly that is close to the continental collision basin (CCB) in its profile; this is not comparable with PAAS and UCC. Inorganic detrital materials control the REE characteristics of the Lake Acıgöl sediments and these sediments were accumulated in oxic and dysoxic depositional conditions and/or at passive margins derived from oceanic island arc rocks. They were affected by low chemical weathering, either at the original source or during transport, before deposition under arid or subtropical humid climatic conditions. In addition, we used GIS techniques (such as Inverse Distance Weighted (IDW) and Geographically Weighted Regression (GWR)) to investigate the spatial interpolation and spatial correlation of the REEs from the lake surface sediments in Lake Acıgöl and its surrounding lithological units. GIS techniques showed that the lithological units (e.g., Hayrettin Formation) north of Lake Acıgöl have high REE contents; however, Eu/Eu∗ values were higher in some lake surface sediments than in lithological units, and that refers to a negative Eu-anomaly. Therefore, Lake Acıgöl sediments are derived from the weathered products, mainly from local, highly basic bedrock around the lake from the Archean crust. The chronology of Lake Acıgöl sediment was conducted using the Constant Rate of Supply (CRS) model. Using the CRS methods for the calculation of sedimentation rate, we obtained a 0.012 g/cm2/year value which is an

  7. Spatiotemporal comparison of highly-resolved emissions and concentrations of carbon dioxide and criteria pollutants in Salt Lake City, Utah for health and policy applications

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Fasoli, B.; Bares, R.; o'Keefe, D.; Song, T.; Huang, J.; Horel, J.; Crosman, E.; Ehleringer, J. R.

    2015-12-01

    This study addresses the need for robust highly-resolved emissions and concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are dependent on proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present emissions inventories and modeled concentrations for CO2 and CAPs: carbon monoxide (CO), lead (Pb), nitrogen oxides (NOx), particulate matter (PM2.5 and PM10), and sulfur oxides (SOx) for Salt Lake County, Utah. We compare the resulting concentrations against stationary and mobile measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at an hourly, building and road link resolution as well as hourly gridded emissions with a 0.002o x 0.002o spatial resolution. Two methods for deriving criteria pollutant emission inventories were compared. One was constructed using methods similar to Hestia but downscales total emissions based on the 2011 National Emissions Inventory (NEI). The other used Emission Modeling Clearinghouse spatial and temporal surrogates to downscale the NEI data from annual and county-level resolution to hourly and 0.002o x 0.002o grid cells. The gridded emissions from both criteria pollutant methods were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The CALPUFF dispersion model was used to transport emissions and estimate air pollutant concentrations at an hourly 0.002o x 0.002o resolution. The resulting concentrations were spatially compared in the same manner

  8. Hydrology of Lake Butler, Orange County, Florida

    USGS Publications Warehouse

    Smoot, James L.; Schiffer, Donna M.

    1984-01-01

    Lake Butler is one of the lakes that collectively make up the Butler chain of lakes in the headwaters of the Kissimmee River, Florida. The bottom configuration of the lake is typical of relict karst features formed during lower stages in sea level. The top of the Floridan aquifer is 50 to 100 feet below the land surface. The drainage area of Lake Butler is approximately 14.5 sq mi and is comprised of sub-basins of other lakes in the vicinity. Surface outflow from Lake Butler is generally southward to Cypress Creek, a tributary of the Kissimmee River. The extremes in lake stage for the period 1933-81 are 94.67 ft on June 23, 1981 and 101.78 ft on September 13, 1960. The median lake stage for this period was 99.28 ft above sea level. The quality of water in Lake Butler is excellent, based on studies of physical, chemical, and biological conditions by the Orange County Pollution Control Department. The lake water is slightly acidic and soft (48 mg/L hardness as calcium carbonate). Pesticides in water were below detection levels at two sites sampled in the lake, but were detected in the bottom sediments. (USGS)

  9. Modeling and measurement of microwave emission and backscattering from bare soil surfaces

    NASA Technical Reports Server (NTRS)

    Saatchi, S.; Wegmuller, U.

    1992-01-01

    A multifrequency ground-based radiometer-scatterometer system working at frequencies between 3.0 GHz and 11.0 GHz has been used to study the effect of soil moisture and roughness on microwave emission and backscattering. The freezing and thawing effect of the soil surface and the changes of the surface roughness due to rain and erosion are reported. To analyze the combined active and passive data, a scattering model based on physical optics approximation for the low frequency and geometrical optics approximation for high frequency has been developed. The model is used to calculate the bistatic scattering coefficients from the surface. By considering the conservation of energy, the result has been integrated over a hemisphere above the surface to calculate the emissivity. The backscattering and emission model has been coupled with the observed data in order to extract soil moisture and surface roughness.

  10. Surface-emitting stimulated emission in high-quality ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhang, X. Q.; Suemune, Ikuo; Kumano, H.; Wang, J.; Huang, S. H.

    2004-10-01

    High-quality ZnO thin films were grown by plasma-enhanced molecular-beam epitaxy on sapphire substrates. Three excitonic transitions associated with the valence bands A, B, and C were clearly revealed in the reflectance spectrum measured at 33K. This result indicates that the ZnO thin films have the wurtzite crystalline structure. The emission spectra were measured with backscattering geometry at room temperature. When the excitation exceeded a certain value, linewidth narrowing, nonlinear rise of emission intensity, and the shortening of the carrier lifetime were clearly observed and these demonstrate the onset of stimulated emission. Together with the ZnO thickness dependence, we conclude that the observation of a stimulated emission in a direction perpendicular to the film surface is predominantly due to scattering of the in-plane stimulated emission by slightly remaining surface undulations in the ZnO films.

  11. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  12. Quantifying Uncertainties in Land-Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2013-01-01

    Uncertainties in the retrievals of microwaveland-surface emissivities are quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including the Special Sensor Microwave Imager, the Tropical Rainfall Measuring Mission Microwave Imager, and the Advanced Microwave Scanning Radiometer for Earth Observing System, are studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land-surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors inthe retrievals. Generally, these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 1%-4% (3-12 K) over desert and 1%-7% (3-20 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.5%-2% (2-6 K). In particular, at 85.5/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are most likely caused by rain/cloud contamination, which can lead to random errors up to 10-17 K under the most severe conditions.

  13. Hazardous thunderstorm intensification over Lake Victoria

    PubMed Central

    Thiery, Wim; Davin, Edouard L.; Seneviratne, Sonia I.; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole P. M.

    2016-01-01

    Weather extremes have harmful impacts on communities around Lake Victoria, where thousands of fishermen die every year because of intense night-time thunderstorms. Yet how these thunderstorms will evolve in a future warmer climate is still unknown. Here we show that Lake Victoria is projected to be a hotspot of future extreme precipitation intensification by using new satellite-based observations, a high-resolution climate projection for the African Great Lakes and coarser-scale ensemble projections. Land precipitation on the previous day exerts a control on night-time occurrence of extremes on the lake by enhancing atmospheric convergence (74%) and moisture availability (26%). The future increase in extremes over Lake Victoria is about twice as large relative to surrounding land under a high-emission scenario, as only over-lake moisture advection is high enough to sustain Clausius–Clapeyron scaling. Our results highlight a major hazard associated with climate change over East Africa and underline the need for high-resolution projections to assess local climate change. PMID:27658848

  14. Satellite Validation: A Project to Create a Data-Logging System to Monitor Lake Tahoe

    NASA Technical Reports Server (NTRS)

    Roy, Rudy A.

    2005-01-01

    Flying aboard the satellite Terra, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument used to acquire detailed maps of Earth's surface temperature, elevation, emissivity, and reflectance. An automated site consisting of four buoys was established 6 years ago at Lake Tahoe for the validation of ASTERS thermal infrared data. Using Campbell CR23X Dataloggers, a replacement system to be deployed on a buoy was designed and constructed for the measurement of the lake's temperature profile, surrounding air temperature, humidity, wind direction and speed, net radiation, and surface skin temperature. Each Campbell Datalogger has been programmed to control, power, and monitor 14 different temperature sensors, a JPL-built radiometer, and an RM Young 32500 meteorological station. The logger communicates with the radiometer and meteorological station through a Campbell SDM-SIO4 RS232 serial interface, sending polling commands, and receiving filtered data back from the sensors. This data is then cataloged and sent back across a cellular modem network every hour to JPL. Each instrument is wired via a panel constructed with 18 individual plugs that allow for simple installation and expansion. Data sent back from the system are analyzed at JPL, where they are used to calibrate ASTER data.

  15. Lake Enriquillo, Dominican Republic

    NASA Image and Video Library

    2017-08-15

    Lake Enriquillo is a hypersaline lake in the Dominican Republic. In 2004, the lake covered an area of 164 square kilometers; by 2011, it had doubled in size and grown to 350 km2, inundating farmland and homes. Various reasons for the flooding include increases in rainfall; increase of sediments going into the lake, raising the lakebed; and milder temperatures, reducing surface evaporation. The lake is home to the largest population of American crocodiles in the Caribbean. The images were acquired October 26, 2003 and June 10, 2017, cover an area of 22.7 by 45.4 km, and are located at 18.5 degrees north, 71.6 degrees west. An image of Lake Enriquillo taken in 2003 is available at https://photojournal.jpl.nasa.gov/catalog/PIA21815

  16. Estimation of Sediment Sources Using Selected Chemical Tracers in the Perry Lake and Lake Wabaunsee Basins, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    2007-01-01

    In Kansas and nationally, stream and lake sediment is a primary concern as related to several important issues including water quality and reservoir water-storage capacity. The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. To investigate sources of sediment within the Perry Lake and Lake Wabaunsee Basins of northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, analyzed, and compared. Subbasins sampled within the Perry Lake Basin included Atchison County Lake, Banner Creek Reservoir, Gregg Creek, Mission Lake, and Walnut Creek. The samples were sieved to isolate the less than 63-micron fraction (that is, the silt and clay) and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). To determine which of the 30 constituents provided the best ability to discriminate between channel-bank and surface-soil sources in the two basins, four selection criteria were used. To be selected, it was required that the candidate constituent (1) was detectable, (2) had concentrations or activities that varied substantially and consistently between the sources, (3) had concentration or activity ranges that did not overlap between the sources, and (4) had concentration or activity differences between the sources that were statistically significant. On the basis of the four selection criteria, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected. Of the four selected constituents, 137Cs likely is the most reliable indicator of sediment source because it is known to be conservative in the environment. Trace elements were not selected because concentrations in the channel-bank and surface-soil sources generally were

  17. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis.

    PubMed

    Zhang, Yunlin; Yin, Yan; Feng, Longqing; Zhu, Guangwei; Shi, Zhiqiang; Liu, Xiaohan; Zhang, Yuanzhi

    2011-10-15

    Chromophoric dissolved organic matter (CDOM) is an important optically active substance that transports nutrients, heavy metals, and other pollutants from terrestrial to aquatic systems and is used as a measure of water quality. To investigate how the source and composition of CDOM changes in both space and time, we used chemical, spectroscopic, and fluorescence analyses to characterize CDOM in Lake Tianmuhu (a drinking water source) and its catchment in China. Parallel factor analysis (PARAFAC) identified three individual fluorophore moieties that were attributed to humic-like and protein-like materials in 224 water samples collected between December 2008 and September 2009. The upstream rivers contained significantly higher concentrations of CDOM than did the lake water (a(350) of 4.27±2.51 and 2.32±0.59 m(-1), respectively), indicating that the rivers carried a substantial load of organic matter to the lake. Of the three main rivers that flow into Lake Tianmuhu, the Pingqiao River brought in the most CDOM from the catchment to the lake. CDOM absorption and the microbial and terrestrial humic-like components, but not the protein-like component, were significantly higher in the wet season than in other seasons, indicating that the frequency of rainfall and runoff could significantly impact the quantity and quality of CDOM collected from the catchment. The different relationships between the maximum fluorescence intensities of the three PARAFAC components, CDOM absorption, and chemical oxygen demand (COD) concentration in riverine and lake water indicated the difference in the composition of CDOM between Lake Tianmuhu and the rivers that feed it. This study demonstrates the utility of combining excitation-emission matrix fluorescence and PARAFAC to study CDOM dynamics in inland waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Polarimetric thermal emission from periodic water surfaces

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.

    1993-01-01

    Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.

  19. Ecological controls on N2O emission in surface litter and near-surface soil of a managed grassland: modelling and measurements

    NASA Astrophysics Data System (ADS)

    Grant, Robert F.; Neftel, Albrecht; Calanca, Pierluigi

    2016-06-01

    Large variability in N2O emissions from managed grasslands may occur because most emissions originate in surface litter or near-surface soil where variability in soil water content (θ) and temperature (Ts) is greatest. To determine whether temporal variability in θ and Ts of surface litter and near-surface soil could explain this in N2O emissions, a simulation experiment was conducted with ecosys, a comprehensive mathematical model of terrestrial ecosystems in which processes governing N2O emissions were represented at high temporal and spatial resolution. Model performance was verified by comparing N2O emissions, CO2 and energy exchange, and θ and Ts modelled by ecosys with those measured by automated chambers, eddy covariance (EC) and soil sensors on an hourly timescale during several emission events from 2004 to 2009 in an intensively managed pasture at Oensingen, Switzerland. Both modelled and measured events were induced by precipitation following harvesting and subsequent fertilizing or manuring. These events were brief (2-5 days) with maximum N2O effluxes that varied from < 1 mgNm-2h-1 in early spring and autumn to > 3 mgNm-2h-1 in summer. Only very small emissions were modelled or measured outside these events. In the model, emissions were generated almost entirely in surface litter or near-surface (0-2 cm) soil, at rates driven by N availability with fertilization vs. N uptake with grassland regrowth and by O2 supply controlled by litter and soil wetting relative to O2 demand from microbial respiration. In the model, NOx availability relative to O2 limitation governed both the reduction of more oxidized electron acceptors to N2O and the reduction of N2O to N2, so that the magnitude of N2O

  20. A comparative Study of Circulation Patterns at Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  1. Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Conley, A. J.; Westervelt, D. M.; Lamarque, J.-F.; Fiore, A. M.; Shindell, D.; Correa, G.; Faluvegi, G.; Horowitz, L. W.

    2018-03-01

    Three Earth System models are used to derive surface temperature responses to removal of U.S. anthropogenic SO2 emissions. Using multicentury perturbation runs with and without U.S. anthropogenic SO2 emissions, the local and remote surface temperature changes are estimated. In spite of a temperature drift in the control and large internal variability, 200 year simulations yield statistically significant regional surface temperature responses to the removal of U.S. SO2 emissions. Both local and remote surface temperature changes occur in all models, and the patterns of changes are similar between models for northern hemisphere land regions. We find a global average temperature sensitivity to U.S. SO2 emissions of 0.0055 K per Tg(SO2) per year with a range of (0.0036, 0.0078). We examine global and regional responses in SO4 burdens, aerosol optical depths (AODs), and effective radiative forcing (ERF). While changes in AOD and ERF are concentrated near the source region (United States), the temperature response is spread over the northern hemisphere with amplification of the temperature increase toward the Arctic. In all models, we find a significant response of dust concentrations, which affects the AOD but has no obvious effect on surface temperature. Temperature sensitivity to the ERF of U.S. SO2 emissions is found to differ from the models' sensitivity to radiative forcing of doubled CO2.

  2. “Feathered” fractal surfaces to minimize secondary electron emission for a wide range of incident angles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Charles; Kaganovich, Igor D.

    Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a “feathered” surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow anglesmore » of incidence more effectively than velvet. Here, we find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.« less

  3. “Feathered” fractal surfaces to minimize secondary electron emission for a wide range of incident angles

    DOE PAGES

    Swanson, Charles; Kaganovich, Igor D.

    2017-07-24

    Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a “feathered” surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow anglesmore » of incidence more effectively than velvet. Here, we find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.« less

  4. Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron

    2004-01-01

    We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.

  5. Temperature dependence of low-energy positron-induced Auger-electron emission: Evidence for high surface sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, R.; Schwab, A.; Weiss, A.

    1990-08-01

    We report the experimental observation of the temperature dependence of the intensity of low-energy positron-annihilation-induced Auger-electron emission spectroscopy (PAES) from Cu(100). These studies show that the mechanism for stimulating Auger electrons is found to compete with positronium (Ps) emission from a surface. The positrons that induce Auger-electron emission therefore originate from the same surface state from which Ps is thermally desorbed. Hence, PAES should have higher surface sensitivity ({approximately}1 A) relative to conventional methods for generating Auger-electron emission from surfaces ({approximately}5--10 A).

  6. Radio emission of sea surface at centimeter wavelengths and is fluctuations

    NASA Technical Reports Server (NTRS)

    Tseytlin, N. M.; Shutko, A. M.; Zhislin, G. M.

    1981-01-01

    The eigen thermal radio emission of the sea was examined as well as the agitated surface of the sea when the reflection (scattering) is similar in nature to diffused scattering. The contribution of this emission to the total emission of the sea is practically constant in time, and the time fluctuations of the radio emissions of the sea are basically determined only by a change in the eigen emission of the sea, connected with the agitation.

  7. Use of MODIS Terra Imagery to Estimate Surface Water Quality Standards, Using Lake Thonotosassa, Florida, as a Case Study

    NASA Technical Reports Server (NTRS)

    Moreno, Max J.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Rickman, Douglas L.

    2010-01-01

    Lake Thonotosassa is a highly eutrophied lake located in an area with rapidly growing population in the Tampa Bay watershed, Florida. The Florida Administrative Code has designated its use for "recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife." Although this lake has been the subject of efforts to improve water quality since 1970, overall water quality has remained below the acceptable state standards, and has a high concentration of nutrients. This condition is of great concern to public health since it has favored episodic blooms of Cyanobacteria. Some Cyanobacterial species release toxins that can reach humans through drinking water, fish consumption, and direct contact with contaminated water. The lake has been historically popular for fishing and water sports, and its overflow water drains into the Hillsborough River, the main supply of municipal water for the City of Tampa, this explains why it has being constantly monitored in situ for water quality by the Environmental Protection Commission of Hillsborough County (EPC). Advances in remote sensing technology, however, open the possibility of facilitating similar types of monitoring in this and similar lakes, further contributing to the implementation of surveillance systems that would benefit not just public health, but also tourism and ecosystems. Although traditional application of this technology to water quality has been focused on much larger coastal water bodies like bays and estuaries, this study evaluates the feasibility of its application on a 46.6 km2 freshwater lake. Using surface reflectance products from Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra, this study evaluates associations between remotely sensed data and in situ data from the EPC. The parameters analyzed are the surface water quality standards used by the State of Florida and general indicators of trophic status.

  8. Improvements in lake water budget computations using Landsat data

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Shih, S. F.

    1979-01-01

    A supervised multispectral classification was performed on Landsat data for Lake Okeechobee's extensive littoral zone to provide two types of information. First, the acreage of a given plant species as measured by satellite was combined with a more accurate transpiration rate to give a better estimate of evapotranspiration from the littoral zone. Second, the surface area coupled by plant communities was used to develop a better estimate of the water surface as a function of lake stage. Based on this information, more detailed representations of evapotranspiration and total water surface (and hence total lake volume) were provided to the water balance budget model for lake volume predictions. The model results based on information derived from satellite demonstrated a 94 percent reduction in cumulative lake stage error and a 70 percent reduction in the maximum deviation of the lake stage.

  9. Large Salt Dust Storms Follow a 30-Year Rainfall Cycle in the Mar Chiquita Lake (Córdoba, Argentina)

    PubMed Central

    Stein, Ariel F.

    2016-01-01

    Starting in 2006, a new source of intense salt dust storms developed in Mar Chiquita (Córdoba, Argentina), the largest saline lake in South America. Storms originate from vast mudflats left by a 30-year expansion-retreat cycle of the lake due to changes in the regional rainfall regime. The annual frequency of salt dust storms correlated with the size of the salt mudflats. Events were restricted to the coldest months, and reached up to 800 km from the source. Occurrence of dust storms was associated with specific surface colors and textures easily identifiable in satellite images. High-emission surfaces were characterized by the presence of sodium sulfate hydrous/anhydrous crystals (mirabilite and thenardite), and a superficial and variable water table, which may result in the periodic development of a characteristic “fluffy” surface derived from salt precipitation-dissolution processes. HYSPLIT model simulation estimates a deposition maximum near the sources (of about 2.5 kg/ha/yr), and a decreasing trend from the emission area outwards, except for the relative secondary maximum modeled over the mountain ranges in southern Bolivia and northern Argentina due to an orographic effect. The 2009 total deposition of salt dust generated in Mar Chiquita was estimated at 6.5 million tons. PMID:27258088

  10. Large Salt Dust Storms Follow a 30-Year Rainfall Cycle in the Mar Chiquita Lake (Córdoba, Argentina).

    PubMed

    Bucher, Enrique H; Stein, Ariel F

    2016-01-01

    Starting in 2006, a new source of intense salt dust storms developed in Mar Chiquita (Córdoba, Argentina), the largest saline lake in South America. Storms originate from vast mudflats left by a 30-year expansion-retreat cycle of the lake due to changes in the regional rainfall regime. The annual frequency of salt dust storms correlated with the size of the salt mudflats. Events were restricted to the coldest months, and reached up to 800 km from the source. Occurrence of dust storms was associated with specific surface colors and textures easily identifiable in satellite images. High-emission surfaces were characterized by the presence of sodium sulfate hydrous/anhydrous crystals (mirabilite and thenardite), and a superficial and variable water table, which may result in the periodic development of a characteristic "fluffy" surface derived from salt precipitation-dissolution processes. HYSPLIT model simulation estimates a deposition maximum near the sources (of about 2.5 kg/ha/yr), and a decreasing trend from the emission area outwards, except for the relative secondary maximum modeled over the mountain ranges in southern Bolivia and northern Argentina due to an orographic effect. The 2009 total deposition of salt dust generated in Mar Chiquita was estimated at 6.5 million tons.

  11. Radio-echo sounding of 'active' Antarctic subglacial lakes

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Blankenship, D. D.; Young, D. A.; Greenbaum, J. S.; Richter, T.; Rippin, D. M.; Le Brocq, A. M.; Wright, A.; Bingham, R.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Smith, B. E.; Payne, A. J.; Dowdeswell, J. A.; Bamber, J. L.

    2013-12-01

    Repeat-pass satellite altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering) and inputs (surface uplift). Few of these active lakes have been confirmed by radio-echo sounding (RES) despite several attempts, however. Over the last 5 years, major geophysical campaigns have acquired RES data from several 'active' lake sites, including the US-UK-Australian ICECAP programme in East Antactica and the UK survey of the Institute Ice Stream in West Antarctica. In the latter case, a targeted RES survey of one 'active' lake was undertaken. RES evidence of the subglacial bed beneath 'active' lakes in both East and West Antarctica will be presented, and the evidence for pooled subglacial water from these data will be assessed. Based on this assessment, the nature of 'active' subglacial lakes, and their associated hydrology and relationship with surrounding topography will be discussed, as will the likelihood of further 'active' lakes in Antarctica. Hydraulic potential map of the Byrd Glacier catchment with contours at 5 MPa intervals. Predicted subglacial flowpaths are shown in blue. Subglacial lakes known from previous geophysical surveys are shown as black triangles while the newly discovered 'Three-tier lakes' are shown in dashed black outline. Surface height change features within the Byrd subglacial catchment are shown in outline and are shaded to indicate whether they were rising or falling during the ICESat campaign. Those features are labelled in-line with the numbering system of Smith et al. (J. Glac. 2009).

  12. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity

  13. Critical loads of acidity for 90,000 lakes in northern Saskatchewan: A novel approach for mapping regional sensitivity to acidic deposition

    NASA Astrophysics Data System (ADS)

    Cathcart, H.; Aherne, J.; Jeffries, D. S.; Scott, K. A.

    2016-12-01

    Atmospheric emissions of sulphur dioxide (SO2) from large point sources are the primary concern for acidic deposition in western Canada, particularly in the Athabasca Oil Sands Region (AOSR) where prevailing winds may potentially carry SO2 over acid-sensitive lakes in northern Saskatchewan. A novel catchment-scale regression kriging approach was used to assess regional sensitivity and critical loads of acidity for the total lake population of northern Saskatchewan (89,947 lakes). Lake catchments were delineated using Thiessen polygons, and surface water chemistry was predicted for sensitivity indicators (calcium, pH, alkalinity, and acid neutralizing capacity). Critical loads were calculated with the steady state water chemistry model using regression-kriged base cations, sulphate, and dissolved organic carbon concentrations modelled from surface water observations (n > 800) and digital landscape-scale characteristics, e.g., climate, soil, vegetation, landcover, and geology maps. A large region (>13,726 km2) of two or more indicators of acid sensitivity (pH < 6 and acid neutralizing capacity, alkalinity, calcium < 50 μeq L-1) and low critical loads < 5 meq m-2 yr-1 were predicted on the Athabasca Basin. Exceedance of critical loads under 2006 modelled total sulphate deposition was predicted for 12% of the lakes (covering an area of 3742 km2), primarily located on the Athabasca Basin, within 100 km of the AOSR. There have been conflicting scientific reports of impacts from atmospheric emissions from the AOSR; the results of this study suggest that catchments in the Athabasca Basin within 100 km of the AOSR have received acidic deposition in excess of their critical loads and many of them may be at risk of ecosystem damage owing to their sensitivity.

  14. Seasonal Variation in Abundance and Diversity of Bacterial Methanotrophs in Five Temperate Lakes

    PubMed Central

    Samad, Md Sainur; Bertilsson, Stefan

    2017-01-01

    Lakes are significant sources of methane (CH4) to the atmosphere. Within these systems, methanotrophs consume CH4 and act as a potential biofilter mitigating the emission of this potent greenhouse gas. However, it is still not well understood how spatial and temporal variation in environmental parameters influence the abundance, diversity, and community structure of methanotrophs in lakes. To address this gap in knowledge, we collected water samples from three depths (surface, middle, and bottom) representing oxic to suboxic or anoxic zones of five different Swedish lakes in winter (ice-covered) and summer. Methanotroph abundance was determined by quantitative real time polymerase chain reaction and a comparison to environmental variables showed that temperature, season as well as depth, phosphate concentration, dissolved oxygen, and CH4 explained the observed variation in methanotroph abundance. Due to minimal differences in methane concentrations (0.19 and 0.29 μM for summer and winter, respectively), only a weak and even negative correlation was observed between CH4 and methanotrophs, which was possibly due to usage of CH4. Methanotrophs were present at concentrations ranging from 105 to 106 copies/l throughout the oxic (surface) and suboxic/anoxic (bottom) water mass of the lakes, but always contributed less than 1.3% to the total microbial community. Relative methanotroph abundance was significantly higher in winter than in summer and consistently increased with depth in the lakes. Phylogenetic analysis of pmoA genes in two clone libraries from two of the ice-covered lakes (Ekoln and Ramsen) separated the methanotrophs into five distinct clusters of Methylobacter sp. (Type I). Terminal restriction fragment length polymorphism analysis of the pmoA gene further revealed significant differences in methanotrophic communities between lakes as well as between winter and summer while there were no significant differences between water layers. The study provides new

  15. Hydrologic and suspended-sediment data for Reelfoot Lake, Obion and Lake Counties, northwestern Tennessee, May 1985-September 1986

    USGS Publications Warehouse

    Garrett, J.W.

    1988-01-01

    Hydrologic data for Reelfoot Lake in Obion and Lake Counties, Tennessee, were collected at 4 surface water inflow stations, 1 outflow station, 2 rainfall stations, 2 lake elevation stations, and 29 wells for the period May 1, 1985 through September 30, 1986. Additionally, suspended-sediment data were collected at three stations on two of the major tributaries to the lake. (USGS)

  16. Ecological Controls on N2O Emission in Surface Litter and Near-surface Soil of a Managed Grassland: Modelling and Measurements

    NASA Astrophysics Data System (ADS)

    Grant, Robert; Neftel, Albrecht; Calanca, Pierluigi

    2016-04-01

    Large variability in N2O emissions from managed grasslands may occur because most emissions originate in surface litter or near-surface soil where variability in soil water content (q) and temperature (Ts) is greatest. To determine whether temporal variability in q and Ts of surface litter and near-surface soil could explain that in N2O emissions, a simulation experiment was conducted with ecosys, a comprehensive mathematical model of terrestrial ecosystems in which processes governing N2O emissions were represented at high temporal and spatial resolution. Model performance was verified by comparing N2O emissions, CO2 and energy exchange, and q and Ts modelled by ecosys with those measured by automated chambers, eddy covariance (EC) and soil sensors at an hourly time-scale during several emission events from 2004 to 2009 in an intensively managed pasture at Oensingen, Switzerland. Both modelled and measured events were induced by precipitation following harvesting and subsequent fertilizing or manuring. These events were brief (2 - 5 days) with maximum N2O effluxes that varied from < 1 mg N m-2 h-1 in early spring and autumn to > 3 mg N m-2 h-1 in summer. Only very small emissions were modelled or measured outside these events. In the model, emissions were generated almost entirely in surface litter or near-surface (0 - 2 cm) soil, at rates driven by N availability with fertilization vs. N uptake with grassland regrowth, and by O2 limitation from wetting relative to O2 demand from respiration. In the model, NOx availability relative to O2 limitation governed both the reduction of more oxidized electron acceptors to N2O and the reduction of N2O to N2, so that the magnitude of N2O emissions was not simply related to surface and near-surface q and Ts. Modelled N2O emissions were found to be sensitive to defoliation intensity and timing (relative to that of fertilization) which controlled plant N uptake and soil q and Ts prior to and during emission events. In a model

  17. Textured carbon on copper: A novel surface with extremely low secondary electron emission characteristics

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1985-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for a range of primary electron beam energies and beam impingement angles are presented for a series of novel textured carbon surfaces on copper substrates. (All copper surfaces used in this study were oxygen-free, high-conductivity grade). The purpose of this investigation is to provide information necessary to develop high-efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes (TWT's) for communications and aircraft applications. To attain the highest TWT signal quality and overall efficiency, the MDC electrode surface must have low secondary electron emission characteristics. While copper is the material most commonly used for MDC electrodes, it exhibits relatively high levels of secondary electron emission unless its surface is treated for emission control. The textured carbon surface on copper substrate described in this report is a particularly promising candidate for the MDC electrode application. Samples of textured carbon surfaces on copper substrates typical of three different levels of treatment are prepared and tested for this study. The materials are tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the textured surfaces are compared with each other and with those of untreated copper. All the textured carbon surfaces on copper substrate tested exhibited sharply lower secondary electron emission characteristics than those of an untreated copper surface.

  18. Examining seasonal variations in microbial community composition and metabolism in Lake Tahoe, Sierra Nevada, California to gain insight into the role of spring freshet and lake mixing on lake microbial ecology and biogeochemistry

    NASA Astrophysics Data System (ADS)

    Aluwihare, L.

    2016-12-01

    The 2016 "State of the Lake Report" for Lake Tahoe notes that surface waters of have warmed 15 times faster in the last four years as compared to the long trend. Lake mixing depth has decreased with only 4 instances of full-lake mixing ( 450 m) recorded since 2000, none since 2011, and the shallowest depth of mixing on record, 80 m, was observed in 2015. Snowpack in the region shows a long-term decline, and April snowpack in 2015 was the lowest recorded in nearly 100 years. Lake biomass peaks shortly after mixing occurs, which demonstrates the dependence of lake primary production on this process. Lake mixing also oxygenates deep waters of the lake. Mixing, organic matter production, and vertical gradients in nutrient and oxygen concentrations profoundly impact the depth distribution of microbial communities and metabolisms. Spring melt also brings nutrients into the lake including organic matter; and in other high elevation lake systems it has been shown that streamflow seeds the lake's microbiome. Here we present data from an year long observation of monthly changes in microbial (including phytoplankton) community composition to examine how the seasonally segregated processes of runoff, lake mixing, and surface primary production affect Lake Tahoe's microbial ecology. Members of certain phylogenetic groups showed trends that we are currently exploring in the context of their metabolic capabilities. For example, Chlorobi and Chloroflexi primarily appear in surface waters during deep mixing, consistent with some of them being sensitive to oxygen. Similarly, common but poorly characterized clades of Actinobacteria exhibited negative responses to discharge, while certain clades of Betaproteobacteria exhibited a positive response during and following discharge events at LT. Actinobacteria have been found to be abundant in numerous lake systems suggesting that their metabolic capabilities maybe particularly telling of the dominant species sorting mechanisms at play in

  19. Behavior of the polycyclic musks HHCB and AHTN in lakes, two potential anthropogenic markers for domestic wastewater in surface waters.

    PubMed

    Buerge, Ignaz J; Buser, Hans-Rudolf; Müller, Markus D; Poiger, Thomas

    2003-12-15

    The synthetic polycyclic musks HHCB and AHTN are potential chemical markers for domestic wastewater contamination of surface waters. Understanding their environmental behavior is important to evaluate their suitability as markers. This study focuses on the quantification of the processes that lead to an elimination in lakes. Rate constants for all relevant processes were estimated based on laboratory studies and models previously described. In lake Zurich, during winter time, both compounds are eliminated primarily by outflowing water and due to losses to the atmosphere. In summer, direct photolysis represents the predominant elimination process for AHTN in the epilimnion of lake Zurich (quantum yield, 0.12), whereas for HHCB, photochemical degradation is still negligible. HHCB and AHTN were then measured in effluents of Swiss wastewater treatment plants (WWTPs), in remote and anthropogenically influenced Swiss surface waters, and in Mediterranean seawater using an analytical procedure based on SPE and GC-MS-SIM with D6-HHCB as internal standard (LODs for natural waters, 2 and 1 ng/L, respectively). In winter, concentrations of HHCB and AHTN in lakes (<2-47 and <1-18 ng/L, respectively) correlated with the anthropogenic burden by domestic wastewater (ratio population per water throughflow), demonstrating the suitability of these compounds as quantitative, source-specific markers. In summer, however, no such correlations were observed. Vertical concentration profiles in lake Zurich indicated significant losses in the epilimnion during summer, mainly for AHTN, and could be rationalized with a lake modeling program (MASASlight), considering measured, average loads from WWTP effluents (0.80 +/- 0.22 and 0.32 +/- 0.11 mg person(-1) d(-1) for HHCB and AHTN, respectively) and the estimated rate constants for elimination processes.

  20. Fire near South Lake Tahoe, California

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A destructive forest fire that broke out June 24, 2007 near South Lake Tahoe, Calif., continued to burn June 27 when this image was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer instrument on NASA's Terra satellite. As of June 28, the fire had destroyed about 230 residences and other buildings. In all, about 2,000 people were evacuated, according to South Lake Tahoe Police. The blaze has charred more than 3,100 acres -- about 4.8 square miles -- and was 60 percent contained on June 28. In this ASTER image, the burned area is in gray, a combination of burned forest and some smoke, between Fallen Leaf Lake and the Tahoe Airport.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 15 by 15 kilometers (9.3 by 9.3 miles

  1. Thermal regimes of Rocky Mountain lakes warm with climate change

    PubMed Central

    Roberts, James J.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans. PMID:28683083

  2. Thermal regimes of Rocky Mountain lakes warm with climate change.

    PubMed

    Roberts, James J; Fausch, Kurt D; Schmidt, Travis S; Walters, David M

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  3. Thermal regimes of Rocky Mountain lakes warm with climate change

    USGS Publications Warehouse

    Roberts, James J.; Fausch, Kurt D.; Schmidt, Travis S.; Walters, David M.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  4. The Lakes and Seas of Titan

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.

    2016-06-01

    Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.

  5. Surface Nitrification: A Major Uncertainty in Marine N2O Emissions

    NASA Technical Reports Server (NTRS)

    Zamora, Lauren M.; Oschlies, Andreas

    2014-01-01

    The ocean is responsible for up to a third of total global nitrous oxide (N2O) emissions, but uncertainties in emission rates of this potent greenhouse gas are high (approaching 100%). Here we use a marine biogeochemical model to assess six major uncertainties in estimates of N2O production, thereby providing guidance in how future studies may most effectively reduce uncertainties in current and future marine N2O emissions. Potential surface N2O production from nitrification causes the largest uncertainty in N2O emissions (estimated up to approximately 1.6 Tg N/yr (sup -1) or 48% of modeled values), followed by the unknown oxygen concentration at which N2O production switches to N2O consumption (0.8 Tg N/yr (sup -1)or 24% of modeled values). Other uncertainties are minor, cumulatively changing regional emissions by less than 15%. If production of N2O by surface nitrification could be ruled out in future studies, uncertainties in marine N2O emissions would be halved.

  6. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (< 30 m in places) to allow observable viscoelastic responses to relatively small loads, and it is close to a center of logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  7. Characterizing seasonal and diel vertical movement and habitat use of lake whitefish (Coregonus clupeaformis) in Clear Lake, Maine

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Gorsky, Dimitry; Balsey, David

    2016-01-01

    Seasonal and daily vertical activity of lake whitefish Coregonus clupeaformis was studied in Clear Lake, Maine (253 ha), using acoustic telemetry from November 2004 to June 2009. Twenty adult lake whitefish were tagged with acoustic tags that had either a depth sensor or both depth and temperature sensors to assess vertical habitat use at a seasonal and daily resolution. Vertical habitat selection varied seasonally and was strongly influenced by temperature. Between December and April, when the lake was covered with ice, surface temperature was below 2°C and tagged individuals occupied deep areas of the lake (∼15 m). After ice-out, fish ascended into shallow waters (∼5 m), responding to increased water temperature and possibly to greater foraging opportunity. When surface water temperatures exceeded 20°C, fish descended below the developing thermocline (∼9 m), where they remained until surface temperatures fell below 20°C; fish then ascended into shallower depths, presumably for feeding and spawning. Through the winter, fish remained in thermal habitats that were warmer than the surface temperatures; in the summer, they selected depths with thermal habitats below 15°C. Though the amplitude varied greatly across seasons, lake whitefish displayed a strong diurnal pattern of activity as measured by vertical velocities. Fish were twofold more active during spring, summer, and fall than during winter. Lake whitefish exhibited diel vertical migrations, rising in the water column during nighttime and occupying deeper waters during the day. This pattern was more pronounced in the spring and fall and far less prominent during winter and summer. The strong linkage between temperature and habitat use may limit the current range of lake whitefish and may be directly impacted by climatic change.

  8. Impacts of Nitrate Input on Nitrous Oxide Production in Lake Sediments

    NASA Astrophysics Data System (ADS)

    Ruder, C. K.; Schade, J. D.

    2016-12-01

    in the sediment to actual surface emissions, and microbial community comparisons between study sites are necessary to adequately model the impact of agricultural land use on emissions of N2O from lakes.

  9. Red Hot: Determining the Physical Properties of Lava Lake Skin

    NASA Astrophysics Data System (ADS)

    Ford, C.; Lev, E.

    2015-12-01

    Lava lakes are the surface expression of conduits that bring magma to the mouth of a volcano from deep within the earth. Time-lapse footage from a thermal imaging camera at Halema'uma'u lake at Kilauea volcano, Hawaii was used to investigate the cooling rate of the lava lake's surface. The data was then combined with an analytical model of lava flow cooling to constrain the porosity of the lava lake skin. The data was processed to account for the influence that the camera's position relative to the lake had on the image geometry and the recorded temperature values. We examined lake cooling in two separate scenarios: First, we calculated the cooling rate of the skin immediately after large gas bubbles burst at the lake's surface. Second, the temperature of the skin was measured as a function of distance from molten spreading centers (cracks) on the surface, and then converted to cooling as a function of the skin's age using the local lake surface velocity. The resulting cooling time-series were compared against cooling curves produced by a model that simulates lava flow cooling based on a myriad of physical factors. We performed quantitative data analysis to determine the approximate porosity of the lava lake skin. Preliminary comparisons reveal that the calculated cooling rates most closely correspond to the cooling curves that were produced with a lava porosity value of at least 80%.

  10. Time-Dependent Cryospheric Longwave Surface Emissivity Feedback in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Kuo, Chaincy; Feldman, Daniel R.; Huang, Xianglei; Flanner, Mark; Yang, Ping; Chen, Xiuhong

    2018-01-01

    Frozen and unfrozen surfaces exhibit different longwave surface emissivities with different spectral characteristics, and outgoing longwave radiation and cooling rates are reduced for unfrozen scenes relative to frozen ones. Here physically realistic modeling of spectrally resolved surface emissivity throughout the coupled model components of the Community Earth System Model (CESM) is advanced, and implications for model high-latitude biases and feedbacks are evaluated. It is shown that despite a surface emissivity feedback amplitude that is, at most, a few percent of the surface albedo feedback amplitude, the inclusion of realistic, harmonized longwave, spectrally resolved emissivity information in CESM1.2.2 reduces wintertime Arctic surface temperature biases from -7.2 ± 0.9 K to -1.1 ± 1.2 K, relative to observations. The bias reduction is most pronounced in the Arctic Ocean, a region for which Coupled Model Intercomparison Project version 5 (CMIP5) models exhibit the largest mean wintertime cold bias, suggesting that persistent polar temperature biases can be lessened by including this physically based process across model components. The ice emissivity feedback of CESM1.2.2 is evaluated under a warming scenario with a kernel-based approach, and it is found that emissivity radiative kernels exhibit water vapor and cloud cover dependence, thereby varying spatially and decreasing in magnitude over the course of the scenario from secular changes in atmospheric thermodynamics and cloud patterns. Accounting for the temporally varying radiative responses can yield diagnosed feedbacks that differ in sign from those obtained from conventional climatological feedback analysis methods.

  11. A Mathematical Model of Melt Lake Development on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Buzzard, S. C.; Feltham, D. L.; Flocco, D.

    2018-02-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. Melt lakes have been implicated in ice shelf collapse; Antarctica's Larsen B Ice Shelf was observed to have a large amount of surface melt lakes present preceding its collapse in 2002. Such collapse can affect ocean circulation and temperature, cause habitat loss and contribute to sea level rise through the acceleration of tributary glaciers. We present a mathematical model of a surface melt lake on an idealized ice shelf. The model incorporates a calculation of the ice shelf surface energy balance, heat transfer through the firn, the production and percolation of meltwater into the firn, the formation of ice lenses, and the development and refreezing of surface melt lakes. The model is applied to the Larsen C Ice Shelf, where melt lakes have been observed. This region has warmed several times the global average over the last century and the Larsen C firn layer could become saturated with meltwater by the end of the century. When forced with weather station data, our model produces surface melting, meltwater accumulation, and melt lake development consistent with observations. We examine the sensitivity of lake formation to uncertain parameters and provide evidence of the importance of processes such as lateral meltwater transport. We conclude that melt lakes impact surface melt and firn density and warrant inclusion in dynamic-thermodynamic models of ice shelf evolution within climate models, of which our model could form the basis for the thermodynamic component.

  12. The bacterial community composition of the surface microlayer in a high mountain lake.

    PubMed

    Hörtnagl, Paul; Pérez, Maria Teresa; Zeder, Michael; Sommaruga, Ruben

    2010-09-01

    The existence of bacterioneuston in aquatic ecosystems is well established, but little is known about its composition and dynamics, particularly in lakes. The bacterioneuston underlies extreme conditions at the air-water boundary, which may influence its dynamics in a different way compared with the bacterioplankton. In this study, we assessed quantitative changes in major bacterial groups of the surface microlayer (SML) (upper 900 microm) and the underlying water (ULW) (0.2-0.5 m depth) of an alpine lake during two consecutive ice-free seasons. Analysis of the bacterial community composition was done using catalyzed reporter deposition FISH with oligonucleotide probes. In addition, several physicochemical parameters were measured to characterize these two water layers. Dissolved organic carbon was consistently enriched in the SML and the dissolved organic matter pool presented clear signals of photodegradation and photobleaching. The water temperature was generally colder in the SML than in the subsurface. The bacterial community of the SML and the ULW was dominated by Betaproteobacteria and Actinobacteria. The bacterial community composition was associated with different combinations of physicochemical factors in these two layers, but temporal changes showed similar trends in both layers over the two seasons. Our results identify the SML of alpine lakes as a microhabitat where specific bacterial members such as of Betaproteobacteria seem to be efficient colonizers.

  13. "The Effect of Alternative Representations of Lake ...

    EPA Pesticide Factsheets

    Lakes can play a significant role in regional climate, modulating inland extremes in temperature and enhancing precipitation. Representing these effects becomes more important as regional climate modeling (RCM) efforts focus on simulating smaller scales. When using the Weather Research and Forecasting (WRF) model to downscale future global climate model (GCM) projections into RCM simulations, model users typically must rely on the GCM to represent temperatures at all water points. However, GCMs have insufficient resolution to adequately represent even large inland lakes, such as the Great Lakes. Some interpolation methods, such as setting lake surface temperatures (LSTs) equal to the nearest water point, can result in inland lake temperatures being set from sea surface temperatures (SSTs) that are hundreds of km away. In other cases, a single point is tasked with representing multiple large, heterogeneous lakes. Similar consequences can result from interpolating ice from GCMs to inland lake points, resulting in lakes as large as Lake Superior freezing completely in the space of a single timestep. The use of a computationally-efficient inland lake model can improve RCM simulations where the input data is too coarse to adequately represent inland lake temperatures and ice (Gula and Peltier 2012). This study examines three scenarios under which ice and LSTs can be set within the WRF model when applied as an RCM to produce 2-year simulations at 12 km gri

  14. Using a coupled groundwater/surfacewater model to predict climate-change impacts to lakes in the Trout Lake watershed, Northern Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hunt, Randall J.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John

    2009-01-01

    A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes. The Trout Lake watershed in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow is dominated by groundwater contributions; however, surface runoff occurs during intense rainfall periods and spring snowmelt. Surface runoff also occurs locally near stream/lake areas where the unsaturated zone is thin. A diverse data set, collected from 1992 to 2007 for the Trout Lake WEBB project and the co-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential evapotranspiration, lake levels, groundwater levels, and streamflow. The timeseries processing software TSPROC (Doherty 2003) was used to distill the large time series data set to a smaller set of observations and summary statistics that captured the salient hydrologic information. The timeseries processing reduced hundreds of thousands of observations to less than 5,000. Model calibration included specific predictions for several lakes in the study area using the PEST parameter estimation suite of software (Doherty 2007). The calibrated model was used to simulate the hydrologic response in the study lakes to a variety of climate change scenarios culled from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon et al. 2007). Results from the simulations indicate climate change could result in substantial changes to the lake levels and components of the hydrologic budget of a seepage lake in the flow system. For a drainage lake

  15. Unpolarized infrared emissivity with shadow from anisotropic rough sea surfaces with non-Gaussian statistics.

    PubMed

    Bourlier, Christophe

    2005-07-10

    The emissivity of two-dimensional anisotropic rough sea surfaces with non-Gaussian statistics is investigated. The emissivity derivation is of importance for retrieval of the sea-surface temperature or equivalent temperature of a rough sea surface by infrared thermal imaging. The well-known Cox-Munk slope probability-density function, considered non-Gaussian, is used for the emissivity derivation, in which the skewness and the kurtosis (related to the third- and fourth-order statistics, respectively) are included. The shadowing effect, which is significant for grazing angles, is also taken into account. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In addition, multiple reflections are ignored. Numerical results of the emissivity are presented for Gaussian and non-Gaussian statistics, for moderate wind speeds, for near-infrared wavelengths, for emission angles ranging from 0 degrees (nadir) to 90 degrees (horizon), and according to the wind direction. In addition, the emissivity is compared with both measurements and a Monte Carlo ray-tracing method.

  16. Effects of soil temperature, flooding, and organic matter addition on N2O emissions from a soil of Hongze Lake wetland, China.

    PubMed

    Lu, Yan; Xu, Hongwen

    2014-01-01

    The objectives of this study were to test the effects of soil temperature, flooding, and raw organic matter input on N2O emissions in a soil sampled at Hongze Lake wetland, Jiangsu Province, China. The treatments studied were-peat soil (I), peat soil under flooding (II), peat soil plus raw organic matter (III), and peat soil under flooding plus organic matter. These four treatments were incubated at 20°C and 35°C. The result showed that temperature increase could enhance N2O emissions rate and cumulative emissions significantly; moreover, the flooded soil with external organic matter inputs showed the lowest cumulative rise in N2O emissions due to temperature increment. Flooding might inhibit soil N2O emissions, and the inhibition was more pronounced after organic matter addition to the original soil. Conversely, organic matter input explained lower cumulative N2O emissions under flooding. Our results suggest that complex interactions between flooding and other environmental factors might appear in soil N2O emissions. Further studies are needed to understand potential synergies or antagonisms between environmental factors that control N2O emissions in wetland soils.

  17. Bioturbation enhances the aerobic respiration of lake sediments in warming lakes.

    PubMed

    Baranov, Viktor; Lewandowski, Jörg; Krause, Stefan

    2016-08-01

    While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m(2) was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming. © 2016 The Authors.

  18. Bioturbation enhances the aerobic respiration of lake sediments in warming lakes

    PubMed Central

    Krause, Stefan

    2016-01-01

    While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m2 was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming. PMID:27484649

  19. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake

    PubMed Central

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-01-01

    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr−1 (*P < 0.05), and of 0.036 °C yr−1 (***P < 0.001) during summer. PMID:27502177

  20. Quantitative Surface Emissivity and Temperature Measurements of a Burning Solid Fuel Accompanied by Soot Formation

    NASA Technical Reports Server (NTRS)

    Piltch, Nancy D.; Pettegrew, Richard D.; Ferkul, Paul; Sacksteder, K. (Technical Monitor)

    2001-01-01

    Surface radiometry is an established technique for noncontact temperature measurement of solids. We adapt this technique to the study of solid surface combustion where the solid fuel undergoes physical and chemical changes as pyrolysis proceeds, and additionally may produce soot. The physical and chemical changes alter the fuel surface emissivity, and soot contributes to the infrared signature in the same spectral band as the signal of interest. We have developed a measurement that isolates the fuel's surface emissions in the presence of soot, and determine the surface emissivity as a function of temperature. A commercially available infrared camera images the two-dimensional surface of ashless filter paper burning in concurrent flow. The camera is sensitive in the 2 to 5 gm band, but spectrally filtered to reduce the interference from hot gas phase combustion products. Results show a strong functional dependence of emissivity on temperature, attributed to the combined effects of thermal and oxidative processes. Using the measured emissivity, radiance measurements from several burning samples were corrected for the presence of soot and for changes in emissivity, to yield quantitative surface temperature measurements. Ultimately the results will be used to develop a full-field, non-contact temperature measurement that will be used in spacebased combustion investigations.

  1. Effects of emission reductions at the Hayden powerplant on precipitation, snowpack, and surface-water chemistry in the Mount Zirkel Wilderness Area, Colorado, 1995-2003

    USGS Publications Warehouse

    Mast, M. Alisa; Campbell, Donald H.; Ingersoll, George P.

    2005-01-01

    Precipitation, snowpack, and surface-water samples collected during 1995-2003 were analyzed to evaluate the effects of emission reductions at the Hayden powerplant on water chemistry in the Mount Zirkel Wilderness Area. The Hayden powerplant, one of two large coal-fired powerplants in the Yampa Valley, was retrofitted with control systems during late 1998 and 1999 to reduce emissions of sulfur dioxide and nitrogen oxide--the primary precursors of haze and acidic precipitation. The U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, evaluated three water-chemistry data sets: wet-only precipitation chemistry from the National Atmospheric Deposition Program, snowpack chemistry from the Rocky Mountain snowpack network, and surface-water chemistry from a U.S. Geological Survey long-term lakes monitoring program. Concentrations and deposition rates of selected constituents were compared for the periods before and after emission reductions at the Hayden powerplant. Data collected during 1995-98 were used to represent the pre-control period, and data collected during 2000-2003 were used to represent the post-control period. Ten stations in the National Atmospheric Deposition Program were evaluated including two that were directly downwind from the Hayden powerplant (Dry Lake and Buffalo Pass) and eight that were upwind or more distant (more than 100 kilometers) from the powerplant. Precipitation amount at all 10 precipitation stations was lower in the post-control period than the pre-control period as a result of a regional drought that persisted during the post-control period. In contrast to precipitation amount, there was no consistent pattern of change in sulfate concentrations between periods, indicating that the drought did not have a concentrating effect on sulfate or that trends in regional sulfur dioxide emissions masked its influence. Sulfate concentrations increased at three stations between periods, remained the

  2. Rapid increase of lakes in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ren, H.; Fan, W.; Yao, Y., Sr.; Tian, D.; MA, B.; LIU, R.; Qin, Q.

    2016-12-01

    The Tibetan Plateau, covered with a huge area of snow, glaciers and lakes, feeds several large rivers, incluidng Yangtze River, Yellow River, Yarlung Tsangpo River and Lancang River. Climate change can cause lakes to expand and bring floods and mudflows, and the response of lakes in this plateau to global climate change is very crucial. Using time-series Landsats clear-sky images in summer from the late 1980s to 2015, we established a new finer-resolution (30m) database of lakes in the plateau among five stages (1980s, 1995, 2000, 2005 and 2015), analyzed lake changes in the past three decades, and explored the possible driving forces. Results and discussions(1) Changes in lakes > 1km2 between 1980s and 2015The changes of lake numbers and surface areas were investigated between 1980s and 2015. The lakes were identified by visual interpretation and classified to several different sizes: small (1-10km2), medium (10-50km2), large (50-100km2) and huge (>100km2) lakes. A total of 1375 lakes (>1km2) were detected in 2015, in which the small, medium, large and huge lakes respectively account for 97, 74, 262 and 942 (Fig.1 and Table 1). The numbers of lakes (> 1km2 ) has increased by 384 from 991 in 1980s (Fig.2 a, b). Meanwhile, a rapid increase of lake surface area also occurred: increased by 28.2% from 37711.0km2 in 1980s to 48335.2km2 in 2015 (Fig.2c and Table 1). (2) Temporal changes in lakes > 10km2 between 1980s and 2015Temporal variation in all lakes > 10km2 were investigated at the five stages. Most lakes have expanded (Fig.3). The water surface area of large and huge lakes increased by 13.7% from a total area of 32056.7km2 in 1980s to 36437.0km2 in 2015. For example, Siling Co, which is the largest lake in Tibet region and second largest lake in Tibetan Plateau, has increased by 702.1 km2 (41.0%) to 2416.08 km2 since 1980s with an rate about 28 km2 /a. Some new lakes or water bodies appeared due to melting glaciers or anthropogenic intervention. A few of small

  3. Salinity and hydrology of closed lakes

    USGS Publications Warehouse

    Langbein, Walter Basil

    1961-01-01

    Lakes without outlets, called closed lakes, are exclusively features of the arid and semiarid zones where annual evaporation exceeds rainfall. The number of closed lakes increases with aridity, so there are relatively few perennial closed lakes, but "dry" lakes that rarely contain water are numerous.Closed lakes fluctuate in level to a much greater degree than the open lakes of the humid zone, because variations in inflow can be compensated only by changes in surface area. Since the variability of inflow increases with aridity, it is possible to derive an approximate relationship for the coefficient of variation of lake area in terms of data on rates of evaporation, lake area, lake depth, and drainage area.The salinity of closed lakes is highly variable, ranging from less than 1 percent to over 25 percent by weight of salts. Some evidence suggests that the tonnage of salts in a lake solution is substantially less than the total input of salts into the lake over the period of existence of the closed lake. This evidence suggests further that the salts in a lake solution represent a kind of long-term balance between factors of gain and loss of salts from the solution.Possible mechanisms for the loss of salts dissolved in the lake include deposition in marginal bays, entrapment in sediments, and removal by wind. Transport of salt from the lake surface in wind spray is also a contributing, but seemingly not major, factor.The hypothesis of a long-term balance between input to and losses from the lake solution is checked by deriving a formula for the equilibrium concentration and comparing the results with the salinity data. The results indicate that the reported salinities seemingly can be explained in terms of their geometric properties and hydrologic environment.The time for accumulation of salts in the lake solution the ratio between mass of salts in the solution and the annual input may also be estimated from the geometric and hydrologic factors, in the absence of

  4. Dongting Lake, China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images show dramatic change in the water at Dongting Lake in Hunan province, China. A flood crest surged down the Yangtze River in late August of this year, but the embankments made by residents there held. The left image was acquired on September 2, 2002 and shows the extent of the lake. The right image was obtained March 19, 2002 before the flooding began.

    These images were acquired on September 2, 2002 and March 19,2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as

  5. Characterization of Lake Michigan coastal lakes using zooplankton assemblages

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.

    2004-01-01

    Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.

  6. Angora Fire, Lake Tahoe

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  7. Origin of the lethal gas burst from Lake Monoun, Cameroun

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Devine, J. D.; Tchua, F. M.; Presser, F. M.; Pringle, M. K. W.; Evans, W. C.

    1987-03-01

    On 15 August, 1984, a lethal gas burst issued from a submerged 96-m-deep crater in Lake Monoun in Cameroun, western Africa, killing 37 people. The event was associated with a landslide from the eastern crater rim, which slumped into deep water. Waters below 50 m are anoxic, dominated by high Fe 2+ (˜600 mg/l) and HCO 3- (≥ 1900 mg/l), anoxic and supersaturated with siderite, which is a major component of the crater floor sediments. The unusually high Fe 2+ levels are attributed to reduction of laterite-derived ferric iron gradually brought into the lake as loess and in river input. Sulfur compounds are below detection limits in both water and gas. Gases effervescing from depressurized deep waters are dominantly CO 2 with minor CH 4, having δ 13C of -7.18 and -54.8 per mil, respectively. Bacterial decomposition of organic matter may account for the methane, but 14C of lake water indicates that only 10% of the carbon is modern, giving an apparent age of 18,000 years. The dominant source of carbon is therefore attributed to long-term emission of CO 2 as volcanic exhalation from vents within the crater, which led to gradual build-up of HCO 3- in the lake. The density stratification of the lake may have been upset by an earthquake and underwater landslide on 15 August, which triggered overturn of the lake and caused nucleation of CO 2 in the deep water. The resultant ebullition of CO 2 from deep lake waters led to a gas burst at the surface and locally generated a water wave up to 5 m high. People travelling through the gas cloud were asphyxiated, presumably from CO 2, and suffered skin discoloration from unidentified components.

  8. Origin of the lethal gas burst from Lake Monoun, Cameroun

    USGS Publications Warehouse

    Sigurdsson, Haraldur; Devine, J.D.; Tchua, F.M.; Presser, F.M.; Pringle, M.K.W.; Evans, William C.

    1987-01-01

    On 15 August, 1984, a lethal gas burst issued from a submerged 96-m-deep crater in Lake Monoun in Cameroun, western Africa, killing 37 people. The event was associated with a landslide from the eastern crater rim, which slumped into deep water. Waters below 50 m are anoxic, dominated by high Fe2+ (???600 mg/l) and HCO3- (??? 1900 mg/l), anoxic and supersaturated with siderite, which is a major component of the crater floor sediments. The unusually high Fe2+ levels are attributed to reduction of laterite-derived ferric iron gradually brought into the lake as loess and in river input. Sulfur compounds are below detection limits in both water and gas. Gases effervescing from depressurized deep waters are dominantly CO2 with minor CH4, having ??13C of -7.18 and -54.8 per mil, respectively. Bacterial decomposition of organic matter may account for the methane, but 14C of lake water indicates that only 10% of the carbon is modern, giving an apparent age of 18,000 years. The dominant source of carbon is therefore attributed to long-term emission of CO2 as volcanic exhalation from vents within the crater, which led to gradual build-up of HCO3- in the lake. The density stratification of the lake may have been upset by an earthquake and underwater landslide on 15 August, which triggered overturn of the lake and caused nucleation of CO2 in the deep water. The resultant ebullition of CO2 from deep lake waters led to a gas burst at the surface and locally generated a water wave up to 5 m high. People travelling through the gas cloud were asphyxiated, presumably from CO2, and suffered skin discoloration from unidentified components. ?? 1987.

  9. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    PubMed

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  10. Impact of Urbanization on Precipitation Distribution and Intensity over Lake Victoria Basin

    NASA Astrophysics Data System (ADS)

    Gudoshava, M.; Semazzi, F. H. M.

    2014-12-01

    In this study, sensitivity simulations on the impact of rapid urbanization over Lake Victoria Basin in East Africa were done using a Regional Climate Model (RegCM4.4-rc29) with the Hostetler lake model activated. The simulations were done for the rainy seasons that is the long rains (March-April-May) and short rains (October-November-December). Africa is projected to have a surge in urbanization with an approximate rate of 590% in 2030 over their 2000 levels. The Northern part of Lake Victoria Basin and some parts of Rwanda and Burundi are amongst the regions with high urbanization projections. Simulations were done with the land cover for 2000 and the projected 2030 urbanization levels. The results showed that increasing the urban fraction over the northern part of the basin modified the physical parameters such as albedo, moisture and surface energy fluxes, aerodynamic roughness and surface emissivity, thereby altering the precipitation distribution, intensity and frequency in the region. The change in the physical parameters gave a response of an average increase in temperature of approximately 2oC over the urbanized region. A strong convergence zone was formed over the urbanized region and thereby accelerating the lake-breeze front towards the urbanized region center. Precipitation in the urbanized region and regions immediate to the area increased by approximately 4mm/day, while drying up the southern (non-urbanized) side of the basin. The drying up of the southern side of the basin could be a result of divergent flow and subsidence that suppresses vertical development of storms.

  11. Response of fish assemblages to decreasing acid deposition in Adirondack Mountain lakes

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    The CAA and other federal regulations have clearly reduced emissions of NOx and SOx, acidic deposition, and the acidity and toxicity of waters in the ALTM lakes, but these changes have not triggered widespread recovery of brook trout populations or fish communities. The lack of detectable biological recovery appears to result from relatively recent chemical recovery and an insufficient period for species populations to take advantage of improved water quality. Recovery of extirpated species’ populations may simply require more time for individuals to migrate to and repopulate formerly occupied lakes. Supplemental stocking of selected species may be required in some lakes with no remnant (or nearby) populations or with physical barriers between the recovered lake and source populations. The lack of detectable biological recovery could also be related to our inability to calculate measures of uncertainty or error and, thus, examine temporal changes or differences in populations and community metrics in more depth (e.g., within individual lakes) using existing datasets. Indeed, recovery of brook trout populations and partial recovery of fish communities are documented in several lakes of the region, both with and without human intervention. Multiple fish surveys (annually or within the same year) or the use of mark and recapture methods within individual lakes would help alleviate the issue (provide measures of error for key fishery metrics) within the context of a more focused sampling strategy. Efforts to evaluate and detect recovery in fish assemblages from streams may be more effective than in lakes because various life stages, species’ populations, and entire assemblages are easier to quantify, with known levels of error, in streams than in lakes. Such long-term monitoring efforts could increase our ability to detect and quantify biological recovery in recovering (neutralizing) surface waters throughout the Adirondack Region.

  12. Systems and Methods for Integrated Emissivity and Temperature Measurement of a Surface

    DOEpatents

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  13. Acidification of lake water due to drought

    NASA Astrophysics Data System (ADS)

    Mosley, L. M.; Zammit, B.; Jolley, A. M.; Barnett, L.

    2014-04-01

    Droughts are predicted to increase in many river systems due to increased demand on water resources and climate variability. A severe drought in the Murray-Darling Basin of Australia from 2007 to 2009 resulted in unprecedented declines in water levels in the Lower Lakes (Ramsar-listed ecosystem of international importance) at the end of the river system. The receding water exposed large areas (>200 km2) of sediments on the lake margins. The pyrite (FeS2) in these sediments oxidised and generated high concentrations of acidity. Upon rewetting of the exposed sediments, by rainfall or lake refill, surface water acidification (pH 2-3) occurred in several locations (total area of 21.7 km2). High concentrations of dissolved metals (Al, As, Co, Cr, Cu, Fe, Mn, Ni, Zn), which greatly exceeded aquatic ecosystem protection guidelines, were mobilised in the acidic conditions. In many areas neutralisation of the surface water acidity occurred naturally during lake refill, but aerial limestone dosing was required in two areas to assist in restoring alkalinity. However acidity persists in the submerged lake sediment and groundwater several years after surface water neutralisation. The surface water acidification proved costly to manage and improved water management in the Murray-Darling Basin is required to prevent similar events occurring in the future.

  14. Thermokarst lake methanogenesis along a complete talik profile

    USGS Publications Warehouse

    Heslop, J.K.; Walter Anthony, K.M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Jones, Miriam C.

    2015-01-01

    Thermokarst (thaw) lakes emit methane (CH4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedoma permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH4 g dw−1 d−1; 125.9 ± 36.2 μg C–CH4 g C−1org d−1). High CH4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH4g dw−1 d−1; 59.60± 51.5 μg C–CH4 g C−1org d−1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH4 production.

  15. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities

    USGS Publications Warehouse

    Sahoo, G. B; Forrest, A. L; Schladow, S. G ;; Reuter, J. E; Coats, R.; Dettinger, Michael

    2016-01-01

    Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m2/decade although the summer (May–October) average SI increased at a higher rate (25.42 kg/m2/decade) during the period 1968–2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21st Century, and the B1 in which emissions slow and then level off by the late 21st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m2/decade and 8.66 kg/m2/decade, respectively for GFDLA2 and GFDLB1, respectively during 2014–2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.

  16. Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Wunderle, S.

    2014-05-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Thus, the Global Climate Observing System (GCOS) lists LWT as an Essential Climate Variable (ECV). Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European (pre-alpine) water bodies based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and Metop-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. Especially data from NOAA-16 and prior satellites were prone to noise, e.g., due to transmission errors or fluctuations in the instrument's thermal state. This has resulted in partly corrupted thermal calibration data and may cause errors of up to several Kelvin in the final resulting LSWT. Thus, a multi-stage correction scheme has been applied to the data to minimize these artefacts. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with operational analysis and reanalysis data from the European Centre for Medium Range Weather Forecasts. The resulting LSWTs were

  17. Changes in the chemistry of small Irish lakes.

    PubMed

    Burton, Andrew W; Aherne, Julian

    2012-03-01

    A re-survey of acid-sensitive lakes in Ireland (initial survey 1997) was carried out during spring 2007 (n = 60). Since 1997, atmospheric emissions of sulfur dioxide and deposition of non-marine sulfate (SO(4) (2-)) in Ireland have decreased by ~63 and 36%, respectively. Comparison of water chemistry between surveys showed significant decreases in the concentration of SO(4) (2-), non-marine SO(4) (2-), and non-marine base cations. In concert, alkalinity increased significantly; however, no change was observed in surface water pH and total aluminum. High inter-annual variability in sea salt inputs and increasing (albeit non-significant) dissolved organic carbon may have influenced the response of pH and total aluminum (as ~70% is organic aluminum). Despite their location on the western periphery of Europe, and dominant influence from Atlantic air masses, the repeat survey suggests that the chemistry of small Irish lakes has shown a significant response to reductions in air pollution driven primarily by the implementation of the Gothenburg Protocol under the UNECE Convention on Long-Range Transboundary Air Pollution.

  18. Surface photonic crystal structures for LED emission modification

    NASA Astrophysics Data System (ADS)

    Uherek, Frantisek; Škriniarová, Jaroslava; Kuzma, Anton; Šušlik, Łuboš; Lettrichova, Ivana; Wang, Dong; Schaaf, Peter

    2017-12-01

    Application of photonic crystal structures (PhC) can be attractive for overall and local enhancement of light from patterned areas of the light emitting diode (LED) surface. We used interference and near-field scanning optical microscope lithography for patterning of the surface of GaAs/AlGaAs based LEDs emitted at 840 nm. Also new approach with patterned polydimethylsiloxane (PDMS) membrane applied directly on the surface of red emitting LED was investigated. The overall emission properties of prepared LED with patterned structure show enhanced light extraction efficiency, what was documented from near- and far-field measurements.

  19. Sedimentological, mineralogical, and geochemical results from surface sediments and the sediment record from Site 2 of the ICDP drilling project at Lake Towuti, Indonesia

    NASA Astrophysics Data System (ADS)

    Hasberg, A. K.; Melles, M.; Wennrich, V.; Vogel, H.; Just, J.; Russell, J. M.; Bijaksana, S.; Morlock, M.; Opitz, S.

    2017-12-01

    More than 1000 m of sediment core were recovered in spring 2015 from three different drill sites in tropical Lake Towuti (2.5°S, 121°E), Indonesia, during the Towuti Drilling Project (TDP) of the International Continental Scientific Drilling Program (ICDP). Furthermore, a set of 84 lake surface sediment samples, distributed over the entire lake, was collected in order to better understand modern sedimentary processes. The surface samples were investigated for physical, chemical, mineralogical, and biological properties at the University of Cologne (UoC), Germany. On the sediment cores macro- and microscopical lithological descriptions, line-scan imaging, logging of physical properties (MSCL), and subsampling was conducted at the National Lacustrine Core Facility of the University of Minnesota, USA, in November 2015 and January 2016. Afterwards, the archive core halves and 672 subsamples of TDP Site 2 were shipped to the UoC for X-Ray Fluorescence (XRF) scanning and sedimentological, geochemical, and mineralogical analyses, respectively, supplemented by visible to near-infrared spectroscopy (VNIR) at Brown University, USA. The data from the surface samples evidence that allochthonous sedimentation in Lake Towuti today is dominated by fluvial supply from five distinguishable source areas: (i) the Mahalona River to the north, which drains lakes Mahalona and Matano, (ii) inlets around the village of Timampu to the northwest, (iii) the Loeha River to the east, (iv) the Lengke River to the south, and (v) the Lemo-Lemo River to the northeast of Lake Towuti. Of these, source areas (ii) and (iii) as well as (iv) and (v) have similar geochemical compositions, respectively. In addition, the lake sedimentation is significantly influenced by gravitational sediment supply from steep slopes as well as lake-internal gravitational and density-driven processes. The uppermost 41 m of sediment core 2A consist of pelagic sediments (totaling 11 m) and event layers from mass movement

  20. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    PubMed Central

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  1. The comparative limnology of Lakes Nyos and Monoun, Cameroon

    USGS Publications Warehouse

    Kling, George; Evans, William C; Tanyileke, Gregory

    2015-01-01

    Lakes Nyos and Monoun are known for the dangerous accumulation of CO2 dissolved in stagnant bottom water, but the shallow waters that conceal this hazard are dilute and undergo seasonal changes similar to other deep crater lakes in the tropics. Here we discuss these changes with reference to climatic and water-column data collected at both lakes during the years following the gas release disasters in the mid-1980s. The small annual range in mean daily air temperatures leads to an equally small annual range of surface water temperatures (ΔT ~6–7 °C), reducing deep convective mixing of the water column. Weak mixing aids the establishment of meromixis, a requisite condition for the gradual buildup of CO2 in bottom waters and perhaps the unusual condition that most explains the rarity of such lakes. Within the mixolimnion, a seasonal thermocline forms each spring and shallow diel thermoclines may be sufficiently strong to isolate surface water and allow primary production to reduce PCO2 below 300 μatm, inducing a net influx of CO2 from the atmosphere. Surface water O2 and pH typically reach maxima at this time, with occasional O2 oversaturation. Mixing to the chemocline occurs in both lakes during the winter dry season, primarily due to low humidity and cool night time air temperature. An additional period of variable mixing, occasionally reaching the chemocline in Lake Monoun, occurs during the summer monsoon season in response to increased frequency of major storms. The mixolimnion encompassed the upper ~40–50 m of Lake Nyos and upper ~15–20 m of Lake Monoun prior to the installation of degassing pipes in 2001 and 2003, respectively. Degassing caused chemoclines to deepen rapidly. Piping of anoxic, high-TDS bottom water to the lake surface has had a complex effect on the mixolimnion. Algal growth stimulated by increased nutrients (N and P) initially stimulated photosynthesis and raised surface water O2 in Lake Nyos, but O2 removal through oxidation of iron

  2. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    PubMed

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  3. Lake Mixing Regime Influences Arsenic Transfer from Sediments into the Water Column and Uptake in Plankton

    NASA Astrophysics Data System (ADS)

    Gawel, J.; Barrett, P. M.; Hull, E.; Burkart, K.; McLean, J.; Hargrave, O.; Neumann, R.

    2017-12-01

    The former ASARCO copper smelter in Ruston, WA, now a Superfund site, contaminated a large area of the south-central Puget Sound region with arsenic over its almost 100-year history. Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the ASARCO emissions stack. We investigated the impact of lake mixing regime on arsenic transfer from sediments into lake water and aquatic biota. We regularly collected water column and plankton samples from four study lakes for two years, and deployed sediment porewater peepers and sediment traps to estimate arsenic flux rates to and from the sediments. In lakes with strong seasonal stratification, high aqueous arsenic concentrations were limited to anoxic hypolimnetic waters while low arsenic concentrations were observed in oxic surface waters. However, in polymictic, shallow lakes, we observed elevated arsenic concentrations throughout the entire oxic water column. Sediment flux estimates support higher rates of arsenic release from sediments and vertical transport. Because high arsenic in oxic waters results in spatial overlap between arsenate, a phosphate analog, and lake biota, we observed enhanced trophic transfer of arsenic in polymictic, shallow study lakes, with higher arsenic accumulation (up to an order of magnitude) in both phytoplankton and zooplankton compared to stratified lakes. Chemical and physical mechanisms for higher steady-state arsenic concentrations will be explored. Our work demonstrates that physical mixing processes coupled with sediment/water redox status exert significant control over bioaccumulation, making shallow, periodically-mixed urban lakes uniquely vulnerable to environmental and human health risks from legacy arsenic contamination.

  4. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    NASA Astrophysics Data System (ADS)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  5. Sunlight-induced carbon dioxide emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit; Landelius, Tomas; Weyhenmeyer, Gesa A.; Machida, Nanako; Tranvik, Lars J.

    2014-07-01

    The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical mineralization of dissolved organic carbon (DOC), rather than by microbial respiration during DOC decomposition. Also, it is unknown on larger spatial and temporal scales how photochemical mineralization compares to other C fluxes in the inland water C cycle. We combined field and laboratory data with atmospheric radiative transfer modeling to parameterize a photochemical rate model for each day of the year 2009, for 1086 lakes situated between latitudes from 55°N to 69°N in Sweden. The sunlight-induced production of dissolved inorganic carbon (DIC) averaged 3.8 ± 0.04 g C m-2 yr-1, which is a flux comparable in size to the organic carbon burial in the lake sediments. Countrywide, 151 ± 1 kt C yr-1 was produced by photochemical mineralization, corresponding to about 12% of total annual mean CO2 emissions from Swedish lakes. With a median depth of 3.2 m, the lakes were generally deep enough that incoming, photochemically active photons were absorbed in the water column. This resulted in a linear positive relationship between DIC photoproduction and the incoming photon flux, which corresponds to the absorbed photons. Therefore, the slope of the regression line represents the wavelength- and depth-integrated apparent quantum yield of DIC photoproduction. We used this relationship to obtain a first estimate of DIC photoproduction in lakes and reservoirs worldwide. Global DIC photoproduction amounted to 13 and 35 Mt C yr-1 under overcast and clear sky, respectively. Consequently, these directly sunlight-induced CO2 emissions contribute up to about one tenth to the global CO2 emissions from lakes and reservoirs, corroborating that microbial respiration contributes a substantially larger share than formerly thought, and generate annual C fluxes similar in

  6. Great Lakes Literacy Principles

    NASA Astrophysics Data System (ADS)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  7. Modes of supraglacial lake drainage and dynamic ice sheet response

    NASA Astrophysics Data System (ADS)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice

  8. A RESEARCH PLAN FOR THE USE OF THERMAL AVHRR IMAGERY TO STUDY ANNUAL AND SEASONAL MEAN SURFACE TEMPERATURES FOR LARGE LAKES IN NORTH AMERICA

    EPA Science Inventory

    Surface and vertical temperature data will be obtained from several large lakes With surface areas large enough to be effectively sampled with AVHRR imagery. Yearly and seasonal patterns of surface and whole water column thermal values will be compared to estimates of surface tem...

  9. Water budget and estimated suspended-sediment inflow for Reelfoot Lake, Obion and Lake Counties, Northwestern Tennessee, May 1984-April 1985

    USGS Publications Warehouse

    Robbins, Clarence H.

    1985-01-01

    Reelfoot Lake in northwestern Tennessee, with a surface area of 15,500 acres at normal pool elevation, is the largest natural lake in Tennessee. Over the years, the lake has become an important economic, environmental, and recreational resource to the people in the area, and to the State of Tennessee. The natural eutrophic succession rate of the lake has apparently been accelerated by land use practices within the Reelfoot Lake drainage basin during the past several decades. The potential loss of Reelfoot Lake has prompted the State to make management and restoration of the lake and its resources a priority objective. The U.S. Geological Survey entered into a cooperative study in May 1984 with the Tennessee Wildlife Resources Agency and the Tennessee Department of Health and Environment, Division of Water Management, to collect and analyze hydrologic data and prepare an annual water budget for Reelfoot Lake. The purpose of the water budget is to provide an analysis of the surface-groundwater-lake-atmospheric water relation at Reelfoot Lake. Results of the analysis can be used by lake managers to evaluate the potential effects of proposed lake management strategies upon the lake and surrounding hydrologic system. The water budget for the 12-month study period (May 1, 1984 through April 30, 1985) is presented in this report. In addition, estimates of suspended-sediment discharge from tributary streams in the Reelfoot Lake basin and an analysis of concentrations of constituents in stream-bottom material at three inflow sites are also presented. (Lantz-PTT)

  10. Method for surface plasmon amplification by stimulated emission of radiation (SPASER)

    DOEpatents

    Stockman, Mark I [Atlanta, GA; Bergman, David J [Ramat Hasharon, IL

    2011-09-13

    A nanostructure is used to generate a highly localized nanoscale optical field. The field is excited using surface plasmon amplification by stimulated emission of radiation (SPASER). The SPASER radiation consists of surface plasmons that undergo stimulated emission, but in contrast to photons can be localized within a nanoscale region. A SPASER can incorporate an active medium formed by two-level emitters, excited by an energy source, such as an optical, electrical, or chemical energy source. The active medium may be quantum dots, which transfer excitation energy by radiationless transitions to a resonant nanosystem that can play the same role as a laser cavity in a conventional laser. The transitions are stimulated by the surface plasmons in the nanostructure, causing the buildup of a macroscopic number of surface plasmons in a single mode.

  11. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2007

    USGS Publications Warehouse

    Wisconsin Water Science Center Lake-Studies Team: Rose, W. J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2008-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2007 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2007 is called 'water year 2007.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake?s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2007.'

  12. GloboLakes: A global observatory of lake responses to environmental change.

    NASA Astrophysics Data System (ADS)

    Groom, Steve; Tyler, Andrew; Hunter, Peter; Spyrakos, Evangelos; Martinez-Vicente, Victor; Merchant, Chris; Cutler, Mark; Rowan, John; Dawson, Terry; Maberly, Stephen; Cavalho, Laurence; Elliot, Alex; Thackery, Stephen; Miller, Claire; Scott, Marian

    2014-05-01

    The world's freshwater ecosystems are vital components of the global biosphere, yet are vulnerable to climate and other human-induced change. There is increasing recognition that lakes play an important role in global biogeochemical cycling and provide key ecosystem services. However, our understanding of how lakes respond to environmental change at a global scale, and how this impacts on their status and function, is hampered by limited information on their chemical, physical and ecological condition. There are estimated to be over 300 million lakes globally, of which over 17,000 are greater than 10 km2 in surface area. These numbers have limited the systematic study of lake ecosystems. GloboLakes is a five-year UK research programme investigating the state of lakes and their response to climatic and other environmental drivers of change. It will establish a satellite-based observatory with archive and near-real time data processing to produce a time series of observed biogeochemical parameters and lake temperature for over 1000 lakes globally. This will be supported by linked ancillary data on climate and catchment land-use. The ability to monitor a large number of lakes consistently at high frequency and globally will facilitate a paradigm shift in our understanding of how lakes respond to environmental change at different spatial and temporal scales. A key requirement is to validate satellite retrieval algorithms and test the time-series of resulting lake properties such as chlorophyll-a by comparison with in situ data. To support the former extensive bio-optical and constituent data were taken in year 1 of the project in a number of UK lakes with a variety of trophic states. Furthermore, for wider validation activities GloboLakes has established the LIMNADES initiative to create a centralised database of ground bio-optical measurements of worldwide lakes through voluntary cooperation across the international scientific community. This presentation will

  13. Evasion of added isotopic mercury from a northern temperate lake

    USGS Publications Warehouse

    Southworth, G.; Lindberg, S.; Hintelmann, H.; Amyot, M.; Poulain, A.; Bogle, M.; Peterson, M.; Rudd, J.; Harris, R.; Sandilands, K.; Krabbenhoft, D.; Olsen, M.

    2007-01-01

    Isotopically enriched Hg (90% 202Hg) was added to a small lake in Ontario, Canada, at a rate equivalent to approximately threefold the annual direct atmospheric deposition rate that is typical of the northeastern United States. The Hg spike was thoroughly mixed into the epilimnion in nine separate events at two-week intervals throughout the summer growing season for three consecutive years. We measured concentrations of spike and ambient dissolved gaseous Hg (DGM) concentrations in surface water and the rate of volatilization of Hg from the lake on four separate, week-long sampling periods using floating dynamic flux chambers. The relationship between empirically measured rates of spike-Hg evasion were evaluated as functions of DGM concentration, wind velocity, and solar illumination. No individual environmental variable proved to be a strong predictor of the evasion flux. The DGM-normalized flux (expressed as the mass transfer coefficient, k) varied with wind velocity in a manner consistent with existing models of evasion of volatile solutes from natural waters but was higher than model estimates at low wind velocity. The empirical data were used to construct a description of evasion flux as a function of total dissolved Hg, wind, and solar illumination. That model was then applied to data for three summers for the experiment to generate estimates of Hg re-emission from the lake surface to the atmosphere. Based on ratios of spike Hg to ambient Hg in DGM and dissolved total Hg pools, ratios of DGM to total Hg in spike and ambient Hg pools, and flux estimates of spike and ambient Hg, we concluded that the added Hg spike was chemically indistinguishable from the ambient Hg in its behavior. Approximately 45% of Hg added to the lake over the summer was lost via volatilization. ?? 2007 SETAC.

  14. δ18O and Carbonate Clumped Isotopes as Proxies of Lake Level Change: Mono Lake Modern Sediments Inform Pleistocene Interpretations

    NASA Astrophysics Data System (ADS)

    Westacott, S.; Ingalls, M.; Meixnerova, J.; Betts, M.; Lloyd, M. K.; Miller, L. G.; Sessions, A. L.; Trower, L.; Geobiology Course, A.

    2017-12-01

    In 1941 LA County began diverting water from the Mono Lake basin, causing lake level to fall dramatically until 1994 when diversion was substantially discontinued. High sedimentation rate (0.7 cm/yr) in combination with rapid, well-documented environmental change offers a unique opportunity to investigate the isotopic fingerprint of lake level change at a much finer scale than is typically accessible in the geologic record. δ18Ocarb can record lake level in a closed-basin system, but relies on knowing the relative contributions from carbonate precipitated from lake water and from authigenic carbonates, both of which are expected to exist in alkaline lake sediments. Here, we combine δ18Ocarb with clumped isotope thermometry (T(Δ47)) on a 70 cm sediment core to "unmix" the carbonate sources and reconstruct δ18Owater of Mono Lake over the past 116 years. Carbonate from the upper 10 cm of the sediment core yields a T(Δ47) of 26°C, reflecting surface water carbonate precipitation during late summer. Carbonates from sediment depths greater than 10cm yield a consistent T(Δ47) of 9.6°C, warmer than today's bottom waters, suggesting dissolution and reprecipitation of originally "warm" carbonate deposited from the water column alongside "cold" water of a different δ18Ow than Mono Lake surface water. A clumped isotope mixing model (Defliese & Lohmann, 2015) used to calculate the relative contributions of the two carbonate precipitates, corroborated by mirrored shifts in δ13Corg and δ13Ccarb down-core, suggests that about half of the carbonate found in the lower 60 cm of the sediment core is authigenic. As an example of how this strategy can be applied to older strata with looser constraints on primary composition, we also analysed the Pleistocene Wilson Creek Formation—lake sediments from Mono Lake's predecessor, Lake Russell. Although Pleistocene Lake Russell should have been cooler than modern Mono Lake, T(Δ47) values were similar to those of modern sediments

  15. The Volume of Earth's Lakes

    NASA Astrophysics Data System (ADS)

    Cael, B. B.

    How much water do lakes on Earth hold? Global lake volume estimates are scarce, highly variable, and poorly documented. We develop a mechanistic null model for estimating global lake mean depth and volume based on a statistical topographic approach to Earth's surface. The volume-area scaling prediction is accurate and consistent within and across lake datasets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000-202,000 km3) . This volume is in the range of historical estimates (166,000-280,000 km3) , but the overall mean depth of 41.8 m (95% CI 41.2-42.4 m) is significantly lower than previous estimates (62 - 151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles. We also evaluate the size (area) distribution of lakes on Earth compared to expectations from percolation theory. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 2388357.

  16. Diel vertical movements, and effects of infection by the cestode Schistocephalus solidus on daytime proximity of three-spined sticklebacks Gasterosteus aculeatus to the surface of a large Alaskan lake.

    PubMed

    Quinn, T P; Kendall, N W; Rich, H B; Chasco, B E

    2012-01-01

    We conducted a field study in Iliamna Lake, Alaska, to test the hypothesis that proximity of three-spined sticklebacks Gasterosteus aculeatus to the lake's surface during the daytime varies with macroparasitic cestode parasite Schistocephalus solidus infection in a manner consistent with enhanced vulnerability to avian predators. Extensive sampling in the lake and likelihood-based modeling revealed that sticklebacks displayed a diel vertical migration, being closer to the surface at night than during the evening and early morning. Additional sampling, also coupled with a likelihood-based modeling approach, showed that fish caught at the surface of the lake during the day were more often parasitized (76 vs. 65%), more heavily parasitized (26.8 vs. 22.7% of their body mass), and had larger individual parasites (0.24 vs. 0.20 g) than those caught at night. Parasite infection was related, non-linearly, to fish size, which also differed between day and night sampling at the surface. We performed statistical competitions among nested hierarchies of models that accounted for this effect of length. The most likely models indicated that fish captured during the day had greater parasite prevalence, higher parasite burdens, and larger parasites than did fish captured at night. Proximity to the surface during the day in this very clear lake would likely increase the vulnerability of sticklebacks to predation from birds, enabling completion of the parasite's lifecycle.

  17. Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis.

    PubMed

    McGinnis, Daniel F; Kirillin, Georgiy; Tang, Kam W; Flury, Sabine; Bodmer, Pascal; Engelhardt, Christof; Casper, Peter; Grossart, Hans-Peter

    2015-01-20

    Exchange of the greenhouse gases carbon dioxide (CO2) and methane (CH4) across inland water surfaces is an important component of the terrestrial carbon (C) balance. We investigated the fluxes of these two gases across the surface of oligotrophic Lake Stechlin using a floating chamber approach. The normalized gas transfer rate for CH4 (k600,CH4) was on average 2.5 times higher than that for CO2 (k600,CO2) and consequently higher than Fickian transport. Because of its low solubility relative to CO2, the enhanced CH4 flux is possibly explained by the presence of microbubbles in the lake’s surface layer. These microbubbles may originate from atmospheric bubble entrainment or gas supersaturation (i.e., O2) or both. Irrespective of the source, we determined that an average of 145 L m(–2) d(–1) of gas is required to exit the surface layer via microbubbles to produce the observed elevated k600,CH4. As k600 values are used to estimate CH4 pathways in aquatic systems, the presence of microbubbles could alter the resulting CH4 and perhaps C balances. These microbubbles will also affect the surface fluxes of other sparingly soluble gases in inland waters, including O2 and N2.

  18. Wind effects on water and salt loss in playa lakes

    NASA Astrophysics Data System (ADS)

    Torgersen, T.

    1984-10-01

    The theory behind wind stress induced setup of water surface slope on a playa lake is reviewed. Due to the low gradient of the bottom in most playa lakes (1-20 cm km -1), the advance and retreat of lake waters due to wind stress can expose or cover many square kilometers. It is even possible for the surface slope to exceed the bottom slope and thereby create a "roving" lake. Such water movements can transport lake water over undersaturated "shore" sediments and water can therefore infiltrate and be lost without an increase in lake salinity. This case is demonstrated with data from Lake George, New South Wales, Australia. Such wind effects need to be examined for their relation to the diagenesis of sediments, the composition of the bitterns, and the salt budget of playa lakes.

  19. Time-series measurements of methane (CH4) distribution during open water and ice-cover in lakes throughout the Mackenzie River Delta (Canada)

    NASA Astrophysics Data System (ADS)

    McIntosh, H.; Lapham, L.; Orcutt, B.; Wheat, C. G.; Lesack, L.; Bergstresser, M.; Dallimore, S. R.; MacLeod, R.; Cote, M.

    2016-12-01

    Arctic lakes are known to emit large amounts of methane to the atmosphere and their importance to the global methane (CH4) cycle has been recognized. It is well known CH4 builds up in Arctic lakes during ice-cover, but the amount of and when the CH4 is released to the atmosphere is not well known. Our preliminary results suggest the largest flux of CH4 from lakes to the atmosphere occurs slightly before complete ice-out; while others have shown the largest flux occurs when lakes overturn in the spring. During ice-out, CH4 can also be oxidized by methane oxidizing bacteria before it can efflux to the atmosphere from the surface water. In order to elucidate the processes contributing to Arctic lake CH4 emissions, continuous, long-term and large scale spatial sampling is required; however it is difficult to achieve in these remote locations. We address this problem using two sampling techniques. 1) We deployed osmotically powered pumps (OsmoSamplers), which were able to autonomously and continuously collect lake bottom water over the course of a year from multiple lakes in the Mackenzie River Delta. OsmoSamplers were placed in four lakes in the mid Delta near Inuvik, Northwest Territories, Canada, two lakes in the outer Delta, and two coastal lakes on Richard's Island in 2015. The dissolved CH4 concentration, stable isotope content of CH4 (δ13C-CH4), and dissolved sulfate concentrations in bottom water from these lakes will be presented to better understand methane dynamics under the ice and over time. 2) Along with the time-series data, we will also present data from discrete samples collected from 40 lakes in the mid Delta during key time periods, before and immediately after the spring ice-out. By determining the CH4 dynamics throughout the year we hope to improve predictions of how CH4 emissions may change in a warming Arctic environment.

  20. Nanoparticle-density-dependent field emission of surface-decorated SiC nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Qizheng; School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo City 315016; State Key Lab of New Fine Ceramics and Fine Processing, Tsinghua University, Beijing City 100084

    2016-08-22

    Increasing the electron emission site density of nanostructured emitters with limited field screening effects is one of the key issues for improving the field emission (FE) properties. In this work, we reported the Au-nanoparticles-density-dependent field emission behaviors of surface-decorated SiC nanowires. The Au nanoparticles (AuNPs) decorated around the surface of the SiC nanowires were achieved via an ion sputtering technique, by which the densities of the isolated AuNPs could be adjusted by controlling the fixed sputtering times. The measured FE characteristics demonstrated that the turn-on fields of the SiC nanowires were tuned to be of 2.06, 1.14, and 3.35 V/μm withmore » the increase of the decorated AuNPs densities, suggesting that a suitable decorated AuNPs density could render the SiC nanowires with totally excellent FE performances by increasing the emission sites and limiting the field screening effects.« less

  1. The role of nitrogen deposition in the recent nitrate decline in lakes and rivers in Northern Italy.

    PubMed

    Rogora, Michela; Arisci, Silvia; Marchetto, Aldo

    2012-02-15

    Deposition of inorganic nitrogen (N) in north-western Italy is around 20-25 kg N ha(-1)y(-1), and has remained constant during the last 30 years. This flux of N caused saturation of terrestrial catchments and increasing levels of nitrate (NO(3)) in surface waters. Recently, monitoring data for both rivers and lakes have shown a reversal in NO(3) trends. This change was widespread, affecting high-altitude lakes in the Alps and subalpine lakes and rivers, and occurred at almost the same time at all sites. The seasonal pattern of NO(3) concentrations in running waters has shown a change in the last few years, with a tendency towards slightly lower leaching of NO(3) during the growing season. Atmospheric input of N has also shown a recent decrease, mainly due to decreasing emissions and partly to the lower amount of precipitation occurring between 2003 and 2009. Surface waters are probably responding to these changing N inputs, but a further decrease of N deposition, especially reduced N, will be required to achieve full recovery from N saturation. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Long-term recovery of PCB-contaminated surface sediments at the Sangamo-westonl Twelvemile Creek/lake Hartwell Superfund Site.

    PubMed

    Brenner, Richard C; Magar, Victor S; Ickes, Jennifer A; Foote, Eric A; Abbott, James E; Bingler, Linda S; Crecelius, Eric A

    2004-04-15

    Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contaminant transport into the food chain by limiting bioturbation of contaminated surface or near-surface sediments. This study evaluated the natural recovery of surface sediments contaminated with polychlorinated biphenyls (PCBs) at the Sangamo-Weston/Twelvemile Creek/Lake Hartwell Superfund Site (Lake Hartwell), Pickens County, SC. The primary focus was on sediment recovery resulting from natural capping processes. Total PCB (t-PCB), lead-210 (210Pb), and cesium-137 (137Cs) sediment core profiles were used to establish vertical t-PCB concentration profiles, age date sediments, and determine surface sedimentation and surface sediment recovery rates in 18 cores collected along 10 transects. Four upgradient transects in the headwaters of Lake Hartwell were impacted by historical sediment releases from three upgradient sediment impoundments. These transects were characterized by silt/ clay and sand layering. The highest PCB concentrations were associated with silt/clay layers (1.8-3.5% total organic carbon (TOC)), while sand layers (0.05-0.32% TOC) contained much lower PCB concentrations. The historical sediment releases resulted in substantial burial of PCB-contaminated sediment in the vicinity of these four cores; each core contained less than 1 mg/kg t-PCBs in the surface sand layers. Cores collected from six downgradient Lake Hartwell transects consisted primarily of silt and clay (0.91-5.1% TOC) and were less noticeably impacted by the release of sand from the impoundments. Vertical t-PCB concentration profiles in these cores began with relatively low PCB concentrations at the sediment-water interface and increased in concentration with depth until maximum PCB concentrations were measured at

  3. Limnology of Botos Lake, a tropical crater lake in Costa Rica.

    PubMed

    Umaña, G

    2001-12-01

    Botos Lake, located at the Poas Volcano complex (Costa Rica) was sampled eight times from 1994 to 1996 for physicochemical conditions of the water column and phytoplanktonic community composition. Depth was measured at fixed intervals in several transects across the lake to determine its main morphometric characteristics. The lake has an outlet to the north. It is located 2580 m above sea level and is shallow, with a mean depth of 1.8 m and a relative depth of 2.42 (surface area 10.33 ha, estimated volume 47.3 hm3). The lake showed an isothermal water column in all occasions, but it heats and cools completely according to weather fluctuations. Water transparency reached the bottom on most occasions (> 9 m). The results support the idea that the lake is polymictic and oligotrophic. The lake has at least 23 species of planktonic algae, but it was always dominated by dinoflagellates, especially Peridinium inconspicuum. The shore line is populated by a sparse population of Isoetes sp. and Eleocharis sp. mainly in the northern shore where the bottom has a gentle slope and the forest does not reach the shore.

  4. What Is the Emissivity of Active Basaltic Lava Flows?

    NASA Astrophysics Data System (ADS)

    Lee, R.; Ramsey, M. S.

    2016-12-01

    The emissivity of molten lava surfaces has been a topic of study for some time because it directly affects the cooling efficiency of the flow, thermo-rheological models of flow evolution, as well as the accurate interpretation of the bulk composition. Despite past studies, it remains unclear whether the emissivity of molten lava truly is different than that of the cooled surface. Measuring emissivity on flows is complicated with errors arising due to changes in the surface glass content and vesicularity, as well as mixing of multiple temperatures, as the lava cools. We therefore see determination of correct surface emissivity and its change with time to be of great importance to anyone working with thermal infrared (TIR) data or modeling of lava flows. A series of high-resolution melting experiments on basalts has been conducted using a novel micro-furnace and TIR spectrometer, producing high-resolution accurate emissivity measurements at known temperatures transitioning from molten to solid state. These results are compared to data from active analog and natural lava surfaces acquired from a newly-developed field-based multispectral camera system, which is capable of generating lower-resolution emissivity spectra. We present the results of these comparative studies conducted at the Syracuse University Lava Project facility in order to test and calibrate the camera system under controlled conditions. The facility conducts large-scale pours of degassed Palisades Sill basalt, an acceptable analog for natural basalt. In addition, several samples of the analog lava were re-melted in the micro-furnace/spectrometer setup to provide a direct comparison of higher and lower resolution IR spectral data. These results, together with data from the Kilauea lava lake, have allowed us to calibrate and fully test the efficacy of this camera system in a field environment for future deployments as well as provide a means of constraining TIR data from satellite observations.

  5. [Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China].

    PubMed

    Zhang, Zhao-Yong; Abuduwaili, Jilili; Jiang, Feng-Qing

    2015-02-01

    In this paper, the surface sediment samples were harvested from Aibi Lake, and total contents of 8 heavy metals ( Cu, Pb, Zn, As, Hg, Cr, Ni and Cd) were determined. Then the sources, pollution statue, and potential ecological risk were analyzed by using multiple analysis methods. The results show that: (1) The order of the skewness for these 8 heavy metals is: Hg > Cd > Pb > Zn > As > Cu > Cr > Ni. (2) Multivariate statistical analysis shows that 8 heavy metals can be classified to 2 principle components, among which PC1 ( Cd, Pb, Hg and Zn) is man-made source factor and mainly came from all kinds of waste of agriculture; PC2 ( Cu, Ni, Cr and As) is natural source and was mainly controlled by the background of the natural geography of this area. (3) Accumulation of index evaluation results show that the order of pollution degree values of 8 heavy metals in surface sediments of Aibi Lake is: Cd > Hg > Pb > Zn > As > Cu > Ni > Cr. In all samples, heavy metals Hg, Cd and Pb all belong to low and partial moderate pollution statue, while Zn, As, Cr, Ni and Cu belong to no pollution statue in majority samples. (4) Potential ecological risk assessment results show that the potential ecological risk of heavy metals in surface sediments of Aibi Lake mainly caused by Cd, Hg and Pb, and they accounting for 42.6%, 28.6% and 24.0% of the total amount, respectively, among which Cd is the main ecological risk factor, followed by Hg and Pb. In all samples, the potential ecological risk index values (RI) of 8 heavy metals are all lower than 150, and they are all at low ecological risk levels. However, this research also shows that there have high content of Cd and Pb in the sediment. Therefore, we should make long-term monitoring of the lake environment.

  6. Hydrocarbon lakes on Titan

    NASA Astrophysics Data System (ADS)

    Mitri, Giuseppe; Showman, Adam P.; Lunine, Jonathan I.; Lorenz, Ralph D.

    2007-02-01

    The Huygens Probe detected dendritic drainage-like features, methane clouds and a high surface relative humidity (∼50% ) on Titan in the vicinity of its landing site [Tomasko, M.G., and 39 colleagues, 2005. Nature 438, 765-778; Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], suggesting sources of methane that replenish this gas against photo- and charged-particle chemical loss on short (10-100) million year timescales [Atreya, S.K., Adams, E.Y., Niemann, H.B., Demick-Montelara, J.E., Owen, T.C., Fulchignoni, M., Ferri, F., Wilson, E.H., 2006. Planet. Space Sci. In press]. On the other hand, Cassini Orbiter remote sensing shows dry and even desert-like landscapes with dunes [Lorenz, R.D., and 39 colleagues, 2006a. Science 312, 724-727], some areas worked by fluvial erosion, but no large-scale bodies of liquid [Elachi, C., and 34 colleagues, 2005. Science 308, 970-974]. Either the atmospheric methane relative humidity is declining in a steady fashion over time, or the sources that maintain the relative humidity are geographically restricted, small, or hidden within the crust itself. In this paper we explore the hypothesis that the present-day methane relative humidity is maintained entirely by lakes that cover a small part of the surface area of Titan. We calculate the required minimum surface area coverage of such lakes, assess the stabilizing influence of ethane, and the implications for moist convection in the atmosphere. We show that, under Titan's surface conditions, methane evaporates rapidly enough that shorelines of any existing lakes could potentially migrate by several hundred m to tens of km per year, rates that could be detected by the Cassini orbiter. We furthermore show that the high relative humidity of methane in Titan's lower atmosphere could be maintained by evaporation from lakes covering only 0.002-0.02 of the whole surface.

  7. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  8. Surface Optical Rectification from Layered MoS2 Crystal by THz Time-Domain Surface Emission Spectroscopy.

    PubMed

    Huang, Yuanyuan; Zhu, Lipeng; Zhao, Qiyi; Guo, Yaohui; Ren, Zhaoyu; Bai, Jintao; Xu, Xinlong

    2017-02-08

    Surface optical rectification was observed from the layered semiconductor molybdenum disulfide (MoS 2 ) crystal via terahertz (THz) time-domain surface emission spectroscopy under linearly polarized femtosecond laser excitation. The radiated THz amplitude of MoS 2 has a linear dependence on ever-increasing pump fluence and thus quadratic with the pump electric field, which discriminates from the surface Dember field induced THz radiation in InAs and the transient photocurrent-induced THz generation in graphite. Theoretical analysis based on space symmetry of MoS 2 crystal suggests that the underlying mechanism of THz radiation is surface optical rectification under the reflection configuration. This is consistent with the experimental results according to the radiated THz amplitude dependences on azimuthal and incident polarization angles. We also demonstrated the damage threshold of MoS 2 due to microscopic bond breaking under the femtosecond laser irradiation, which can be monitored via THz time-domain emission spectroscopy and Raman spectroscopy.

  9. An ecological risk assessment of heavy metal contamination in the surface sediments of Bosten Lake, northwest China.

    PubMed

    Mamat, Zulpiya; Haximu, Sadiguli; Zhang, Zhao Yong; Aji, Rouzi

    2016-04-01

    Bosten Lake, a typical rump lake in an oasis in northwest China, was chosen to evaluate the distribution, sources, pollution status, and potential ecological risk of heavy metals. Sediment samples were collected from the lake, and results showed that the values of the eight heavy metals all fell within the Second Soil National Standard, while the average and maximum values of the metals were higher than the background values of the study. Multivariate statistical analysis showed that sediment concentrations of Cd, Pb, Hg, and Zn were mainly influenced by man sources. In comparison, Cu, Ni, Cr, and As were primarily natural in origin. Enrichment factor analysis (EF) and the geo-accumulation index evaluation method (I geo) showed that Cd, Hg, and Pb fell under low and partial serious pollution levels, while Zn, As, Cr, Ni, and Cu mainly were characterized under no pollution and low pollution levels. The potential ecological hazards index (RI) showed that among the eight heavy metals, Pb, Hg, and Cd posed the highest potential ecological risk, with potential ecological hazards indices (RI) of 29.06, 27.71, and 21.54 %, respectively. These findings demonstrated that recent economic development in the area of the basin has led to heavy metal accumulation in the surface sediments of the lake.

  10. Evaporation and transport of water isotopologues from Greenland lakes: The lake size effect

    NASA Astrophysics Data System (ADS)

    Feng, Xiahong; Lauder, Alex M.; Posmentier, Eric S.; Kopec, Ben G.; Virginia, Ross A.

    2016-01-01

    Isotopic compositions of evaporative flux from a lake are used in many hydrological and paleoclimate studies that help constrain the water budget of a lake and/or to infer changes in climate conditions. The isotopic fluxes of evaporation from a water surface are typically computed using a zero dimensional (0-D) model originally conceptualized by Craig and Gordon (1965). Such models generally have laminar and turbulent layers, assume a steady state condition, and neglect horizontal variations. In particular, the effect of advection on isotopic variations is not considered. While this classical treatment can be used for some sections of large open surface water bodies, such as an ocean or a large lake, it may not apply to relatively small water bodies where limited fetch does not allow full equilibration between air from land and the water surface. Both horizontal and vertical gradients in water vapor concentration and isotopic ratios may develop over a lake. These gradients, in turn, affect the evaporative fluxes of water vapor and its isotopic ratios, which is not adequately predicted by a 0-D model. We observed, for the first time, the vertical as well as horizontal components of vapor and isotopic gradients as relatively dry and isotopically depleted air advected over the surfaces of several lakes up to a 5 km fetch under winds of 1-5 m/s in Kangerlussuaq, Greenland. We modeled the vapor and isotopic distribution in air above the lake using a steady state 2-D model, in which vertical diffusive transport balances horizontal advection. The model was verified by our observations, and then used to calculate evaporative fluxes of vapor and its isotopic ratios. In the special case of zero wind speed, the model reduces to 1-D. Results from this 1-D model are compared with those from the 2-D model to assess the discrepancy in isotopic fluxes between advection and no advection conditions. Since wind advection above a lake alters the concentrations, gradients, and

  11. Mountain lakes of Russian subarctic as markers of air pollution: Acidification, metals and paleoecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseenko, T.I.; Dauvalter, V.A.; Kagan, L.Y.

    1996-12-31

    The Kola Peninsula mountain lakes reflect a real situation not only of the local air pollution but also polluted transborder emissions from Europe to Arctic and they are of interest for early detection and monitoring for acidification and pollution by heavy metals. Two monitoring mountain lakes had a discrepancy by their resistance to acidification: the Chuna lake is vulnerable and the Chibiny one is not, respectively. Despite the Chuna and Chibiny lakes are close tone of the main heavy metal pollution sources of the Kola Peninsula - smelters of the Severonickel Company, local emissions very slightly affect the mountain lakes,more » because heavily polluted air masses do not rise in altitude. Sulfur deposition on the Chuna lake catchment is 0.4 gSm{sup -2}, Chibiny lake is 0.6 gSm{sup -2}. In comparison with area at the foot of the mountain (less than 200 m above the sea level) sulfur deposition is 1.0-1.5 gSm{sup -2}. Water quality, sediment chemistry, and diatoms in sediment cores were studied.« less

  12. The study of Lake Urmia desiccation: morphometry impress

    NASA Astrophysics Data System (ADS)

    Moradi, Ayoub; Rasouli, Ali Akbar; Roostaei, Shahram

    2017-04-01

    Located in northwestern Iran, the hypersaline Lake Urmia has started a serious uninterrupted desiccation since 1995. The lake has lost about eight meters of water level and about 75% of water surface area during past 20 years. In particular, the lake water volume decrement has been accelerated in recent years. The importance of the Lake Urmia for human life in northwestern Iran, and its destructive effects on a vast region if totally dry up, demands comprehensive studies of the lake level fluctuations mechanism. According to literature review, the water volume of the lake behaves sometimes differently from the water storage of the whole basin. Our time series analysis using Land Data Assimilation Systems also confirms those differences within last decades. In other hand, many studies addressed the lake desiccation to climatic changes and/or anthropogenic influences such as excessive dam constructions in the watershed during last decades. As water leaves the lake only through evaporation, the fluctuation of evaporation has a distinctive role in the lake level variations. Dramatic decreament in the lake extent indicates of a special morphometry. The lake's morphometry has made it vulnerable to temperature and salinity changes. It strongly controls the lake's water heat capacity and water density. And, it therefore controls the rate of evaporation from water surface. We study the role of lake's morphometry on the lake desiccation. Although, the global climatic change is known as the primary reason for current droughts in the Middle East generally, our preliminary results show that the lake's morphometry is the main cause for the accelerating of water volume lost in Lake Urmia. In particular, after 2007, lake's water temperature and density show significant variations. Water heat capacity and evaporation rate are consistent with information of lake's hypsometry.

  13. Exceptional summer warming leads to contrasting outcomes for methane cycling in small Arctic lakes of Greenland

    NASA Astrophysics Data System (ADS)

    Cadieux, Sarah B.; White, Jeffrey R.; Pratt, Lisa M.

    2017-02-01

    In thermally stratified lakes, the greatest annual methane emissions typically occur during thermal overturn events. In July of 2012, Greenland experienced significant warming that resulted in substantial melting of the Greenland Ice Sheet and enhanced runoff events. This unusual climate phenomenon provided an opportunity to examine the effects of short-term natural heating on lake thermal structure and methane dynamics and compare these observations with those from the following year, when temperatures were normal. Here, we focus on methane concentrations within the water column of five adjacent small lakes on the ice-free margin of southwestern Greenland under open-water and ice-covered conditions from 2012-2014. Enhanced warming of the epilimnion in the lakes under open-water conditions in 2012 led to strong thermal stability and the development of anoxic hypolimnia in each of the lakes. As a result, during open-water conditions, mean dissolved methane concentrations in the water column were significantly (p < 0.0001) greater in 2012 than in 2013. In all of the lakes, mean methane concentrations under ice-covered conditions were significantly (p < 0.0001) greater than under open-water conditions, suggesting spring overturn is currently the largest annual methane flux to the atmosphere. As the climate continues to warm, shorter ice cover durations are expected, which may reduce the winter inventory of methane and lead to a decrease in total methane flux during ice melt. Under open-water conditions, greater heat income and warming of lake surface waters will lead to increased thermal stratification and hypolimnetic anoxia, which will consequently result in increased water column inventories of methane. This stored methane will be susceptible to emissions during fall overturn, which may result in a shift in greatest annual efflux of methane from spring melt to fall overturn. The results of this study suggest that interannual variation in ground-level air

  14. Supraglacial lakes on Himalayan debris-covered glacier (Invited)

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Fujita, K.

    2013-12-01

    Debris-covered glaciers are common in many of the world's mountain ranges, including in the Himalayas. Himalayan debris-covered glacier also contain abundant glacial lakes, including both proglacial and supraglacial types. We have revealed that heat absorption through supraglacial lakes was about 7 times greater than that averaged over the whole debris-covered zone. The heat budget analysis elucidated that at least half of the heat absorbed through the water surface was released with water outflow from the lakes, indicating that the warm water enlarge englacial conduits and produce internal ablation. We observed some portions at debris-covered area has caved at the end of melting season, and ice cliff has exposed at the side of depression. Those depression has suggested that roof of expanded water channels has collapsed, leading to the formation of ice cliffs and new lakes, which would accelerate the ablation of debris-covered glaciers. Almost glacial lakes on the debris-covered glacier are partially surrounded by ice cliffs. We observed that relatively small lakes had non-calving, whereas, calving has occurred at supraglacial lakes with fetch larger than 80 m, and those lakes expand rapidly. In the Himalayas, thick sediments at the lake bottom insulates glacier ice and lake water, then the lake water tends to have higher temperature (2-4 degrees C). Therefore, thermal undercutting at ice cliff is important for calving processes in the glacial lake expansion. We estimated and subaqueous ice melt rates during the melt and freeze seasons under simple geomorphologic conditions. In particular, we focused on valley wind-driven water currents in various fetches during the melt season. Our results demonstrate that the subaqueous ice melt rate exceeds the ice-cliff melt rate above the water surface when the fetch is larger than 20 m with the water temperature of 2-4 degrees C. Calculations suggest that onset of calving due to thermal undercutting is controlled by water

  15. Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008

    EPA Science Inventory

    Acidification of lakes and rivers is still an environmental concern despite reduced emissions of acidifying compounds. We analyzed trends in surface water chemistry of 173 acid-sensitive sites from 12 regions in Europe and North America. In 11 of 12 regions, non-marine sulphate (...

  16. Mechanisms Controlling Variability of Lake Salinity in Dune Environments in a Semi-arid Climate: The Nebraska Sand Hills (Invited)

    NASA Astrophysics Data System (ADS)

    Zlotnik, V. A.; Ong, J. T.; Swinehart, J. B.; Fritz, S. C.; Lenters, J. D.; Schmieder, J. U.; Lane, J. W.; Halihan, T.

    2010-12-01

    Shallow endorheic saline lakes are common in semi-arid environments in North America, Africa, Asia, and Australia. These lakes receive minimal surface runoff and are supported by groundwater seepage. A combination of hydrologic and geologic factors (regional groundwater flow, evaporation, precipitation, lake size, groundwater recharge, and geologic setting) may preclude seepage out of these lakes, even in the presence of ambient regional flow. Solutes from groundwater are captured by these lakes and become enriched over time by evaporation. The importance of understanding lake dynamics in these arid and semi-arid systems is increasing with societal concerns, including water availability and quality, the use of aquatic ecosystems by waterfowl and other biota, and dangers of dust emissions associated with lake desiccation. We consider the salinity of shallow lakes as a useful indicator of hydroclimatic factors operating at centennial and millennial scales. The Nebraska Sand Hills cover 58 000 km2 of the central Great Plains and are the largest dunefield in the Western Hemisphere. The grass-stabilized dunes attain heights up to 130 m and have been modified by soil development and erosion. In an area <7000 km2, there are ~400 lakes with surface areas >4 ha and depths <1 m. Annual lake evaporation exceeds precipitation by 600 mm, according to some estimates. The salinity of natural lakes in the Nebraska Sand Hills ranges from fresh (~0.3 g L-1) to hypersaline (>100 g L-1), with pH values as high as ~10. We assess the mechanisms that control lake salinity in a group of lakes with different subsurface flow regimes. Our methods combine aquifer coring, electromagnetic and electrical resistivity tomography geophysics, hydraulic testing, lakebed dating using 14C and optically stimulated luminescence, energy and water balance analysis, and salt crust and dust collection. Our theory and results show that terrain and water-table topography, lithology, and climate control the

  17. Electron Field Emission Properties of Textured Platinum Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    2002-01-01

    During ground tests of electric microthrusters and space tests of electrodynamic tethers the electron emitters must successfully operate at environmental pressures possibly as high as 1x10(exp -4) Pa. High partial pressures of oxygen, nitrogen, and water vapor are expected in such environments. A textured platinum surface was used in this work for field emission cathode assessments because platinum does not form oxide films at low temperatures. Although a reproducible cathode conditioning process did not evolve from this work, some short term tests for periods of 1 to 4 hours showed no degradation of emission current at an electric field of 8 V/mm and background pressures of about 1x10(exp -6) Pa. Increases of background pressure by air flow to about 3x10(exp -4) Pa yield a hostile environment for the textured platinum field emission cathode.

  18. Geohydrology of the lowland lakes area, Anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester

    1976-01-01

    Unconsolidated deposits, chiefly of glacial origin, make up the surficial geologic materials in the Anchorage lowland lakes area , the western part of the Anchorage glacial outwash plain. Postglacial accumulation of peat, commonly 5 to 10 feet thick, and the presence of ground water at or very near the surface combine to create the swamp-muskeg terrane of much of the area. Deeper, confined ground water is also present beneath thick silt and clay layers that underlie the surficial deposits. Domestic water supply for the lowland lakes area is provided largely by public-supply wells completed in the deep, confined aquifers. No large perennial streams traverse the area, thus streamflow is not a major parameter in the area 's natural water balance. The major uses of surface water are recreational, including fishing and boating at several of the larger lakes, and private and commercial aircraft operations at Hood-Spenard Lakes floatplane base. The hydrology and water balance of these lakes is complex. Water levels in some lakes appear to be closely related to adjacent ground-water levels. Other lakes are evidently perched above the local water table. The relation of lake level to adjacent ground-water level may vary along the shoreline of a single lake. The effect of residential development practices on lake basin water balance is not completely understood. At Sand Lake, the largest lake in this area of rapid urbanization, the water level has declined about 6 feet since the early 1960's. (Woodard-USGS)

  19. ARE COASTAL WETLAND-LAKE LINKAGES IMPORTANT?

    EPA Science Inventory

    Because coastal werlands typically comprise only a small percentage of the overall surface area in large lakes, an assumption has often been made that functional links between wetlands and the lake proper are of little significance. Recent investigations of functional linkages be...

  20. Separation of Atmospheric and Surface Spectral Features in Mars Global Surveyor Thermal Emission Spectrometer (TES) Spectra

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.

    2000-01-01

    We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.

  1. Long term (1987-2012) trends in water chemistry of acid sensitive Swedish lakes

    NASA Astrophysics Data System (ADS)

    Futter, Martyn; Valinia, Salar; Fölster, Jens

    2014-05-01

    Acidification of surface waters is a serious concern in Sweden. During the 1970s and 1980s, many surface waters in Sweden were acidified by long-range pollution. Legislated emissions reductions have led to the recovery of many water bodies but today, there are concerns about the possibility of re-acidification. Sweden is committed to a goal of natural acidification only (i.e. no anthropogenic acidification). Here, we present long term (1987-2012) trends in strong acid anion, base cation, organic carbon and alkalinity measurements. Lakes are defined as acidified in Sweden if pH is more than 0.4 units less than a reference (1860) pH estimated using MAGIC, a widely used process-based model of acidification. Using this criteria, many acid sensitive Swedish lakes are still acidified. A changing climate and more intensive forest harvesting may further delay the recovery from acidification. Average measured alkalinity in the 38 lakes presented here was <= 0.02 mekv/l between 2000-2012. Strong acid anion concentrations declined, primarily as a result of declines in sulfate. Chloride is now the dominant anion in many of these lakes. Base cations concentrations have declined less rapidly, leading to an increase in charge balance ANC. This increase in charge balance ANC has not been matched by an increase in measured alkalinity. Total organic carbon concentrations have increased significantly in many of these lakes, to the point where modeled organic acidity is now approximately equal to inorganic acidity. While the results presented here conform to acidification theory, they illustrate the value of long-term monitoring for assessing the effects of pollutant reduction measures, identifying new threats to water quality and corroborating model results. Most importantly, the long-term monitoring results presented here can be an important tool for informing environmental policy.

  2. Thermokarst lake methanogenesis along a complete talik profile

    DOE PAGES

    Heslop, J. K.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.; ...

    2015-07-24

    Here, thermokarst (thaw) lakes emit methane (CH 4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH 4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH 4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel thatmore » extends through ice-rich yedoma permafrost soils surrounding the lake and into underlying gravel. Our results showed CH 4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH 4 g dw –1 d –1; 125.9 ± 36.2 μg C–CH 4 g C −1 org d –1). High CH 4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH 4g dw –1 d –1; 59.60± 51.5 μg C–CH 4 g C −1 org d –1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH 4 production in the core. Lower rates of CH 4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH 4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH 4 production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH 4 production.« less

  3. Thermokarst lake methanogenesis along a complete talik profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heslop, J. K.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.

    Here, thermokarst (thaw) lakes emit methane (CH 4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH 4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH 4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel thatmore » extends through ice-rich yedoma permafrost soils surrounding the lake and into underlying gravel. Our results showed CH 4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH 4 g dw –1 d –1; 125.9 ± 36.2 μg C–CH 4 g C −1 org d –1). High CH 4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH 4g dw –1 d –1; 59.60± 51.5 μg C–CH 4 g C −1 org d –1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH 4 production in the core. Lower rates of CH 4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH 4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH 4 production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH 4 production.« less

  4. The Legacy of Arsenic Contamination from Giant Mine, Northern Canada: An Assessment of Impacts Based on Lake Water and Lake Sediment Core Analysis

    NASA Astrophysics Data System (ADS)

    Blais, J. M.; Korosi, J.

    2016-12-01

    The Giant Mine, which operated between 1948 and 2004 and located near the City of Yellowknife (Northwest Territories, Canada), has left a legacy of arsenic, antimony, and mercury contamination extending to the present day. Over 20,000 tonnes of arsenic trioxide dust was released from roaster stack emissions during its first 10 years of operations, leading to a significant contamination of the surrounding landscape. Here we present a summary of impacts by the recent contamination from Giant Mine on the surrounding region. A survey we conducted of 25 lakes of the region in 2010 revealed that most lake water within a 15 km radius of the roaster stack had arsenic concentrations in water > 10 mg/L, the standard for drinking water, with concentrations declining exponentially with increasing distance from the roaster stack. Sediment cores from lakes were collected near the Giant Mine roaster stack and radiometrically dated by 137Cs and excess 210Pb. Arsenic concentrations in these sediments increased by 1700% during the 1950s and 60s, consistent with the history of arsenic releases from roaster emissions. Correspondingly, pelagic diatoms and cladocerans were extirpated from one lake during this period, based on microfossil analysis of lake sediment deposits. Sediment core analysis further showed that this lake ecosystem has not recovered, even ten years after closure of the mine. Likely causes for the lack of recent recovery are explored with the use of sediment toxicity bioassays, using a novel paleo-ecotoxicological approach of using toxicity assessments of radiometrically dated lake sediment horizons.

  5. Tunable surface plasmon instability leading to emission of radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumbs, Godfrey; Donostia International Physics Center; Iurov, Andrii, E-mail: aiurov@chtm.unm.edu

    2015-08-07

    We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wavemore » vector q{sub c}. This finite q{sub c} gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength.« less

  6. VIRTIS on Venus Express: retrieval of real surface emissivity on global scales

    NASA Astrophysics Data System (ADS)

    Arnold, Gabriele E.; Kappel, David; Haus, Rainer; Telléz Pedroza, Laura; Piccioni, Giuseppe; Drossart, Pierre

    2015-09-01

    The extraction of surface emissivity data provides the data base for surface composition analyses and enables to evaluate Venus' geology. The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express mission measured, inter alia, the nightside thermal emission of Venus in the near infrared atmospheric windows between 1.0 and 1.2 μm. These data can be used to determine information about surface properties on global scales. This requires a sophisticated approach to understand and consider the effects and interferences of different atmospheric and surface parameters influencing the retrieved values. In the present work, results of a new technique for retrieval of the 1.0 - 1.2 μm - surface emissivity are summarized. It includes a Multi-Window Retrieval Technique, a Multi-Spectrum Retrieval technique (MSR), and a detailed reliability analysis. The MWT bases on a detailed radiative transfer model making simultaneous use of information from different atmospheric windows of an individual spectrum. MSR regularizes the retrieval by incorporating available a priori mean values, standard deviations as well as spatial-temporal correlations of parameters to be retrieved. The capability of this method is shown for a selected surface target area. Implications for geologic investigations are discussed. Based on these results, the work draws conclusions for future Venus surface composition analyses on global scales using spectral remote sensing techniques. In that context, requirements for observational scenarios and instrumental performances are investigated, and recommendations are derived to optimize spectral measurements for Venus' surface studies.

  7. Pronounced chemical response of Subarctic lakes to climate-driven losses in surface area

    USGS Publications Warehouse

    Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Heglund, Patricia J.; Rover, Jennifer R.; Koch, Joshua C.; Bertram, Mark R.

    2015-01-01

    Losses in lake area have been observed for several Arctic and Subarctic regions in recent decades, with unknown consequences for lake ecosystems. These reductions are primarily attributed to two climate-sensitive mechanisms, both of which may also cause changes in water chemistry: (i) increased imbalance of evaporation relative to inflow, whereby increased evaporation and decreased inflow act to concentrate solutes into smaller volumes; and (ii) accelerated permafrost degradation, which enhances sublacustrine drainage while simultaneously leaching previously frozen solutes into lakes. We documented changes in nutrients [total nitrogen (TN), total phosphorus (TP)] and ions (calcium, chloride, magnesium, sodium) over a 25 year interval in shrinking, stable, and expanding Subarctic lakes of the Yukon Flats, Alaska. Concentrations of all six solutes increased in shrinking lakes from 1985–1989 to 2010–2012, while simultaneously undergoing little change in stable or expanding lakes. This created a present-day pattern, much weaker or absent in the 1980s, in which shrinking lakes had higher solute concentrations than their stable or expanding counterparts. An imbalanced evaporation-to-inflow ratio (E/I) was the most likely mechanism behind such changes; all four ions, which behave semiconservatively and are prone to evapoconcentration, increased in shrinking lakes and, along with TN and TP, were positively related to isotopically derived E/I estimates. Moreover, the most conservative ion, chloride, increased >500% in shrinking lakes. Conversely, only TP concentration was related to probability of permafrost presence, being highest at intermediate probabilities. Overall, the substantial increases of nutrients (TN >200%, TP >100%) and ions (>100%) may shift shrinking lakes towards overly eutrophic or saline states, with potentially severe consequences for ecosystems of northern lakes.

  8. Stratigraphic framework and lake level history of Lake Kivu, East African Rift

    NASA Astrophysics Data System (ADS)

    Wood, Douglas A.; Scholz, Christopher A.

    2017-10-01

    Sediment cores and seismic reflection data acquired from the eastern basin of Lake Kivu, Rwanda reveal extensive limnologic variations due to changes in regional climate and basin structure. The eastern basin of the lake contains a sedimentary wedge which is > 1.5 km in thickness on its western side, and basal sediments are estimated to be at least 1.5 million years old. Sediments are likely to be thicker and older than this in the northern, Congolese basin of the lake. Above the ∼300 m iosbath only a thin layer of Holocene sediments are observed indication that this may have been the lake's high stand prior to that time. There are at least three erosional unconformities interpreted as desiccation or near-desiccation events which are estimated to have occurred at ∼475 ka, ∼100 ka, and ∼20 ka; the two most recent of these low stages likely developed during the African Megadrought and Last Glacial Maximum (LGM) periods. Following the LGM, the water levels rose to form a ∼100 m deep lake with its surface ∼370 m below the current lake level. The lake remained near that level for several thousand years and during this time the Virunga Volcanic Province expanded. At ∼12.2 ka a change to wetter climate conditions rapidly filled the lake to spill out of the Bukavu Bay basin southward toward Lake Tanganyika. Tephra sampled from the cores show that there have been at least 24 large local volcanic events since the early Holocene lake transgression.

  9. Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America

    NASA Astrophysics Data System (ADS)

    Rowe, H. D.; Dunbar, R. B.

    2004-09-01

    A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (˜85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.

  10. Simulating 2,368 temperate lakes reveals weak coherence in stratification phenology

    USGS Publications Warehouse

    Read, Jordan S.; Winslow, Luke A.; Hansen, Gretchen J. A.; Van Den Hoek, Jamon; Hanson, Paul C.; Bruce, Louise C; Markfort, Corey D.

    2014-01-01

    Changes in water temperatures resulting from climate warming can alter the structure and function of aquatic ecosystems. Lake-specific physical characteristics may play a role in mediating individual lake responses to climate. Past mechanistic studies of lake-climate interactions have simulated generic lake classes at large spatial scales or performed detailed analyses of small numbers of real lakes. Understanding the diversity of lake responses to climate change across landscapes requires a hybrid approach that couples site-specific lake characteristics with broad-scale environmental drivers. This study provides a substantial advancement in lake ecosystem modeling by combining open-source tools with freely available continental-scale data to mechanistically model daily temperatures for 2,368 Wisconsin lakes over three decades (1979-2011). The model accurately predicted observed surface layer temperatures (RMSE: 1.74°C) and the presence/absence of stratification (81.1% agreement). Among-lake coherence was strong for surface temperatures and weak for the timing of stratification, suggesting individual lake characteristics mediate some - but not all - ecologically relevant lake responses to climate.

  11. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    NASA Astrophysics Data System (ADS)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  12. The influence of irrigation water on the hydrology and lake water budgets of two small arid-climate lakes in Khorezm, Uzbekistan

    USGS Publications Warehouse

    Scott, J.; Rosen, Michael R.; Saito, L.; Decker, D.L.

    2011-01-01

    Little is known regarding the origins and hydrology of hundreds of small lakes located in the western Uzbekistan province of Khorezm, Central Asia. Situated in the Aral Sea Basin, Khorezm is a productive agricultural region, growing mainly cotton, wheat, and rice. Irrigation is provided by an extensive canal network that conveys water from the Amu Darya River (AD) throughout the province. The region receives on average 10 cm/year of precipitation, yet potential evapotranspiration exceeds this amount by about 15 times. It was hypothesized that the perennial existence of the lakes of interest depends on periodic input of excess irrigation water. This hypothesis was investigated by studying two small lakes in the region, Tuyrek and Khodjababa. In June and July 2008, surface water and shallow groundwater samples were collected at these lake systems and surrounding communities and analyzed for δ2H, δ18O, and major ion hydrochemistry to determine water sources. Water table and lake surface elevations were monitored, and the local aquifer characteristics were determined through aquifer tests. These data and climate data from a Class A evaporation pan and meteorological stations were used to estimate water budgets for both lakes. Lake evaporation was found to be about 0.7 cm/day during the study period. Results confirm that the waters sampled at both lake systems and throughout central Khorezm were evaporated from AD water to varying degrees. Together, the water budgets and stable isotope and major ion hydrochemistry data suggest that without surface water input from some source (i.e. excess irrigation water), these and other Khorezm lakes with similar hydrology may decrease in volume dramatically, potentially to the point of complete desiccation.

  13. 40 CFR 270.27 - Specific Part B information requirements for air emission controls for tanks, surface...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...

  14. 40 CFR 270.27 - Specific Part B information requirements for air emission controls for tanks, surface...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...

  15. 40 CFR 270.27 - Specific Part B information requirements for air emission controls for tanks, surface...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...

  16. 40 CFR 270.27 - Specific Part B information requirements for air emission controls for tanks, surface...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...

  17. 40 CFR 270.27 - Specific Part B information requirements for air emission controls for tanks, surface...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...

  18. Mechanisms influencing changes in lake area in Alaskan boreal forest

    USGS Publications Warehouse

    Roach, Jennifer K.; Griffith, Brad; Verbyla, David; Jones, Jeremy B.

    2011-01-01

    During the past ∼50 years, the number and area of lakes have declined in several regions in boreal forests. However, there has been substantial finer-scale heterogeneity; some lakes decreased in area, some showed no trend, and others increased. The objective of this study was to identify the primary mechanisms underlying heterogeneous trends in closed-basin lake area. Eight lake characteristics (δ18O, electrical conductivity, surface : volume index, bank slope, floating mat width, peat depth, thaw depth at shoreline, and thaw depth at the forest boundary) were compared for 15 lake pairs in Alaskan boreal forest where one lake had decreased in area since ∼1950, and the other had not. Mean differences in characteristics between paired lakes were used to identify the most likely of nine mechanistic scenarios that combined three potential mechanisms for decreasing lake area (talik drainage, surface water evaporation, and terrestrialization) with three potential mechanisms for nondecreasing lake area (subpermafrost groundwater recharge through an open talik, stable permafrost, and thermokarst). A priori expectations of the direction of mean differences between decreasing and nondecreasing paired lakes were generated for each scenario. Decreasing lakes had significantly greater electrical conductivity, greater surface : volume indices, shallower bank slopes, wider floating mats, greater peat depths, and shallower thaw depths at the forest boundary. These results indicated that the most likely scenario was terrestrialization as the mechanism for lake area reduction combined with thermokarst as the mechanism for nondecreasing lake area. Terrestrialization and thermokarst may have been enhanced by recent warming which has both accelerated permafrost thawing and lengthened the growing season, thereby increasing plant growth, floating mat encroachment, transpiration rates, and the accumulation of organic matter in lake basins. The transition to peatlands associated

  19. Limnological structure of Titan's hydrocarbon lakes and its astrobiological implication.

    PubMed

    Tokano, Tetsuya

    2009-03-01

    Cassini radar recently detected several putative liquid hydrocarbon lakes in the polar region of Saturn's moon Titan. Such lakes may contain organic sediments deposited from the atmosphere that would promote prebiotic-type chemistry driven by cosmic rays, the result of which could be the production of more complex molecules such as nitrogen-bearing organic polymer or azides. The physical properties of the lake and their temporal evolution under Titan's present climatic setting were investigated by means of a one-dimensional lake thermal stratification model. Lakes can undergo various evolutions, depending on the initial composition and depth of the lake and hydrocarbon abundance in the near-surface atmosphere. Pure methane ponds, which may occasionally form when heavy methane hailstones reach the surface, would be transitory in that they would evaporate, freeze up, and eventually dry up. On the other hand, lakes filled with a mixture of methane, ethane, and nitrogen would be more stable; and freezing or drying would not necessarily occur in most cases. Such lakes undergo a seasonal cycle of thermal stratification in spring and early summer and convective overturning in other seasons. The summer thermal stratification near the lake surface could be destabilized by bottom heating as a result of an enhanced geothermal heat flux, e.g., in the vicinity of cryovolcanoes. Most likely the composition of the lake and atmosphere would come to equilibrium by way of a small amount of evaporation, but the lake-atmosphere system could be repeatedly brought out of equilibrium by irregular precipitation. The viability of prebiotic-like chemistry in the lake may depend on many lake parameters, such as temperature, liquid or frozen state, and convective mixing. Moreover, convective mixing may drive suspension of solid acetylene and other sediments on the lake bottom and redistribution of dissolved gases, which might be relevant for putative life-forms that consume hydrogen and solid

  20. Increased atmospheric deposition of mercury in reference lakes near major urban areas

    USGS Publications Warehouse

    Van Metre, P.C.

    2012-01-01

    Atmospheric deposition of Hg is the predominant pathway for Hg to reach sensitive ecosystems, but the importance of emissions on near-field deposition remains unclear. To better understand spatial variability in Hg deposition, mercury concentrations were analyzed in sediment cores from 12 lakes with undeveloped watersheds near to (<50 km) and remote from (>150 km) several major urban areas in the United States. Background and focusing corrected Hg fluxes and flux ratios (modern to background) in the near-urban lakes (68 ?? 6.9 ??g m -2 yr -1 and 9.8 ?? 4.8, respectively) greatly exceed those in the remote lakes (14 ?? 9.3 ??g m -2 yr -1 and 3.5 ?? 1.0) and the fluxes are strongly related to distance from the nearest major urban area (r 2 = 0.87) and to population and Hg emissions within 50-100 km of the lakes. Comparison to monitored wet deposition suggests that dry deposition is a major contributor of Hg to lakes near major urban areas. ?? 2011 Elsevier Ltd. All rights reserved.

  1. Is there a pattern to oxbow lake geomorphic evolution?

    NASA Astrophysics Data System (ADS)

    Dieras, P.; Constantine, J. A.

    2012-04-01

    Oxbow lakes are located along the floodplain corridor and created after meander cutoff. They are of high ecological value as they provide relatively calm wetlands which are regularly supplied with nutrients during floods. The persistence of oxbow lakes has been observed to vary from decades to several hundreds of years but little is known about the controls on their longevity. This study aims to ascertain if there is a common pattern in the water decrease of oxbow lakes and to define the controls on the lakes' longevity. The longevity of 37 oxbow lakes from 7 rivers from different parts of the world has been studied. The Towy River (Wales), the Ain River (France) and the Sacramento River (CA, USA) are largely dominated by oxbow lakes created after chute cutoff which is the incision of a chute across the floodplain; whereas the Mississippi River (MS, USA), the Kansas River (KS, USA), the Red River (MN, USA) and the Otter Tail River (MN, USA) show a large number of neck cutoffs which occur when two meanders migrate into one another. The water surface area decrease has been measured for all the sites using aerial photographs. Results revealed that the longevity of oxbow lakes is significantly affected by the type of cutoff. The lakes formed by chute cutoff lose very rapidly most of the water surface area of the initial channel as it is reduce by >80% within the first 10 to 30 years following cutoff for most sites. The water surface area of chute cutoff shows a logarithmic decrease with a fast decrease rate following cutoff, followed by a much slower loss of water surface area. The change in water decrease rate appears to be related to the moment of obstruction of the former channel entrance by sediment aggradation. In contrast, lakes formed by neck cutoff persist for much longer in the landscape and lose 40 to 60% within the first decades but then they maintain this water surface area for longer than a century. The cutoff process is therefore the main control on the

  2. Sediment deposition and sources into a Mississippi River floodplain lake; Catahoula Lake, Louisiana

    USGS Publications Warehouse

    Latuso, Karen D.; Keim, Richard F.; King, Sammy L.; Weindorf, David C.; DeLaune, Ronald D.

    2017-01-01

    Floodplain lakes are important wetlands on many lowland floodplains of the world but depressional floodplain lakes are rare in the Mississippi River Alluvial Valley. One of the largest is Catahoula Lake, which has existed with seasonally fluctuating water levels for several thousand years but is now in an increasingly hydrologically altered floodplain. Woody vegetation has been encroaching into the lake bed and the rate of this expansion has increased since major human hydrologic modifications, such as channelization, levee construction, and dredging for improvement of navigation, but it remains unknown what role those modifications may have played in altering lake sedimentation processes. Profiles of thirteen 137Cs sediment cores indicate sedimentation has been about 0.26 cm y− 1 over the past 60 years and has been near this rate since land use changes began about 200 years ago (210Pb, and 14C in Tedford, 2009). Carbon sequestration was low (10.4 g m− 2 y− 1), likely because annual drying promotes mineralization and export. Elemental composition (high Zr and Ti and low Ca and K) and low pH of recent (<~60 y) or surface sediments suggest Gulf Coastal Plain origin, but below the recent sediment deposits, 51% of sediment profiles showed influence of Mississippi River alluvium, rich in base cations such as K+, Ca2 +, and Mg2 +. The recent shift to dominance of Coastal Plain sediments on the lake-bed surface suggests hydrologic modification has disconnected the lake from sediment-bearing flows from the Mississippi River. Compared to its condition prior to hydrologic alterations that intensified in the 1930s, Catahoula Lake is about 15 cm shallower and surficial sediments are more acidic. Although these results are not sufficient to attribute ecological changes directly to sedimentological changes, it is likely the altered sedimentary and hydrologic environment is contributing to the increased dominance of woody vegetation.

  3. Multiple climate regimes in an idealized lake-ice-atmosphere model

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  4. Holocene evolution of the Tonle Sap Lake: valley network infill and rates of sedimentation in Cambodia's Great Lake

    NASA Astrophysics Data System (ADS)

    Best, J.; Darby, S. E.; Langdon, P. G.; Hackney, C. R.; Leyland, J.; Parsons, D. R.; Aalto, R. E.; Marti, M.

    2017-12-01

    Tonle Sap Lake, the largest freshwater lake in SE Asia (c. 120km long and 35 km wide), is a vital ecosystem that provides 40-60% of the protein for the population of Cambodia. The lake is fed by flow from the Mekong River that causes the lake rise in level by c. 8m during monsoonal and cyclone-related floods, with drainage of the lake following the monsoon. Hydropower dam construction on the Mekong River has raised concerns as to the fragility of the Tonle Sap habitat due to any changing water levels and sedimentation rates within the lake. This paper details results of sub-bottom profiling surveys of Tonle Sap Lake in October 2014 that detailed the stratigraphy of the lake and assessed rates of infill. An Innomar Parametric Echo Sounder (PES) was used to obtain c. 250 km of sub-bottom profiles, with penetration up to 15m below the lake bed at a vertical resolution of c. 0.20m. These PES profiles were linked to cores from the north of the lake and previous literature. The PES profiles reveal a network of valleys, likely LGM, with relief up to c. 15-20m, that have been infilled by a suite of Holocene sediments. The valley surface is picked out as a strong reflector throughout the lake, and displays a series of valleys that are up to c. 15m deep and commonly 50-200m wide, although some of the largest valleys are 1.2km in width. Modelling of channel network incision during LGM conditions generates landscapes consistent with our field observations. The Tonle Sap valley network is infilled by sediments that show firstly fluvial and/or subaerial slope sedimentation, and then by extensive, parallel-bedded, lacustrine sedimentation. Lastly, the top c. 1m of sedimentation is marked by a distinct basal erosional surface that can be traced over much of the Tonle Sap Lake, and that is overlain by a series of parallel PES reflections. This upper sediment layer is interpreted to represent sedimentation in the Tonle Sap lake due to sediment suspension settling but after a period

  5. Comparison of in-situ measurements and satellite-derived surface emissivity over Italian volcanic areas

    NASA Astrophysics Data System (ADS)

    Silvestri, Malvina; Musacchio, Massimo; Cammarano, Diego; Fabrizia Buongiorno, Maria; Amici, Stefania; Piscini, Alessandro

    2016-04-01

    In this work we compare ground measurements of emissivity collected during dedicated fields campaign on Mt. Etna and Solfatara of Pozzuoli volcanoes and acquired by means of Micro-FTIR (Fourier Thermal Infrared spectrometer) instrument with the emissivity obtained by using single ASTER data (Advanced Spaceborne Thermal Emission and Reflection Radiometer, ASTER 05) and the ASTER emissivity map extract from ASTER Global Emissivity Database (GED), released by LP DAAC on April 2, 2014. The database was developed by the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology. The database includes land surface emissivity derived from ASTER data acquired over the contiguous United States, Africa, Arabian Peninsula, Australia, Europe, and China. Through this analysis we want to investigate the differences existing between the ASTER-GED dataset (average from 2000 to 2008 seasoning independent) and fall in-situ emissivity measurement. Moreover the role of different spatial resolution characterizing ASTER and MODIS, 90mt and 1km respectively, by comparing them with in situ measurements, is analyzed. Possible differences can be due also to the different algorithms used for the emissivity estimation, Temperature and Emissivity Separation algorithm for ASTER TIR band( Gillespie et al, 1998) and the classification-based emissivity method (Snyder and al, 1998) for MODIS. Finally land surface temperature products generated using ASTER-GED and ASTER 05 emissivity are also analyzed. Gillespie, A. R., Matsunaga, T., Rokugawa, S., & Hook, S. J. (1998). Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113-1125. Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19

  6. Spatial variability of organic matter molecular composition and elemental geochemistry in surface sediments of a small boreal Swedish lake

    NASA Astrophysics Data System (ADS)

    Tolu, Julie; Rydberg, Johan; Meyer-Jacob, Carsten; Gerber, Lorenz; Bindler, Richard

    2017-04-01

    The composition of sediment organic matter (OM) exerts a strong control on biogeochemical processes in lakes, such as those involved in the fate of carbon, nutrients and trace metals. While between-lake spatial variability of OM quality is increasingly investigated, we explored in this study how the molecular composition of sediment OM varies spatially within a single lake and related this variability to physical parameters and elemental geochemistry. Surface sediment samples (0-10 cm) from 42 locations in Härsvatten - a small boreal forest lake with a complex basin morphometry - were analyzed for OM molecular composition using pyrolysis gas chromatography mass spectrometry for the contents of 23 major and trace elements and biogenic silica. We identified 162 organic compounds belonging to different biochemical classes of OM (e.g., carbohydrates, lignin and lipids). Close relationships were found between the spatial patterns of sediment OM molecular composition and elemental geochemistry. Differences in the source types of OM (i.e., terrestrial, aquatic plant and algal) were linked to the individual basin morphometries and chemical status of the lake. The variability in OM molecular composition was further driven by the degradation status of these different source pools, which appeared to be related to sedimentary physicochemical parameters (e.g., redox conditions) and to the molecular structure of the organic compounds. Given the high spatial variation in OM molecular composition within Härsvatten and its close relationship with elemental geochemistry, the potential for large spatial variability across lakes should be considered when studying biogeochemical processes involved in the cycling of carbon, nutrients and trace elements or when assessing lake budgets.

  7. Laser-induced fluorescence emission (L.I.F.E.): in situ nondestructive detection of microbial life in the ice covers of Antarctic lakes.

    PubMed

    Storrie-Lombardi, Michael C; Sattler, Birgit

    2009-09-01

    Laser-induced fluorescence emission (L.I.F.E.) images were obtained in situ following 532 nm excitation of cryoconite assemblages in the ice covers of annual and perennially frozen Antarctic lakes during the 2008 Tawani International Expedition to Schirmacher Oasis and Lake Untersee in Dronning Maud Land, Antarctica. Laser targeting of a single millimeter-scale cryoconite results in multiple neighboring excitation events secondary to ice/air interface reflection and refraction in the bubbles surrounding the primary target. Laser excitation at 532 nm of cyanobacteria-dominated assemblages produced red and infrared autofluorescence activity attributed to the presence of phycoerythrin photosynthetic pigments. The method avoids destruction of individual target organisms and does not require the disruption of either the structure of the microbial community or the surrounding ice matrix. L.I.F.E. survey strategies described may be of interest for orbital monitoring of photosynthetic primary productivity in polar and alpine glaciers, ice sheets, snow, and lake ice of Earth's cryosphere. The findings open up the possibility of searching from either a rover or from orbit for signs of life in the polar regions of Mars and the frozen regions of exoplanets in neighboring star systems.

  8. Response of water temperatures and stratification to changing climate in three lakes with different morphometry

    NASA Astrophysics Data System (ADS)

    Magee, Madeline R.; Wu, Chin H.

    2017-12-01

    Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal

  9. Energy Input is a Primary Controller of Methane Bubbling in Subarctic Lakes (Invited)

    NASA Astrophysics Data System (ADS)

    Wik, M.; Thornton, B.; Bastviken, D.; MacIntyre, S.; Varner, R. K.; Crill, P. M.

    2013-12-01

    Methane (CH4) emission from inland waters is suggested to be equal in greenhouse gas strength to approximately 25% of the carbon (C) uptake of all land-based ecosystems combined. A substantial amount of CH4 escapes lake surfaces via ebullition (bubbling), which is considered a highly heterogeneous and difficult pathway to predict. We use four summer seasons of ebullition data from three subarctic lakes to demonstrate striking (r2 of up to 0.997) linear relationships between cumulative bubble CH4 flux from June to September and four easily measurable, energy-related parameters of the lakes (solar shortwave input, number of ice-free days and shallow and deep water sediment temperature). In our lakes, there is essentially no ebullition at low temperatures, but ebullition increases exponentially above 6°C. It appears that persistent gas releases cannot start immediately after ice out due to a delay in the recharge of enough gas to form bubbles. Lack of continuous sampling procedures has until now made it difficult to identify relationships and confirm that heat energy transfer alone is a strong driver for ebullition that is independent of possible seasonal changes in organic substrate. In contrast to earlier studies highlighting the extreme variability of ebullition, we suggest that gas venting is a highly predictable process if measurements are made in a consistent manner across many different lake zones and over long time periods. Future changes to energy input to lakes and ponds may thus predictably alter the CH4 source strength of water bodies across northern landscapes.

  10. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2006

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2006 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2006 is called 'water year 2006.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2006.' Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available through the World Wide Web on the Internet. The Wisconsin Water Science Center's home page is at http://wi.water.usgs.gov/. Information on the

  11. Seasonal and Latitudinal Variations in Dissolved Methane from 42 Lakes along a North-South Transect in Alaska

    NASA Astrophysics Data System (ADS)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K. C.; Anthony, P.; Thalasso, F.

    2013-12-01

    Armando Sepulveda-Jauregui,* Katey M. Walter Anthony,* Karla Martinez-Cruz,* ** Peter Anthony,* and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Northern lakes are important reservoirs and sources to the atmosphere of methane (CH4), a potent greenhouse gas. It is estimated that northern lakes (> 55 °N) contribute about 20% of the total global lake methane emissions, and that emissions from these lakes will increase with climate warming. Temperature rise enhances methane production directly by providing the kinetic energy to methanogenesis, and indirectly by supplying organic matter from thawing permafrost. Warmer lakes also store less methane since methane's solubility is inversely related to temperature. Alaskan lakes are located in three well-differentiated permafrost classes: yedoma permafrost with high labile carbon stocks, non-yedoma permafrost with lower carbon stocks, and areas without permafrost, also with generally lower carbon stocks. We sampled dissolved methane from 42 Alaskan lakes located in these permafrost cover classes along a north-south Alaska transect from Prudhoe Bay to the Kenai Peninsula during open-water conditions in summer 2011. We sampled 26 of these lakes in April, toward the end of the winter ice-covered period. Our results indicated that the largest dissolved methane concentrations occurred in interior Alaska thermokarst lakes formed in yedoma-type permafrost during winter and summer, with maximal concentrations of 17.19 and 12.76 mg L-1 respectively. In these lakes, emission of dissolved gases as diffusion during summer and storage release in spring were 18.4% and 17.4% of the annual emission budget, while ebullition (64.2 %) comprised the rest. Dissolved oxygen was inversely correlated with dissolved methane concentrations in both seasons; the

  12. Landscape influences on climate-related lake shrinkage at high latitudes

    USGS Publications Warehouse

    Roach, Jennifer K.; Griffith, Brad; Verbyla, David

    2013-01-01

    Climate-related declines in lake area have been identified across circumpolar regions and have been characterized by substantial spatial heterogeneity. An improved understanding of the mechanisms underlying lake area trends is necessary to predict where change is most likely to occur and to identify implications for high latitude reservoirs of carbon. Here, using a population of ca. 2300 lakes with statistically significant increasing and decreasing lake area trends spanning longitudinal and latitudinal gradients of ca. 1000 km in Alaska, we present evidence for a mechanism of lake area decline that involves the loss of surface water to groundwater systems. We show that lakes with significant declines in lake area were more likely to be located: (1) in burned areas; (2) on coarser, well-drained soils; and (3) farther from rivers compared to lakes that were increasing. These results indicate that postfire processes such as permafrost degradation, which also results from a warming climate, may promote lake drainage, particularly in coarse-textured soils and farther from rivers where overland flooding is less likely and downslope flow paths and negative hydraulic gradients between surface water and groundwater systems are more common. Movement of surface water to groundwater systems may lead to a deepening of subsurface flow paths and longer hydraulic residence time which has been linked to increased soil respiration and CO2 release to the atmosphere. By quantifying relationships between statewide coarse resolution maps of landscape characteristics and spatially heterogeneous responses of lakes to environmental change, we provide a means to identify at-risk lakes and landscapes and plan for a changing climate.

  13. Modeling of reduced effective secondary electron emission yield from a velvet surface

    DOE PAGES

    Swanson, Charles; Kaganovich, Igor D.

    2016-12-05

    Complex structures on a material surface can significantly reduce total secondary electron emission from that surface. A velvet is a surface that consists of an array of vertically standing whiskers. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at the bottom of the structure and on the sides of the velvet whiskers. We performed numerical simulations and developed an approximate analytical model that calculates the net secondary electron emission yield from a velvet surface as a function of the velvet whisker length and packing density, and the angle of incidence of primary electrons. We foundmore » that to suppress secondary electrons, the following condition on dimensionless parameters must be met: (π/2) DΑ tan θ >> 1, where theta is the angle of incidence of the primary electron from the normal, D is the fraction of surface area taken up by the velvet whisker bases, and A is the aspect ratio, A = h/r, the ratio of height to radius of the velvet whiskers. We find that velvets available today can reduce the secondary electron yield by 90% from the value of a flat surface. As a result, the values of optimal velvet whisker packing density that maximally suppresses the secondary electron emission yield are determined as a function of velvet aspect ratio and the electron angle of incidence.« less

  14. Sources and Fluxes of Atmospheric Methane from Lakes in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Akerstrom, F.; Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Eisner, W. R.

    2014-12-01

    Climate warming in the Arctic may result in release of carbon dioxide and/or methane from thawing permafrost soils, resulting in a positive feedback to warming. Permafrost thaw may also result in release of methane from previously trapped natural gas. The Arctic landscape is approximately 50% covered by shallow permafrost lakes, and these environments may serve as bellwethers for climate change - carbon cycle feedbacks, since permafrost thaw is generally deeper under lakes than tundra soils. Since 2011, the Circum-Arctic Lakes Observation Network (CALON) project has documented landscape-scale variability in physical and biogeochemical processes of Arctic lakes in permafrost terrain, including carbon cycle feedbacks to climate warming. Here we present a dataset of concentrations, isotope ratios (13C and 2H), and atmospheric fluxes of methane from lakes in Arctic Alaska. Concentrations of methane in lake water ranged from 0.3 to 43 micrograms per liter, or between 6 and 750 times supersaturated with respect to air. Isotopic measurements of dissolved methane indicated that most of the lakes had methane derived from anaerobic organic matter decomposition, but that some lakes may have a small source of methane from fossil fuel sources such as natural gas or coal beds. Concurrent measurements of methane fluxes and dissolved methane concentrations in summer of 2014 will aid in translating routine dissolved measurements into fluxes, and will also elucidate the relative importance of diffusive versus ebulliative fluxes. It is essential that measurements of methane emissions from Arctic lakes be continued long-term to determine whether methane emissions are on the rise, and whether warming of the lakes leads to increased venting of fossil fuel methane from enhanced thaw of permafrost beneath the lakes.

  15. Studies of Quaternary saline lakes-III. Mineral, chemical, and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969-1971

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; McLaughlin, R.J.

    1987-01-01

    As a consequence of the 1969-1970 flooding of normally dry Owens Lake, a 2.4-m-deep lake formed and 20% of the 2-m-thick salt bed dissolved in it. Its desiccation began August 1969, and salts started crystallizing September 1970, ending August 1971. Mineralogic, brine-composition, and stable-isotope data plus field observations showed that while the evolving brine composition established the general crystallization timetable and range of primary and secondary mineral assemblages, it was the daily, monthly, and seasonal temperature changes that controlled the details of timing and mineralogy during this depositional process. Deuterium analyses of lake brine, interstitial brine, and hydrated saline phases helped confirm the sequence of mineral crystallizations and transformations, and they documented the sources and temperatures of waters involved in the reactions. Salts first crystallized as floating rafts on the lake surface. Natron and mirabilite, salts whose solubilities decrease greatly with lowering temperatures, crystallized late at night in winter, when surface-water temperatures reached their minima; trona, nahcolite, burkeite, and halite, salts with solubilities less sensitive to temperature, crystallized during the afternoon in summer, when surface salinities reached their maxima. However, different temperatures were generally associated with crystallization (at the surface) and accumulation (on the lake floor) because short-term temperature changes were transmitted to surface and bottom waters at different rates. Consequently, even when solubilities were exceeded at the surface, salts were preserved or not as a function of bottom-water temperatures. Halite, a nearly temperature-insensitive salt, was always preserved. Monitoring the lake-brine chemistry and mineralogy of the accumulating salts shows: (1) An estimated 0.9 ?? 106 tons of CO2 was released to the atmosphere or consumed by the lake's biomass prior to most salt crystallization. (2) After

  16. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon- Implications for emplacement and surface modification

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-01-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The ~7,700 calendar year B.P. climactic eruption of Mount Mazama, USA vented ~50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Mazama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ±1 m lateral and ±4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow- parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of pit craters caused by phreatic explosions, fractures and cracks caused by extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented

  17. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon - Implications for deposition and surface modification

    NASA Astrophysics Data System (ADS)

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-08-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The 7700 calendar year B.P. climactic eruption of Mount Manama, USA, vented 50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Manama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ± 1 m lateral and ± 4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow-parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of closely spaced pits caused by phreatic explosions, fractures and cracks due to extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies

  18. Spatial Variation of Surface Soil Available Phosphorous and Its Relation with Environmental Factors in the Chaohu Lake Watershed

    PubMed Central

    Gao, Yongnian; Gao, Junfeng; Chen, Jiongfeng

    2011-01-01

    The study presented in this paper attempts to evaluate the spatial pattern of soil available phosphorus, as well as the relation between soil available phosphorus and environment factors including elevation, slope, precipitation, percentage of cultivated land, percentage of forest land, percentage of construction land and NDVI using statistical methods and GIS spatial analysis techniques. The results showed that the Spline Tension method performed the best in the prediction of soil available phosphorus in the Chaohu Lake watershed. The spatial variation of surface soil available phosphorus was high in Chaohu Lake watershed and the upstream regions around Chaohu Lake, including the west of Chaohu lake (e.g., southwest of Feixi county, east of Shucheng county and north of Lujiang county) and to the north of Chaohu Lake (e.g., south of Hefei city, south of Feidong county, southwest of Juchao district), had the highest soil available phosphorus content. The mean and standard deviation of soil available phosphorus content gradually decreased as the elevation or slope increased. The cultivated land comprised 60.11% of the watershed and of that land 65.63% belonged to the medium to very high SAP level classes, and it played a major role in SAP availability within the watershed and a potential source of phosphorus to Chaohu Lake resulting in eutrophication. Among the land use types, paddy fields have some of the highest maximum values and variation of coefficients. Subwatershed scale soil available phosphorus was significantly affected by elevation, slope, precipitation, percentage of cultivated land and percentage of forest land and was decided by not only these environmental factors but also some other factors such as artificial phosphorus fertilizer application. PMID:21909308

  19. Salt Lake City, Utah 2002

    NASA Image and Video Library

    2017-12-08

    Salt Lake City, Utah, Winter 2001 The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake. This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands

  20. Water-Quality Characterization of Surface Water in the Onondaga Lake Basin, Onondaga County, New York, 2005-08

    USGS Publications Warehouse

    Coon, William F.; Hayhurst, Brett A.; Kappel, William M.; Eckhardt, David A.V.; Szabo, Carolyn O.

    2009-01-01

    Water-resources managers in Onondaga County, N.Y., have been faced with the challenge of improving the water-quality of Onondaga Lake. To assist in this endeavor, the U.S. Geological Survey undertook a 3-year basinwide study to assess the water quality of surface water in the Onondaga Lake Basin. The study quantified the relative contributions of nonpoint sources associated with the major land uses in the basin and also focused on known sources (streams with large sediment loads) and presumed sinks (Onondaga Reservoir and Otisco Lake) of sediment and nutrient loads, which previously had not been evaluated. Water samples were collected and analyzed for nutrients and suspended sediment at 26 surface-water sites and 4 springs in the 285-square-mile Onondaga Lake Basin from October 2005 through December 2008. More than 1,060 base-flow, stormflow, snowmelt, spring-water, and quality-assurance samples collected during the study were analyzed for ammonia, nitrite, nitrate-plus-nitrite, ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment. The concentration of total suspended solids was measured in selected samples. Ninety-one additional samples were collected, including 80 samples from 4 county-operated sites, which were analyzed for suspended sediment or total suspended solids, and 8 precipitation and 3 snowpack samples, which were analyzed for nutrients. Specific conductance, salinity, dissolved oxygen, and water temperature were periodically measured in the field. The mean concentrations of selected constituents in base-flow, stormflow, and snowmelt samples were related to the land use or land cover that either dominated the basin or had a substantial effect on the water quality of the basin. Almost 40 percent of the Onondaga Lake Basin is forested, 30 percent is in agricultural uses, and almost 21 percent, including the city of Syracuse, is in developed uses. The data indicated expected relative differences among the land types for

  1. Summit Lake landslide and geomorphic history of Summit Lake basin, northwestern Nevada

    USGS Publications Warehouse

    Curry, B. Brandon; Melhorn, W.N.

    1990-01-01

    The Summit Lake landslide, northwestern Nevada, composed of Early Miocene pyroclastic debris, Ashdown Tuff, and basalt and rhyolite of the Black Rock Range, blocked the upper Soldier Creek-Snow Creek drainage and impounded Summit Lake sometimes prior to 7840 yr B.P. The slide covers 8.2 km2 and has geomorphic features characteristic of long run-out landslides, such as lobate form, longitudinal and transverse ridges, low surface gradient (7.1 ??), and preservation of original stratigraphic position of transported blocks. However, estimated debris volume is the smallest reported (2.5 ?? 105 m3) for a landslide of this type. The outflow channel of the Summit Lake basin was a northward-flowing stream valley entrenched by Mahogany Creek. Subsequent negative tectonic adjustment of the basin by about 35 m, accompanied by concommitant progradation of a prominent alluvial fan deposited by Mahogany Creek, argues for a probable diversion of drainage from the Alvord basin southward into the Lahontan basin. The landslide occurred while the creek flowed southward, transferring about 147 km2 of watershed from the Lahontan basin back to the Alvord basin. Overflow northward occurred during high stands of Pluvial Lake Parman in the basin; otherwise, under drier climates, the Summit Lake basin has been closed. Within large depressions on the slide surface, the ca. 6800 yr old Mazama Bed and other sediments have buried a weakly developed soil. Disseminated humus in the soil yields an age of 7840 ?? 310 yr B.P. Absence of older tephra (such as St. Helens M) brackets the slide age between 7840 and 19,000 yr B.P. Projectile points found on the highest strandlines of Pluvial Lake Parman suggest a ca 8700 yr B.P. age by correlation with cultural artifacts and radiocarbon ages from nearby Last Supper Cave, Nevada. Organic matter accumulation in landslide soils suggests ages ranging from 9100 to 16,250 yr B.P. Estimation of the age of the slide from morphologic data for the isolated Summit

  2. Understanding the behavior of carbon dioxide and surface energy fluxes in semiarid Salt Lake Valley, Utah, USA

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Prathap

    This dissertation reports the findings from the Salt Lake Valley flux study. The Salt Lake Valley flux study was designed to improve our understanding of the complex land-atmosphere interactions in urban areas. The flux study used the eddy covariance technique to quantify carbon dioxide and surface energy budget in the semiarid Salt Lake Valley. Apart from quantifying fluxes, the study has also added new insight into the nature of turbulent scalar transport in urban areas and has addressed some of the complications in using Eddy Covariance technique in urban areas. As part of this experiment, eddy fluxes of CO2 and surface energy fluxes were measured at two sites, with distinct urban landforms; One site was located in a suburban neighborhood with substantial vegetative cover, prototypical of many residential neighborhoods in the valley. The other CO2 site was in a preurban surrounding that resembled the Salt Lake Valley before it was urbanized. The two sites were intentionally chosen to illustrate the impact of urbanization on CO 2 and surface energy flux cycles. Results indicate that the suburban site acted as a sink of CO2 during the midday period due to photosynthesis and acted as a source of CO2 during the evening and nighttime periods. The vegetative cover around the suburban site also had a significant impact on the surface energy fluxes. Contribution from latent heat flux was substantially high at the suburban site during the summer months compared to sensible heat. The turbulence investigation found that the general behavior of turbulence was very much influenced by local factors and the statistics did not always obey Monin-Obukhov Similarity parameters. This investigation also found that the scalar (co)spectra observed at the suburban site were characterized by multiple peaks and were different compared to (co)spectra reported over forest and crop canopies. The study also observed multiscale CO2 transport at the suburban site during the convective period

  3. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data

    NASA Astrophysics Data System (ADS)

    Kohfahl, Claus; Rodriguez, Miguel; Fenk, Cord; Menz, Christian; Benavente, Jose; Hubberten, Hans; Meyer, Hanno; Paul, Liisa; Knappe, Andrea; López-Geta, Juan Antonio; Pekdeger, Asaf

    2008-03-01

    SummaryThis research reports the characterisation of ground- and surface-water interaction in the Fuente de Piedra Salt lake basin in southern Spain by a combined approach using hydraulic, hydrogeochemical and stable isotope data. During three sampling campaigns (February 2004, 2005 and October 2005) ground- and surface-water samples were collected for stable isotope studies ( 18O, D) and for major and minor ion analysis. Hydraulic measurements at multilevel piezometers were carried out at four different locations around the lake edge. Conductivity logs were performed at four piezometers located along a profile at the northern lake border and at two deeper piezometers in the Miocene basin at a greater distance from the lake. To describe processes that control the brine evolution different hydrogeochemical simulations were performed. Hydrogeochemical data show a variety of brines related to thickness variations of lacustrine evaporites around the lake. Salinity profiles in combination with stable isotope and hydraulic data indicate the existence of convection cells and recycled brines. Furthermore restricted ground-water inflow into the lake was detected. Dedolomitisation processes were identified by hydrogeochemical simulations and different brine origins were reproduced by inverse modelling approaches.

  4. Hydrologic Analyses of Acidic and Alkaline Lakes

    NASA Astrophysics Data System (ADS)

    Chen, C. W.; Gherini, S. A.; Peters, N. E.; Murdoch, P. S.; Newton, R. M.; Goldstein, R. A.

    1984-12-01

    Woods and Panther lakes in the Adirondack Mountains of New York respond differently to the same acidic deposition. A mathematical model study has shown that lake water becomes acidic when hydrologic conditions force precipitation to flow to the lakes as surface flow or as lateral flow through the shallow organic soil horizon. Hydrographic data, capacity of flow through inorganic soil horizons, runoff recession curves, and groundwater level fluctuations of Woods and Panther lake basins provide independent evidence to support the thesis that the acidic state of a lake depends on the paths the tributary water takes as it passes thorough the terrestrial system. It is concluded thot Panther Lake is more alkaline than Woods Lake, because a larger proportion of the precipitation falling on the basin passes through deeper mineral soil horizons.

  5. Spatiotemporal variability of carbon dioxide and methane in a eutrophic lake

    NASA Astrophysics Data System (ADS)

    Loken, Luke; Crawford, John; Schramm, Paul; Stadler, Philipp; Stanley, Emily

    2017-04-01

    Lakes are important regulators of global carbon cycling and conduits of greenhouse gases to the atmosphere; however, most efflux estimates for individual lakes are based on extrapolations from a single location. Within-lake variability in carbon dioxide (CO2) and methane (CH4) arises from differences in water sources, physical mixing, and local transformations; all of which can be influenced by anthropogenic disturbances and vary at multiple temporal and spatial scales. During the 2016 open water season (March - December), we mapped surface water concentrations of CO2 and CH4 weekly in a eutrophic lake (Lake Mendota, WI, USA), which has a predominately agricultural and urban watershed. In total we produced 26 maps of each gas based on 10,000 point measurements distributed across the lake surface. Both gases displayed relatively consistent spatial patterns over the stratified period but exhibited remarkable heterogeneity on each sample date. CO2 was generally undersaturated (global mean: 0.84X atmospheric saturation) throughout the lake's pelagic zone and often differed near river inlets and shorelines. The lake was routinely extremely supersaturated with CH4 (global mean: 105X atmospheric saturation) with greater concentrations in littoral areas that contained organic-rich sediments. During fall mixis, both CO2 and CH4 increased substantially, and concentrations were not uniform across the lake surface. CO2 and CH4 were higher on the upwind side of the lake due to upwelling of enriched hypolimnetic water. While the lake acted as a modest sink for atmospheric CO2 during the stratified period, the lake released substantial amounts of CO2 during turnover and continually emitted CH4, offsetting any reduction in atmospheric warming potential from summertime CO2 uptake. These data-rich maps illustrate how lake-wide surface concentrations and lake-scale efflux estimates based on single point measurements diverge from spatially weighted calculations. Both gases are not

  6. Drastic lake level changes of Lake Van (eastern Turkey) during the past ca. 600 ka: climatic, volcanic and tectonic control

    NASA Astrophysics Data System (ADS)

    Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.

    2013-12-01

    Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers

  7. Improving the indoor air quality by using a surface emissions trap

    NASA Astrophysics Data System (ADS)

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.

  8. Bioavailability and uptake of smelter emissions in freshwater zooplankton in northeastern Washington, USA lakes using Pb isotope analysis and trace metal concentrations.

    PubMed

    Child, A W; Moore, B C; Vervoort, J D; Beutel, M W

    2018-07-01

    The upper Columbia River and associated valley systems are highly contaminated with metal wastes from nearby smelting operations in Trail, British Columbia, Canada (Teck smelter), and to a lesser extent, Northport, Washington, USA (Le Roi smelter). Previous studies have investigated depositional patterns of airborne emissions from these smelters, and documented the Teck smelter as the primary metal contamination source. However, there is limited research directed at whether these contaminants are bioavailable to aquatic organisms. This study investigates whether smelter derived contaminants are bioavailable to freshwater zooplankton. Trace metal (Zn, Cd, As, Sb, Pb and Hg) concentrations and Pb isotope compositions of zooplankton and sediment were measured in lakes ranging from 17 to 144 km downwind of the Teck smelter. Pb isotopic compositions of historic ores used by both smelters are uniquely less radiogenic than local geologic formations, so when zooplankton assimilate substantial amounts of smelter derived metals their compositions deviate from local baseline compositions toward ore compositions. Sediment metal concentrations and Pb isotope compositions in sediment follow significant (p < 0.001) negative exponential and sigmoidal patterns, respectively, as distance from the Teck smelting operation increases. Zooplankton As, Cd, and Sb contents were related to distance from the Teck smelter (p < 0.05), and zooplankton Pb isotope compositions suggest As, Cd, Sb and Pb from historic and current smelter emissions are biologically available to zooplankton. Zooplankton from lakes within 86 km of the Teck facility display isotopic evidence that legacy ore pollution is biologically available for assimilation. However, without water column data our study is unable to determine if legacy contaminants are remobilized from lake sediments, or erosional pathways from the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Groundwater–surface-water exchange and the geologic setting of northern Minnesota's lakes, wetlands, and streams—Modern-day relevance of Tom Winter's legacy

    USGS Publications Warehouse

    Rosenberry, Donald O.; Melchior, Robert C.; Jones, Perry M.; Strietz, Andrew; Barr, Kelton D.; Lee, David R.; Piegat, James J.

    2011-01-01

    Tom Winter spent nearly 50 years conducting research in earth science, and he specialized in the exchange between groundwater and surface water. Tom's highly productive career began in Minnesota. This fi eld trip revisits many of the places where Tom conducted his early research and demonstrates the continuing relevance of that research. Stops and topics include the groundwater infl uence on the record low stage of White Bear Lake, the contribution of groundwater to continually rising water levels in an abandoned open-pit iron mine, hydrogeology of the Shingobee headwaters aquatic ecosystem research site, hydrogeology of Lake Sallie, geology associated with the Pillager water gap, and the hydrogeology of Little Rock Lake.

  10. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    NASA Technical Reports Server (NTRS)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  11. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    NASA Astrophysics Data System (ADS)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  12. DMS emissions from Sphagnum-dominated wetlands

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Demello, William Zamboni; Bayley, Suzanne E.

    1992-01-01

    The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S was investigated by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in trophic status. Experiments were conducted in wetlands in New Hampshire (NH), and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods, and GC with flame photometric detection. Emissions of DMS dominated fluxes. In NH, DMS fluxes were greater than 1.6 micromol/m(sup -2)d(sup -1) in early summer, 1989 when temperatures were warm and the water table was approximately 5 cm below the surface. These rates are several-fold faster than average oceanic rates of DMS emission. A rapid drop in the water table resulted in a 6-fold decrease in DMS emissions in late July. In 1990, a new beaver dam kept water levels above the surface and S emissions were much lower than during 1989. The elimination of the beaver and a drop in the water table in August produced a rapid increase in S gas emissions. Emissions of DMS were highest in the most oligotrophic areas. Mire 239 (ELA) was irrigated with sulfuric and nitric acids to simulate acid rain. S emissions were determined before and after an acidification event in control and experimental areas in both minerotrophic and oligotrophic regions. Emissions of DMS were higher in the acidified areas compared to unacidified controls. Emissions were also much higher in the oligotrophic regions compared to the minerotrophic ones. Despite the wide differences in S gas fluxes (20-fold), it was difficult to determine whether acidification or variations in trophic status was not responsible for differences in S gas emissions. DMS emitted into the atmosphere was not derived from the water table but originated

  13. Customizing WRF-Hydro for the Laurentian Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Pei, L.; Gochis, D.; Mason, L.; Sampson, K. M.; Dugger, A. L.; Read, L.; McCreight, J. L.; Xiao, C.; Lofgren, B. M.; Anderson, E. J.; Chu, P. Y.

    2017-12-01

    To advance the state of the art in regional hydrological forecasting, and to align with operational deployment of the National Water Model, a team of scientists has been customizing WRF-Hydro (the Weather Research and Forecasting model - Hydrological modeling extension package) to the entirety (including binational land and lake surfaces) of the Laurentian Great Lakes basin. Objectives of this customization project include opererational simulation and forecasting of the Great Lakes water balance and, in the short-term, research-oriented insights into modeling one- and two-way coupled lake-atmosphere and near-shore processes. Initial steps in this project have focused on overcoming inconsistencies in land surface hydrographic datasets between the United States and Canada. Improvements in the model's current representation of lake physics and stream routing are also critical components of this effort. Here, we present an update on the status of this project, including a synthesis of offline tests with WRF-Hydro based on the newly developed Great Lakes hydrographic data, and an assessment of the model's ability to simulate seasonal and multi-decadal hydrological response across the Great Lakes.

  14. Methane bubbling from northern lakes: present and future contributions to the global methane budget.

    PubMed

    Walter, Katey M; Smith, Laurence C; Chapin, F Stuart

    2007-07-15

    Large uncertainties in the budget of atmospheric methane (CH4) limit the accuracy of climate change projections. Here we describe and quantify an important source of CH4 -- point-source ebullition (bubbling) from northern lakes -- that has not been incorporated in previous regional or global methane budgets. Employing a method recently introduced to measure ebullition more accurately by taking into account its spatial patchiness in lakes, we estimate point-source ebullition for 16 lakes in Alaska and Siberia that represent several common northern lake types: glacial, alluvial floodplain, peatland and thermokarst (thaw) lakes. Extrapolation of measured fluxes from these 16 sites to all lakes north of 45 degrees N using circumpolar databases of lake and permafrost distributions suggests that northern lakes are a globally significant source of atmospheric CH4, emitting approximately 24.2+/-10.5Tg CH4yr(-1). Thermokarst lakes have particularly high emissions because they release CH4 produced from organic matter previously sequestered in permafrost. A carbon mass balance calculation of CH4 release from thermokarst lakes on the Siberian yedoma ice complex suggests that these lakes alone would emit as much as approximately 49000Tg CH4 if this ice complex was to thaw completely. Using a space-for-time substitution based on the current lake distributions in permafrost-dominated and permafrost-free terrains, we estimate that lake emissions would be reduced by approximately 12% in a more probable transitional permafrost scenario and by approximately 53% in a 'permafrost-free' Northern Hemisphere. Long-term decline in CH4 ebullition from lakes due to lake area loss and permafrost thaw would occur only after the large release of CH4 associated thermokarst lake development in the zone of continuous permafrost.

  15. Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates. PMID:25373871

  16. Observations of the convective plume of a lake under cold-air advective conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.; Chen, E.

    1978-01-01

    Moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold-air advective conditions. Point temperature measurements north and south of the lake and data obtained from a thermal scanner flown at 1.6 km indicate that surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C under conditions of moderate winds (about 4 m/s). No substantial temperature effects were observed with surface wind speed less than 1 m/s. Fluxes of sensible and latent heat from Lake Apopka were calculated from measurements of lake temperature, net radiation, relative humidity, and air temperature above the lake. Bulk transfer coefficients and the Bowen ratio were calculated and found to be in agreement with reported data for nonadvective conditions.

  17. Antarctic lakes (above and beneath the ice sheet): Analogues for Mars

    NASA Technical Reports Server (NTRS)

    Rice, J. W., Jr.

    1992-01-01

    The perennial ice covered lakes of the Antarctic are considered to be excellent analogues to lakes that once existed on Mars. Field studies of ice covered lakes, paleolakes, and polar beaches were conducted in the Bunger Hills Oasis, Eastern Antarctica. These studies are extended to the Dry Valleys, Western Antarctica, and the Arctic. Important distinctions were made between ice covered and non-ice covered bodies of water in terms of the geomorphic signatures produced. The most notable landforms produced by ice covered lakes are ice shoved ridges. These features form discrete segmented ramparts of boulders and sediments pushed up along the shores of lakes and/or seas. Sub-ice lakes have been discovered under the Antarctic ice sheet using radio echo sounding. These lakes occur in regions of low surface slope, low surface accumulations, and low ice velocity, and occupy bedrock hollows. The presence of sub-ice lakes below the Martian polar caps is possible. The discovery of the Antarctic sub-ice lakes raises possibilities concerning Martian lakes and exobiology.

  18. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  19. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  20. Evaluating COSMO's lake module (FLake) for an East-African lake using a comprehensive set of lake temperature profiles

    NASA Astrophysics Data System (ADS)

    Thiery, W.; Martynov, A.; Darchambeau, F.; Demuzere, M.; van Lipzig, N.

    2012-04-01

    The African great lakes are of utmost importance for the local economy (fishing), as well as being essential to the survival of the local people. During last decades, these lakes have been changing rapidly and their evolution is a major concern. Hence, it is important to correctly represent them in regional climate models for simulations over tropical Africa. However, so far lake models have been developed and tested primarily for boreal conditions. In this study, for the first time the freshwater lake model FLake is evaluated over East-Africa, more specifically over lake Kivu. Meteorological observations from January 2003 to December 2008 from an automatic weather station in Bukavu, DRC, are used to drive the standalone version of FLake. For the evaluation, a unique dataset is used which contains over 200 temperature profiles recorded since 2002. Results show that FLake in its default configuration is very successful at reproducing both the timing and magnitude of the seasonal cycle at 5 m depth. Flake captures that this seasonality is regulated by the water vapour pressure, which constrains evaporation except during summer (JJA). A positive bias of ~1 K is attributed to the driving data, which are collected in the city and are therefore expected to mirror higher temperatures and lower wind speeds compared to the lake surface. The evaluation also showed that driving FLake with Era-Interim from the nearest pixel does only slightly deteriorate the model performance. Using forcing fields from the Canadian Regional Climate Model, version 5 (CRCM5) simulation output gives similar performance as Era-Interim. Furthermore, a drawback of FLake is that it does not account for salinity and its effect upon lake stratification, and therefore requires artificial initial conditions for both lake depth and bottom temperature in order to reproduce the correct mixing regime in lake Kivu. Further research will therefore aim at improving FLake's representation of tropical lakes.