Sample records for lambda c-2625 baryons

  1. Beauty Baryons at CDF and DO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryemadhi, Abaz

    The results from Tevatron in the baryonic sector are presented. The lifetime of {lambda}b {yields} J/{psi}{lambda}, the observation of hadronic decay of {lambda}b {yields} {lambda}c{pi}, the semileptonic decays of {lambda}b {yields} {lambda}c{mu}{nu}, the hadronization of the b-baryons, and the {lambda}b decays to {lambda}b {yields} p{pi} and {lambda}b {yields} pK are discussed. These measurements paint a nice picture of our understanding of the beauty baryons.

  2. Measurement of the branching fraction $${\\mathcal{B}}(\\Lambda^0_b\\rightarrow \\Lambda^+_c\\pi^-\\pi^+\\pi^-)$$ at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.

    We report an analysis of the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} decay in a data sample collected by the CDF II detector at the Fermilab Tevatron corresponding to 2.4 fb{sup -1} of integrated luminosity. We reconstruct the currently largest samples of the decay modes {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} (with {Lambda}{sub c}(2595){sup +} {yields} {Lambda}{sub c}{sup +}{pi}{sup +}{pi}{sup -}), {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} (with {Lambda}{sub c}(2625){sup +} {yields} {Lambda}{sub c}{sup +}{pi}{sup +}{pi}{sup -}), {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} (with {Sigma}{sub c}(2455){sup ++} {yields} {Lambda}{submore » c}{sup +}{pi}{sup +}), and {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455)0{pi}{sup +}{pi}{sup -} (with {Sigma}{sub c}(2455)0 {yields} {Lambda}{sub c}{sup +}{pi}{sup -}) and measure the branching fractions relative to the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -} branching fraction. We measure the ratio {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})/ {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -})=3.04 {+-} 0.33(stat){sub -0.55}{sup +0.70}(syst) which is used to derive {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})=(26.8{sub -11.2}{sup +11.9}) x 10{sup -3}.« less

  3. A Study of Double-Charm and Charm-Strange Baryons inElectron-Positron Annihilations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Adam J.; /SLAC

    2007-10-15

    In this dissertation I describe a study of double-charm and charm-strange baryons based on data collected with the BABAR Detector at the Stanford Linear Accelerator Center. In this study I search for new baryons and make precise measurements of their properties and decay modes. I seek to verify and expand upon double-charm and charm-strange baryon observations made by other experiments. The BABAR Detector is used to measure subatomic particles that are produced at the PEP-II storage rings. I analyze approximately 300 million e+e- {yields} c{bar c} events in a search for the production of double-charm baryons. I search for themore » double-charm baryons {Xi}{sup +}{sub cc} (containing the quarks ccd) and {Xi}{sup ++}{sub cc} (ccu) in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +} and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}{pi}{sup +}, respectively. No statistically significant signals for their production are found, and upper limits on their production are determined. Statistically significant signals for excited charm-strange baryons are observed with my analysis of approximately 500 million e+e- {yields} c{bar c} events. The charged charm-strange baryons {Xi}{sub c}(2970){sup +}, {Xi}{sub c}(3055){sup +}, {Xi}{sub c}(3123){sup +} are found in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}, the same decay mode used in the {Xi}{sup +}{sub cc} search. The neutral charm-strange baryon {Xi}{sub c}(3077){sup 0} is observed in decays to {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}. I also search for excited charm-strange baryon decays to {Lambda}{sup +}{sub c}K{sub 8}, {Lambda}{sup +}{sub c}K{sup -}, {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}{pi}{sup +}, and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup -}{pi}{sup +}. No significant charm-strange baryon signals a f h these decay modes. For each excited charm-strange baryon state that I observe, I measure its mass, natural width (lifetime), and production rate. The properties of these excited charm-strange baryons and their decay modes provide constraints for phenomenological models of quark interactions through quantum chromodynamics. My discovery of the two new charm-strange baryons {Xi}{sub c}(3055){sup +} and {Xi}{sub c}(3123){sup +} influences our theoretical understanding of charm-strange baryon states.« less

  4. Study of excited charm-strange baryons with evidence for new baryons {xi}{sub c}(3055){sup +} and {xi}{sub c}(3123){sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B.; Bona, M.; Boutigny, D.

    We present a study of excited charm-strange baryon states produced in e{sup +}e{sup -} annihilations at or near a center-of-mass energy of 10.58 GeV, in a data sample with an integrated luminosity of 384 fb{sup -1} recorded with the BABAR detector at the PEP-II e{sup +}e{sup -} storage rings at the Stanford Linear Accelerator Center. We study strong decays of charm-strange baryons to {lambda}{sub c}{sup +}K{sub S}{sup 0}, {lambda}{sub c}{sup +}K{sup -}, {lambda}{sub c}{sup +}K{sup -}{pi}{sup +}, {lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}, {lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}, and {lambda}{sub c}{sup +}K{sup -}{pi}{sup +}{pi}{sup -}. This study confirmsmore » the existence of the states {xi}{sub c}(2980){sup +}, {xi}{sub c}(3077){sup +}, and {xi}{sub c}(3077){sup 0}, with a more accurate determination of the {xi}{sub c}(2980){sup +} mass and width. We also present evidence for two new states, {xi}{sub c}(3055){sup +} and {xi}{sub c}(3123){sup +}, decaying through the intermediate-resonant modes {sigma}{sub c}(2455){sup ++}K{sup -} and {sigma}{sub c}(2520){sup ++}K{sup -}, respectively. For each of these baryons, we measure the yield in each final state, determine the statistical significance, and calculate the product of the production cross section and branching fractions. We also measure the masses and widths of these excited charm-strange baryons.« less

  5. Observation of the Heavy Baryons Sigma b and Sigma b*.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-11-16

    We report an observation of new bottom baryons produced in pp collisions at the Tevatron. Using 1.1 fb(-1) of data collected by the CDF II detector, we observe four Lambda b 0 pi+/- resonances in the fully reconstructed decay mode Lambda b 0-->Lambda c + pi-, where Lambda c+-->pK* pi+. We interpret these states as the Sigma b(*)+/- baryons and measure the following masses: m Sigma b+=5807.8 -2.2 +2.0(stat.)+/-1.7(syst.) MeV/c2, m Sigma b- =5815.2+/-1.0(stat.)+/-1.7(syst.) MeV/c2, and m(Sigma b*)-m(Sigma b)=21.2-1.9 +2.0(stat.)-0.3+0.4(syst.) MeV/c2.

  6. Observation of the baryonic B decay B{sup 0}{yields}{Lambda}{sub c}{sup +}{Lambda}K{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lees, J. P.; Poireau, V.; Tisserand, V.

    2011-10-01

    We report the observation of the baryonic B decay B{sup 0}{yields}{Lambda}{sub c}{sup +}{Lambda}K{sup -} with a significance larger than 7 standard deviations based on 471x10{sup 6} BB pairs collected with the BABAR detector at the PEP-II storage ring at SLAC. We measure the branching fraction for the decay B{sup 0}{yields}{Lambda}{sub c}{sup +}{Lambda}K{sup -} to be (3.8{+-}0.8{sub stat}{+-}0.2{sub sys}{+-}1.0{sub {Lambda}}{sub c}{sup +})x10{sup -5}. The uncertainties are statistical, systematic, and due to the uncertainty in the {Lambda}{sub c}{sup +} branching fraction. We find that the {Lambda}{sub c}{sup +}K{sup -} invariant-mass distribution shows an enhancement above 3.5 GeV/c{sup 2}.

  7. Measurements of the properties of Λ c ( 2595 ) , Λ c ( 2625 ) , Σ c ( 2455 ) , and Σ c ( 2520 ) baryons

    DOE PAGES

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...

    2011-07-13

    We report measurements of the resonance properties of Λ c(2595) + and Λ c(2595) + baryons in their decays to Λ c +π +π - as well as Σ c(2455) ++,0 and Σ c(2455) ++,0 baryons in their decays to Λ c +π ± final states. These measurements are performed using data corresponding to 5.2 fb -1 of integrated luminosity from pp̄ collisions at √s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. In addition, exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averagesmore » for Σ c states, and significantly smaller uncertainties than the world averages for excited Λ c + states.« less

  8. First observation and measurement of the resonant structure of the lambda_b->lambda_c pi-pi+pi- decay mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzurri, P.; Barria, P.; Ciocci, M.A.

    The authors present the first observation of the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} decay using data from an integrated luminosity of approximately 2.4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. They also present the first observation of the resonant decays {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup 0} {pi}{sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -}more » {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} and {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, and measure their relative branching ratios.« less

  9. Observation of the {omega}{sub b}{sup -} baryon and measurement of the properties of the {xi}{sub b}{sup -} and {omega}{sub b}{sup -} baryons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; Maki, T.; Mehtala, P.

    We report the observation of the bottom, doubly-strange baryon {omega}{sub b}{sup -} through the decay chain {omega}{sub b}{sup -}{yields}J/{psi}{omega}{sup -}, where J/{psi}{yields}{mu}{sup +}{mu}{sup -}, {omega}{sup -}{yields}{lambda}K{sup -}, and {lambda}{yields}p{pi}{sup -}, using 4.2 fb{sup -1} of data from pp collisions at {radical}(s)=1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0x10{sup -8}, or 5.5 Gaussian standard deviations. The {omega}{sub b}{sup -} mass is measured to be 6054.4{+-}6.8(stat){+-}0.9(syst) MeV/c{sup 2}. The lifetime of the {omega}{sub b}{sup -} baryon is measured to be 1.13{sub -0.40}{sup +0.53}(stat){+-}0.02(syst) ps. In addition,more » for the {xi}{sub b}{sup -} baryon we measure a mass of 5790.9{+-}2.6(stat){+-}0.8(syst) MeV/c{sup 2} and a lifetime of 1.56{sub -0.25}{sup +0.27}(stat){+-}0.02(syst) ps. Under the assumption that the {xi}{sub b}{sup -} and {omega}{sub b}{sup -} are produced with similar kinematic distributions to the {lambda}{sub b}{sup 0} baryon, we find ({sigma}({xi}{sub b}{sup -})B({xi}{sub b}{sup -}{yields}J/{psi}{xi}{sup -})/{sigma}({lambda}{sub b}{sup 0})B({lambda}{sub b}{sup 0}{yields}J/{psi}{lambda}))=0.167{sub -0.025}{sup +0.037}(stat){+-}0.012(syst) and ({sigma}({omega}{sub b}{sup -})B({omega}{sub b}{sup -}{yields}J/{psi}{omega}{sup -})/{sigma}({lambda}{sub b}{sup 0})B({lambda}{sub b}{sup 0}{yields}J/{psi}{lambda}))=0.045{sub -0.012}{sup +0.017}(stat){+-} 0.004(syst) for baryons produced with transverse momentum in the range of 6-20 GeV/c.« less

  10. First measurement of the ratio of branching fractions B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; Maki, T.; Mehtala, P.

    2009-02-01

    This article presents the first measurement of the ratio of branching fractions B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -}). Measurements in two control samples using the same technique B(B{sup 0}{yields}D{sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D{sup +}{pi}{sup -}) and B(B{sup 0}{yields}D*(2010){sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D*(2010){sup +}{pi}{sup -}) are also reported. The analysis uses data from an integrated luminosity of approximately 172 pb{sup -1} of pp collisions at {radical}(s)=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The relative branching fractions are measured to be (B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{supmore » +}{pi}{sup -}))=16.6{+-}3.0(stat){+-}1.0(syst)(+2.6/-3.4)(PDG){+-}0.3 (EBR), (B(B{sup 0}{yields}D{sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D{sup +}{pi}{sup -}))9.9{+-}1.0(stat){+-}0.6(syst){+-}0.4(PDG){+-}0.5(EBR), and (B(B{sup 0}{yields}D*(2010){sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D*(2010){sup +}{pi}{sup -}))=16.5{+-}2.3(stat){+-} 0.6(syst){+-}0.5(PDG){+-}0.8(EBR). The uncertainties are from statistics (stat), internal systematics (syst), world averages of measurements published by the Particle Data Group or subsidiary measurements in this analysis (PDG), and unmeasured branching fractions estimated from theory (EBR), respectively. This article also presents measurements of the branching fractions of four new {lambda}{sub b}{sup 0} semileptonic decays: {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}(2595){sup +}{mu}{sup -}{nu}{sub {mu}}, {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}(2625){sup +}{mu}{sup -}{nu}{sub {mu}}, {lambda}{sub b}{sup 0}{yields}{sigma}{sub c}(2455){sup 0}{pi}{sup +}{mu}{sup -}{nu}{sub {mu}}, and {lambda}{sub b}{sup 0}{yields}{sigma}{sub c}(2455){sup ++}{pi}{sup -}{mu}{sup -}{nu}{sub {mu}}, relative to the branching fraction of the {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}} decay. Finally, the transverse-momentum distribution of {lambda}{sub b}{sup 0} baryons produced in pp collisions is measured and found to be significantly different from that of B{sup 0} mesons, which results in a modification in the production cross-section ratio {sigma}{sub {lambda}{sub b}{sup 0}}/{sigma}{sub B{sup 0}} with respect to the CDF I measurement.« less

  11. Semileptonic decays of charmed and beauty baryons with heavy sterile neutrinos in the final state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramazanov, Sabir; Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 117312

    We obtain tree-level estimates of various differential branching ratios of heavy baryon decays with massive sterile neutrinos {nu}{sub x} in the final state. Generally, charmed baryons are found to be less promising than charmed mesons, in contrast to b hadrons. In the latter case, branching ratios of beauty mesons and baryons into sterile neutrinos are of the same order. As a consequence, at high energies beauty baryons give contribution to sterile neutrino production comparable to the contribution of beauty mesons (up to about 15%). Experimental limits on active-to-sterile mixing are quite strong for neutrinos lighter than D mesons but formore » heavier neutrinos they are weaker. As an example, for neutrino masses in the range 2 GeV < or approx. m{sub {nu}{sub x}} < or approx. 2.5 GeV, current data imply that the bounds on {lambda}{sub b}-hyperon branching ratios into sterile neutrinos are Br({lambda}{sub b}{yields}{lambda}{sub c}+e{sup -}+{nu}{sub x}) < or approx. 1.3x10{sup -5}-1.7x10{sup -6} and Br({lambda}{sub b}{yields}{lambda}{sub c}+{mu}{sup -}+{nu}{sub x}) < or approx. 3.9x10{sup -7}-1.4x10{sup -7}.« less

  12. Study of B{yields}{lambda}{sub c}{lambda}{sub c} and B{yields}{lambda}{sub c}{lambda}{sub c}K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, H.-Y.; Hsiao, Y.-K.; Chua, C.-K.

    2009-06-01

    We study the doubly charmful two-body and three-body baryonic B decays B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -} and B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K. As pointed out before, a naive estimate of the branching ratio O(10{sup -8}) for the latter decay is too small by 3 to 4 orders of magnitude compared to experiment. Previously, it has been shown that a large enhancement for the {lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K production can occur due to a charmoniumlike resonance (e.g. X(4630) discovered by Belle) with a mass near the {lambda}{sub c}{lambda}{sub c} threshold. Motivated by the BABAR's observation of a resonance in themore » {lambda}{sub c}K system with a mass of order 2930 MeV, we study in this work the contribution to B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K from the intermediate state {xi}{sub c}(2980) which is postulated to be a first positive-parity excited D-wave charmed baryon state. Assuming that a soft qq quark pair is produced through the {sigma} and {pi} meson exchanges in the configuration for B{yields}{xi}{sub c}(2980){lambda}{sub c} and {lambda}{sub c}{lambda}{sub c}, it is found that branching ratios of B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K and B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -} are of order 3.5x10{sup -4} and 5x10{sup -5}, respectively, in agreement with experiment except that the prediction for the {lambda}{sub c}{lambda}{sub c}K{sup -} is slightly smaller. In conjunction with our previous analysis, we conclude that the enormously large rate of B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K arises from the resonances {xi}{sub c}(2980) and X(4630)« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartfiel, Brandon; /SLAC

    The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -}more » in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.« less

  14. Measurement of exclusive baryon-antibaryon decays of {chi}{sub cJ} mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, P.; Rademacker, J.; Asner, D. M.

    2008-08-01

    Using a sample of 2.59x10{sup 7} {psi}(2S) decays collected by the CLEO-c detector, we present results of a study of {chi}{sub cJ} (J=0, 1, 2) decays into baryon-antibaryon final states. We present the world's most precise measurements of the {chi}{sub cJ}{yields}pp and {chi}{sub cJ}{yields}{lambda}{lambda} branching fractions, and the first measurements of {chi}{sub c0} decays to other hyperons. These results illuminate the decay mechanism of the {chi}{sub c} states.

  15. Observation of the {Xi}{sub b}{sup 0} Baryon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; Brucken, E.; Devoto, F.

    The observation of the bottom, strange baryon {Xi}{sub b}{sup 0} through the decay chain {Xi}{sub b}{sup 0}{yields}{Xi}{sub c}{sup +}{pi}{sup -}, where {Xi}{sub c}{sup +}{yields}{Xi}{sup -}{pi}{sup +}{pi}{sup +}, {Xi}{sup -}{yields}{Lambda}{pi}{sup -}, and {Lambda}{yields}p{pi}{sup -}, is reported by using data corresponding to an integrated luminosity of 4.2 fb{sup -1} from pp collisions at {radical}(s)=1.96 TeV recorded with the Collider Detector at Fermilab. A signal of 25.3{sub -5.4}{sup +5.6} candidates is observed whose probability of arising from a background fluctuation is 3.6x10{sup -12}, corresponding to 6.8 Gaussian standard deviations. The {Xi}{sub b}{sup 0} mass is measured to be 5787.8{+-}5.0(stat){+-}1.3(syst) MeV/c{sup 2}. In addition,more » the {Xi}{sub b}{sup -} baryon is observed through the process {Xi}{sub b}{sup -}{yields}{Xi}{sub c}{sup 0}{pi}{sup -}, where {Xi}{sub c}{sup 0}{yields}{Xi}{sup -}{pi}{sup +}, {Xi}{sup -}{yields}{Lambda}{pi}{sup -}, and {Lambda}{yields}p{pi}{sup -}.« less

  16. Observation of Exclusive B Decays to Final States Containing a Charmed Baryon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Colin P.

    2003-05-23

    Using data collected in the region of the {Upsilon}(4S) resonance with the CLEO-II detector, they report on the first observation of exclusive decays of the B meson to final states with a charmed baryon. They have measured the branching fractions {Beta}(B{sup -} {yields} {Lambda}{sub c}{sup +}{bar p}{pi}{sup -}) = (0.62{sub -0.20}{sup +0.23} {+-} 0.11 {+-} 0.10) x 10{sup -3} and {Beta}({bar B}{sup 0} {yields} {Lambda}{sub c}{sup +}{bar p}{pi}{sup +}{pi}{sup -}) = (1.33{sub -0.42}{sup +0.46} {+-} 0.31 {+-} 0.21) x 10{sup -3}. In addition, they report upper limits for final states of the form {bar B} {yields} {Lambda}{sub c}{sup +}{bar p}(n{pi})more » and {Lambda}{sub c}{sup +}{bar p}(n{pi}){pi}{sup 0} where (n{pi}) denotes up to four charged pions.« less

  17. {lambda}{sub b}{yields}p, {lambda} transition form factors from QCD light-cone sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Yuming; Lue Caidian; Shen Yuelong

    2009-10-01

    Light-cone sum rules for the {lambda}{sub b}{yields}p, {lambda} transition form factors are derived from the correlation functions expanded by the twist of the distribution amplitudes of the {lambda}{sub b} baryon. In terms of the {lambda}{sub b} three-quark distribution amplitude models constrained by the QCD theory, we calculate the form factors at small momentum transfers and compare the results with those estimated in the conventional light-cone sum rules (LCSR) and perturbative QCD approaches. Our results indicate that the two different versions of sum rules can lead to the consistent numbers of form factors responsible for {lambda}{sub b}{yields}p transition. The {lambda}{sub b}{yields}{lambda}more » transition form factors from LCSR with the asymptotic {lambda} baryon distribution amplitudes are found to be almost 1 order larger than those obtained in the {lambda}{sub b}-baryon LCSR, implying that the preasymptotic corrections to the baryonic distribution amplitudes are of great importance. Moreover, the SU(3) symmetry breaking effects between the form factors f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup p} and f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup {lambda}} are computed as 28{sub -8}{sup +14}% in the framework of {lambda}{sub b}-baryon LCSR.« less

  18. Measurement of the lifetimes of the charmed D/sup +/, F/sup +/ mesons and. lambda. /sub c//sup +/ charmed baryon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Errede, Steven Michael

    1981-01-01

    An experiment was performed in the 350 GeV wide-band neutrino beam at the Fermi National Accelerator Laboratory using a high-precision, high-efficiency hybrid emulsion/neutrino spectrometer, with which the mean lifetimes of the D/sup +/, D/sup 0/, and F/sup +/ mesons and ..lambda../sub c//sup +/ baryon were measured. 1829 neutrino interactions were reconstructed with a vertex within the emulsion fiducial volume, 1242 of which were subsequently found in the emulsion. In 49 of the found neutrino events a charmed particle, produced at the primary vertex, was observed to decay within the emulsion volume. The mean lifetimes of charmed particles were determined frommore » the reconstructed decays of 5 D/sup +/, 15 D/sup 0/, 3 F/sup +/ mesons: and 8 ..lambda../sub c//sup +/ baryons: tau/sub D/sup +// = 10.3/sub -4.2//sup +10.3/ x 10/sup -13/ sec; tau/sub D/sup 0// = 2.3/sub -0.5//sup +0.8/ x 10/sup -13/ sec; tau/sub f/sup +// = 2.0/sub -0.8//sup +1.8/ x 10/sup -13/ sec; and tau/sub ..lambda..//sub c//sup +/ = 2.3/sub -0.6//sup +1.0/ x 10/sup -13/ sec. The charmed particle masses measured in this experiment were: M/sub D/sup +// = 1851 +- 20 MeV/c/sup 2/; M/sub D/sup 0// = 1856 +- 15 MeV/c/sup 2/; M/sub F/sup +// = 2042 +- 33 MeV/c/sup 2/; M/sub ..lambda..//sub c//sup +/ = 2265 +- 30 MeV/c/sub 2/.« less

  19. Measurement of the Branching Ratio Lambda_c+ -> p pi+ pi- (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Hinojosa, Guillermo; /San Luis Potosi U.

    2008-03-01

    The confirmation of the Cabibbo-suppressed charm baryon decay mode {Lambda}{sub c}{sup +} {yields} p{pi}{sup +}{pi}{sup -} is reported. All data analyzed are from SELEX, a fixed target experiment at Fermilab that took data during 1996 and 1997, mainly with a 600 GeV/c {Sigma}{sup -} beam. The branching ratio of the Cabibbo-suppressed decay mode {Lambda}{sub c}{sup +} {yields} p{pi}{sup +}{pi}{sup -} relative to the Cabibbo-favored mode {Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +} is measured to be: {Gamma}({Lambda}{sub c}{sup +} {yields} p{pi}{sup +}{pi}{sup -})/{Gamma}({Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +}) = 0.103 {+-} 0.022.

  20. Heavy baryons as polarimeters at colliders

    DOE PAGES

    Galanti, Mario; Giammanco, Andrea; Grossman, Yuval; ...

    2015-11-10

    In new-physics processes that produce b or c jets, a measurement of the initial b or c-quark polarization could provide crucial information about the structure of the new physics. In the heavy-quark limit, the b and c-quark polarizations are preserved in the lightest baryons they hadronize into, Lambda(b) and Lambda(c), respectively. We revisit the prediction for the polarization retention after the hadronization process and extend it to the case of transverse polarization. We show how ATLAS and CMS can measure the b-quark polarization using semileptonic Lambda(b) decays, and the c-quark polarization using Lambda(+)(c) -> pK(-)pi(+) decays. For calibrating both measurementsmore » we suggest to use t (t) over bar samples in which these polarizations can be measured with precision of order 10% using 100thfb(-1) of data in Run 2 of the LHC. Measurements of the transverse polarization in QCD events at ATLAS, CMS and LHCb are motivated as well. The proposed measurements give access to nonperturbative QCD parameters relevant to the dynamics of the hadronization process.« less

  1. Measurement of sigma Lambda b0/sigma B0 x B(Lambda b0-->Lambda c+pi-)/B(B0-->D+pi-) in pp collisions at square root s=1.96 TeV.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; DaRonco, S; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Le, Y; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-03-23

    We present the first observation of the baryon decay Lambda b0-->Lambda c+pi- followed by Lambda c+-->pK-pi+ in 106 pb-1 pp collisions at square root s=1.96 TeV in the CDF experiment. In order to reduce systematic error, the measured rate for Lambda b0 decay is normalized to the kinematically similar meson decay B0-->D+pi- followed by D+-->pi+K-pi+. We report the ratio of production cross sections (sigma) times the ratio of branching fractions (B) for the momentum region integrated above pT>6 GeV/c and pseudorapidity range |eta|<1.3: sigma(pp-->Lambda b0X)/sigma(pp-->B0X)xB(Lambda b0-->Lambda c+pi-)/B(B0-->D+pi-)=0.82+/-0.08(stat)+/-0.11(syst)+/-0.22[B(Lambda c+-->pK-pi+)].

  2. Ω _c excited states within a SU(6)_{lsf}× HQSS model

    NASA Astrophysics Data System (ADS)

    Nieves, J.; Pavao, R.; Tolos, L.

    2018-02-01

    We have reviewed the renormalization procedure used in the unitarized coupled-channel model of Romanets et al. (Phys Rev D 85:114032, 2012), and its impact in the C=1, S=- 2, and I=0 sector, where five Ω _c^{(*)} states have been recently observed by the LHCb Collaboration. The meson-baryon interactions used in the model are consistent with both chiral and heavy-quark spin symmetries, and lead to a successful description of the observed lowest-lying odd parity resonances Λ _c(2595) and Λ _c(2625), and Λ _b(5912) and Λ _b(5920) resonances. We show that some (probably at least three) of the states observed by LHCb will also have odd parity and J=1/2 or J=3/2, belonging two of them to the same SU(6)_{light {-}spin {-}flavor}× HQSS multiplets as the latter charmed and beauty Λ baryons.

  3. Dynamically generated N* and {Lambda}* resonances in the hidden charm sector around 4.3 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Jiajun; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, E-46071 Valencia; Molina, R.

    2011-07-15

    The interactions of D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. A series of meson-baryon dynamically generated relatively narrow N* and {Lambda}* resonances are predicted around 4.3 GeV in the hidden charm sector. We make estimates of production cross sections of these predicted resonances in p-barp collisions for the experiment of antiproton annihilation at Darmstadt (PANDA) at the forthcoming GSI Facility for Antiproton and Ion Research (FAIR) facility.

  4. Prediction of narrow N* and {Lambda}* with hidden charm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Jiajun; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia; Molina, R.

    2011-10-24

    The interaction between various charmed mesons and charmed baryons, such as D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled channel unitary approach with the local hidden gauge formalism. Six narrow N* and {Lambda}* resonances are dynamically generated with mass above 4 GeV and width smaller than 100 MeV. These predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks. We make estimates of production cross sections of these predicted resonances in p-barp collisions for PANDA at the forthcoming FAIR facility.

  5. Localized N, {lambda}, {sigma}, and {xi} single-particle potentials in finite nuclei calculated with SU{sub 6} quark-model baryon-baryon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, M.; Fujiwara, Y.

    Localized single-particle potentials for all octet baryons, N, {lambda}, {sigma}, and {xi}, in finite nuclei, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 56}Fe, and {sup 90}Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical single-particle properties of the nucleon and the {lambda} hyperon in a nuclear medium have been known to be explained semiquantitatively in the LOBT framework. Attention is focused in the present consideration onmore » predictions for the {sigma} and {xi} hyperons. The unified description for the octet baryon-baryon interactions by the SU{sub 6} quark model enables us to obtain less ambiguous extrapolation to the S=-1 and S=-2 sectors based on the knowledge in the NN sector than other potential models. The {sigma} mean field is shown to be weakly attractive at the surface, but turns out to be repulsive inside, which is consistent with the experimental evidence. The {xi} hyperon s.p. potential is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence {xi} hypernuclear bound states are unlikely. We also evaluate energy shifts of the {sigma}{sup -} and {xi}{sup -} atomic levels in {sup 28}Si and {sup 56}Fe, using the calculated s.p. potentials.« less

  6. Observation of the $$\\Xi_b^0$$ Baryon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.

    The observation of the bottom, strange baryon {Xi}{sup 0}{sub b} through the decay chain {Xi}{sup 0}{sub b} {yields} {Xi}{sup +}{sub c} {pi}{sup -}, where {Xi}{sup +}{sub c} {yields} {Xi}{sup -} {pi}{sup +} {pi}{sup +}, {Xi}{sup -} {yields} {Lambda} {yields} p {pi}{sup -}, is reported using data corresponding to an integrated luminosity of 4.2 ft{sup -1} from p{anti p} collisions at {radical}{ovr s} = 1.96 TeV recorded with the Collider Detector at Fermilab. A signal of 25.3{sup +5.6}{sub -5.4} candidates is observed whose probability of arising from a background fluctuation is 3.6 x 10{sup -12}, corresponding to 6.8 Gaussian standard deviations.more » The {Xi}{sup 0}{sub b} mass is measured to be 5787.8 {+-} 5.0(stat) {+-} 1.3(syst) MeV/c{sup 2}. In addition, the {Xi}{sup -}{sub b} is observed through the process {Xi}{sup -}{sub b} {yields} {Xi}{sup 0}{sub c} {pi}{sup -}, where {Xi}{sup 0}{sub c} {yields} {Xi}{sup -} {pi}{sup +}, {Xi}{sup -} {yields} {Lambda} {pi}{sup -}, and {Lambda} {yields} p {pi}{sup -}.« less

  7. Measurement of sigma(Lambda(b)0) / sigma(anti-B 0) x B(Lambda0(b) ---> Lambda+(c) pi-) / B(anti-B0 ---> D+ pi-) in p anti-p collisions at S**(1/2) = 1.96-TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.

    2006-01-01

    The authors present the first observation of the baryon decay {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +} {pi}{sup -} followed by {Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +} in 106 pb{sup -1} p{bar p} collisions at {radical}s = 1.96 TeV in the CDF experiment. IN order to reduce systematic error, the measured rate for {Lambda}{sub b}{sup 0} decay is normalized to the kinematically similar meson decay {bar B}{sup 0} {yields} D{sup +}{pi}{sup -} followed by D{sup +} {yields} {pi}{sup +}K{sup -}{pi}{sup +}. They report the ratio of production cross sections ({sigma}) times the ratio of branching fractions ({Beta}) formore » the momentum region integrated above p{sub T} > 6 GeV/c and pseudorapidity range |{eta}| < 1.3: {sigma}(p{bar p} {yields} {Lambda}{sub b}{sup 0}X)/{sigma}(p{bar p} {yields} {bar B}{sup 0} X) x {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -})/{Beta}({bar B}{sup 0} {yields} D{sup +}{pi}{sup -}) = 0.82 {+-} 0.08(stat) {+-} 0.11(syst) {+-} 0.22 ({Beta}({Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +})).« less

  8. Measurement of the Lambdab0 lifetime in Lambdab0 --> Lambdac+pi- decays in pp collisions at square root of s = 1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M S; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-03-12

    We report a measurement of the lifetime of the Lambda(b)(0) baryon in decays to the Lambda(c)(+)pi(-) final state in a sample corresponding to 1.1 fb(-1) collected in pp collisions at square root of s = 1.96 TeV by the CDF II detector at the Tevatron collider. Using a sample of about 3000 fully reconstructed Lambda(b)(0) events we measure tau(Lambda(b)(0)) = 1.401 +/- 0.046(stat) +/- 0.035(syst) ps (corresponding to ctau(Lambda(b)(0)) = 420.1 +/- 13.7(stat) +/- 10.6(syst) microm, where c is the speed of light). The ratio of this result and the world average B(0) lifetime yields tau(Lambda(b)(0))/tau(B(0)) = 0.918 +/- 0.038 (stat) and (syst), in good agreement with recent theoretical predictions.

  9. A Study of the Photoproduction of the $$\\Lambda_c^+$$ Charmed Baryon at $$\\gamma$$ Energies of 40-160 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorn, Carl John

    Evidence for the Amore » $$+\\atop{c}$$ charmed baryon has been found in experiment E516 at the Tagged Photon Spectrometer in Fermilab. The experiment studied high energy IP interactions for photon energies in the range of 40-160 GeV by utilizing a large acceptance spectrometer system to study the forward reaction products and a unique, sophisticated recoil chamber to study the target fragments.« less

  10. First Observation of the {Lambda}(1405) Line Shape in Electroproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Haiyun; Schumacher, Reinhard A.

    2013-10-01

    We report the first observation of the line shape of the {Lambda}(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K{sup +}{Lambda}(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0

  11. Observation and mass measurement of the baryon Xib-.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-08-03

    We report the observation and measurement of the mass of the bottom, strange baryon Xi(b)- through the decay chain Xi(b)- -->J/psiXi-, where J/psi-->mu+mu-, Xi- -->Lambdapi-, and Lambda-->ppi-. A signal is observed whose probability of arising from a background fluctuation is 6.6 x 10(-15), or 7.7 Gaussian standard deviations. The Xi(b)- mass is measured to be 5792.9+/-2.5(stat) +/- 1.7(syst) MeV/c2.

  12. Charmed and strange baryon production in 29 GeV electron positron annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, S.R.

    This dissertation presents measurements of the production rates of baryons with different strangeness and spin. The analyses presented here use data taken with the Mark III detector at the PEP storage ring, operating at a center of mass energy of 29 GeV. The ..xi../sup /minus// production rate is measured to be 0.017 +- 0.004 +- 0.004 per hadronic event, ..cap omega../sup /minus// production is measured to be 0.014 +- 0.006 +- 0.004 per hadronic event, and ..xi..*/sup 0/ production is less than 0.006 per hadronic event at a 90% confidence level. These measurements place strong constraints on models of baryonmore » production. In particular, the unexpectedly high rate of ..cap omega../sup /minus// production is difficult to explain in any diquark based model. Semileptonic ..lambda../sub c//sup +/ decays have also been observed. Because neither the branching ratios nor the production rate are well known, it is difficult to interpret these results. However, they do indicate that the branching ratio for ..lambda../sub c//sup +/ ..-->.. ..lambda..l..nu.. may be higher than previous experimental measurements. 85 refs., 45 figs., 12 tabs.« less

  13. Particle-type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at square root of sNN=200 GeV.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-02-06

    We present STAR measurements of the azimuthal anisotropy parameter v(2) and the binary-collision scaled centrality ratio R(CP) for kaons and lambdas (Lambda+Lambda) at midrapidity in Au+Au collisions at square root of s(NN)=200 GeV. In combination, the v(2) and R(CP) particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p(T) approximately 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K(0)(S) and Lambda+Lambda v(2) values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.

  14. Observation of B{sup +}{yields}{xi}{sub c}{sup 0}{lambda}{sub c}{sup +} and evidence for B{sup 0}{yields}{xi}{sub c}{sup -}{lambda}{sub c}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chistov, R.; Aushev, T.; Balagura, V.

    We report the first observation of the decay B{sup +}{yields}{xi}{sub c}{sup 0}{lambda}{sub c}{sup +} with a significance of 8.7{sigma} and evidence for the decay B{sup 0}{yields}{xi}{sub c}{sup -}{lambda}{sub c}{sup +} with a significance of 3.8{sigma}. The product B(B{sup +}{yields}{xi}{sub c}{sup 0}{lambda}{sub c}{sup +})xB({xi}{sub c}{sup 0}{yields}{xi}{sup +}{pi}{sup -}) is measured to be (4.8{sub -0.9}{sup +1.0}{+-}1.1{+-}1.2)x10{sup -5}, and B(B{sup 0}{yields}{xi}{sub c}{sup -}{lambda}{sub c}{sup +})xB({xi}{sub c}{sup -}{yields}{xi}{sup +}{pi}{sup -}{pi}{sup -}) is measured to be (9.3{sub -2.8}{sup +3.7}{+-}1.9{+-}2.4)x10{sup -5}. The errors are statistical, systematic and the error of the {lambda}{sub c}{sup +}{yields}pK{sup -}{pi}{sup +} branching fraction, respectively. The decay B{sup +}{yields}{xi}{sub c}{sup 0}{lambda}{sub c}{supmore » +} is the first example of a two-body exclusive B{sup +} decay into two charmed baryons. The data used for this analysis was accumulated at the {upsilon}(4S) resonance, using the Belle detector at the e{sup +}e{sup -} asymmetric-energy collider KEKB. The integrated luminosity of the data sample is equal to 357 fb{sup -1}, corresponding to 386x10{sup 6} BB pairs.« less

  15. The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta

    Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magneticmore » transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. Furthermore, one obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).« less

  16. The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies

    DOE PAGES

    Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta

    2017-06-09

    Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magneticmore » transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. Furthermore, one obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).« less

  17. Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---

    NASA Astrophysics Data System (ADS)

    Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.

    We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of pseudo-scalar-, vector-, scalar-, and axial-mesons, (ii) diffractive (i.e. multiple-gluon) exchanges, (iii) two pseudo-scalar exchange (PS-PS), and (iv) meson-pair-exchange (MPE). The OBE- and pair-vertices are regulated by gaussian form factors producing potentials with a soft behavior near the origin. The assignment of the cutoff masses for the BBM-vertices is dependent on the SU(3)-classification of the exchanged mesons for OBE, and a similar scheme for MPE. The ESC-models ESC04 and ESC08 describe the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY) interactions in a unified way using broken SU(3)-symmetry. Novel ingredients in the OBE-sector in the ESC-models are the inclusion of (i) the axial-vector meson potentials, (ii) a zero in the scalar- and axial-vector meson form factors. These innovations made it possible for the first time to keep the meson coupling parameters of the model qualitatively in accordance with the predictions of the (3P_0) quark-antiquark creation (QPC) model. This is also the case for the F/(F+D)-ratios. Furthermore, the introduction of the zero helped to avoid the occurrence of unwanted bound states in Lambda N. Broken SU(3)-symmetry serves to connect the NN and the YN channels, which leaves after fitting NN only a few free parameters for the determination of the YN-interactions. In particular, the meson-baryon coupling constants are calculated via SU(3) using the coupling constants of the NN oplus YN-analysis as input. In ESC04 medium strong flavor-symmetry-breaking (FSB) of the coupling constants was investigated, using the (3}P_{0) -model with a Gell-Mann-Okubo hypercharge breaking for the BBM-coupling. In ESC08 the couplings are kept SU(3)-symmetric. The charge-symmetry-breaking (CSB) in the Lambda p and Lambda n channels, which is an SU(2) isospin breaking, is included in the OBE-, TME-, and MPE-potentials. In ESC04 and ESC08 simultaneous fits to the NN- and the YN- scattering data have been achieved, using different options for the ESC-model. In particularly in ESC08 with single-sets of parameters excellent fits were obtained for the NN- and YN-data. For example, in the case of ESC08a'' we have: (i) For the selected 4233 NN-data with energies 0 ≤ T_{lab} ≤ 350 MeV, excellent results were obtained having chi(2/N_{data}) = 1.094. (ii) For the usual set of 35 YN-data and 3 Sigma(+p) cross-sections from a recent KEK-experiment E289 [H. Kanda et al., AIP Conf. Proc. 842 (2006), 501; H. Kanda, Measurement of the cross sections of Sigma(=p) elastic scattering, Ph. D. thesis, Department of Physics, Faculty of Science, Kyoto University, March 2007] the fit has chi(2}/YN_{data) ≈ 0.83. (iii) For YY there is a weak LambdaLambda-interaction, which successfully matches with t he Nagara-event [H. Takahashi et al., Phys. Rev. Lett. 87 (2001), 212502]. (iv) The nuclear Sigma and Xi well-dephts satisfy U_Sigma > 0 and U_Xi < 0. The predictions for the S = -2 (LambdaLambda, Xi N, LambdaSigma, SigmaSigma)-channels are the occurrences of an S = -2 bound states in the Xi N((3S_1-^3D_1,) I = 0,1)-channels.

  18. Scaling properties of hyperon production in Au+Au collisions at square root [sNN]=200 GeV.

    PubMed

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Bezverkhny, B I; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, C O; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Choi, H A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Guo, Y; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; Levine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2007-02-09

    We present the scaling properties of Lambda, Xi, and Omega in midrapidity Au+Au collisions at the Brookhaven National Laboratory Relativistic Heavy Ion Collider at sqrt[s_{NN}]=200 GeV. The yield of multistrange baryons per participant nucleon increases from peripheral to central collisions more rapidly than that of Lambda, indicating an increase of the strange-quark density of the matter produced. The strange phase-space occupancy factor gamma_{s} approaches unity for the most central collisions. Moreover, the nuclear modification factors of p, Lambda, and Xi are consistent with each other for 2

  19. A DIRECT MEASUREMENT OF THE BARYONIC MASS FUNCTION OF GALAXIES AND IMPLICATIONS FOR THE GALACTIC BARYON FRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo

    We use both an H I-selected and an optically selected galaxy sample to directly measure the abundance of galaxies as a function of their 'baryonic' mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey and atomic gas masses are calculated using atomic hydrogen (H I) emission line data from the Arecibo Legacy Fast ALFA survey. By using the technique of abundance matching, we combine the measured baryonic function of galaxies with the dark matter halo mass function in a {Lambda}CDM universe, in order to determine the galactic baryon fraction asmore » a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon fractions of low-mass halos cannot be explained by reionization heating alone, and that additional feedback mechanisms (e.g., supernova blowout) must be invoked. However, the outflow rates needed to reproduce our result are not easily accommodated in the standard picture of galaxy formation in a {Lambda}CDM universe.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roat, C

    A measurement of {Beta}({Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +}) is presented based on data collected with the BaBar detector at the Stanford Linear Accelerator Center. Branching fraction measurements represent a large portion of what is known about short-lived particles, the strong force that binds them, and the weak force that causes them to decay. While the majority of branching fraction measurements are done as ratios between two decay modes, it is the absolute measurements of a few particular decay modes that set the scale for these relative measurements. The {Lambda}{sub c}{sup +} particle is one of the fourmore » weakly decaying hadrons into which more than 90% of the known heavy quark hadrons will eventually decay. Thus, an absolute measurement of the branching fraction for {Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +} is important for many studies of the heavy quark sector, from spectroscopy to B meson decays. The number of produced {Lambda}{sub c}{sup +}'s is inferred from the number of events reconstructed with an antiproton and an accompanying D meson. The final result of {Beta}({Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +}) = [6.12 {+-} 0.31(stat.) {+-} 0.42(syst.)]% represents more than a two-fold improvement in precision over the world average. The dominant source of systematic uncertainty is the irreducible background of {Xi}{sub c} baryons.« less

  1. Prediction of Narrow N* and {Lambda}* Resonances with Hidden Charm above 4 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Jiajun; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Apartado 22085, 46071 Valencia; Molina, R.

    2010-12-03

    The interaction between various charmed mesons and charmed baryons is studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. Several meson-baryon dynamically generated narrow N{sup *} and {Lambda}{sup *} resonances with hidden charm are predicted with mass above 4 GeV and width smaller than 100 MeV. The predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks and can be looked for in the forthcoming PANDA/FAIR experiments.

  2. EXPLAINING THE OBSERVED VELOCITY DISPERSION OF DWARF GALAXIES BY BARYONIC MASS LOSS DURING THE FIRST COLLAPSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritschneder, Matthias; Lin, Douglas N. C., E-mail: gritschneder@ucolick.org

    2013-03-01

    In the widely adopted {Lambda} cold dark matter ({Lambda}CDM) scenario for galaxy formation, dwarf galaxies are the building blocks of larger galaxies. Since they formed at relatively early epochs when the background density was relatively high, they are expected to retain their integrity as satellite galaxies when they merge to form larger entities. Although many dwarf spheroidal galaxies are found in the galactic halo around the Milky Way, their phase-space density (or velocity dispersion) appears to be significantly smaller than that expected for satellite dwarf galaxies in the {Lambda}CDM scenario. In order to account for this discrepancy, we consider themore » possibility that they may have lost a significant fraction of their baryonic matter content during the first infall at the Hubble expansion turnaround. Such mass loss arises naturally due to the feedback by relatively massive stars that formed in their centers briefly before the maximum contraction. Through a series of N-body simulations, we show that the timely loss of a significant fraction of the dSphs initial baryonic matter content can have profound effects on their asymptotic half-mass radius, velocity dispersion, phase-space density, and the mass fraction between residual baryonic and dark matter.« less

  3. Direct Observation of the Strange b Baryon {xi}{sub b}{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.

    We report the first direct observation of the strange b baryon {xi}{sub b}{sup -}({xi}{sub b}{sup +}). We reconstruct the decay {xi}{sub b}{sup -}{yields}J/{psi}{xi}{sup -}, with J/{psi}{yields}{mu}{sup +}{mu}{sup -}, and {xi}{sup -}{yields}{lambda}{pi}{sup -}{yields}p{pi}{sup -}{pi}{sup -} in pp collisions at {radical}(s)=1.96 TeV. Using 1.3 fb{sup -1} of data collected by the D0 detector, we observe 15.2{+-}4.4(stat){sub -0.4}{sup +1.9}(syst) {xi}{sub b}{sup -} candidates at a mass of 5.774{+-}0.011(stat){+-}0.015(syst) GeV. The significance of the observed signal is 5.5{sigma}, equivalent to a probability of 3.3x10{sup -8} of it arising from a background fluctuation. Normalizing to the decay {lambda}{sub b}{yields}J/{psi}{lambda}, we measure the relative rate ({sigma}({xi}{submore » b}{sup -})xB({xi}{sub b}{sup -}{yields}J/{psi}{xi}{sup -})/{sigma}({lambda}{sub b})xB({lambda}{sub b}{yields}J/{psi}{lambda}))=0.28{+-}0.09(stat){sub -0.08}{sup +0.09}(syst)« less

  4. From Ξb→Λbπ to Ξc→Λcπ

    DOE PAGES

    Gronau, Michael; Rosner, Jonathan L.

    2016-04-11

    Using a successful framework for describing S-wave hadronic decays of light hyperons induced by a subprocess s -> u((u) over bard), we presented recently a model-independent calculation of the amplitude and branching ratio for Xi(-)(b) -> Lambda(b)pi(-) in agreement with a LHCb measurement. The same quark process contributes to Xi(0)(c) -> Lambda(c)pi(-), while a second term from the subprocess cs -> cd has been related by Voloshin to differences among total decay rates of charmed baryons. We calculate this term and find it to have a magnitude approximately equal to the s -> u((u) over bard) term. We argue formore » a negligible relative phase between these two contributions, potentially due to final state interactions. However, we do not know whether they interfere destructively or constructively. For constructive interference one predicts B(Xi(0)(c) -> Lambda(c)pi(-)) = (1.94 +/- 0.70) x 10(-3) and B(Xi(+)(c) -> Lambda(c)pi(0)) = (3.86 +/- 1.35) x 10(-3). For destructive interference, the respective branching fractions are expected to be less than about 10(-4) and 2 x 10(-4). (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  5. From Ξb→Λbπ to Ξc→Λcπ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gronau, Michael; Rosner, Jonathan L.

    Using a successful framework for describing S-wave hadronic decays of light hyperons induced by a subprocess s -> u((u) over bard), we presented recently a model-independent calculation of the amplitude and branching ratio for Xi(-)(b) -> Lambda(b)pi(-) in agreement with a LHCb measurement. The same quark process contributes to Xi(0)(c) -> Lambda(c)pi(-), while a second term from the subprocess cs -> cd has been related by Voloshin to differences among total decay rates of charmed baryons. We calculate this term and find it to have a magnitude approximately equal to the s -> u((u) over bard) term. We argue formore » a negligible relative phase between these two contributions, potentially due to final state interactions. However, we do not know whether they interfere destructively or constructively. For constructive interference one predicts B(Xi(0)(c) -> Lambda(c)pi(-)) = (1.94 +/- 0.70) x 10(-3) and B(Xi(+)(c) -> Lambda(c)pi(0)) = (3.86 +/- 1.35) x 10(-3). For destructive interference, the respective branching fractions are expected to be less than about 10(-4) and 2 x 10(-4). (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  6. Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at √{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; del Valle, Z. Conesa; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Corchero, M. A. Diaz; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Ducati, M. B. Gay; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Bustamante, R. T. Jimenez; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Meethaleveedu, G. Koyithatta; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; Torres, E. López; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Cervantes, I. Maldonado; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Pedreira, M. Martinez; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montes, E.; De Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Limón, S. Vergara; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.

    2017-08-01

    Two-particle angular correlations were measured in pp collisions at √{s} = 7 TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon-baryon and anti-baryon-anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an open question.

  7. Prospects of detecting baryon and quark superfluidity from cooling neutron stars

    PubMed

    Page; Prakash; Lattimer; Steiner

    2000-09-04

    Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.

  8. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON BARYON DYNAMICS AT RHIC, MARCH 28-30, 2002, BROOKHAVEN NATIONAL LABORATORY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GYULASSY,M.; KHARZEEV,D.; XU,N.

    2002-03-28

    One of the striking observations at RHIC is the large valence baryon rapidity density observed at mid rapidity in central Au+Au at 130 A GeV. There are about twice as many valence protons at mid-rapidity than predicted based on extrapolation from p+p collisions. Even more striking PHENIX observed that the high pt spectrum is dominated by baryons and anti-baryons. The STAR measured event anisotropy parameter v2 for lambdas are as high as charged particles at pt {approx} 2.5 GeV/c. These are completely unexpected based on conventional pQCD parton fragmentation phenomenology. One exciting possibility is that these observables reveal the topologicalmore » gluon field origin of baryon number transport referred to as baryon junctions. Another is that hydrodynamics may apply up to high pt in A+A. There is no consensus on what are the correct mechanisms for producing baryons and hyperons at high pt and large rapidity shifts and the new RHIC data provide a strong motivation to hold a meeting focusing on this class of observables. The possible role of junctions in forming CP violating domain walls and novel nuclear bucky-ball configurations would also be discussed. In this workshop, we focused on all measured baryon distributions at RHIC energies and related theoretical considerations. To facilitate the discussions, results of heavy ion collisions at lower beam energies, results from p+A /p+p/e+e collisions were included. Some suggestions for future measurements have been made at the workshop.« less

  9. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2

    DOE PAGES

    Ata, Metin; Baumgarten, Falk; Bautista, Julian; ...

    2017-10-11

    We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshiftsmore » $0.8 < z < 2.2$ and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5$$\\sigma$$. We determine the spherically averaged BAO distance to $z = 1.52$ to 4.4 per cent precision: $$D_V(z=1.52)=3855\\pm170 \\left(r_{\\rm d}/r_{\\rm d, fid}\\right)\\ $$Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat $$\\Lambda$$CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find $$\\Omega_{\\Lambda} > 0$$ at 6.5$$\\sigma$$ significance when testing a $$\\Lambda$$CDM model with free curvature.« less

  10. Properties of heavy flavoured hadrons at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Juan Pablo; /Madrid, CIEMAT

    We present recent CDF results on the properties of hadrons containing heavy quarks. These include the measurements of mass, lifetime and relative cross section of the B{sub c} meson and an updated measurement of the B{sub s}{sup 0} and {Lambda}{sub b}{sup 0} lifetime. We also summarize new measurements of the mass of the {Sigma}{sub b} baryon. We expect more results from the Tevatron which will accumulate more data until the end of Run II currently scheduled to conclude in 2010.

  11. Hypernuclei and the hyperon problem in neutron stars

    DOE PAGES

    Bedaque, Paulo F.; Steiner, Andrew W.

    2015-08-17

    The likely presence ofmore » $$\\Lambda$$ baryons in dense hadronic matter tends to soften the equation of state to an extend that the observed heaviest neutron stars are difficult to explain. Here we analyze this "hyperon problem" with a phenomenological approach. First, we review what can be learned about the interaction of $$\\Lambda$$ particle with dense matter from the observed hypernuclei and extend this phenomenological analysis to asymmetric matter. We add to this the current knowledge on non-strange dense matter, including its uncertainties, to conclude that the interaction between $$\\Lambda$$s and dense matter has to become repulsive at densities below three times the nuclear saturation density.« less

  12. Study of Omega-proton correlations in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Han, Yifei; STAR Collaboration

    2015-10-01

    Recently the STAR experiment at RHIC measured Lambda-Lambda correlations from Au+Au collisions at √{sNN} = 200 GeV to search for the H particle (uuddss). The correlation strength indicated that the Lambda-Lambda interaction is weak and is unlikely to be attractive enough to form a bound state. A recent lattice QCD calculation predicted a possible di-baryon bound state with Omega-nucleon. Thus, we will extend the correlation measurements to Omega-proton, which could potentially be a sensitive approach to search for such a state. We will present the Omega-proton correlations based on data collected by STAR in Au+Au collisions at √{sNN} =200 GeV, and discuss the physics implications. for the STAR collaboration.

  13. Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at $$\\sqrt{\\mathrm{s}}=7$$ TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2017-08-24

    We measured two-particle angular correlations in pp collisions at √s=7 TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon–baryon and anti-baryon–anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an openmore » question.« less

  14. Evidence for new resonances in the K-barN system: A prima facie case for the even-wave harmonic-oscillator model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, S.G.

    1978-10-01

    Arguments are presented to show that the new resonance parameters obtained by Alston-Garnjost et al. in a recent analysis of the K-barN system from 365 to 1320 MeV/c provide a prima facie case for the even-wave harmonic-oscillator theory of baryonic states in the framework of SU(6)/sub W/ x O(3). A new quantum classification of the ..lambda.. states belonging to the (70,1/sup -/) is also proposed.

  15. {{\\rm{\\Lambda }}}_{c}^{+} physics at BESIII

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; BESIII collaboration

    2018-05-01

    Based on the data sets collected by the BESIII detector near the {{{Λ }}}c+{\\bar{{{Λ }}}}c- production threshold, i.e. at \\sqrt{s}=4574.5,4580.0,4590.0, and 4599.5 MeV, we report the preliminary study of the production behaviour of {e}+{e}-\\to {{{Λ }}}c+{\\bar{{{Λ }}}}c- process, including the Born cross section and electromagnetic form factor ratios. Using the large statistic data at \\sqrt{s}=4599.5 {{MeV}}, we measured the absolute branching fractions of Cabibbo-favored hadronic decays of {{{Λ }}}c+ baryon with a double-tag technique. The branching fractions for 12 hadronic decay modes are significantly improved. We also report the model-independent measurement of the branching fraction of {{{Λ }}}c+\\to {{Λ }}{e}+{v}e and {{{Λ }}}c+\\to {{Λ }}{μ }+{v}μ semi-leptonic decays.

  16. OMEGA{sup -}, XI*{sup -}, SIGMA*{sup -}, and DELTA{sup -} decuplet baryon magnetic moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaughter, Milton Dean

    The properties of the ground-state U spin =(3/2) baryon decuplet magnetic moments DELTA{sup -}, XI*{sup -}, SIGMA*{sup -}, and OMEGA{sup -} and their ground-state spin-(1/2) cousins p, n, LAMBDA, SIGMA{sup +}, SIGMA{sup 0}, SIGMA{sup -}, XI{sup +}, and XI{sup -} have been studied for many years with a modicum of success. The magnetic moments of many are yet to be determined. Of the decuplet baryons, only the magnetic moment of the OMEGA{sup -} has been accurately determined. We calculate the magnetic moments of the physical decuplet U spin =(3/2) quartet members without ascribing any specific form to their quark structuremore » or intraquark interactions.« less

  17. Level structure and production cross section of {sub {Xi}}{sup 12} Be studied with coupled-channels antisymmetrized molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumiya, H.; Tsubakihara, K.; Kimura, M.

    A theoretical framework of coupled-channels antisymmetrized molecular dynamics that describes the multistrangeness system with mixing between different baryon species is developed and applied to {sub {Lambda}}{sup 12}C and {sub {Xi}}{sup 12}Be. By introducing a minor modification to the YN G-matrix interaction derived from the Nijmegen model-D, the low-lying level structure and production cross section of {sub {Lambda}}{sup 12}C are reasonably described. It is found that the low-lying states of {sub {Xi}}{sup 12}Be are dominated by the {sup 11}B {circle_times} {Xi}{sup -} channel and their order strongly depends on {Xi}N effective interactions used in the calculation. The calculated peak position ofmore » the production cross section depends on the {Xi}N effective interaction and the magnitude of spin-flip and non-spin-flip cross sections of K{sup -}p{yields}K{sup +}{Xi}{sup -} elemental processes. We suggest that the {sup 12}C(K{sup -},K{sup +}){sub {Xi}}{sup 12}Be reaction possibly provides us information about the {Xi}N interaction.« less

  18. Partonic Flow and phi-Meson production in Au+Au collisions at sqrt radical sNN = 200 GeV.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, S U; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, N; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Horner, M J; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kurnadi, P; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2007-09-14

    We present first measurements of the phi-meson elliptic flow (v2(pT)) and high-statistics pT distributions for different centralities from radical sNN=200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2 of the phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Omega to those of the phi as a function of transverse momentum is consistent with a model based on the recombination of thermal s quarks up to pT approximately 4 GeV/c, but disagrees at higher momenta. The nuclear modification factor (R CP) of phi follows the trend observed in the K S 0 mesons rather than in Lambda baryons, supporting baryon-meson scaling. These data are consistent with phi mesons in central Au+Au collisions being created via coalescence of thermalized s quarks and the formation of a hot and dense matter with partonic collectivity at RHIC.

  19. Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, T.M.C.; et al.

    We combine Dark Energy Survey Year 1 clustering and weak lensing data with Baryon Acoustic Oscillations (BAO) and Big Bang Nucleosynthesis (BBN) experiments to constrain the Hubble constant. Assuming a flatmore » $$\\Lambda$$CDM model with minimal neutrino mass ($$\\sum m_\

  20. Dark degeneracy and interacting cosmic components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aviles, Alejandro; Cervantes-Cota, Jorge L.

    2011-10-15

    We study some properties of the dark degeneracy, which is the fact that what we measure in gravitational experiments is the energy-momentum tensor of the total dark sector, and any split into components (as in dark matter and dark energy) is arbitrary. In fact, just one dark fluid is necessary to obtain exactly the same cosmological and astrophysical phenomenology as the {Lambda}CDM model. We work explicitly the first-order perturbation theory and show that beyond the linear order the dark degeneracy is preserved under some general assumptions. Then we construct the dark fluid from a collection of interacting fluids. Finally, wemore » try to break the degeneracy with a general class of couplings to baryonic matter. Nonetheless, we show that these interactions can also be understood in the context of the {Lambda}CDM model as between dark matter and baryons. For this last investigation we choose two independent parametrizations for the interactions, one inspired by electromagnetism and the other by chameleon theories. Then, we constrain them with a joint analysis of CMB and supernovae observational data.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ata, Metin; Baumgarten, Falk; Bautista, Julian

    We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshiftsmore » $0.8 < z < 2.2$ and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5$$\\sigma$$. We determine the spherically averaged BAO distance to $z = 1.52$ to 4.4 per cent precision: $$D_V(z=1.52)=3855\\pm170 \\left(r_{\\rm d}/r_{\\rm d, fid}\\right)\\ $$Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat $$\\Lambda$$CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find $$\\Omega_{\\Lambda} > 0$$ at 6.5$$\\sigma$$ significance when testing a $$\\Lambda$$CDM model with free curvature.« less

  2. Massive black holes and light-element nucleosynthesis in a baryonic universe

    NASA Technical Reports Server (NTRS)

    Gnedin, Nickolay Y.; Ostriker, Jeremiah P.; Rees, Martin J.

    1995-01-01

    We reexamine the model proposed by Gnedin & Ostriker (1992) in which Jeans mass black holes (M(sub BH) approximately = 10(exp 6) solar mass) form shortly after decoupling. There is no nonbaryonic dark matter in this model, but we examine the possibility that Omega(sub b) is considerably larger than given by normal nucleosynthesis. Here we allow for the fact that much of the high baryon-to-photon ratio material will collapse leaving the universe of remaining material with light-element abundances more in accord with the residual baryonic density (approximately = 10(exp -2)) than with Omega(sub 0) and the initial baryonic density (approximately = 10(exp -1)). We find that no reasonable model can be made with random-phase density fluctuations, if the power on scales smaller than 10(exp 6) solar mass is as large as expected. However, phase-correlated models of the type that might occur in connection with topological singularities can be made with Omega(sub b) h(exp 2) = 0.013 +/- 0.001, 0.15 approximately less than Omega(sub 0) approximately less than 0.4, which are either flat (Omega(sub lambda) = 1 - Omega(sub 0)) or open (Omega(sub lambda) = 0) and which satisfy all the observational constraints which we apply, including the large baryon-to-total mass ratio found in the X-ray clusters. The remnant baryon density is thus close to that obtained in the standard picture (Omega(sub b) h(exp 2) = 0.0125 +/- 0.0025; Walker et al. 1991). The spectral index implied for fluctuations in the baryonic isocurvature scenario, -1 less than m less than 0, is in the range expected by other arguments based on large-scale structure and microwave fluctuation constraints. The dark matter in this picture is in the form of massive black holes. Accretion onto them at early epochs releases high-energy photons which significantly heat and reionize the universe. But photodissociation does not materially change light-element abundances. A typical model gives bar-y approximately = 1 x 10(exp -5), n(sub e)/n(sub H)(z = 30) approximately = 0.1, and a diffuse gamma-ray background at 100 keV near the Cosmic Background Explorer Satellite (COBE) limit of the order of 10% of that observed which originates from high-redshift quasars. Reionization in this model occurs at redshift 600 and reaches (H II/H(sub tot) approximately = 0.1-0.2.

  3. Relative transverse momentum distributions of bottom hadrons produced in 1.96 TeV proton-antiproton collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Philippe; /McGill U.

    2008-05-01

    Fragmentation is the process by which bare quarks dress themselves up as hadrons. Since we cannot get reliable calculations of this process using perturbative quantum chromodynamics, the fragmentation properties of quarks must be obtained empirically. We report on the signal extraction and relative transverse momentum p{sub T} spectrum determination that will lead to a high precision measurement of relative fragmentation fractions of b quarks into B hadrons, in 1.96 TeV p{bar p} collisions. Using 1.9 fb{sup -1} of data taken with the CDF-II detector, we fully reconstruct 473 {+-} 42 B{sub s}{sup 0} {yields} D{sub s}{sup -} {pi}{sup +}, 15206more » {+-} 203 B{sup 0} {yields} D{sup -} {pi}{sup +}, 1483 {+-} 45 B{sup 0} {yields} D*{sup -}{pi}{sup +} and 4444 {+-} 297 {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -} candidate decays. In order to reduce systematic uncertainties, ratios of p{sub T} spectra are reported. We find that B{sub s} and B{sup 0} mesons are produced with similar p{sub T} and {Lambda}{sub b} baryons are produced with lower p{sub T} than B{sup 0} mesons. Our results are consistent with previous CDF measurements suggesting a difference between fragmentation processes observed at lepton and hadron colliders.« less

  4. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  5. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  6. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  7. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  8. 50 CFR 26.25 - Exception for entry to persons with an economic use privilege.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... economic use privilege. 26.25 Section 26.25 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... § 26.25 Exception for entry to persons with an economic use privilege. Access to and travel upon a national wildlife refuge by a person granted economic use privileges on that national wildlife refuge...

  9. 50 CFR 26.25 - Exception for entry to persons with an economic use privilege.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... economic use privilege. 26.25 Section 26.25 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... § 26.25 Exception for entry to persons with an economic use privilege. Access to and travel upon a national wildlife refuge by a person granted economic use privileges on that national wildlife refuge...

  10. 50 CFR 26.25 - Exception for entry to persons with an economic use privilege.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... economic use privilege. 26.25 Section 26.25 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... § 26.25 Exception for entry to persons with an economic use privilege. Access to and travel upon a national wildlife refuge by a person granted economic use privileges on that national wildlife refuge...

  11. Improved measurement of the form factors in the decay lambda+c-->lambda + nue.

    PubMed

    Hinson, J W; Huang, G S; Lee, J; Miller, D H; Pavlunin, V; Rangarajan, R; Sanghi, B; Shibata, E I; Shipsey, I P J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Dambasuren, E; Dorjkhaidav, O; Mountain, R; Muramatsu, H; Nandakumar, R; Skwarnicki, T; Stone, S; Wang, J C; Csorna, S E; Danko, I; Bonvicini, G; Cinabro, D; Dubrovin, M; McGee, S; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Patterson, J R; Peterson, D; Pivarski, J; Richichi, S J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Wilksen, T; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Benslama, K; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Anderson, S; Frolov, V V; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ahmed, S; Alam, M S; Ernst, J; Jian, L; Saleem, M; Wappler, F; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Honscheid, K; Kagan, H; Kass, R; Pedlar, T K; von Toerne, E; Severini, H; Skubic, P; Dytman, S A; Mueller, J A; Nam, S; Savinov, V

    2005-05-20

    Using the CLEO detector at the Cornell Electron Storage Ring, we have studied the distribution of kinematic variables in the decay lambda(+)(c)lambda--> e(+)nu(e). By performing a four-dimensional maximum likelihood fit, we determine the form factor ratio, R= f(2)/f(1) = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole mass, M(pole) = [2.21 +/- 0.08(stat) +/- 0.14(syst)] GeV/c(2), and the decay asymmetry parameter of the lambda(+)(c), alpha (lambda(c)) = -0.86 +/-0.03(stat) +/- 0.02(syst), for q(2) = 0.67 (GeV/c(2))(2). We compare the angular distributions of the lambda(+)(c) and lambda(-)(c) and find no evidence for CP violation: A(lambda(c)) = (alpha(lambda(c)) + alpha (lambda(c)))/(alpha(lambda(c))-alpha(lambda(c))) = 0.00 +/- 0.03(stat) +/- 0.01(syst) +/- 0.02, where the third error is from the uncertainty in the world average of the CP-violating parameter, A(lambda), for ppi(-).

  12. THE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Se-Heon; De Blok, W. J. G.; Brook, Chris

    2011-07-15

    We make a direct comparison of the derived dark matter (DM) distributions between hydrodynamical simulations of dwarf galaxies assuming a {Lambda}CDM cosmology and the observed dwarf galaxies sample from the THINGS survey in terms of (1) the rotation curve shape and (2) the logarithmic inner density slope {alpha} of mass density profiles. The simulations, which include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating, and most importantly, physically motivated gas outflows driven by supernovae, form bulgeless galaxies with DM cores. We show that the stellar and baryonic mass is similar to thatmore » inferred from photometric and kinematic methods for galaxies of similar circular velocity. Analyzing the simulations in exactly the same way as the observational sample allows us to address directly the so-called cusp/core problem in the {Lambda}CDM model. We show that the rotation curves of the simulated dwarf galaxies rise less steeply than cold dark matter rotation curves and are consistent with those of the THINGS dwarf galaxies. The mean value of the logarithmic inner density slopes {alpha} of the simulated galaxies' DM density profiles is {approx}-0.4 {+-} 0.1, which shows good agreement with {alpha} = -0.29 {+-} 0.07 of the THINGS dwarf galaxies. The effect of non-circular motions is not significant enough to affect the results. This confirms that the baryonic feedback processes included in the simulations are efficiently able to make the initial cusps with {alpha} {approx}-1.0 to -1.5 predicted by DM-only simulations shallower and induce DM halos with a central mass distribution similar to that observed in nearby dwarf galaxies.« less

  13. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smee, Stephen A.; Gunn, James E.; Uomoto, Alan

    2013-07-12

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measuremore » redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.« less

  14. Evidence for the two-body charmless baryonic decay $$ {B}^{+}\\to p\\overline{\\varLambda} $$

    DOE PAGES

    Aaij, R.; Adeva, B.; Adinolfi, M.; ...

    2017-04-28

    A search for the rare two-body charmless baryonic decay B + → pmore » $$-\\atop{Λ}$$ is performed with pp collision data, corresponding to an integrated luminosity of 3 fb -1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. An excess of B + →p$$-\\atop{Λ}$$ candidates with respect to background expectations is seen with a statistical significance of 4.1 standard deviations, and constitutes the first evidence for this decay. The branching fraction, measured using the B + →K S 0 π + decay for normalisation, B(B +→p$$-\\atop{Λ}$$=2.4$$+1.0\\atop{0.8}$$±0.3 x 10 -7)where the first uncertainty is statistical and the second systematic.« less

  15. Strange hadron (neutral kaon(short), lambda baryon and Xi baryon) production in deuteron+gold collisions at center of mass energy = 200 GeV at RHIC

    NASA Astrophysics Data System (ADS)

    Jiang, Hai

    The study of identified particles from deuteron(d)+gold(Au) collisions provide a crucial reference to investigate nuclear effects observed in Au+Au collisions where a thermalized partonic state - Quark Gluon Plasma (QGP) - is thought to have been created. The measurements of transverse mass (mT) and momentum (pT) spectra at mid-rapidity (| y| < 1) for the identified strange hadrons: K0S , Λ + Λ and xi- + xi+ from d+Au collisions are presented. The measured pT covers 0.4 < p T < 6.0 GeV/c for K0S and Λ + Λ and 0.6 < pT < 5.0 GeV/c for xi- + xi+. These particles were reconstructed from the topological characteristics of their weak decays in the STAR Time Projection Chamber (TPC). The mT spectra of these particles are well described by a double exponential function which can be understood by two component models: soft (thermal) hadron production at low mT and hard hadron production at high mT. The integrated yields (dN/dy) and mean pT (< pT >) of these particles are calculated from the fit functions for different centralities. The dN/dy normalized to the number of participants (Npart) increase with Npart. The Λ(Λ ) dN/dy values at the mid-rapidity and forward rapidity regions agree with the EPOS model calculations. The measured Λ/ K0S ratios show the greatest baryon enhancement at pT ˜ 2 GeV/c in d+Au collisions. The strangeness enhancement going from d+Au to Au+Au collisions grows with the number of strange quark in a hadron. The magnitude of the enhancement is in the same order as the SPS measurement. The nuclear modification factors RCP normalized to binary collisions indicate that the Cronin effect in d+Au collisions has a distinct particle type dependence. The RCP ratios show a distinct baryon versus meson dependence: the RCP for xi- + xi+ follows that for Λ + Λ while the R CP for the φ is close to that for the K0S . The mechanism based on initial hadron or parton multiple scattering is not sufficient to explain this particle type dependence. Hadronization processes through multi-parton dynamics such as coalescence and recombination models are likely to be important for explaining baryon enhancement and the Cronin effect in high-energy d+Au collisions.

  16. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion protection. 193.2625 Section 193.2625 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  17. Forward-Backward asymmetry in $$\\Lambda_{b}$$ production and search for the $$\\Xi^{-}_{b}$$ and $$\\Omega^{-}_{b}$$ baryons in $$p\\bar{p}$$ collisions at $$\\sqrt{s} = 1.96$$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Gonzalez, Jose Andres

    We present a search for the heavy-flavor baryonsmore » $$\\Xi_{b}$$ (bsd) and $$\\Omega^{-}_{b}$$ in decays $$\\Xi^{-}_{b}$$→ J/ψ$$\\Xi^{-}_{b}$$ → J/ψΛπ-, J/ψ → μ + μ - and $$\\Omega^{-}_{b}$$ → J/ψ$$\\Omega^{-}_{b}$$ J/ψΛ $$K^{-}_{b}$$, J/ψ → μ + μ - respectively.« less

  18. Rearrangement and expression of the human {Psi}C{lambda}6 gene segment results in a surface Ig receptor with a truncated light chain constant region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiernholm, N.B.J.; Verkoczy, L.K.; Berinstein, N.L.

    1995-05-01

    The constant region of the human Ig{lambda} locus consists of seven tandemly organized J-C gene segments. Although it has been established that the J-C{lambda}1, J-C{lambda}2, J-C{lambda}3, and J-C{lambda}7 gene segments are functional, and code for the four distinct Ig{lambda} isotypes found in human serum, the J-C{lambda}4, J-C{lambda}5, and J-C{lambda}6 gene segments are generally considered to be pseudogenes. Although one example of a functional J-C{lambda}6 gene segment has been documented, in the majority of cases, J-C{lambda}6 is rendered nonfunctional by virtue of a single duplication of four nucleotides, creating a premature translational arrest. We show here that rearrangements to the J-C{lambda}6more » gene segment do occur, and that such a rearrangement encodes an Ig{lambda} protein that lacks the terminal end of the constant region. We also show that this truncated protein is expressed on the surface with the IgH chain, creating an unusual surface Ig (sIg) receptor (sIg{triangle}CL). Cells that express this receptor on the surface do so at significantly reduced levels compared with clonally related variants, which express sIg receptors with conventional Ig{lambda} L chains. However, the effects of sIg cross-linking on tyrosine phosphorylation and surface expression of the CD25 and CD71 Ags are similar in cells that express conventional sIg receptors and in those that express sIg{triangle}CL receptors, suggesting that the latter could possibly function as an Ag receptor. 35 refs., 7 figs.« less

  19. System Size and Energy Dependence on Strangeness Production in 22 GeV Cu+Cu Collisions at RHIC

    DTIC Science & Technology

    2011-05-10

    relativistic speeds approaching the speed of light before they meet in an extremely high temperature collision. The Solenoidal Tracker at RHIC (STAR...extremely high energy and temperature. This project determines the yield of strange quarks through measurements of K0-short mesons as well as Lambda and Anti...charge. These quarks are never observed alone, but are observable in the form of baryons (3 quarks) or mesons (a quark-anti-quark pair). The

  20. Exotic triple-charm deuteronlike hexaquarks

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Wang, Fu-Lai; Hosaka, Atsushi; Liu, Xiang

    2018-06-01

    Adopting the one-boson-exchange model, we perform a systematic investigation of interactions between a doubly charmed baryon (Ξc c) and an S -wave charmed baryon (Λc, Σc(*), and Ξc(',*)). Both the S - D mixing effect and coupled-channel effect are considered in this work. Our results suggest that there may exist several possible triple-charm deuteronlike hexaquarks. Meanwhile, we further study the interactions between a doubly charmed baryon and an S -wave anticharmed baryon. We find that a doubly charmed baryon and an S -wave anticharmed baryon can be easily bound together to form shallow molecular hexaquarks. These heavy flavor hexaquarks predicted here can be accessible at future experiment like LHCb.

  1. Constraints on cosmological models and reconstructing the acceleration history of the Universe with gamma-ray burst distance indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Nan; Wu Puxun; Zhang Shuangnan

    2010-04-15

    Gamma-ray bursts (GRBs) have been regarded as standard candles at very high redshift for cosmology research. We have proposed a new method to calibrate GRB distance indicators with Type Ia supernova (SNe Ia) data in a completely cosmology-independent way to avoid the circularity problem that had limited the direct use of GRBs to probe cosmology [N. Liang, W. K. Xiao, Y. Liu, and S. N. Zhang, Astrophys. J. 685, 354 (2008).]. In this paper, a simple method is provided to combine GRB data into the joint observational data analysis to constrain cosmological models; in this method those SNe Ia datamore » points used for calibrating the GRB data are not used to avoid any correlation between them. We find that the {Lambda}CDM model is consistent with the joint data in the 1-{sigma} confidence region, using the GRB data at high redshift calibrated with the interpolating method, the Constitution set of SNe Ia, the cosmic microwave background radiation from Wilkinson Microwave Anisotropy Probe five year observation, the baryonic acoustic oscillation from the spectroscopic Sloan Digital Sky Survey Data Release 7 galaxy sample, the x-ray baryon mass fraction in clusters of galaxies, and the observational Hubble parameter versus redshift data. Comparing to the joint constraints with GRBs and without GRBs, we find that the contribution of GRBs to the joint cosmological constraints is a slight shift in the confidence regions of cosmological parameters to better enclose the {Lambda}CDM model. Finally, we reconstruct the acceleration history of the Universe up to z>6 with the distance moduli of SNe Ia and GRBs and find some features that deviate from the {Lambda}CDM model and seem to favor oscillatory cosmology models; however, further investigations are needed to better understand the situation.« less

  2. A study of parton fragmentation in hadronic Z 0 decays using Λ Λ correlations

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Abbiendi, G.; et al.

    2000-03-01

    The correlated production of Λ and Λ baryons has been studied using 4.3 million multihadronic Z0 decays recorded with the Opal detector at Lep. Lambda pairs were investigated in the full data sample and for the first time also in 2-jet and 3-jet events selected with the k⊥ algorithm. The distributions of rapidity differences from correlated Λ Λ pairs exhibit short-range, local correlations and prove to be a sensitive tool to test models, particularly for 2-jet events. The Jetset model describes the data best but some extra parameter tuning is needed to improve agreement with the experimental results in the rates and the rapidity spectra simultaneously. The recently developed modification of Jetset, the MOdified Popcorn Scenarium (Mops), and also Herwig do not give satisfactory results. This study of di-lambda production in 2- and 3-jet events supports the short-range compensation of quantum numbers.

  3. Gravitational lensing effects in a time-variable cosmological 'constant' cosmology

    NASA Technical Reports Server (NTRS)

    Ratra, Bharat; Quillen, Alice

    1992-01-01

    A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.

  4. Weak decays of triply heavy baryons

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Xu, Ji

    2018-05-01

    After the experimental establishment of doubly heavy baryons, baryons with three quarks are the last missing pieces of the lowest-lying baryon multiplets in the quark model. In this work, we study semileptonic and nonleptonic weak decays of triply heavy baryons, Ωcc c ++, Ωcc b +, Ωcb b 0, and Ωbb b -. Decay amplitudes for various channels are parametrized in terms of a few SU(3) irreducible amplitudes. We point out that branching fractions for Cabibbo-allowed processes, Ωcc c ++→(Ξcc ++K¯0,Ξcc ++K-π+,Ωcc +π+,Ξc+D+,Ξc'D+,ΛcD+K¯0,Ξc+D0π+,Ξc0D+π+), may reach a few percent. We suggest our experimental colleagues to perform a search at hadron colliders and the electron and positron collisions in the future, which will presumably lead to discoveries of triply heavy baryons and complete the baryon multiplets. Using the expanded amplitudes, we derive a number of relations for the partial widths that can be examined in the future.

  5. 78 FR 54945 - Privacy Act; System of Records: Protocol Records, State-33

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... accounting of those U.S. government officials receiving gifts and decorations from foreign governments and to....C. 2625, 22 U.S.C. 4301 et seq. PURPOSE: The information in this system of records is an accounting... public and professional institutions possessing relevant information. SYSTEMS EXEMPTED FROM CERTAIN...

  6. Bivariate- distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems.

    PubMed

    Kota, V K B; Chavda, N D; Sahu, R

    2006-04-01

    Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.

  7. Study of the strong {sigma}{sub c}{yields}{lambda}{sub c}{pi},{sigma}{sub c}*{yields}{lambda}{sub c}{pi} and {xi}{sub c}*{yields}{xi}{sub c}{pi} decays in a nonrelativistic quark model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertus, C.; Nieves, J.; Hernandez, E.

    We present results for the strong widths corresponding to the {sigma}{sub c}{yields}{lambda}{sub c}{pi}, {sigma}{sub c}*{yields}{lambda}{sub c}{pi} and {xi}{sub c}*{yields}{xi}{sub c}{pi} decays. The calculations have been done in a nonrelativistic constituent quark model with wave functions that take advantage of the constraints imposed by heavy quark symmetry. Partial conservation of axial current hypothesis allows us to determine the strong vertices from an analysis of the axial current matrix elements. Our results {gamma}({sigma}{sub c}{sup ++}{yields}{lambda}{sub c}{sup +}{pi}{sup +})=2.41{+-}0.07{+-}0.02 MeV, {gamma}({sigma}{sub c}{sup +}{yields}{lambda}{sub c}{sup +}{pi}{sup 0})=2.79{+-}0.08{+-}0.02 MeV, {gamma}({sigma}{sub c}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})=2.37{+-}0.07{+-}0.02 MeV, {gamma}({sigma}{sub c}*{sup ++}{yields}{lambda}{sub c}{sup +}{pi}{sup +})=17.52{+-}0.74{+-}0.12 MeV, {gamma}({sigma}{sub c}*{supmore » +}{yields}{lambda}{sub c}{sup +}{pi}{sup 0})=17.31{+-}0.73{+-}0.12 MeV, {gamma}({sigma}{sub c}*{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})=16.90{+-}0.71{+-}0.12 MeV, {gamma}({xi}{sub c}*{sup +}{yields}{xi}{sub c}{sup 0}{pi}{sup +}+{xi}{sub c}{sup +}{pi}{sup 0})=3.18{+-}0.10{+-}0.01 MeV, and {gamma}({xi}{sub c}*{sup 0}{yields}{xi}{sub c}{sup +}{pi}{sup -}+{xi}{sub c}{sup 0}{pi}{sup 0})=3.03{+-}0.10{+-}0.01 MeV are in good agreement with experimental determinations.« less

  8. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model.

    PubMed

    Di Liddo, Rosa; Valente, Sergio; Taurone, Samanta; Zwergel, Clemens; Marrocco, Biagina; Turchetta, Rosaria; Conconi, Maria Teresa; Scarpa, Carlotta; Bertalot, Thomas; Schrenk, Sandra; Mai, Antonello; Artico, Marco

    2016-01-20

    Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.

  9. Masses and sigma terms of doubly charmed baryons up to O (p4) in manifestly Lorentz-invariant baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Yao, De-Liang

    2018-02-01

    We calculate the masses and sigma terms of the doubly charmed baryons up to next-to-next-to-next-to-leading order [i.e., O (p4) ] in a covariant baryon chiral perturbation theory by using the extended-on-mass-shell renormalization scheme. Their expressions both in infinite and finite volumes are provided for chiral extrapolation in lattice QCD. As a first application, our chiral results of the masses are confronted with the existing lattice QCD data in the presence of finite-volume corrections. Up to O (p3) , all relevant low-energy constants can be well determined. As a consequence, we obtain the physical values for the masses of Ξc c and Ωc c baryons by extrapolating to the physical limit. Our determination of the Ξc c mass is consistent with the recent experimental value by LHCb Collaboration, however, larger than the one by SELEX Collaboration. In addition, we predict the pion-baryon and strangeness-baryon sigma terms, as well as the mass splitting between the Ξc c and Ωc c states. Their quark mass dependences are also discussed. The numerical procedure can be applied to the chiral results of O (p4) order, where more unknown constants are involved, when more data are available for unphysical pion masses.

  10. REMARKS ON COMPOUND MODELS, CONSERVED CURRENTS AND WEAK INTERACTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, M.E.

    A discussion is given of some implications of a symmetry principle, conjectured by Gamba, Marshak, and Okubo (GMO), in connection with the compound models for elementary particles, and the interpretation of weak interactions by a heavy vector meson coupled to the conserved V and A currents of the fermions. GMO observed that, for weak interactions, the three baryons LAMBDA deg , n, p are equivalent to the leptons mu /sup -/, e/sup -/, nu in the sense that any reaction permitted or observed for one of the groups is permitted for the other and conversely, no reaction forbidden for onemore » is observed in the other. This permitted the extension of the notions of isospin and strangeness to leptons and led to the expression of the electric charge in terms of the isospin projection, T/sub 3/, and the baryon and lepton numbers B and L:. Q = T/sub 3/ + 1/2(S+ B -- L). (B.O.G.)« less

  11. Leading order relativistic hyperon-nucleon interactions in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bing-Wei

    2018-01-01

    We apply a recently proposed covariant power counting in nucleon-nucleon interactions to study strangeness S=-1 {{\\varLambda }}N-{{\\varSigma }}N interactions in chiral effective field theory. At leading order, Lorentz invariance introduces 12 low energy constants, in contrast to the heavy baryon approach, where only five appear. The Kadyshevsky equation is adopted to resum the potential in order to account for the non-perturbative nature of hyperon-nucleon interactions. A fit to the 36 hyperon-nucleon scattering data points yields {χ }2≃ 16, which is comparable with the sophisticated phenomenological models and the next-to-leading order heavy baryon approach. However, one cannot achieve a simultaneous description of the nucleon-nucleon phase shifts and strangeness S=-1 hyperon-nucleon scattering data at leading order. Supported by the National Natural Science Foundation of China (11375024, 11522539, 11375120), the China Postdoctoral Science Foundation (2016M600845, 2017T100008) and the Fundamental Research Funds for the Central Universities

  12. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D. N.; Bennett, C. L.; Dunkley, J.; Nolta, M. R.; Halpern, M.; Hill, R. S.; Odegard, N.; hide

    2013-01-01

    We present cosmological parameter constraints based on the final nine-year Wilkinson Microwave Anisotropy Probe (WMAP) data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter Lambda-CDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background anisotropy, the baryon acoustic oscillation scale, and the Hubble constant, the matter and energy densities Omega(sub b)h(exp 2), Omega(sub c)h(exp 2)and Omega(sub Lambda), are each determined to a precision of approx. 1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5 sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional Lambda-CDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their Lambda-CDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r < 0.13 (95% CL); the spatial curvature parameter is limited to Omega(sub kappa) = (0.0027 (sub +0.0039) (sup -0.0038;) the summed mass of neutrinos is limited to Sigma M(sub nu) < 0.44 eV (95% CL); and the number of relativistic species is found to lie within N(sub eff) = 3.84 +/- 0+/-40, when the full data are analyzed. The joint constraint on N(sub eff) and the primordial helium abundance, Y(sub He), agrees with the prediction of standard big bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.

  13. SEARCHING FOR COOLING SIGNATURES IN STRONG LENSING GALAXY CLUSTERS: EVIDENCE AGAINST BARYONS SHAPING THE MATTER DISTRIBUTION IN CLUSTER CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael

    2013-07-20

    The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminositymore » and star formation, we measure, for a sample of 89 SL clusters, the fraction of clusters that have [O II]{lambda}{lambda}3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 A break, D{sub 4000}, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R{sub arc}, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D{sub 4000} as a function of R{sub arc}, a proxy observable for SL cross-sections. D{sub 4000} is constant with all values of R{sub arc}, and the [O II] emission fractions show no dependence on R{sub arc} for R{sub arc} > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R{sub arc} < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections.« less

  14. D-Wave Heavy Baryons from QCD Sum Rules

    NASA Astrophysics Data System (ADS)

    Mao, Qiang; Chen, Hua-Xing; Hosaka, Atsushi; Liu, Xiang; Zhu, Shi-Lin

    We study the D-wave heavy baryons using the method of QCD sum rules in the framework of heavy quark effective theory. Our results suggest that the Λc(2860), Λc(2880), Ξc(3055) and Ξc(3080) complete two D-wave SU(3) flavor 3¯F charmed baryon doublets of JP = 3/2+ and 5/2+.

  15. First Observation of Charmed Resonances in the $$\\Lambda^0_b \\to \\Lambda^+_c \\pi^- \\pi^+ \\pi^-$$ Inclusive Decay and Measurement of Their Relative Branching Ratios at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barria, Patrizia

    2012-01-01

    We present the observation of themore » $$\\Lambda^0_b$$ decay into a $$\\Lambda^+_c \\pi^- \\pi^+ \\pi^-$$ final state, in $$p\\bar{p}$$ collisions at $$\\sqrt{s}$$ = 1:96 TeV. The data analyzed were collected by the CDF II detector at the Fermilab Tevatron collider, and correspond to 2:4 $$fb^{-1}$$ of integrated luminosity. We fit the invariant mass distribution of the reconstructed candidates to extract a signal yield of 848 $$\\pm$$ 93 $$\\Lambda^0_b$$ into $$\\Lambda^+_c \\pi^- \\pi^+ \\pi^-$$....« less

  16. Multistrange baryon production in Au-Au collisions at sqrt[s(NN)]=130 GeV.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhatia, V S; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Cebra, D; Chaloupka, P; Chattopdhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; de Moura, M M; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Flierl, D; Foley, K J; Fomenko, K; Fu, J; Gagliardi, C A; Gans, J; Ganti, M S; Gaudichet, L; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grebenyuk, O; Gronstal, S; Grosnick, D; Guertin, S M; Gupta, A; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C L; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mischke, A; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; Munhoz, M G; Nandi, B K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Ruan, L; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Simon, F; Singaraju, R N; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; St Claire, L; Stadnik, A; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O; Ullrich, T; Underwood, D G; Urkinbaev, A; Van Buren, G; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, V P; Vokal, S; Vznuzdaev, M; Waggoner, B; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Webb, J C; Wells, R; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevsky, Y V; Zhang, H; Zhang, Z P; Zolnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2004-05-07

    The transverse mass spectra and midrapidity yields for Xis and Omegas are presented. For the 10% most central collisions, the (-)Xi(+)/h(-) ratio increases from the Super Proton Synchrotron to the Relativistic Heavy Ion Collider energies while the Xi(-)/h(-) stays approximately constant. A hydrodynamically inspired model fit to the Xi spectra, which assumes a thermalized source, seems to indicate that these multistrange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to pi, K, p, and Lambdas.

  17. Nucleon and Delta axial-vector couplings in 1/N{sub c}-Baryon Chiral Perturbation Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goity, Jose Luis; Calle Cordon, Alvaro

    In this contribution, baryon axial-vector couplings are studied in the framework of the combined 1/N{sub c} and chiral expansions. This framework is implemented on the basis of the emergent spin-flavor symmetry in baryons at large N{sub c} and HBChPT, and linking both expansions ({xi}-expansion), where 1/N{sub c} is taken to be a quantity order p. The study is carried out including one-loop contributions, which corresponds to order xi to the third for baryon masses and order {xi} square for the axial couplings.

  18. Baryon chiral perturbation theory combined with the 1 / N c expansion in SU(3): Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, I. P.; Goity, J. L.

    Baryon Chiral Perturbation Theory combined with themore » $$1/N_c$$ expansion is implemented for three flavors. Here, Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the $$\\xi$$-expansion, in which the $$1/N_c$$ and the low energy power countings are linked according to $$1/N_c={\\cal{O}}(\\xi)={\\cal{O}}(p)$$. The renormalization to $${\\cal{O}}(\\xi^3)$$ necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.« less

  19. Baryon chiral perturbation theory combined with the 1 / N c expansion in SU(3): Framework

    DOE PAGES

    Fernando, I. P.; Goity, J. L.

    2018-03-14

    Baryon Chiral Perturbation Theory combined with themore » $$1/N_c$$ expansion is implemented for three flavors. Here, Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the $$\\xi$$-expansion, in which the $$1/N_c$$ and the low energy power countings are linked according to $$1/N_c={\\cal{O}}(\\xi)={\\cal{O}}(p)$$. The renormalization to $${\\cal{O}}(\\xi^3)$$ necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.« less

  20. Baryon masses and axial couplings in the combined 1/N{sub c} and Chiral expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvaro Calle Cordon, Jose Goity

    The effective theory for baryons with a combined 1/N{sub c} and chiral expansions is analyzed for non-strange baryons. Results for baryon masses and axial couplings are obtained in the small scale expansion, to be coined as the {xi}-expansion, in which the 1/N{sub c} and the low energy power countings are linked according to 1/N{sub c}=O({xi})=O(p). Masses and axial couplings are analyzed to O({xi}{sup 3}) and O({xi}{sup 2}) respectively, which correspond to next-to-next to leading order evaluations, and require one-loop contributions in the effective theory. The role of the spin-flavor approximate symmetry in baryons, consequence of the large N{sub c} limit,more » is manifested in the physical world with N{sub c}=3 in a significant way, as the analysis of its breaking in the masses and the axial couplings show. Applications to the recent lattice QCD results on baryon masses and the nucleon's axial coupling are presented. It is shown that those results are naturally described within the effective theory at the order considered in the {xi}-expansion.« less

  1. The anomalous C 4 intensity ratio in symbiotic stars

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Kafatos, M.; Fahey, R. P.

    1988-01-01

    The C IV lambda lambda 1548.2,1550.8 resonance doublet in a symbiotic stars was shown to exhibit anomalous line intensity ratios in which I (lambda 1548.2)/I(lambda 1550.8) less than 1, or less than the optically-thick limit of unity. The R Aquarii-central HII region and RX Puppis exhibit this phenomena. The I(lambda 1548.2)/I(lambda 1550.8) ratio in RX Puppis is found to vary inversely with the total C IV line intensity, and with the FES-visual light, as the object declined over a 5 yr period following a brightening in UV and optical emission which peaked in 1982. This doublet intensity behavior could be explained by a wind which has a narrow velocity range of 600 approx. less than sup v wind approx. less than 1000 km/sec, or by the pumping of the Fe II (mul. 45.01) transition a sup 4 F sub 9/2 - y sup 4 H(o) sub 11/2 by C IV lambda 1548.2, which effectively scatters C IV photons into the Fe II spectrum in these objects.

  2. IUE and Einstein observations of the LINER galaxy NGC 4579

    NASA Technical Reports Server (NTRS)

    Reichert, G. A.; Puchnarewicz, E. M.; Mason, K. O.

    1990-01-01

    Results of International Ultraviolet Explorer (IUE) and Einstein observations of the LINER galaxy NGC 4579 are reported. Spatial profiles of the long wavelength IUE emission show a two component structure, with an unresolved core superimposed on broader underlying emission. The core spectrum shows strong C II lambda 2326 and broad Mg II lambda 2800 emission, and perhaps emission due to blends of Fe II multiplets (2300 to 23600 angstrom). The short wavelength emission is spatially unresolved, and shows C II lambda 1335, C III lambda 1909 broad C IV lambda 1550 emission, and a broad feature at approximately 1360 angstrom which may be due to 0.1 lambda 1356. Contrary to previous reports no evidence for He II lambda 1640 is found in the spectrum. An unresolved x ray source is detected at the location of the nucleus; its spectrum is well fitted by a power law of energy slope alpha approximately -0.5. These results further support the idea that NGC 4579 may contain a dwarf Seyfert nucleus.

  3. Galaxy Cluster Gas Mass Fractions From Sunyaev-Zeldovich Effect Measurements: Constraints on Omega(M)

    NASA Technical Reports Server (NTRS)

    Grego, Laura; Carlstrom, John E.; Reese, Erik D.; Holder, Gilbert P.; Holzapfel, William L.; Joy, Marshall K.; Mohr, Joseph J.; Patel, Sandeep

    2001-01-01

    Using sensitive centimeter-wave receivers mounted on the Owens Valley Radio Observatory and Berkeley-Illinois-Maryland-Association millimeter arrays, we have obtained interferometric measurements of the Sunyaev-Zeldovich(SZ) effect toward massive galaxy clusters. We use the SZ data to determine the pressure distribution of the cluster gas and, in combination with published X-ray temperatures, to infer the gas mass and total gravitational mass of 18 clusters. The gas mass fraction, f(g), is calculated for each cluster and is extrapolated to the fiducial radius r(500) using the results of numerical simulations. The mean f(g) within r(500) is 0.081(+ 0.009 / - 0.011) per h(100) (statistical uncertainty at 68% confidence level, assuming Omega(M) = 0.3, Omega(Lambda) = 0.7). We discuss possible sources of systematic errors in the mean f(sub g) measurement. We derive an upper limit for Omega(M) from this sample under the assumption that the mass composition of clusters within r(500) reflects the universal mass composition: Omega(M)h is less than or equal to Omega(B)/f(g). The gas mass fractions depend on cosmology through the angular diameter distance and the r(500) correction factors. For a flat universe (Omega(Lambda) is identical with 1 - Omega(M)) and h = 0.7, we find the measured gas mass fractions are consistent with Omega(M) is less than 0.40, at 68% confidence. Including estimates of the baryons contained in galaxies and the baryons which failed to become bound during the cluster formation process, we find Omega(M) is approximately equal to 0.25.

  4. Measurements of J/{psi} and {psi}(2S) decays into {lambda}{lambda}{pi}{sup 0} and {lambda}{lambda}{eta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Bai, J. Z.; Cai, X.

    2007-11-01

    Using 58x10{sup 6} J/{psi} and 14x10{sup 6} {psi}(2S) events collected by the BESII detector at the BEPC, branching fractions or upper limits for the decays J/{psi} and {psi}(2S){yields}{lambda}{lambda}{pi}{sup 0} and {lambda}{lambda}{eta} are measured. For the isospin violating decays, the upper limits are determined to be B(J/{psi}{yields}{lambda}{lambda}{pi}{sup 0})<6.4x10{sup -5} and B[{psi}(2S){yields}{lambda}{lambda}{pi}{sup 0}]<4.9x10{sup -5} at the 90% confidence level. The isospin conserving process J/{psi}{yields}{lambda}{lambda}{eta} is observed for the first time, and its branching fraction is measured to be B(J/{psi}{yields}{lambda}{lambda}{eta})=(2.62{+-}0.60{+-}0.44)x10{sup -4}, where the first error is statistical and the second one is systematic. No {lambda}{lambda}{eta} signal is observed in {psi}(2S) decays, and B[{psi}(2S){yields}{lambda}{lambda}{eta}]<1.2x10{supmore » -4} is set at the 90% confidence level. Branching fractions of J/{psi} decays into {sigma}{sup +}{pi}{sup -}{lambda} and {sigma}{sup -}{pi}{sup +}{lambda} are also reported, and the sum of these branching fractions is determined to be B(J/{psi}{yields}{sigma}{sup +}{pi}{sup -}{lambda}+c.c.)=(1.52{+-}0.08{+-}0.16)x10{sup -3}.« less

  5. REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman

    2010-08-20

    We analyze the line-of-sight baryonic acoustic feature in the two-point correlation function {xi} of the Sloan Digital Sky Survey luminous red galaxy (LRG) sample (0.16 < z < 0.47). By defining a narrow line-of-sight region, r{sub p} < 5.5 h {sup -1} Mpc, where r{sub p} is the transverse separation component, we measure a strong excess of clustering at {approx}110 h {sup -1} Mpc, as previously reported in the literature. We also test these results in an alternative coordinate system, by defining the line of sight as {theta} < 3{sup 0}, where {theta} is the opening angle. This clustering excessmore » appears much stronger than the feature in the better-measured monopole. A fiducial {Lambda}CDM nonlinear model in redshift space predicts a much weaker signature. We use realistic mock catalogs to model the expected signal and noise. We find that the line-of-sight measurements can be explained well by our mocks as well as by a featureless {xi} = 0. We conclude that there is no convincing evidence that the strong clustering measurement is the line-of-sight baryonic acoustic feature. We also evaluate how detectable such a signal would be in the upcoming Baryon Oscillation Spectroscopic Survey (BOSS) LRG volume. Mock LRG catalogs (z < 0.6) suggest that (1) the narrow line-of-sight cylinder and cone defined above probably will not reveal a detectable acoustic feature in BOSS; (2) a clustering measurement as high as that in the current sample can be ruled out (or confirmed) at a high confidence level using a BOSS-sized data set; (3) an analysis with wider angular cuts, which provide better signal-to-noise ratios, can nevertheless be used to compare line-of-sight and transverse distances, and thereby constrain the expansion rate H(z) and diameter distance D{sub A}(z).« less

  6. The most massive galaxies and black holes allowed by ΛCDM

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Silk, Joseph

    2018-07-01

    Given a galaxy's stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z> 4, galaxy stellar mass functions place lower limits on halo number densities that approach expected Lambda Cold Dark Matter halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z < 8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST(James Webb Space Telescope) and WFIRST(Wide-Field InfraRed Survey Telescope) will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from ΛCDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass to stellar mass ratios higher than the median z = 0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently ΛCDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.

  7. Establishing low-lying doubly charmed baryons

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Xing; Mao, Qiang; Chen, Wei; Liu, Xiang; Zhu, Shi-Lin

    2017-08-01

    We systematically study the S -wave doubly charmed baryons using the method of QCD sum rules. Our results suggest that the Ξcc ++ recently observed by LHCb can be well identified as the S -wave Ξc c state of JP=1 /2+. We study its relevant Ωc c state, the mass of which is predicted to be around 3.7 GeV. We also systematically study the P -wave doubly charmed baryons, the masses of which are predicted to be around 4.1 GeV. Especially, there can be several excited doubly charmed baryons in this energy region, and we suggest searching for them in order to study the fine structure of the strong interaction.

  8. Baryon acoustic oscillations in the Ly α forest of BOSS quasars

    DOE PAGES

    Busca, N. G.; Delubac, T.; Rich, J.; ...

    2013-04-04

    In this paper, we report a detection of the baryon acoustic oscillation (BAO) feature in the three-dimensional correlation function of the transmitted flux fraction in the Lyα forest of high-redshift quasars. The study uses 48,640 quasars in the redshift rangemore » $$2.1\\le z \\le 3.5$$ from the Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). At a mean redshift $z=2.3$, we measure the monopole and quadrupole components of the correlation function for separations in the range 20 h -1 Mpc < r < 200 h -1. A peak in the correlation function is seen at a separation equal to $$(1.01\\pm0.03)$$ times the distance expected for the BAO peak within a concordance $$\\Lambda$$CDM cosmology. This first detection of the BAO peak at high redshift, when the universe was strongly matter dominated, results in constraints on the angular diameter distance D A and the expansion rate $H$ at $z=2.3$ that, combined with priors on $$H_0$$ and the baryon density, require the existence of dark energy. Combined with constraints derived from Cosmic Microwave Background (CMB) observations, this result implies $$H(z=2.3)=(224\\pm8){\\rm km\\,s^{-1}Mpc^{-1}}$$, indicating that the time derivative of the cosmological scale parameter $$\\dot{a}=H(z=2.3)/(1+z)$$ is significantly greater than that measured with BAO at $$z\\sim0.5$$. This demonstrates that the expansion was decelerating in the range 0.7 < z < 2.3 , as expected from the matter domination during this epoch. Finally, combined with measurements of H 0, one sees the pattern of deceleration followed by acceleration characteristic of a dark-energy dominated universe.« less

  9. 78 FR 73993 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... column, in the 16th line from the bottom ``C[squ]N'' should read ``C[Lambda]N''. Sec. 93.418 [Corrected... ``C[Lambda]N''. 3. On the same page, in the third column, in the 1st line ``CN'' should read ``C[Lambda]N''. [FR Doc. C1-2013-28228 Filed 12-9-13; 8:45 am] BILLING CODE 1505-01-D ...

  10. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    PubMed

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  11. Strange baryon resonance production in sqrt s NN=200 GeV p+p and Au+Au collisions.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Gaudichet, L; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van der Kolk, N; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-09-29

    We report the measurements of Sigma(1385) and Lambda(1520) production in p+p and Au+Au collisions at sqrt[s{NN}]=200 GeV from the STAR Collaboration. The yields and the p(T) spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central Au+Au collisions. Our results indicate that there may be a time span between chemical and thermal freeze-out during which elastic hadronic interactions occur.

  12. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis wasmore » measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd sources. Conclusions: An independent {Lambda} determination has been performed for the Advantage Pd-103 source. The {sub PST}{Lambda} obtained in this work provides additional information needed for establishing a more accurate consensus {Lambda} value for the Advantage Pd-103 source.« less

  13. Observational constraints on disc galaxy formation

    NASA Astrophysics Data System (ADS)

    Syer, D.; Mao, Shude; Mo, H. J.

    1999-04-01

    We use data from the literature to constrain theoretical models of galaxy formation. We show how to calculate the dimensionless spin parameter lambda of the haloes of disc galaxies, and we compare the distribution of lambda with that observed in cosmological N-body simulations. The agreement is excellent, which provides strong support for the hierarchical picture of galaxy formation. Assuming only that the radial surface density distribution of discs is exponential, we estimate crudely the maximum-disc mass-to-light ratio in the I band, and obtain < Upsilon_I> <~ 3.56 h, for a Hubble constant of 100 h km s^-1 Mpc^-1. We discuss this result and its limitations in relation to other independent determinations of Upsilon_I. We also define a dimensionless form of the Tully-Fisher relation, and use it to derive a value of the baryon fraction in disc galaxies; the median value is m_d = 0.084 (Upsilon_I3.56 h). Assuming that the gas fraction in galactic haloes is at most as large as that in clusters, we also conclude that < Upsilon_I> <~ 2.56 h^-1/2.

  14. Simple model for lambda-doublet propensities in bimolecular reactions

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael J.; Zare, Richard N.

    1990-01-01

    A simple geometric model is presented to account for lambda-doublet propensities in bimolecular reactions A + BC - AB + C. It applies to reactions in which AB is formed in a pi state, and in which the unpaired molecular orbital responsible for lambda-doubling arises from breaking the B-C bond. The lambda-doublet population ratio is predicted to be 2:1 provided that: (1) the motion of A in the transition state determines the plane of rotation of AB; (2) the unpaired pi orbital lying initially along the B-C bond may be resolved into a projection onto the AB plane of rotation and a projection perpendicular to this plane; (3) there is no preferred geometry for dissociation of ABC. The 2:1 lambda-doublet ratio is the 'unconstrained dynamics prior' lambda-doublet distribution for such reactions.

  15. Discovery potentials of doubly charmed baryons

    NASA Astrophysics Data System (ADS)

    Yu, Fu-Sheng; Jiang, Hua-Yu; Li, Run-Hui; Lü, Cai-Dian; Wang, Wei; Zhao, Zhen-Xing

    2018-05-01

    The existence of doubly heavy flavor baryons has not been well established experimentally so far. In this Letter we systematically investigate the weak decays of the doubly charmed baryons, {{{\\Xi }}}{{cc}}++ and {{{\\Xi }}}{{cc}}+, which should be helpful for experimental searches for these particles. The long-distance contributions are first studied in the doubly heavy baryon decays, and found to be significantly enhanced. Comparing all the processes, {{{\\Xi }}}{{cc}}++\\to {{{Λ }}}{{c}}+{{{K}}}-{{{π }}}+{{{π }}}+ and {{{\\Xi }}}{{c}}+{{{π }}}+ are the most favorable decay modes for experiments to search for doubly heavy baryons. Supported by National Natural Science Foundation of China (11505083, 11505098, 11647310, 11575110, 11375208, 11521505, 11621131001, 11235005, 11447032, U1732101) and Natural Science Foundation of Shanghai (15DZ2272100)

  16. 36 CFR 262.5 - Disposal of purchased property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Disposal of purchased... LAW ENFORCEMENT SUPPORT ACTIVITIES Rewards and Payments § 262.5 Disposal of purchased property. All evidence purchased under the authority of this subpart shall be maintained in accordance with all laws...

  17. Quantum Numbers of Recently Discovered Ωc0 Baryons from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Padmanath, M.; Mathur, Nilmani

    2017-07-01

    We present the ground and excited state spectra of Ωc0 baryons with spin up to 7 /2 from lattice quantum chromodynamics with dynamical quark fields. Based on our lattice results, we predict the quantum numbers of five Ωc0 baryons, which have recently been observed by the LHCb Collaboration. Our results strongly indicate that the observed states Ωc(3000 )0 and Ωc(3050 )0 have spin-parity JP=1 /2-, the states Ωc(3066 )0 and Ωc(3090 )0 have JP=3 /2-, whereas Ωc(3119 )0 is possibly a 5 /2- state.

  18. Quantum Numbers of Recently Discovered Ω_{c}^{0} Baryons from Lattice QCD.

    PubMed

    Padmanath, M; Mathur, Nilmani

    2017-07-28

    We present the ground and excited state spectra of Ω_{c}^{0} baryons with spin up to 7/2 from lattice quantum chromodynamics with dynamical quark fields. Based on our lattice results, we predict the quantum numbers of five Ω_{c}^{0} baryons, which have recently been observed by the LHCb Collaboration. Our results strongly indicate that the observed states Ω_{c}(3000)^{0} and Ω_{c}(3050)^{0} have spin-parity J^{P}=1/2^{-}, the states Ω_{c}(3066)^{0} and Ω_{c}(3090)^{0} have J^{P}=3/2^{-}, whereas Ω_{c}(3119)^{0} is possibly a 5/2^{-} state.

  19. Structural relationship of curcumin derivatives binding to the BRCT domain of human DNA polymerase lambda.

    PubMed

    Takeuchi, Toshifumi; Ishidoh, Tomomi; Iijima, Hiroshi; Kuriyama, Isoko; Shimazaki, Noriko; Koiwai, Osamu; Kuramochi, Kouji; Kobayashi, Susumu; Sugawara, Fumio; Sakaguchi, Kengo; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2006-03-01

    We previously reported that phenolic compounds, petasiphenol and curcumin (diferuloylmethane), were a selective inhibitor of DNA polymerase lambda (pol lambda) in vitro. The purpose of this study was to investigate the molecular structural relationship of curcumin and 13 chemically synthesized derivatives of curcumin. The inhibitory effect on pol lambda (full-length, i.e. intact pol lambda including the BRCA1 C- terminal [BRCT] domain) by some derivatives was stronger than that by curcumin, and monoacetylcurcumin (compound 13) was the strongest pol lambda inhibitor of all the compounds tested, achieving 50% inhibition at a concentration of 3.9 microm. The compound did not influence the activities of replicative pols such as alpha, delta, and epsilon. It had no effect on pol beta activity either, although the three-dimensional structure of pol beta is thought to be highly similar to that of pol lambda. Compound 13 did not inhibit the activity of the C-terminal catalytic domain of pol lambda including the pol beta-like core, in which the BRCT motif was deleted from its N-terminal region. MALDI-TOF MS analysis demonstrated that compound 13 bound selectively to the N-terminal domain of pol lambda, but did not bind to the C-terminal region. Based on these results, the pol lambda-inhibitory mechanism of compound 13 is discussed.

  20. On the nature of the newly discovered Ω states

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2017-06-01

    The mass and residue of the ground-state, as well as the first orbital and radial excitations of the heavy ΩQ baryons with Q being b or c quark, for both J=1/2 and J=3/2 are calculated by means of the QCD two-point sum rule method using the general forms for the interpolating currents. In the calculations the quark, gluon and mixed vacuum condensates up to ten dimensions are taken into account. We compare our results for the masses of Ω_b- and Ω_c0 baryons with the existing predictions of other theoretical works. Our results for the charmed baryons are confronted with the experimental data of the LHCb Collaboration to understand the nature of the recently observed narrow Ω_c0 resonances. The predictions for the masses of the Ω_b- baryons with the same quantum numbers may shed light on future experimental searches for the corresponding bottom baryons.

  1. Quadrupole deformation ({beta},{gamma}) of light {Lambda} hypernuclei in a constrained relativistic mean field model: Shape evolution and shape polarization effect of the {Lambda} hyperon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Bingnan; Zhao Enguang; Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000

    2011-07-15

    The shapes of light normal nuclei and {Lambda} hypernuclei are investigated in the ({beta},{gamma}) deformation plane by using a newly developed constrained relativistic mean field (RMF) model. As examples, the results of some C, Mg, and Si nuclei are presented and discussed in details. We found that for normal nuclei the present RMF calculations and previous Skyrme-Hartree-Fock models predict similar trends of the shape evolution with the neutron number increasing. But some quantitative aspects from these two approaches, such as the depth of the minimum and the softness in the {gamma} direction, differ a lot for several nuclei. For {Lambda}more » hypernuclei, in most cases, the addition of a {Lambda} hyperon alters slightly the location of the ground state minimum toward the direction of smaller {beta} and softer {gamma} in the potential energy surface E{approx}({beta},{gamma}). There are three exceptions, namely, {sub {Lambda}}{sup 13}C, {sub {Lambda}}{sup 23}C, and {sub {Lambda}}{sup 31}Si in which the polarization effect of the additional {Lambda} is so strong that the shapes of these three hypernuclei are drastically different from their corresponding core nuclei.« less

  2. K(892)* resonance production in Au+Au and p+p collisions at {radical}s{sub NN} = 200 GeV at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.

    2004-12-09

    The short-lived K(892)* resonance provides an efficient tool to probe properties of the hot and dense medium produced in relativistic heavy-ion collisions. We report measurements of K* in {radical}s{sub NN} = 200 GeV Au+Au and p+p collisions reconstructed via its hadronic decay channels K(892)*{sup 0} {yields} K{pi} and K(892)*{sup +-} {yields} K{sub S}{sup 0}{pi}{sup +-} using the STAR detector at RHIC. The K*{sup 0} mass has been studied as function of p{sub T} in minimum bias p + p and central Au+Au collisions. The K* p{sub T} spectra for minimum bias p + p interactions and for Au+Au collisions inmore » different centralities are presented. The K*/K ratios for all centralities in Au+Au collisions are found to be significantly lower than the ratio in minimum bias p + p collisions, indicating the importance of hadronic interactions between chemical and kinetic freeze-outs. The nuclear modification factor of K* at intermediate p{sub T} is similar to that of K{sub S}{sup 0}, but different from {Lambda}. This establishes a baryon-meson effect over a mass effect in the particle production at intermediate p{sub T} (2 < p{sub T} {le} 4 GeV/c). A significant non-zero K*{sup 0} elliptic flow (v{sub 2}) is observed in Au+Au collisions and compared to the K{sub S}{sup 0} and {Lambda} v{sub 2}.« less

  3. Measurements of the branching fractions for B{sub (s)}{yields}D{sub (s)}{pi}{pi}{pi} and {Lambda}{sub b}{sup 0}{yields}{Lambda}{sub c}{sup +}{pi}{pi}{pi}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaij, R.; Bauer, Th.; Beuzekom, M. van

    Branching fractions of the decays H{sub b}{yields}H{sub c}{pi}{sup -}{pi}{sup +}{pi}{sup -} relative to H{sub b}{yields}H{sub c}{pi}{sup -} are presented, where H{sub b} (H{sub c}) represents B{sup 0} (D{sup +}), B{sup -} (D{sup 0}), B{sub s}{sup 0} (D{sub s}{sup +}), and {Lambda}{sub b}{sup 0} ({Lambda}{sub c}{sup +}). The measurements are performed with the LHCb detector using 35 pb{sup -1} of data collected at {radical}(s)=7 TeV. The ratios of branching fractions are measured to be [B(B{sup 0}{yields}D{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})]/[B(B{sup 0}{yields}D{sup +}{pi}{sup -})]=2.38{+-}0.11{+-}0.21, [B(B{sup -}{yields}D{sup 0}{pi}{sup -}{pi}{sup +}{pi}{sup -})]/[B(B{sup -}{yields}D{sup 0}{pi}{sup -})]= 1.27{+-}0.06{+-}0.11, [B(B{sub s}{sup 0}{yields}D{sub s}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})]/[B(B{submore » s}{sup 0}{yields}D{sub s}{sup +}{pi}{sup -})]=2.01{+-}0.37{+-}0.20, [B({Lambda}{sub b}{sup 0}{yields}{Lambda}{sub c}{sup +}{pi}{sup -} {pi}{sup +}{pi}{sup -})]/[B({Lambda}{sub b}{sup 0}{yields}{Lambda}{sub c}{sup +}{pi}{sup -})]=1.43{+-}0.16{+-}0.13 We also report measurements of partial decay rates of these decays to excited charm hadrons. These results are of comparable or higher precision than existing measurements.« less

  4. 25 CFR 26.25 - What constitutes a complete Job Placement Program application?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What constitutes a complete Job Placement Program... JOB PLACEMENT AND TRAINING PROGRAM Job Placement Services § 26.25 What constitutes a complete Job Placement Program application? To be complete, a Job Placement Program application must contain all of the...

  5. 25 CFR 26.25 - What constitutes a complete Job Placement Program application?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true What constitutes a complete Job Placement Program... JOB PLACEMENT AND TRAINING PROGRAM Job Placement Services § 26.25 What constitutes a complete Job Placement Program application? To be complete, a Job Placement Program application must contain all of the...

  6. 25 CFR 26.25 - What constitutes a complete Job Placement Program application?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false What constitutes a complete Job Placement Program... JOB PLACEMENT AND TRAINING PROGRAM Job Placement Services § 26.25 What constitutes a complete Job Placement Program application? To be complete, a Job Placement Program application must contain all of the...

  7. 25 CFR 26.25 - What constitutes a complete Job Placement Program application?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false What constitutes a complete Job Placement Program... JOB PLACEMENT AND TRAINING PROGRAM Job Placement Services § 26.25 What constitutes a complete Job Placement Program application? To be complete, a Job Placement Program application must contain all of the...

  8. 49 CFR 26.25 - What is the requirement for a liaison officer?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What is the requirement for a liaison officer? 26... Requirements for DBE Programs for Federally-Assisted Contracting § 26.25 What is the requirement for a liaison... Executive Officer concerning DBE program matters. The liaison officer shall be responsible for implementing...

  9. 49 CFR 26.25 - What is the requirement for a liaison officer?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false What is the requirement for a liaison officer? 26... Requirements for DBE Programs for Federally-Assisted Contracting § 26.25 What is the requirement for a liaison... Executive Officer concerning DBE program matters. The liaison officer shall be responsible for implementing...

  10. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting under...

  11. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting under...

  12. 43 CFR 2625.2 - Applications in conflict with swamp-land claims.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Applications in conflict with swamp-land...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.2 Applications in conflict with swamp-land claims. Applications adverse to the State...

  13. 43 CFR 2625.1 - Selection and patenting of swamp lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Selection and patenting of swamp lands... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.1 Selection and patenting of swamp lands. (a) All lands properly selected and reported to...

  14. 43 CFR 2625.2 - Applications in conflict with swamp-land claims.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Applications in conflict with swamp-land...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.2 Applications in conflict with swamp-land claims. Applications adverse to the State...

  15. 43 CFR 2625.1 - Selection and patenting of swamp lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Selection and patenting of swamp lands... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.1 Selection and patenting of swamp lands. (a) All lands properly selected and reported to...

  16. 43 CFR 2625.0-3 - Authority.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.0-3 Authority. (a) Circular dated Mar. 17, 1896, containing the swamp-land laws and regulations, states: As soon as practicable after the passage of the swamp-land grant of September 28, 1850, viz, on the 21st of...

  17. 43 CFR 2625.0-3 - Authority.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.0-3 Authority. (a) Circular dated Mar. 17, 1896, containing the swamp-land laws and regulations, states: As soon as practicable after the passage of the swamp-land grant of September 28, 1850, viz, on the 21st of...

  18. 43 CFR 2625.0-3 - Authority.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.0-3 Authority. (a) Circular dated Mar. 17, 1896, containing the swamp-land laws and regulations, states: As soon as practicable after the passage of the swamp-land grant of September 28, 1850, viz, on the 21st of...

  19. 43 CFR 2625.1 - Selection and patenting of swamp lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Selection and patenting of swamp lands... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.1 Selection and patenting of swamp lands. (a) All lands properly selected and reported to...

  20. 43 CFR 2625.2 - Applications in conflict with swamp-land claims.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Applications in conflict with swamp-land...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.2 Applications in conflict with swamp-land claims. Applications adverse to the State...

  1. 43 CFR 2625.1 - Selection and patenting of swamp lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Selection and patenting of swamp lands... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.1 Selection and patenting of swamp lands. (a) All lands properly selected and reported to...

  2. 43 CFR 2625.2 - Applications in conflict with swamp-land claims.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Applications in conflict with swamp-land...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.2 Applications in conflict with swamp-land claims. Applications adverse to the State...

  3. 43 CFR 2625.0-3 - Authority.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) STATE GRANTS Swamp-land Grants § 2625.0-3 Authority. (a) Circular dated Mar. 17, 1896, containing the swamp-land laws and regulations, states: As soon as practicable after the passage of the swamp-land grant of September 28, 1850, viz, on the 21st of...

  4. First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements

    NASA Astrophysics Data System (ADS)

    Brouwer, Margot M.; Visser, Manus R.; Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Valentijn, Edwin A.; Bilicki, Maciej; Blake, Chris; Brough, Sarah; Buddelmeijer, Hugo; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; Klaes, Dominik; Liske, Jochen; Loveday, Jon; McFarland, John; Nakajima, Reiko; Sifón, Cristóbal; Taylor, Edward N.

    2017-04-01

    Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ˜180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.

  5. Mechanisms of Hyperbilirubinemia During Peginterferon Lambda-1a Therapy for Chronic Hepatitis C Infection: A Retrospective Investigation.

    PubMed

    Zwirtes, Ricardo; Narasimhan, Premkumar; Wind-Rotolo, Megan M; Xu, Dong; Hruska, Matthew W; Kishnani, Narendra; Colston, Elizabeth M; Srinivasan, Subasree

    2016-11-01

    The phase 2b EMERGE study compared the efficacy/safety of peginterferon lambda-1a (Lambda) and peginterferon alfa-2a (Alfa), both with ribavirin (RBV), for treatment of chronic hepatitis C virus (HCV) infection. A key safety finding was a higher frequency of hyperbilirubinemia with Lambda/RBV versus Alfa/RBV. To characterize mechanisms of hyperbilirubinemia associated with Lambda/RBV, we conducted a retrospective analysis of safety data from the HCV genotype 1 and genotype 4 cohort of the EMERGE study. Subjects were randomized to once-weekly Lambda (120/180/240 μg) or Alfa (180 μg), with daily RBV, for 48 weeks. Early-onset Lambda/RBV-related hyperbilirubinemia events (6-12 weeks) resulted mostly from RBV-induced hemolysis evidenced by sustained reticulocytosis and a predominantly unconjugated pattern of hyperbilirubinemia. The higher hyperbilirubinemia frequency with Lambda/RBV versus Alfa/RBV was attributed to bone marrow suppression known to occur with Alfa but not Lambda. Late-onset (>12 weeks) Lambda/RBV-related hyperbilirubinemia events occurred most frequently with higher Lambda doses and were associated with increased levels of hepatic transaminase and direct bilirubin fractions compared with early events. This dual pattern of hyperbilirubinemia observed while on Lambda/RBV treatment is thought to be caused by exaggerated RBV-induced hemolysis in early-onset events compared with possible direct Lambda-induced hepatocellular toxicity in late-onset events.

  6. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01.

    PubMed

    Xu, Jian-Ren; Zhao, Xin-Qing; Liu, Chen-Guang; Bai, Feng-Wu

    2018-01-01

    The major carbohydrate components of lignocellulosic biomass are cellulose and hemicelluloses. Saccharomyces cerevisiae cannot efficiently utilize xylose derived upon the hydrolysis of hemicelluloses. Although engineering the yeast with xylose metabolic pathway has been intensively studied, challenges are still ahead for developing robust strains for lignocellulosic bioethanol production. The main objective of this study was to reveal the role of the MIG1 mutant isolated from the self-flocculating S. cerevisiae SPSC01 in xylose utilization, glucose repression and ethanol fermentation by S. cerevisiae. The MIG1 mutant was amplified from S. cerevisiae SPSC01 by PCR and MIG1- overexpression-cassette was transformed into S. cerevisiae S288c and xylose-metabolizing strain YB-2625-T through homologous recombination. Yeast growth was measured by colony assay on plates with or without xylose supplementation. Then xylose utilization and ethanol production were further evaluated through flask fermentation when mixed sugars of glucose and xylose at 3:1 and 2:1, respectively, were supplied. Fermentation products were detected by HPLC, and activities of xylose reductase (XR), xylitol dehydrogenase (XDH) and xylulokinase (XK) were also measured. The transcription of genes regulated by the expression of the MIG1 mutant was analyzed by RTqPCR. Evolutionary relationship of various MIG1s was developed by gene sequencing and sequence alignment. No difference was observed for S288c growing with xylose when it was engineered with the overexpression or deletion of its native MIG1, but its growth was enhanced when overexpressing the MIG1 mutant from SPSC01. The submerged culture of YB-2625-T MIG1-SPSC engineered with xylose-metabolic pathway and the MIG1 mutant indicated that xylitol accumulation was decreased, and consequently, more biomass was accumulated. Furthermore, improved activities of the key enzymes such as XR, XDH and XK were detected in YB-2625-T MIG1-SPSC. Evolutionary analysis of MIG1s amplified from S. cerevisiae strains commonly used for ethanol production revealed a close relationship of SPSC01 and YB-2625. Our results demonstrated the effect of the overexpression of the MIG1 mutant from SPSC01 on xylose utilization of S. cerevisiae. This study could be an alternative strategy for engineering S. cerevisiae with improved xylose utilization. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Charmed baryon weak decays with SU(3) flavor symmetry

    NASA Astrophysics Data System (ADS)

    Geng, C. Q.; Hsiao, Y. K.; Liu, Chia-Wei; Tsai, Tien-Hsueh

    2017-11-01

    We study the semileptonic and non-leptonic charmed baryon decays with SU(3) flavor symmetry, where the charmed baryons can be B c = (Ξ c 0 , Ξ c + , Λ c + ), B c ' = ( Σ c (++,+,0) , Ξ c ' (+,0) , Ω c 0 ), B cc = (Ξ cc + + , Ξ cc + , Ω c + ) or B cc = Ω ccc + + . With B n (') denoted as the baryon octet (decuplet), we find that the B c → B n ' ℓ + ν ℓ decays are forbidden, while the Ω c 0 → Ω- ℓ + ν ℓ , Ω cc + → Ω c 0 ℓ + ν ℓ , and Ω ccc + + → Ω cc + ℓ + ν ℓ decays are the only existing Cabibbo- allowed modes for B c ' → B n ' ℓ + ν ℓ , B cc → B c ' ℓ + ν ℓ , and B ccc → B cc (') ℓ + ν ℓ , respectively. We predict the rarely studied B c → B n (') M decays, such as B({Ξ}_c^0\\to {Λ}^0{\\overline{K}}^0,{Ξ}_c+\\to {Ξ}^0{π}+)=(8.3± 0.9, 8.0± 4.1)× {10}^{-3} and B({Λ}_c+\\to {Δ}^{++}{π}-,{Ξ}_c^0\\to {Ω}-{K}+)=(5.5± 1.3, 4.8± 0.5)× {10}^{-3} . For the observation, the doubly and triply charmed baryon decays of {Ω}_{cc}+\\to {Ξ}_c+{\\overline{K}}^0,{Ξ}_{cc}^{++}\\to ({Ξ}_c+{π}+,{Σ}_c^{++}{\\overline{K}}^0), and {Ω}_{ccc}^{++}\\to ({Ξ}_{cc}^{++}{\\overline{K}}^0,{Ω}_{cc}+{π}+,{Ξ}_c+{D}+) are the favored Cabibbo-allowed decays, which are accessible to the BESIII and LHCb experiments.

  8. Search for production of single top quarks via tcg and tug flavor-changing-neutral-current couplings.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, B; Davies, G; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Oguri, V; Oliveira, N; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vlimant, J-R; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G

    2007-11-09

    We search for the production of single top quarks via flavor-changing-neutral-current couplings of a gluon to the top quark and a charm (c) or up (u) quark. We analyze 230 pb{-1} of lepton+jets data from pp[over] collisions at a center of mass energy of 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We observe no significant deviation from standard model predictions, and hence set upper limits on the anomalous coupling parameters kappa{g}{c}/Lambda and kappa{g}{u}/Lambda, where kappa{g} define the strength of tcg and tug couplings, and Lambda defines the scale of new physics. The limits at 95% C.L. are kappa{g}{c}/Lambda<0.15 TeV-1 and kappa{g}{u}/Lambda<0.037 TeV-1.

  9. Propagation of heavy baryons in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo

    2016-12-01

    The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.

  10. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no...

  11. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste...

  12. Is LambdaCDM consistent with the Tully-Fisher relation?

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Gunn, J. E.; Mandelbaum, R.

    2013-07-01

    We consider the question of the origin of the Tully-Fisher relation in LambdaCDM cosmology. Reproducing the observed tight relation between stellar masses and rotation velocities of disk galaxies presents a challenge for semi-analytical models and hydrodynamic simulations of galaxy formation. Here, our goal is to construct a suite of galaxy mass models that is fully consistent with observations, and that also reproduces the observed Tully-Fisher relation. We take advantage of a well-defined sample of disk galaxies in SDSS with measured rotation velocities (from long-slit spectroscopy of H-alpha), stellar bulge and disk profiles (from fits to SDSS images), and average dark matter halo masses (from stacked weak lensing of a larger, similarly-selected sample). The primary remaining freedom in the mass models come from the final dark matter halo profile (after contraction from baryon infall and, possibly, feedback) and the stellar IMF. We find that the observed velocities are reproduced by models with Kroupa IMF and NFW (i.e., unmodified) dark matter haloes for galaxies with stellar masses 10^9-10^10 M_sun. For higher stellar masses, models with contracted NFW haloes are favored. A scenario in which the amount of halo contraction varies with stellar mass is able to reproduce the observed Tully-Fisher relation over the full stellar mass range of our sample from 10^9 to 10^11 M_sun. We present this as a proof-of-concept for consistency between LambdaCDM and the Tully-Fisher relation.

  13. Measurement of the $$\\Lambda^0_b$$ lifetime in the exclusive decay $$\\Lambda^0_b \\rightarrow J/\\psi \\Lambda^0$$ with the \\D0~detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heredia-De La Cruz, Ivan

    2012-06-01

    In this work we report a measurement of the Λ 0 b baryon lifetime using the exclusive decay Λ 0 b→ J/ ΨΛ 0. The B 0 meson lifetime is also measured in the topologically similar channel B 0→ J/ K 0 S , which provides a crosscheck of the measurement procedure, and allows a direct determination of the ratio of the Λ 0 b and the B 0 lifetimes. The data used in this analysis were collected with the DØ detector during the complete Run II of the Fermilab Tevatron Collider, from 2002 to 2011, and correspond to anmore » integrated luminosity of 10.4 fb -1 of proton-antiproton collisions at a center of mass energy √s = 1.96 TeV. We obtain τ (Λ 0 b ) = 1.303 ± 0.075 (stat.) ± 0.035 (syst.) ps, τ (B 0) = 1.508±0.025 (stat.)±0.043 (syst.) ps and τ (Λ 0 b )/τ (B 0) = 0.864± 0.052 (stat.)±0.033 (syst.). These measurements supersede previous results of the DØ Collaboration using the same decay channels. Our measurement of the lifetime ratio is in excellent agreement with theoretical predictions and compatible with the current world-average, but differs with the latest measurement of the CDF Collaboration in more than 2 standard deviations.« less

  14. Photoproduction of Λ and Σ 0 hyperons using linearly polarized photons

    DOE PAGES

    Paterson, C. A.; Ireland, D. G.; Livingston, K.; ...

    2016-06-08

    Measurements of polarization observables for the reactionsmore » $$\\vec{\\gamma} p \\rightarrow K^+ \\Lambda$$ and $$\\vec{\\gamma} p \\rightarrow K^+ \\Sigma^0$$ have been performed. This is part of a programme of measurements designed to study the spectrum of baryon resonances. The accurate measurement of several polarization observables provides tight constraints for phenomenological fits. Beam-recoil observables for the $$\\vec{\\gamma} p \\rightarrow K^+ \\Sigma^0$$ reaction have not been reported before now. Furthermore, the measurements were carried out using linearly polarized photon beams and the CLAS detector at the Thomas Jefferson National Accelerator Facility. The energy range of the results is 1.71GeV.« less

  15. On the nature of the nova-like variable CD-42 deg 14462

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Sion, E. M.

    1981-01-01

    Low dispersion long and short wavelength IUE spectra of the nova like system CD-42 deg 14462 were obtained on August 24 U.T. The short wave spectrum exhibits absorption features due to C III (lambda 1175), Lalpha 1216), NV (lambda1240), HeII (lambda 1640), SiIV (lambda1394), NIV (lambda1875) with CIV (lambda1550) as a P Cygni feature with blue shifted absorption suggesting the presence of material leaving the system. Possible interpretations of this object are discussed.

  16. Searches for the baryon- and lepton-number violating decays B0→Λc+l-, B-→Λl-, and B-→Λ¯l-

    NASA Astrophysics Data System (ADS)

    Del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Buenger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-05-01

    Searches for B mesons decaying to final states containing a baryon and a lepton are performed, where the baryon is either Λc or Λ and the lepton is a muon or an electron. These decays violate both baryon and lepton number and would be a signature of physics beyond the standard model. No significant signal is observed in any of the decay modes, and upper limits in the range (3.2-520)×10-8 are set on the branching fractions at the 90% confidence level.

  17. Somatic diversification of chicken immunoglobulin light chains by point mutations.

    PubMed

    Parvari, R; Ziv, E; Lantner, F; Heller, D; Schechter, I

    1990-04-01

    The light-chain locus of chicken has 1 functional V lambda 1 gene, 1 J gene, and 25 pseudo-V lambda-genes (where V = variable and J = joining). A major problem is which somatic mechanisms expand this extremely limited germ-line information to generate many different antibodies. Weill's group [Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C. (1987) Cell 48, 379-388] has shown that the pseudo-V lambda-genes diversify the rearranged V lambda 1 by gene conversion. Here we demonstrate that chicken light chains are further diversified by somatic point mutations and by V lambda 1-J flexible joining. Somatic point mutations were identified in the J and 3' noncoding DNA of rearranged light-chain genes of chicken. These regions were analyzed because point mutations in V lambda 1 are obscured by gene conversion; the J and 3' noncoding DNA are presented in one copy per haploid genome and are not subject to gene conversion. In rodents point mutations occur as frequently in the V-J coding regions as in the adjacent flanking DNA. Therefore, we conclude that somatic point mutations diversify the V lambda 1 of chicken. The frequency (0-1%) and distribution of the mutations (decreasing in number with increased distance from the V lambda 1 segment) in chicken were as observed in rodents. Sequence variability at the V lambda 1-J junctions could be attributed to imprecise joining of the V lambda 1 and J genes. The modification by gene conversion of rearranged V lambda 1 genes in the bursa was similar in chicken aged 3 months (9.5%) or 3 weeks (9.1%)--i.e., gene conversion that generates the preimmune repertoire in the bursa seems to level off around 3 weeks of age. This preimmune repertoire can be further diversified by somatic point mutations that presumably lead to the formation of antibodies with increased affinity. A segment with structural features of a matrix association region [(A + T)-rich and four topoisomerase II binding sites] was identified in the middle of the J-C lambda intron (where C = constant).

  18. On the search for the electric dipole moment of strange and charm baryons at LHC

    NASA Astrophysics Data System (ADS)

    Botella, F. J.; Garcia Martin, L. M.; Marangotto, D.; Martinez Vidal, F.; Merli, A.; Neri, N.; Oyanguren, A.; Ruiz Vidal, J.

    2017-03-01

    Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in p p collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and \\overline{Λ} baryons. For short-lived {Λ} ^+c and {Ξ} ^+c baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed.

  19. Phenomenology of nonperturbative charm in the nucleon

    DOE PAGES

    Hobbs, T. J.; Londergan, J. T.; Melnitchouk, W.

    2014-04-02

    We perform a comprehensive analysis of the role of nonperturbative (or intrinsic) charm in the nucleon, generated through Fock state expansions of the nucleon wave function involving five-quark virtual states represented by charmed mesons and baryons. We consider contributions from a variety of charmed meson-baryon states and find surprisingly dominant effects from the D¯ *0 Λ c + configuration. We pay particular attention to the existence and persistence of high-x structure for intrinsic charm, and the x dependence of the c-c¯ asymmetry predicted in meson-baryon models. We discuss how studies of charmed baryons and mesons in hadronic reactions can bemore » used to constrain models, and outline future measurements that could further illuminate the intrinsic charm component of the nucleon.« less

  20. Mass spectra and radiative transitions of doubly heavy baryons in a relativized quark model

    NASA Astrophysics Data System (ADS)

    Lü, Qi-Fang; Wang, Kai-Lei; Xiao, Li-Ye; Zhong, Xian-Hui

    2017-12-01

    We study the mass spectra and radiative decays of doubly heavy baryons within the diquark picture in a relativized quark model. The mass of the JP=1 /2+ Ξc c ground state is predicted to be 3606 MeV, which is consistent with the mass of Ξcc ++(3621 ) newly observed by the LHCb Collaboration. The predicted mass gap between two S -wave states, Ξcc * (JP=3 /2+) and Ξc c (JP=1 /2+), is 69 MeV. Furthermore, the radiative transitions of doubly heavy baryons are also estimated by using the realistic wave functions obtained from relativized quark model. The radiative decay widths of Ξcc *++→Ξcc ++γ and Ξcc *+→Ξcc +γ are predicted to be about 7 and 4 keV, respectively. These predictions of doubly heavy baryons can provide helpful information for future experimental searches.

  1. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no later than the date specified in table 1 of this...

  2. Mass formulas for {Xi}{sub c} and {Xi}{sub b} baryons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, T. M.; Zamiralov, V. S.; Ozpineci, A.

    The importance of taking into account the mixing of the heavy cascade baryons {Xi} and {Xi}' that have new quantum numbers in analyzing their properties is shown. The Ono quark model is considered by way of example. The masses of the new baryons and the {Xi}-{Xi}' mixing angles are obtained. The same approach is applied to the interpolating currents of these baryons within QCD sum rules.

  3. Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.

    1999-01-01

    We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.

  4. Search for Baryon-Number Violating Ξb0 Oscillations

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombacher, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2017-11-01

    A search for baryon-number violating Ξb0 oscillations is performed with a sample of p p collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3 fb-1 . The baryon number at the moment of production is identified by requiring that the Ξb0 come from the decay of a resonance Ξb*-→Ξb0π- or Ξb'-→Ξb0π-, and the baryon number at the moment of decay is identified from the final state using the decays Ξb0→Ξc+π-,Ξc+→p K-π+. No evidence of baryon-number violation is found, and an upper limit at the 95% confidence level is set on the oscillation rate of ω <0.08 ps-1, where ω is the associated angular frequency.

  5. Inhibitory effect of tocotrienol on eukaryotic DNA polymerase {lambda} and angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizushina, Yoshiyuki; Nakagawa, Kiyotaka; Shibata, Akira

    2006-01-20

    Tocotrienols, vitamin E compounds that have an unsaturated side chain with three double bonds, selectively inhibited the activity of mammalian DNA polymerase {lambda} (pol {lambda}) in vitro. These compounds did not influence the activities of replicative pols such as {alpha}, {delta}, and {epsilon}, or even the activity of pol {beta} which is thought to have a very similar three-dimensional structure to the pol {beta}-like region of pol {lambda}. Since {delta}-tocotrienol had the strongest inhibitory effect among the four ({alpha}- to {delta}-) tocotrienols, the isomer's structure might be an important factor in the inhibition of pol {lambda}. The inhibitory effect ofmore » {delta}-tocotrienol on both intact pol {lambda} (residues 1-575) and a truncated pol {lambda} lacking the N-terminal BRCA1 C-terminus (BRCT) domain (residues 133-575, del-1 pol {lambda}) was dose-dependent, with 50% inhibition observed at a concentration of 18.4 and 90.1 {mu}M, respectively. However, del-2 pol {lambda} (residues 245-575) containing the C-terminal pol {beta}-like region was unaffected. Tocotrienols also inhibited the proliferation of and formation of tubes by bovine aortic endothelial cells, with {delta}-tocotrienol having the greatest effect. These results indicated that tocotrienols targeted both pol {lambda} and angiogenesis as anti-cancer agents. The relationship between the inhibition of pol {lambda} and anti-angiogenesis by {delta}-tocotrienol was discussed.« less

  6. Observation of excited Ωc charmed baryons in e+e- collisions

    NASA Astrophysics Data System (ADS)

    Yelton, J.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Aziz, T.; Babu, V.; Bakich, A. M.; Bansal, V.; Barberio, E.; Behera, P.; Berger, M.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chang, P.; Chen, A.; Cheon, B. G.; Chilikin, K.; Cho, K.; Choi, S.-K.; Choi, Y.; Choudhury, S.; Cinabro, D.; Czank, T.; Dash, N.; Di Carlo, S.; Doležal, Z.; Dutta, D.; Eidelman, S.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Garg, R.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gelb, M.; Giri, A.; Goldenzweig, P.; Golob, B.; Greenwald, D.; Guido, E.; Haba, J.; Hayasaka, K.; Hayashii, H.; Hedges, M. T.; Hou, W.-S.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, M.; Iwasaki, Y.; Jacobs, W. W.; Jeon, H. B.; Jin, Y.; Julius, T.; Kang, K. H.; Karyan, G.; Kato, Y.; Kawasaki, T.; Kichimi, H.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, S. H.; Kinoshita, K.; Kodyš, P.; Korpar, S.; Kotchetkov, D.; Križan, P.; Kroeger, R.; Krokovny, P.; Kuhr, T.; Kulasiri, R.; Kumita, T.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, I. S.; Lee, S. C.; Li, C. H.; Li, L. K.; Li, Y.; Li Gioi, L.; Liventsev, D.; Lubej, M.; Luo, T.; Masuda, M.; Matvienko, D.; Merola, M.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Nayak, M.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Ono, H.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, H.; Paul, S.; Pavelkin, I.; Pedlar, T. K.; Pestotnik, R.; Piilonen, L. E.; Popov, V.; Ritter, M.; Russo, G.; Sakai, Y.; Sandilya, S.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seino, Y.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shimizu, N.; Shiu, J.-G.; Shwartz, B.; Simon, F.; Singh, J. B.; Solovieva, E.; Starič, M.; Strube, J. F.; Sumihama, M.; Sumiyoshi, T.; Suzuki, K.; Takizawa, M.; Tamponi, U.; Tanida, K.; Tenchini, F.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Usov, Y.; Varner, G.; Varvell, K. E.; Vinokurova, A.; Vorobyev, V.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, Y.; Watanuki, S.; Widmann, E.; Won, E.; Ye, H.; Yusa, Y.; Zakharov, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration

    2018-03-01

    Using the entire Belle data sample of 980 fb-1 of e+e- collisions, we present the results of a study of excited Ωc charmed baryons in the decay mode Ξc+K-. We show confirmation of four of the five narrow states reported by the LHCb Collaboration: the Ωc(3000 ), Ωc(3050 ), Ωc(3066 ), and Ωc(3090 ).

  7. Antitumor activity of type I and type III interferons in BNL hepatoma model.

    PubMed

    Abushahba, Walid; Balan, Murugabaskar; Castaneda, Ismael; Yuan, Yao; Reuhl, Kenneth; Raveche, Elizabeth; de la Torre, Andrew; Lasfar, Ahmed; Kotenko, Sergei V

    2010-07-01

    Hepatocellular carcinoma (HCC) occurs most commonly secondary to cirrhosis due to chronic hepatitis C or B virus (HCV/HBV) infections. Type I interferon (IFN-alpha) treatment of chronic HCV/HBV infections reduces the incidence of HCC in cirrhotic patients. However, IFN-alpha toxicity limits its tolerability and efficacy highlighting a need for better therapeutic treatments. A recently discovered type III IFN (IFN-lambda) has been shown to possess antiviral properties against HCV and HBV in vitro. In phase I clinical trials, IFN-lambda treatment did not cause significant adverse reactions. Using a gene therapy approach, we compared the antitumor properties of IFN-alpha and IFN-lambda in a transplantable hepatoma model of HCC. BALB/c mice were inoculated with syngeneic BNL hepatoma cells, or BNL cells expressing IFN-lambda (BNL.IFN-lambda cells) or IFN-alpha (BNL.IFN-alpha cells). Despite the lack of antiproliferative activity of IFNs on BNL cells, both BNL.IFN-lambda and BNL.IFN-alpha cells displayed retarded growth kinetics in vivo. Depletion of NK cells from splenocytes inhibited splenocyte-mediated cytotoxicity, demonstrating that NK cells play a role in IFN-induced antitumor responses. However, isolated NK cells did not respond directly to IFN-lambda. There was also a marked NK cell infiltration in IFN-lambda producing tumors. In addition, IFN-lambda and, to a lesser extent, IFN-alpha enhanced immunocytotoxicity of splenocytes primed with irradiated BNL cells. Splenocyte cytotoxicity against BNL cells was dependent on IL-12 and IFN-gamma, and mediated by dendritic cells. In contrast to NK cells, isolated from spleen CD11c+ and mPDCA+ dendritic cells responded directly to IFN-lambda. The antitumor activities of IFN-lambda against hepatoma, in combination with HCV and HBV antiviral activities warrant further investigation into the clinical use of IFN-lambda to prevent HCC in HCV/HBV-infected cirrhotic patients, as well as to treat liver cancer.

  8. Measurement of the E Polarization Observable for yd --> pi^-p(p_s), yd-->K^0Lambda(p_s), and yd-->pi^+pi^-d(0) using CLAS g14 data at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Dao

    Photoproduction of mesons from the nucleon has a long and ongoing tradition for exploring nucleon excitations and the baryon-baryon interaction. Polarization observables which play a role in the photoproduction mechanism are, therefore, essential in addition to the differential cross section. The CLAS collaboration at Jefferson Lab, has been active in measuring these observables, but until now only on a proton targets. However, a comprehensive picture of the pseudoscalar meson photoproduction requires neutron data as well. That is, paired measurements of observables in p and n reactions are necessary to disentangle the photoproduction mechanism on the basis of isospin I =more » 0, and I = 1 photo-coupling transition amplitudes. The g14 experiment with 'HDIce,' a longitudinally polarized solid target of molecular hydrogen-deuteride with low background contamination from other nuclear species, provided an unique opportunity to measure several polarization observables|for the first time|on the neutron for different channels. In particular, we present our measurements of the E beam-target polarization observable, which requires circularly polarized beam and a longitudinally polarized target, for p pi^-, K^0Lambda, and K^0Sigma^0 channels in the energy range of 1.5 lte W lte 2.3 GeV. In addition, we also utilized the g14 dataset to investigate the intrinsic spin of a possible dibaryonic ND bound state by measuring the E (beam-target) observable on the d-pi^+/-d channel of the reaction yd --> pi^+pi^-d(0). Finally, this thesis also discusses a highly efficient multivariate analysis method called Boosted Decision Trees, which we employed extensively for this work and which has not been used before in CLAS data analysis.« less

  9. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers

    PubMed Central

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-01-01

    A series of Er3+/Tm3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er3+/Tm3+ co-doped fibers mainly yield 1390–1470, 1850–1980, and 2625–2750 nm emissions when excited at 793 nm, and 1480–1580, 1800–1980, and 2625–2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410–1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er3+/Tm3+ co-doped fiber amplifier working in the S + C communication band. PMID:28772846

  10. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers.

    PubMed

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-05-03

    A series of Er 3+ /Tm 3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er 3+ /Tm 3+ co-doped fibers mainly yield 1390-1470, 1850-1980, and 2625-2750 nm emissions when excited at 793 nm, and 1480-1580, 1800-1980, and 2625-2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410-1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er 3+ /Tm 3+ co-doped fiber amplifier working in the S + C communication band.

  11. Unparticle dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, D.-C.; Stojkovic, Dejan; Dutta, Sourish

    2009-09-15

    We examine a dark energy model where a scalar unparticle degree of freedom plays the role of quintessence. In particular, we study a model where the unparticle degree of freedom has a standard kinetic term and a simple mass potential, the evolution is slowly rolling and the field value is of the order of the unparticle energy scale ({lambda}{sub u}). We study how the evolution of w depends on the parameters B (a function of unparticle scaling dimension d{sub u}), the initial value of the field {phi}{sub i} (or equivalently, {lambda}{sub u}) and the present matter density {omega}{sub m0}. Wemore » use observational data from type Ia supernovae, baryon acoustic oscillations and the cosmic microwave background to constrain the model parameters and find that these models are not ruled out by the observational data. From a theoretical point of view, unparticle dark energy model is very attractive, since unparticles (being bound states of fundamental fermions) are protected from radiative corrections. Further, coupling of unparticles to the standard model fields can be arbitrarily suppressed by raising the fundamental energy scale M{sub F}, making the unparticle dark energy model free of most of the problems that plague conventional scalar field quintessence models.« less

  12. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda, and w from the First Year Data Set

    DOE R&D Accomplishments Database

    Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Lafoux, H.; Neill, J. D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Rich, J.; Sullivan, M.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R. S.; Filiol, M.; Goncalves, A. C.; Goobar, A.; Guide, D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon, R.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; Walton, N.

    2005-10-14

    We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

  13. UTILIZING SYNTHETIC VISIBLE SPECTRA TO EXPLORE THE PHYSICAL BASIS FOR THE CLASSIFICATION OF LAMBDA BOÖTIS STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kwang-Ping; Johnson, Dustin M.; Tarbell, Erik S.

    Since the peculiar nature of Lambda Boötis was first noticed in 1943, the Lambda Boo stars have been recognized as a group of peculiar A-type stars. They are Population I dwarfs that show deficiencies of iron-peak elements (up to 2 dex), but have near-solar C, N, O, and S abundances. In a previous paper, we used both observed and synthetic ultraviolet spectra to demonstrate that the C i 1657 Å/Al ii 1671 Å equivalent width ratio can help distinguish between Lambda Boo stars and other metal-weak stars hotter than 8000 K. In this paper, using observed and synthetic visible (4000–6800more » Å) spectra, we demonstrate that the C i 5052.17 Å/Mg ii 4481 Å equivalent width ratio can be used as a quantitative diagnostic for cooler Lambda Boo stars.« less

  14. Utilizing Synthetic Visible Spectra to Explore the Physical Basis for the Classification of Lambda Boötis Stars

    NASA Astrophysics Data System (ADS)

    Cheng, Kwang-Ping; Neff, James E.; Johnson, Dustin M.; Tarbell, Erik S.; Romo, Christopher A.; Gray, Richard O.; Corbally, Christopher J.

    2017-01-01

    Since the peculiar nature of Lambda Boötis was first noticed in 1943, the Lambda Boo stars have been recognized as a group of peculiar A-type stars. They are Population I dwarfs that show deficiencies of iron-peak elements (up to 2 dex), but have near-solar C, N, O, and S abundances. In a previous paper, we used both observed and synthetic ultraviolet spectra to demonstrate that the C I 1657 Å/Al II 1671 Å equivalent width ratio can help distinguish between Lambda Boo stars and other metal-weak stars hotter than 8000 K. In this paper, using observed and synthetic visible (4000-6800 Å) spectra, we demonstrate that the C I 5052.17 Å/Mg II 4481 Å equivalent width ratio can be used as a quantitative diagnostic for cooler Lambda Boo stars.

  15. Strangeness Production in 19.6 GeV Collisions at the Relativistic Heavy Ion Collider

    DTIC Science & Technology

    2010-05-12

    Baryons Figure 1.3: Well known Mesons Figure 1.4: Phase Diagram of Nuclear Matter Figure 1.5: The author and his advisor together with MIDN 3/C...7. Conclusions and Outlook Acknowledgements 3 List of Figures Figure 1.1: Nucleus Breakdown Figure 1.2: Well known Baryons and Anti...AntiBaryon/ Baryon Ration from experiments around the globe 6 List of Symbols and Acronyms AGS – Alternating

  16. Cross-section measurement for quasi-elastic production of charmed baryons in νN interactions

    NASA Astrophysics Data System (ADS)

    Kayis-Topaksu, A.; Onengüt, G.; van Dantzig, R.; de Jong, M.; Melzer, O.; Oldeman, R. G. C.; Pesen, E.; Spada, F. R.; Visschers, J. L.; Güler, M.; Köse, U.; Serin-Zeyrek, M.; Sever, R.; Tolun, P.; Zeyrek, M. T.; Catanesi, M. G.; de Serio, M.; Ieva, M.; Muciaccia, M. T.; Radicioni, E.; Simone, S.; Bülte, A.; Winter, K.; van de Vyver, B.; Vilain, P.; Wilquet, G.; Pittoni, G. L.; Saitta, B.; di Capua, E.; Ogawa, S.; Shibuya, H.; Artamonov, A.; Chizhov, M.; Doucet, M.; Hristova, I. R.; Kawamura, T.; Kolev, D.; Meinhard, H.; Panman, J.; Papadopoulos, I. M.; Ricciardi, S.; Rozanov, A.; Tsenov, R.; Uiterwijk, J. W. E.; Zucchelli, P.; Goldberg, J.; Chikawa, M.; Arik, E.; Song, J. S.; Yoon, C. S.; Kodama, K.; Ushida, N.; Aoki, S.; Hara, T.; Delbar, T.; Favart, D.; Grégoire, G.; Kalinin, S.; Maklioueva, I.; Gorbunov, P.; Khovansky, V.; Shamanov, V.; Tsukerman, I.; Bruski, N.; Frekers, D.; Hoshino, K.; Kawada, J.; Komatsu, M.; Miyanishi, M.; Nakamura, M.; Nakano, T.; Narita, K.; Niu, K.; Niwa, K.; Nonaka, N.; Sato, O.; Toshito, T.; Buontempo, S.; Cocco, A. G.; D'Ambrosio, N.; de Lellis, G.; De Rosa, G.; di Capua, F.; Ereditato, A.; Fiorillo, G.; Marotta, A.; Messina, M.; Migliozzi, P.; Pistillo, C.; Scotto Lavina, L.; Strolin, P.; Tioukov, V.; Nakamura, K.; Okusawa, T.; Dore, U.; Loverre, P. F.; Ludovici, L.; Righini, P.; Rosa, G.; Santacesaria, R.; Satta, A.; Barbuto, E.; Bozza, C.; Grella, G.; Romano, G.; Sirignano, C.; Sorrentino, S.; Sato, Y.; Tezuka, I.; CHORUS Collaboration

    2003-11-01

    A study of quasi-elastic production of charmed baryons in charged-current interactions of neutrinos with the nuclear emulsion target of CHORUS is presented. In a sample of about 46 000 interactions located in the emulsion, candidates for decays of short-lived particles were identified by using new automatic scanning systems and later confirmed through visual inspection. Criteria based both on the topological and kinematical characteristics of quasi-elastic charm production allowed a clear separation between events of this type and those in which charm is produced in deep inelastic processes. A final sample containing 13 candidates consistent with quasi-elastic production of a charmed baryon with an estimated background of 1.7 events was obtained. At the average neutrino energy of 27 GeV the cross-section for the total quasi-elastic production of charmed baryons relative to the νN charged-current cross-section was measured to be σ(QE)/σ(CC)=(0.23+0.12-0.06(stat)+0.02-0.03(syst))×10-2. Through an analysis of the topology at the production and decay vertices the relative cross-sections were measured separately for singly (Λc+,Σc+,Σc+∗) and doubly (Σc++,Σc++∗) charged baryons.

  17. Search for Baryon-Number Violating Ξ_{b}^{0} Oscillations.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombacher, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-11-03

    A search for baryon-number violating Ξ_{b}^{0} oscillations is performed with a sample of pp collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3  fb^{-1}. The baryon number at the moment of production is identified by requiring that the Ξ_{b}^{0} come from the decay of a resonance Ξ_{b}^{*-}→Ξ_{b}^{0}π^{-} or Ξ_{b}^{'-}→Ξ_{b}^{0}π^{-}, and the baryon number at the moment of decay is identified from the final state using the decays Ξ_{b}^{0}→Ξ_{c}^{+}π^{-},Ξ_{c}^{+}→pK^{-}π^{+}. No evidence of baryon-number violation is found, and an upper limit at the 95% confidence level is set on the oscillation rate of ω<0.08  ps^{-1}, where ω is the associated angular frequency.

  18. Spectroscopic studies and structure of 3-methoxy-2 -[(2,4,4,6,6-pentachloro-1,3,5,2{lambda}{sup 5},4{lambda}{sup 5},6{lambda}{sup 5}-triazatriphosphin-2-yl)oxy] benzaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oezay, H.; Yildiz, M., E-mail: myildiz@comu.edu.tr; Uenver, H.

    2013-01-15

    The compound called 3-methoxy-2- [(2,4,4,6,6-pentachloro-1,3,5,2{lambda}{sup 5},4{lambda}{sup 5},6{lambda}{sup 5}-triazatriphosphin-2-yl)oxy] benzaldehyde has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with hexachlorocyclotriphosphazene. It has been characterized by elemental analysis, MS, IR, {sup 1}H NMR, {sup 13}C NMR, {sup 31}P NMR and UV-visible spectroscopic techniques. The structure of the title compound has been determind by X-ray analysis. Crystals are orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, Z = 4, a = 7.705(1), b = 12.624(1), c = 17.825(2) A, R{sub 1} = 0.0390 and wR{sub 2} = 0.1074 [I > 2{sigma}(I)], respectively.

  19. One-particle inclusive and semi-inclusive spectra of. lambda. hyperons in p-barp interactions at 32 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogolyubskii-breve, M.Y.; Vinitskii-breve, A.A.; Ermolov, P.F.

    1986-05-01

    Inclusive and semi-inclusive ..lambda..-hyperon spectra in p-barp interactions at 32 GeV/c are presented. The processes whereby ..lambda.. hyperons are produced in various channels are analyzed by comparison with the predictions of the Lund model and with dual-topological-unitarization (DTU)-based models. The ..lambda..-hyperon characteristics differ from those predicted in the Lund model. The main cause of the differences is that multiple production of particles is represented in this model in terms of breaking of one string, thereby excluding correlation effects between the vertices.

  20. Heavy baryons in the large N c limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertus, C.; Ruiz Arriola, Enrique; Fernando, Ishara P.

    It is shown that in the large N c limit heavy baryon masses can be estimated quantitatively in a 1/N c expansion using the Hartree approximation. The results are compared with available lattice calculations for different values of the ratio between the square root of the string tension and the heavy quark mass tension independent of N c. Using a potential adjusted to agree with the one obtained in lattice QCD, a variational analysis of the ground state spin averaged baryon mass is performed using Gaussian Hartree wave functions. Relativistic corrections through the quark kinetic energy are included. Lastly, themore » results provide good estimates for the first sub-leading in 1/N c corrections.« less

  1. Heavy baryons in the large N c limit

    DOE PAGES

    Albertus, C.; Ruiz Arriola, Enrique; Fernando, Ishara P.; ...

    2015-09-16

    It is shown that in the large N c limit heavy baryon masses can be estimated quantitatively in a 1/N c expansion using the Hartree approximation. The results are compared with available lattice calculations for different values of the ratio between the square root of the string tension and the heavy quark mass tension independent of N c. Using a potential adjusted to agree with the one obtained in lattice QCD, a variational analysis of the ground state spin averaged baryon mass is performed using Gaussian Hartree wave functions. Relativistic corrections through the quark kinetic energy are included. Lastly, themore » results provide good estimates for the first sub-leading in 1/N c corrections.« less

  2. VizieR Online Data Catalog: Catalog of Eq.Widths of Interstellar 217nm Band (Friedemann 1992)

    NASA Astrophysics Data System (ADS)

    Friedemann, C.

    2005-03-01

    (from CDS Inf. Bull. 40, 31) The main task of the catalogue consists in a comprehensive collection of equivalent widths of the 217nm band derived from both spectrophotometric and filterphotometric measurements obtained with TD-1, OAO-2 and ANS satellites. These data concern reddened O, B stars with color excesses E(B-V) >= 0.02 mag. The extinction curve is approximated by the empirical formula introduced by Guertler et al. (1982AN....303..105G) e({lambda}) = A(i/{lambda} - 1/{lambda}o)n + B + C {kappa}({lambda}) The relative errors amount to about {delta}A/A = +/- 0.10, {delta}B/B = +/- 0.02 and {delta}C/C = +/- 0.03. (1 data file).

  3. Spectroscopic Research of Lambda Hypdernuclei at JLab Hall C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogami, Toshiyuki; et. al.,

    2014-03-01

    A Lambda hyperon which has a strangeness can be bound in deep inside of a nucleus since a Λ does not suffer from the Pauli exclusion principle from nucleons. Thus, a Λ could be a useful tool to investigate inside of a nucleus. Since 2000, Lambda hypernuclear spectroscopic experiments by the (e,e'k) reaction have been performed at the experimental hall C in Thomas Jefferson National Accelerator Facility (JLab Hall C). An experiment, JLab E05-115 was carried out to investigate Lambda hypernuclei with a wide mass range (the mass number, A = 7, 9, 10, 12, 52). The latest analysis statusmore » of JLab E05-115 experiment is discussed in the present article.« less

  4. FAR-ULTRAVIOLET SPECTRAL IMAGES OF THE VELA SUPERNOVA REMNANT: SUPPLEMENTS AND COMPARISONS WITH OTHER WAVELENGTH IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Il-Joong; Seon, Kwang-Il; Han, Wonyong

    We present the improved far-ultraviolet (FUV) emission-line images of the entire Vela supernova remnant (SNR) using newly processed Spectroscopy of Plasma Evolution from Astrophysical Radiation/Far-Ultraviolet Imaging Spectrograph (SPEAR/FIMS) data. The incomplete C III {lambda}977 and O VI {lambda}{lambda}1032, 1038 images presented in the previous study are updated to cover the whole region. The C IV {lambda}{lambda}1548, 1551 image with a higher resolution and new images at Si IV {lambda}{lambda}1394, 1403, O IV] {lambda}1404, He II {lambda}1640.5, and O III] {lambda}{lambda}1661, 1666 are also shown. Comparison of emission-line ratios for two enhanced FUV regions reveals that the FUV emissions of themore » east-enhanced FUV region may be affected by nonradiative shocks of another very young SNR, the Vela Jr. SNR (RX J0852.0-4622, G266.6-1.2). This result is the first FUV detection that is likely associated with the Vela Jr. SNR, supporting previous arguments that the Vela Jr. SNR is close to us. The comparison of the improved FUV images with soft X-ray images shows that an FUV filamentary feature forms the boundary of the northeast-southwest asymmetrical sections of the X-ray shell. The southwest FUV features are characterized as the region where the Vela SNR is interacting with slightly denser ambient medium within the dim X-ray southwest section. From a comparison with the H{alpha} image, we identify a ring-like H{alpha} feature overlapped with an extended hot X-ray feature of similar size and two local peaks of C IV emission. Their morphologies are expected when the H{alpha} ring is in direct contact with the near or far side of the Vela SNR.« less

  5. Fabrication of graphite/epoxy cases for orbit insertion motors

    NASA Technical Reports Server (NTRS)

    Schmidt, W. W.

    1973-01-01

    The fabrication procedures are described for filament-wound rocket motor cases, approximately 26.25 inches long by 25.50 inches diameter, utilizing graphite fibers. The process utilized prepreg tape which consists of Fortafil 4-R fibers in the E-759 epoxy resin matrix. This fabrication effect demonstrated an ability to fabricate high quality graphite/epoxy rocket motor cases in the 26.25 inch by 25.50 inch size range.

  6. Supplemental Environmental Impact Statement, Guam and Commonwealth of the Northern Mariana Islands Military Relocation (2012 Roadmap Adjustments)

    DTIC Science & Technology

    2015-07-01

    Improvements & Traffic Signal Activation RF C-32 UoG UoG Wind Turbine University Drive 2013 Complete A 70-foot (21.3 m) wind turbine RC C-33 UoG... turbine Talofofo 2013 Contract approved 15 MW solar / wind turbine farm to help power 2,200 homes P S-5 GovGuam GWA Santa Rita Springs Booster...Rehabilitation of Asan Springs P B X X B B B C-31 GovGuam Route 26/25 Intersection Improvements RF B B X X B B B C-32 UoG Wind Turbine P

  7. Differential cross sections and recoil polarizations for the reaction γ p → K + Σ 0

    DOE PAGES

    Dey, B.; Meyer, C. A.; Bellis, M.; ...

    2010-08-06

    Here, high-statistics measurements of differential cross sections and recoil polarizations for the reactionmore » $$\\gamma p \\rightarrow K^+ \\Sigma^0$$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($$\\sqrt{s}$$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $$K^{+}p\\pi^{-}$$($$\\gamma$$) and $$K^{+}p$$($$\\pi^-,\\gamma$$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $$\\sqrt{s}$$ coverage. Above $$\\sqrt{s} \\approx 2.5$$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($$P_\\Sigma$$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $$P_\\Sigma$$ is of the same magnitude but opposite sign as $$P_\\Lambda$$, in agreement with the static SU(6) quark model prediction of $$P_\\Sigma \\approx -P_\\Lambda$$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $$P_\\Sigma$$ and $$P_\\Lambda$$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.« less

  8. A meson-baryon molecular interpretation for some Ωc excited states

    NASA Astrophysics Data System (ADS)

    Montaña, Glòria; Feijoo, Albert; Ramos, Àngels

    2018-04-01

    We explore the possibility that some of the five narrow Ωc resonances recently observed at LHCb could correspond to pentaquark states, structured as meson-baryon bound states or molecules. The interaction of the low-lying pseudoscalar mesons with the ground-state baryons in the charm +1 , strangeness -2 and isospin 0 sector is built from t-channel vector meson exchange, using effective Lagrangians. The resulting s-wave coupled-channel unitarized amplitudes show the presence of two structures with similar masses and widths to those of the observed Ωc(3050)0 and Ωc(3090)0. The identification of these resonances with the meson-baryon bound states found in this work would also imply assigning the values 1/2- for their spin-parity. An experimental determination of the spin-parity of the Ωc(3090)0 would contribute to a better understanding of its structure, as the quark-based models predict its spin-parity to be either 3/2- or 5/2-. Predictions for the analogue bottom Ωb- resonances are also given.

  9. Spatiotemporal chaos near the onset of cellular growth during thin-film solidification of a binary alloy

    NASA Technical Reports Server (NTRS)

    Lee, J. T. C.; Tsiveriotis, K.; Brown, R. A.

    1992-01-01

    Thin-film solidification experiments with a succinonitrile-acetone alloy are used to observe the long time-scale dynamics of cellular crystal growth at growth rates only slightly above the critical value VC = Vc(lambda sub c) for the onset of morphological instability. Under these conditions only very small amplitude cells are observed with wavelengths near the value predicted by linear stability theory lambda = lambda sub c. At long times, microstructures with wavelengths significantly finer than lambda suc c form by nucleation at defects across the interface. These interfaces do not have a unique microstructure, but seem to exhibit spatiotemporal chaos on a long time scale caused by the continual birth and death of cells by tip splitting and cell annihilation in grooves.

  10. The Λc(2860), Λc(2880), Ξc(3055) and Ξc(3080) as D-wave baryon states in QCD

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang

    2018-01-01

    In this article, we tentatively assign the Λc (2860), Λc (2880), Ξc (3055) and Ξc (3080) to be the D-wave baryon states with the spin-parity JP = 3/2+, 5/2 +, 3/2+ and 5/2+, respectively, and study their masses and pole residues with the QCD sum rules in a systematic way by constructing three-types interpolating currents with the quantum numbers (Lρ ,Lλ) = (0 , 2), (2 , 0) and (1 , 1), respectively. The present predictions favor assigning the Λc (2860), Λc (2880), Ξc (3055) and Ξc (3080) to be the D-wave baryon states with the quantum numbers (Lρ ,Lλ) = (0 , 2) and JP = 3/2+, 5/2+, 3/2+ and 5/2+, respectively. While the predictions for the masses of the (Lρ ,Lλ) = (2 , 0) and (1 , 1) D-wave Λc and Ξc states can be confronted to the experimental data in the future.

  11. Observation of an Exotic Baryon with S=+1 in Photoproduction from the Proton

    NASA Astrophysics Data System (ADS)

    Kubarovsky, V.; Guo, L.; Weygand, D. P.; Stoler, P.; Battaglieri, M.; Devita, R.; Adams, G.; Li, Ji; Nozar, M.; Salgado, C.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Ciciani, L.; Cole, P. L.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Farhi, L.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gothe, R.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hancock, D.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Holtrop, M.; Hu, J.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Longhi, A.; Lukashin, K.; Major, R. W.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mozer, M. U.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; O'Brien, J. T.; O'Rielly, G. V.; Opper, A. K.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, T.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weisberg, A.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.

    2004-01-01

    The reaction γp→π+K-K+n was studied at Jefferson Laboratory using a tagged photon beam with an energy range of 3 5.47GeV. A narrow baryon state with strangeness S=+1 and mass M=1555±10 MeV/c2 was observed in the nK+ invariant mass spectrum. The peak’s width is consistent with the CLAS resolution (FWHM=26 MeV/c2), and its statistical significance is (7.8±1.0)σ. A baryon with positive strangeness has exotic structure and cannot be described in the framework of the naive constituent quark model. The mass of the observed state is consistent with the mass predicted by the chiral soliton model for the Θ+ baryon. In addition, the pK+ invariant mass distribution was analyzed in the reaction γp→K-K+p with high statistics in search of doubly charged exotic baryon states. No resonance structures were found in this spectrum.

  12. Semileptonic decays of Λ _c baryons in the relativistic quark model

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Galkin, V. O.

    2016-11-01

    Motivated by recent experimental progress in studying weak decays of the Λ _c baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach with the QCD-motivated potential. The form factors of the Λ _c→ Λ lν _l and Λ _c→ nlν _l decays are calculated in the whole accessible kinematical region without extrapolations and additional model assumptions. Relativistic effects are systematically taken into account including transformations of baryon wave functions from the rest to moving reference frame and contributions of the intermediate negative-energy states. Baryon wave functions found in the previous mass spectrum calculations are used for the numerical evaluation. Comprehensive predictions for decay rates, asymmetries and polarization parameters are given. They agree well with available experimental data.

  13. The Lambda Select cII Mutation Detection System.

    PubMed

    Besaratinia, Ahmad; Tommasi, Stella

    2018-04-26

    A number of transgenic animal models and mutation detection systems have been developed for mutagenicity testing of carcinogens in mammalian cells. Of these, transgenic mice and the Lambda (λ) Select cII Mutation Detection System have been employed for mutagenicity experiments by many research groups worldwide. Here, we describe a detailed protocol for the Lambda Select cII mutation assay, which can be applied to cultured cells of transgenic mice/rats or the corresponding animals treated with a chemical/physical agent of interest. The protocol consists of the following steps: (1) isolation of genomic DNA from the cells or organs/tissues of transgenic animals treated in vitro or in vivo, respectively, with a test compound; (2) recovery of the lambda shuttle vector carrying a mutational reporter gene (i.e., cII transgene) from the genomic DNA; (3) packaging of the rescued vectors into infectious bacteriophages; (4) infecting a host bacteria and culturing under selective conditions to allow propagation of the induced cII mutations; and (5) scoring the cII-mutants and DNA sequence analysis to determine the cII mutant frequency and mutation spectrum, respectively.

  14. The impact of ΛCDM substructure and baryon-dark matter transition on the image positions of quad galaxy lenses

    NASA Astrophysics Data System (ADS)

    Gomer, Matthew R.; Williams, Liliya L. R.

    2018-04-01

    The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.

  15. Solar system and equivalence principle constraints on f(R) gravity by the chameleon approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozziello, Salvatore; Tsujikawa, Shinji

    2008-05-15

    We study constraints on f(R) dark energy models from solar system experiments combined with experiments on the violation of the equivalence principle. When the mass of an equivalent scalar field degree of freedom is heavy in a region with high density, a spherically symmetric body has a thin shell so that an effective coupling of the fifth force is suppressed through a chameleon mechanism. We place experimental bounds on the cosmologically viable models recently proposed in the literature that have an asymptotic form f(R)=R-{lambda}R{sub c}[1-(R{sub c}/R){sup 2n}] in the regime R>>R{sub c}. From the solar system constraints on the post-Newtonianmore » parameter {gamma}, we derive the bound n>0.5, whereas the constraints from the violations of the weak and strong equivalence principles give the bound n>0.9. This allows a possibility to find the deviation from the {lambda}-cold dark matter ({lambda}CDM) cosmological model. For the model f(R)=R-{lambda}R{sub c}(R/R{sub c}){sup p} with 0

  16. Measurement of the production cross section for charmed baryons in proton–nucleus interactions at 70 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryadovikov, V. N., E-mail: riadovikov@ihep.ru; Aleev, A. N.; Ardashev, E. N.

    2016-03-15

    The results of an analysis of data from the SERP-E-184 experiment devoted to studying mechanisms of the production of charmed particles in proton–nucleus interactions at 70 GeV and their decays are presented. The data in question were obtained upon irradiating the SVD-2 active target consisting of carbon, silicon, and lead plates with a beam of 70-GeV protons. A detailed simulation on the basis of the FRITIOF7.02 and GEANT3.21 code packages made it possible to optimize event-selection criteria and to calculate the detection efficiency for Λ{sub c}{sup +} baryons. After selecting a signal from the threebody decay of a Λ{sub c}{supmore » +} baryon, the inclusive cross section for its production at near-threshold energies, its lifetime, and the parameter of the A dependence of the cross section were found. The Λ{sub c}{sup +} -baryon yields are tabulated along with data from other experiments and theoretical predictions.« less

  17. Gravitational lensing limits on the cosmological constant in a flat universe

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1990-01-01

    Inflationary cosmological theories predict, and some more general aesthetic criteria suggest, that the large-scale spatial curvature of the universe k should be accurately zero (i.e., flat), a condition which is satisfied when the universe's present mean density and the value of the cosmological constant Lambda have certain pairs of values. Available data on the frequency of multiple image-lensing of high-redshift quasars by galaxies suggest that the cosmological constant cannot make a dominant contribution to producing a flat universe. In particular, if the mean density of the universe is as small as the baryon density inferred from standard cosmic nucleosynthesis calculations or as determined from typical dynamical studies of galaxies and galaxy clusters, then a value of Lambda large enough to produce a k = 0 universe would result in a substantially higher frequency of multiple-image lensing of quasars than has been observed so far. Shortcomings of the available lens data and uncertainties concerning galaxy properties allow some possibility of escaping this conclusion, but systematic searches for a gravitational lenses and continuing investigations of galaxy mass distributions should soon provide decisive information. It is also noted that nonzero-curvature cosmological models can account for the observed frequency of galaxy-quasar lens systems and for a variety of other constraints.

  18. Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum

    DOE PAGES

    Fernando, I. P.; Goity, J. L.

    2015-02-01

    The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,l P=0⁺] ground state and excited baryons, and the [56,2 +] and [70}},1 -] excited states are analyzed. The analyses are carried out to order O(1/N c) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubomore » and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.« less

  19. A Randomized Study of Peginterferon Lambda-1a Compared to Peginterferon Alfa-2a in Combination with Ribavirin and Telaprevir in Patients with Genotype-1 Chronic Hepatitis C.

    PubMed

    Flisiak, Robert; Shiffman, Mitchell; Arenas, Juan; Cheinquer, Hugo; Nikitin, Igor; Dong, Yuping; Rana, Khurram; Srinivasan, Subasree

    2016-01-01

    A randomized, double-blind, multinational, phase 3 study was conducted comparing the efficacy and safety of peginterferon lambda-1a (Lambda)/ribavirin (RBV)/telaprevir (TVR) vs. peginterferon alfa-2a (Alfa)/RBV/TVR in patients with chronic hepatitis C virus (HCV) genotype-1 (GT-1) infection. Patients (treatment-naïve or relapsers on prior Alfa/RBV treatment) were randomly assigned in a 2:1 ratio to receive Lambda/RBV/TVR or Alfa/RBV/TVR. Total duration of treatment was either 24 or 48 weeks (response-guided treatment), with TVR administered for the first 12 weeks. The primary endpoint was the proportion of patients who achieved a sustained virologic response at post treatment week 12 (SVR12), which was tested for noninferiority of Lambda/RBV/TVR. A total of 838 patients were enrolled, and 617 were treated; 411 and 206 patients received Lambda/RBV/TVR and Alfa/RBV/TVR, respectively. The majority of patients were treatment-naïve, with HCV GT-1b and a high baseline viral load (≥800,000 IU/mL). Less than 10% of patients had cirrhosis (Lambda, 7.5%; Alfa, 6.8%). Lambda/RBV/TVR did not meet the criterion for noninferiority (lower bound of the treatment difference interval was -12.3%); the SVR12 in all patients (modified intent-to-treat) was 76.2% in the Lambda arm and 82.0% in the Alfa arm. Overall, the frequency of adverse events in each arm was comparable (Lambda, 91.7%; Alfa, 97.1%). As expected based on the safety profile of the 2 interferons, there were more hepatobiliary events observed in the Lambda arm and more hematologic events in the Alfa arm. In this comparison of Lambda/RBV/TVR and Alfa/RBV/TVR in patients who were treatment-naïve or had relapsed on prior Alfa/RBV treatment, Lambda failed to demonstrate noninferiority based on SVR12 results. Treatment with Lambda/RBV/TVR was associated with a higher incidence of relapse. More patients discontinued Lambda/RBV/TVR treatment during the first 4 weeks of study treatment, mainly due to hepatobiliary-related events, and more Lambda patients were lost to follow-up.

  20. Lambda polarization feasibility study at BM@N

    NASA Astrophysics Data System (ADS)

    Suvarieva, Dilyna; Gudima, Konstantin; Zinchenko, Alexander

    2017-03-01

    Heavy strange objects (hyperons) could provide essential signatures of the excited and compressed baryonic matter. At NICA, it is planned to study hyperons both in the collider mode (MPD detector) and the fixed-target one (BM@N setup). Measurements of strange hyperons polarization could give additional information on the strong interaction mechanisms. In heavy-ion collisions, such measurements are even more valuable since the polarization is expected to be sensitive to characteristics of the QCD medium (vorticity, hydrodynamic helicity) and to QCD anomalous transport. In this analysis, the possibility to measure at BM@N the polarization of the lightest strange hyperon Λ is studied in Monte Carlo event samples produced with the DCM-QGSM generator. It is shown that the detector will allow to measure Λ polarization with a precision required to check the model predictions.

  1. Resonance Extraction from the Finite Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doring, Michael; Molina Peralta, Raquel

    2016-06-01

    The spectrum of excited hadrons becomes accessible in simulations of Quantum Chromodynamics on the lattice. Extensions of Lüscher's method allow to address multi-channel scattering problems using moving frames or modified boundary conditions to obtain more eigenvalues in finite volume. As these are at different energies, interpolations are needed to relate different eigenvalues and to help determine the amplitude. Expanding the T- or the K-matrix locally provides a controlled scheme by removing the known non-analyticities of thresholds. This can be stabilized by using Chiral Perturbation Theory. Different examples to determine resonance pole parameters and to disentangle resonances from thresholds are dis-more » cussed, like the scalar meson f0(980) and the excited baryons N(1535)1/2^- and Lambda(1405)1/2^-.« less

  2. UTILIZING SYNTHETIC UV SPECTRA TO EXPLORE THE PHYSICAL BASIS FOR THE CLASSIFICATION OF LAMBDA BOÖTIS STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kwang-Ping; Johnson, Dustin M.; Tarbell, Erik S.

    2016-04-15

    Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star, Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. The possible link between Lambda Boo stars and planet-bearing stars motivates usmore » to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Boötis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. In order to determine the origin of Lambda Boo stars’ unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. In this paper, using observed and synthetic spectra, we explore the physical basis for the classification of Lambda Boo stars, and develop quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. Based on these stricter Lambda Boo classification criteria, we conclude that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars.« less

  3. The Structural Phase Transition in Deuterated Benzil, C 14D 10O 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosens, D. J.; Welberry, T. R.; Hagen, Mark E

    2006-01-01

    Neutron inelastic scattering has been used to examine the structural phase transition in deuterated benzil C{sub 14}D{sub 10}O{sub 2}. The transition in benzil, in which the unit cell goes from a trigonal P3{sub 1}21 unit cell above T{sub c} to a cell doubled P2{sub 1} unit cell below T{sub c}, leads to the emergence of a Bragg peak at the M-point of the high temperature Brillouin zone. It has previously been suggested that the softening of a transverse optic phonon at the {lambda}-point leads to the triggering of an instability at the M-point causing the transition to occur. This suggestionmore » has been investigated by measuring the phonon spectrum at the M-point for a range of temperatures above T{sub c} and the phonon dispersion relation along the {lambda}-M direction just above T{sub c}. It is found that the transverse acoustic phonon at the M-point is of lower energy than the {lambda}-point optic mode and has a softening with temperature as T approaches T{sub c} from above that is much faster than that of the {lambda}-point optic mode. This behavior is inconsistent with the view that the {lambda}-point mode is responsible for triggering the phase transition. Rather the structural phase transition in benzil appears to be driven by a conventional soft TA mode at the M-point.« less

  4. Construction of heat-inducible expression vector of Corynebacterium glutamicum and C. ammoniagenes: fusion of lambda operator with promoters isolated from C. ammoniagenes.

    PubMed

    Park, Jong-Uk; Jo, Jae-Hyung; Kim, Young-Ji; Chung, So-Sun; Lee, Jin-Ho; Lee, Hyune Hwan

    2008-04-01

    The heat-inducible expression vectors for Corynebacterium glutamicum and C. ammoniagenes were constructed by using the lambdaOL1 and the cryptic promoters, CJ1 and CJ4 that express genes constitutively in C. ammoniagenes.. Although the promoters were isolated from C. ammoniagenes, CJ1 and CJ4 were also active in C. glutamicum. To construct vectors, the OL1 from the lambdaPL promoter was isolated and fused to the CJ1 and CJ4 promoters by recombinant PCR. The resulting artificial promoters, CJ1O and CJ4O, which have one lambdaOL1, and CJ1OX2, which has two successive lambdaOL1, were fused to the green fluorescent protein (GFP) gene followed by subcloning into pCES208. The expression of GFP in the corynebacteria harboring the vectors was regulated successfully by the temperature sensitive cI857 repressor. Among them, C. ammoniagenes harboring plasmid pCJ1OX2G containing GFP fused to CJ1OX2 showed more GFP than the other ones and the expression was tightly regulated by the repressor. To construct the generally applicable expression vector using the plasmid pCJ1OX2G, the His-tag, enterokinase (EK) moiety, and the MCS were inserted in front of the GFP gene. Using the vector, the expression of pyrR from C. glutamicum was tried by temperature shift-up. The results indicated that the constructed vectors (pCeHEMG) can be successfully used in the expression and regulation of foreign genes in corynebacteria.

  5. Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models

    DOE PAGES

    Wojtak, Radosław; Prada, Francisco

    2017-06-21

    The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. We present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acousticmore » oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model then predicts a significant difference between the actual Hubble constant, h=0.48±0.02, and its local determination, h obs=0.73±0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ω m=0.87±0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck LambdaCDM cosmology. The new dark-matter-dominated model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the Planck LambdaCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtak, Radosław; Prada, Francisco

    The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. We present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acousticmore » oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model then predicts a significant difference between the actual Hubble constant, h=0.48±0.02, and its local determination, h obs=0.73±0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ω m=0.87±0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck LambdaCDM cosmology. The new dark-matter-dominated model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the Planck LambdaCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.« less

  7. X-Ray Flare Characteristics in the B2e Star Lambda Eridani (ROSAT)

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.

    1997-01-01

    We document the results of a simultaneous wavelength monitoring on the B2e star (lambda) Eri. This campaign was carried out from ground stations and with the ROSAT, ASCA, IUE, and Voyager 2 space platforms during a week in February-March 1995; a smaller follow-up was conducted in September 1995. During the first of these intervals (lambda) Eri exhibited extraordinary wind and disk-ejection activity. The ROSAT/HRI X-ray light curves showed no large flares such as the one the ROSAT/PSCA observed in 1991. However, possible low level fluctuations in the February-March ROSAT data occurred at the same time as unusual activity in H(alpha) He I (lambda)6678, He II (lambda)1640, and the C IV doublet. For example, the hydrogen and helium lines exhibited an emission in the blue half of their profiles, probably lasting several hours. The C IV lines showed a strong high-velocity Discrete Absorption Component (DAC) accompanied by unusually strong absorption at lower velocities. The helium line activity suggests that a mass ejection occurred at the base of the wind while the strong C III (Voyager) and C IV (IUE) lines implies that shock interactions occurred in the wind flow. It is not clear that the X-ray elevations are directly related to the strong C IV absorptions because the former changed on a much more rapid timescale than absorptions in the C IV lines. Within hours of the mild X-ray flux variations found by ROSAT on February 28, the Voyager UVS observed a "ringing" that decayed over three 3-hr. cycles. The amplitude of these fluctuations was strong (50%) at (lambda)(lambda)950-1100, decreased rapidly with wavelength, and faded to nondetection longward of (lambda)1300. Various considerations indicate that these continuum variations were not due to an instrumental pathology in the UVS. Rather, they appear to be due to a time-dependent flux deficit in the (lambda)(lambda)950-1250 region. We outline a scenario in which a dense plasma structure over the star's surface is heated and cooled quasi-periodically to produce such flux changes. Observations of new examples of this phenomenon are badly needed. Amateur astronomers can make a significant contribution to its understanding by searching for ringing in light curves of Be stars during their outburst phases. Finally we draw attention to an increase in the emission of the H(alpha) line that occurred at about the time the FUV ringing started. This increased emission hints that approximately 50,000K plasma near the star's surface can influence the circumstellar disc at approximately 12R. by its increased Lyman continuum flux.

  8. Toxic effects of lambda-cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: Involvement of oxidative stress and protective role of ascorbic acid.

    PubMed

    Fetoui, Hamadi; Makni, Mohamed; Garoui, El Mouldi; Zeghal, Najiba

    2010-11-01

    Lambda-cyhalothrin is a synthetic pyrethroid insecticide used worldwide in agriculture, home pest control, protection of foodstuff and disease vector control. The objective of this study was to investigate the propensity of lambda-cyhalothrin (LTC) to induce oxidative stress, changes in biochemical parameters and enzyme activities in the kidney of male rats and its possible attenuation by Vitamin C (vit C). Renal function, histopathology, tissue malondialdehyde (MDA), protein carbonyl (PCO) levels, antioxidant enzyme activities and reduced glutathione (GSH) levels were evaluated. Exposure of rats to lambda-cyhalothrin, during 3 weeks, caused a significant increase in kidney MDA and protein carbonyl levels (p<0.01) as compared to controls. Co-administration of vitamin C was effective in reducing MDA and PCO levels. The kidney of LTC-treated rats exhibited severe vacuolations, cells infiltration and widened tubular lumen. The activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) were significantly decreased due to lambda-cyhalothrin exposure. Co-administration of vitamin C ameliorated the increase in enzymatic activities of aminotransferases (AST and ALT), lactate dehydrogenase (LDH), creatinine and urea levels and improved the antioxidant status. These data indicated the protective role of ascorbic acid against lambda-cyhalothrin-induced nephrotoxicity and suggested a significant contribution of its antioxidant property to these beneficial effects. Copyright © 2009 Elsevier GmbH. All rights reserved.

  9. The (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Aller, Lawrence H.

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the 'peculiar' and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range.

  10. A reanalysis of the SWP-HI IUE observations of Capella

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Ayres, T. R.

    1995-01-01

    We have reanalyzed the numerous high-resolution, far-ultraviolet observations of Capella made by the International Ultraviolet Explorer (IUE) in its 16 yr lifetime. Our purpose was to search for long-term profile variations in Capella's ultraviolet emission lines and to complement the analysis of Goddard High Resolution Spectrograph (GHRS) observations of Capella, discussed in a companion paper (Linsky et al. 1995). We implemented a state-of-the-art photometric correction and spectral extraction procedure to improve S/N and control potential sources for systematic errors. Nevertheless, we were unable to find compelling evidence for any significant long-term profile variations. Previous work has shown that the G8 primary star is only a minor contributor to the high-excitation transition region lines but is a significant contributor to the low-excitation chromospheric lines. We have found exceptions to this rule, however. We find that the G8 star is responsible for a significant portion of Capella's N V lambda lambda 1239, 1243 emission, but is not a large contributor to the S I lambda 1296, Cl I lambda 1352, and O lambda 1356 lines. We suggest possible explanations for these behaviors. We also find evidence that the He II lambda 1640 emission from the G1 star is from the transition region, while the He II lambda 1640 emission from the G8 star is chromospheric, consistent with the findings of Linsky et al. (1994). The C II lambda 1336 line shows a weak central reversal. It is blueshifted by about 9 km/s with respect to the centroid of the emission from the G1 star. While the central reversal of the C II line is blueshifted by about 9 km/s with respect to the centroid of the emission from the G1 star. While the central reversal of the C II line is blueshifted, the central reversal of the Si III lambda 1207 line discussed by Linsky et al. (1994) is not.

  11. Nonclassical Smoothening of Nanoscale Surface Corrugations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlebacher, Jonah; Aziz, Michael J.; Chason, Eric

    2000-06-19

    We report the first experimental observation of nonclassical morphological equilibration of a corrugated crystalline surface. Periodic rippled structures with wavelengths of 290-550 nm were made on Si(001) by sputter rippling and then annealed at 650-750 degree sign C . In contrast to the classical exponential decay with time, the ripple amplitude A{sub {lambda}}(t) followed an inverse linear decay, A{sub {lambda}}(t)=A{sub {lambda}}( 0)/(1+k{sub {lambda}}t) , agreeing with a prediction of Ozdemir and Zangwill. We measure the activation energy for surface relaxation to be 1.6{+-}0.2 eV , consistent with the fundamental energies of creation and migration on Si(001). (c) 2000 The Americanmore » Physical Society.« less

  12. Measurement of bottom-quark hadron masses in exclusive J/psi decays with the CDF detector.

    PubMed

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachocou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W-H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; Depedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Muelmenstaedt, J; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nielsen, J; Nelson, T; Neu, C; Neubauer, M S; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stadie, H; Stanitzki, M; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Trischuk, W; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yamaoka, J; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zucchelli, S

    2006-05-26

    We measure the masses of b hadrons in exclusively reconstructed final states containing a J/psi --> mu-mu+ decay using 220 pb(-1) of data collected by the CDF II experiment. We find: m(B+) = 5279.10 +/- 0.41(stat.) +/- 0.36(sys.) MeV/c2, m(B0) = 5279.63 +/- 0.53(stat.) +/- 0.33(sys.) MeV/c2, m(B(s)0) = 5366.01 +/- 0.73(stat.) +/- 0.33(sys.) MeV/c2, m(lambda(b)0) = 5619.7 +/- 1.2(stat.) +/- 1.2(sys.) MeV/c2. m(B+) - m(B0) = -0.53 +/- 0.67(stat.) +/- 0.14(sys.) MeV/c2, m(B(s)0) - m(B0) = 86.38 +/- 0.90(stat.) +/- 0.06(sys.) MeV/c2, m(lambda(b)0) - m(B0) = 339.2 +/- 1.4(stat.) +/- 0.1(sys.) MeV/c2. The measurements of the B(s)0, lambda(b)0 mass, m(B(s)0) - m(B0) and m(lambda(b)0) - m(B0) mass difference are of better precision than the current world averages.

  13. Magnetic penetration depth of YBa2Cu3O(7-delta) thin films determined by the power transmission method

    NASA Technical Reports Server (NTRS)

    Heinen, Vernon O.; Miranda, Felix A.; Bhasin, Kul B.

    1992-01-01

    A power transmission measurement technique was used to determine the magnetic penetration depth (lambda) of YBa2Cu3O(7-delta) superconducting thin films on LaAlO3 within the 26.5 to 40.0 GHz frequency range, and at temperatures from 20 to 300 K. Values of lambda ranging from 1100 to 2500 A were obtained at low temperatures. The anisotropy of lambda was determined from measurements of c-axis and a-axis oriented films. An estimate of the intrinsic value of lambda of 90 +/- 30 nm was obtained from the dependence of lambda on film thickness. The advantage of this technique is that it allows lambda to be determined nondestructively.

  14. The X-ray and ultraviolet absorbing outflow in 3C 351

    NASA Astrophysics Data System (ADS)

    Mathur, Smita; Wilkes, Belinda; Elvis, Martin; Fiore, Fabrizio

    1994-10-01

    3C 351 (z = 0.371), and X-ray-'quiet' quasar, is one of the few quasars showing signs of a 'warm absorber' in its X-ray spectrum; i.e., partially ionized absorbing material in the line of sight whose opacity depends on its ionization structure. The main feature in the X-ray spectrum is a K-edge due to O VII or O VIII. 3C 351 also shows unusually strong, blueshifted, associated, absorption lines in the ultraviolet (Bahcall et al. 1993) including O VI (lambda lambda 1031, 1037). This high ionization state strongly suggests an identification with the X-ray absorber and a site within the active nucleus. In this paper we demonstrate that the X-ray and UV absorption is due to the same material. This is the first confirmed UV/X-ray absorber. Physical conditions of the absorber are determined through the combination of constraints derived from both the X-ray and UV analysis. This highly ionized, outflowing, low-density, high-column density absorber situated outside the broad emission line region (BELR) is a previously unknown component of nuclear material. We rule out the identification of the absorber with a BELR cloud as the physical conditions in the two regions are inconsistent with one another. The effect of the X-ray quietness and IR upturn in the 3C 351 continuum on the BELR is also investigated. The strengths of the high-ionization lines of C IV lambda-1549 and O VI lambda-1034 with respect to Lyman-alpha are systematically lower (up to a factor of 10) in the material ionized by the 3C 351 continuum as compared to those produced by the 'standard' quasar continuum, the strongest effect being on the strength of O VI lambda-1034. We find that for a 3C 351-like continuum, C III) lambda-1909 ceases to be a density indicator.

  15. Electromagnetic form factors of singly heavy baryons in the self-consistent SU(3) chiral quark-soliton model

    NASA Astrophysics Data System (ADS)

    Kim, June-Young; Kim, Hyun-Chul

    2018-06-01

    The self-consistent chiral quark-soliton model is a relativistic pion mean-field approach in the large Nc limit, which describes both light and heavy baryons on an equal footing. In the limit of the infinitely heavy mass of the heavy quark, a heavy baryon can be regarded as Nc-1 valence quarks bound by the pion mean fields, leaving the heavy quark as a color static source. The structure of the heavy baryon in this scheme is mainly governed by the light-quark degrees of freedom. Based on this framework, we evaluate the electromagnetic form factors of the lowest-lying heavy baryons. The rotational 1 /Nc and strange current quark mass corrections in linear order are considered. We discuss the electric charge and magnetic densities of heavy baryons in comparison with those of the nucleons. The results of the electric charge radii of the positive-charged heavy baryons show explicitly that the heavy baryon is a compact object. The electric form factors are presented. The form factor of Σc++ is compared with that from a lattice QCD. We also discuss the results of the magnetic form factors. The magnetic moments of the baryon sextet with spin 1 /2 and the magnetic radii are compared with other works and the lattice data.

  16. A randomized, controlled study of peginterferon lambda-1a/ribavirin ± daclatasvir for hepatitis C virus genotype 2 or 3.

    PubMed

    Foster, Graham R; Chayama, Kazuaki; Chuang, Wan-Long; Fainboim, Hugo; Farkkila, Martti; Gadano, Adrian; Gaeta, Giovanni B; Hézode, Christophe; Inada, Yukiko; Heo, Jeong; Kumada, Hiromitsu; Lu, Sheng-Nan; Marcellin, Patrick; Moreno, Christophe; Roberts, Stuart K; Strasser, Simone I; Thompson, Alexander J; Toyota, Joji; Paik, Seung Woon; Vierling, John M; Zignego, Anna L; Cohen, David; McPhee, Fiona; Wind-Rotolo, Megan; Srinivasan, Subasree; Hruska, Matthew; Myler, Heather; Portsmouth, Simon D

    2016-01-01

    Peginterferon Lambda was being developed as an alternative to alfa interferon for the treatment of chronic hepatitis C virus (HCV) infection. We compared peginterferon Lambda-1a plus ribavirin (Lambda/RBV) and Lambda/RBV plus daclatasvir (DCV; pangenotypic NS5A inhibitor) with peginterferon alfa-2a plus RBV (alfa/RBV) in treatment-naive patients with HCV genotype 2 or 3 infection. In this multicenter, double-blind, phase 3 randomized controlled trial, patients were assigned 2:2:1 to receive 24 weeks of Lambda/RBV, 12 weeks of Lambda/RBV + DCV, or 24 weeks of alfa/RBV. The primary outcome measure was sustained virologic response at post-treatment Week 12 (SVR12). Overall, 874 patients were treated: Lambda/RBV, n = 353; Lambda/RBV + DCV, n = 349; alfa/RBV, n = 172. Patients were 65 % white and 33 % Asian, 57 % male, with a mean age of 47 years; 52 % were infected with genotype 2 (6 % cirrhotic) and 48 % with genotype 3 (9 % cirrhotic). In the Lambda/RBV + DCV group, 83 % (95 % confidence interval [CI] 78.5, 86.5) achieved SVR12 (90 % genotype 2, 75 % genotype 3) whereas SVR12 was achieved by 68 % (95 % CI 63.1, 72.9) with Lambda/RBV (72 % genotype 2, 64 % genotype 3) and 73 % (95 % CI 66.6, 79.9) with peginterferon alfa/RBV (74 % genotype 2, 73 % genotype 3). Lambda/RBV + DCV was associated with lower incidences of flu-like symptoms, hematological abnormalities, and discontinuations due to adverse events compared with alfa/RBV. The 12-week regimen of Lambda/RBV + DCV was superior to peginterferon alfa/RBV in the combined population of treatment-naive patients with genotype 2 or 3 infection, with an improved tolerability and safety profile compared with alfa/RBV.

  17. Study of baryon production mechanism in e+e- annihilation into hadrons

    NASA Astrophysics Data System (ADS)

    Topaz Collaboration; Aoki, M.; Itoh, R.; Watanabe, Y.; Kaneyuki, K.; Ohshima, Y.; Ochi, A.; Tanimori, T.; Abe, K.; Abe, T.; Adachi, I.; Adachi, K.; Aoki, M.; Emi, K.; Enomoto, R.; Fujii, H.; Fujii, T.; Fujii, K.; Fujimoto, J.; Fujiwara, N.; Hayashii, H.; Hirano, H.; Howell, B.; Ikeda, H.; Inoue, Y.; Itami, S.; Iwasaki, H.; Iwasaki, M.; Kajikawa, R.; Kato, S.; Kawabata, S.; Kichimi, H.; Kobayashi, M.; Koltick, D.; Levine, I.; Mamada, H.; Miyabayashi, K.; Miyamoto, A.; Nagai, K.; Nakabayashi, K.; Nakamura, M.; Nakano, E.; Nitoh, O.; Noguchi, S.; Ochiai, F.; Ohishi, N.; Ohnishi, Y.; Okuno, H.; Okusawa, T.; Shibata, E.; Sugiyama, A.; Suzuki, S.; Takahashi, K.; Takahashi, T.; Teramoto, Y.; Tauchi, T.; Tomoto, M.; Tsukamoto, T.; Tsumura, T.; Uno, S.; Yamamoto, A.; Yamauchi, M.

    1998-11-01

    The mechanism of baryon-anti-baryon pair production in e+e- annihilation into hadrons has been studied using the TOPAZ detector at the TRISTAN e+e- collider at an average center-of-mass energy of 58 GeV. The distributions of various p¯p correlations were compared with two prominent models: the cluster-fragmentation model and the string-fragmentation model. We rejected the cluster-fragmentation model at the 90% C.L. Furthermore, in the context of the string-fragmentation model, we favor the ``popcorn'' model, rejecting the ``diquark'' model, where a diquark is considered to be a fundamental entity, at the 95% C.L.

  18. Observation of an Exotic S=+1 Baryon in Exclusive Photoproduction from the Deuteron

    NASA Astrophysics Data System (ADS)

    Stepanyan, S.; Hicks, K.; Carman, D. S.; Pasyuk, E.; Schumacher, R. A.; Smith, E. S.; Tedeschi, D. J.; Todor, L.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S. P.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carnahan, B.; Chen, S.; Ciciani, L.; Cole, P. L.; Coleman, A.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; de Vita, R.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Gordon, C. I.; Gothe, R.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kubarovsky, V.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Lawrence, D.; Li, J.; Lima, A.; Livingston, K.; Lukashin, K.; Manak, J. J.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S.; Muccifora, V.; Mueller, J.; Murphy, L. Y.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J.; O'Rielly, G. V.; Opper, A. K.; Osipenko, M.; Park, K.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P.; Sabatié, F.; Salgado, C.; Santoro, J.; Sapunenko, V.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, L. C.; Sober, D. I.; Strakovsky, I. I.; Stavinsky, A.; Stoler, P.; Suleiman, R.; Taiuti, M.; Taylor, S.; Thoma, U.; Thompson, R.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.

    2003-12-01

    In an exclusive measurement of the reaction γd→K+K-pn, a narrow peak that can be attributed to an exotic baryon with strangeness S=+1 is seen in the K+n invariant mass spectrum. The peak is at 1.542±0.005 GeV/c2 with a measured width of 0.021 GeV/c2 FWHM, which is largely determined by experimental mass resolution. The statistical significance of the peak is (5.2±0.6)σ. The mass and width of the observed peak are consistent with recent reports of a narrow S=+1 baryon by other experimental groups.

  19. Observation of the Doubly Charmed Baryon Ξcc ++

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Bjoern, M. B.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Borysova, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z.-C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddock, B.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombacher, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Gonzalo, D.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M. A.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2017-09-01

    A highly significant structure is observed in the Λc+K-π+π+ mass spectrum, where the Λc+ baryon is reconstructed in the decay mode p K-π+. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Ξcc ++. The difference between the masses of the Ξcc ++ and Λc+ states is measured to be 1334.94 ±0.72 (stat.) ±0.27 (syst. ) MeV /c2 , and the Ξcc ++ mass is then determined to be 3621.40 ±0.72 (stat.) ±0.27 (syst. ) ±0.14 (Λc+) MeV /c2 , where the last uncertainty is due to the limited knowledge of the Λc+ mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb-1, and confirmed in an additional sample of data collected at 8 TeV.

  20. Observation of B{sup 0}{yields}{lambda}{lambda}K{sup 0} and B{sup 0}{yields}{lambda}{lambda}K*{sup 0} at Belle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.-W.; Wang, M.-Z.; Chao, Y.

    2009-03-01

    We study the charmless decays B{yields}{lambda}{lambda}h, where h stands for {pi}{sup +}, K{sup +}, K{sup 0},K*{sup +}, or K*{sup 0}, using a 605 fb{sup -1} data sample collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric energy e{sup +}e{sup -} collider. We observe B{sup 0}{yields}{lambda}{lambda}K{sup 0} and B{sup 0}{yields}{lambda}{lambda}K*{sup 0} with branching fractions of (4.76{sub -0.68}{sup +0.84}(stat){+-}0.61(syst))x10{sup -6} and (2.46{sub -0.72}{sup +0.87}{+-}0.34)x10{sup -6}, respectively. The significances of these signals in the threshold-mass enhanced mass region, M{sub {lambda}}{sub {lambda}}<2.85 GeV/c{sup 2}, are 12.4{sigma} and 9.3{sigma}, respectively. We also update the branching fraction B(B{sup +}{yields}{lambda}{lambda}K{sup +})=(3.38{sub -0.36}{sup +0.41}{+-}0.41)x10{supmore » -6} with better accuracy, and report the following measurement or 90% confidence level upper limit in the threshold-mass-enhanced region: B(B{sup +}{yields}{lambda}{lambda}K*{sup +})=(2.19{sub -0.88}{sup +1.13}{+-}0.33)x10{sup -6} with 3.7{sigma} significance; B(B{sup +}{yields}{lambda}{lambda}{pi}{sup +})<0.94x10{sup -6}. A related search for B{sup 0}{yields}{lambda}{lambda}D{sup 0} yields a branching fraction B(B{sup 0}{yields}{lambda}{lambda}D{sup 0})=(1.05{sub -0.44}{sup +0.57}{+-}0.14)x10{sup -5}. This may be compared with the large, {approx}10{sup -4}, branching fraction observed for B{sup 0}{yields}ppD{sup 0}. The M{sub {lambda}}{sub {lambda}} enhancements near threshold and related angular distributions for the observed modes are also reported.« less

  1. Production cross sections of hyperons and charmed baryons from e+e- annihilation near √{s }=10.52 GeV

    NASA Astrophysics Data System (ADS)

    Niiyama, M.; Sumihama, M.; Nakano, T.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Bansal, V.; Barberio, E.; Berger, M.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chang, M.-C.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Choi, Y.; Cinabro, D.; Dash, N.; Di Carlo, S.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Goldenzweig, P.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jin, Y.; Joffe, D.; Joo, K. K.; Julius, T.; Karyan, G.; Kato, Y.; Katrenko, P.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Kinoshita, K.; Kodyš, P.; Kotchetkov, D.; Križan, P.; Krokovny, P.; Kulasiri, R.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Luo, T.; Masuda, M.; Matsuda, T.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Ono, H.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Pardi, S.; Park, H.; Pedlar, T. K.; Piilonen, L. E.; Pulvermacher, C.; Ritter, M.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seidl, R.; Seino, Y.; Senyo, K.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Simon, F.; Sokolov, A.; Solovieva, E.; Starič, M.; Sumiyoshi, T.; Takizawa, M.; Tanida, K.; Tenchini, F.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Varner, G.; Vossen, A.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, Y.; Widmann, E.; Williams, K. M.; Won, E.; Yamashita, Y.; Ye, H.; Yuan, C. Z.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration

    2018-04-01

    We measure the inclusive production cross sections of hyperons and charmed baryons from e+e- annihilation using a 800 fb-1 data sample taken near the ϒ (4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. The feed-down contributions from heavy particles are subtracted using our data, and the direct production cross sections are presented for the first time. The production cross sections divided by the number of spin states for S =-1 hyperons follow an exponential function with a single slope parameter except for the Σ (1385 )+resonance. Suppression for Σ (1385 )+ and Ξ (1530 )0 hyperons is observed. Among the production cross sections of charmed baryons, a factor of 3 difference for Λc+ states over Σc states is observed. This observation suggests a diquark structure for these baryons.

  2. QCD inequalities for the nucleon mass and the free energy of baryonic matter.

    PubMed

    Cohen, Thomas D

    2003-07-18

    The positivity of the integrand of certain Euclidean space functional integrals for two flavor QCD with degenerate quark masses implies that the free energy per unit volume for QCD with a baryon chemical potential mu(B) (and zero isospin chemical potential) is greater than the free energy with an isospin chemical potential mu(I)=(2 mu(B)/N(c)) (and zero baryon chemical potential). The same result applies to QCD with any number of heavy flavors in addition to the two light flavors so long as the chemical potential is understood as applying to the light quark contributions to the baryon number. This relation implies a bound on the nucleon mass: there exists a particle X in QCD (presumably the pion) such that M(N)> or =(N(c) m(X)/2 I(X)) where m(X) is the mass of the particle and I(X) is its isospin.

  3. Production cross sections of hyperons and charmed baryons from e + e - annihilation near s = 10.52 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niiyama, M.; Sumihama, M.; Nakano, T.

    Here, we measure the inclusive production cross sections of hyperons and charmed baryons from e +e - annihilation using a 800 fb -1 data sample taken near the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e +e - collider. The feed-down contributions from heavy particles are subtracted using our data, and the direct production cross sections are presented for the first time. The production cross sections divided by the number of spin states for S = -1 hyperons follow an exponential function with a single slope parameter except for the Σ(1385) + resonance. Suppression for Σ(1385) + and Ξ(1530) 0 hyperons is observed. Among the production cross sections of charmed baryons, a factor of 3 difference for Λmore » $$+\\atop{c}$$ states over Σ c states is observed. This observation suggests a diquark structure for these baryons.« less

  4. Production cross sections of hyperons and charmed baryons from e + e - annihilation near s = 10.52 GeV

    DOE PAGES

    Niiyama, M.; Sumihama, M.; Nakano, T.; ...

    2018-04-09

    Here, we measure the inclusive production cross sections of hyperons and charmed baryons from e +e - annihilation using a 800 fb -1 data sample taken near the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e +e - collider. The feed-down contributions from heavy particles are subtracted using our data, and the direct production cross sections are presented for the first time. The production cross sections divided by the number of spin states for S = -1 hyperons follow an exponential function with a single slope parameter except for the Σ(1385) + resonance. Suppression for Σ(1385) + and Ξ(1530) 0 hyperons is observed. Among the production cross sections of charmed baryons, a factor of 3 difference for Λmore » $$+\\atop{c}$$ states over Σ c states is observed. This observation suggests a diquark structure for these baryons.« less

  5. Kaon and lambda production at intermediate pT: Insights into the hadronization of the bulk partonic matter created in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Sorensen, Paul Richard

    2003-06-01

    Measurements of identified particles over a broad transverse momentum pT range may provide particularly strong evidence for the existence of a thermalized partonic state in heavy-ion collisions ( i.e. a quark-gluon plasma). Of particular interest are the centrality dependence and the azimuthal anisotropy in the yield of baryons and mesons at intermediate pT. The first measurements of v2---an event-by-event azimuthal anisotropy parameter---and the nuclear modification factor RCP for mid-rapidity K0S and Λ + L¯ production in Au+Au collisions at ultra-relativistic energy are presented. The K0S , Λ and L¯ candidates are selected based on characteristics of their decays in the STAR Time Projection Chamber (TPC). A statistical treatment is used to extract v2(pT) and RCP(pT) from their invariant mass distributions. These measurements establish the particle type dependence of v2 and RCP in the kinematic region 0.4 < pT < 6.0 and |y| < 1.0. In the low pT region (pT < 1.0 GeV/c) the v2 values for different particles are increasing with pT and follow a mass dependence similar to that expected from hydrodynamical models of Au+Au collisions---where, at a given pT, the particle with the larger mass will have a smaller v2. At higher p T however, v2 of the heavier Λ hyperon continues to increase while v2 of the lighter K0S meson saturates at v2 ˜ 0.13 for 2.0 < pT < 5.0 GeV/c. At intermediate pT the v2 of K0S and Λ + L¯ are shown to follow a number-of-constituent-quark scaling with vkaon2pT /22≈v lambda2pT/3 3 . The binary collision scaled centrality ratio RCP shows that Λ + L¯ production at intermediate pT increases more rapidly with system size than kaon production: This is consistent with a scenario where multi-parton dynamics play an important role in particle production. At pT ≈ 5.5 GeV/c Λ + L¯ , K0S , and charged hadron production are all suppressed by a similar amount: a factor of three below expectations from binary nucleon-nucleon collision scaling (i.e. RCP ≈ 0.33). This p T value establishes the extent to which the centrality dependent enhancement of baryon production persists. The particle-type dependence of v2 and RCP provides a stringent test for models of heavy-ion collisions. In particular the larger values of Λ + L¯ v2 compared to their smaller suppression manifested in RCP suggests that for p T < 4.0 GeV/c a particle production mechanism beyond the framework of energy loss and fragmentation exists in central Au+Au collisions. The particle- and pT-dependence of v 2, and RCP are consistent, however, with expectations based on the hadronization of a bulk partonic matter by coalescence or recombination. As such, the constituent-quark-number scaled v 2 reflects the anisotropy established in a partonic stage and provides strong evidence for the existence of a quark-gluon plasma in Au+Au collisions at RHIC.

  6. Peginterferon Lambda-1a Is Associated with a Low Incidence of Autoimmune Thyroid Disease in Chronic Hepatitis C.

    PubMed

    Fredlund, Paul; Hillson, Jan; Gray, Todd; Shemanski, Lynn; Dimitrova, Dessislava; Srinivasan, Subasree

    2015-11-01

    Peginterferon alfa (alfa) increases the risk of autoimmune disease. Peginterferon lambda-1a (Lambda) acts through a receptor with a more liver-specific distribution compared to the alfa receptor. In a phase-2b study, 525 treatment-naive patients with chronic hepatitis C virus (HCV) infection received ribavirin and Lambda interferon (120, 180, or 240 μg) or alfa interferon (180 μg) for 24 (genotypes 2 and 3) or 48 (genotypes 1 and 4) weeks. Retrospective analysis found that adverse events of MedDRA-coded thyroid dysfunction and abnormal levels of thyroid-stimulating hormone (TSH) were significantly more frequent with alfa versus Lambda (12% versus 2.6% and 15.2% versus 3.4%, respectively, both P<0.0001). Most Lambda recipients with abnormal TSH had levels below the lower limit of normal; the frequency of low and high TSH was similar in alfa recipients with abnormal TSH. Blinded review by an endocrinologist found that new-onset primary hypothyroidism or painless thyroiditis was less frequent with Lambda versus alfa (0.5% and 1.8% versus 5.3% and 7.5%, respectively, P<0.0001). Most TSH elevations reflected new-onset hypothyroidism requiring treatment, while most markedly suppressed TSH values reflected probable painless thyroiditis and resolved without sequelae. In conclusion, HCV-infected patients treated with Lambda/ribavirin experienced fewer adverse events of thyroid dysfunction compared with patients treated with alfa/ribavirin.

  7. Neutral-strange-particle production in 200-GeV/ c p /. pi. sup + / K sup + interactions on Au, Ag, and Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brick, D.H.; Widgoff, M.; Beilliere, P.

    1992-02-01

    We have used the Fermilab 30-in. bubble-chamber--hybrid spectrometer to study neutral-strange-particle production in the interactions of 200-GeV/{ital c} protons and {pi}{sup +} and {ital K}{sup +} mesons with nuclei of gold, silver, and magnesium. Average multiplicities and inclusive cross sections for {ital K}{sup 0} and {Lambda} are measured, and a power law is found to give a good description of their {ital A} dependence. The exponent characterizing the {ital A} dependence is consistent with being the same for {ital K}{sup 0} and {Lambda} production, and also the same for proton and {pi}{sup +} beams. Average {ital K}{sup 0} and {Lambda}more » multiplicities, as well as their ratio, have been measured as functions of the numbers of projectile collisions {nu}{sub {ital p}} and secondary collisions {nu}{sub {ital s}} in the nucleus, and indicate that rescattering contributes significantly to enhancement of {Lambda} production but not to {ital K}{sup 0} production. The properties of events with multiple {ital K}{sup 0}'s or {Lambda}'s also corroborate this conclusion. {ital K}{sup 0} rapidities are in the central region and decrease gently with increasing {nu}{sub {ital p}}, while {Lambda} rapidities are in the target-fragmentation region and are independent of {nu}{sub {ital p}}. {ital K}{sup 0} and {Lambda} multiplicities increase with the rapidity loss of the projectile, but their rapidities do not.« less

  8. C[subscript p]/C[subscript V] Ratios Measured by the Sound Velocity Method Using Calculator-Based Laboratory Technology

    ERIC Educational Resources Information Center

    Branca, Mario; Soletta, Isabella

    2007-01-01

    The velocity of sound in a gas depends on its temperature, molar mass, and [lambda] = C[subscript p]/C[subscript v], ratio (heat capacity at a constant pressure to heat capacity at constant volume). The [lambda] values for air, oxygen, nitrogen, argon, and carbon dioxide were determined by measuring the velocity of the sound through the gases at…

  9. The baryonic Tully-Fisher relationship for S{sup 4}G galaxies and the 'condensed' baryon fraction of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaritsky, Dennis; Courtois, Helene; Sorce, Jenny

    We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of H I spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, whichmore » we find to be 3.5 ± 0.2 (Δlog M {sub baryon}/Δlog v{sub c} ), implies that on average a nearly constant fraction (∼0.4) of all baryons expected to be in a halo are 'condensed' onto the central region of rotationally supported galaxies. The condensed baryon fraction, M {sub baryon}/M {sub total}, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, v {sub c} , between 60 and 250 km s{sup –1}, but is extended to v{sub c} ∼ 10 km s{sup –1} using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally ≤ a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v{sub c} < 250 km s{sup –1} and typically introduce no more than a factor of two range in the resulting M {sub baryon}/M {sub total}. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models using the BTF holds great promise, but awaits improved determinations of the stellar masses.« less

  10. Regge Trajectories of triply heavy baryons

    NASA Astrophysics Data System (ADS)

    Rai, Ajay Kumar; Shah, Zalak

    2017-12-01

    Ω ccc , Ω bbb , Ω bcc and Ω ccb baryons are considerable theoretical interest in a baryonic analogue of heavy quarkonium because of the color-singlet bound state of three heavy quark (c,b) combination inside. Regge trajectories are concerned with the mass spectrum of the particles so that the present study exhibits the regge trajectories obtained from excited states of four experimentally unknown triply heavy Ω baryons. The trajectories are plotted in (n, M 2) and (J, M 2) planes which are helpful to determine the unknown quantum number and JP values. The calculations have computed in Hypercentral Constituent Quark Model with hyper coulomb plus linear potential.

  11. Interpretation of the new Ω _c0 states via their mass and width

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2017-06-01

    The masses and pole residues of the ground and first radially excited Ω _c0 states with spin-parities JP=1/2+, 3/2+, as well as P-wave Ω _c0 with JP=1/2-, 3/2- are calculated by means of the two-point QCD sum rules. The strong decays of Ω _c0 baryons are also studied and the widths of these decay channels are computed. The relevant computations are performed in the context of the full QCD sum rules on the light cone. The results obtained for the masses and widths are confronted with recent experimental data of the LHCb Collaboration, which allow us to interpret Ω _c(3000)0, Ω _c(3050)0, and Ω _c(3119)0 as the excited css baryons with the quantum numbers (1P, 1/2-), (1P, 3/2-), and (2S, 3/2+), respectively. The (2S, 1/2+) state can be assigned either to the Ω _c(3066)0 state or the Ω _c(3090)0 excited baryon.

  12. Characterization of a lambda-cyhalothrin metabolizing glutathione S-transferase CpGSTd1 from Cydia pomonella (L.).

    PubMed

    Liu, Jiyuan; Yang, Xueqing; Zhang, Yalin

    2014-11-01

    In insects, glutathione S-transferases (GSTs) are enzymes involved in detoxification of insecticides. However, few data are available for the codling moth, Cydia pomonella (L.). In this study, we cloned a delta class GST gene CpGSTd1 from C. pomonella. Real-time quantitative PCR shows that CpGSTd1 was up-regulated with aging, and the mRNA level of CpGSTd1 was higher in the fat body and silk glands than in other tissues. The expression level of CpGSTd1 exposure to insecticide suggests that CpGSTd1 is up-regulated after chlorpyrifos-methyl and lambda-cyhalothrin treatments. Both lambda-cyhalothrin and chlorpyrifos-methyl altered GST activity in vivo. The purified CpGSTd1 protein exhibits a high catalytic efficiency with CDNB and was inhibited by lambda-cyhalothrin and chlorpyrifos-methyl in vitro. Metabolism assays indicate that lambda-cyhalothrin was significantly metabolized while chlorpyrifos-methyl was not metabolized by CpGSTd1. Binding free energy analysis suggests that CpGSTd1 binding is tighter with lambda-cyhalothrin than with chlorpyrifos-methyl. Our study suggests that CpGSTd1 plays a key role in the metabolism of insecticides in C. pomonella.

  13. Strong and radiative decays of the doubly charmed baryons

    NASA Astrophysics Data System (ADS)

    Xiao, Li-Ye; Wang, Kai-Lei; Lü, Qi-Fang; Zhong, Xian-Hui; Zhu, Shi-Lin

    2017-11-01

    We have systematically studied the strong and radiative decays of the low-lying 1 P -wave doubly charmed baryons. Some interesting observations are: (i) The states Ξcc * and Ωcc * with JP=3 /2+ have a fairly large decay rate into the Ξc cγ and Ωc cγ channels with a width ˜15 and ˜7 keV , respectively. (ii) The lowest lying excited doubly charmed baryons are dominated by the 1 P ρ mode excitations, which should be quite narrow states. They decay into the ground state with JP=1 /2+ through the radiative transitions with a significant ratio. (iii) The total decay widths of the first orbital excitations of λ mode (1 Pλ states with JP=1 /2-, 3 /2-, 5 /2-) are about Γ ˜100 MeV , and the ratio between the radiative and hadronic decay widths is about O (10-3).

  14. Total enantioselectivity in the DNA binding of the dinuclear ruthenium(II) complex [[Ru(Me2bpy)2]2(mu-bpm)]4+ [bpm = 2,2'-bipyrimidine; Me2bpy = 4,4'-dimethyl-2,2'-bipyridine].

    PubMed

    Smith, Jayden A; Collins, J Grant; Patterson, Bradley T; Keene, F Richard

    2004-05-07

    The binding of the three stereoisomers (DeltaDelta-, LambdaLambda- and DeltaLambda-) of the dinuclear ruthenium(II) complex [[Ru(Me2bpy)2]2(mu-bpm)]4+ [Me2bpy = 4,4'-dimethyl-2,2'-bipyridine; bpm = 2,2'-bipyrimidine] to a tridecanucleotide containing a single adenine bulge has been studied by 1H NMR spectroscopy. The addition of the DeltaDelta-isomer to d(CCGAGAATTCCGG)2 induced significant chemical shift changes for the base and sugar resonances of the residues at the bulge site (G3A4G5/C11C10), whereas small shifts were observed upon addition of the enantiomeric LambdaLambda-form. NOESY spectra of the tridecanucleotide bound with the DeltaDelta-isomer revealed intermolecular NOE's between the metal complex and the nucleotide residues at the bulge site, while only weak NOE's were observed to terminal residues to the LambdaLambda-form. Competitive binding studies were performed where both enantiomers were simultaneously added to the tridecanucleotide, and for all ratios of the two stereoisomers the DeltaDelta-isomer remained selectively bound at the bulge site with the LambdaLambda-enantiomer localised at the terminal regions of the tridecanucleotide. The meso-diastereoisomer (DeltaLambda) was found to bind to the tridecanucleotide with characteristics intermediate between the DeltaDelta- and LambdaLambda-enantiomers of the rac form. Two distinct sets of metal complex resonances were observed, with one set having essentially the same shift as the free metal complex, whilst the other set of resonances exhibited significant shifts. The NOE data indicated that the meso-diastereoisomer does not bind as selectively as the DeltaDelta-isomer, with NOE's observed to a greater number of nucleotide residues compared to the DeltaDelta-form. This study provides a rare example of total enantioselectivity in the binding of an inert transition metal complex to DNA, produced by the shape recognition of both ruthenium(II) centres.

  15. Charm Production in Interactions of Antiproton with Proton and Nuclei at \\bar{it{P}}it{ANDA} Energies

    NASA Astrophysics Data System (ADS)

    Shyam, R.; Tsushima, K.

    2018-05-01

    We study the production of charmed baryons in the antiproton-proton and antiproton-nucleus interactions within a fully covariant model that is based on an effective Lagrangian approach. The baryon production proceeds via the t-channel D^0 and D^{*0} meson-exchange diagrams. We have also explored the production of the charm-baryon hypernucleus ^{16}_{Λ_c^+}O in the antiproton-^{16}O collisions. For antiproton beam momenta of interest to the {\\bar{P}}ANDA experiment, the 0° differential cross sections for the formation of ^{16}_{Λ_c^+}O hypernuclear states with simple particle-hole configurations, have magnitudes in the range of a few μ b/sr.

  16. Search for excited and exotic electrons in the egamma decay channel in pp collisions at sqrt[s] = 1.96 TeV.

    PubMed

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Guenther, M; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefevre, R; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, M; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A-S; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Palmonari, F; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stefanini, A; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2005-03-18

    We present a search for excited and exotic electrons (e(*)) decaying to an electron and a photon, both with high transverse momentum. We use 202 pb(-1) of data collected in pp collisions at sqrt[s] = 1.96 TeV with the Collider Detector at Fermilab II detector. No signal above standard model expectation is seen for associated ee(*) production. We discuss the e(*) sensitivity in the parameter space of the excited electron mass M(e(*)) and the compositeness energy scale Lambda. In the contact interaction model, we exclude 132 GeV/c(2)

  17. A Monte Carlo Study of Lambda Hyperon Polarization at BM@N

    NASA Astrophysics Data System (ADS)

    Suvarieva, D.; Gudima, K.; Zinchenko, A.

    2018-03-01

    Heavy strange objects (hyperons) can provide essential signatures of the excited and compressed baryonic matter. At NICA, it is planned to study hyperons both in the collider mode (MPD detector) and the fixed-target one (BM@N setup). Measurements of strange hyperon polarization can give additional information on the strong interaction mechanisms. In heavy-ion collisions, such measurements are even more valuable since the polarization is expected to be sensitive to characteristics of the QCD medium (vorticity, hydrodynamic helicity) and to QCD anomalous transport. In this analysis, the possibility to measure at BM@N the polarization of the lightest strange hyperon Λ is studied in Monte Carlo event samples of Au + Au collisions produced with the DCM-QGSM generator. It is shown that the detector will allow to measure polarization with a precision required to check the model predictions.

  18. Asymmetry Studies in the Production of $$\\Lambda^0/\\bar \\Lambda^0$$, $$\\Xi^-/\\bar{\\Xi}^+$$ and $$\\Omega^-/\\bar{\\Omega}^+$$ Hyperons in 500 GeV/c $$\\pi^-$$ - Nucleon Interactions (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solano Salinas, Carlos Javier

    Using data from fprmilab fixed-target experiment E791, we have measmed for the first time particle/antiparticle production asymmetries formore » $$\\Lambda^0 \\Xi^-$$ and $$\\Omega^-$$ hyperons in $$\\pi^-$$nucleon interactions at 500 GeV /c as joint functions of $$x_F$$ and $$p^2_{\\tau}$$ over the ranges $$-0.12 \\le x_F \\le 0.12$$ and $$0 \\le p^2_{\\tau} \\le 4 (GeV/c)^2$$. There is now direct evidence of a basic asymmetry, even at $$x_F$$ = 0.0, which may be due to associated production. In addition, there are leading-particle-type effects which are qualitativrly like what one would expect from rrcmnbination models or their alternatives. WP used the Dnal Parton Model (DPM) to cakulate the asymmetry for the $$\\Lambda^0$$ and compared with the Lund model (PYTHIA /JETSET) predictions and with om experimental results.« less

  19. Observation of the Ξ(b)(0) baryon.

    PubMed

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rubbo, F; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stancari, M; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S

    2011-09-02

    The observation of the bottom, strange baryon Ξ(b)(0) through the decay chain Ξ(b)(0)→Ξ(c)(+)π-, where ΞΞ(c)(+)→Ξ- π+ π+, Ξ-→Λπ-, and Λ→pπ-, is reported by using data corresponding to an integrated luminosity of 4.2  fb(-1) from pp collisions at square root(s)=1.96  TeV recorded with the Collider Detector at Fermilab. A signal of 25.3(-5.4)(+5.6) candidates is observed whose probability of arising from a background fluctuation is 3.6×10(-12), corresponding to 6.8 gaussian standard deviations. The Ξ(b)(0) mass is measured to be 5787.8±5.0(stat)±1.3(syst)  MeV/c2. In addition, the Ξ(b)- baryon is observed through the process Ξ(b)-→Ξ(c)(0)π-, where Ξ(c)(0)→Ξ- π+, Ξ-→Λπ-, and Λ→pπ-.

  20. The origin of N III lambda 990 and C III lambda 977 emission in AGN narrow-line region gas

    NASA Technical Reports Server (NTRS)

    Ferguson, J. W.; Ferland, G. J.; Pradhan, A. K.

    1995-01-01

    We discuss implications of Hopkins Ultraviolet Telescope (HUT) detections of C III lambda 977 and N III lambda 990 emission from the narrow-line region of the Seyfert 2 galaxy NGC 1068. In their discovery paper Kriss et al. showed that the unexpectedly great strength of these lines implies that the emitting gas must be shock-heated if the lines are collisionally excited. Here we investigate other processes which excite these lines in photoionization equilibrium. Recombination, mainly dielectronic, and continuum fluorescence are strong contributors to the line. The resulting intensities are sensitive to the velocity field of the emitting gas and require that the turbulence be of the same order of magnitude as the observed line width. We propose optical observations that will decide whether the gas is collisionally or radiatively heated.

  1. Direct Isolation of Purines and Pyrimidines from Nucleic Acids Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Schubert, Michael; Bada, Jeffrey L.

    2003-01-01

    A sublimation technique was developed to isolate purines and pyrimidines directly from lambda-deoxyribonucleic acid (lambda-DNA) and Escherichia coli cells. The sublimation of adenine, cytosine, guanine, and thymine from lambda-DNA was tested under reduced pressure (approx. 0.5 Torr) at temperatures of >150 C. With the exception of guanine, approximately 60 -75% of each base was sublimed directly from the lambda-DNA and recovered on a coldfinger of the sublimation apparatus after heating to 450 C. Several nucleobases including adenine, cytosine, thymine, and uracil were also recovered from E. coli bacteria after heating the cells to the same temperature, although some thermal decomposition of the bases also occurred. These results demonstrate the feasibility of using sublimation to isolate purines and pyrimidines from native E. coli DNA and RNA without any chemical treatment of the cells.

  2. Peginterferon Lambda-1a/Ribavirin with Daclatasvir or Peginterferon Alfa-2a/Ribavirin with Telaprevir for Chronic Hepatitis C Genotype 1b.

    PubMed

    Flisiak, Robert; Kawazoe, Seiji; Znoyko, Olga; Assy, Nimer; Gadano, Adrian; Kao, Jia-Horng; Lee, Kwan-Sik; Zwirtes, Ricardo; Portsmouth, Simon; Dong, Yuping; Xu, Dong; Kumada, Hiromitsu; Srinivasan, Subasree

    2016-11-01

    The study objective was to compare the efficacy and safety of peginterferon lambda-1a combined with ribavirin/daclatasvir (Lambda/RBV/DCV), versus peginterferon alfa-2a combined with ribavirin/telaprevir (Alfa/RBV/TVR), in patients chronically infected with hepatitis C virus (HCV), genotype 1b. This was a prospective, randomized, open-label, phase 3 study (NCT01718158) in adults (aged ≥18 years) who were treatment naïve or prior relapsers to peginterferon alfa/ribavirin therapy. The primary endpoint was sustained virologic response at post-treatment follow-up week 12 (SVR12). Patients were randomized in a 2:1 ratio to receive 24 weeks of Lambda/RBV/DCV or response-guided 24 or 48 weeks of Alfa/RBV/TVR. Overall, 440 patients were treated (294 with Lambda/RBV/DCV; 146 with Alfa/RBV/TVR). The proportion of patients achieving SVR12 was 88.8% in the Lambda/RBV/DCV arm and 70.5% in the Alfa/RBV/TVR arm (difference between arms: 18.3%; 95% confidence interval: 9.9-25.7; P < 0.0001). Patients in the Lambda/RBV/DCV group had fewer rash-related adverse events (AEs), cytopenic abnormalities, flu-like symptoms, serious AEs, and discontinuations due to AEs, but more liver abnormalities than those in the Alfa/RBV/TVR group. In conclusion, treatment with Lambda/RBV/DCV led to higher SVR12 rates and a more favorable safety profile than Alfa/RBV/TVR in patients with chronic HCV, genotype 1b infection.

  3. Large N[sub c], constituent quarks, and N, [Delta] charge radii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfons J. Buchmann; Richard F. Lebed.

    2000-03-01

    The authors show how one may define baryon constituent quarks in a rigorous manner, given physical assumptions that hold in the large-N[sub c] limit of QCD. This constituent picture gives rise to an operator expansion that has been used to study large-N[sub c] baryon observables; here they apply it to the case of charge radii of the N and [Delta] states. For example, one finds the relation r[sub p][sup 2] [minus] r[sub [Delta][sup +

  4. Observation of the Doubly Charmed Baryon Ξ_{cc}^{++}.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Bjoern, M B; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Borysova, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Huard, Z-C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddock, B; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombacher, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M A; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-09-15

    A highly significant structure is observed in the Λ_{c}^{+}K^{-}π^{+}π^{+} mass spectrum, where the Λ_{c}^{+} baryon is reconstructed in the decay mode pK^{-}π^{+}. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Ξ_{cc}^{++}. The difference between the masses of the Ξ_{cc}^{++} and Λ_{c}^{+} states is measured to be 1334.94±0.72(stat.)±0.27(syst.)  MeV/c^{2}, and the Ξ_{cc}^{++} mass is then determined to be 3621.40±0.72(stat.)±0.27(syst.)±0.14(Λ_{c}^{+})  MeV/c^{2}, where the last uncertainty is due to the limited knowledge of the Λ_{c}^{+} mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7  fb^{-1}, and confirmed in an additional sample of data collected at 8 TeV.

  5. Precision measurement of the mass and lifetime of the Ξ(b)(0) baryon.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Muresan, R; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-07-18

    Using a proton-proton collision data sample corresponding to an integrated luminosity of 3 fb(-1) collected by LHCb at center-of-mass energies of 7 and 8 TeV, about 3800 Ξ(b)(0) → Ξ(c)(+)π(-), Ξ(c)(+)) → pK(-)π(+) signal decays are reconstructed. From this sample, the first measurement of the Ξ(b)(0) baryon lifetime is made, relative to that of the Λ(b)(0) baryon. The mass differences M(Ξ(b)(0))-M(Λ(b)(0)) and M(Ξ(c)(+))-M(Λ(c)(+)) are also measured with precision more than 4 times better than the current world averages. The resulting values are τ(Ξ(b)(0))/τ(Λ)(b)(0)) = 1.006 ± 0.018 ± 0.010,M(Ξ(b)(0))-M(Λ(b)(0)) = 172.44 ± 0.39 ± 0.17 MeV/c(2),M(Ξ(c)(+))-M(Λ(c)(+)) = 181.51 ± 0.14 ± 0.10 MeV/c(2),where the first uncertainty is statistical and the second is systematic. The relative rate of Ξ(b)(0) to Λ(b)(0) baryon production is measured to be f(Ξ)(b)(0))/f(Λ)(b)(0))B(Ξ(b)(0) → Ξ(c)(+)π(-))/B(Λ(b)(0) → Λ(c)(+)π(-))B(Ξ(c)(+) → pK(-)π(+))/B(Λ(c)(+) → pK(-)}π(+)) = (1.88 ± 0.04 ± 0.03) × 10(-2),where the first factor is the ratio of fragmentation fractions, b → Ξ(b)(0) relative to b → Λ(b)(0). Relative production rates as functions of transverse momentum and pseudorapidity are also presented.

  6. Discriminating Majorana neutrino textures in light of the baryon asymmetry

    NASA Astrophysics Data System (ADS)

    Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar

    2015-06-01

    We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.

  7. TESTING NONSTANDARD COSMOLOGICAL MODELS WITH SNLS3 SUPERNOVA DATA AND OTHER COSMOLOGICAL PROBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhengxiang; Yu Hongwei; Wu Puxun, E-mail: hwyu@hunnu.edu.cn

    2012-01-10

    We investigate the implications for some nonstandard cosmological models using data from the first three years of the Supernova Legacy Survey (SNLS3), assuming a spatially flat universe. A comparison between the constraints from the SNLS3 and those from other SN Ia samples, such as the ESSENCE, Union2, SDSS-II, and Constitution samples, is given and the effects of different light-curve fitters are considered. We find that analyzing SNe Ia with SALT2 or SALT or SiFTO can give consistent results and the tensions between different data sets and different light-curve fitters are obvious for fewer-free-parameters models. At the same time, we alsomore » study the constraints from SNLS3 along with data from the cosmic microwave background and the baryonic acoustic oscillations (CMB/BAO), and the latest Hubble parameter versus redshift (H(z)). Using model selection criteria such as {chi}{sup 2}/dof, goodness of fit, Akaike information criterion, and Bayesian information criterion, we find that, among all the cosmological models considered here ({Lambda}CDM, constant w, varying w, Dvali-Gabadadze-Porrati (DGP), modified polytropic Cardassian, and the generalized Chaplygin gas), the flat DGP is favored by SNLS3 alone. However, when additional CMB/BAO or H(z) constraints are included, this is no longer the case, and the flat {Lambda}CDM becomes preferred.« less

  8. Cosmic microwave background anisotropies in cold dark matter models with cosmological constant: The intermediate versus large angular scales

    NASA Technical Reports Server (NTRS)

    Stompor, Radoslaw; Gorski, Krzysztof M.

    1994-01-01

    We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.

  9. Three Dimensional Reconstruction Algorithm for Imaging Pathophysiological Signals Within Breast Tissue Using Near Infrared Light

    DTIC Science & Technology

    2006-07-01

    months.31 A heated mixture of water, gelatin (G2625, Sigma Inc.), India ink (for absorption), and titanium dioxide powder (for scatter) (TiO2, Sigma Inc...for absorption, and titanium dioxide powder for scat- ter TiO2, Sigma Inc. that are solidified by cooling to room temperature. Optically...2713-2727. 8. Bolin, F.P., Preuss, L. E., Taylor, R. C., Ference, R. J, Refractive index of some mammalian tissue using a fiber optic cladding method

  10. Three Dimensional Reconstruction Algorithm for Imaging Pathophysiological Signals Within Breast Tissue Using Near Infrared Light

    DTIC Science & Technology

    2006-07-01

    of water, gelatin (G2625, Sigma Inc.), India ink (for absorption), and titanium dioxide powder (for scatter) (TiO2, Sigma Inc.) is poured into a mold...R. C., Ference, R. J, Refractive index of some mammalian tissue using a fiber optic cladding method. Applied Optics, 1989. 28(12): p. 2297-2303. 3...scans. The NIR system utilizes six optical wavelengths from 660 to 850 nm using intensity modulated diode lasers nominally working at 100 MHz

  11. Spectroscopy of the neutron-rich hypernucleus He Λ 7 from electron scattering

    DOE PAGES

    Gogami, T.; Chen, C.; Kawama, D.; ...

    2016-08-12

    Here, the missing mass spectroscopy of themore » $$^{7}_{\\Lambda}$$He hypernucleus was performed, using the $$^{7}$$Li$$(e,e^{\\prime}K^{+})^{7}_{\\Lambda}$$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $$\\Lambda$$ binding energy of the ground state (1/2$$^{+}$$) was determined with a smaller error than that of the previous measurement, being $$B_{\\Lambda}$$ = 5.55 $$\\pm$$ 0.10(stat.) $$\\pm$$ 0.11(sys.) MeV. The experiment also provided new insight into charge symmetry breaking in p-shell hypernuclear systems. Finally, a peak at $$B_{\\Lambda}$$ = 3.65 $$\\pm$$ 0.20(stat.) $$\\pm$$ 0.11(sys.) MeV was observed and assigned as a mixture of 3/2$$^{+}$$ and 5/2$$^{+}$$ states, confirming the "gluelike" behavior of $$\\Lambda$$, which makes an unstable state in $$^{6}$$He stable against neutron emission.« less

  12. Simultaneous display of two large proteins on the head and tail of bacteriophage lambda.

    PubMed

    Pavoni, Emiliano; Vaccaro, Paola; D'Alessio, Valeria; De Santis, Rita; Minenkova, Olga

    2013-09-30

    Consistent progress in the development of bacteriophage lambda display platform as an alternative to filamentous phage display system was achieved in the recent years. The lambda phage has been engineered to display efficiently multiple copies of peptides or even large protein domains providing a powerful tool for screening libraries of peptides, proteins and cDNA. In the present work we describe an original method for dual display of large proteins on the surface of lambda particles. An anti-CEA single-chain antibody fragment and green fluorescent protein or alkaline phosphatase were simultaneously displayed by engineering both gpD and gpV lambda proteins. Here we show that such modified phage particles can be used for the detection of target molecules in vitro and in vivo. Dual expression of functional moieties on the surface of the lambda phage might open the way to generation of a new class of diagnostic and therapeutic targeted nanoparticles.

  13. {lambda} elements for one-dimensional singular problems with known strength of singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.K.; Surana, K.S.

    1996-10-01

    This paper presents a new and general procedure for designing special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is know. The {lambda} elements presented here are of type C{sup 0}. These elements also provide inter-element C{sup 0} continuity with p-version elements. The {lambda} elements do not require a precise knowledge of the extent of singular zone, i.e., their use may be extended beyond the singular zone. When {lambda} elements are used at the singularity, a singular problem behaves like a smooth problem thereby eliminating the need for h, p-adaptive processes all together.more » One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Least squares approach (or least squares finite element formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical results presented for radially inward flow with inner radius r{sub i} = 0.1, 0.01, 0.001, 0.0001, 0.00001, and Deborah number of 2 (De = 2) demonstrate the accuracy, faster convergence of the iterative solution procedure, faster convergence rate of the error functional and mesh independent characteristics of the {lambda} elements regardless of the severity of the singularity.« less

  14. Three new enantiomerically pure ferrocenylphosphole compounds.

    PubMed

    López Cortés, José Guadalupe; Vincendeau, Sandrine; Daran, Jean Claude; Manoury, Eric; Gouygou, Maryse

    2006-05-01

    The absolute configurations of three new enantiomerically pure ferrocenylphosphole compounds, namely (2S,4S,S(Fc))-4-methoxymethyl-2-[2-(9-thioxo-9lambda5-phosphafluoren-9-yl)ferrocenyl]-1,3-dioxane, [Fe(C5H5)(C23H22O3PS)], (III), (S(Fc))-[2-(9-thioxo-9lambda5-phosphafluoren-9-yl)ferrocenyl]methanol, [Fe(C5H5)(C18H14OPS)], (V), and (S(Fc))-diphenyl[2-(9-thioxo-9lambda5-phosphafluoren-9-yl]ferrocenylmethyl]phosphine, [Fe(C5H5)(C30H23P2)], (VIII), have been unambiguously established. All three ligands contain a planar chiral ferrocene group, bearing a dibenzophosphole and either a dioxane, a methanol or a diphenylphosphinomethane group on the same cyclopentadienyl. In compound (V), the occurrence of O-H...S and C-H...S hydrogen bonds results in the formation of a two-dimensional network parallel to (001). The geometry of the ferrocene frameworks agrees with related reported structures.

  15. Decays of J/psi (3100) to baryon final states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, M.W.

    We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi ..-->.. anti pp..gamma.., the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of threemore » body final states involving hyperons. The I-spin symmetry of the strong decay psi ..-->.. baryons has clearly been observed. The reduced matrix elements for psi ..-->.. B anti B are presented for final states of different SU(3) content. The B/sub 8/ anti B/sub 8/ results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi ..-->.. B/sub 10/ anti B/sub 10/. We present the first evidence for the SU(3) violating decays of the type psi ..-->.. B/sub 8/ anti B/sub 10/ + c.c.. Angular distributions for psi ..-->.. B/sub 8/ anti B/sub 8/ are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos/sup 2/theta distribution.« less

  16. Association of atypical protein kinase C isotypes with the docker protein FRS2 in fibroblast growth factor signaling.

    PubMed

    Lim, Y P; Low, B C; Lim, J; Wong, E S; Guy, G R

    1999-07-02

    FRS2 is a docker protein that recruits signaling proteins to the plasma membrane in fibroblast growth factor signal transduction. We report here that FRS2 was associated with PKC lambda when Swiss 3T3 cells were stimulated with basic fibroblast growth factor. PKC zeta, the other member of the atypical PKC subfamily, could also bind FRS2. The association between FRS2 and PKC lambda is likely to be direct as shown by yeast two-hybrid analysis. The C-terminal fragments of FRS2 (amino acid residues 300-508) and SNT2 (amino acids 281-492), an isoform bearing 50% identity to FRS2, interacted with PKC lambda at a region (amino acids 240-562) that encompasses the catalytic domain. In vitro kinase assays revealed neither FRS2 nor SNT2 was a substrate of PKC lambda or zeta. Mutation of the alanine residue (Ala-120) to glutamate in the pseudo-substrate region of PKC lambda results in a constitutively active kinase that exhibited more than 2-fold greater binding to FRS2 in vitro than its "closed" wild-type counterpart. Tyrosine phosphorylation of FRS2 did not affect its binding to the constitutively active PKC lambda mutant, suggesting that the activation of PKC lambda is necessary and sufficient for its association with FRS2. It is likely that FRS2 serves as an anchoring protein for targeting activated atypical PKCs to the cell plasma membrane in signaling pathways.

  17. Interferon Lambda 4 Genotype Is Associated With Jaundice and Elevated Aminotransferase Levels During Acute Hepatitis C Virus Infection: Findings From the InC3 Collaborative.

    PubMed

    Page, Kimberly; Mirzazadeh, Ali; Rice, Thomas M; Grebely, Jason; Kim, Arthur Y; Cox, Andrea L; Morris, Meghan D; Hellard, Margaret; Bruneau, Julie; Shoukry, Naglaa H; Dore, Gregory J; Maher, Lisa; Lloyd, Andrew R; Lauer, Georg; Prins, Maria; McGovern, Barbara H

    2016-01-01

    Symptomatic acute HCV infection and interferon lambda 4 (IFNL4) genotypes are important predictors of spontaneous viral clearance. Using data from a multicohort database (Injecting Cohorts [InC3] Collaborative), we establish an independent association between host IFNL4 genotype and symptoms of acute hepatitis C virus infection. This association potentially explains the higher spontaneous clearance observed in some patients with symptomatic disease.

  18. Interferon Lambda 4 Genotype Is Associated With Jaundice and Elevated Aminotransferase Levels During Acute Hepatitis C Virus Infection: Findings From the InC3 Collaborative

    PubMed Central

    Page, Kimberly; Mirzazadeh, Ali; Rice, Thomas M.; Grebely, Jason; Kim, Arthur Y.; Cox, Andrea L.; Morris, Meghan D.; Hellard, Margaret; Bruneau, Julie; Shoukry, Naglaa H.; Dore, Gregory J.; Maher, Lisa; Lloyd, Andrew R.; Lauer, Georg; Prins, Maria; McGovern, Barbara H.

    2016-01-01

    Symptomatic acute HCV infection and interferon lambda 4 (IFNL4) genotypes are important predictors of spontaneous viral clearance. Using data from a multicohort database (Injecting Cohorts [InC3] Collaborative), we establish an independent association between host IFNL4 genotype and symptoms of acute hepatitis C virus infection. This association potentially explains the higher spontaneous clearance observed in some patients with symptomatic disease. PMID:26973850

  19. The onset of chromospheric activity among the A- and F- type stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore; Landsman, Wayne

    1987-01-01

    IUE observations of C II lambda1335 and C IV lambda1549 and ground-based observations of He I lambda5876 have previously discovered intense levels of chromospheric activity among early F type stars. Virtually all F dwarfs show stronger chromospheric and transition region emission than do the cooler and more deeply convective dwarf stars like the Sun. The IUE spectra and those of He lambda5876 place the onset of stellar activity along the main sequence near a color B - V = 0.28, which corresponds approximately to spectral type FO and an effective temperature of 7300 K. However, existing X-ray observations of A and F stars suggest that coronal activity may reach a peak blueward of this high temperature boundary at B - V = 0.28 before vanishing among the early and mid A-type stars. Discussed are preliminary results of a new effort to refine the location of the high temperature boundary to chromospheric activity among A- and F- type stars, making use of low dispersion short-wavelength spectra from the IUE archives from which the strengths of C IV, C II, and Lyman alpha emission have been measured.

  20. Measurement of the $$\\Sigma \\pi$$ photoproduction line shapes near the $$\\Lambda(1405)$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriya, K; Adhikari, K P; Adikaram, D

    2013-03-01

    The reaction {gamma} + p -> K{sup +} + {Sigma} + {p}i was used to determine the invariant mass distributions or "line shapes" of the {Sigma}{sup +} {pi}{sup -}, {Sigma}{sup -} {pi}{sup +} and {Sigma}{sup 0} {pi}{sup 0} final states, from threshold at 1328 MeV/c^2 through the mass range of the {Lambda}(1405) and the {Lambda}(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I=0 {Lambda}(1405), indicating the presence of substantial I=1 strength inmore » the reaction. Background contributions to the data from the {Sigma}{sup 0}(1385) and from K* {Sigma} production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the Nkbar threshold. A best fit to all the data was obtained after including a phenomenological I=1, J{sup P} = 1/2{sup -} amplitude with a centroid at 1394\\pm20 MeV/c^2 and a second I=1 amplitude at 1413\\pm10 MeV/c^2. The centroid of the I=0 {Lambda}(1405) strength was found at the {Sigma} {pi} threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c^2.« less

  1. Quark-level analogue of nuclear fusion with doubly heavy baryons.

    PubMed

    Karliner, Marek; Rosner, Jonathan L

    2017-11-01

    The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λ c ) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4 He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

  2. Quark-level analogue of nuclear fusion with doubly heavy baryons

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Rosner, Jonathan L.

    2017-11-01

    The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λc) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

  3. Stability, ghost, and strong coupling in nonrelativistic general covariant theory of gravity with {lambda}{ne}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Yongqing; Wang Anzhong

    2011-05-15

    In this paper, we investigate three important issues: stability, ghost, and strong coupling, in the Horava-Melby-Thompson setup of the Horava-Lifshitz theory with {lambda}{ne}1, generalized recently by da Silva. We first develop the general linear scalar perturbations of the Friedmann-Robertson-Walker (FRW) universe with arbitrary spatial curvature and find that an immediate by-product of the setup is that, in all the inflationary models described by a scalar field, the FRW universe is necessarily flat. Applying them to the case of the Minkowski background, we find that it is stable, and, similar to the case {lambda}=1, the spin-0 graviton is eliminated. The vectormore » perturbations vanish identically in the Minkowski background. Thus, similar to general relativity, a free gravitational field in this setup is completely described by a spin-2 massless graviton, even with {lambda}{ne}1. We also study the ghost problem in the FRW background and find explicitly the ghost-free conditions. To study the strong coupling problem, we consider two different kinds of spacetimes, all with the presence of matter: one is cosmological, and the other is static. We find that the coupling becomes strong for a process with energy higher than M{sub pl}|c{sub {psi}|}{sup 5/2} in the flat FRW background and M{sub pl}|c{sub {psi}|}{sup 3} in a static weak gravitational field, where |c{sub {psi}|{identical_to}}|(1-{lambda})/(3{lambda}-1)|{sup 1/2}.« less

  4. Strong and radiative decays of the low-lying S - and P -wave singly heavy baryons

    NASA Astrophysics Data System (ADS)

    Wang, Kai-Lei; Yao, Ya-Xiong; Zhong, Xian-Hui; Zhao, Qiang

    2017-12-01

    The strong and radiative decays of the low-lying S - and P -wave Λc (b ), Σc (b ), Ξc (b ), Ξc(b )', and Ωc (b ) baryons are systematically studied in a constituent quark model. We find that the radiative decay mode Λb0γ could be very useful for us to establish the missing neutral states Σb0 and Σb*0. Our calculation shows that most of those missing λ -mode P -wave singly heavy baryons have a relatively narrow decay width of less than 30 MeV. Their dominant strong and radiative decay channels can be ideal for searching for their signals in future experiments. The Σc(2800 ) resonance may be assigned to |Σc2Pλ 3/2-⟩ with JP=3 /2- or |Σc4Pλ 5/2-⟩ with JP=5 /2-. In general, the excitations of |2Pλ 3/2-⟩ and |4Pλ5/2-⟩ of the 6F multiplet have similar strong decay properties. In order to identify them, angular distributions of their decays in either strong decay modes or radiative transitions should be needed.

  5. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64. 3.1

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; hide

    2001-01-01

    We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  6. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+641. 2.5

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; hide

    2001-01-01

    We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  7. Strange baryons with two heavy quarks

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Rosner, Jonathan L.

    2018-05-01

    The LHCb Experiment at CERN has observed a doubly-charmed baryon Ξcc ++=c c u with a mass of 3621.40 ±0.78 MeV , consistent with many predictions. We use the same methods that led us to predict M (Ξc c,JP=1 /2+)=3627 ±12 MeV and M (Ξcc *,JP=3 /2+)=3690 ±12 MeV to predict M (Ωcc +,JP=1 /2+)=3692 ±16 MeV and M (Ωcc *,JP=3 /2+)=3756 ±16 MeV . Production and decay are discussed briefly, and predictions for M (Ωb c) and M (Ωb b) are included.

  8. Preliminary evaluation of the acute toxicity of cypermethrin and lambda-cyhalothrin to Channa Punctatus.

    PubMed

    Kumar, Amit; Sharma, Bechan; Pandey, Ravi Shankar

    2007-12-01

    In the present study, the acute toxicity of the pyrethroid pesticides, cypermethrin and lambda-cyhalothrin was conducted for a 96 h period using Channa punctatus. The LC(50) values of cypermethrin and lambda-cyhalothrin were found to be 0.4 mg/L and 7.92 mug/L, respectively. The lambda-cyhalothrin was found to be about 50 times more toxic to the fish than cypermethrin. The behavioral pattern of C. punctatus got severely altered in each group due to pesticide treatment. The results suggested that even at low concentrations, these pyrethroid compounds may exert toxic effects, markedly modifying their behavioral pattern.

  9. Non-Classical Smoothening of Nano-Scale Surface Corrugations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Michael J.; Chason, Eric; Erlebacher, Jonah

    1999-05-20

    We report the first experimental observation of non-classical morphological equilibration of a corrugated crystalline surface. Periodic rippled structures with wavelengths of 290-550 nm were made on Si(OO1) by sputter rippling and then annealed at 650 - 750 °C. In contrast to the classical exponential decay with time, the ripple amplitude, A {lambda}(t), followed an inverse linear decay, A {lambda}(t)= A {lambda}(0)/(1 +k {lambda}t), agreeing with a prediction of Ozdemir and Zangwill. We measure the activation energy for surface relaxation to be 1.6±0.2 eV, consistent with an interpretation that dimers mediate transport.

  10. Is cosmic acceleration slowing down?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.

    2009-11-15

    We investigate the course of cosmic expansion in its recent past using the Constitution SN Ia sample, along with baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) data. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q{sub 0}=0) fits the data about as well as Lambda cold dark matter. This effect, which is most clearly seen using the recently introduced Om diagnostic, corresponds to an increase of Om and q at redshifts z < or approx. 0.3. This suggests that cosmic acceleration may have already peaked andmore » that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analyzed in combination with BAO+CMB data. The effect we observe could correspond to DE decaying into dark matter (or something else)« less

  11. First Results from BM@N Technical Run with Deuteron Beam

    NASA Astrophysics Data System (ADS)

    Baranov, D.; Kapishin, M.; Kulish, E.; Maksymchuk, A.; Mamontova, T.; Pokatashkin, G.; Rufanov, I.; Vasendina, V.; Zinchenko, A.

    2018-03-01

    BM@N (Baryonic Matter at Nuclotron) is the first experiment to be realized at the accelerator complex of NICA-Nuclotron at JINR (Dubna). The aim of the experiment is to study interactions of relativistic heavy ion beams with a kinetic energy from 1 to 4.5 AGeV with fixed targets. The BM@N set-up at the starting phase of the experiment is introduced. First results of the analysis of minimum bias experimental data collected in the technical run in interactions of the deuteron beam of 4 AGeV with different targets are presented. The spacial, momentum and primary vertex resolution of the GEM tracker are studied. The signal of Lambda-hyperon is reconstructed in the proton-pion invariant mass spectrum. The data results are described by Monte Carlo simulations. The investigation has been performed at the Laboratory of High Energy Physics, JINR.

  12. Molecular Ωb states

    NASA Astrophysics Data System (ADS)

    Liang, Wei-Hong; Dias, J. M.; Debastiani, V. R.; Oset, E.

    2018-05-01

    Motivated by the recent finding of five Ωc states by the LHCb collaboration, and the successful reproduction of three of them in a recent approach searching for molecular states of meson-baryon with the quantum numbers of Ωc, we extend these ideas and make predictions for the interaction of meson-baryon in the beauty sector, searching for poles in the scattering matrix that correspond to physical states. We find several Ωb states: two states with masses 6405 MeV and 6465 MeV for JP =1/2-; two more states with masses 6427 MeV and 6665 MeV for 3/2 -; and three states between 6500 and 6820 MeV, degenerate with JP =1/2 - , 3/2 -, stemming from the interaction of vector-baryon in the beauty sector.

  13. The chemical composition of the Lambda Bootis stars

    NASA Technical Reports Server (NTRS)

    Baschek, B.; Slettebak, A.

    1988-01-01

    Measurements of the equivalent widths of 24 ultraviolet lines from IUE spectra of 10 Lambda Bootis or suspected Lambda Bootis stars and 19 normal standard stars of spectral types B8-A7 have been compared with line strengths determined using model atmospheres. Abundance differences are estimated via a differential analysis technique. It is found that the ratio of C, N, and O to the heavier elements Mg to Ni is significantly larger than that for solar composition stars.

  14. Hierarchical and non-hierarchical {lambda} elements for one dimensional problems with unknown strength of singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.K.; Surana, K.S.

    1996-10-01

    This paper presents a new and general procedure for designing hierarchical and non-hierarchical special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is unknown. The {lambda} element formulations presented here permit correct numerical simulation of linear as well as non-linear singular problems without a priori knowledge of the strength of the singularity. A procedure is also presented for determining the exact strength of the singularity using the converged solution. It is shown that in special instances, the general formulation of {lambda} elements can also be made hierarchical. The {lambda} elements presented here aremore » of type C{sup 0} and provide C{sup 0} inter-element continuity with p-version elements. One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Since in this case {lambda}{sub i} are known, this problem provides a good example for investigating the performance of the formulation proposed here. Least squares approach (or Least Squares Finite Element Formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical studies are presented for radially inward flow of an upper convected Maxwell fluid with inner radius r{sub i} = .1 and .01 etc. and Deborah number De = 2.« less

  15. Flavor structure of Λ baryons from lattice QCD: From strange to charm quarks

    NASA Astrophysics Data System (ADS)

    Gubler, Philipp; Takahashi, Toru T.; Oka, Makoto

    2016-12-01

    We study Λ baryons of spin-parity 1/2± with either a strange or charm valence quark in full 2 +1 flavor lattice QCD. Multiple S U (3 ) singlet and octet operators are employed to generate the desired single baryon states on the lattice. Via the variational method, the couplings of these states to the different operators provide information about the flavor structure of the Λ baryons. We make use of the gauge configurations of the PACS-CS Collaboration and chirally extrapolate the results for the masses and S U (3 ) flavor components to the physical point. We furthermore gradually change the hopping parameter of the heaviest quark from strange to charm to study how the properties of the Λ baryons evolve as a function of the heavy quark mass. It is found that the baryon energy levels increase almost linearly with the quark mass. Meanwhile, the flavor structure of most of the states remains stable, with the exception of the lowest 1/2- state, which changes from a flavor singlet Λ to a Λc state with singlet and octet components of comparable size. Finally, we discuss whether our findings can be interpreted with the help of a simple quark model and find that the negative-parity Λc states can be naturally explained as diquark excitations of the light u and d quarks. On the other hand, the quark-model picture does not appear to be adequate for the negative-parity Λ states, suggesting the importance of other degrees of freedom to describe them.

  16. Simultaneous display of two large proteins on the head and tail of bacteriophage lambda

    PubMed Central

    2013-01-01

    Background Consistent progress in the development of bacteriophage lambda display platform as an alternative to filamentous phage display system was achieved in the recent years. The lambda phage has been engineered to display efficiently multiple copies of peptides or even large protein domains providing a powerful tool for screening libraries of peptides, proteins and cDNA. Results In the present work we describe an original method for dual display of large proteins on the surface of lambda particles. An anti-CEA single-chain antibody fragment and green fluorescent protein or alkaline phosphatase were simultaneously displayed by engineering both gpD and gpV lambda proteins. Conclusions Here we show that such modified phage particles can be used for the detection of target molecules in vitro and in vivo. Dual expression of functional moieties on the surface of the lambda phage might open the way to generation of a new class of diagnostic and therapeutic targeted nanoparticles. PMID:24073829

  17. Sequences of heavy and light chain variable regions from four bovine immunoglobulins.

    PubMed

    Armour, K L; Tempest, P R; Fawcett, P H; Fernie, M L; King, S I; White, P; Taylor, G; Harris, W J

    1994-12-01

    Oligodeoxyribonucleotide primers based on the 5' ends of bovine IgG1/2 and lambda constant (C) region genes, together with primers encoding conserved amino acids at the N-terminus of mature variable (V) regions from other species, have been used in cDNA and polymerase chain reactions (PCRs) to amplify heavy and light chain V region cDNA from bovine heterohybridomas. The amino acid sequences of VH and V lambda from four bovine immunoglobulins of different specificities are presented.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aylor, K.; Hou, Z.; Knox, L.

    The Planck cosmic microwave background temperature data are best fit with a Lambda CDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg(2) SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650 <= l <= 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing Lambda CDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipolemore » range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n(s) and A(s)e(-2 tau). We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of Lambda CDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at l > 2000.« less

  19. Spectroscopic study of the Lambda hypernuclei by the (e,e'K +) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyoshi, Toshinobu

    Hypernuclear spectroscopy study via the (e,e'K +) reaction has been carried out for the first time, establishing a new technique to study Lambda hypernuclei. The high quality electron beam at Jefferson Lab made it possible to measure Lambda hypernuclear spectra with an energy resolution better than 1 MeV (FWHM). The present experiment was designed to make full use of the virtual photon flux, which peaks at very forward angles, by detecting scattered electrons at 0 degrees. Scattered positive kaons were also detected near 0 degrees, where the cross section of the kaon photo-production is maximized. This unique kinematical configuration was realized with the HyperNuclear Spectrometer System (HNSS), which consisted of the Short-Orbit Spectrometer, the Enge Split-Pole Spectrometer, and the splitter magnet. Themore » $$12\\atop{Λ}$$B mass spectrum was measured in the 12C(e,e'K +)$$12\\atop{Λ}$$ reaction with 0.9 MeV (FWHM) energy resolution. The averaged binding energy of the $$12\\atop{Λ}$$B ground state doublet was obtained to be 11.7 ± 0.1 (statistical) ± 0.3 (systematic) MeV, which is consistent with emulsion data. The general spectral structure of the 12C(e,e'K +) $$12\\atop{Λ}$$B reaction was found to be similar to that of the 12C(Λ +,K +)$$12\\atop{Λ}$$C reaction, showing characteristic peaks corresponding to sLambda and pLambda orbits, as well as a few core-excited states. The cross section of the $$12\\atop{Λ}$$B ground state doublet was derived to be 117 ± 13 (statistical) ± 14 (systematic) nb/sr. The theoretical prediction of the cross section was consistent with the present result, validating DWIA calculation for hypernuclear yields. The present study proved the effectiveness of the (e,e'K +) reaction for future Lambda hypernuclear spectroscopy studies.« less

  20. First Observation of the Doubly Cabibbo-Suppressed Decay of a Charmed Baryon: Λ_{c}^{+}→pK^{+}π^{-}.

    PubMed

    Yang, S B; Tanida, K; Kim, B H; Adachi, I; Aihara, H; Asner, D M; Aulchenko, V; Aushev, T; Babu, V; Badhrees, I; Bakich, A M; Barberio, E; Bhardwaj, V; Bhuyan, B; Biswal, J; Bonvicini, G; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, Y; Cinabro, D; Dalseno, J; Danilov, M; Dash, N; Doležal, Z; Drásal, Z; Dutta, D; Eidelman, S; Farhat, H; Fast, J E; Ferber, T; Fulsom, B G; Gabyshev, N; Garmash, A; Gaur, V; Gillard, R; Goh, Y M; Goldenzweig, P; Greenwald, D; Grygier, J; Haba, J; Hamer, P; Hara, T; Hayasaka, K; Hayashii, H; Hou, W-S; Iijima, T; Inami, K; Inguglia, G; Ishikawa, A; Itoh, R; Iwasaki, Y; Jacobs, W W; Jaegle, I; Jeon, H B; Joo, K K; Julius, T; Kang, K H; Kato, E; Katrenko, P; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, K T; Kim, M J; Kim, S H; Kim, S K; Kim, Y J; Kinoshita, K; Kobayashi, N; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kuhr, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, I S; Li, C H; Li, H; Li, L; Li, Y; Li Gioi, L; Libby, J; Liventsev, D; Lubej, M; Masuda, M; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Moon, H K; Mussa, R; Nakano, E; Nakao, M; Nanut, T; Nath, K J; Nayak, M; Negishi, K; Niiyama, M; Nisar, N K; Nishida, S; Ogawa, S; Okuno, S; Olsen, S L; Pakhlova, G; Pal, B; Park, C W; Park, H; Pedlar, T K; Pestotnik, R; Petrič, M; Piilonen, L E; Pulvermacher, C; Rauch, J; Ritter, M; Rostomyan, A; Ryu, S; Sahoo, H; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Sato, Y; Savinov, V; Schlüter, T; Schneider, O; Schnell, G; Schwanda, C; Schwartz, A J; Seino, Y; Senyo, K; Seon, O; Seong, I S; Sevior, M E; Shebalin, V; Shibata, T-A; Shiu, J-G; Shwartz, B; Simon, F; Sohn, Y-S; Sokolov, A; Stanič, S; Starič, M; Stypula, J; Sumihama, M; Sumiyoshi, T; Takizawa, M; Tamponi, U; Teramoto, Y; Trabelsi, K; Trusov, V; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Usov, Y; Vanhoefer, P; Varner, G; Varvell, K E; Vinokurova, A; Vossen, A; Wagner, M N; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, Y; Williams, K M; Won, E; Yamaoka, J; Yashchenko, S; Ye, H; Yelton, J; Yuan, C Z; Yusa, Y; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2016-07-01

    We report the first observation of the decay Λ_{c}^{+}→pK^{+}π^{-} using a 980  fb^{-1} data sample collected by the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. This is the first observation of a doubly Cabibbo-suppressed decay of a charmed baryon. We measure the branching ratio of this decay with respect to its Cabibbo-favored counterpart to be B(Λ_{c}^{+}→pK^{+}π^{-})/B(Λ_{c}^{+}→pK^{-}π^{+})=(2.35±0.27±0.21)×10^{-3}, where the uncertainties are statistical and systematic, respectively.

  1. Precision Measurement of the Mass and Lifetime of the Ξb0 Baryon

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Muresan, R.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration

    2014-07-01

    Using a proton-proton collision data sample corresponding to an integrated luminosity of 3 fb-1 collected by LHCb at center-of-mass energies of 7 and 8 TeV, about 3800 Ξb0→Ξc+π-, Ξc+→pK-π+ signal decays are reconstructed. From this sample, the first measurement of the Ξb0 baryon lifetime is made, relative to that of the Λb0 baryon. The mass differences M(Ξb0)-M(Λb0) and M(Ξc+)-M(Λc+) are also measured with precision more than 4 times better than the current world averages. The resulting values are τ/Ξb0τΛb0=1.006±0.018±0.010,M(Ξb0)-M(Λb0)=172.44±0.39±0.17 MeV /c2,M(Ξc+)-M(Λc+)=181.51±0.14±0.10 MeV /c2,where the first uncertainty is statistical and the second is systematic. The relative rate of Ξb0 to Λb0 baryon production is measured to be f/Ξb0fΛb0B(Ξ/b0→Ξc+π-)B(Λb0→Λc+π-)B(Ξ/c+→pK-π+)B(Λc+→pK-π+)=(1.88±0.04±0.03)×10-2,where the first factor is the ratio of fragmentation fractions, b→Ξb0 relative to b→Λb0. Relative production rates as functions of transverse momentum and pseudorapidity are also presented.

  2. Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection.

    PubMed

    Zhang, Baohong; Pan, Xiaoping; Venne, Louise; Dunnum, Suzy; McMurry, Scott T; Cobb, George P; Anderson, Todd A

    2008-05-30

    A reliable, sensitive, and reproducible method was developed for quantitative determination of nine new generation pesticides currently used in cotton agriculture. Injector temperature significantly affected analyte response as indicated by electron capture detector (ECD) chromatograms. A majority of the analytes had an enhanced response at injector temperatures between 240 and 260 degrees C, especially analytes such as acephate that overall had a poor response on the ECD. The method detection limits (MDLs) were 0.13, 0.05, 0.29, 0.35, 0.08, 0.10, 0.32, 0.05, and 0.59 ng/mL for acephate, trifuralin, malathion, thiamethozam, pendimethalin, DEF6, acetamiprid, brifenthrin, and lambda-cyhalothrin. This study provides a precision (0.17-13.1%), accuracy (recoveries=88-107%) and good reproducible method for the analytes of interest. At relatively high concentrations, only lambda-cyhalothrin was unstable at room temperature (20-25 degrees C) and 4 degrees C over 10 days. At relatively low concentrations, acephate and acetamiprid were also unstable regardless of temperature. After 10 days storage at room temperature, 30-40% degradation of lambda-cyhalothrin was observed. It is recommended that acephate, acetamiprid, and lambda-cyhalothrin be stored at -20 degrees C or analyzed immediately after extraction.

  3. Meson and baryon dispersion relations with Brillouin fermions

    NASA Astrophysics Data System (ADS)

    Dürr, Stephan; Koutsou, Giannis; Lippert, Thomas

    2012-12-01

    We study the dispersion relations of mesons and baryons built from Brillouin quarks on one Nf=2 gauge ensemble provided by QCDSF. For quark masses up to the physical strange quark mass, there is hardly any improvement over the Wilson discretization, if either action is link-smeared and tree-level clover improved. For quark masses in the range of the physical charm quark mass, the Brillouin action still shows a perfect relativistic behavior, while the Wilson action induces severe cutoff effects. As an application we determine the masses of the Ωc0, Ωcc+ and Ωccc++ baryons on that ensemble.

  4. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA).

    PubMed

    Kihara, A; Akiyama, Y; Ito, K

    1997-05-27

    The cII gene product of bacteriophage lambda is unstable and required for the establishment of lysogenization. Its intracellular amount is important for the decision between lytic growth and lysogenization. Two genetic loci of Escherichia coli are crucial for these commitments of infecting lambda genome. One of them, hflA encodes the HflKC membrane protein complex, which has been believed to be a protease degrading the cII protein. However, both its absence and overproduction stabilized cII in vivo and the proposed serine protease-like sequence motif in HflC was dispensable for the lysogenization control. Moreover, the HflKC protein was found to reside on the periplasmic side of the plasma membrane. In contrast, the other host gene, ftsH (hflB) encoding an integral membrane ATPase/protease, is positively required for degradation of cII, since loss of its function stabilized cII and its overexpression accelerated the cII degradation. In vitro, purified FtsH catalyzed ATP-dependent proteolysis of cII and HflKC antagonized the FtsH action. These results, together with our previous finding that FtsH and HflKC form a complex, suggest that FtsH is the cII degrading protease and HflKC is a modulator of the FtsH function. We propose that this transmembrane modulation differentiates the FtsH actions to different substrate proteins such as the membrane-bound SecY protein and the cytosolic cII protein. This study necessitates a revision of the prevailing view about the host control over lambda lysogenic decision.

  5. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jaorsik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M; hide

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = -0.0027+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter ?Lambda-CDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further.With no significant anomalies and an adequate goodness of fit, the inflationary flat Lambda-CDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.

  6. Lepton-flavored electroweak baryogenesis

    NASA Astrophysics Data System (ADS)

    Guo, Huai-Ke; Li, Ying-Ying; Liu, Tao; Ramsey-Musolf, Michael; Shu, Jing

    2017-12-01

    We explore lepton-flavored electroweak baryogenesis, driven by C P -violation in leptonic Yukawa sector, using the τ -μ system in the two Higgs doublet model as an example. This setup generically yields, together with the flavor-changing decay h →τ μ , a tree-level Jarlskog invariant that can drive dynamical generation of baryon asymmetry during a first-order electroweak phase transition and results in C P -violating effects in the decay h →τ τ . We find that the observed baryon asymmetry can be generated in parameter space compatible with current experimental results for the decays h →τ μ , h →τ τ , and τ →μ γ , as well as the present bound on the electric dipole moment of the electron. The baryon asymmetry generated is intrinsically correlated with the C P -violating decay h →τ τ and the flavor-changing decay h →τ μ , which thus may serve as "smoking guns" to test lepton-flavored electroweak baryogenesis.

  7. Refractive index and birefringence of 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1972-01-01

    The refractive indices of 2H SiC were measured over the wavelength range 435.8 to 650.9 nm by the method of minimum deviation. At the wavelength lambda = 546.1 nm, the ordinary index n sub 0 was 2.6480 and the extraordinary index n sub e was 2.7237. The estimated error (standard deviation) in the measured values is 0.0006 for n sub 0 and 0.0009 for n sub e. The experimental data were curve fitted to the Cauchy equation for the index of refraction as a function of wavelength. The birefringence of 2H SiC was found to vary from 0.0719 at lambda = 650.9 nm to 0.0846 at lambda = 435.8 nm.

  8. Testing and selection of cosmological models with (1+z){sup 6} corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szydlowski, Marek; Marc Kac Complex Systems Research Centre, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow; Godlowski, Wlodzimierz

    2008-02-15

    In the paper we check whether the contribution of (-)(1+z){sup 6} type in the Friedmann equation can be tested. We consider some astronomical tests to constrain the density parameters in such models. We describe different interpretations of such an additional term: geometric effects of loop quantum cosmology, effects of braneworld cosmological models, nonstandard cosmological models in metric-affine gravity, and models with spinning fluid. Kinematical (or geometrical) tests based on null geodesics are insufficient to separate individual matter components when they behave like perfect fluid and scale in the same way. Still, it is possible to measure their overall effect. Wemore » use recent measurements of the coordinate distances from the Fanaroff-Riley type IIb radio galaxy data, supernovae type Ia data, baryon oscillation peak and cosmic microwave background radiation observations to obtain stronger bounds for the contribution of the type considered. We demonstrate that, while {rho}{sup 2} corrections are very small, they can be tested by astronomical observations--at least in principle. Bayesian criteria of model selection (the Bayesian factor, AIC, and BIC) are used to check if additional parameters are detectable in the present epoch. As it turns out, the {lambda}CDM model is favored over the bouncing model driven by loop quantum effects. Or, in other words, the bounds obtained from cosmography are very weak, and from the point of view of the present data this model is indistinguishable from the {lambda}CDM one.« less

  9. Are there near-threshold Coulomb-like Baryonia?

    NASA Astrophysics Data System (ADS)

    Geng, Li-Sheng; Lu, Jun-Xu; Valderrama, M. Pavon; Ren, Xiu-Lei

    2018-05-01

    The Λc(2590 )Σc system can exchange a pion near the mass-shell. Owing to the opposite intrinsic parity of the Λc(2590 ) and Σc, the pion is exchanged in S-wave. This gives rise to a Coulomb-like force that might be able to bind the system. If one takes into account that the pion is not exactly on the mass shell, there is a shallow S-wave state, which we generically call the Yc c(5045 ) and Yc c ¯(5045 ) for the Λc(2590 )Σc and Λc(2590 )Σ¯c systems respectively. For the baryon-antibaryon case this Coulomb-like force is independent of spin: the Yc c ¯(5045 ) baryonia will appear either in the spin S =0 or S =1 configurations with G-parities G =(-1 )L+S +1. For the baryon-baryon case the Coulomb-like force is attractive in the spin S =0 configuration, for which a doubly charmed molecule is expected to form near the threshold. This type of spectrum might be very well realized in other molecular states composed of two opposite parity hadrons with the same spin and a mass difference close to that of a pseudo-Goldstone boson, of which a few examples include the Λ (1405 )N , Λ (1520 )Σ*, Ξ (1690 )Σ , Ds0 *(2317 )D and Ds1 *(2460 )D* molecules.

  10. Refractive index and birefringence of 2H silicon carbide.

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1972-01-01

    Measurement of the refractive indices of 2H SiC over the wavelength range from 435.8 to 650.9 nm by the method of minimum deviation. A curve fit of the experimental data to the Cauchy dispersion equation yielded, for the ordinary index, n sub zero = 2.5513 + 25,850/lambda squared + 8.928 x 10 to the 8th power/lambda to the 4th power and, for the extraordinary index, n sub e = 2.6161 + 28,230/lambda squared + 11.490 x 10 to the 8th power/lambda to the 4th power when lambda is expressed in nm. The estimated error (standard deviation) in these values is plus or minus 0.0006 for n sub zero and plus or minus 0.0009 for n sub e. The birefringence calculated from these expressions is about 20% less than previously published values.

  11. Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain.

    PubMed

    Arouri, Rabeh; Le Goff, Gaelle; Hemden, Hiethem; Navarro-Llopis, Vicente; M'saad, Mariem; Castañera, Pedro; Feyereisen, René; Hernández-Crespo, Pedro; Ortego, Félix

    2015-09-01

    The withdrawal of malathion in the European Union in 2009 resulted in a large increase in lambda-cyhalothrin applications for the control of the Mediterranean fruit fly, Ceratitis capitata, in Spanish citrus crops. Spanish field populations of C. capitata have developed resistance to lambda-cyhalothrin (6-14-fold), achieving LC50 values (129-287 ppm) higher than the recommended concentration for field treatments (125 ppm). These results contrast with the high susceptibility to lambda-cyhalothrin found in three Tunisian field populations. We have studied the mechanism of resistance in the laboratory-selected resistant strain W-1Kλ (205-fold resistance). Bioassays with synergists showed that resistance was almost completely suppressed by the P450 inhibitor PBO. The study of the expression of 53 P450 genes belonging to the CYP4, CYP6, CYP9 and CYP12 families in C. capitata revealed that CYP6A51 was overexpressed (13-18-fold) in the resistant strain. The W-1Kλ strain also showed high levels of cross-resistance to etofenprox (240-fold) and deltamethrin (150-fold). Field-evolved resistance to lambda-cyhalothrin has been found in C. capitata. Metabolic resistance mediated by P450 appears to be the main resistance mechanism in the resistant strain W-1Kλ. The levels of cross-resistance found may compromise the effectiveness of other pyrethroids for the control of this species. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  12. Peginterferon lambda for the treatment of HBeAg-positive chronic hepatitis B: A randomized phase 2b study (LIRA-B).

    PubMed

    Chan, Henry L Y; Ahn, Sang Hoon; Chang, Ting-Tsung; Peng, Cheng-Yuan; Wong, David; Coffin, Carla S; Lim, Seng Gee; Chen, Pei-Jer; Janssen, Harry L A; Marcellin, Patrick; Serfaty, Lawrence; Zeuzem, Stefan; Cohen, David; Critelli, Linda; Xu, Dong; Wind-Rotolo, Megan; Cooney, Elizabeth

    2016-05-01

    Peginterferon lambda-1a (lambda) is a Type-III interferon, which, like alfa interferons, has antiviral activity in vitro against hepatitis B virus (HBV) and hepatitis C virus (HCV); however, lambda has a more limited extra-hepatic receptor distribution. This phase 2b study (LIRA-B) evaluated lambda in patients with chronic HBV infection. Adult HBeAg+ interferon-naive patients were randomized (1:1) to weekly lambda (180 μg) or peginterferon alfa-2a (alfa) for 48 weeks. The primary efficacy endpoint was HBeAg seroconversion at week 24 post-treatment; lambda non-inferiority was demonstrated if the 80% confidence interval (80% CI) lower bound was >-15%. Baseline characteristics were balanced across groups (lambda N=80; alfa N=83). Early on-treatment declines in HBV-DNA and qHBsAg through week 24 were greater with lambda. HBeAg seroconversion rates were comparable for lambda and alfa at week 48 (17.5% vs. 16.9%, respectively); however lambda non-inferiority was not met at week 24 post-treatment (13.8% vs. 30.1%, respectively; lambda vs. alfa 80% CI lower bound -24%). Results for other key secondary endpoints (virologic, serologic, biochemical) and post hoc combined endpoints (HBV-DNA <2000 IU/ml plus HBeAg seroconversion or ALT normalization) mostly favored alfa. Overall adverse events (AE), serious AE, and AE-discontinuation rates were comparable between arms but AE-spectra differed (more cytopenias, flu-like, and musculoskeletal symptoms observed with alfa, more ALT flares and bilirubin elevations seen with lambda). Most on-treatment flares occurred early (weeks 4-12), associated with HBV-DNA decline; all post-treatment flares were preceded by HBV-DNA rise. On-treatment, lambda showed greater early effects on HBV-DNA and qHBsAg, and comparable serologic/virologic responses at end-of-treatment. However, post-treatment, alfa-associated HBeAg seroconversion rates were higher, and key secondary results mostly favored alfa. ClinicalTrials.gov number: NCT01204762. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. FORECAST FOR THE PLANCK PRECISION ON THE TENSOR-TO-SCALAR RATIO AND OTHER COSMOLOGICAL PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burigana, C.; Gruppuso, A.; Mandolesi, N.

    2010-11-20

    The Planck satellite, successfully launched on 2009 May 14 to measure with unprecedented accuracy the primary cosmic microwave background (CMB) anisotropies, is operating as expected. The Standard Model of the Universe ('concordance' model) provides the current realistic context to analyze the CMB and other cosmological/astrophysical data, inflation in the early universe being part of it. The Planck performance for the crucial primordial parameter r, the tensor-to-scalar ratio related to primordial B-mode polarization, will depend on the quality of data analysis and interpretation. The Ginzburg-Landau (G-L) approach to inflation allows us to take high benefit of the CMB data. The fourth-degreemore » double-well inflaton potential gives an excellent fit to the current CMB+LSS data. We evaluate the Planck precision to the recovery of cosmological parameters, taking into account a reasonable toy model for residuals of systematic effects of instrumental and astrophysical origin based on publicly available information. We use and test two relevant models: the {Lambda}CDMr model, i.e., the standard {Lambda}CDM model augmented by r, and the {Lambda}CDMrT model, where the scalar spectral index, n{sub s} , and r are related through the theoretical 'banana-shaped' curve r = r(n{sub s}) coming from the G-L theory with a double-well inflaton potential. In the latter case, the analytical expressions for n{sub s} and r are imposed as a hard constraint in a Monte Carlo Markov Chain (MCMC) data analysis. We consider two C{sub l}-likelihoods (with and without B modes) and take into account the white noise sensitivity of Planck (LFI and HFI) in the 70, 100, and 143 GHz channels as well as the residuals from systematic errors and foregrounds. We also consider a cumulative channel of the three mentioned. We produce the sky (mock data) for the CMB multipoles C{sup TT}{sub l} , C{sup TE}{sub l} , C{sup EE}{sub l} , and C{sup BB}{sub l} from the {Lambda}CDMr and {Lambda}CDMrT models and obtain the cosmological parameter marginalized likelihood distributions for the two models. Foreground residuals affect only the cosmological parameters sensitive to the B modes. As expected, the likelihood r distribution is more clearly peaked near the fiducial value (r = 0.0427) in the {Lambda}CDMrT model than in the {Lambda}CDMr model. The best value for r in the presence of residuals turns out to be about r {approx_equal} 0.04 for both the {Lambda}CDMr and the {Lambda}CDMrT models. The {Lambda}CDMrT model is very stable; its distributions do not change by including residuals and the B modes. For r we find 0.028 < r < 0.116 at a 95% confidence level (CL) with the best value r = 0.04. We also compute the B mode detection probability by the most sensitive HFI-143 channel. At the level of foreground residual equal to 30% of our toy model, only a 68% CL (1{sigma}) detection is very likely. For a 95% CL detection (2{sigma}), the level of foreground residual should be reduced to 10% or lower of the adopted toy model. The lower bounds (and most probable value) we infer for r support the searching of CMB B-mode polarization in the current data as well as the planned CMB missions oriented toward B polarization.« less

  14. Quantum Well Infrared Photodetectors (QWIP)

    NASA Technical Reports Server (NTRS)

    Levine, B. F.

    1990-01-01

    There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.

  15. Quantum Well Infrared Photodetectors (QWIP)

    NASA Astrophysics Data System (ADS)

    Levine, B. F.

    1990-07-01

    There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.

  16. Anisotropy of the penetration depth in La2-xSrxCuO4 in underdoped and overdoped regions

    NASA Astrophysics Data System (ADS)

    Zaleski, A. J.; Klamut, J.

    1999-12-01

    We present the results of measurements of the penetration depth anisotropy in pulverized, ceramic La2-xSrxCuO4. The measurements were carried out for x = 0.08, 0.1, 0.125, 0.15 and 0.2. The powdered samples, immersed in wax, were magnetically oriented in a static magnetic field of 10 T. The penetration depth in the a-b plane, icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>ab, and perpendicular to it, icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>icons/Journals/Common/perp" ALT="perp" ALIGN="MIDDLE"/>, were derived from alternating-current susceptibility measurements. For underdoped samples they both vary linearly with temperature (for the low-temperature region), while for the samples from the overdoped region the measured points can be fitted by an exponential function. These results support Uemura's picture (Uemura Y J 1997 Physica C 282-287 194) of crossover from Bose-Einstein condensation to a Bardeen-Cooper-Schrieffer mechanism of superconductivity. The penetration depth values extrapolated to T = 0 may be described by a quadratic function of the strontium concentration (for both icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>ab and icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>icons/Journals/Common/perp" ALT="perp" ALIGN="MIDDLE"/>). The anisotropy of the penetration depth as a function of the substitution shows a similar dependence to the critical temperature Tc(x).

  17. Quark model and strange baryon production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.

    1998-12-01

    It is pointed out that the recent data on strange baryon and antibaryon production in Pb-Pb collisions at 159 GeV/c agree well with the hypothesis of an intermediate state of quasi-free and randomly distributed constituent quarks and antiquarks. Also the S-S data are consistent with this hypothesis. The p-Pb data follow a different pattern.

  18. Large N{sub c}, constituent quarks, and N, {Delta} charge radii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchmann, Alfons J.; Lebed, Richard F.

    2000-11-01

    We show how one may define baryon constituent quarks in a rigorous manner, given physical assumptions that hold in the large-N{sub c} limit of QCD. This constituent picture gives rise to an operator expansion that has been used to study large-N{sub c} baryon observables; here we apply it to the case of charge radii of the N and {Delta} states, using minimal dynamical assumptions. For example, one finds the relation r{sub p}{sup 2}-r{sub {Delta}{sup +}}{sup 2}=r{sub n}{sup 2}-r{sub {Delta}{sup 0}}{sup 2} to be broken only by three-body, O(1/N{sub c}{sup 2}) effects for any N{sub c}.

  19. Baryon masses and σ terms in SU(3) BChPT×1/N c

    DOE PAGES

    Fernando, Ishara P.; Alarcon-Soriano, Jose-Manuel; Goity, Jose Luis

    2018-04-27

    Baryon masses and nucleonmore » $$\\sigma$$ terms are studied with the effective theory that combines the chiral and $$1/N_c$$ expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the $$\\sigma$$ term associated with the scalar density $$\\bar u u+\\bar d d-2\\bar s s$$ is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a $$\\sigma$$ term puzzle. It is shown that while the nucleon $$\\sigma$$ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Lastly, adding to the analysis lattice QCD baryon masses, it is found that $$\\sigma_{\\pi N}=69(10)$$~MeV and $$\\sigma_s$$ has natural magnitude within its relative large uncertainty.« less

  20. Molecular Ωc states generated from coupled meson-baryon channels

    NASA Astrophysics Data System (ADS)

    Debastiani, V. R.; Dias, J. M.; Liang, W. H.; Oset, E.

    2018-05-01

    We have investigated Ωc states that are dynamically generated from the meson-baryon interaction. We use an extension of the local hidden gauge to obtain the interaction from the exchange of vector mesons. We show that the dominant terms come from the exchange of light vectors, where the heavy quarks are spectators. This has as a consequence that heavy quark symmetry is preserved for the dominant terms in the (1 /mQ ) counting, and also that the interaction in this case can be obtained from the SU(3) chiral Lagrangians. We show that for a standard value for the cutoff regulating the loop, we obtain two states with JP=1/2 - and two more with JP=3/2 -, three of them in remarkable agreement with three experimental states in mass and width. We also make predictions at higher energies for states of vector-baryon nature.

  1. Baryon masses and σ terms in SU(3) BChPT×1/N c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Ishara P.; Alarcon-Soriano, Jose-Manuel; Goity, Jose Luis

    Baryon masses and nucleonmore » $$\\sigma$$ terms are studied with the effective theory that combines the chiral and $$1/N_c$$ expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the $$\\sigma$$ term associated with the scalar density $$\\bar u u+\\bar d d-2\\bar s s$$ is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a $$\\sigma$$ term puzzle. It is shown that while the nucleon $$\\sigma$$ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Lastly, adding to the analysis lattice QCD baryon masses, it is found that $$\\sigma_{\\pi N}=69(10)$$~MeV and $$\\sigma_s$$ has natural magnitude within its relative large uncertainty.« less

  2. [Effects of nitrogen application levels on yield and active composition content of Desmodium styracifolium].

    PubMed

    Zhou, Jiamin; Yin, Xiaohong; Chen, Chaojun; Huang, Min; Peng, Fuyuan; Zhu, Xiaoqi

    2010-06-01

    To find out the optimal nitrogen application level of Desmodium styracifolium. A field experiment using randomized block design was carried out to study the effects of 5 nitrogen application levels (150, 187.5, 225.0, 262.5 and 300.0 kg x hm(-2)) on yield and active component content of D. styracifolium. Nitrogen application could increase the yield and contents of polysaccharide, total flavonoides and total saponins of D. styracifolium. However, the enhancing extent of the active component content and the yield were not always significant with the increase of nitrogen level. In which, the yield were not significantly different among the nitrogen application levels of 225.0, 262.5, 300.0 kg x hm(-2) the polysaccharide content was no significantly difference among the nitrogen application levels of 225.0, 262. 5 and 300.0 kg x hm(-2), the total flavonoides content under the nitrogen level of 300.0 kg x hm(-2) was significantly lower than that of 150.0 kg hm(-2) (P < 0.01), and the total saponins content under the nitrogen level of 300.0 kg x hm(-2) was no significant difference compared with that of 262.5 kg x hm(-2). The optimal nitrogen application level of D. styracifolium was 225.0-262.5 kg x hm(-2).

  3. The production of π±, K±, p and p¯ in p-Pb collisions at sNN = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Tabassam, U.; Ali, Y.; Suleymanov, M.; Bhatti, A. S.; Ajaz, M.

    2018-06-01

    In this study, we are reporting comprehensive results on π±, K±, p and p¯ production in the transverse momentum range of 0 < pT < 4 GeV/c at midrapidity of 0 < y < 0.5 GeV/c, in p-Pb collisions at sNN = 5.02 TeV. HIJING 1.0 and UrQMD 3.4 event generators are used to perform simulations and the results are compared with the ALICE and RHIC data. It is observed from the comparison that the yields for the baryons are more complex compared to the mesons and the complexity in baryons is due to the striping dynamics (spectators, leading particles of projectiles) of inner nucleus protons and neutrons. Though all the mesons could be produced during the interaction, they have maximum longitudinal momentum pL; baryons and mesons could be produced as a result of decay of massive baryon-resonances. Yields for the π± mesons are greater than the yield for the K± mesons. These are the well-known results from the RHIC data, which stated that the Cronin Effect is mainly due to π± mesons that can be produced as a result of multi-particle inner nucleus cascade. There exists the regions where yields for the K± mesons and baryons are same that may be due to the appearance of parton nature. The code used in simulation includes the parton dynamics earlier than it is included in the experiment.

  4. Production of Ξ{_c^0} and Ξ{_b} in Z decays and lifetime measurement of Ξ{_b}

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration

    2005-11-01

    The charmed strange baryon Ξ{_c^0} was searched for in the decay channel Ξ{_c^0} rightarrow Ξ^- π^ + , and the beauty strange baryon Ξ{_b} in the inclusive channel Ξ_b rightarrow Ξ- ell- bar{ν} X, using the 3.5 million hadronic Z events collected by the DELPHI experiment in the years 1992-1995. The Ξ^- was reconstructed through the decay Ξ^- rightarrow Λ π^-, using a constrained fit method for cascade decays. An iterative discriminant analysis was used for the Ξ{_c^0} and Ξ{_b} selection. The production rates were measured to be f_{Ξ{_c^0}} ×BR (Ξ{_c^0} rightarrow Ξ^- π^ + ) = (4.7 ± 1.4 (stat.) ± 1.1 (syst.))× 10^{-4} per hadronic Z decay, and BR (b rightarrow Ξ{_b}) ×BR (Ξ{_b} rightarrow Ξ^- ell^- X) = (3.0 ± 1.0(stat.) ± 0.3(syst.))× 10^{-4} for each lepton species (electron or muon). The lifetime of the Ξ{_b} baryon was measured to be tau_{Ξ{_b}} = 1.45{^{ + 0.55}_{-0.43}} (stat.) ± 0.13 (syst.) ps. A combination with the previous DELPHI lifetime measurement gives tau_{Ξ{_b}} = 1.48{^{ + 0.40}_{-0.31}} (stat.) ± 0.12 (syst.) ps.

  5. Report on the ESO and Excellence Cluster Universe Workshop "Galaxy Ecosystem: Flow of Baryons through Galaxies"

    NASA Astrophysics Data System (ADS)

    Mainieri, V.; Popesso, P.

    2017-12-01

    This conference focussed on the "baryon cycle", namely the flow of baryons through galaxies. The following aspects were discussed: a) the gas inflow into systems through streams of pristine gas or as drizzles of recycled material; b) the conversion of this gas into stars; and c) the ejection of gas enriched with heavy elements through powerful outflows. Understanding these different but mutually connected phases is of fundamental importance when studying the details of galaxy formation and evolution through cosmic time. This conference was held following the month-long workshop of the Munich Institute for Astro- and Particle Physics (MIAPP) entitled: "In & out: What rules the galaxy baryon cycle?" It therefore provided an opportunity to share the main outcomes of the MIAPP workshop with a larger audience, including many young outstanding scientists who could not attend the MIAPP workshop.

  6. Study of P -wave excitations of observed charmed strange baryons

    NASA Astrophysics Data System (ADS)

    Ye, Dan-Dan; Zhao, Ze; Zhang, Ailin

    2017-12-01

    Many excited charmed strange baryons such as Ξc(2790 ), Ξc(2815 ), Ξc(2930 ), Ξc(2980 ), Ξc(3055 ), Ξc(3080 ), and Ξc(3123 ) have been observed. In order to understand their internal structure and to determine their spin parities, the strong decay properties of these baryons as possible P -wave excited Ξc candidates have been systematically studied in a 3P0 model. The configurations and JP assignments of Ξc(2790 ), Ξc(2815 ), Ξc(2930 ), Ξc(2980 ), Ξc(3055 ), Ξc(3080 ), and Ξc(3123 ) have been explored based on recent experimental data. In our analyses, Ξc(3055 ), Ξc(3080 ), and Ξc(3123 ) seem impossible to be the P -wave excited Ξc. Ξc(2790 ), Ξc(2815 ), Ξc(2930 ), and Ξc(2980 ) may be the P -wave excited Ξc. In particular, Ξc(2790 ) and Ξc(2815 ) are very possibly the P -wave excited Ξc 1(1 /2-) and Ξc 1(3 /2-), respectively. Ξc(2980 ) may be the P -wave excited Ξc1 '(1/2-). Ξc(2930 ) may be the P -wave Ξc0 '(1/2-) , Ξ˜c 0(1/2-), Ξc2 '(3/2-), Ξc2 '(5/2-), Ξ˜c 2(3/2-), or Ξ˜c 2(5/2-). Furthermore, some branching fraction ratios related to the internal structure and quark configuration of P -wave Ξc have also been computed. Measurements of these ratios in the future will be helpful to understand these excited Ξc.

  7. Measurement of the resonance parameters of the chi(1)(1**3P(1)) and chi(2)(1**3P(2)) states of charmonium formed in antiproton-proton annihilations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreotti, M.; Bagnasco, S.; Baldini, W.

    2005-03-01

    The authors have studied the {sup 3}P{sub J} ({chi}{sub e}) states of charmonium in formation by antiproton-proton annihilations in experiment E835 at the Fermilab Antiproton Source. The authors report new measurements of the mass, width, and B({chi}{sub cJ} {yields} {bar p}p) x {Lambda}({chi}{sub eJ} {yields} J/{psi} + anything) for the {chi}{sub c1} and {chi}{sub c2} by means of the inclusive reaction {bar p}p {yields} {chi}{sub cJ} {yields} J/{psi} + anything {yields} (e{sup +}e{sup -}) + anything. Using the subsample of events where {chi}{sub cJ} {yields} {gamma} + J/{psi} {yields} {gamma} + (e{sup +}e{sup -}) is fully reconstructed, we derive B({chi}{submore » cJ} {yields} {bar p}p) x {Lambda}({chi}{sub cJ} {yields} J/{psi} + {gamma}). They summarize the results of the E760 (updated) and E835 measurements of mass, width and B({chi}{sub cJ} {yields} {bar p}p){Lambda}({chi}{sub cJ} {yields} J/{psi} + {gamma}) (J = 0,1,2) and discuss the significance of these measurements.« less

  8. Coulomb Scattering in the Massless Nelson Model III: Ground State Wave Functions and Non-commutative Recurrence Relations

    NASA Astrophysics Data System (ADS)

    Dybalski, Wojciech; Pizzo, Alessandro

    2018-02-01

    Let $H_{P,\\sigma}$ be the single-electron fiber Hamiltonians of the massless Nelson model at total momentum $P$ and infrared cut-off $\\sigma>0$. We establish detailed regularity properties of the corresponding $n$-particle ground state wave functions $f^n_{P,\\sigma}$ as functions of $P$ and $\\sigma$. In particular, we show that \\[ |\\partial_{P^j}f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)|, \\ \\ |\\partial_{P^j} \\partial_{P^{j'}} f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)| \\leq \\frac{1}{\\sqrt{n!}} \\frac{(c\\lambda_0)^n}{\\sigma^{\\delta_{\\lambda_0}}} \\prod_{i=1}^n\\frac{ \\chi_{[\\sigma,\\kappa)}(k_i)}{|k_i|^{3/2}}, \\] where $c$ is a numerical constant, $\\lambda_0\\mapsto \\delta_{\\lambda_0}$ is a positive function of the maximal admissible coupling constant which satisfies $\\lim_{\\lambda_0\\to 0}\\delta_{\\lambda_0}=0$ and $\\chi_{[\\sigma,\\kappa)}$ is the (approximate) characteristic function of the energy region between the infrared cut-off $\\sigma$ and the ultraviolet cut-off $\\kappa$. While the analysis of the first derivative is relatively straightforward, the second derivative requires a new strategy. By solving a non-commutative recurrence relation we derive a novel formula for $f^n_{P,\\sigma}$ with improved infrared properties. In this representation $\\partial_{P^{j'}}\\partial_{P^{j}}f^n_{P,\\sigma}$ is amenable to sharp estimates obtained by iterative analytic perturbation theory in part II of this series of papers. The bounds stated above are instrumental for scattering theory of two electrons in the Nelson model, as explained in part I of this series.

  9. Tertiary structure of human {Lambda}6 light chains.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokkuluri, P. R.; Solomon, A.; Weiss, D. T.

    1999-01-01

    AL amyloidosis is a disease process characterized by the pathologic deposition of monoclonal light chains in tissue. To date, only limited information has been obtained on the molecular features that render such light chains amyloidogenic. Although protein products of the major human V kappa and V lambda gene families have been identified in AL deposits, one particular subgroup--lambda 6--has been found to be preferentially associated with this disease. Notably, the variable region of lambda 6 proteins (V lambda 6) has distinctive primary structural features including the presence in the third framework region (FR3) of two additional amino acid residues thatmore » distinguish members of this subgroup from other types of light chains. However, the structural consequences of these alterations have not been elucidated. To determine if lambda 6 proteins possess unique tertiary structural features, as compared to light chains of other V lambda subgroups, we have obtained x-ray diffraction data on crystals prepared from two recombinant V lambda 6 molecules. These components, isolated from a bacterial expression system, were generated from lambda 6-related cDNAs cloned from bone marrow-derived plasma cells from a patient (Wil) who had documented AL amyloidosis and another (Jto) with multiple myeloma and tubular cast nephropathy, but no evident fibrillar deposits. The x-ray crystallographic analyses revealed that the two-residue insertion located between positions 68 and 69 (not between 66 and 67 as previously surmised) extended an existing loop region that effectively increased the surface area adjacent to the first complementarity determining region (CDR1). Further, an unusual interaction between the Arg 25 and Phe 2 residues commonly found in lambda 6 molecules was noted. However, the structures of V lambda 6 Wil and Jto also differed from each other, as evidenced by the presence in the latter of certain ionic and hydrophobic interactions that we posit increased protein stability and thus prevented amyloid formation.« less

  10. Low energy theorems and the unitarity bounds in the extra U(1) superstring inspired E{sub 6} models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, N.K.; Saxena, Pranav; Nagawat, Ashok K.

    2005-11-01

    The conventional method using low energy theorems derived by Chanowitz et al. [Phys. Rev. Lett. 57, 2344 (1986);] does not seem to lead to an explicit unitarity limit in the scattering processes of longitudinally polarized gauge bosons for the high energy case in the extra U(1) superstring inspired models, commonly known as {eta} model, emanating from E{sub 6} group of superstring theory. We have made use of an alternative procedure given by Durand and Lopez [Phys. Lett. B 217, 463 (1989);], which is applicable to supersymmetric grand unified theories. Explicit unitarity bounds on the superpotential couplings (identified as Yukawa couplings)more » are obtained from both using unitarity constraints as well as using renormalization group equations (RGE) analysis at one-loop level utilizing critical couplings concepts implying divergence of scalar coupling at M{sub G}. These are found to be consistent with finiteness over the entire range M{sub Z}{<=}{radical}(s){<=}M{sub G} i.e. from grand unification scale to weak scale. For completeness, the similar approach has been made use of in other models i.e., {chi}, {psi}, and {nu} models emanating from E{sub 6} and it has been noticed that at weak scale, the unitarity bounds on Yukawa couplings do not differ among E{sub 6} extra U(1) models significantly except for the case of {chi} model in 16 representations. For the case of the E{sub 6}-{eta} model ({beta}{sub E} congruent with 9.64), the analysis using the unitarity constraints leads to the following bounds on various parameters: {lambda}{sub t(max.)}(M{sub Z})=1.294, {lambda}{sub b(max.)}(M{sub Z})=1.278, {lambda}{sub H(max.)}(M{sub Z})=0.955, {lambda}{sub D(max.)}(M{sub Z})=1.312. The analytical analysis of RGE at the one-loop level provides the following critical bounds on superpotential couplings: {lambda}{sub t,c}(M{sub Z}) congruent with 1.295, {lambda}{sub b,c}(M{sub Z}) congruent with 1.279, {lambda}{sub H,c}(M{sub Z}) congruent with 0.968, {lambda}{sub D,c}(M{sub Z}) congruent with 1.315. Thus superpotential coupling values obtained by both the approaches are in good agreement. Theoretically we have obtained bounds on physical mass parameters using the unitarity constrained superpotential couplings. The bounds are as follows: (i) Absolute upper bound on top quark mass m{sub t}{<=}225 GeV (ii) the upper bound on the lightest neutral Higgs boson mass at the tree level is m{sub H{sub 2}{sup 0}}{sup tree}{<=}169 GeV, and after the inclusion of the one-loop radiative correction it is m{sub H{sub 2}{sup 0}}{<=}229 GeV when {lambda}{sub t}{ne}{lambda}{sub b} at the grand unified theory scale. On the other hand, these are m{sub H{sub 2}{sup 0}}{sup tree}{<=}159 GeV, m{sub H{sub 2}{sup 0}}{<=}222 GeV, respectively, when {lambda}{sub t}={lambda}{sub b} at the grand unified theory scale. A plausible range on D-quark mass as a function of mass scale M{sub Z{sub 2}} is m{sub D}{approx_equal}O(3 TeV) for M{sub Z{sub 2}}{approx_equal}O(1 TeV) for the favored values of tan{beta}{<=}1. The bounds on aforesaid physical parameters in the case of {chi}, {psi}, and {nu} models in the 27 representation are almost identical with those of {eta} model and are consistent with the present day experimental precision measurements.« less

  11. Discrete symmetry breaking and baryon currents in U(N) and SU(N) gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucini, B.; Patella, A.

    2009-06-15

    In SU(N) gauge theories with fermions in the fundamental or in a two-index (either symmetric or antisymmetric) representation formulated on a manifold with at least one compact dimension with nontrivial holonomy the discrete symmetries C, P, and T are broken at small enough size of the compact direction(s) for certain values of N. We show that for those N in the broken phase a nonzero baryon current wrapping in the compact direction exists, which provides a measurable observable for the breaking of C, P, and T. We prove that in all cases where the current is absent there is nomore » breaking of those discrete symmetries. This includes the limit N{yields}{infinity} of the SU(N) gauge theory with symmetric or antisymmetric fermions and U(N) gauge theory at any value of N. We then argue that the component of the baryon current in the compact direction is the physical order parameter for C, P, and T breaking due to the breaking of Lorentz invariance.« less

  12. First observation of a baryonic Bc+ decay.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-10-10

    A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel.

  13. Percolation transition in Yang-Mills matter at a finite number of colors.

    PubMed

    Lottini, Stefano; Torrieri, Giorgio

    2011-10-07

    We examine baryonic matter at a quark chemical potential of the order of the confinement scale μ(q)∼Λ(QCD). In this regime, quarks are supposed to be confined but baryons are close to the "tightly packed limit" where they nearly overlap in configuration space. We show that this system will exhibit a percolation phase transition when varied in the number of colors N(c): at high N(c), large distance correlations at the quark level are possible even if the quarks are essentially confined. At low N(c), this does not happen. We discuss the relevance of this for dense nuclear matter, and argue that our results suggest a new "phase transition," varying N(c) at constant μ(q).

  14. First measurement of Ξc0 production in pp collisions at √{ s } = 7 TeV

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Ali, Y.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bazo Alba, J. L.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhaduri, P. P.; Bhasin, A.; Bhat, I. R.; Bhattacharjee, B.; Bhom, J.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Chandra, S.; Chang, B.; Chang, W.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Ding, Y.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. R.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dudi, S.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guittiere, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iddon, J. P.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kreis, L.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, X.; Li, X. L.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Liu, A.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, A. P.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Nag, D.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Neskovic, G.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, H.; Ohlson, A.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Punin, V.; Putschke, J.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reshetin, A.; Reygers, K.; Riabov, V.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogalev, R.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Roslon, K.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Schaefer, B.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shirinkin, S.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silaeva, S.; Silvermyr, D.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Sputowska, I.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Toppi, M.; Torres, S. R.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vermunt, L.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wegrzynek, A.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Xu, R.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yun, E.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, Y.; Zichichi, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration

    2018-06-01

    The production of the charm-strange baryon Ξc0 is measured for the first time at the LHC via its semileptonic decay into eΞ+-νe in pp collisions at √{ s } = 7 TeV with the ALICE detector. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 1

  15. Search for popcorn mesons in events with two charmed baryons

    NASA Astrophysics Data System (ADS)

    Hartfiel, Brandon

    The physics of this dissertation is divided into two parts. The first part measures the Λc → pi kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c, which is just below the Υ(4s) resonance. The data sample consists of 15,400 Λc baryons from 9.46 fb-1 of integrated luminosity collected with the BaBar detector at the PEP-II asymmetric B factory at the Stanford Linear Accelerator Center. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the Λc → K0p mode, and look for events with a Λc+ and a Λ c- in order to look for "popcorn" mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb-1. We find 619 events after background subtraction. After a subtraction of 1.06+/-.09 charged pions coming from decays of known resonances to Λc + npi, we are left with 2.63+/-.21 additional charged pious in each of these events. This is significantly higher than the .5 popcorn mesons per bayon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  16. Very narrow excited Ωc baryons

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Rosner, Jonathan L.

    2017-06-01

    Recently, LHCb reported the discovery of five extremely narrow excited Ωc baryons decaying into Ξc+K-. We interpret these baryons as bound states of a c quark and a P -wave s s diquark. For such a system, there are exactly five possible combinations of spin and orbital angular momentum. The narrowness of the states could be a signal that it is hard to pull apart the two s quarks in a diquark. We predict two of spin 1 /2 , two of spin 3 /2 , and one of spin 5 /2 , all with negative parity. Of the five states, two can decay in S -wave, and three can decay in D -wave. Some of the D -wave states might be narrower than the S -wave states. We discuss the relations among the five masses expected in the quark model and the likely spin assignments, and we compare them with the data. A similar pattern is expected for negative-parity excited Ωb states. An alternative interpretation is noted in which the heaviest two states are 2 S excitations with JP=1 /2+ and 3 /2+, while the lightest three are those with JP=3 /2- , 3 /2- , 5 /2- , expected to decay via D -waves. In this case, we expect JP=1 /2- Ωc states around 2904 and 2978 MeV.

  17. Search for excited and exotic muons in the mugamma decay channel in p-p collisions at sqrt s =1.96 TeV.

    PubMed

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Haim, E Ben; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Di Ruzza, B; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H J; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-11-10

    We search for excited and exotic muon states mu* using an integrated luminosity of 371 pb(-1) of p[over]p collision data at sqrt[s]=1.96 TeV. We search for associated production of mumu* followed by the decay mu*-->mugamma. We compare the data to model predictions as a function of the mass of the excited muon M(mu*), the compositeness energy scale Lambda, and the gauge coupling factor f. No signal above the standard model expectation is observed. We exclude 107

  18. Measurements of Absolute Hadronic Branching Fractions of the Λ_{c}^{+} Baryon.

    PubMed

    Ablikim, M; Achasov, M N; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Baldini Ferroli, R; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Eren, E E; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, Y; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kuehn, W; Kupsc, A; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X M; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales Morales, C; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-02-05

    We report the first measurement of absolute hadronic branching fractions of Λ_{c}^{+} baryon at the Λ_{c}^{+}Λ[over ¯]_{c}^{-} production threshold, in the 30 years since the Λ_{c}^{+} discovery. In total, 12 Cabibbo-favored Λ_{c}^{+} hadronic decay modes are analyzed with a double-tag technique, based on a sample of 567  pb^{-1} of e^{+}e^{-} collisions at sqrt[s]=4.599  GeV recorded with the BESIII detector. A global least-squares fitter is utilized to improve the measured precision. Among the measurements for twelve Λ_{c}^{+} decay modes, the branching fraction for Λ_{c}^{+}→pK^{-}π^{+} is determined to be (5.84±0.27±0.23)%, where the first uncertainty is statistical and the second is systematic. In addition, the measurements of the branching fractions of the other 11 Cabibbo-favored hadronic decay modes are significantly improved.

  19. Charm degrees of freedom in the quark gluon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Swagato; Petreczky, Peter; Sharma, Sayantan

    2016-01-11

    The lattice QCD studies on fluctuations and correlations of charm quantum number have established that deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, T c; i.e., charm degrees of freedom carrying fractional baryonic charge start to appear. When we reexamine those same lattice QCD data we show that, in addition to the contributions from quarklike excitations, the partial pressure of charm degrees of freedom may still contain significant contributions from open-charm-meson- and baryonlike excitations associated with integral baryonic charges for temperatures up to 1.2T c. Finally, charm-quark quasiparticles become the dominant degrees of freedom formore » temperatures T>1.2T c.« less

  20. About some Regge-like relations for (stable) black holes

    NASA Astrophysics Data System (ADS)

    Recami, E.; Tonin-Zanchin, Vilson

    1991-08-01

    Within a purely classical formulation of 'strong gravity', we associated hadron constituents (and even hadrons themselves) with suitable stationary, axisymmetric solutions of certain new Einstein-type equations supposed to describe the strong field inside hadrons. Such equations are nothing but Einstein equations - with cosmological term - suitably scaled down. As a consequence, the cosmological constant (lambda) and the masses M result in our theory to be scaled up and transformed into a 'hadronic constant' and into 'strong masses', respectively. Due to the unusual range of lambda and M values considered, we met a series of solutions of the Kerr-Newman-de Sitter (KNdS) type with such interesting properties that it is worth studying them - from our particular point of view - also in the case of ordinary gravity. This is the aim of the present work. The requirement that those solutions be stable, i.e., that their temperature (or surface gravity) be vanishingly small, implies the coincidence of at least two of their (in general, three) horizons. Imposing the stability condition of a certain horizon does yield (once chosen the values of J, q, and lambda) mass and radius of the associated black-hole. In the case of ordinary Einstein equations and for stable black-holes of the KNdS type, we get in particular Regge-like relations among mass M, angular momentum J, charge q, and cosmological constant (lambda). For instance, with the standard definitions Q2 is identical to Gq2 /(4(pi)(epsilon)0c4); a is identical to J/(Mc); m is identical to GM/c2, in the case lambda = 0 in which m2 = a2 + Q2 and if q is negligible we find m2 = J. When considering, for simplicity, lambda greater than 0 and J = 0 (and q still negligible), then we obtain m2 = 1/(9(lambda)).

  1. Production cross-sections of prompt ⋀c+ in pPb collisions at √SNN = 5 TeV with the LHCb detector

    NASA Astrophysics Data System (ADS)

    Sun, Jiayin

    2018-02-01

    The study of the nuclear modification factor and the forward/backward asymmetry in pPb collisions at = 5 TeV is extended to the baryon, providing the first measurement of charmed baryon production in pA collisions. The result is compared to the analogous measurement on charmed mesons, providing an insight on the production mechanism of charmed hadrons.

  2. Finite field equation of Yang--Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, R.A.; Wing-Chiu, N.; Yeung, W.

    1980-03-01

    We consider the finite local field equation -)(1+1/..cap alpha.. (1+f/sub 4/))g/sup munu/D'Alembertian-partial/sup ..mu../partial/sup ..nu../)A/sup nua/ =-(1+f/sub 3/) g/sup 2/N(A/sup c/..nu..A/sup a/..mu..A/sub ..nu..//sup c/) +xxx+(1-s)/sup 2/M/sup 2/A/sup a/..mu.., introduced by Lowenstein to rigorously describe SU(2) Yang--Mills theory, which is written in terms of normal products. We also consider the operator product expansion A/sup c/..nu..(x+xi) A/sup a/..mu..(x) A/sup b/lambda(x-xi) approx...sigma..M/sup c/ab..nu mu..lambda/sub c/'a'b'..nu..'..mu..'lambda' (xi) N(A/sup nuprimec/'A/sup muprimea/'A/sup lambdaprimeb/')(x), and using asymptotic freedom, we compute the leading behavior of the Wilson coefficients M/sup ...//sub .../(xi) with the help of a computer, and express the normal products in the field equation in terms ofmore » products of the c-number Wilson coefficients and of operator products like A/sup c/..nu..(x+xi) A/sup a/..mu..(x) A/sup b/lambda(x-xi) at separated points. Our result is -)(1+(1/..cap alpha..)(1+f/sub 4/))g/sup munu/D'Alembertian-partial/sup ..mu../partial/sup ..nu../)A/sup nua/ =-(1+f/sub 3/) g/sup 2/lim/sub xiarrow-right0/) (lnxi)/sup -0.28/2b/(A/sup c/..nu.. (x+xi) A/sup a/..mu..(x) A/sub ..nu..//sup c/(x-xi) +epsilon/sup a/bcA/sup muc/(x+xi) partial/sup ..nu../A/sup b//sub ..nu../(x)+xxx) +xxx)+(1-s)/sup 2/M/sup 2/A/sup a/..mu.., where ..beta.. (g) =-bg/sup 3/, and so (lnxi)/sup -0.28/2b/ is the leading behavior of the c-number coefficient multiplying the operator products in the field equation.« less

  3. Perturbation theory corrections to the two-particle reduced density matrix variational method.

    PubMed

    Juhasz, Tamas; Mazziotti, David A

    2004-07-15

    In the variational 2-particle-reduced-density-matrix (2-RDM) method, the ground-state energy is minimized with respect to the 2-particle reduced density matrix, constrained by N-representability conditions. Consider the N-electron Hamiltonian H(lambda) as a function of the parameter lambda where we recover the Fock Hamiltonian at lambda=0 and we recover the fully correlated Hamiltonian at lambda=1. We explore using the accuracy of perturbation theory at small lambda to correct the 2-RDM variational energies at lambda=1 where the Hamiltonian represents correlated atoms and molecules. A key assumption in the correction is that the 2-RDM method will capture a fairly constant percentage of the correlation energy for lambda in (0,1] because the nonperturbative 2-RDM approach depends more significantly upon the nature rather than the strength of the two-body Hamiltonian interaction. For a variety of molecules we observe that this correction improves the 2-RDM energies in the equilibrium bonding region, while the 2-RDM energies at stretched or nearly dissociated geometries, already highly accurate, are not significantly changed. At equilibrium geometries the corrected 2-RDM energies are similar in accuracy to those from coupled-cluster singles and doubles (CCSD), but at nonequilibrium geometries the 2-RDM energies are often dramatically more accurate as shown in the bond stretching and dissociation data for water and nitrogen. (c) 2004 American Institute of Physics.

  4. A new f(R) model in the light of local gravity test and late-time cosmology

    NASA Astrophysics Data System (ADS)

    Nautiyal, Akhilesh; Panda, Sukanta; Patel, Avani

    We propose a new model of f(R) gravity containing Arctan function in the Lagrangian. We show here that this model satisfies fifth force constraint unlike a similar model in 2013 by Kruglov. In addition to this, we carry out the fixed point analysis as well as comment on the existence of curvature singularity in this model. The cosmological evolution for this f(R) gravity model is also analyzed in the Friedmann-Robertson-Walker (FRW) background. To understand observational significance of the model, cosmological parameters are obtained numerically and compared with those of Lambda cold dark matter (ΛCDM) model. We also scrutinize the model with supernova data. We apply Om diagnostic given by Sahni et al. in 2008 to the model. Using this diagnostic, we detect the distinction between cosmic evolution caused by the f(R) model and ΛCDM. We find best-fit parameter values of the model using baryon acoustic oscillations data.

  5. Quark seesaw mechanism, dark U (1 ) symmetry, and the baryon-dark matter coincidence

    NASA Astrophysics Data System (ADS)

    Gu, Pei-Hong; Mohapatra, Rabindra N.

    2017-09-01

    We attempt to understand the baryon-dark matter coincidence problem within the quark seesaw extension of the standard model where parity invariance is used to solve the strong C P problem. The S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry of this model is extended by a dark U (1 )X group plus inclusion of a heavy neutral vector-like fermion χL ,R charged under the dark group which plays the role of dark matter. All fermions are Dirac type in this model. Decay of heavy scalars charged under U (1 )X leads to simultaneous asymmetry generation of the dark matter and baryons after sphaleron effects are included. The U (1 )X group not only helps to stabilize the dark matter but also helps in the elimination of the symmetric part of the dark matter via χ -χ ¯ annihilation. For dark matter mass near the proton mass, it explains why the baryon and dark matter abundances are of similar magnitude (the baryon-dark matter coincidence problem). This model is testable in low threshold (sub-keV) direct dark matter search experiments.

  6. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  7. Cosmological constraints from Galaxy Clusters in 2500 square-degree SPT-SZ survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haan, T. de; Benson, B. A.; Bleem, L. E.

    We present cosmological parameter constraints obtained from galaxy clusters identified by their SunyaevZel'dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel'dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at z > 0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming amore » spatially flat Lambda CDM cosmology, we combine the cluster data with a prior on H-0 and find sigma(8)= 0.784. +/- 0.039 and Omega(m) = 0.289. +/- 0.042, with the parameter combination sigma(8) (Omega(m)/0.27)(0.3) = 0.797 +/- 0.031. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to Lambda CDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species (N-eff) are free parameters. When combined with constraints from the Planck CMB, H-0, baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to w = -1.023 +/- 0.042.« less

  8. Dark matter universe

    PubMed Central

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  9. FUSE Observations of Warm Gas in the Cooling Flow Clusters A1795 and A2597

    NASA Technical Reports Server (NTRS)

    Oegerle, W. R.; Cowie, L.; Davidsen, A.; Hu, E.; Hutchings, J.; Murphy, E.; Sembach, K.; Woodgate, B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectroscopy of the cores of the massive cooling flow clusters Abell 1795 and 2597 obtained with FUSE. As the intracluster gas cools through 3 x 10(exp 5)K, it should emit strongly in the O VI lambda(lambda)1032,1038 resonance lines. We report the detection of O VI (lambda)1032 emission in A2597, with a line flux of 1.35 +/- 0.35 x 10(exp -15) erg/sq cm s, as well as detection of emission from C III (lambda)977. A marginal detection of C III (lambda)977 emission is also reported for A1795. These observations provide evidence for a direct link between the hot (10(exp 7) K) cooling flow gas and the cool (10(exp 4) K) gas in the optical emission line filaments. Assuming simple cooling flow models, the O VI line flux in A2597 corresponds to a mass deposition rate of approx. 40 solar mass /yr within the central 36 kpc. Emission from O VI (lambda)1032 was not detected in A1795, with an upper limit of 1.5 x 10(exp -15) erg/sq cm s, corresponding to a limit on the mass cooling flow rate of M(28 kpc) less than 28M solar mass/ yr. We have considered several explanations for the lack of detection of O VI emission in A1795 and the weaker than expected flux in A2597, including extinction by dust in the outer cluster, and quenching of thermal conduction by magnetic fields. We conclude that a turbulent mixing model, with some dust extinction, could explain our O VI results while also accounting for the puzzling lack of emission by Fe(sub XVII) in cluster cooling flows.

  10. Serum levels of immunoglobulin free light chains in patients with chronic hepatitis C presenting cryoglobulinemia.

    PubMed

    Oliveira, Isabela S; Cabral, Milena S; Jesus, Larissa S; Paraná, Raymundo; Atta, Ajax M; Sousa Atta, Maria Luiza B

    2014-01-01

    Hepatitis C virus (HCV) infects B-lymphocytes, provokes cellular dysfunction and causes lymphoproliferative diseases such as cryoglobulinemia and non-Hodgkin's B-cell lymphoma. In the present study, we investigated the serum levels of kappa and lambda free light chains (FLC) of immunoglobulins and the kappa/lambda FLC ratio in Brazilian patients with chronic HCV infection and cryoglobulinemia. We also analyzed the immunochemical composition of the cryoglobulins in these patients. Twenty-eight cryoglobulinemic HCV patients composed the target group, while 37 HCV patients without cryoglobulinemia were included as controls. The median levels of kappa and lambda FLC were higher in patients with cryoglobulinemia compared to controls (p=0.001 and p=0.003, respectively), but the kappa/lambda FLC ratio was similar in patients with and without cryoglobulinemia (p>0.05). The median FLC ratio was higher in HCV patients presenting with advanced fibrosis of the liver compared to HCV patients without fibrosis (p=0.004). Kappa and lambda FLC levels were strongly correlated with the IgA, IgG and IgM levels in the patients with cryoglobulinemia. In patients without cryoglobulinemia, the kappa FLC level was only correlated with the IgG level, whereas the lambda FLC were weakly correlated with the IgA, IgG and IgM levels. An immunochemical pattern of mixed cryoglobulins (MC), predominantly IgM, IgG, IgA and kappa light chain, was verified in these immune complexes. We concluded that HCV-infected patients presenting cryoglobulinemia have vigorous polyclonal B-lymphocyte activation due to chronic HCV infection and persistent immune stimulation. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  11. Daclatasvir/peginterferon lambda-1a/ribavirin in patients with chronic HCV infection and haemophilia who are treatment naïve or prior relapsers to peginterferon alfa-2a/ribavirin.

    PubMed

    Santagostino, E; Pol, S; Olveira, A; Reesink, H W; van Erpecum, K; Bogomolov, P; Xu, D; Critelli, L; Srinivasan, S; Cooney, E

    2016-09-01

    This study explores the potential role of a novel interferon-containing regimen for treatment of patients with chronic hepatitis C (CHC) and underlying haemophilia. This trial (NCT01741545) was an open-label, non-randomized phase 3 study, which included adult haemophiliacs with hepatitis C virus (HCV). Patients with HCV genotypes (GT)-2 or -3 were treated with Lambda-IFN/ribavirin (RBV)/daclatasvir (DCV) for 12 weeks (cohort A). Patients with HCV GT-1b or -4 were treated with Lambda-IFN/RBV/DCV for 12 weeks, followed by Lambda-IFN/RBV for an additional 12 weeks (cohort B). The primary endpoint was the proportion of patients with a sustained virologic response at post-treatment follow-up week 12 (SVR12). Clinical development of Lambda-IFN was discontinued during this trial leading to study termination before a 24-week post-treatment follow-up was obtained for all participants. Overall, 51 patients were treated (cohort A, n = 12; cohort B, n = 39). The proportion of patients achieving SVR12 was 92% in cohort A and 90% in cohort B. Therapy was generally well tolerated. The most common adverse events (AEs) were related to elevations in serum transaminases and/or bilirubin. Five serious AEs, four discontinuations due to AEs, and no deaths were reported. The rate of grade 3-4 bilirubin elevations was 17-18% across cohorts. Lambda-IFN/RBV/DCV treatment demonstrated a high SVR rate and was generally well tolerated with a safety profile consistent with expectations for this special patient population. This study supports use of DCV as part of a combination treatment regimen for haemophiliacs with CHC. © 2016 John Wiley & Sons Ltd.

  12. Rayleigh lidar observations of gravity wave activity in the stratosphere and lower mesosphere

    NASA Technical Reports Server (NTRS)

    Miller, M. S.; Gardner, C. S.; Liu, C. H.

    1987-01-01

    Forty-two monochromatic gravity wave events were observed in the 25 to 55 km altitude region during 16 nights of Rayleigh lidar measurements at Poker Flat, Alaska and Urbana, Illinois. The measured wave parameters were compared to previous radar and lidar measurements of gravity wave activity. Vertical wavelengths, lambda(z), between 2 and 11.5 km with vertical phase velocities, c(z), between 0.1 and 1 m/s were observed. Measured values of lambda(z) and c(z) were used to infer observed wave periods, T(ob), between 50 and 1000 minutes and horizontal wavelengths, lambda(x), from 25 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No seasonal variations were evident in the observed wave parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with T(ob), which is consistent with recent sodium lidar studies of monochromatic wave events near the mesopause. Measured power law relationships between the wave parameters were lambda(z) varies as T(ob) sup 0.96, lambda(x) varies as T(ob) sup 1.8, and c(z) varies as T(ob) sup -0.85. The kinetic energy calculated for the monochromatic wave events varied as k(z) sup -2, k(x) sup -1, and f(ob) sup -1.7. The atmospheric scale heights calculated for each observation date range from 6.5 to 7.6 km with a mean value of 7 km. The increase of rms wind perturbations with altitude indicated an amplitude growth length of 20.9 km. The altitude profile of kinetic energy density decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.

  13. HST-COS Observations on Hydrogen, Helium, Carbon, and Nitrogen Emission from the SN 1987A Reverse Shock

    NASA Technical Reports Server (NTRS)

    France, Kevin; McCray, Richard; Penton, Steven V.; Kirshner, Robert P.; Challis, Peter; Laming, J. Martin; Bouchet, Patrice; Chevalier, Roger; Garnavich, Peter M.; Fransson, Claes; hide

    2011-01-01

    We present the most sensitive ultraviolet observations of Supernova 1987 A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (Delta v approximates 300 km/s) emission lines from the circumstellar ring, broad Delta v approximates 10-20 x 10(exp 3) km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise ratio (>40 per resolution element) broad Ly-alpha emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at lambda > 1350 A can be explained by H-I two-photon (2s(exp 2)S(sub 1/2)-l(exp 2)S(sub 1/2)) emission from the same region. We confirm our earlier, tentative detection of N V lambda 1240 emission from the reverse shock and present the first detections of broad He II lambda1640, C IV lambda 1550, and N IV ] lambda1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 +/- 0.06. The N V /H alpha line ratio requires partial ion-electron equilibration (T(sub e)/T(sub p) approximately equal to 0.14-0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance may have been stratified prior to the ring expUlsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expUlsion of the circumstellar ring.

  14. Evidence for an exotic S= -2, Q= -2 baryon resonance in proton-proton collisions at the CERN SPS.

    PubMed

    Alt, C; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Białkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncić, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Filip, P; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gaździcki, M; Georgopoulos, G; Gładysz, E; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kniege, S; Kolesnikov, V I; Kollegger, T; Korus, R; Kowalski, M; Kraus, I; Kreps, M; van Leeuwen, M; Lévai, P; Litov, L; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczyński, St; Pálla, G; Panagiotou, A D; Panayotov, D; Perl, K; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R; Retyk, W; Roland, C; Roland, G; Rybczyński, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitar, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranić, D; Wetzler, A; Włodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J

    2004-01-30

    Results of resonance searches in the Xi(-)pi(-), Xi(-)pi(+), Xi;(+)pi(-), and Xi;(+)pi(+) invariant mass spectra in proton-proton collisions at sqrt[s]=17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi(-)pi(-) baryon resonance with mass of 1.862+/-0.002 GeV/c(2) and width below the detector resolution of about 0.018 GeV/c(2). The significance is estimated to be above 4.2sigma. This state is a candidate for the hypothetical exotic Xi(--)(3/2) baryon with S=-2, I=3 / 2, and a quark content of (dsdsū). At the same mass, a peak is observed in the Xi(-)pi(+) spectrum which is a candidate for the Xi(0)(3/2) member of this isospin quartet with a quark content of (dsus[-]d). The corresponding antibaryon spectra also show enhancements at the same invariant mass.

  15. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  16. THE EIGHTFOLD WAY: A THEORY OF STRONG INTERACTION SYMMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gell-Mann, M.

    1961-03-15

    A new model of the higher symmetry of elementary particles is introduced ln which the eight known baryons are treated as a supermultiplet, degenerate in the limit of unitary symmetry but split into isotopic spin multiplets by a symmetry-breaking term. The symmetry violation is sscribed phenomenologically to the mass differences. The baryons correspond to an eight-dimensional irreducible representation of the unitary group. The pion and K meson fit into a similar set of eight particles along with a predicted pseudoscalar meson X/sup o/ having I = 0. A ninth vector meson coupled to the baryon current can be accomodated natarallymore » in the scheme. It is predicted that the eight baryons should all have the same spin and parity and that pseudoscalar and vector mesons should form octets with possible additional singlets. The mathematics of the unitary group is described by considering three fictitious leptons, nu , e/sup -/ , and mu /sup -/, which may throw light on the structure of weak interactions. (D. L.C.)« less

  17. The Eightfold Way: A Theory of Strong Interaction Symmetry

    DOE R&D Accomplishments Database

    Gell-Mann, M.

    1961-03-15

    A new model of the higher symmetry of elementary particles is introduced ln which the eight known baryons are treated as a supermultiplet, degenerate in the limit of unitary symmetry but split into isotopic spin multiplets by a symmetry-breaking term. The symmetry violation is ascribed phenomenologically to the mass differences. The baryons correspond to an eight-dimensional irreducible representation of the unitary group. The pion and K meson fit into a similar set of eight particles along with a predicted pseudoscalar meson X {sup o} having I = 0. A ninth vector meson coupled to the baryon current can be accommodated naturally in the scheme. It is predicted that the eight baryons should all have the same spin and parity and that pseudoscalar and vector mesons should form octets with possible additional singlets. The mathematics of the unitary group is described by considering three fictitious leptons, nu , e {sup -}, and mu {sup -}, which may throw light on the structure of weak interactions. (D. L.C.)

  18. Rejecting the equilibrium-point hypothesis.

    PubMed

    Gottlieb, G L

    1998-01-01

    The lambda version of the equilibrium-point (EP) hypothesis as developed by Feldman and colleagues has been widely used and cited with insufficient critical understanding. This article offers a small antidote to that lack. First, the hypothesis implicitly, unrealistically assumes identical transformations of lambda into muscle tension for antagonist muscles. Without that assumption, its definitions of command variables R, C, and lambda are incompatible and an EP is not defined exclusively by R nor is it unaffected by C. Second, the model assumes unrealistic and unphysiological parameters for the damping properties of the muscles and reflexes. Finally, the theory lacks rules for two of its three command variables. A theory of movement should offer insight into why we make movements the way we do and why we activate muscles in particular patterns. The EP hypothesis offers no unique ideas that are helpful in addressing either of these questions.

  19. Does the scatterometer see wind speed or friction velocity?

    NASA Technical Reports Server (NTRS)

    Donelan, M. A.; Pierson, W. J., Jr.

    1984-01-01

    Studies of radar backscatter from the sea surface are referred either to the wind speed, U, or friction velocity, u(sub *). Bragg scattering theory suggests that these variations in backscatter are directly related to the height of the capillary-gravity waves modulated by the larger waves in tilt and by straining of the short wave field. The question then arises as to what characteristic of the wind field is most probably correlated with the wave number spectrum of the capillary-gravity waves. The justification for selecting U as the appropriate meteorological parameter to be associated with backscatter from L-band to Ku-band are reviewed. Both theoretical reasons and experimental evidence are used to demonstrate that the dominant parameter is U/C(lambda) where U is the wind speed at a height of about lambda/2 for waves having a phase speed of C(lambda).

  20. Measurement of the shape of the Λb0→Λc+μ-ν¯μ differential decay rate

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Bjoern, M. B.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Borysova, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Hecker, M.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z.-C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Maddock, B.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Gonzalo, D.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Lavra, l. Soares; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M. A.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2017-12-01

    A measurement of the shape of the differential decay rate and the associated Isgur-Wise function for the decay Λb0→Λc+μ-ν¯μ is reported, using data corresponding to 3 fb-1 collected with the LHCb detector in proton-proton collisions. The Λc+μ-ν¯ μ(+anything ) final states are reconstructed through the detection of a muon and a Λc+ baryon decaying into p K-π+, and the decays Λb0→Λc+π+π-μ-ν¯μ are used to determine contributions from Λb0→Λc*+μ-ν¯μ decays. The measured dependence of the differential decay rate upon the squared four-momentum transfer between the heavy baryons, q2, is compared with expectations from heavy-quark effective theory and from unquenched lattice QCD predictions.

  1. Dynamic processes in Be star atmospheres. I - 'Dimple' formation in the He I lambda 6678 line of lambda Eridani

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.; Polidan, Ronald S.

    1993-01-01

    Several examples of weakenings of the C IV and N V resonance lines are found to coincide with the appearance of lambda 6678 dimples. The absence of variations in other UV lines and in the UV continuum at the same time or nearly the same time argues against dimples being caused by thermal variations from the underlying star. It is instead suggested that the resonance line weakenings are caused by non-LTE effects associated with the condensation of high density structures at some elevation over the star. A simple model of an opaque, essentially stationary slab which backscatters lambda 6678 line radiation into a surrounding 'penumbral' region is presented. Lambda 6678 photons are scattered a second time in this region back into the observer's line of sight and in the process acquire the local projected Doppler shift from rotation. Slabs would probably produce too little emission to be easily detected in the H alpha profile. Their detection in strong He I lines seems the best strategy among early Be stars.

  2. Cosmological ``Truths''

    NASA Astrophysics Data System (ADS)

    Bothun, Greg

    2011-10-01

    Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent observations showed that a significant population of baryons was contained in both a) a population of not easily detected galaxies (i.e. they had been missed for decades) and b) in intergalactic space. In 1999, the balloon borne Boomerang experiment gave good evidence that space was flat (total energy density = 1). Around this same time, various lines of evidence suggested that the ``cosmological constant'' (Lambda) maybe non-zero meaning we now live in a three component universe of baryons, dark matter and dark energy. The WMAP mission a few years later then produced our current cosmological truth that 5% of the Universe is baryons, 20% is Dark Matter, and 75% is Dark energy. What happened to Dark Matter dominance? Where did it go? Is this a fine tuned Universe? Our current cosmological truth, as defined by the WMAP results, rests on two important assumptions: a) that we fully understand gravity as a long range force and that alternative models, such as Modified Newtonian Dynamics (MOND) can therefore be dismissed and b) observationally we are fully confident that we understand supernova explosion physics to the point that they can be used as reliable cosmological indicators. This talk will attempt to summarize this evolution of cosmological truths, cast doubt on the certainty of the previously stated assumptions, and to culturally suggest that we should not continue with arrogance of Aristotle is assuring ourselves that we do in fact, know the ``truth''.

  3. Investigation of the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data

    NASA Astrophysics Data System (ADS)

    Giordano, M.; Meggiolaro, E.; Silva, P. V. R. G.

    2017-08-01

    In the present investigation we study the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data. The parametrization used for the hadron-hadron total cross sections at high energy is inspired by recent results obtained by Giordano and Meggiolaro [J. High Energy Phys. 03 (2014) 002, 10.1007/JHEP03(2014)002] using a nonperturbative approach in the framework of QCD, and it reads σtot˜B ln2s +C ln s ln ln s . We critically investigate if B and C can be obtained by means of best-fits to data for proton-proton and antiproton-proton scattering, including recent data obtained at the LHC, and also to data for other meson-baryon and baryon-baryon scattering processes. In particular, following the above-mentioned nonperturbative QCD approach, we also consider fits where the parameters B and C are set to B =κ Bth and C =κ Cth, where Bth and Cth are universal quantities related to the QCD stable spectrum, while κ (treated as an extra free parameter) is related to the asymptotic value of the ratio σel/σtot. Different possible scenarios are then considered and compared.

  4. IRAS 21391 + 5802 - A study in intermediate mass star formation

    NASA Technical Reports Server (NTRS)

    Wilking, Bruce; Mundy, Lee; Mcmullin, Joseph; Hezel, Thomas; Keene, Jocelyn

    1993-01-01

    We present infrared and millimeter wavelength observations of the cold IRAS source 21391 + 5802 and its associated molecular core. Infrared observations at lambda = 3.5 microns reveal a heavily obscured, central point source which is coincident with a compact lambda = 2.7 mm continuum and C18O emission region. The source radiates about 310 solar luminosities, primarily at FIR wavelengths, suggesting that it is a young stellar object of intermediate mass. The steeply rising spectral energy distribution and the large fraction of the system mass residing in circumstellar material imply that IRAS 21391 + 5802 is in an early stage of evolution. The inferred dust temperature indicates a temperature gradient in the core. A comprehensive model for the surrounding core of dust and gas is devised to match the observed dust continuum emission and multitransition CS emission from this and previous studies. We find a r exp -1.5 +/- 0.2 density gradient consistent with that of a gravitationally evolved core and a total core mass of 380 solar masses. The observed dust emission is most consistent with a lambda exp -1.5 - lambda exp -2 dust emissivity law; for a lambda exp -2 law, the data are best fit by a mass opacity coefficient of 3.6 x 10 exp -3 sq cm/g at lambda = 1.25 mm.

  5. Baryon Effective Theories and Phenomenology in the 1/N c Expansion

    NASA Astrophysics Data System (ADS)

    Fernando, Ishara Priyasad

    Chiral perturbation theory (ChPT) and the 1/Nc expansion provide systematic frameworks to investigate the strong interaction at low energy. There are two main focuses of this dissertation. First, analyzing the masses of baryons in the framework of the 1/Nc expansion, using the available physical masses and masses calculated in lattice QCD. Second, combining both ChPT and the 1/Nc expansion into a single framework and applying it to the phenomenology of baryons with three light-quark flavors. In the first focus, the baryon states are organized into irreducible representa- tions of SU(6) x O(3), where the [56, ℓ P = 0+] contains the ground state and radially excited baryons, and the [56, 2+] and [70, 1 -] contain orbitally excited states are analyzed. The analyses are carried out to O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations and the famous Gell-Mann-Okubo (GMO) and Equal-Spacing (ES) relations are tested. Also, the quark mass dependence of the operator coefficients for baryon mass is discussed. In the second focus, a small scale expansion of the combined approach is defined as the xi-expansion, in which the power counting of 1/Nc and chiral expansions are linked as O(p) = O(1/Nc) = O(xi). A calculation of one-loop corrections to the ground state baryon masses, vector and axial-vector currents up to O(xi 3) is presented. Moreover, the physical and lattice QCD masses are considered in order to understand the quark mass dependence, along with an analysis of the violations to GMO, ES and Gursey-Radicati (GR) mass relations, and their dependence on Nc.

  6. High resolution spectroscopic study of Be Λ 10

    DOE PAGES

    Gogami, T.; Chen, C.; Kawama, D.; ...

    2016-03-10

    Spectroscopy of amore » $$^{10}_{\\Lambda}$$Be hypernucleus was carried out at JLab Hall C using the $$(e,e^{\\prime}K^{+})$$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $$p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$$^{-}$$ and 2$$^{-}$$ states) was obtained to be B$$_{\\Lambda}$$=8.55$$\\pm$$0.07(stat.)$$\\pm$$0.11(sys.) MeV. Furthermore, the result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on charge symmetry breaking effect in the $$\\Lambda N$$ interaction.« less

  7. Spectra of Particulate Backscattering in Natural Waters

    NASA Technical Reports Server (NTRS)

    Gordon, Howard, R.; Lewis, Marlon R.; McLean, Scott D.; Twardowski, Michael S.; Freeman, Scott A.; Voss, Kenneth J.; Boynton, Chris G.

    2009-01-01

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (bb) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(sub b) approx. Lambda(sup -n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(sub b), suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters.

  8. Safety and Efficacy of Pegylated Interferon Lambda, Ribavirin, and Daclatasvir in HCV and HIV-Coinfected Patients.

    PubMed

    Nelson, Mark; Rubio, Rafael; Lazzarin, Adriano; Romanova, Svetlana; Luetkemeyer, Annie; Conway, Brian; Molina, Jean-Michel; Xu, Dong; Srinivasan, Subasree; Portsmouth, Simon

    2017-03-01

    To evaluate the efficacy and safety of pegylated interferon-lambda-1a (Lambda)/ribavirin (RBV)/daclatasvir (DCV) for treatment of patients coinfected with chronic hepatitis C virus (HCV) and human immunodeficiency virus (HIV). Treatment-naive patients were assigned to cohort A [HCV genotype (GT)-2 or -3] or cohort B [HCV GT-1(a or b) or -4]. All patients received Lambda/RBV/DCV for the first 12 weeks; cohort A received Lambda/RBV for an additional 12 weeks, followed by 24 weeks of follow-up, and cohort B received response-guided therapy. The primary endpoint was the proportion of patients who achieved a sustained virologic response at post-treatment week 12 (SVR12). In cohort A (n = 104), 84.6% achieved SVR12 (95.0% in GT-2; 83.1% in GT-3). In cohort B (n = 196), 76.0% achieved SVR12 (71.7% in GT-1a; 86.0% in GT-1b; 70.7% in GT-4). Rates of discontinuation due to adverse events (AEs) (3.8% and 6.1%) and serious AEs (5.8% and 6.1%) were low in cohorts A and B, respectively. In addition, treatment with Lambda/RBV/DCV had little impact on CD4 counts. SVR12 rates with Lambda/RBV/DCV in an HCV/HIV-coinfected population ranged from 71.7% to 95.0%. Treatment was generally well tolerated, with a low proportion of patients discontinuing due to AEs. Clinical trial registration NCT01866930.

  9. Five-Body Cluster Structure of the Double-{Lambda} Hypernucleus {sub {Lambda}{Lambda}}{sup 11}Be

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiyama, E.; Kamimura, M.; Yamamoto, Y.

    2010-05-28

    Energy levels of the double {Lambda} hypernucleus, {sub {Lambda}{Lambda}}{sup 11}Be are calculated within the framework of a {alpha}{alpha}n{Lambda}{Lambda} five-body model. Interactions between constituent particles are determined so as to reproduce reasonably the observed low-energy properties of the {alpha}{alpha}, {alpha}{alpha}n nuclei and the existing data for {Lambda}-binding energies of the {alpha}{Lambda}, {alpha}{alpha}{Lambda}, {alpha}n{Lambda}, and {alpha}{alpha}n{Lambda} systems. An effective {Lambda}{Lambda} interaction is constructed so as to reproduce, within the {alpha}{Lambda}{Lambda} three-body model, the B{sub {Lambda}{Lambda}}of {sub {Lambda}{Lambda}}{sup 6}He, which was extracted from the emulsion experiment, the NAGARA event. With no adjustable parameters for the {alpha}{alpha}n{Lambda}{Lambda} system, B{sub {Lambda}{Lambda}}of the ground and boundmore » excited states of {sub {Lambda}{Lambda}}{sup 11}Be are calculated with the Gaussian expansion method. The Hida event, recently observed at KEK-E373 experiment, is interpreted as an observation of the ground state of the {sub {Lambda}{Lambda}}{sup 11}Be.« less

  10. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management...

  11. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management...

  12. The first identification of C2 emission bands in comet Scorichenko-George (1989e1) spectrum

    NASA Technical Reports Server (NTRS)

    Churyumov, Klim I.; Chorny, G. F.

    1992-01-01

    Wave lengths from 360 emissions within the spectral range lambda lambda 3380-6290 A in the spectrum of the comet Scorichenko-George, obtained with the help of the TV spectral scanner of a 6-meter reflector BTA (in Special AO) have been determined. The CN, C2, C3, NH, CH, CO, Na, NH2, N2(+), CO(+), CO2(+), H2O(+), and C2(-) emissions have been identified. For the first time, it has been shown that emissions of C2(-) (the transitions 0-0, 0-1, et al.) in the cometary spectrum possibly exist. Molecular ions C2(-) column density with cross-section 1 sq cm is N = 1.44 10(exp -12) cm(exp -2) and their upper limits of gas C2(-) productivity is Q(C2(-)) = 2 10(exp 28) c(exp -1).

  13. Measurement of Spin Observables in Inclusive Lambda and Neutral Kaon (short) Production with a 200 GEV Polarized Proton Beam.

    NASA Astrophysics Data System (ADS)

    Bravar, Alessandro

    The considerable polarization of hyperons produced at high x_ F has been known for a long time and has been interpreted in various theoretical models in terms of the constituents' spin. The spin dependence in inclusive Lambda and K _sp{s}{circ} production has been studied for the first time at high energy using the Fermilab 200 GeV/c polarized proton beam and a large forward spectrometer. The spin observables analyzing power A_ N, polarization P_0 and depolarization D _{NN} in inclusive Lambda production has been measured in the kinematic range of rm 0.2<=q x_ F<=q1.0 and rm 0.1<=q p_ T<=q1.5 GeV/c and the analyzing power for inclusive K_sp{s }{circ} in the kinematic range of rm0.1<=q x_ F<=q0.7 and rm0.1<=q p_ T<=q1.0 GeV/c. The results obtained in this work show that at these energies spin effects are substantial and that the current picture of spin effects in hadronic interactions is much more complex than naively thought. The data on the spin dependence of the Lambda inclusive production indicate a substantial negative asymmetry A_ N at large x _ F and moderate p_ T, the polarization results P_0 are in fair agreement with previous measurements, and the double spin parameter D_ {NN} increases with x_ F and p_ T to relatively large positive values. The trend of the Lambda A_ N, which shows a kinematical behavior similar to P_0 with same sign but smaller in magnitude, might be suggestive of a common interpretation. These results, however, are difficult to accommodate within the present quark fragmentation models for hyperon polarization, based on SU(6) wave functions where the produced strange quark carries all the spin information of the Lambda, unless spectator di-quarks in the recombination process play a more significant role than generally expected. These results can further test the current ideas on the underlying mechanisms for the hyperon polarization and meson production asymmetry.

  14. Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitation Clouds: Results from In-Situ Observations in TRMM Field Campaigns

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Bansemer, Aaron; Field, Paul R.; Durden, Stephen L.; Stith, Jeffrey L.; Dye, James E.; Hall, William; Grainger, Cedric A.

    2002-01-01

    In this study, we report on the evolution of particle size distributions (PSDs) and habits as measured during slow, Lagrangian-type spiral descents through deep subtropical and tropical cloud layers in Florida, Brazil, and Kwajalein, Marshall Islands, most of which were precipitating. The objective of the flight patterns was to learn more about how the PSDs evolved in the vertical and to obtain information of the vertical structure of microphysical properties. New instrumentation yielding better information on the concentrations of particles in the size (D) range between 0.2 and 2 cm, as well as improved particle imagery, produced more comprehensive observations for tropical stratiform precipitation regions and anvils than have been available previously. Collocated radar observations provided additional information on the vertical structure of the cloud layers sampled. Most of the spirals began at cloud top, with temperatures (T) as low as -50 C, and ended at cloud base or below the melting layer (ML). The PSDs broadened from cloud top towards cloud base, with the largest particles increasing in size from several millimeters at cloud top to one centimeter or larger towards cloud base. Some continued growth was noted in the upper part of the ML. Concentrations of particles less than 1 mm in size decreased with decreasing height. The result was a consistent change in the PSDs in the vertical. Similarly, systematic changes in the size dependence of the particle cross-sectional area was noted with decreasing height. Aggregation-as ascertained from both the changes in the PSDs and evolution of particle habits as observed in high detail with the cloud particle imager (CPI) probe-was responsible for these trends. The PSDs were generally well-represented by gamma distributions of the form N = N0 gamma D microns e- lambda gamma D that were fitted to the PSDs over 1-km horizontal intervals throughout the spirals. The intercept (N0 gamma), slope (lambda gamma), and dispersion (microns) values were derived for each PSD. Exponential curves (N = N0e- lambdaD; micron = 0) were also fitted to the distributions. The lambda gamma values for given spirals varied systematically with temperature as did the values of lambda (exponential), and the data generally conformed to values found in previous studies involving exponential fits to size distributions in mid-latitude frontal and cirrus layers. Considerable variability often noted in the PSD properties during the loops of individual spirals was manifested primarily in large changes in N0 gamma and N0, but micron, lambda gamma and lambda remained fairly stable. Temperature is not found to be the sole factor controlling lambda gamma or lambda but is a primary one. Direct relationships were found between lambda gamma and N0 gamma or lambda gamma and micron for the gamma distributions and lambda and N0 for the exponential. The latter relationship was not found as distinctly in earlier studies; observed PSDs in this study had better fidelity with less scatter. The micron values changed monotonically with T over the range of temperatures and were directly related to N0 gamma or lambda gamma, thereby reducing the number of variables in the PSD functional equation to two. In the upper part of the ML, N0 and lambda continued to decrease, and in the lower part these values began to increase as the largest particles melted. We developed general expressions relating various bulk microphysical, radar, and radiative transfer-related variables to N0 gamma and lambda gamma, useful for both tropical and mid-latitude clouds. These relationships facilitate the specification of a number of bulk properties in cloud and climate models. The results presented in this paper apply best to temperatures between 0 and -40 C, for which the measured radar reflectivities fall in the range of 0 to 25 dBZe.

  15. Study of {Lambda}-{Lambda} oscillation in quantum coherent {Lambda}{Lambda} by using J/{psi}{yields}{Lambda}{Lambda} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang Xianwei; Department of Physics, Henan Normal University, Xinxiang 453007; Li Haibo

    2010-03-01

    We discuss the possibility of searching for the {Lambda}-{Lambda} oscillations for coherent {Lambda}{Lambda} production in the J/{psi}{yields}{Lambda}{Lambda} decay process. The sensitivity of measurement of {Lambda}-{Lambda} oscillation in the external field at BES-III experiment is considered. These considerations indicate an alternative way to probe the {Delta}B=2 amplitude in addition to neutron oscillation experiments. Both coherent and time-dependent information can be used to extract the {Lambda}-{Lambda} oscillation parameter. With one year's luminosity at BES-III, we can set an upper limit of {delta}m{sub {Lambda}{Lambda}<}10{sup -15} MeV at 90% confidence level, corresponding to about 10{sup -6} s of {Lambda}-{Lambda} oscillation time.

  16. Mesonic Decay of Charm Hypernuclei Λc+

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabyasachi; Fontoura, Carlos E.; Krein, Gastão

    2016-03-01

    Λc+ hypernuclei are expected to have binding energies and other properties similar to those of strange hypernuclei in view of the similarity between the quark structures of the strange and charmed hyperons, namely Λ(uds) and Λc+(udc). One striking difference however occurs in their mesonic decays, as there is almost no Pauli blocking in the nucleonic decay of a charm hypernucleus because the final-state nucleons leave the nucleus at high energies. The nuclear medium nevertheless affects the mesonic decays of charm hypernucleus because the nuclear mean fields modify the masses of the charm hyperon. In the present communication we present results of a first investigation of the effects of finite baryon density on different weak mesonic decay channels of the Λc+ baryon. We found a non-negligible reduction of the decay widths as compared to their vacuum values.

  17. Mass Spectra of Ds and Ωc in Lattice QCD with Nf = 2 + 1 + 1 Domain-Wall Quarks

    NASA Astrophysics Data System (ADS)

    Chiu, Ting-Wai

    2018-03-01

    We perform hybrid Monte Carlo simulation of lattice QCD with Nf = 2+1+1 optimal domain-wall quarks on the 323 × 64 lattice with lattice spacing a 0:06 fm, and generate a gauge ensemble with physical s and c quarks, and pion mass 280 MeV. Using 2-quark (meson) and 3-quark (baryon) interpolating operators, the mass spectra of the lowest-lying states containing s and c quarks (Ds and Ωc) are extracted [1], which turn out in good agreement with the high energy experimental values, together with the predictions of the charmed baryons which have not been observed in experiments. For the five new narrow c states observed by the LHCb Collaboration [2], the lowest-lying Ωc(3000) agrees with our predicted mass 3015(29)(34) MeV of the lowest-lying Ωc with JP = 1/2-. This implies that JP of Ωc(3000) is 1/2-.

  18. Properties of ΣQ*, ΞQ* and ΩQ* heavy baryons in cold nuclear matter

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Er, N.

    2018-02-01

    The in-medium properties of the heavy spin-3/2 ΣQ*, ΞQ* and ΩQ* baryons with Q being b or c quark are investigated. The shifts in some spectroscopic parameters of these particles due to the saturated cold nuclear matter are calculated. The variations of those parameters with respect to the changes in the density of the cold nuclear medium are studied, as well. It is observed that the parameters of ΣQ* baryons are considerably affected by the nuclear matter compared to the ΞQ* and ΩQ* particles that roughly do not see the medium. The results obtained may be used in analyses of the data to be provided by the in-medium experiments like PANDA.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    dos Reis, Alberto Correa

    This work a presents a measurement of the total cross section for the charmed baryonmore » $$\\Lambda_c$$ times the branching fraction of the mode $$\\Lambda_c \\to pK\\bar{\\mu}$$, for the kinematical region $$x_F$$ > O in $$\\pi$$-nucleus interactions at 250 GeV/c. This measurement is made with data from the experiment E769, collected during 1987/1988 at the FERMILAB Tagged Photon Laboratory. A segmented target of berillium, aluminum, copper and tungsten was used. Based on the A dependence measurement, made by E769, and on the available branching fractions, the total cross section per nucleon is calculated. The result is compared with other experiments and with some theoretical predictions inspired on QCD.« less

  20. 25 CFR 262.5 - Application for permits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... either state that no religious or cultural site will be harmed or destroyed by the proposed work or... similar condition: “Human remains of Indians, funerary objects, sacred objects, and objects of cultural...

  1. Observations of the May 1979 outburst of Centaurus X-4

    NASA Technical Reports Server (NTRS)

    Blair, W. P.; Raymand, J. C.; Dupree, A. K.

    1982-01-01

    The IUE spectra of the X-ray transient/X-ray burst source Cen X-4 at three intervals during the peak and decline of the May 1979 transient event were studied. The spectrum is characterized by a blue continuum and strong emission lines of N V lambda 1240, Si IV lambda 1398 and C IV lambda 1550. The origin of these emission components in the context of an X-ray dwarf nova model is investigated. It is suggested that an accretion disk plays a prominent role in the generation of the continuum emission and that X-ray heating of the accretion disk and the companion star may be important in the formation of the emission lines.

  2. Detection of silicate emission features in the 8- to 13-micron spectra of main belt asteroids

    NASA Technical Reports Server (NTRS)

    Feierberg, M. A.; Witteborn, F. C.; Lebofsky, L. A.

    1983-01-01

    A presentation is given of 8.0-13.0 micron spectra (Delta lambda/lambda = 0.02-0.03) for six main belt asteroids, which range from 58 to 220 km in diameter and sample the five principal taxonomic classes (C, S, M, R and E). Narrow, well-defined silicate emission features are present on two of the asteroids, the C-type 19 Fortuna and the M-type 21 Lutetia. No comparable emission features are observed on the S-types 11 Parthenope and 14 Irene, the R-type 349 Dembowska or the E-type 64 Angelina.

  3. Gene expression analysis and enzyme assay reveal a potential role of the carboxylesterase gene CpCE-1 from Cydia pomonella in detoxification of insecticides.

    PubMed

    Yang, Xue-Qing

    2016-05-01

    Carboxylesterases (CarEs) are responsible for metabolism of xenobiotics including insecticides in insects. Understanding the expression patterns of a such detoxifying gene and effect of insecticides on its enzyme activity are important to clarify the function of this gene relevant to insecticides-detoxifying process, but little information is available in the codling moth Cydia pomonella (L.). In this study, we investigated the expression profiles of CarE gene CpCE-1 at different developmental stages and in different tissues of C. pomonella, as well as the larvae exposed to chlorpyrifos-ethyl and lambda-cyhalothrin by using absolute real-time quantitative PCR (absolute RT-qPCR). Results indicated that CpCE-1 expression was significantly altered during C. pomonella development stages, and this expression differed between sexes, with a higher transcript in females than males. Meanwhile, CpCE-1 is overexpressed in cuticle, midgut and head than silk gland, fat body and Malpighian tubules. Exposure of third instar larvae to a non-lethal dosage of chlorpyrifos-ethyl and lambda-cyhalothrin resulted in induction of CpCE-1 transcript. The total carboxylesterase enzyme activity was inhibited by chlorpyrifos-ethyl in vivo; in contrast, the activity of Escherichia coli produced recombinant CpCE-1 was significantly inhibited by both lambda-cyhalothrin and chlorpyrifos-ethyl in vitro. These results suggested that CpCE-1 in C. pomonella is potentially involved in the development and in detoxification of chlorpyrifos-ethyl and lambda-cyhalothrin.

  4. Constraints on isocurvature models from the WMAP first-year data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moodley, K.; Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH; Bucher, M.

    2004-11-15

    We investigate the constraints imposed by the first-year Wilkinson Microwave Anisotropy Probe (WMAP) cosmic microwave background (CMB) data extended to higher multipoles by data from ACBAR, BOOMERANG, CBI, and the VSA and by the large-scale structure data from the 2dF galaxy redshift survey on the possible amplitude of primordial isocurvature modes. A flat universe with cold dark matter (CDM) and cosmological constant {lambda} is assumed, and the baryon, CDM isocurvature (CI), and neutrino density (NID), and velocity (NIV) isocurvature modes are considered. Constraints on the allowed isocurvature contributions are established from the data for various combinations of the adiabatic modemore » and one, two, and three isocurvature modes, with intermode cross correlations allowed. Since baryon and CDM isocurvature are observationally virtually indistinguishable, these modes are not considered separately. We find that when just a single isocurvature mode is added, the present data allows an isocurvature fraction, in terms of the nonadiabatic contribution to the power in the CMB anisotropy, as large as 13{+-}6, 7{+-}4, and 13{+-}7 percent for adiabatic plus the CI, NID, and NIV modes, respectively. When two isocurvature modes plus the adiabatic mode and cross correlations are allowed, these percentages rise to 47{+-}16, 34{+-}12, and 44{+-}12 for the combinations CI+NID, CI+NIV, and NID+NIV, respectively. Finally, when all three isocurvature modes and cross correlations are allowed, the admissible isocurvature fraction rises to 57{+-}9 percent. In our analysis we consider only scalar modes with a single common tilt parameter for all the modes and do not consider any possible primordial anisotropies in the local neutrino velocity distribution beyond quadrupole order. The sensitivity of the results to the choice of prior probability distribution is examined.« less

  5. Near-Infrared (0.67-4.7 microns) Optical Constants Estimated for Montmorillonite

    NASA Technical Reports Server (NTRS)

    Roush, T. L.

    2005-01-01

    Various models of the reflectance from particulate surfaces are used for interpretation of remote sensing data of solar system objects. These models rely upon the real (n) and imaginary (k) refractive indices of the materials. Such values are limited for commonly encountered silicates at visual and near-infrared wavelengths (lambda, 0.4-5 microns). Availability of optical constants for candidate materials allows more thorough modeling of the observations obtained by Earth-based telescopes and spacecraft. Two approaches for determining the absorption coefficient (alpha=2pik/lambda) from reflectance measurements of particulates have been described; one relies upon Kubelka-Munk theory and the other Hapke theory. Both have been applied to estimate alpha and k for various materials. Neither enables determination of the wavelength dependence of n, n=f(lambda). Thus, a mechanism providing this ability is desirable. Using Hapke-theory to estimate k from reflectance measurements requires two additional quantities be known or assumed: 1) n=f(lambda) and 2) d, the sample particle diameter. Typically n is assumed constant (c) or modestly varying with lambda; referred to here as n(sub 0). Assuming n(sub 0), at each lambda an estimate of k is used to calculate the reflectance and is iteratively adjusted until the difference between the model and measured reflectance is minimized. The estimated k's (k(sub 1)) are the final results, and this concludes the typical analysis.

  6. Ion Viscosity Mediated by Tangled Magnetic Fields: An Application to Black Hole Accretion Disks

    NASA Technical Reports Server (NTRS)

    Subramanian, Prasad; Becker, Peter A.; Kafatos, Menas

    1996-01-01

    We examine the viscosity associated with the shear stress exerted by ions in the presence of a tangled magnetic field. As an application, we consider the effect of this mechanism on the structure of black hole accretion disks. We do not attempt to include a self-consistent description of the magnetic field. Instead, we assume the existence of a tangled field with coherence length lambda(sub coh), which is the average distance between the magnetic 'kinks' that scatter the particles. For simplicity, we assume that the field is self-similar, and take lambda(sub coh) to be a fixed fraction zeta of the local disk height H. Ion viscosity in the presence of magnetic fields is generally taken to be the cross-field viscosity, wherein the effective mean free path is the ion Larmor radius lambda(sub L), which is much less than the ion-ion Coulomb mean free path A(sub ii) in hot accretion disks. However, we arrive at a formulation for a 'hybrid' viscosity in which the tangled magnetic field acts as an intermediary in the transfer of momentum between different layers in the shear flow. The hybrid viscosity greatly exceeds the standard cross-field viscosity when (lambda/lambda(sub L)) much greater than (lambda(sub L)/lambda(sub ii)), where lambda = ((lambda(sub ii)(sup -1) + lambda(sub (coh)(sup -1))(sup -1) is the effective mean free path for the ions. This inequality is well satisfied in hot accretion disks, which suggests that the ions may play a much larger role in the momentum transfer process in the presence of magnetic fields than was previously thought. The effect of the hybrid viscosity on the structure of a steady-state, two-temperature, quasi-Keplerian accretion disk is analyzed. The hybrid viscosity is influenced by the degree to which the magnetic field is tangled (represented by zeta = lambda(sub coh)), and also by the relative accretion rate M/M(sub E), where M(sub E) = L(sub E)/c(sup 2) and L(sub E) is the Eddington luminosity. We find that ion viscosity in the presence of magnetic fields (hybrid viscosity) can dominate over conventional magnetic viscosity for fields that are tangled on sufficiently small scales.

  7. Response surface models for effects of temperature and previous growth sodium chloride on growth kinetics of Salmonella typhimurium on cooked chicken breast.

    PubMed

    Oscar, T P

    1999-12-01

    Response surface models were developed and validated for effects of temperature (10 to 40 degrees C) and previous growth NaCl (0.5 to 4.5%) on lag time (lambda) and specific growth rate (mu) of Salmonella Typhimurium on cooked chicken breast. Growth curves for model development (n = 55) and model validation (n = 16) were fit to a two-phase linear growth model to obtain lambda and mu of Salmonella Typhimurium on cooked chicken breast. Response surface models for natural logarithm transformations of lambda and mu as a function of temperature and previous growth NaCl were obtained by regression analysis. Both lambda and mu of Salmonella Typhimurium were affected (P < 0.0001) by temperature but not by previous growth NaCl. Models were validated against data not used in their development. Mean absolute relative error of predictions (model accuracy) was 26.6% for lambda and 15.4% for mu. Median relative error of predictions (model bias) was 0.9% for lambda and 5.2% for mu. Results indicated that the models developed provided reliable predictions of lambda and mu of Salmonella Typhimurium on cooked chicken breast within the matrix of conditions modeled. In addition, results indicated that previous growth NaCl (0.5 to 4.5%) was not a major factor affecting subsequent growth kinetics of Salmonella Typhimurium on cooked chicken breast. Thus, inclusion of previous growth NaCl in predictive models may not significantly improve our ability to predict growth of Salmonella spp. on food subjected to temperature abuse.

  8. Implications of heavy quark-diquark symmetry for excited doubly heavy baryons and tetraquarks

    NASA Astrophysics Data System (ADS)

    Mehen, Thomas

    2017-11-01

    We give heavy quark-diquark symmetry predictions for doubly heavy baryons and tetraquarks in light of the recent discovery of the Ξcc ++ by LHCb. For five excited doubly charm baryons that are predicted to lie below the ΛcD threshold, we give predictions for their electromagnetic and strong decays using a previously developed chiral Lagrangian with heavy quark-diquark symmetry. Based on the mass of the Ξcc ++, the existence of a doubly heavy bottom I =0 tetraquark that is stable to strong and electromagnetic decays has been predicted. If the mass of this state is below 10405 MeV, as predicted in some models, we argue using heavy quark-diquark symmetry that the JP=1+ I =1 doubly bottom tetraquark state will lie just below the open bottom threshold and likely be a narrow state as well. In this scenario, we compute strong decay width for this state using a new Lagrangian for doubly heavy tetraquarks which is related to the singly heavy baryon Lagrangian by heavy quark-diquark symmetry.

  9. Dark Galaxies and Lost Baryons (IAU S244)

    NASA Astrophysics Data System (ADS)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks; Numerical simulation of the dwarf companions of giant galaxies A. Nelson and P. Williams; Delayed galaxies C. Struck, M. Hancock, B. Smith, P. Appleton, V. Charmandaris and M. Giroux; Probe of dark galaxies via disturbed/lopsided isolated galaxies I. Karachentsev, V. Karachentseva, W. Huchtmeier, D. Makarov and S. Kaisin; Star formation thresholds J. Schaye; Scaling relations of dwarf galaxies without supernova-driven winds K. Tassis, A. Kravtsov and N. Gnedin; Star formation in massive low surface brightness galaxies K. O'Neil; Linking clustering properties and the evolution of low surface brightness galaxies D. Bomans and S. Rosenbaum; Too small to form a galaxy: how the UV background determines the baryon fraction M. Hoeft, G. Yepes and S. Gottlober; Star formation in damped Lyman selected galaxies L. Christensen; Dark-matter content of early-type galaxies with planetary nebulae N. Napolitano et al.; Hunting for ghosts: low surface brightnesses from pixels R. Scaramella and S. Sabatini; Baryonic properties of the darkest galaxies E. Grebel; The dwarf low surface brightness population in different environments of the local universe S. Sabatini, J. Davies, S. Roberts and R. Scaramella; Mass modelling of dwarf spheroidal galaxies J. Klimentowski et al.; Evolution of dwarf galaxies in the Centaurus A Group L. Makarova and D. Makarov; A flat faint end of the Fornax cluster galaxy luminosity function S. Mieske, M. Hilker, L. Infante and C. Mendes de Oliveira; Can massive dark halos destroy the discs of dwarf galaxies? B. Fuchs and O. Esquivel; 'Dark galaxies' and local very metal-poor gas-rich galaxies: possible interrelations S. Pustilnik; Morphology and environment of dwarf galaxies in the local universe H. Ann; Arecibo survey of HI emission from disk galaxies at redshift z 0.2 B. Catinella, M. Haynes, J. Gardner, A. Connolly and R. Giovanelli; AGES observations of

  10. Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagman, Michael L.; Winter, Frank; Chang, Emmanuel

    Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less

  11. Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics

    DOE PAGES

    Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; ...

    2017-12-28

    Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less

  12. Transitions in eigenvalue and wavefunction structure in (1+2) -body random matrix ensembles with spin.

    PubMed

    Vyas, Manan; Kota, V K B; Chavda, N D

    2010-03-01

    Finite interacting Fermi systems with a mean-field and a chaos generating two-body interaction are modeled by one plus two-body embedded Gaussian orthogonal ensemble of random matrices with spin degree of freedom [called EGOE(1+2)-s]. Numerical calculations are used to demonstrate that, as lambda , the strength of the interaction (measured in the units of the average spacing of the single-particle levels defining the mean-field), increases, generically there is Poisson to GOE transition in level fluctuations, Breit-Wigner to Gaussian transition in strength functions (also called local density of states) and also a duality region where information entropy will be the same in both the mean-field and interaction defined basis. Spin dependence of the transition points lambda_{c} , lambdaF, and lambdad , respectively, is described using the propagator for the spectral variances and the formula for the propagator is derived. We further establish that the duality region corresponds to a region of thermalization. For this purpose we compared the single-particle entropy defined by the occupancies of the single-particle orbitals with thermodynamic entropy and information entropy for various lambda values and they are very close to each other at lambda=lambdad.

  13. The effects of house spraying with DDT or lambda-cyhalothrin against Anopheles arabiensis on measures of malarial morbidity in children in Tanzania.

    PubMed

    Mnzava, A E; Rwegoshora, R T; Tanner, M; Msuya, F H; Curtis, C F; Irare, S G

    1993-08-01

    The effects of house spraying of DDT and lambda-cyhalothrin against populations of Anopheles arabiensis were assessed in children aged between 1 and 10 years with regard to fever episodes and parasite prevalences. DDT and lambda-cyhalothrin treatment did not reduce the prevalence of malaria episodes as defined by fever (temperatures > or = 37.4 degrees C and/or fever reported) combined with high parasitaemia (> or = 100 parasites/200 leucocytes). However, the prevalence of malaria parasitaemia, of the episodes of fever with any level of malaria parasitaemia and of high parasitaemia alone were significantly reduced. Furthermore, the reduction in mean parasite densities was greater in children of the 1-2 years age group for both insecticides and also for children of 3-5 years age group with lambda-cyhalothrin. Measured and/or reported fever and high parasitaemia were correlated and the data indicated that most of the fevers in these children could be attributed to malaria. Using this criterion it is concluded that the population of An. arabiensis responded to both DDT and lambda-cyhalothrin house spraying which in turn also reduced malaria-related morbidity.

  14. Shell-model predictions for Lambda Lambda hypernuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gal, A.; Millener, D.

    2011-06-02

    It is shown how the recent shell-model determination of {Lambda}N spin-dependent interaction terms in {Lambda} hypernuclei allows for a reliable deduction of {Lambda}{Lambda} separation energies in {Lambda}{Lambda} hypernuclei across the nuclear p shell. Comparison is made with the available data, highlighting {sub {Lambda}{Lambda}}{sup 11}Be and {sub {Lambda}{Lambda}}{sup 12}Be which have been suggested as possible candidates for the KEK-E373 HIDA event.

  15. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda-to-kappa swap of the VL framework using a structure-guided approach.

    PubMed

    Lehmann, Andreas; Wixted, Josephine H F; Shapovalov, Maxim V; Roder, Heinrich; Dunbrack, Roland L; Robinson, Matthew K

    2015-01-01

    Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability.

  16. Characteristics of hardron-nucleus interactions at 100 GeV/c

    NASA Astrophysics Data System (ADS)

    Toothacker, W. S.; Whitmore, J.; Elcombe, P. A.; Hill, J. C.; Neale, W. W.; Kowald, W.; Walker, W. D.; Lucas, P.; Voyvodic, L.; Ammar, R.; Coppage, D.; Davis, R.; Gress, J.; Kanekal, S.; Kwak, N.; Bishop, J. M.; Biswas, N. N.; Cason, N. M.; Kenney, V. P.; Mattingly, M. C. K.; Ruchti, R. C.; Shepard, W. D.; Ting, S. J. Y.

    1988-11-01

    We report on 100 GeV/c interactions of p and p¯ with Ag and Au targets. This is a subset of the data from Fermilab experiment E597 and was performed with the 30-inch bubble chamber and Downstream Particle Identifier. Final state protons with laboratory momentum less than 1.4 GeV/c have been identified by their ionization in the bubble chamber. Final state protons/antiprotons with laboratory momentum greater than 10 GeV/c have been identified using CRISIS, an ionization sampling drift chamber. The cross section and mean transverse momentum squared of the leading baryon from the reactions p+(Ag,Au)→p+X and p¯+(Ag,Au)→p¯+X are presented as a function of the rapidity loss of the leading baryon. The laboratory rapidity and transverse momentum squared of the associated pions are also presented.

  17. Formation of (Ti,Al)N/Ti{sub 2}AlN multilayers after annealing of TiN/TiAl(N) multilayers deposited by ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolique, V.; Jaouen, M.; Cabioc'h, T.

    2008-04-15

    By using ion beam sputtering, TiN/TiAl(N) multilayers of various modulation wavelengths ({lambda}=8, 13, and 32 nm) were deposited onto silicon substrates at room temperature. After annealing at 600 deg. C in vacuum, one obtains for {lambda}=13 nm a (Ti,Al)N/Ti{sub 2}AlN multilayer as it is evidenced from x-ray diffraction, high resolution transmission electron microscopy, and energy filtered electron imaging experiments. X-ray photoelectron spectroscopy (XPS) experiments show that the as-deposited TiAl sublayers contain a noticeable amount of nitrogen atoms which mean concentration varies with the period {lambda}. They also evidenced the diffusion of aluminum into TiN sublayers after annealing. Deduced from thesemore » observations, we propose a model to explain why this solid-state phase transformation depends on the period {lambda} of the multilayer.« less

  18. [Vitamin para-aminobenzoic acid inhibits development of SOS function in tif-1 mutants of Escherichia coli at nonpermissive temperatures].

    PubMed

    Vasil'eva, S V; Gorb, T E; Rapoport, I A

    1983-12-01

    The development of "SOS" inducible functions in lysogenic and non-lysogenic strains of Escherichia coli tif-1 sfiA11 (lambda) at nonpermissive temperature of 42 degrees C was strongly suppressed by para-aminobenzoic acid (PABA). The rate of prophage lambda induction decreased 400 times, as compared to the control level; the efficiency of W-reactivation of UV-irradiated phage lambda decreased 37.5 to 16%. PABA also inhibited to some extent (1.5 times) the process of inducible recombination on the RecF pathway. The processes of spontaneous lambda induction and W-reactivation, as well as spontaneous recombination on RecBC and RecF pathways, were not influenced by PABA. The above data are in accordance with previous studies of PABA action when the manifestation of "SOS" functions was induced by chemical mutagens. The action of PABA has been tentatively interpreted on the basis of negative control of "SOS" repair pathway.

  19. Spectroscopy of singly, doubly, and triply bottom baryons

    NASA Astrophysics Data System (ADS)

    Wei, Ke-Wei; Chen, Bing; Liu, Na; Wang, Qian-Qian; Guo, Xin-Heng

    2017-06-01

    Recently, some singly bottom baryons have been established experimentally, but none of the doubly or triply bottom baryons have been observed. Under the Regge phenomenology, the mass of an unobserved ground-state doubly or triply bottom baryon is expressed as a function of masses of the well-established light baryons and singly bottom baryons. Then, the values of Regge slopes and Regge intercepts for baryons containing one, two, or three bottom quarks are calculated. After that, the masses of the orbitally excited singly, doubly, and triply bottom baryons are estimated. Our predictions may be useful for the discovery of these baryons and their JP assignments.

  20. Measurement of the forward-backward asymmetry of $$\\Lambda$$ and $$\\bar{\\Lambda}$$ production in $$p \\bar{p}$$ collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, Victor Mukhamedovich

    Here, we studymore » $$\\Lambda$$ and $$\\bar{\\Lambda}$$ production asymmetries in $$p \\bar{p} \\rightarrow \\Lambda (\\bar{\\Lambda}) X$$, $$p \\bar{p} \\rightarrow J/\\psi \\Lambda (\\bar{\\Lambda}) X$$, and $$p \\bar{p} \\rightarrow \\mu^\\pm \\Lambda (\\bar{\\Lambda}) X$$ events recorded by the D0 detector at the Fermilab Tevatron collider at $$\\sqrt{s} = 1.96$$ TeV. We find an excess of $$\\Lambda$$'s ($$\\bar{\\Lambda}$$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $$\\bar{\\Lambda}/\\Lambda$$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.« less

  1. Measurement of the forward-backward asymmetry of $$\\Lambda$$ and $$\\bar{\\Lambda}$$ production in $$p \\bar{p}$$ collisions

    DOE PAGES

    Abazov, Victor Mukhamedovich

    2016-02-09

    Here, we studymore » $$\\Lambda$$ and $$\\bar{\\Lambda}$$ production asymmetries in $$p \\bar{p} \\rightarrow \\Lambda (\\bar{\\Lambda}) X$$, $$p \\bar{p} \\rightarrow J/\\psi \\Lambda (\\bar{\\Lambda}) X$$, and $$p \\bar{p} \\rightarrow \\mu^\\pm \\Lambda (\\bar{\\Lambda}) X$$ events recorded by the D0 detector at the Fermilab Tevatron collider at $$\\sqrt{s} = 1.96$$ TeV. We find an excess of $$\\Lambda$$'s ($$\\bar{\\Lambda}$$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $$\\bar{\\Lambda}/\\Lambda$$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.« less

  2. Universal formula for baryon spectra in heavy-ion collisions and its implications

    NASA Astrophysics Data System (ADS)

    Hwa, Rudolph C.; Zhu, Lilin

    2018-05-01

    In an unconventional presentation of the data on the transverse momentum spectra of baryons produced in heavy-ion collisions, regularities are found that make possible the discovery of a universal formula valid for p ,Λ ,Ξ , and Ω . The formula describes the baryon distributions over wide ranges of pT(0.5 ≲ pT≲5 GeV/c ) for 0.06 ≲√{sN N}≲3 TeV, except for very peripheral collisions. Some aspects of their empirical properties are derived in the recombination model, resulting in a revelation of some features of the light and strange quark distributions before hadronization. Interpretation of the inverse slopes of their exponential behavior leads to an implication that cannot accommodate the conventional description of fluid flow. This is mainly a study of phenomenology without detailed model input.

  3. The nature of the F str lambda 4077 stars. 3: Spectroscopy of the barium dwarfs and other CP stars

    NASA Technical Reports Server (NTRS)

    North, P.; Berthet, S.; Lanz, T.

    1994-01-01

    The abundances of C, O, Al, Ca, iron-peak and s-process elements have been derived from high-resolution spectra for a sample of stars classified as F str lambda 4077 by Bidelman. Among the 20 stars mentioned by Bidelman, we have discovered 8 barium dwarfs (or CH subgiants, according to Bond's terminology), while a 9th star, HD 182274, was already known as a CH subgiant. In addition, we have analyzed three barium stars taken from the list of Lu et al. (1983) which are probably dwarfs rather than giants, and three CH subgiants. The other 11 F str lambda 4077 stars resemble either the delta Delphini stars, since their iron abundance is enhanced while Ca is normal, or are probably spectrum composites. A few Am, Ap, lambda Bootis and normal stars have been analyzed for comparison. In particular, we have included three lambda Boo candidates, selected from their photometric properties, and their iron deficiency is confirmed. The spectroscopic, photometric and statistical evidences concerning the Ba dwarfs, support the idea that these stars may be the main sequence counterparts, and possibly the progenitors of the Ba giants. The C/O ratio varies in these stars from normal values to a maximum of 1.5, but mostly within 0.6 and 1.2. Some of these objects may therefore be considered, in this sense, as carbon stars. On the other hand, the abundances of carbon and s-process elements relative to iron are inversely correlated with metallicity, and may even exceed significantly those of typical, solar-metallicity carbon stars. Metal-deficient C stars must therefore have (C/Fe) greater than or approximately equal to 1 and (s/Fe) greater than or approximately equal to 1.5 as soon as (Fe/H) less than or approximately equal to -1. The neutron exposure is shown to increase when the metallicity decreases, which is compatible with the C-13 (alpha, n) O-16 neutron source, but not with the Ne-22 (alpha, n) Mg-25 one. The evolutionary state (within the main sequence) of the Ba dwarfs, is rediscussed in relation with their photometric and spectroscopic surface gravity, but it remains unclear.

  4. Results of the Second SeaWiFS Data Analysis Round Robin, March 2000 (DARR-00)

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; D'Alimonte, Davide; Maritorena, Stephane; McLean, Scott; Sildam, Juri; McClain, Charles R. (Technical Monitor)

    2001-01-01

    The accurate determination of upper ocean apparent optical properties (AOPs) is essential for the vicarious calibration of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument and the validation of the derived data products. To evaluate the importance of data analysis methods upon derived AOP values, the Second Data Analysis Round Robin (DARR-00) activity was planned during the latter half of 1999 and executed during March 2000. The focus of the study was the intercomparison of several standard AOP parameters: (1) the upwelled radiance immediately below the sea surface, L(sub u)(0(-),lambda); (2) the downward irradiance immediately below the sea surface, E(sub d)(0(-),lambda); (3) the diffuse attenuation coefficients from the upwelling radiance and the downward irradiance profiles, L(sub L)(lambda) and K(sub d)(lambda), respectively; (4) the incident solar irradiance immediately above the sea surface, E(sub d)(0(+),lambda); (5) the remote sensing reflectance, R(sub rs)(lambda); (6) the normalized water-leaving radiance, [L(sub W)(lambda)](sub N); (7) the upward irradiance immediately below the sea surface, E(sub u)(0(-)), which is used with the upwelled radiance to derive the nadir Q-factor immediately below the sea surface, Q(sub n)(0(-),lambda); and (8) ancillary parameters like the solar zenith angle, theta, and the total chlorophyll concentration, C(sub Ta), derived from the optical data through statistical algorithms. In the results reported here, different methodologies from three research groups were applied to an identical set of 40 multispectral casts in order to evaluate the degree to which differences in data analysis methods influence AOP estimation, and whether any general improvements can be made. The overall results of DARR-00 are presented in Chapter 1 and the individual methods used by the three groups and their data processors are presented in Chapters 2-4.

  5. Hadron masses in a gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rujula, A.; Georgi, H.; Glashow, S.L.

    1975-07-01

    We explore the implications for hadron spectroscopy of the ''standard'' gauge model of weak, electromagnetic, and strong interactions. The model involves four types of fractionally charged quarks, each in three colors, coupling to massless gauge gluons. The quarks are confined within colorless hadrons by a long-range spin-independent force realizing infrared slavery. We use the asymptotic freedom of the model to argue that for the calculation of hadron masses, the short-range quark-quark interaction may be taken to be Coulomb- like. We rederive many successful quark-model mass relations for the low-lying hadrons. Because a specific interaction and symmetry-breaking mechanism are forced onmore » us by the underlying renormalizable gauge field theory, we also obtain new mass relations. They are well satisfied. We develop a qualitative understanding of many features of the hadron mass spectrum, such as the origin and sign of the $Sigma$-$lambda$ mass splitting. Interpreting the newly discovered narrow boson resonances as states of charmonium, we use the model to predict the masses of charmed mesons and baryons.« less

  6. Quantum scattering studies of spin-orbit effects in the Cl({sup 2}P) + HCl {yields} ClH + Cl({sup 2}P) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schatz, G.C.; McCabe, P.; Connor, J.N.L.

    1998-07-01

    The authors present quantum scattering calculations for the Cl + HCl {yields} ClH + Cl reaction in which they include the three electronic states that correlate asymptotically to the ground state of Cl({sup 2}P) + HCl(X{sup 1}{Sigma}{sup +}). The potential surfaces and couplings are taken from the recent work of C.S. Maierle, G.C. Schatz, M.S. Gordon, P. McCabe and J.N.L. Connor, J. Chem. Soc. Farad. Trans. (1997). They are based on extensive ab initio calculations for geometries in the vicinity of the lowest energy saddle point, and on an electrostatic expansion (plus empirical dispersion and repulsion) for long range geometriesmore » including the van der Waals wells. Spin-orbit coupling has been included using a spin-orbit coupling parameter {lambda} that is assumed to be independent of nuclear geometry, and Coriolis interactions are incorporated accurately. The scattering calculations use a hyperspherical coordinate coupled channel method in full dimensionality. AJ-shifting approximation is employed to convert cumulative reaction probabilities for total angular momentum quantum number J = 1/2 into state selected and thermal rate coefficients. Two issues have been studied: (a) the influence of the magnitude of {lambda} on the fine-structure resolved cumulative probabilities and rate coefficients (the authors consider {lambda}`s that vary from 0 to {+-}100% of the true Cl value), and (b) the transition state resonance spectrum, and its variation with {lambda} and with other parameters in the calculations. Cl + HCl is a simple hydrogen transfer reaction which serves as a canonical model both for heavy-light-heavy atom reactions, and for the reactions of halogen atoms with closed shell molecules.« less

  7. Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn

    2015-11-01

    Five dimensional black hole solutions that describe the QCD crossover transition seen in (2 +1 ) -flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV ≤T ≤300 MeV and baryon chemical potentials 0 ≤μB≤400 MeV . Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.

  8. Magnetic moments of the lowest-lying singly heavy baryons

    NASA Astrophysics Data System (ADS)

    Yang, Ghil-Seok; Kim, Hyun-Chul

    2018-06-01

    A light baryon is viewed as Nc valence quarks bound by meson mean fields in the large Nc limit. In much the same way a singly heavy baryon is regarded as Nc - 1 valence quarks bound by the same mean fields, which makes it possible to use the properties of light baryons to investigate those of the heavy baryons. A heavy quark being regarded as a static color source in the limit of the infinitely heavy quark mass, the magnetic moments of the heavy baryon are determined entirely by the chiral soliton consisting of a light-quark pair. The magnetic moments of the baryon sextet are obtained by using the parameters fixed in the light-baryon sector. In this mean-field approach, the numerical results of the magnetic moments of the baryon sextet with spin 3/2 are just 3/2 larger than those with spin 1/2. The magnetic moments of the bottom baryons are the same as those of the corresponding charmed baryons.

  9. Evolution of Structure in the Intergalactic Medium and the Nature of the LY-Alpha Forest

    NASA Technical Reports Server (NTRS)

    Bi, Hongguang; Davidsen, Arthur F.

    1997-01-01

    We have performed a detailed statistical study of the evolution of structure in a photoionized intergalactic medium (IGM) using analytical simulations to extend the calculation into the mildly nonlinear density regime found to prevail at z = 3. Our work is based on a simple fundamental conjecture: that the probability distribution function of the density of baryonic diffuse matter in the universe is described by a lognormal (LN) random field. The LN distribution has several attractive features and follows plausibly from the assumption of initial linear Gaussian density and velocity fluctuations at arbitrarily early times. Starting with a suitably normalized power spectrum of primordial fluctuations in a universe dominated by cold dark matter (CDM), we compute the behavior of the baryonic matter, which moves slowly toward minima in the dark matter potential on scales larger than the Jeans length. We have computed two models that succeed in matching observations. One is a nonstandard CDM model with OMEGA = 1, h = 0.5, and GAMMA = 0.3, and the other is a low-density flat model with a cosmological constant (LCDM), with OMEGA = 0.4, OMEGA(sub LAMBDA) = 0.6, and h = 0.65. In both models, the variance of the density distribution function grows with time, reaching unity at about z = 4, where the simulation yields spectra that closely resemble the Ly-alpha forest absorption seen in the spectra of high-z quasars. The calculations also successfully predict the observed properties of the Ly-alpha forest clouds and their evolution from z = 4 down to at least z = 2, assuming a constant intensity for the metagalactic UV background over this redshift range. However, in our model the forest is not due to discrete clouds, but rather to fluctuations in a continuous intergalactic medium. At z = 3; typical clouds with measured neutral hydrogen column densities N(sub H I) = 10(exp 13.3), 10(exp 13.5), and 10(exp 11.5) /sq cm correspond to fluctuations with mean total densities approximately 10, 1, and 0.1 times the universal mean baryon density. Perhaps surprisingly, fluctuations whose amplitudes are less than or equal to the mean density still appear as "clouds" because in our model more than 70% of the volume of the IGM at z = 3 is filled with gas at densities below the mean value.

  10. Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome.

    PubMed

    Lin, F L; Sternberg, N

    1984-05-01

    We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants.

  11. Cirrus Parcel Model Comparison Project. Phase 1

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David O'C.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth

    2000-01-01

    The Cirrus Parcel Model Comparison (CPMC) is a project of the GEWEX Cloud System Study Working Group on Cirrus Cloud Systems (GCSS WG2). The primary goal of this project is to identify cirrus model sensitivities to the state of our knowledge of nucleation and microphysics. Furthermore, the common ground of the findings may provide guidelines for models with simpler cirrus microphysics modules. We focus on the nucleation regimes of the warm (parcel starting at -40 C and 340 hPa) and cold (-60 C and 170 hPa) cases studied in the GCSS WG2 Idealized Cirrus Model Comparison Project. Nucleation and ice crystal growth were forced through an externally imposed rate of lift and consequent adiabatic cooling. The background haze particles are assumed to be lognormally-distributed H2SO4 particles. Only the homogeneous nucleation mode is allowed to form ice crystals in the HN-ONLY runs; all nucleation modes are switched on in the ALL-MODE runs. Participants were asked to run the HN-lambda-fixed runs by setting lambda = 2 (lambda is further discussed in section 2) or tailoring the nucleation rate calculation in agreement with lambda = 2 (exp 1). The depth of parcel lift (800 m) was set to assure that parcels underwent complete transition through the nucleation regime to a stage of approximate equilibrium between ice mass growth and vapor supplied by the specified updrafts.

  12. Nonperturbative parton distributions and the proton spin problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonov, Yu. A., E-mail: simonov@itep.ru

    2016-05-15

    The Lorentz contracted form of the static wave functions is used to calculate the valence parton distributions for mesons and baryons, boosting the rest frame solutions of the path integral Hamiltonian. It is argued that nonperturbative parton densities are due to excitedmultigluon baryon states. A simplemodel is proposed for these states ensuring realistic behavior of valence and sea quarks and gluon parton densities at Q{sup 2} = 10 (GeV/c){sup 2}. Applying the same model to the proton spin problem one obtains Σ{sub 3} = 0.18 for the same Q{sup 2}.

  13. Effects of a spin-flavour-dependent interaction on light-flavoured baryon helicity amplitudes

    NASA Astrophysics Data System (ADS)

    Ronniger, Michael; Metsch, Bernard Ch.

    2013-01-01

    This paper is a continuation of a previous work about the effects of a phenomenological flavour-dependent force in a relativistically covariant constituent quark model based on the Salpeter equation on the structure of light-flavoured baryon resonances. Here the longitudinal and transverse helicity amplitudes as studied experimentally in the electro-excitation of nucleon- and Δ-resonances are calculated. In particular the amplitudes for the excitation of three- and four-star resonances as calculated in a previous model A are compared to those of the novel model C as well as to existing and partially new experimental data such as, e.g., determined by the CB-ELSA Collaboration. A brief discussion on some improvements to model C is given after the introduction.

  14. Measuring the speed of light with baryon acoustic oscillations.

    PubMed

    Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth

    2015-03-13

    In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.

  15. Strange and heavy hadrons production from coalescence plus fragmentation in AA collisions at RHIC and LHC

    NASA Astrophysics Data System (ADS)

    Plumari, Salvatore; Minissale, Vincenzo; Das, Santosh K.; Scardina, Francesco; Greco, Vincenzo

    2018-02-01

    In a coalescence plus fragmentation approach we study the pT spectra of charmed hadrons D0, Ds up to about 10 GeV and the Λ+c /D0 ratio from RHIC to LHC energies. In this study we have included the contribution from decays of heavy hadron resonances and also that due to fragmentation of heavy quarks that are left in the system after coalescence. The pT dependence of the heavy baryon/meson ratios is found to be sensitive to the heavy quark mass. In particular we found that the Λc/D0 is much flatter than the one for light baryon/meson ratio like p/π and Λ/K.

  16. Measurement of the $$\\Lambda_b$$ cross section and the $$_{\\bar{\\Lambda}_b}$$ to $$\\Lambda_b$$ ratio with $$J/\\Psi \\Lambda$$ decays in $pp$ collisions at $$\\sqrt{s}=7$$ TeV

    DOE PAGES

    Chatrchyan, Serguei; et al.

    2013-07-16

    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versusmore » pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.« less

  17. Baryogenesis in nonminimally coupled f (R ) theories

    NASA Astrophysics Data System (ADS)

    Ramos, M. P. L. P.; Páramos, J.

    2017-11-01

    We generalize the mechanism for gravitational baryogensis in the context of f (R ) theories of gravity, including a nonminimal coupling between curvature and matter. In these models, the baryon asymmetry is generated through an effective coupling between the Ricci scalar curvature and the net baryon current that dynamically breaks Charge conjugation, parity and time reversal (C P T ) invariance. We study the combinations of characteristic mass scales and exponents for both nontrivial functions present in the modified action functional and establish the allowed region for these parameters: we find that very small deviations from general relativity are consistent with the observed baryon asymmetry and lead to temperatures compatible with the subsequent formation of the primordial abundances of light elements. In particular, we show the viability of a power-law nonminimal coupling function f2(R )˜Rn with 0

  18. K S 0 - K L 0 asymmetries and CP violation in charmed baryon decays into neutral kaons

    NASA Astrophysics Data System (ADS)

    Wang, Di; Guo, Peng-Fei; Long, Wen-Hui; Yu, Fu-Sheng

    2018-03-01

    We study the K S 0 - K L 0 asymmetries and CP violations in charm-baryon decays with neutral kaons in the final state. The K S 0 - K L 0 asymmetry can be used to search for two-body doubly Cabibbo-suppressed amplitudes of charm-baryon decays, with the one in Λ c + → pK S, L 0 as a promising observable. Besides, it is studied for a new CP-violation effect in these processes, induced by the interference between the Cabibbo-favored and doubly Cabibbo-suppressed amplitudes with the neutral kaon mixing. Once the new CP-violation effect is determined by experiments, the direct CP asymmetry in neutral kaon modes can then be extracted and used to search for new physics. The numerical results based on SU(3) symmetry will be tested by the experiments in the future.

  19. [The expression of interferon-lambda1 in CHO cell].

    PubMed

    Yuan, Wu-Mei; Ma, Fen-Lian; Zhang, Qian; Zheng, Wen-Zhi; Zheng, Li-Shu

    2013-06-01

    To construct the eukaryotic expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which linked the enhancer SP163 with interferon lambda1. Then express the interferon lambda1 in CHO (dhfr-) cells. Using PCR method to introduce the restriction enzyme sites and through the fusion PCR binding the enhancer with the interferon Lambda1. After sequenced, lambda1 and SP163-lambda1 was inserted into PCI-dhfr forming the expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which was constructed successfully confirming by sequencing. Then the expressing vectors were transfected into CHO (dhfr-) cells using liposome transfection method and interferon lambda1 protein was assayed with indirect immunofluorescence and Western Blot. Using cytopathic effect inhibition evaluated the antiviral activity of interferon lambda1. Successfully constructing the eukaryotic expression vectors of interferon lambda and the vectors could express interferon lambda1. The result of immunofluorescence showed the enhancer developed the expression of interferon lambda1. Detecting the interferon lambda1 in CHO (dhfr-) cells after transfecting 48 hour using Western Blot. The cytopathic effect inhibition showed the expressed interferon lambda1 has the antiviral activity. Successfully expressed the interferon lambda1 in CHO (dhfr-) cells and the protein possesses antiviral activity, which may supply a valuable basis for building the stable cell line of interferon lambda1.

  20. Energy of the ground and 2{sup +} excited states of {sub {lambda}}{sub {lambda}}{sup 10}Be: A partial ten-body model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoeb, Mohammad; Sonika

    2009-08-15

    The energies of the ground and excited 2{sup +} states of {sub {lambda}}{sub {lambda}}{sup 10}Be have been calculated variationally in the Monte Carlo framework. The hypernucleus is treated as a partial ten-body problem in the {lambda}{lambda}+{alpha}{alpha} model where nucleonic degrees of freedom of {alpha}'s are taken into consideration ignoring the antisymmetrization between two {alpha}'s. The central two-body {lambda}N and {lambda}{lambda} and the three-body dispersive and two-pion exchange {lambda}NN forces, constrained by the {lambda}p scattering data and the observed ground state energies of {sub {lambda}}{sup 5}He and {sub {lambda}}{sub {lambda}}{sup 6}He, are employed. The product-type trial wave function predicts binding energymore » for the ground state considerably less than for the event reported by Danysz et al.; however, it is consistent with the value deduced assuming a {gamma} ray of 3.04 MeV must have escaped undetected in the decay of the product {sub {lambda}}{sup 9}Be* {yields} {sub {lambda}}{sup 9}Be+{gamma} of the emulsion event {sub {lambda}}{sub {lambda}}{sup 10}Be{yields} {pi}{sup -}+p+{sub {lambda}}{sup 9}Be* and for the excited 2{sup +} state closer to the value measured in the Demachi-Yanagi event. The hypernucleus {sub {lambda}}{sub {lambda}}{sup 10}Be has an oblate shape in the excited state. These results are consistent with the earlier four-body {alpha} cluster model approach where {alpha}'s are assumed to be structureless entities.« less

  1. The Kalman-Tran-D'Souza model and the semileptonic decay rates of heavy baryons

    NASA Astrophysics Data System (ADS)

    D'Souza, I.; Kalman, C. S.; Kulikov, P. Yu.; Narodetskii, I. M.

    2001-03-01

    We present an investigation of the inclusive semileptonic decay widths of the heavy baryons Λ Q, Σ Q and Ξ Q, ( q = b, c) performed within a relativistic constituent quark model, formulated on the light-front. In a way conceptually similar to the deep-inelastic scattering case, the H Q-baryon inclusive width is expressed as the integral of the free Q-quark partial width multiplied by a bound-state factor related to the Q-quark distribution function in the H Q. The non-perturbative meson structure is described through the quark-model wave functions, constructed via the Hamiltonian light-front formalism using as input the Kalman-Tran-D'Souza equal time wave functions. A link between spectroscopic quark models and the H Q decay physics is obtained in this way. It is shown that the bound-state effects and the Fermi motion of the b-quark remarkably reduce the decay rate with respect to the free-quark result. Our predictions for the BR(Λ c → X sl ν e) and BR(Λ b → X cl ν e) decays are in good agreement with existing data.

  2. 39 CFR 262.5 - Systems (Privacy).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION RECORDS AND INFORMATION MANAGEMENT... information about individuals, including mailing lists, from which information is retrieved by the name of an... Management and Budget, and these regulations. The term “matching program” includes any computerized...

  3. 39 CFR 262.5 - Systems (Privacy).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION RECORDS AND INFORMATION MANAGEMENT... information about individuals, including mailing lists, from which information is retrieved by the name of an... Management and Budget, and these regulations. The term “matching program” includes any computerized...

  4. 39 CFR 262.5 - Systems (Privacy).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION RECORDS AND INFORMATION MANAGEMENT... information about individuals, including mailing lists, from which information is retrieved by the name of an... Management and Budget, and these regulations. The term “matching program” includes any computerized...

  5. 39 CFR 262.5 - Systems (Privacy).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION RECORDS AND INFORMATION MANAGEMENT... information about individuals, including mailing lists, from which information is retrieved by the name of an... Management and Budget, and these regulations. The term “matching program” includes any computerized...

  6. Testing of the coalescence mechanism in high energy heavy ion collisions using two-particle correlations with identified particle trigger

    NASA Astrophysics Data System (ADS)

    Choudhury, Subikash; Sarkar, Debojit; Chattopadhyay, Subhasis

    2016-05-01

    In central Au-Au collisions at top RHIC energy, two-particle correlation measurements with identified hadron trigger have shown attenuation of near-side proton triggered jetlike yield at intermediate transverse momentum (p T ),2

  7. Baryonic Force for Accelerated Cosmic Expansion and Generalized U1b Gauge Symmetry in Particle-Cosmology

    NASA Astrophysics Data System (ADS)

    Khan, Mehbub; Hao, Yun; Hsu, Jong-Ping

    2018-01-01

    Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian) groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.

  8. A far-ultraviolet flare on a Pleiades G dwarf

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Stauffer, J. R.; Simon, Theodore; Stern, R. A.; Antiochos, S. K.; Basri, G. S.; Bookbinder, J. A.; Brown, A.; Doschek, G. A.; Linsky, J. L.

    1994-01-01

    The Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) recorded a remarkable transient brightening in the C IV lambda lambda 1548,50 emissions of the rapidly rotating Pleiades G dwarf H II 314. On the one hand the 'flare' might be a rare event luckily observed; on the other hand it might be a bellwether of the coronal heating in very young solar-mass stars. If the latter, flaring provides a natural spin-down mechanism through associated sporadic magnetospheric mass loss.

  9. Corrigendum to ;Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement; [Physica A 467 (2017) 167-179

    NASA Astrophysics Data System (ADS)

    Pires, Marcelo A.; Crokidakis, Nuno

    2017-09-01

    The authors regret to inform that there are two misprints in the axis of Fig. 3 of the paper. In Fig. 3(c), the correct identification of the x-axis is γ (gamma) instead of λ (lambda), and in Fig. 3(d), the correct identification of the y-axis is γ (gamma) instead of λ (lambda). These modifications do not affect the results of the paper, as well as the discussion made in the text.

  10. A Measurement of the Lifetime of the Λ b Baryon with the CDF Detector at the Tevatron Run II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unverhau, Tatjana Alberta Hanna

    2004-12-01

    In March 2001 the Tevatron accelerator entered its Run II phase, providing colliding proton and anti-proton beams with an unprecedented center-of-mass energy of 1.96 TeV. The Tevatron is currently the only accelerator to produce Λ b baryons, which provides a unique opportunity to measure the properties of these particles. This thesis presents a measurement of the mean lifetime of the Λ b baryon in the semileptonic channel Λmore » $$0\\atop{b}$$ → Λ$$+\\atop{c}$$ μ - $$\\bar{v}$$ μ. In total 186 pb -1 of data were used for this analysis, collected with the CDF detector between February 2002 and September 2003. To select the long-lived events from b-decays, the secondary vertex trigger was utilized. This significant addition to the trigger for Run II allows, for the first time, the selection of events with tracks displaced from the primary interaction vertex at the second trigger level. After the application of selection cuts this trigger sample contains approximately 991 Λ b candidates. To extract the mean lifetime of Λ b baryons from this sample, they transverse decay length of the candidates is fitted with an unbinned maximum likelihood fit under the consideration of the missing neutrino momentum and the bias introduced by the secondary vertex trigger. The mean lifetime of the Λ b is measured to be τ = 1.29 ± 0.11(stat.) ± 0.07(syst.) ps equivalent to a mean decay length of cτ = 387 ± 33(stat.) ± 21 (syst.) μm.« less

  11. Octet baryon magnetic moments from lattice QCD: Approaching experiment from a three-flavor symmetric point

    DOE PAGES

    Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; ...

    2017-06-23

    We used lattice QCD calculations with background magnetic fields to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the SU(3) flavor-symmetric point, where the pion mass is m π ~ 800 MeV, and the other corresponding to a pion mass m π ~ 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units---the natural baryon magneton. This suggests that simple extrapolations can be used to determinemore » magnetic moments at the physical point, and extrapolated results are found to agree with experiment within uncertainties. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-N c limit of QCD are studied; and, in one case, the quark model prediction is significantly closer to the extracted values than the large-N c prediction. The magnetically coupled Λ-Σ 0 system is treated in detail at the SU(3) F point, with the lattice QCD results comparing favorably with predictions based on SU(3) F symmetry. Our analysis enables the first extraction of the isovector transition magnetic polarizability. The possibility that large magnetic fields stabilize strange matter is explored, but such a scenario is found to be unlikely.« less

  12. The Distance and Mass of the Galaxy Cluster Abell 1995 Derived from Sunyaev-Zeldovich Effect and X-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Patel, Sandeep K.; Joy, Marshall; Carlstrom, John E.; Holder, Gilbert P.; Reese, Erik D.; Gomez, Percy L.; Hughes, John P.; Grego, Laura; Holzapfel, William L.

    2000-01-01

    We present multiwavelength observations of the Abell 1995 galaxy cluster. From an analysis of X-ray spectroscopy and imaging data, we derive the electron temperature, cluster core radius, and central electron number density. Using optical spectroscopy of 15 cluster members, we derive an accurate cluster redshift and velocity dispersion. Finally, the interferometric imaging of the Sunyaev-Zeldovich effect toward Abell 1995 at 28.5 GHz provides a measure of the integrated pressure through the cluster. The X-ray and Sunyaev-Zeldovich effect observations are combined to determine the angular diameter distance to the cluster of D(sub A) = 1294(sup +294 +438, sub -283 -458) Mpc (Statistical followed by systematic uncertainty), implying a Hubble constant of H(sub 0) = 52.2(sup +11.4 +18.5, sub -11.9 -17.7) km/s.Mpc for Omega(sub M) = 0.3 and Omega(sub lambda) = 0.7. We find a best-fit H(sub 0) of 46 km/s.Mpc for the Omega(sub M) = 1 and Omega(sub lambda) = 0 cosmology, and 48 km/s.Mpc for Omega(sub M) = 0.3 and Omega(sub lambda) = 0.0. The X-ray data are also used to derive a total cluster mass of M(sup HSE, sub tot)(r(sub 500)) = 5.18(sup +0.62, sub -0.48) x 10(exp 14)/h solar mass; the optical velocity dispersion yields an independent and consistent estimate of M(sup virial, sub tot)(r(sub 500)) = 6.35(sup +1.51, sub -1.19) X 10(exp 14) /h solar mass. Both of the total mass estimates are evaluated at a fiducial radius, r(sub 500) = 830 /h kpc, where the overdensity is 500 times the critical density. The total cluster mass is then combined with gas mass measurements to determine a cluster gas mass fraction of F(sub g) = 0.056(sup +0.010, sub -0.013) /h(sup 3/2) in combination with recent baryon density constraints, the measured gas mass fraction yields an upper limit on the mass density parameter of Omega(sub M) h(sup 1/2) <= 0.34(sup +/0.06, sub 0.05.

  13. VizieR Online Data Catalog: Vela Junior (RX J0852.0-4622) HESS image (HESS+, 2018)

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Anguener, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernloehr, K.; Blackwell, R.; Boettcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Buechele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chretien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Atai, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Foerster, A.; Funk, S.; Fuessling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzynski, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khelifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluzniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krueger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lopez-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Mora, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec J.; Oakes, L.; O'Brien, P.; Odaka, H.; Oettl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schuessler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der, Walt D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Voelk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Woernlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zywucka, N.

    2018-03-01

    skymap.fit: H.E.S.S. excess skymap in FITS format of the region comprising Vela Junior and its surroundings. The excess map has been corrected for the gradient of exposure and smoothed with a Gaussian function of width 0.08° to match the analysis point spread function, matching the procedure applied to derive the maps in Fig. 1. sp_stat.txt: H.E.S.S. spectral points and fit parameters for Vela Junior (H.E.S.S. data points in Fig. 3 and Tab. A.2 and H.E.S.S. spectral fit parameters in Tab. 4). The errors in this file represent statistical uncertainties at 1 sigma confidence level. The covariance matrix of the fit is also included in the format: c11 c12 c_13 c21 c22 c_23 c31 c32 c_33 where the subindices represent the following parameters of the power-law with exponential cut-off (ECPL) formula in Tab. 2: 1: flux normalization (Phi0) 2: spectral index (Gamma) 3: inverse of the cutoff energy (lambda=1/Ecut) The units for the covariance matrix are the same as for the fit parameters. Notice that, while the fit parameters section of the file shows E_cut as parameter, the fit was done in lambda=1/Ecut; hence the covariance matrix shows the values for lambda in TeV-1. sp_syst.txt: H.E.S.S. spectral points and fit parameters for Vela Junior (H.E.S.S. data points in Fig. 3 and Tab. A.2 and H.E.S.S. spectral fit parameters in Tab. 4). The errors in this file represent systematic uncertainties at 1 sigma confidence level. The integral fluxes for several energy ranges are also included. (4 data files).

  14. Electroweak baryogenesis from a dark sector

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Kainulainen, Kimmo; Tucker-Smith, David

    2017-06-01

    Adding an extra singlet scalar S to the Higgs sector can provide a barrier at tree level between a false vacuum with restored electroweak symmetry and the true one. This has been demonstrated to readily give a strong phase transition as required for electroweak baryogenesis. We show that with the addition of a fermionic dark matter particle χ coupling to S , a simple UV-complete model can realize successful electroweak baryogenesis. The dark matter gets a C P asymmetry that is transferred to the standard model through a C P portal interaction, which we take to be a coupling of χ to τ leptons and an inert Higgs doublet. The C P asymmetry induced in left-handed τ leptons biases sphalerons to produce the baryon asymmetry. The model has promising discovery potential at the LHC, while robustly providing a large enough baryon asymmetry and correct dark matter relic density with reasonable values of the couplings.

  15. Production du baryon Sigma+ dans les collisions e+e- au LEP

    NASA Astrophysics Data System (ADS)

    Joly, Andre

    Les mécanismes de production des baryons dans les interactions e+e- font l'objet de nombreuses études. De plus, les modes de production des baryons étranges semblent faire appel A des processus spécifiques, qui sont encore mal compris. Notre étude de la production des baryons Σ+ dans les interactions e+e- nous permet de formuler certaines remarques sur l'état des connaîssances acquises sur le sujet. Une methode de reconstruction originale et des critères de sélection spécifiques ont été développés afin d'identifier des baryons Σ+ de haute Energie ( ES+ > 5 GeV), partir de leur canal de désintégration en un proton et un π0 (S+-->p+p0 ). Trois mesures principales sont réalisées à partir de notre échantillon de baryons reconstruits. Le nombre mesuré de baryons Σ+ produits par événement e +e- à 91 GeV est de: =0.102+/-0.006(stat.) +/-0.008(syst.) +/-0.003(extrap.) où les erreurs sont dues à la statistique, aux systématiques et à la procédure d'extrapolation. Ce résultat est en accord avec ceux obtenus précédemment, mais avec des erreurs réduites. La section efficace différentielle en fonction de l'energie est mesurée et comparée aux prédictions des principaux générateurs Monte-Carlo (JETSET7.4(MOPS), JETSET7.4 et HERWIG5.9). A haute énergie, HERWIG ne semble pas reproduire les mesures, aussi bien que les deux versions de JETSET. Enfin, la position du maximum de la section efficace différentielle de production des baryons Σ+ en fonction de l'impulsion est mesurée. On trouve: overlinexoverlineS+=2.32+/- 0.47 Une étude spécifique du générateur JETSET7.4(MOPS) est réalisee, afin de mieux comprendre les mécanismes de production de l'étrangeté et du spin dans la production des baryons. Aucun générateur ne semble capable de décrire de manière simultanée la production du spin et de l'étrangeté.

  16. Preferential use of lambda light chains is associated with defective mouse antibody responses to the capsular polysaccharide of Neisseria meningitidis group B.

    PubMed

    Colino, Jesus; Outschoorn, Ingrid

    2004-01-01

    The capsular polysaccharide of Neisseria meningitidis group B (CpsB) is a very poor immunogen in mammals; this has been considered to be due to the induction of tolerance to cross-reactive host glycoconjugates. It has hampered the development of an effective vaccine against this meningococcal group for many years. Syngeneic populations have a similar tolerogenic background. Thus, we used the variability in ability to mount CpsB-specific immunoglobulin (Ig) responses of individuals from these populations to reveal underlying mechanisms to tolerance contributing to the poor immunogenicity of CpsB. Here we analyze by ELISA, the individual CpsB-specific Ig response of BALB/c and other syngeneic mice to immunization with intact bacteria, using the distribution of light chains as a direct indicator of the repertoire dynamics of the response. Although approximately 96% of anti-CpsB Ig bear kappa-light chains, BALB/c mouse populations were heterogeneous in the light chain composition of their individual anti-CpsB Ig responses. The proportion of kappa and lambda-light chains used for anti-CpsB Ig was a private characteristic that remained relatively constant, for each individual, through repetitive immunizations regardless of the bacterial stimuli size. Despite the prevalence of individual use of kappa-light chains, 5% of BALB/c mice showed restricted usage of lambda-light chains in their CpsB-specific Ig responses, and an additional 11% use them significantly. The preferential use of lambda-light chains in these mice was strongly associated with defective IgM, and absent or barely detectable IgG anti-CpsB responses even after repetitive bacterial immunization. We conclude that differences in the private repertoire of specific Ig also contribute to mouse unresponsiveness to CpsB.

  17. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  18. Initiation of lambda DNA replication. The Escherichia coli small heat shock proteins, DnaJ and GrpE, increase DnaK's affinity for the lambda P protein.

    PubMed

    Osipiuk, J; Georgopoulos, C; Zylicz, M

    1993-03-05

    It is known that the initiation of bacteriophage lambda replication requires the orderly assembly of the lambda O.lambda P.DnaB helicase protein preprimosomal complex at the ori lambda DNA site. The DnaK, DnaJ, and GrpE heat shock proteins act together to destabilize the lambda P.DnaB complex, thus freeing DnaB and allowing it to unwind lambda DNA near the ori lambda site. The first step of this disassembly reaction is the binding of DnaK to the lambda P protein. In this report, we examined the influence of the DnaJ and GrpE proteins on the stability of the lambda P.DnaK complex. We present evidence for the existence of the following protein-protein complexes: lambda P.DnaK, lambda P.DnaJ, DnaJ.DnaK, DnaK.GrpE, and lambda P.DnaK.GrpE. Our results suggest that the presence of GrpE alone destabilizes the lambda P.DnaK complex, whereas the presence of DnaJ alone stabilizes the lambda P.DnaK complex. Using immunoprecipitation, we show that in the presence of GrpE, DnaK exhibits a higher affinity for the lambda P.DnaJ complex than it does alone. Using cross-linking with glutaraldehyde, we show that oligomeric forms of DnaK exhibit a higher affinity for lambda P than monomeric DnaK. However, in the presence of GrpE, monomeric DnaK can efficiently bind lambda P protein. These findings help explain our previous results, namely that in the GrpE-dependent lambda DNA replication system, the DnaK protein requirement can be reduced up to 10-fold.

  19. GENXICC2.0: An upgraded version of the generator for hadronic production of double heavy baryons Ξ, Ξ and Ξ

    NASA Astrophysics Data System (ADS)

    Chang, Chao-Hsi; Wang, Jian-Xiong; Wu, Xing-Gang

    2010-06-01

    An upgraded (second) version of the package GENXICC (A Generator for Hadronic Production of the Double Heavy Baryons Ξ, Ξ and Ξ by C.H. Chang, J.X. Wang and X.G. Wu [its first version in: Comput. Phys. Comm. 177 (2007) 467]) is presented. Users, with this version being implemented in PYTHIA and a GNU C compiler, may simulate full events of these processes in various experimental environments conveniently. In comparison with the previous version, in order to implement it in PYTHIA properly, a subprogram for the fragmentation of the produced double heavy diquark to the relevant baryon is supplied and the interface of the generator to PYTHIA is changed accordingly. In the subprogram, with explanation, certain necessary assumptions (approximations) are made in order to conserve the momenta and the QCD 'color' flow for the fragmentation. Program summaryProgram title: GENXICC2.0 Catalogue identifier: ADZJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 102 482 No. of bytes in distributed program, including test data, etc.: 1 469 519 Distribution format: tar.gz Programming language: Fortran 77/90 Computer: Any LINUX based on PC with FORTRAN 77 or FORTRAN 90 and GNU C compiler as well Operating system: Linux RAM: About 2.0 MByte Classification: 11.2 Catalogue identifier of previous version: ADZJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 177 (2007) 467 Does the new version supersede the previous version?: No Nature of problem: Hadronic production of double heavy baryons Ξ, Ξ and Ξ Solution method: The code is based on NRQCD framework. With proper options, it can generate weighted and un-weighted events of hadronic double heavy baryon production. When the hadronizations of the produced jets and double heavy diquark are taken into account in the production, the upgraded version with proper interface to PYTHIA can generate full events. Reasons for new version: Responding to the feedback from users, we improve the generator mainly by carefully completing the 'final non-perturbative process', i.e. the formulation of the double heavy baryon from relevant intermediate diquark. In the present version, the information for fragmentation about momentum-flow and the color-flow, that is necessary for PYTHIA to generate full events, is retained although reasonable approximations are made. In comparison with the original version, the upgraded one can implement it in PYTHIA properly to do the full event simulation of the double heavy baryon production. Summary of revisions:We try to explain the treatment of the momentum distribution of the process more clearly than the original version, and show how the final baryon is generated through the typical intermediate diquark precisely. We present color flow of the involved processes precisely and the corresponding changes for the program are made. The corresponding changes of the program are explained in the paper. Restrictions: The color flow, particularly, in the piece of code programming of the fragmentation from the produced colorful double heavy diquark into a relevant double heavy baryon, is treated carefully so as to implement it in PYTHIA properly. Running time: It depends on which option is chosen to configure PYTHIA when generating full events and also on which mechanism is chosen to generate the events. Typically, for the most complicated case with gluon-gluon fusion mechanism to generate the mixed events via the intermediate diquark in (cc)[ and (cc)[ states, under the option, IDWTUP=1, to generate 1000 events, takes about 20 hours on a 1.8 GHz Intel P4-processor machine, whereas under the option, IDWTUP=3, even to generate 106 events takes about 40 minutes on the same machine.

  20. Production asymmetry of $$\\Lambda^0$$ and $${\\overline{\\Lambda}}^0$$ in $$\\pi^{\\pm}$$, $$K^{\\pm}$$, p - nucleon collisions at 250 GeV/c (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicola, Marcello Santo

    Using data from Fermilab xed-target experiment E769, we have measured particleantiparticle production asymmetries for Λ 0 hyperons in π ± - nucleon interactions, K ± - nucleon interactions and p - nucleon interactions at 250 GeV/c. The asymmetries are measured as functions of Feynman-x (x f ) and p T 2 over the ranges 0 ≤ p T 2 ≤ 4(GeV/c) 2 and -0.12 ≤ x F ≤ 0.12 (for positive beam) and 0 ≤ p T 2 ≤ 10(GeV/c) 2 and -0.16 ≤ x F ≤ 0:.0 for the negative beam. We find substantial asymmetries, even at x Fmore » = 0. We also observe leading-particle-type asymmetries which qualitatively agree with theoretical predictions.« less

  1. The scaling relationship between baryonic mass and stellar disc size in morphologically late-type galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Po-Feng

    2018-02-01

    Here I report the scaling relationship between the baryonic mass and scale-length of stellar discs for ∼1000 morphologically late-type galaxies. The baryonic mass-size relationship is a single power law R_\\ast ∝ M_b^{0.38} across ∼3 orders of magnitude in baryonic mass. The scatter in size at fixed baryonic mass is nearly constant and there are no outliers. The baryonic mass-size relationship provides a more fundamental description of the structure of the disc than the stellar mass-size relationship. The slope and the scatter of the stellar mass-size relationship can be understood in the context of the baryonic mass-size relationship. For gas-rich galaxies, the stars are no longer a good tracer for the baryons. High-baryonic-mass, gas-rich galaxies appear to be much larger at fixed stellar mass because most of the baryonic content is gas. The stellar mass-size relationship thus deviates from the power-law baryonic relationship, and the scatter increases at the low-stellar-mass end. These extremely gas-rich low-mass galaxies can be classified as ultra-diffuse galaxies based on the structure.

  2. Once more on the equilibrium-point hypothesis (lambda model) for motor control.

    PubMed

    Feldman, A G

    1986-03-01

    The equilibrium control hypothesis (lambda model) is considered with special reference to the following concepts: (a) the length-force invariant characteristic (IC) of the muscle together with central and reflex systems subserving its activity; (b) the tonic stretch reflex threshold (lambda) as an independent measure of central commands descending to alpha and gamma motoneurons; (c) the equilibrium point, defined in terms of lambda, IC and static load characteristics, which is associated with the notion that posture and movement are controlled by a single mechanism; and (d) the muscle activation area (a reformulation of the "size principle")--the area of kinematic and command variables in which a rank-ordered recruitment of motor units takes place. The model is used for the interpretation of various motor phenomena, particularly electromyographic patterns. The stretch reflex in the lambda model has no mechanism to follow-up a certain muscle length prescribed by central commands. Rather, its task is to bring the system to an equilibrium, load-dependent position. Another currently popular version defines the equilibrium point concept in terms of alpha motoneuron activity alone (the alpha model). Although the model imitates (as does the lambda model) spring-like properties of motor performance, it nevertheless is inconsistent with a substantial data base on intact motor control. An analysis of alpha models, including their treatment of motor performance in deafferented animals, reveals that they suffer from grave shortcomings. It is concluded that parameterization of the stretch reflex is a basis for intact motor control. Muscle deafferentation impairs this graceful mechanism though it does not remove the possibility of movement.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Measurements are presented of the lifetimes of the Bmore » $^0$, B$$^0_\\mathrm{s}$$, $$\\Lambda^0_\\mathrm{b}$$, and B$$_\\mathrm{c}^+$$ hadrons using the decay channels B$$^0\\to$$J/$$\\psi$$K*(892)$^0$, B$$^0\\to$$J/$$\\psi$$K$$^0_\\mathrm{S}$$, B$$^0_\\mathrm{s}\\to$$J/$$\\psi \\pi^+\\pi^-$$, B$$^0_\\mathrm{s}\\to$$J/$$\\psi\\phi$$(1020), $$\\Lambda^0_\\mathrm{b}\\to$$J/$$\\psi\\Lambda^0$$, and B$$_\\mathrm{c}\\to$$J/$$\\psi\\pi^+$$. The data sample, corresponding to an integrated luminosity of 19.7 fb$$^{-1}$$, was collected by the CMS detector at the LHC in proton-proton collisions at $$\\sqrt{s}=$$ 8 TeV. The B$^0$ lifetime is measured to be 453.0 $$\\pm$$ 1.6 (stat) $$\\pm$$ 1.8 (syst) $$\\mu$$m in J/$$\\psi$$K*(892)$^0$ and 457.8 $$\\pm$$ 2.7 (stat) $$\\pm$$ 2.8 (syst) $$\\mu$$m in J/$$\\psi$$K$$^0_\\mathrm{S}$$, which results in a combined measurement of $$c\\tau_{\\mathrm{B}^0} = $$454.1 $$\\pm$$ 1.4 (stat) $$\\pm$$ 1.7 (syst) $$\\mu$$m. The effective lifetime of the B$$^0_\\mathrm{s}$$ meson is measured in two decay modes, with contributions from different amounts of the heavy and light eigenstates. This results in two different measured lifetimes: $$c\\tau_{\\mathrm{B}^0_\\mathrm{s} \\to \\mathrm{J}/\\psi \\pi^+\\pi^-} =$$ 502.7 $$\\pm$$ 10.2 (stat) $$\\pm$$ 3.4 (syst) $$\\mu$$m and $$c\\tau_{\\mathrm{B}^0_\\mathrm{s} \\to \\mathrm{J}/\\psi\\phi(1020)} = $$443.9 $$\\pm$$ 2.0 (stat) $$\\pm$$ 1.5 (syst) $$\\mu$$m. The $$\\Lambda^0_\\mathrm{b}$$ lifetime is found to be 442.9 $$\\pm$$ 8.2 (stat) $$\\pm$$ 2.8 (syst) $$\\mu$$m. The precision from each of these channels is as good as or better than previous measurements. The B$$_\\mathrm{c}^+$$ lifetime, measured with respect to the B$^+$ to reduce the systematic uncertainty, is 162.3 $$\\pm$$ 7.8 (stat) $$\\pm$$ 4.2 (syst) $$\\pm$$ 0.1 $$(\\tau_{\\mathrm{B}^+})$$ $$\\mu$$m. All results are in agreement with current world-average values.« less

  4. Measurement of b hadron lifetimes in pp collisions at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Sirunyan, Albert M; et al.

    2018-06-07

    Measurements are presented of the lifetimes of the Bmore » $^0$, B$$^0_\\mathrm{s}$$, $$\\Lambda^0_\\mathrm{b}$$, and B$$_\\mathrm{c}^+$$ hadrons using the decay channels B$$^0\\to$$J/$$\\psi$$K*(892)$^0$, B$$^0\\to$$J/$$\\psi$$K$$^0_\\mathrm{S}$$, B$$^0_\\mathrm{s}\\to$$J/$$\\psi \\pi^+\\pi^-$$, B$$^0_\\mathrm{s}\\to$$J/$$\\psi\\phi$$(1020), $$\\Lambda^0_\\mathrm{b}\\to$$J/$$\\psi\\Lambda^0$$, and B$$_\\mathrm{c}\\to$$J/$$\\psi\\pi^+$$. The data sample, corresponding to an integrated luminosity of 19.7 fb$$^{-1}$$, was collected by the CMS detector at the LHC in proton-proton collisions at $$\\sqrt{s}=$$ 8 TeV. The B$^0$ lifetime is measured to be 453.0 $$\\pm$$ 1.6 (stat) $$\\pm$$ 1.8 (syst) $$\\mu$$m in J/$$\\psi$$K*(892)$^0$ and 457.8 $$\\pm$$ 2.7 (stat) $$\\pm$$ 2.8 (syst) $$\\mu$$m in J/$$\\psi$$K$$^0_\\mathrm{S}$$, which results in a combined measurement of $$c\\tau_{\\mathrm{B}^0} = $$454.1 $$\\pm$$ 1.4 (stat) $$\\pm$$ 1.7 (syst) $$\\mu$$m. The effective lifetime of the B$$^0_\\mathrm{s}$$ meson is measured in two decay modes, with contributions from different amounts of the heavy and light eigenstates. This results in two different measured lifetimes: $$c\\tau_{\\mathrm{B}^0_\\mathrm{s} \\to \\mathrm{J}/\\psi \\pi^+\\pi^-} =$$ 502.7 $$\\pm$$ 10.2 (stat) $$\\pm$$ 3.4 (syst) $$\\mu$$m and $$c\\tau_{\\mathrm{B}^0_\\mathrm{s} \\to \\mathrm{J}/\\psi\\phi(1020)} = $$443.9 $$\\pm$$ 2.0 (stat) $$\\pm$$ 1.5 (syst) $$\\mu$$m. The $$\\Lambda^0_\\mathrm{b}$$ lifetime is found to be 442.9 $$\\pm$$ 8.2 (stat) $$\\pm$$ 2.8 (syst) $$\\mu$$m. The precision from each of these channels is as good as or better than previous measurements. The B$$_\\mathrm{c}^+$$ lifetime, measured with respect to the B$^+$ to reduce the systematic uncertainty, is 162.3 $$\\pm$$ 7.8 (stat) $$\\pm$$ 4.2 (syst) $$\\pm$$ 0.1 $$(\\tau_{\\mathrm{B}^+})$$ $$\\mu$$m. All results are in agreement with current world-average values.« less

  5. Measurement of b hadron lifetimes in pp collisions at $$\\sqrt{s} = 8$$ $$\\,\\text {Te}\\text {V}$$

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-06-07

    Here, measurements are presented of the lifetimes of the Bmore » $^0$, B$$^0_\\mathrm{s}$$, $$\\Lambda^0_\\mathrm{b}$$, and B$$_\\mathrm{c}^+$$ hadrons using the decay channels B$$^0\\to$$J/$$\\psi$$K*(892)$^0$, B$$^0\\to$$J/$$\\psi$$K$$^0_\\mathrm{S}$$, B$$^0_\\mathrm{s}\\to$$J/$$\\psi \\pi^+\\pi^-$$, B$$^0_\\mathrm{s}\\to$$J/$$\\psi\\phi$$(1020), $$\\Lambda^0_\\mathrm{b}\\to$$J/$$\\psi\\Lambda^0$$, and B$$_\\mathrm{c}\\to$$J/$$\\psi\\pi^+$$. The data sample, corresponding to an integrated luminosity of 19.7 fb$$^{-1}$$, was collected by the CMS detector at the LHC in proton-proton collisions at $$\\sqrt{s}=$$ 8 TeV. The B$^0$ lifetime is measured to be 453.0 $$\\pm$$ 1.6 (stat) $$\\pm$$ 1.8 (syst) $$\\mu$$m in J/$$\\psi$$K*(892)$^0$ and 457.8 $$\\pm$$ 2.7 (stat) $$\\pm$$ 2.8 (syst) $$\\mu$$m in J/$$\\psi$$K$$^0_\\mathrm{S}$$, which results in a combined measurement of $$c\\tau_{\\mathrm{B}^0} = $$454.1 $$\\pm$$ 1.4 (stat) $$\\pm$$ 1.7 (syst) $$\\mu$$m. The effective lifetime of the B$$^0_\\mathrm{s}$$ meson is measured in two decay modes, with contributions from different amounts of the heavy and light eigenstates. This results in two different measured lifetimes: $$c\\tau_{\\mathrm{B}^0_\\mathrm{s} \\to \\mathrm{J}/\\psi \\pi^+\\pi^-} =$$ 502.7 $$\\pm$$ 10.2 (stat) $$\\pm$$ 3.4 (syst) $$\\mu$$m and $$c\\tau_{\\mathrm{B}^0_\\mathrm{s} \\to \\mathrm{J}/\\psi\\phi(1020)} = $$443.9 $$\\pm$$ 2.0 (stat) $$\\pm$$ 1.5 (syst) $$\\mu$$m. The $$\\Lambda^0_\\mathrm{b}$$ lifetime is found to be 442.9 $$\\pm$$ 8.2 (stat) $$\\pm$$ 2.8 (syst) $$\\mu$$m. The precision from each of these channels is as good as or better than previous measurements. The B$$_\\mathrm{c}^+$$ lifetime, measured with respect to the B$^+$ to reduce the systematic uncertainty, is 162.3 $$\\pm$$ 7.8 (stat) $$\\pm$$ 4.2 (syst) $$\\pm$$ 0.1 $$(\\tau_{\\mathrm{B}^+})$$ $$\\mu$$m. All results are in agreement with current world-average values.« less

  6. Measurement of b hadron lifetimes in pp collisions at $$\\sqrt{s} = 8$$ $$\\,\\text {Te}\\text {V}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, measurements are presented of the lifetimes of the Bmore » $^0$, B$$^0_\\mathrm{s}$$, $$\\Lambda^0_\\mathrm{b}$$, and B$$_\\mathrm{c}^+$$ hadrons using the decay channels B$$^0\\to$$J/$$\\psi$$K*(892)$^0$, B$$^0\\to$$J/$$\\psi$$K$$^0_\\mathrm{S}$$, B$$^0_\\mathrm{s}\\to$$J/$$\\psi \\pi^+\\pi^-$$, B$$^0_\\mathrm{s}\\to$$J/$$\\psi\\phi$$(1020), $$\\Lambda^0_\\mathrm{b}\\to$$J/$$\\psi\\Lambda^0$$, and B$$_\\mathrm{c}\\to$$J/$$\\psi\\pi^+$$. The data sample, corresponding to an integrated luminosity of 19.7 fb$$^{-1}$$, was collected by the CMS detector at the LHC in proton-proton collisions at $$\\sqrt{s}=$$ 8 TeV. The B$^0$ lifetime is measured to be 453.0 $$\\pm$$ 1.6 (stat) $$\\pm$$ 1.8 (syst) $$\\mu$$m in J/$$\\psi$$K*(892)$^0$ and 457.8 $$\\pm$$ 2.7 (stat) $$\\pm$$ 2.8 (syst) $$\\mu$$m in J/$$\\psi$$K$$^0_\\mathrm{S}$$, which results in a combined measurement of $$c\\tau_{\\mathrm{B}^0} = $$454.1 $$\\pm$$ 1.4 (stat) $$\\pm$$ 1.7 (syst) $$\\mu$$m. The effective lifetime of the B$$^0_\\mathrm{s}$$ meson is measured in two decay modes, with contributions from different amounts of the heavy and light eigenstates. This results in two different measured lifetimes: $$c\\tau_{\\mathrm{B}^0_\\mathrm{s} \\to \\mathrm{J}/\\psi \\pi^+\\pi^-} =$$ 502.7 $$\\pm$$ 10.2 (stat) $$\\pm$$ 3.4 (syst) $$\\mu$$m and $$c\\tau_{\\mathrm{B}^0_\\mathrm{s} \\to \\mathrm{J}/\\psi\\phi(1020)} = $$443.9 $$\\pm$$ 2.0 (stat) $$\\pm$$ 1.5 (syst) $$\\mu$$m. The $$\\Lambda^0_\\mathrm{b}$$ lifetime is found to be 442.9 $$\\pm$$ 8.2 (stat) $$\\pm$$ 2.8 (syst) $$\\mu$$m. The precision from each of these channels is as good as or better than previous measurements. The B$$_\\mathrm{c}^+$$ lifetime, measured with respect to the B$^+$ to reduce the systematic uncertainty, is 162.3 $$\\pm$$ 7.8 (stat) $$\\pm$$ 4.2 (syst) $$\\pm$$ 0.1 $$(\\tau_{\\mathrm{B}^+})$$ $$\\mu$$m. All results are in agreement with current world-average values.« less

  7. Precision Measurement of the Mass and Lifetime of the Ξb- Baryon

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianı, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Orlandea, M.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilschut, H. W.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; LHCb Collaboration

    2014-12-01

    We report on measurements of the mass and lifetime of the Ξb- baryon using about 1800 Ξb- decays reconstructed in a proton-proton collision data set corresponding to an integrated luminosity of 3.0 fb-1 collected by the LHCb experiment. The decays are reconstructed in the Ξb-→Ξc0π-, Ξc0→p K-K-π+ channel and the mass and lifetime are measured using the Λb0→Λc+π- mode as a reference. We measure M (Ξb-)-M (Λb0)=178.36 ±0.46 ±0.16 MeV /c2 , (τΞb-/τΛb0)=1.089 ±0.026 ±0.011 , where the uncertainties are statistical and systematic, respectively. These results lead to a factor of 2 better precision on the Ξb- mass and lifetime compared to previous best measurements, and are consistent with theoretical expectations.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Afanasiev, S.; Aidala, C.

    Our report presents the measurement of cumulants (C n,n=1,...,4) of the net-charge distributions measured within pseudorapidity (|η|<0.35) in Au+Au collisions at √s NN=7.7–200GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C 1/C 2, C 3/C 1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do notmore » observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. These measured values of C 1/C 2 and C 3/C 1 can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy. Moreover, the extracted baryon chemical potentials are in excellent agreement with a thermal-statistical analysis model.« less

  9. A new look at the Y tetraquarks and Ω _c baryons in the diquark model

    NASA Astrophysics Data System (ADS)

    Ali, Ahmed; Maiani, Luciano; Borisov, Anatoly V.; Ahmed, Ishtiaq; Aslam, M. Jamil; Parkhomenko, Alexander Ya.; Polosa, Antonio D.; Rehman, Abdur

    2018-01-01

    We analyze the hidden charm P-wave tetraquarks in the diquark model, using an effective Hamiltonian incorporating the dominant spin-spin, spin-orbit and tensor interactions. We compare with other P-wave systems such as P-wave charmonia and the newly discovered Ω _c baryons, analysed recently in this framework. Given the uncertain experimental situation on the Y states, we allow for different spectra and discuss the related parameters in the diquark model. In addition to the presently observed ones, we expect many more states in the supermultiplet of L=1 diquarkonia, whose J^{PC} quantum numbers and masses are worked out, using the parameters from the currently preferred Y-states pattern. The existence of these new resonances would be a decisive footprint of the underlying diquark dynamics.

  10. 37 CFR 262.5 - Confidential information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Confidential information. 262... Confidential information. (a) Definition. For purposes of this part, “Confidential Information” shall include the statements of account, any information contained therein, including the amount of royalty payments...

  11. 37 CFR 262.5 - Confidential information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Confidential information. 262... information. (a) Definition. For purposes of this part, “Confidential Information” shall include the statements of account, any information contained therein, including the amount of royalty payments, and any...

  12. On the response to ocean surface currents in synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Phillips, O. M.

    1984-01-01

    The balance of wave action spectral density for a fixed wave-number is expressed in terms of a new dimensionless function, the degree of saturation, b, and is applied to an analysis of the variations of this quantity (and local spectral level) at wave-numbers large compared to that of the spectral peak, that are produced by variations in the ocean surface currents in the presence of wind input and wave breaking. Particular care is taken to provide physically based representations of wind input and loss by wave breaking and a relatively convenient equation is derived that specifies the distribution of the degree of saturation in a current field, relative to its ambient (undisturbed) background in the absence of currents. The magnitude of the variations in b depends on two parameters, U(o)/c, where U/(o) is the velocity scale of the current and c the phase speed of the surface waves at the (fixed) wave-number considered or sampled by SAR, and S = (L/lambda) (u*/c)(2), where L is the length scale of the current distribution, lambda the wavelength of the surface waves the length scale of the current distribution, lambda the wavelength of the surface waves and u* the friction velocity of the wind.

  13. Physical interactions between bacteriophage and Escherichia coli proteins required for initiation of lambda DNA replication.

    PubMed

    Liberek, K; Osipiuk, J; Zylicz, M; Ang, D; Skorko, J; Georgopoulos, C

    1990-02-25

    The process of initiation of lambda DNA replication requires the assembly of the proper nucleoprotein complex at the origin of replication, ori lambda. The complex is composed of both phage and host-coded proteins. The lambda O initiator protein binds specifically to ori lambda. The lambda P initiator protein binds to both lambda O and the host-coded dnaB helicase, giving rise to an ori lambda DNA.lambda O.lambda P.dnaB structure. The dnaK and dnaJ heat shock proteins have been shown capable of dissociating this complex. The thus freed dnaB helicase unwinds the duplex DNA template at the replication fork. In this report, through cross-linking, size chromatography, and protein affinity chromatography, we document some of the protein-protein interactions occurring at ori lambda. Our results show that the dnaK protein specifically interacts with both lambda O and lambda P, and that the dnaJ protein specifically interacts with the dnaB helicase.

  14. C III] Emission in Star-Forming Galaxies Near and Far

    NASA Technical Reports Server (NTRS)

    Rigby, J, R.; Bayliss, M. B.; Gladders, M. D.; Sharon, K.; Wuyts, E.; Dahle, H.; Johnson, T.; Pena-Guerrero, M.

    2015-01-01

    We measure C III Lambda Lambda 1907, 1909 Angstrom emission lines in eleven gravitationally-lensed star-forming galaxies at zeta at approximately 1.6-3, finding much lower equivalent widths than previously reported for fainter lensed galaxies (Stark et al. 2014). While it is not yet clear what causes some galaxies to be strong C III] emitters, C III] emission is not a universal property of distant star-forming galaxies. We also examine C III] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST, and IUE. Twenty percent of these local galaxies show strong C III] emission, with equivalent widths less than -5 Angstrom. Three nearby galaxies show C III] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf-Rayet galaxies. At all redshifts, strong C III] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C III] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.

  15. Eightfold-way Assignments for Y{sub 1}* (1660) and Other Baryons

    DOE R&D Accomplishments Database

    Glashow, S. L.; Rosenfeld, A. H.

    1962-12-04

    It was shown that the partial widths for the various two-body decay modes of the gamma octet and of the delta decuplet were compatible with unitary symmetry of strong interactions. The experimental partial widths for decay into meson plus baryon were summarized. Two of these were used as input variables determining the eightfold-way D and F decay-coupling constants for the gamma octet; the remaining five partial widths were calculated after adjustment of a radius of interaction. The calculation was repeated for the delta decuplet. Agreement with experiment was found. (C.E.S.)

  16. Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical property

    NASA Technical Reports Server (NTRS)

    Baret, Frederic; Vanderbilt, Vern C.; Steven, Michael D.; Jacquemoud, Stephane

    1993-01-01

    The spectral variation of canopy reflectance is mostly governed by the absorption properties of the elements, hence the leaves, since their intrinsic scattering properties show very little spectral variation. The relationship between canopy reflectance and leaf reflectance measured at the red edge over sugar beet canopies was used to simulate canopy reflectance from leaf reflectance spectra measured over the whole spectral domain. The results show that the spectral analogies found allows accurate reconstruction of canopy reflectance spectra. Explicit assumptions about the very low spectral variation of leaf intrinsic scattering properties are thus indirectly justified. The sensitivity of canopy reflectance (rho(sub c)) to leaf optical properties can then be investigated from concurrent spectral variations of canopy (delta rho(sub c)/delta lambda) and leaf reflectance (delta rho(sub l)/delta lambda): (delta rho(sub c))/(delta rho(sub l)) = ((delta rho(sub c))/(delta lambda) ((delta rho( sub l))/(delta lambda))(sup -1)). This expression is strictly valid only when the optical properties of the soil background or the other vegetation elements such as bark are either spectrally flat or do not contribute significantly to canopy reflectance. Simulations using the SAIL and PROSPECT models demonstrate that the sensitivity of canopy reflectance to leaf reflectance is significant for large vegetation cover fractions in spectral domains where absorption is low. In these conditions, multiple, scattering enhances the leaf absorption features by a factor that can be greater than 2.0. To override the limitations of the SAIL model for the description of the canopy architecture, we tested the previous findings on experimental data. Concurrent canopy and leaf reflectance spectra were measured for a range of sugar beet canopies. The results show good agreement with the theoretical findings. Conclusions are drawn about the applicability of these findings, with particular attention to the potential detectability of leaf biochemical composition from canopy reflectance sensed from space.

  17. CUMPOIS- CUMULATIVE POISSON DISTRIBUTION PROGRAM

    NASA Technical Reports Server (NTRS)

    Bowerman, P. N.

    1994-01-01

    The Cumulative Poisson distribution program, CUMPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), can be used independently of one another. CUMPOIS determines the approximate cumulative binomial distribution, evaluates the cumulative distribution function (cdf) for gamma distributions with integer shape parameters, and evaluates the cdf for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. CUMPOIS calculates the probability that n or less events (ie. cumulative) will occur within any unit when the expected number of events is given as lambda. Normally, this probability is calculated by a direct summation, from i=0 to n, of terms involving the exponential function, lambda, and inverse factorials. This approach, however, eventually fails due to underflow for sufficiently large values of n. Additionally, when the exponential term is moved outside of the summation for simplification purposes, there is a risk that the terms remaining within the summation, and the summation itself, will overflow for certain values of i and lambda. CUMPOIS eliminates these possibilities by multiplying an additional exponential factor into the summation terms and the partial sum whenever overflow/underflow situations threaten. The reciprocal of this term is then multiplied into the completed sum giving the cumulative probability. The CUMPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting lambda and n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 26K. CUMPOIS was developed in 1988.

  18. Homologous recombination between overlapping thymidine kinase gene fragments stably inserted into a mouse cell genome.

    PubMed Central

    Lin, F L; Sternberg, N

    1984-01-01

    We have constructed a substrate to study homologous recombination between adjacent segments of chromosomal DNA. This substrate, designated lambda tk2 , consists of one completely defective and one partially defective herpes simplex virus thymidine kinase (tk) gene cloned in bacteriophage lambda DNA. The two genes have homologous 984-base-pair sequences and are separated by 3 kilobases of largely vector DNA. When lambda tk2 DNA was transferred into mouse LMtk- cells by the calcium phosphate method, rare TK+ transformants were obtained that contained many (greater than 40) copies of the unrecombined DNA. Tk- revertants, which had lost most of the copies of unrecombined DNA, were isolated from these TK+-transformed lines. Two of these Tk- lines were further studied by analysis of their reversion back to the Tk+ phenotype. They generated ca. 200 Tk+ revertants per 10(8) cells after growth in nonselecting medium for 5 days. All of these Tk+ revertants have an intact tk gene reconstructed by homologous recombination; they also retain various amounts of unrecombined lambda tk2 DNA. Southern blot analysis suggested that at least some of the recombination events involve unequal sister chromatid exchanges. We also tested three agents, mitomycin C, 12-O-tetradecanoyl-phorbol-13-acetate, and mezerein, that are thought to stimulate recombination to determine whether they affect the reversion from Tk- to Tk+. Only mitomycin C increased the number of Tk+ revertants. Images PMID:6328272

  19. Purification of bacteriophage lambda repressor

    PubMed Central

    Gao, Ning; Shearwin, Keith; Mack, John; Finzi, Laura; Dunlap, David

    2013-01-01

    Bacteriophage lambda repressor controls the lysogeny/lytic growth switch after infection of E. coli by lambda phage. In order to study in detail the looping of DNA mediated by the protein, tag-free repressor and a loss-of-cooperativity mutant were expressed in E.coli and purified by (1) ammonium sulfate fractionation, (2) anion-exchange chromatography and (3) heparin affinity chromatography. This method employs more recently developed and readily available chromatography resins to produce highly pure protein in good yield. In tethered particle motion looping assays and atomic force microscopy “footprinting” assays, both the wild-type protein and a C-terminal His-tagged variant, purified using immobilized metal affinity chromatography, bound specifically to high affinity sites to mediate loop formation. In contrast the G147D loss-of-cooperativity mutant bound specifically but did not secure loops. PMID:23831434

  20. Tables of Transition Probabilities and Branching Ratios for Electric Dipole Transitions Between Arbitrary Levels of Hydrogen-Like Atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Branching ratios in hydrogen-like atoms due to electric-dipole transitions are tabulated for the initial principal and angular momentum quantum number n, lambda, and final principal and angular momentum quantum numbers n, lambda. In table 1, transition probabilities are given for transitions n, lambda, yields n, where sums have been made with respect to lambda. In this table, 2 or = n' or = 10, o or = lambda' or = n'-1, and 1 or = n or = n'-1. In addition, averages with respect to lambda' and sums with respect to n, and lifetimes are given. In table 2, branching ratios are given for transitions n' lambda' yields ni, where sums have been made with respect to lambda. In these tables, 2 or = n' or = 10, 0 or = lambda', n'-1, and 1 or = n or = n'-1. Averages with respect to lambda' are also given. In table 3, branching ratios are given for transitions n' lambda' yields in lambda, where 1 or = n or = 5, 0 or = lambda or = n-1, n n' or = 15, and 0 or = lambda' or = n(s), where n(s), is the smaller of the two numbers n'-1 and 6. Averages with respect to lambda' are given.

  1. Measurement of the Λ b cross section and the Λ ¯ b to Λ b ratio with J / ψ Λ decays in pp collisions at s = 7 TeV

    DOE PAGES

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; ...

    2012-05-31

    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versusmore » pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.« less

  2. Measurement of higher cumulants of net-charge multiplicity distributions in Au +Au collisions at √{sN N}=7.7 -200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garg, P.; Garishvili, A.; Garishvili, I.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Hartouni, E. P.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H. J.; Kim, K.-B.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mohanty, A. K.; Mohapatra, S.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nouicer, R.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Phenix Collaboration

    2016-01-01

    We report the measurement of cumulants (Cn,n =1 ,...,4 ) of the net-charge distributions measured within pseudorapidity (|η |<0.35 ) in Au +Au collisions at √{sNN}=7.7 -200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C1/C2 , C3/C1 ) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2 and C3/C1 can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy. The extracted baryon chemical potentials are in excellent agreement with a thermal-statistical analysis model.

  3. Spin correlations in the {Lambda}{Lambda} and {Lambda}{Lambda}-bar systems generated in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyuboshitz, V. L.; Lyuboshitz, V. V., E-mail: Valery.Lyuboshitz@jinr.r

    2010-05-15

    Spin correlations for the {Lambda}{Lambda} and {Lambda}{Lambda}-bar pairs, generated in relativistic heavy-ion collisions, and related angular correlations at the joint registration of hadronic decays of two hyperons, in which space parity is not conserved, are analyzed. The correlation tensor components can be derived from the double angular distribution of products of two decays by the method of 'moments'. The properties of the 'trace' of the correlation tensor (a sum of three diagonal components), determining the relative fractions of the triplet states and singlet state of respective pairs, are discussed. Spin correlations for two identical particles ({Lambda}{Lambda}) and two nonidentical particlesmore » ({Lambda}{Lambda}-bar) are considered from the viewpoint of the conventional model of one-particle sources. In the framework of this model, correlations vanish at sufficiently large relative momenta. However, under these conditions, in the case of two nonidentical particles ({Lambda}{Lambda}-bar) a noticeable role is played by two-particle annihilation (two-quark, two-gluon) sources, which lead to the difference of the correlation tensor from zero. In particular, such a situation may arise when the system passes through the 'mixed phase.'« less

  4. Study of 2 S - and 1 D -excitations of observed charmed strange baryons

    NASA Astrophysics Data System (ADS)

    Ye, Dan-Dan; Zhao, Ze; Zhang, Ailin

    2017-12-01

    Strong decays of Ξc baryons with radial or orbital λ - and ρ -mode excitations with positive parity have been studied in a 3P0 model. As candidates of these kinds of excited charmed strange baryons, possible configurations and JP quantum numbers of Ξc(2930 ), Ξc(2980 ), Ξc(3055 ), Ξc(3080 ), and Ξc(3123 ) have been assigned based on experimental data. There are 40 kinds of configurations to describe the first radial or orbital excited Ξc in λ - and ρ -mode excitations with positive parity. In these assignments, Ξc(2930 ) may be a 2 S -wave excited Ξ˜c 1(1/2+) or Ξ˜c 1(3/2+), or a D -wave excited Ξ^c 1 '(1/2+) , Ξˇc 1 0(1/2+) , Ξˇc 1 2(1/2+) , Ξ^c 1 '(3/2+) , Ξˇc1 0(3/2+), or Ξˇc1 2(3/2+). Ξc(2980 )+ may be a 2 S -wave excited Ξ˜c 1(1/2+)or Ξ˜c0 '(1/2+) with JP=1/2+, or a D -wave excited Ξˇc0 '0(1/2+) or Ξˇc 1 0(1/2+) with JP=1/2+. Ξc(3055 )+may be a 2 S -wave excited Ξ´c 1 '(3/2+) or Ξ´c 0(1/2+). It may be a D -wave excited Ξc1 '(3/2+), Ξc2 '(5/2+), Ξc 2(3/2+) , or Ξc 2(5/2+) . Ξc(3080 )+is very possibly a 2 S -wave excited Ξ´c 0(1/2 +) and seems not to be a D -wave excitation of Ξc. Because of the poor experimental information for Ξc(3123 ), it is impossible to identify this state at present. It is found that the channel Λ D vanishes in the strong decay of P -wave, D -wave, and 2 S -wave excited Ξc without ρ -mode excitation between the two light quarks (nρ=Lρ=0 ). In different configurations, some branching fraction ratios related to the internal structure of the 2 S -wave and D -wave of Ξc are different. These ratios have been computed and can be employed to distinguish different configurations in forthcoming experiments.

  5. Baryon bags in strong coupling QCD

    NASA Astrophysics Data System (ADS)

    Gattringer, Christof

    2018-04-01

    We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.

  6. Structural health monitoring of highway bridges subjected to overweight trucks, phase I - instrumentation development and validation.

    DOT National Transportation Integrated Search

    2016-03-01

    Richard J. Schmidt : ORCID number 0000-0003-1672-2625 : State departments of transportation (DOTs) in the west have been under increasing pressure to permit and route overweight trucks transporting machinery and equipment for the energy sector throug...

  7. 76 FR 73687 - Curtis-Straus LLC; Application for Renewal of Recognition; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2009-0026... Health Administration (OSHA), Labor. ACTION: Notice; correction. SUMMARY: The Occupational Safety and..., Room N-2625, Occupational Safety and Health Administration, U.S. Department of Labor, at the address...

  8. 39 CFR 262.5 - Systems (Privacy).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., partnerships or corporations. A business firm identified by the name of one or more persons is not an... computer matches are specifically excluded from the term “matching program”: (i) Statistical matches whose purpose is solely to produce aggregate data stripped of personal identifiers. (ii) Statistical matches...

  9. Decays of excited baryons in DTU

    NASA Astrophysics Data System (ADS)

    Żenczykowski, P.

    1981-03-01

    Properties of the decays of excited strange baryons into ground state baryon and pseudoscalar meson are examined in the framework of the linear baryonic string model. The agreement between the predictions and the data is good. The single model's parameter ɛ, the deviation of which from 1 measures SU (3) breaking, is found to decrease with increasing internal orbital angular momentum of a baryon.

  10. Thermally invariant dielectric coatings for micromirrors

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Talghader, Joseph J.

    2002-06-01

    Thermal expansion-induced curvature becomes a major effect in micromirrors as the mirror diameter exceeds 100 mum. Such mirrors are used for optical switching, scanning, and many other applications. By using multilayer coatings instead of a single metal reflector, one can use the mechanical properties of the multilayer to create mirrors with zero curvature across temperature. We demonstrate the fabrication of such thermally invariant mirrors using dielectric coatings. A semianalytic model based on free-plate elastic theory is developed that uses empirical parameters in place of the true thermal expansion coefficients of the coating materials. Micromirrors are demonstrated that maintain their design curvature to within lambda/60 for lambda = 633 nm across an operating range from 21 degC to 58 degC.

  11. [Study on changes of contents of 1-deoxynojirimycin in Bombyx mori and their byproducts].

    PubMed

    Ouyang, Zhen; Meng, Xia; Chang, Yu; Yang, Yu

    2009-02-01

    To Study the changing regularity of the contents of 1-deoxynojirimycin in Bombyx mori and their byproducts in different growth periods. The samples were analyzed by high performance liquid chromatography equipped with fluorescence detector and separated on a HiQSiL C18 column at 25 degrees C. Mobile phase consisted of anetonitrile-0.1% aqueous acetic acid (55:45) with a flow rate of 1.0 mL/min. The fluorescence detector was operated at lambdaEX = 254 nm and lambdaEM = 322 nm. The contents of 1-deoxynojirimycin in Bombyx mori and their byproducts in different growth periods were remarkably different, and changed regularly. This study reveals the metabolic regularity of 1-deoxynojirimycin in Bombyx mori preliminarily.

  12. IFNL4 affects clearance of hepatitis C virus

    Cancer.gov

    Scientists have discovered a new human interferon gene, Interferon Lambda 4 (IFNL4), that affects clearance of the hepatitis C virus. They also identified an inherited genetic variant within IFNL4 that predicts how people respond to treatment for hepatit

  13. IUE observations of extragalactic objects

    NASA Technical Reports Server (NTRS)

    Boksenberg, A.; Snijders, M. A. J.; Wilson, R.; Benvenuti, P.; Clavell, J.; Macchetto, F.; Penston, M.; Boggess, A.; Gull, T. R.; Gondhalekar, P.

    1978-01-01

    During the commissioning phase of IUE several extragalactic objects were observed spectrally at low dispersion in the UV range lambda lambda 1150-3200: the Seyfert galaxies NGC4151 and NGC1068, the QSO 3C273, the BL Lacertae object B2 1101+38, the giant elliptical galaxy M87 and the spiral galaxy M81. The results obtained are presented and a preliminary analysis given for all six objects, discussing the continuous spectrum, extinction, emission line spectrum and absorption line spectrum, where possible for each case. Several new or confirmatory astrophysical results are obtained.

  14. Pentaquarks with hidden charm as hadroquarkonia

    NASA Astrophysics Data System (ADS)

    Eides, Michael I.; Petrov, Victor Yu.; Polyakov, Maxim V.

    2018-01-01

    We consider hidden charm pentaquarks as hadroquarkonium states in a QCD inspired approach. Pentaquarks arise naturally as bound states of quarkonia excitations and ordinary baryons. The LHCb P_c(4450) pentaquark is interpreted as a ψ '-nucleon bound state with spin-parity J^P=3/2^-. The partial decay width Γ (P_c(4450)→ J/ψ +N)≈ 11 MeV is calculated and turned out to be in agreement with the experimental data for P_c(4450). The P_c(4450) pentaquark is predicted to be a member of one of the two almost degenerate hidden-charm baryon octets with spin-parities JP=1/2^-,3/2^-. The masses and decay widths of the octet pentaquarks are calculated. The widths are small and comparable with the width of the P_c(4450) pentaquark, and the masses of the octet pentaquarks satisfy the Gell-Mann-Okubo relation. Interpretation of pentaquarks as loosely bound Σ_c\\bar{D}^* and Σ_c^*\\bar{D}^* deuteronlike states is also considered. We determine quantum numbers of these bound states and calculate their masses in the one-pion exchange scenario. The hadroquarkonium and molecular approaches to exotic hadrons are compared and the relative advantages and drawbacks of each approach are discussed.

  15. Influence of laser wavelength and pulse duration on gas bubble formation in blood filled glass capillaries.

    PubMed

    Kimel, Sol; Choi, Bernard; Svaasand, Lars O; Lotfi, Justin; Viator, John A; Nelson, J Stuart

    2005-04-01

    Hypervascular skin lesions (HVSL) are treated with medical lasers characterized by a variety of parameters such as wavelength lambda, pulse duration t(p), and radiant exposure E that can be adjusted for different pathology and blood vessel size. Treatment parameters have been optimized assuming constant optical properties of blood during laser photocoagulation. However, recent studies suggest that this assumption may not always be true. Our objective was to quantify thermally induced changes in blood that occur during irradiation using standard laser parameters. Glass capillary tubes (diameter D = 100, 200, and 337 microm) filled with fresh or hemolyzed rabbit blood were irradiated once at lambda = 585, 595, or 600 nm, t(p) = 1.5 milliseconds; and also at lambda = 585 nm, t(p) = 0.45 milliseconds. E was increased until blood ablation caused formation of permanent gas bubbles. In a corroborative study, human blood was heated at 50 degrees C and absorbance spectra were measured as a function of time. Threshold radiant exposure, E(thresh), for gas bubble formation was found not to depend on lambda, which might be surprising in view of the 10-fold lower absorption coefficient at 600 nm as compared to 585 nm. The spectroscopic study revealed heat-induced changes in blood constituent composition of hemoglobins (Hb) from initially 100% oxyhemoglobin (HbO2) to deoxyhemoglobin (HHb) and, ultimately, methemoglobin (metHb) as the major constituent. Model calculations of E(thresh)(lambda,D) based on changing constituent blood composition during heating with milliseconds lasers were found to correlate with experimental results. For laser treatment of HVSL it appears that lambda is of secondary importance and that the choice of t(p) is a more important factor. Copyright 2005 Wiley-Liss, Inc.

  16. Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2 and HfH2: a first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quijano, Ramiro; DeCoss, Romeo; Singh, David J

    2009-01-01

    The electronic structure and energetics of the tetragonal distortion for the fluorite-type dihydrides TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} are studied by means of highly accurate first-principles total-energy calculations. For HfH{sub 2}, in addition to the calculations using the scalar relativistic (SR) approximation, calculations including the spin-orbit coupling have also been performed. The results show that TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} in the cubic phase are unstable against tetragonal strain. For the three systems, the total energy shows two minima as a function of the c/a ratio with the lowest-energy minimum at c/a < 1 in agreementmore » with the experimental observations. The band structure of TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} (SR) around the Fermi level shows two common features along the two major symmetry directions of the Brillouin zone, {Lambda}?L and {Lambda}?K, a nearly flat doubly degenerate band, and a van Hove singularity, respectively. In cubic HfH{sub 2} the spin-orbit coupling lifts the degeneracy of the partially filled bands in the {Lambda}?L path, while the van Hove singularity in the {Lambda}?K path remains unchanged. The density of states of the three systems in the cubic phase shows a sharp peak at the Fermi level. We found that the tetragonal distortion produces a strong reduction in the density of states at the Fermi level resulting mainly from the splitting of the doubly-degenerate bands in the {Lambda}?L direction and the shift of the van Hove singularity to above the Fermi level. The validity of the Jahn-Teller model in explaining the tetragonal distortion in this group of dihydrides is discussed.« less

  17. Correlation Measurement of Lambda-anti-Lambda, Lambda-Lambda and anti-Lambda-anti-Lambda with the ATLAS detector at s=7 TeV

    NASA Astrophysics Data System (ADS)

    Cheng, Hok-Chuen

    This thesis summaries the measurements of correlations between Lambda 0Lambda0, Lambda0Lambda 0, and Lambda0Lambda 0 hyperon pairs produced inclusively at the LHC, which are useful for a better understanding of the quark-antiquark pair production and jet fragmentation and hadronization processes. The analysis is based on hyperon pairs selected using the muon and minimum bias data samples collected at the ATLAS experiment from proton-proton collisions at a center-of-mass energy of 7 TeV in 2010. Excess Lambda0Lambda 0 are observed near the production threshold and are identified to be originated from the parton system in the string model in the MC sample, decaying either directly or through heavy strange resonances such as Sigma0 and Sigma*(1385). Dynamical correlations have been explored through a correlation function defined as the ratio of two-particle to single-particle densities. Positive correlation is observed for Lambda0Lambda0 and anticorrelation is observed for Lambda0Lambda 0 and Lambda0Lambda 0 for Q in [0,2] GeV. The structure replicates similar correlations in pp, pp, and pppp events in PYTHIA generator as predicted by the Lund string fragmentation model. Parameters of the "popcorn" mechanism implemented in the PYTHIA generator are tuned and are found to have little impact on the structure observed. The spin composition of the sample is extracted using a data-driven reference sample built by event mixing. Appropriate corrections have been made to the kinematic distributions in the reference sample by kinematic weighting to make sure that the detector effects are well modeled. A modified Pearson's chi2 test statistics is calculated for the costheta* distribution to determine the best-fitted A-value for data. The results are consistent with zero for both like-type and unlike-type hyperon pairs in Q ∈ [0,10] GeV and Q ∈ [1,10] GeV respectively. The data statistics in the range of Q ∈ [0, 1] GeV is currently too low for the estimation of the emitter size for Fermi-Dirac correlation.

  18. 76 FR 2625 - Comment Sought on 2010 Review of Hearing Aid Compatibility Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... compatibility, as well as the effects of display screens, wireless headsets, and simultaneous transmission.... ACTION: Proposed rule. SUMMARY: The Wireless Telecommunications Bureau (Bureau) seeks comments on the operation and effectiveness of the Commission's rules relating to hearing aid compatibility of wireless...

  19. Isgur-Karl model revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galeta, Leonardo; Pirjol, Dan; Schat, Carlos

    2009-12-01

    We show how to match the Isgur-Karl model to the spin-flavor quark operator expansion used in the 1/N{sub c} studies of the nonstrange negative parity L=1 excited baryons. Using the transformation properties of states and interactions under the permutation group S{sub 3} we are able to express the operator coefficients as overlap integrals, without making any assumption on the spatial dependence of the quark wave functions. The general mass operator leads to parameter free mass relations and constraints on the mixing angles that are valid beyond the usual harmonic oscillator approximation. The Isgur-Karl model with harmonic oscillator wave functions providesmore » a simple counterexample that demonstrates explicitly that the alternative operator basis for the 1/N{sub c} expansion for excited baryons recently proposed by Matagne and Stancu is incomplete.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akaishi, Yoshinori; College of Science and Technology, Nihon University, Funabashi 274-8501; Myint, Khin Swe

    The overbinding problem of {sub {lambda}}{sup 5}He is solved by introducing a concept of coherent {lambda}-{sigma} coupling which is equivalent to a {lambda}NN three-body force. This three-body force is coherently enhanced in the 0{sup +} states of {sub {lambda}}{sup 4}H and {sub {lambda}}{sup 4}He. The 0{sup +}-1{sup +} splitting in these hypernuclei is mainly due to coherent {lambda}-{sigma} coupling and partly due to the {lambda}N spin-spin interaction. A {lambda}NN three-body potential is derived from the coupled-channel treatment. The origin of the repulsive and attractive nature of the three-body force is discussed. Coherent {lambda}-{sigma} coupling becomes more important in neutron-rich hypernucleimore » and especially in neutron-star matter at high densities. The possible existence of ''hyperheavy hydrogen'', {sub {lambda}}{sup 6}H, is suggested.« less

  1. [Rapid identification of hogwash oil by using synchronous fluorescence spectroscopy].

    PubMed

    Sun, Yan-Hui; An, Hai-Yang; Jia, Xiao-Li; Wang, Juan

    2012-10-01

    To identify hogwash oil quickly, the characteristic delta lambda of hogwash oil was analyzed by three dimensional fluorescence spectroscopy with parallel factor analysis, and the model was built up by using synchronous fluorescence spectroscopy with support vector machines (SVM). The results showed that the characteristic delta lambda of hogwash oil was 60 nm. Collecting original spectrum of different samples under the condition of characteristic delta lambda 60 nm, the best model was established while 5 principal components were selected from original spectrum and the radial basis function (RBF) was used as the kernel function, and the optimal penalty factor C and kernel function g were 512 and 0.5 respectively obtained by the grid searching and 6-fold cross validation. The discrimination rate of the model was 100% for both training sets and prediction sets. Thus, it is quick and accurate to apply synchronous fluorescence spectroscopy to identification of hogwash oil.

  2. Fibrillary glomerulonephritis associated with monoclonal gammopathy of undetermined significance showing lambda-type Bence Jones protein.

    PubMed

    Nagao, Tomoaki; Okura, Takafumi; Miyoshi, Ken-Ichi; Watanabe, Sanae; Manabe, Seiko; Kurata, Mie; Irita, Jun; Fukuoka, Tomikazu; Higaki, Jitsuo

    2005-09-01

    A 79-year-old woman was admitted to our hospital because of leg edema due to a nephrotic syndrome. Urinary and serum immunoelectrophoresis showed positive for the lambda type of Bence Jones protein. A bone marrow aspiration test revealed mild plasmacytosis (6.4% of the total cells). These findings confirmed her diagnosis of monoclonal gammopathy of undetermined significance (MGUS). Her renal biopsy specimen revealed mild mesangial cell proliferation and an increase in the mesangial matrix. Immunofluorescence studies showed positive staining for IgG, IgA, C3, and kappa and lambda light chains in the capillary wall and mesangium area. Electron microscopy showed that the electron deposits in the thickened basement membrane were formed by randomly arranged 16- to 18-nm nonbranching fibrils. A Congo red stain for amyloid was negative. These findings corresponded with the diagnosis of fibrillary glomerulonephritis. Therefore, this case showed a rare combination of fibrillary glomerulonephritis and MGUS.

  3. UVB-induced mutagenesis in hairless {lambda}lacZ-transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frijhoff, A.F.W.; Rebel, H.; Mientjes, E.J.

    UVB-induced mutagenesis was studied in hairless 40.6 transgenic mice (Muta{trademark}Mouse), which contain the {lambda}gt1OlacZ shuttle vector as a target for mutagenesis. Mice were exposed at the dorsal side to either single doses of 200, 500, 800, or 1000 J/m{sup 2} UVB or to two successive irradiations of either 200 and 800 J/m{sup 2} UVB, with intervals of 1,3, or 5 days, or to 800 and 200 J/m{sup 2} UVB with a 5-day interval. At 23 days after the last exposure, lacZ mutant frequencies (MF) were determined in the epidermis. The lacZ MF increased linearly with increasing dose of UVB. Themore » mutagenic effect of two successive irradiations appeared to be additive. The UV-induced mutation spectrum was dominated by G:C{r_arrow}A:T transitions at dipyrimidine sites. DNA-sequence analysis of spontaneously mutated phages showed a diverse spectrum consisting of insertions, deletions and G:C {r_arrow} A:T transitions at CpG sites. the results indicate that the hairless {lambda}lacZ-transgenic mouse is a suitable in vivo model for studying UVB-induced mutations. 29 refs., 5 tabs.« less

  4. Role of the Escherichia coli grpE heat shock protein in the initiation of bacteriophage lambda DNA replication.

    PubMed

    Osipiuk, J; Zylicz, M

    1991-01-01

    Initiation of replication of lambda DNA requires assembly of the proper nucleoprotein complex consisting of the lambda origin of replication-lambda O-lambda P-dnaB proteins. The dnaJ, dnaK and grpE heat shock proteins destabilize the lambda P-dnaB interaction in this complex permitting dnaB helicase to unwind lambda DNA near ori lambda sequence. First step of this disassembling reaction is the binding of dnaK protein to lambda P protein. In this report we examined the influence of dnaJ and grpE proteins on stability of the lambda P-dnaK complex. Our results show that grpE alone dissociates this complex, but both grpE and dnaJ together do not. These results suggest that, in the presence of grpE protein, dnaK protein has a higher affinity for lambda P protein complexed with dnaJ protein than in the situation where grpE protein is not used.

  5. Two-parameter asymptotics in magnetic Weyl calculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lein, Max

    2010-12-15

    This paper is concerned with small parameter asymptotics of magnetic quantum systems. In addition to a semiclassical parameter {epsilon}, the case of small coupling {lambda} to the magnetic vector potential naturally occurs in this context. Magnetic Weyl calculus is adapted to incorporate both parameters, at least one of which needs to be small. Of particular interest is the expansion of the Weyl product which can be used to expand the product of operators in a small parameter, a technique which is prominent to obtain perturbation expansions. Three asymptotic expansions for the magnetic Weyl product of two Hoermander class symbols aremore » proven as (i) {epsilon}<< 1 and {lambda}<< 1, (ii) {epsilon}<< 1 and {lambda}= 1, as well as (iii) {epsilon}= 1 and {lambda}<< 1. Expansions (i) and (iii) are impossible to obtain with ordinary Weyl calculus. Furthermore, I relate the results derived by ordinary Weyl calculus with those obtained with magnetic Weyl calculus by one- and two-parameter expansions. To show the power and versatility of magnetic Weyl calculus, I derive the semirelativistic Pauli equation as a scaling limit from the Dirac equation up to errors of fourth order in 1/c.« less

  6. Double-strangeness production in {bar p}Xe annihilation at low energy in the DIANA chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmin, V.V.; Barylov, V.G.; Chernukha, S.F.

    1994-09-01

    From the analysis of about 10{sup 5} annihilations of antiprotons at rest and in flight (0.4 - 0.9 GeV/c) on Xe nuclei, new results are presented for the final state K{sup 0}{sub s}SX (S = K{sup 0}{sub s}, K{sup {minus}}, {Lambda}, {Sigma}{sup 0}, {Sigma}{sup +-}). From these results and from earlier results for the final state K{sup +}SX, inclusive and semiinclusive yields are determined, giving virtually all strange channels. The effective strangeness contents were deduced to be 5.5% at rest and 5.3% in flight. In addition to 14 events reported earlier in the final states K{sup +}K{sup +}X and K{supmore » +}K{sup 0}{sub s}{Lambda}X and based on an analysis of 5.4 x 10{sup 5} annihilations, three new events were found in a further analysis of 10{sup 5} annihilations. The new events, together with the revised yields and momentum and mass distributions, are presented. The results confirm earlier results on the effective mass of {Lambda}{Lambda} and a determination of the preferable cascade process.« less

  7. Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr; Motornenko, Anton; Gorenstein, Mark I.; Stoecker, Horst

    2018-03-01

    The quantum mechanical Beth-Uhlenbeck (BU) approach for repulsive hard-core interactions between baryons is applied to the thermodynamics of a hadron gas. The second virial coefficient a2—the "excluded volume" parameter—calculated within the BU approach is found to be temperature dependent, and it differs dramatically from the classical excluded volume (EV) model result. At temperatures T =100 -200 MeV, the widely used classical EV model underestimates the EV parameter for nucleons at a given value of the nucleon hard-core radius by large factors of 3-4. Previous studies, which employed the hard-core radii of hadrons as an input into the classical EV model, have to be re-evaluated using the appropriately rescaled EV parameters. The BU approach is used to model the repulsive baryonic interactions in the hadron resonance gas (HRG) model. Lattice data for the second- and fourth-order net baryon susceptibilities are described fairly well when the temperature dependent BU baryonic excluded volume parameter corresponds to nucleon hard-core radii of rc=0.25 -0.3 fm. Role of the attractive baryonic interactions is also considered. It is argued that HRG model with a constant baryon-baryon EV parameter vN N≃1 fm3 provides a simple yet efficient description of baryon-baryon interaction in the crossover temperature region.

  8. Searching for the missing baryons in clusters

    PubMed Central

    Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul

    2011-01-01

    Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This “missing baryon” puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above . This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons. PMID:21321229

  9. Study of Flow of Superfluid He-II Very Near Tau(sub lambda)

    NASA Technical Reports Server (NTRS)

    Mukharsky, Yury; Sukhatme, Kalyani; Pearson, David; Chui, Talso

    1999-01-01

    We report here, preliminary data from an experiment studying flow of superfluid helium through a slit orifice (of sub-micron width) very close to T(sub lambda). Critical supercurrent (I(sub c)) data is obtained from a step function drive to the diaphragm in a Helmholtz resonator cell. The superfluid density (rho(sub s)) data can be obtained from the resonant frequency of the Helmholtz oscillator, as determined by transfer function of the resonator or from the free ringing after the step function excitation. Preliminary data shows that I(sub c) is proportional to (rho(sub s))(exp 1.27) and rho(sub s)) is proportional to tau(exp 0.73), where tau is the reduced temperature. However, the magnitude of I(sub c) is much larger than expected, indicating a possible parallel flow path. Further investigations are in progress. Keywords: superfluid; hydrodynamics; critical exponent

  10. Intense Photosensitized Emission from Stoichiometric Compounds Featuring Mn(2+) in Seven- and Eightfold Coordination Environments.

    PubMed

    Reid, Howard O. N.; Kahwa, Ishenkumba A.; White, Andrew J. P.; Williams, David J.

    1998-07-27

    Synthetic, structural and luminescence studies of stoichiometric crown ether compounds of Mn(2+) in well-defined coordination environments were undertaken in an effort to understand the origin of emitting crystal defects found in cubic F23 [(K18C6)(4)MnBr(4)][TlBr(4)](2) crystals (Fender, N. S.; et al. Inorg. Chem. 1997, 36, 5539). The new compound [Mn(12C4)(2)][MnBr(4)](2)[N(CH(3))(4)](2) (3) features Mn(2+) ions in eight- and fourfold coordination environments of [Mn(12C4)(2)](2+) and MnBr(4)(2)(-) respectively, while Mn(2+) in [Mn(15C5)(H(2)O)(2)][TlBr(5)] (4) is in the sevenfold coordination polyhedron of [Mn(15C5)(H(2)O)(2)](2+). Crystal data for 3: monoclinic, P2(1)/c (No. 14); a = 14.131(3) Å, b = 12.158(1) Å, c = 14.239(2) Å, beta = 110.37(1) degrees, Z = 2, R1 = 0.039 and wR2 = 0.083. For 3, long-lived emission (77 K decay rate approximately 3 x 10 s(-)(1)) from [Mn(12C4)(2)](2+) (the first for eight-coordinate Mn(2+) in stoichiometric compounds) is observed (lambda(max) approximately 546 nm) along with that of the sensitizing MnBr(4)(2)(-) (lambda(max) approximately 513 nm), which is partially quenched. Emission from the seven-coordinate [Mn(15C5)(H(2)O)(2)](2+) species of 4 and [Mn(15C5)(H(2)O)(2)][MnBr(4)] (the first for seven-coordinate Mn(2+) in stoichiometric compounds) peaks at lambda(max) approximately 592 nm. Unusually intense absorptions attributable to the seven-coordinate species are observed at 317 ((2)T(2)((2)I) <-- (6)A(1)), 342 ((4)T(1)((4)P) <-- (6)A(1)), 406 ((4)E((4)G) <-- (6)A(1)), and 531 ((4)T(1)((4)G) <-- (6)A(1)) nm.

  11. First Observation of the Doubly Cabibbo-Suppressed Decay of a Charmed Baryon: Λ c + → p K + π -

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S. B.; Tanida, K.; Kim, B. H.

    We report the first observation of the decay Λ + c→pK +π - using a 980 fb -1 data sample collected by the Belle detector at the KEKB asymmetric-energy e +e - collider. This is the first observation of a doubly Cabibbo-suppressed decay of a charmed baryon. We measure the branching ratio of this decay with respect to its Cabibbo-favored counterpart to be B(Λ +c→pK +π -)/B(Λ + c→pK -π +)=(2.35±0.27±0.21)×10 -3, where the uncertainties are statistical and systematic, respectively.

  12. Λc Production in Au+Au Collisions at √{sNN} = 200GeV measured by the STAR experiment

    NASA Astrophysics Data System (ADS)

    Xie, Guannan; STAR Collaboration

    2017-11-01

    At RHIC, enhancements in the baryon-to-meson ratio for light hadrons and hadrons containing strange quarks have been observed in central heavy-ion collisions compared to those in p+p and peripheral heavy-ion collisions in the intermediate transverse momentum (pT) range (2

  13. Measurement of higher cumulants of net-charge multiplicity distributions in Au + Au collisions at s N N = 7.7 – 200 GeV

    DOE PAGES

    Adare, A.; Afanasiev, S.; Aidala, C.; ...

    2016-01-19

    Our report presents the measurement of cumulants (C n,n=1,...,4) of the net-charge distributions measured within pseudorapidity (|η|<0.35) in Au+Au collisions at √s NN=7.7–200GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C 1/C 2, C 3/C 1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do notmore » observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. These measured values of C 1/C 2 and C 3/C 1 can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy. Moreover, the extracted baryon chemical potentials are in excellent agreement with a thermal-statistical analysis model.« less

  14. 75 FR 24746 - Occupational Exposure to Noise Standard; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2010-0017... Information Collection (Paperwork) Requirements AGENCY: Occupational Safety and Health Administration (OSHA..., Occupational Safety and Health Administration, Room N-2625, 200 Constitution Avenue, NW., Washington, DC 20210...

  15. 78 FR 24237 - Advisory Committee on Construction Safety and Health (ACCSH)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... your materials to the OSHA Docket Office, Docket No. OSHA-2013-0006, Room N-2625, U.S. Department of... presentations and other electronic materials must be compatible with PowerPoint 2010 and other Microsoft Office... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2013-0006...

  16. 78 FR 30337 - Federal Advisory Council on Occupational Safety and Health (FACOSH)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ...: You may submit materials to the OSHA Docket Office, Docket No. OSHA-2013-0013, Room N-2625, U.S... other electronic materials must be compatible with Microsoft Office 2010 formats. The FACOSH chair may... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2013-0013...

  17. 76 FR 9815 - Grain Handling Facilities; Extension of the Office of Management and Budget's (OMB) Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2011-0028... Information Collection (Paperwork) Requirements AGENCY: Occupational Safety and Health Administration (OSHA..., Occupational Safety and Health Administration, Room N-2625, 200 Constitution Avenue, NW., Washington, DC 20210...

  18. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin.

    PubMed

    Shen, Xiaoli; Xu, Zemin; Zhang, Xichang; Yang, Fangxing

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from -29.0‰ to -26.5‰ in soil spiked with 2mg/kg lambda-cyhalothrin, and to -27.5‰ with 10mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as -2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Spatial and seasonal changes in optical properties of autochthonous and allochthonous chromophoric dissolved organic matter in a stratified mountain lake.

    PubMed

    Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Nannicini, Luciano; Picchi, Maria Pia; Ricci, Maso; Santinelli, Chiara; Seritti, Alfredo; Tognazzi, Antonio; Rossi, Claudio

    2010-03-01

    In this study, we present results on seasonal and spatial changes in CDOM absorption and fluorescence (fCDOM) in a deep mountain lake (Salto Lake, Italy). A novel approach was used to describe the shape of CDOM absorption between 250-700 nm (distribution of the spectral slope, S(lambda)) and a new fluorescence ratio is used to distinguish between humic and amino acid-like components. Solar ultraviolet irradiance, dissolved organic carbon (DOC), DOM fluorescence and absorption measurements were analysed and compared to other physicochemical parameters. We show that in the UV-exposed mixed layer: (i) fluorescence by autochthonous amino acid-like CDOM, (ii) values of S(lambda) across UV-C and UV-B wavebands increased during the summer months, whereas (i) average molar absorption coefficient and (ii) fluorescence by allochthonous humic CDOM decreased. In the unexposed deep layer of the water column (and in the entire water column in winter), humic-like CDOM presented high values of molar absorption coefficients and low values of S(lambda). UV attenuation coefficients correlated with both chlorophyll a concentrations and CDOM absorption. In agreement with changes in CDOM, minimal values in UV attenuation were found in summer. The S(lambda) curve was used as a signature of the mixture between photobleached and algal-derived CDOM with respect to the unexposed chromophoric dissolved compounds in this thermal stratified lake. Furthermore, S(lambda) curves were useful to distinguish between low and high molecular weight CDOM.

  20. Results from the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Komatsu, E.; Bennett, Charles L.; Komatsu, Eiichiro

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These full-sky maps were used to obtain measurements of temperature and polarization anisotropy of the cosmic microwave background with the unprecedented accuracy and precision. The analysis of two-point correlation functions of temperature and polarization data gives determinations of the fundamental cosmological parameters such as the age and composition of the universe, as well as the key parameters describing the physics of inflation, which is further constrained by three-point correlation functions. WMAP observations alone reduced the flat ? cold dark matter (Lambda Cold Dark Matter) cosmological model (six) parameter volume by a factor of > 68, 000 compared with pre-WMAP measurements. The WMAP observations (sometimes in combination with other astrophysical probes) convincingly show the existence of non-baryonic dark matter, the cosmic neutrino background, flatness of spatial geometry of the universe, a deviation from a scale-invariant spectrum of initial scalar fluctuations, and that the current universe is undergoing an accelerated expansion. The WMAP observations provide the strongest ever support for inflation; namely, the structures we see in the universe originate from quantum fluctuations generated during inflation.

  1. DWARF GALAXIES AND THE COSMIC WEB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitez-Llambay, Alejandro; Abadi, Mario G.; Navarro, Julio F.

    2013-02-01

    We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due tomore » their lower binding energy and has a dramatic effect on the star formation history of affected systems. This 'cosmic web stripping' may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in {Lambda}CDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.« less

  2. Baryons and baryon resonances in nuclear matter

    NASA Astrophysics Data System (ADS)

    Lenske, Horst; Dhar, Madhumita; Gaitanos, Theodoros; Cao, Xu

    2018-01-01

    Theoretical approaches to the production of hyperons and baryon resonances in elementary hadronic reactions and heavy ion collisions are reviewed. The focus is on the production and interactions of baryons in the lowest SU(3) flavor octet and states from the next higher SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. The intimate connection between baryon resonances and strangeness production is shown first for reactions on the nucleon. Pion-induced hypernuclear reactions are shown to proceed essentially through the excitation of intermediate nucleon resonances. Transport theory in conjunction with a statistical fragmentation model is an appropriate description of hypernuclear production in antiproton and heavy ion induced fragmentation reactions. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.

  3. Measurements of [C I] 9850 A Emission from Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Oliversen, R. J.; Doane, N.; Scherb, F.; Harris, W. M.; Morgenthaler, J. P.

    2002-01-01

    We present quantitative measurements of cometary [C I] 9850 A, emission obtained during observations of comet Hale-Bopp (C/1995 O1) in 1997 March and April. The observations were carried out using a high-resolution (lambda/Delta lambda approx. 40,000) Fabry-Perot/CCD spectrometer at the McMath-Pierce solar telescope on Kitt Peak. This forbidden line, the carbon analog of [O I] 6300 A, is emitted in the radiative decay of C(1D) atoms. In the absence of other sources and sinks, [C I] 9850 A emission may be used as a direct tracer of CO photodissociation in comets. However, in Hale-Bopp's large, dense coma, other processes, such as collisional excitation of ground-state C(3P), dissociative recombination of CO+, and collisional dissociation of CO and CO2 may produce significant amounts of C(1D). The long C(1D) radiative lifetime (approx. 4000 s) makes collisional de-excitation (quenching) the primary loss mechanism in the inner coma. Thus, a detailed, self-consistent global model of collisional and photochemical interactions is necessary to fully account for [C I] 9850 A emission in comet Hale-Bopp.

  4. Dynamics of a family of transcendental meromorphic functions having rational Schwarzian derivative

    NASA Astrophysics Data System (ADS)

    Sajid, M.; Kapoor, G. P.

    2007-02-01

    In the present paper, a class of critically finite transcendental meromorphic functions having rational Schwarzian derivative is introduced and the dynamics of functions in one parameter family is investigated. It is found that there exist two parameter values [lambda]*=[phi](0)>0 and , where and is the real root of [phi]'(x)=0, such that the Fatou sets of f[lambda](z) for [lambda]=[lambda]* and [lambda]=[lambda]** contain parabolic domains. A computationally useful characterization of the Julia set of the function f[lambda](z) as the complement of the basin of attraction of an attracting real fixed point of f[lambda](z) is established and applied for the generation of the images of the Julia sets of f[lambda](z). Further, it is observed that the Julia set of explodes to whole complex plane for [lambda]>[lambda]**. Finally, our results found in the present paper are compared with the recent results on dynamics of one parameter families [lambda]tanz, [R.L. Devaney, L. Keen, Dynamics of meromorphic maps: Maps with polynomial Schwarzian derivative, Ann. Sci. Ecole Norm. Sup. 22 (4) (1989) 55-79; L. Keen, J. Kotus, Dynamics of the family [lambda]tan(z), Conform. Geom. Dynam. 1 (1997) 28-57; G.M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions, J. London Math. Soc. 49 (1994) 281-295] and , [lambda]>0 [G.P. Kapoor, M. Guru Prem Prasad, Dynamics of : The Julia set and bifurcation, Ergodic Theory Dynam. Systems 18 (1998) 1363-1383].

  5. NE VIII lambda 774 and time variable associated absorption in the QSO UM 675

    NASA Technical Reports Server (NTRS)

    Hamann, Fred; Barlow, Thomas A.; Beaver, E. A.; Burbidge, E. M.; Cohen, Ross D.; Junkkarinen, Vesa; Lyons, R.

    1995-01-01

    We discuss measurements of Ne VIII lambda 774 absorption and the time variability of other lines in the z(sub a) approximately equal z(sub e) absorption system of the z(sub e) = 2.15 QSO UM 675 (0150-203). The C IV lambda 1549 and N V 1240 doublets at z(sub a) = 2.1340 (shifted approximately 1500 km/s from z(sub e) strengthened by a factor of approximately 3 between observations by Sargent, Boksenberg and Steidel (1981 November) and our earliest measurements (1990 November and December). We have no information on changes in other z(sub a) approximately equal z(sub e) absorption lines. Continued monitoring since 1990 November shows no clear changes in any of the absorptions between approximately 1100 and 1640 A rest. The short timescale of the variability (less than or approximately equal to 2.9 yr rest) strongly suggests that the clouds are dense, compact, close to the QSO, and photoionized by the QSO continuum. If the line variability is caused by changes in the ionization, the timescale requires densities greater than approximately 4000/cu cm. Photoionization calculations place the absorbing clouds within approximately 200 pc of the continuum source. The full range of line ionizations (from Ne VIII lambda 774 to C III lambda 977) in optically thin gas (no Lyman limit) implies that the absorbing regions span a factor of more than approximately 10 in distance or approximately 100 in density. Across these regions, the total hydrogen (H I + H II) column ranges from a few times 10(exp 18)/sq cm in the low-ionization gas to approximately 10(exp 20)/sq cm where the Ne VIII doublet forms. The metallicity is roughly solar or higher, with nitrogen possibly more enhanced by factors of a few. The clouds might contribute significant line emission if they nearly envelop the QSO. The presence of highly ionized Ne VIII lambda 774 absorption near the QSO supports recent studies that link z(sub a) approximately equal to z(sub e) systems with X-ray 'wamr absorbers. We show that the Ne VIII absorbing gas would itself produce measurable warm absorption -- characterized by bound-free O VII or O VIII edegs near 0.8 keV -- if the column densities were N(sub H) greater than or approximately equal to 10(exp 21)/sq cm (for solar abundances).

  6. NE VIII lambda 774 and time variable associated absorption in the QSO UM 675

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Barlow, Thomas A.; Beaver, E. A.; Burbidge, E. M.; Cohen, Ross D.; Junkkarinen, Vesa; Lyons, R.

    1995-04-01

    We discuss measurements of Ne VIII lambda 774 absorption and the time variability of other lines in the za approximately equal ze absorption system of the ze = 2.15 QSO UM 675 (0150-203). The C IV lambda 1549 and N V 1240 doublets at za = 2.1340 (shifted approximately 1500 km/s from ze strengthened by a factor of approximately 3 between observations by Sargent, Boksenberg and Steidel (1981 November) and our earliest measurements (1990 November and December). We have no information on changes in other za approximately equal ze absorption lines. Continued monitoring since 1990 November shows no clear changes in any of the absorptions between approximately 1100 and 1640 A rest. The short timescale of the variability (less than or approximately equal to 2.9 yr rest) strongly suggests that the clouds are dense, compact, close to the QSO, and photoionized by the QSO continuum. If the line variability is caused by changes in the ionization, the timescale requires densities greater than approximately 4000/cu cm. Photoionization calculations place the absorbing clouds within approximately 200 pc of the continuum source. The full range of line ionizations (from Ne VIII lambda 774 to C III lambda 977) in optically thin gas (no Lyman limit) implies that the absorbing regions span a factor of more than approximately 10 in distance or approximately 100 in density. Across these regions, the total hydrogen (H I + H II) column ranges from a few times 1018/sq cm in the low-ionization gas to approximately 1020/sq cm where the Ne VIII doublet forms. The metallicity is roughly solar or higher, with nitrogen possibly more enhanced by factors of a few. The clouds might contribute significant line emission if they nearly envelop the QSO. The presence of highly ionized Ne VIII lambda 774 absorption near the QSO supports recent studies that link za approximately equal to ze systems with X-ray 'wamr absorbers. We show that the Ne VIII absorbing gas would itself produce measurable warm absorption -- characterized by bound-free O VII or O VIII edegs near 0.8 keV -- if the column densities were NH greater than or approximately equal to 1021/sq cm (for solar abundances).

  7. libSRES: a C library for stochastic ranking evolution strategy for parameter estimation.

    PubMed

    Ji, Xinglai; Xu, Ying

    2006-01-01

    Estimation of kinetic parameters in a biochemical pathway or network represents a common problem in systems studies of biological processes. We have implemented a C library, named libSRES, to facilitate a fast implementation of computer software for study of non-linear biochemical pathways. This library implements a (mu, lambda)-ES evolutionary optimization algorithm that uses stochastic ranking as the constraint handling technique. Considering the amount of computing time it might require to solve a parameter-estimation problem, an MPI version of libSRES is provided for parallel implementation, as well as a simple user interface. libSRES is freely available and could be used directly in any C program as a library function. We have extensively tested the performance of libSRES on various pathway parameter-estimation problems and found its performance to be satisfactory. The source code (in C) is free for academic users at http://csbl.bmb.uga.edu/~jix/science/libSRES/

  8. Unified origin for baryonic visible matter and antibaryonic dark matter.

    PubMed

    Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean

    2010-11-19

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  9. Determination of baryon-baryon elastic scattering phase shift from finite volume spectra in elongated boxes

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei

    2018-01-01

    The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.

  10. Precision measurement of the mass and lifetime of the Ξb⁻ baryon.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R F; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    2014-12-12

    We report on measurements of the mass and lifetime of the Ξ(b)⁻ baryon using about 1800 Ξ(b)⁻ decays reconstructed in a proton-proton collision data set corresponding to an integrated luminosity of 3.0  fb⁻¹ collected by the LHCb experiment. The decays are reconstructed in the Ξ(b)⁻→Ξ(c)⁰π⁻, Ξ(c)⁰→pK⁻K⁻π⁺ channel and the mass and lifetime are measured using the Λ(b)⁰→Λ(c)⁺π⁻ mode as a reference. We measure M(Ξ(b)⁻)-M(Λ(b)⁰)=178.36±0.46±0.16  MeV/c², (τ(Ξ(b)⁻)/τ(Λ(b)⁰)=1.089±0.026±0.011, where the uncertainties are statistical and systematic, respectively. These results lead to a factor of 2 better precision on the Ξ(b)⁻ mass and lifetime compared to previous best measurements, and are consistent with theoretical expectations.

  11. Jovian Chromophore Characteristics from Multispectral HST Images

    NASA Technical Reports Server (NTRS)

    Strycker, Paul D.; Chanover, Nancy J.; Simon-Miller, Amy A.; Banfield, Don; Gierasch, Peter J.

    2011-01-01

    The chromophores responsible for coloring the jovian atmosphere are embedded within Jupiter's vertical aerosol structure. Sunlight propagates through this vertical distribution of aerosol particles, whose colors are defined by omega-bar (sub 0)(lambda), and we remotely observe the culmination of the radiative transfer as I/F(lambda). In this study, we employed a radiative transfer code to retrieve omega-bar (sub 0)(lambda) for particles in Jupiter's tropospheric haze at seven wavelengths in the near-UV and visible regimes. The data consisted of images of the 2008 passage of Oval BA to the south of the Great Red Spot obtained by the Wide Field Planetary Camera 2 on-board the Hubble Space Telescope. We present derived particle colors for locations that were selected from 14 weather regions, which spanned a large range of observed colors. All omega-bar (sub 0)(lambda) curves were absorbing in the blue, and omega-bar (sub 0)(lambda) increased monotonically to approximately unity as wavelength increased. We found accurate fits to all omega-bar (sub 0)(lambda) curves using an empirically derived functional form: omega-bar (sub 0)(lambda) = 1 A exp(-B lambda). The best-fit parameters for the mean omega-bar (sub 0)(lambda) curve were A = 25.4 and B = 0.0149 for lambda in units of nm. We performed a principal component analysis (PCA) on our omega-bar (sub 0)(lambda) results and found that one or two independent chromophores were sufficient to produce the variations in omega-bar (sub 0)(lambda). A PCA of I/F(lambda) for the same jovian locations resulted in principal components (PCs) with roughly the same variances as the omega-bar (sub 0)(lambda) PCA, but they did not result in a one-to-one mapping of PC amplitudes between the omega-bar (sub 0)(lambda) PCA and I/F(lambda) PCA. We suggest that statistical analyses performed on I/ F(lambda) image cubes have limited applicability to the characterization of chromophores in the jovian atmosphere due to the sensitivity of 1/ F(lambda) to horizontal variations in the vertical aerosol distribution.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho De Gouvea, Andre Luiz

    ln this thesis the polarization of themore » $$\\Xi^-$$ hyperon and the $$\\Xi^+$$ antihyperon produced in the Fermilab Experiment E791 was determined by the analysis of the weak decay $$\\Xi^- \\to \\Lambda^0 + \\pi^-$$. For $$\\Xi^-$$ produced in the interaction between a 500 GeV/c $$\\pi^-$$ beam and a unpolarized carbon (platinum) target in the region $$p_t$$ > 0.8 GeV/c and $$X_F$$ > 0, -10.9% ± 1.5% (-14.7% ± 3.1%) polarization was obtained perpendicular to the production plane and -5.92% ± 1.69% (-2.41%±3.53% $$\\approx O$$) polarization was measured for $$\\Xi^+$$. Evidence was also found for a polarized $$\\Omega^-$$ hyperon produced in the same experiment in the region $$X_F$$ >0, after analysis of the weak decay $$\\Omega^- \\to \\Lambda^0 + K^-$$.« less

  13. A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak.

    PubMed

    Hill, K W; Bitter, M L; Scott, S D; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M-F; Lee, S G; Broennimann, Ch; Eikenberry, E F

    2008-10-01

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (lambda/d lambda>6000) of He-like and H-like Ar K alpha lines with good spatial (approximately 1 cm) and temporal (approximately 10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T(i)), and toroidal plasma rotation velocity (upsilon(phi)) from the line Doppler widths and shifts. The data analysis techniques, T(i) and upsilon(phi) profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.

  14. Nuclear physics research at the University of Richmond. Progress report, November 1, 1994--October 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure,more » interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.« less

  15. COLOR SUPERCONDUCTIVITY, INSTANTONS AND PARITY (NON?)-CONSERVATION AT HIGH BARYON DENSITY-VOLUME 5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GYULASSY,M.

    1997-11-11

    This one day Riken BNL Research Center workshop was organized to follow-up on the rapidly developing theoretical work on color super-conductivity, instanton dynamics, and possible signatures of parity violation in strong interactions that was stimulated by the talk of Frank Wilczek during the Riken BNL September Symposium. The workshop was held on November 11, 1997 at the center with over 30 participants. The program consisted of four talks on theory in the morning followed by two talks in the afternoon by experimentalists and open discussion. Krishna Rajagopal (MIT) first reviewed the status of the chiral condensate calculations at high baryonmore » density within the instanton model and the percolation transition at moderate densities restoring chiral symmetry. Mark Alford (Princeton) then discussed the nature of the novel color super-conducting diquark condensates. The main result was that the largest gap on the order of 100 MeV was found for the 0{sup +} condensate, with only a tiny gap << MeV for the other possible 1{sup +}. Thomas Schaefer (INT) gave a complete overview of the instanton effects on correlators and showed independent calculations in collaboration with Shuryak (SUNY) and Velkovsky (BNL) confirming the updated results of the Wilczek group (Princeton, MIT). Yang Pang (Columbia) addressed the general question of how breaking of discrete symmetries by any condensate with suitable quantum numbers could be searched for experimentally especially at the AGS through longitudinal A polarization measurements. Nicholas Samios (BNL) reviewed the history of measurements on {Lambda} polarization and suggested specific kinematical variables for such analysis. Brian Cole (Columbia) showed recent E910 measurements of {Lambda} production at the AGS in nuclear collisions and focused on the systematic biases that must be considered when looking for small symmetry breaking effects. Lively discussions led by Robert Jaffe (MIT) focused especially on speculations on the still unknown signatures of 0{sup +} color super-conductivity which of course would not be observable via discrete symmetry breaking.« less

  16. Existence and non-uniqueness of similarity solutions of a boundary-layer problem

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Lakin, W. D.

    1986-01-01

    A Blasius boundary value problem with inhomogeneous lower boundary conditions f(0) = 0 and f'(0) = - lambda with lambda strictly positive was considered. The Crocco variable formulation of this problem has a key term which changes sign in the interval of interest. It is shown that solutions of the boundary value problem do not exist for values of lambda larger than a positive critical value lambda. The existence of solutions is proven for 0 lambda lambda by considering an equivalent initial value problem. It is found however that for 0 lambda lambda, solutions of the boundary value problem are nonunique. Physically, this nonuniqueness is related to multiple values of the skin friction.

  17. Existence and non-uniqueness of similarity solutions of a boundary layer problem

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Lakin, W. D.

    1984-01-01

    A Blasius boundary value problem with inhomogeneous lower boundary conditions f(0) = 0 and f'(0) = - lambda with lambda strictly positive was considered. The Crocco variable formulation of this problem has a key term which changes sign in the interval of interest. It is shown that solutions of the boundary value problem do not exist for values of lambda larger than a positive critical value lambda. The existence of solutions is proven for 0 lambda lambda by considering an equivalent initial value problem. It is found however that for 0 lambda lambda, solutions of the boundary value problem are nonunique. Physically, this nonuniqueness is related to multiple values of the skin friction.

  18. Measurement of the Lambda b0 lifetime in Lambda b0-->J/psi Lambda 0 in pp collisions at square root s=1.96 TeV.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; DaRonco, S; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Labarga, L; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prokoshin, F; Pronko, A; Proudfoot, J; Ptochos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-03-23

    We report a measurement of the Lambda b0 lifetime in the exclusive decay Lambda b0-->J/psi Lambda 0 in pp collisions at square root s=1.96 TeV using an integrated luminosity of 1.0 fb-1 of data collected by the CDF II detector at the Fermilab Tevatron. Using fully reconstructed decays, we measure tau(Lambda b0)=1.593(-0.078)(+0.083)(stat)+/-0.033(syst) ps. This is the single most precise measurement of tau(Lambda b0) and is 3.2sigma higher than the current world average.

  19. Multi-strange baryon production in psbnd Pb collisions at √{sNN} = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-07-01

    The multi-strange baryon yields in Pbsbnd Pb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, Ξ and Ω production rates have been measured with the ALICE experiment as a function of transverse momentum, pT, in psbnd Pb collisions at a centre-of-mass energy of √{sNN} = 5.02 TeV. The results cover the kinematic ranges 0.6 GeV / c

  20. Multi-strange baryon production in p Pb collisions at s NN = 5.02   TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-05-12

    The multi-strange baryon yields in PbPb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, Ξ and Ω production rates have been measured with the ALICE experiment as a function of transverse momentum, p T , in pPb collisions at a centre-of-mass energy of √s NN=5.02 TeV. The results cover the kinematic ranges 0.6 GeV/c < p T < 7.2 GeV/c and 0.8 GeV/c < p T < 5 GeV/c, for Ξ and Ω respectively, in the common rapidity interval -0.5 < y CMS < 0. Multi-strange baryons have been identified by reconstructing theirmore » weak decays into charged particles. The p T spectra are analysed as a function of event charged-particle multiplicity, which in pPb collisions ranges over one order of magnitude and lies between those observed in pp and PbPb collisions. The measured p T distributions are compared to the expectations from a Blast-Wave model. The parameters which describe the production of lighter hadron species also describe the hyperon spectra in high multiplicity pPb collisions. The yield of hyperons relative to charged pions is studied and compared with results from pp and PbPb collisions. A continuous increase in the yield ratios as a function of multiplicity is observed in pPb data, the values of which range from those measured in minimum bias pp to the ones in PbPb collisions. A statistical model qualitatively describes this multiplicity dependence using a canonical suppression mechanism, in which the small volume causes a relative reduction of hadron production dependent on the strangeness content of the hyperon.« less

Top