DOE Office of Scientific and Technical Information (OSTI.GOV)
Simard, G.; et al.
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 degmore » $^2$ of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the corresponding lensing angular power spectrum to a model including cold dark matter and a cosmological constant ($$\\Lambda$$CDM), and to models with single-parameter extensions to $$\\Lambda$$CDM. We find constraints that are comparable to and consistent with constraints found using the full-sky Planck CMB lensing data. Specifically, we find $$\\sigma_8 \\Omega_{\\rm m}^{0.25}=0.598 \\pm 0.024$$ from the lensing data alone with relatively weak priors placed on the other $$\\Lambda$$CDM parameters. In combination with primary CMB data from Planck, we explore single-parameter extensions to the $$\\Lambda$$CDM model. We find $$\\Omega_k = -0.012^{+0.021}_{-0.023}$$ or $$M_{\
Simard, G.; et al.
2018-06-20
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 degmore » $^2$ of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the corresponding lensing angular power spectrum to a model including cold dark matter and a cosmological constant ($$\\Lambda$$CDM), and to models with single-parameter extensions to $$\\Lambda$$CDM. We find constraints that are comparable to and consistent with constraints found using the full-sky Planck CMB lensing data. Specifically, we find $$\\sigma_8 \\Omega_{\\rm m}^{0.25}=0.598 \\pm 0.024$$ from the lensing data alone with relatively weak priors placed on the other $$\\Lambda$$CDM parameters. In combination with primary CMB data from Planck, we explore single-parameter extensions to the $$\\Lambda$$CDM model. We find $$\\Omega_k = -0.012^{+0.021}_{-0.023}$$ or $$M_{\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simard, G.; et al.
We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 degmore » $^2$ of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the corresponding lensing angular power spectrum to a model including cold dark matter and a cosmological constant ($$\\Lambda$$CDM), and to models with single-parameter extensions to $$\\Lambda$$CDM. We find constraints that are comparable to and consistent with constraints found using the full-sky Planck CMB lensing data. Specifically, we find $$\\sigma_8 \\Omega_{\\rm m}^{0.25}=0.598 \\pm 0.024$$ from the lensing data alone with relatively weak priors placed on the other $$\\Lambda$$CDM parameters. In combination with primary CMB data from Planck, we explore single-parameter extensions to the $$\\Lambda$$CDM model. We find $$\\Omega_k = -0.012^{+0.021}_{-0.023}$$ or $$M_{\
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah P.
1994-01-01
A new, three-dimensional, shock-capturing, hydrodynamic code is utilized to determine the distribution of hot gas in a cold dark matter (CDM) + lambda model universe. Periodic boundary conditions are assumed: a box with size 85/h Mpc, having cell size 0.31/h Mpc, is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. We adopt omega = 0.45, lambda = 0.55, h identically equal to H/100 km/s/Mpc = 0.6, and then, from the cosmic background explorer (COBE) and light element nucleosynthesis, sigma(sub 8) = 0.77, omega(sub b) = 0.043. We identify the X-ray emitting clusters in the simulation box, compute the luminosity function at several wavelength bands, the temperature function and estimated sizes, as well as the evolution of these quantities with redshift. This open model succeeds in matching local observations of clusters in contrast to the standard omega = 1, CDM model, which fails. It predicts an order of magnitude decline in the number density of bright (h nu = 2-10 keV) clusters from z = 0 to z = 2 in contrast to a slight increase in the number density for standard omega = 1, CDM model. This COBE-normalized CDM + lambda model produces approximately the same number of X-ray clusters having L(sub x) greater than 10(exp 43) erg/s as observed. The background radiation field at 1 keV due to clusters is approximately the observed background which, after correction for numerical effects, again indicates that the model is consistent with observations.
New Kinematical Constraints on Cosmic Acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapetti, David; Allen, Steve W.; Amin, Mustafa A.
2007-05-25
We present and employ a new kinematical approach to ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t)=1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for amore » late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t)=j, we measure q{sub 0}=-0.81 {+-} 0.14 and j=2.16 +0.81 -0.75, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible.« less
Solar system and equivalence principle constraints on f(R) gravity by the chameleon approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capozziello, Salvatore; Tsujikawa, Shinji
2008-05-15
We study constraints on f(R) dark energy models from solar system experiments combined with experiments on the violation of the equivalence principle. When the mass of an equivalent scalar field degree of freedom is heavy in a region with high density, a spherically symmetric body has a thin shell so that an effective coupling of the fifth force is suppressed through a chameleon mechanism. We place experimental bounds on the cosmologically viable models recently proposed in the literature that have an asymptotic form f(R)=R-{lambda}R{sub c}[1-(R{sub c}/R){sup 2n}] in the regime R>>R{sub c}. From the solar system constraints on the post-Newtonianmore » parameter {gamma}, we derive the bound n>0.5, whereas the constraints from the violations of the weak and strong equivalence principles give the bound n>0.9. This allows a possibility to find the deviation from the {lambda}-cold dark matter ({lambda}CDM) cosmological model. For the model f(R)=R-{lambda}R{sub c}(R/R{sub c}){sup p} with 0
Is LambdaCDM consistent with the Tully-Fisher relation?
NASA Astrophysics Data System (ADS)
Reyes, Reinabelle; Gunn, J. E.; Mandelbaum, R.
2013-07-01
We consider the question of the origin of the Tully-Fisher relation in LambdaCDM cosmology. Reproducing the observed tight relation between stellar masses and rotation velocities of disk galaxies presents a challenge for semi-analytical models and hydrodynamic simulations of galaxy formation. Here, our goal is to construct a suite of galaxy mass models that is fully consistent with observations, and that also reproduces the observed Tully-Fisher relation. We take advantage of a well-defined sample of disk galaxies in SDSS with measured rotation velocities (from long-slit spectroscopy of H-alpha), stellar bulge and disk profiles (from fits to SDSS images), and average dark matter halo masses (from stacked weak lensing of a larger, similarly-selected sample). The primary remaining freedom in the mass models come from the final dark matter halo profile (after contraction from baryon infall and, possibly, feedback) and the stellar IMF. We find that the observed velocities are reproduced by models with Kroupa IMF and NFW (i.e., unmodified) dark matter haloes for galaxies with stellar masses 10^9-10^10 M_sun. For higher stellar masses, models with contracted NFW haloes are favored. A scenario in which the amount of halo contraction varies with stellar mass is able to reproduce the observed Tully-Fisher relation over the full stellar mass range of our sample from 10^9 to 10^11 M_sun. We present this as a proof-of-concept for consistency between LambdaCDM and the Tully-Fisher relation.
Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0
NASA Astrophysics Data System (ADS)
Kauffmann, Guinevere; Colberg, Jorg M.; Diaferio, Antonaldo; White, Simon D. M.
1999-02-01
We introduce a new technique for following the formation and evolution of galaxies in cosmological N-body simulations. Dissipationless simulations are used to track the formation and merging of dark matter haloes as a function of redshift. Simple prescriptions, taken directly from semi-analytic models of galaxy formation, are adopted for gas cooling, star formation, supernova feedback and the merging of galaxies within the haloes. This scheme enables us to explore the clustering properties of galaxies, and to investigate how selection by luminosity, colour or type influences the results. In this paper we study the properties of the galaxy distribution at z=0. These include B- and K-band luminosity functions, two-point correlation functions, pairwise peculiar velocities, cluster mass-to-light ratios, B-V colours, and star formation rates. We focus on two variants of a cold dark matter (CDM) cosmology: a high-density (Omega =1) model with shape-parameter Gamma =0.21 (tau CDM), and a low-density model with Omega =0.3 and Lambda =0.7 (Lambda CDM). Both models are normalized to reproduce the I-band Tully-Fisher relation of Giovanelli et al. near a circular velocity of 220 km s^-1. Our results depend strongly both on this normalization and on the adopted prescriptions for star formation and feedback. Very different assumptions are required to obtain an acceptable model in the two cases. For tau CDM, efficient feedback is required to suppress the growth of galaxies, particularly in low-mass field haloes. Without it, there are too many galaxies and the correlation function exhibits a strong turnover on scales below 1 Mpc. For Lambda CDM, feedback must be weaker, otherwise too few L_* galaxies are produced and the correlation function is too steep. Although neither model is perfect, both come close to reproducing most of the data. Given the uncertainties in modelling some of the critical physical processes, we conclude that it is not yet possible to draw firm conclusions about the values of cosmological parameters from studies of this kind. Further observational work on global star formation and feedback effects is required to narrow the range of possibilities.
Enhanced peculiar velocities in brane-induced gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyman, Mark; Khoury, Justin
The mounting evidence for anomalously large peculiar velocities in our Universe presents a challenge for the {Lambda}CDM paradigm. The recent estimates of the large-scale bulk flow by Watkins et al. are inconsistent at the nearly 3{sigma} level with {Lambda}CDM predictions. Meanwhile, Lee and Komatsu have recently estimated that the occurrence of high-velocity merging systems such as the bullet cluster (1E0657-57) is unlikely at a 6.5-5.8{sigma} level, with an estimated probability between 3.3x10{sup -11} and 3.6x10{sup -9} in {Lambda}CDM cosmology. We show that these anomalies are alleviated in a broad class of infrared-modifed gravity theories, called brane-induced gravity, in which gravitymore » becomes higher-dimensional at ultralarge distances. These theories include additional scalar forces that enhance gravitational attraction and therefore speed up structure formation at late times and on sufficiently large scales. The peculiar velocities are enhanced by 24-34% compared to standard gravity, with the maximal enhancement nearly consistent at the 2{sigma} level with bulk flow observations. The occurrence of the bullet cluster in these theories is {approx_equal}10{sup 4} times more probable than in {Lambda}CDM cosmology.« less
GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Harley; McGaugh, Stacy; Teuben, Peter
We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {Lambda}CDM simulations. The bulk motions of clusters attain {approx}1000 km s{sup -1} by low redshift, comparable to observations whereas {Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {Lambda}CDM, potentially providing an explanation for ''pink elephants''more » like El Gordo. However, it is not obvious that the cluster mass function can be recovered.« less
THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Changbom; Choi, Yun-Young; Kim, Sungsoo S.
2012-11-01
Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e., the flat {Lambda}CDM model). Here we show that the existence of the SGW is perfectly consistent with the {Lambda}CDM model, a result that onlymore » our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the {Lambda}CDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primordial Gaussian random phase density fluctuations growing in accordance with the general relativity can explain the richness and size of the observed large-scale structures in the SDSS. Using the HR2 simulation we predict that a future galaxy redshift survey about four times deeper or with 3 mag fainter limit than the SDSS should reveal a largest structure of bright galaxies about twice as big as the SGW.« less
Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, T.M.C.; et al.
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 degmore » $^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $$\\Lambda$$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $$\\Lambda$$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $$\\times$$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $$S_8 \\equiv \\sigma_8 (\\Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$$ and $$\\Omega_m = 0.264^{+0.032}_{-0.019}$$ for $$\\Lambda$$CDM for $w$CDM, we find $$S_8 = 0.794^{+0.029}_{-0.027}$$, $$\\Omega_m = 0.279^{+0.043}_{-0.022}$$, and $$w=-0.80^{+0.20}_{-0.22}$$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $$S_8$$ and $$\\Omega_m$$ are lower than the central values from Planck ...« less
Addressing Beyond Standard Model physics using cosmology
NASA Astrophysics Data System (ADS)
Ghalsasi, Akshay
We have consensus models for both particle physics (i.e. standard model) and cosmology (i.e. LambdaCDM). Given certain assumptions about the initial conditions of the universe, the marriage of the standard model (SM) of particle physics and LambdaCDM cosmology has been phenomenally successful in describing the universe we live in. However it is quite clear that all is not well. The three biggest problems that the SM faces today are baryogenesis, dark matter and dark energy. These problems, along with the problem of neutrino masses, indicate the existence of physics beyond SM. Evidence of baryogenesis, dark matter and dark energy all comes from astrophysical and cosmological observations. Cosmology also provides the best (model dependent) constraints on neutrino masses. In this thesis I will try address the following problems 1) Addressing the origin of dark energy (DE) using non-standard neutrino cosmology and exploring the effects of the non-standard neutrino cosmology on terrestrial and cosmological experiments. 2) Addressing the matter anti-matter asymmetry of the universe.
Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models
Wojtak, Radosław; Prada, Francisco
2017-06-21
The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. We present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acousticmore » oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model then predicts a significant difference between the actual Hubble constant, h=0.48±0.02, and its local determination, h obs=0.73±0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ω m=0.87±0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck LambdaCDM cosmology. The new dark-matter-dominated model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the Planck LambdaCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtak, Radosław; Prada, Francisco
The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. We present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acousticmore » oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model then predicts a significant difference between the actual Hubble constant, h=0.48±0.02, and its local determination, h obs=0.73±0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ω m=0.87±0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck LambdaCDM cosmology. The new dark-matter-dominated model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the Planck LambdaCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.« less
NASA Technical Reports Server (NTRS)
Stompor, Radoslaw; Gorski, Krzysztof M.
1994-01-01
We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.
Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey
NASA Technical Reports Server (NTRS)
Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1994-01-01
We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest 50% of galaxies in volume-limited samples that have M(sub lim) greater than M*. This bias in the power spectrum is independent of scale, consistent with the peaks-bias paradigm for galaxy formation. Second, the distribution of local density around galaxies shows that regions of moderate and high density contain both very bright (M less than M* = -19.2 + 5 log h) and fainter galaxies, but that voids preferentially harbor fainter galaxies (approximately 2 sigma significance level).
Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey
NASA Astrophysics Data System (ADS)
Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1994-08-01
We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc-1. The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h-1 Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h-1 Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h-1 Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambdazero = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h-1 Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma8 (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h-1 Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the power spectrum is approximately 40% larger for the brightest 50% of galaxies in volume-limited samples that have Mlim greater than M*. This bias in the power spectrum is independent of scale, consistent with the peaks-bias paradigm for galaxy formation. Second, the distribution of local density around galaxies shows that regions of moderate and high density contain both very bright (M less than M* = -19.2 + 5 log h) and fainter galaxies, but that voids preferentially harbor fainter galaxies (approximately 2 sigma significance level).
Padé Approximant and Minimax Rational Approximation in Standard Cosmology
NASA Astrophysics Data System (ADS)
Zaninetti, Lorenzo
2016-02-01
The luminosity distance in the standard cosmology as given by $\\Lambda$CDM and consequently the distance modulus for supernovae can be defined by the Pad\\'e approximant. A comparison with a known analytical solution shows that the Pad\\'e approximant for the luminosity distance has an error of $4\\%$ at redshift $= 10$. A similar procedure for the Taylor expansion of the luminosity distance gives an error of $4\\%$ at redshift $=0.7 $; this means that for the luminosity distance, the Pad\\'e approximation is superior to the Taylor series. The availability of an analytical expression for the distance modulus allows applying the Levenberg--Marquardt method to derive the fundamental parameters from the available compilations for supernovae. A new luminosity function for galaxies derived from the truncated gamma probability density function models the observed luminosity function for galaxies when the observed range in absolute magnitude is modeled by the Pad\\'e approximant. A comparison of $\\Lambda$CDM with other cosmologies is done adopting a statistical point of view.
NASA Astrophysics Data System (ADS)
An, Rui; Feng, Chang; Wang, Bin
2018-02-01
We constrain interacting dark matter and dark energy (IDMDE) models using a 450-degree-square cosmic shear data from the Kilo Degree Survey (KiDS) and the angular power spectra from Planck's latest cosmic microwave background measurements. We revisit the discordance problem in the standard Lambda cold dark matter (ΛCDM) model between weak lensing and Planck datasets and extend the discussion by introducing interacting dark sectors. The IDMDE models are found to be able to alleviate the discordance between KiDS and Planck as previously inferred from the ΛCDM model, and moderately favored by a combination of the two datasets.
Kaluza-Klein cosmological model in f(R, T) gravity with Λ(T)
NASA Astrophysics Data System (ADS)
Sahoo, P. K.; Mishra, B.; Tripathy, S. K.
2016-04-01
A class of Kaluza-Klein cosmological models in $f(R,T)$ theory of gravity have been investigated. In the work, we have considered the functional $f(R,T)$ to be in the form $f(R,T)=f(R)+f(T)$ with $f(R)=\\lambda R$ and $f(T)=\\lambda T$. Such a choice of the functional $f(R,T)$ leads to an evolving effective cosmological constant $\\Lambda$ which depends on the stress energy tensor. The source of the matter field is taken to be a perfect cosmic fluid. The exact solutions of the field equations are obtained by considering a constant deceleration parameter which leads two different aspects of the volumetric expansion namely a power law and an exponential volumetric expansion. Keeping an eye on the accelerating nature of the universe in the present epoch, the dynamics and physical behaviour of the models have been discussed. From statefinder diagnostic pair we found that the model with exponential volumetric expansion behaves more like a $\\Lambda$CDM model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Nan; Wu Puxun; Zhang Shuangnan
2010-04-15
Gamma-ray bursts (GRBs) have been regarded as standard candles at very high redshift for cosmology research. We have proposed a new method to calibrate GRB distance indicators with Type Ia supernova (SNe Ia) data in a completely cosmology-independent way to avoid the circularity problem that had limited the direct use of GRBs to probe cosmology [N. Liang, W. K. Xiao, Y. Liu, and S. N. Zhang, Astrophys. J. 685, 354 (2008).]. In this paper, a simple method is provided to combine GRB data into the joint observational data analysis to constrain cosmological models; in this method those SNe Ia datamore » points used for calibrating the GRB data are not used to avoid any correlation between them. We find that the {Lambda}CDM model is consistent with the joint data in the 1-{sigma} confidence region, using the GRB data at high redshift calibrated with the interpolating method, the Constitution set of SNe Ia, the cosmic microwave background radiation from Wilkinson Microwave Anisotropy Probe five year observation, the baryonic acoustic oscillation from the spectroscopic Sloan Digital Sky Survey Data Release 7 galaxy sample, the x-ray baryon mass fraction in clusters of galaxies, and the observational Hubble parameter versus redshift data. Comparing to the joint constraints with GRBs and without GRBs, we find that the contribution of GRBs to the joint cosmological constraints is a slight shift in the confidence regions of cosmological parameters to better enclose the {Lambda}CDM model. Finally, we reconstruct the acceleration history of the Universe up to z>6 with the distance moduli of SNe Ia and GRBs and find some features that deviate from the {Lambda}CDM model and seem to favor oscillatory cosmology models; however, further investigations are needed to better understand the situation.« less
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D. N.; Bennett, C. L.; Dunkley, J.; Nolta, M. R.; Halpern, M.; Hill, R. S.; Odegard, N.;
2013-01-01
We present cosmological parameter constraints based on the final nine-year Wilkinson Microwave Anisotropy Probe (WMAP) data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter Lambda-CDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background anisotropy, the baryon acoustic oscillation scale, and the Hubble constant, the matter and energy densities Omega(sub b)h(exp 2), Omega(sub c)h(exp 2)and Omega(sub Lambda), are each determined to a precision of approx. 1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5 sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional Lambda-CDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their Lambda-CDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r < 0.13 (95% CL); the spatial curvature parameter is limited to Omega(sub kappa) = (0.0027 (sub +0.0039) (sup -0.0038;) the summed mass of neutrinos is limited to Sigma M(sub nu) < 0.44 eV (95% CL); and the number of relativistic species is found to lie within N(sub eff) = 3.84 +/- 0+/-40, when the full data are analyzed. The joint constraint on N(sub eff) and the primordial helium abundance, Y(sub He), agrees with the prediction of standard big bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.
Galaxy clusters and cold dark matter - A low-density unbiased universe?
NASA Technical Reports Server (NTRS)
Bahcall, Neta A.; Cen, Renyue
1992-01-01
Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.
Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, T.M.C.; et al.
We combine Dark Energy Survey Year 1 clustering and weak lensing data with Baryon Acoustic Oscillations (BAO) and Big Bang Nucleosynthesis (BBN) experiments to constrain the Hubble constant. Assuming a flatmore » $$\\Lambda$$CDM model with minimal neutrino mass ($$\\sum m_\
Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barenboim, Gabriela; /Valencia U.; Lykken, Joseph D.
2006-08-01
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {Lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction ofmore » the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {Lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.« less
Dark degeneracy and interacting cosmic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aviles, Alejandro; Cervantes-Cota, Jorge L.
2011-10-15
We study some properties of the dark degeneracy, which is the fact that what we measure in gravitational experiments is the energy-momentum tensor of the total dark sector, and any split into components (as in dark matter and dark energy) is arbitrary. In fact, just one dark fluid is necessary to obtain exactly the same cosmological and astrophysical phenomenology as the {Lambda}CDM model. We work explicitly the first-order perturbation theory and show that beyond the linear order the dark degeneracy is preserved under some general assumptions. Then we construct the dark fluid from a collection of interacting fluids. Finally, wemore » try to break the degeneracy with a general class of couplings to baryonic matter. Nonetheless, we show that these interactions can also be understood in the context of the {Lambda}CDM model as between dark matter and baryons. For this last investigation we choose two independent parametrizations for the interactions, one inspired by electromagnetism and the other by chameleon theories. Then, we constrain them with a joint analysis of CMB and supernovae observational data.« less
Statistical Measures of Large-Scale Structure
NASA Astrophysics Data System (ADS)
Vogeley, Michael; Geller, Margaret; Huchra, John; Park, Changbom; Gott, J. Richard
1993-12-01
\\inv Mpc} To quantify clustering in the large-scale distribution of galaxies and to test theories for the formation of structure in the universe, we apply statistical measures to the CfA Redshift Survey. This survey is complete to m_{B(0)}=15.5 over two contiguous regions which cover one-quarter of the sky and include ~ 11,000 galaxies. The salient features of these data are voids with diameter 30-50\\hmpc and coherent dense structures with a scale ~ 100\\hmpc. Comparison with N-body simulations rules out the ``standard" CDM model (Omega =1, b=1.5, sigma_8 =1) at the 99% confidence level because this model has insufficient power on scales lambda >30\\hmpc. An unbiased open universe CDM model (Omega h =0.2) and a biased CDM model with non-zero cosmological constant (Omega h =0.24, lambda_0 =0.6) match the observed power spectrum. The amplitude of the power spectrum depends on the luminosity of galaxies in the sample; bright (L>L(*) ) galaxies are more strongly clustered than faint galaxies. The paucity of bright galaxies in low-density regions may explain this dependence. To measure the topology of large-scale structure, we compute the genus of isodensity surfaces of the smoothed density field. On scales in the ``non-linear" regime, <= 10\\hmpc, the high- and low-density regions are multiply-connected over a broad range of density threshold, as in a filamentary net. On smoothing scales >10\\hmpc, the topology is consistent with statistics of a Gaussian random field. Simulations of CDM models fail to produce the observed coherence of structure on non-linear scales (>95% confidence level). The underdensity probability (the frequency of regions with density contrast delta rho //lineρ=-0.8) depends strongly on the luminosity of galaxies; underdense regions are significantly more common (>2sigma ) in bright (L>L(*) ) galaxy samples than in samples which include fainter galaxies.
Charm: Cosmic history agnostic reconstruction method
NASA Astrophysics Data System (ADS)
Porqueres, Natalia; Ensslin, Torsten A.
2017-03-01
Charm (cosmic history agnostic reconstruction method) reconstructs the cosmic expansion history in the framework of Information Field Theory. The reconstruction is performed via the iterative Wiener filter from an agnostic or from an informative prior. The charm code allows one to test the compatibility of several different data sets with the LambdaCDM model in a non-parametric way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylor, K.; Hou, Z.; Knox, L.
The Planck cosmic microwave background temperature data are best fit with a Lambda CDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg(2) SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650 <= l <= 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing Lambda CDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipolemore » range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n(s) and A(s)e(-2 tau). We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of Lambda CDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at l > 2000.« less
The Local Supercluster as a test of cosmological models
NASA Technical Reports Server (NTRS)
Cen, Renyue
1994-01-01
The Local Supercluster kinematic properties (the Local Group infall toward the Virgo Cluster and galaxy density distribution about the Virgo Cluster) in various cosmological models are examined utilizing large-scale N-body (PM) simulations 500(exp 3) cells, 250(exp 3) particles, and box size of 400 h(exp -1) Mpc) and are compared to observations. Five models are investigated: (1) the standard, Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with omega = 1, h = 0.5, and sigma(sub 8) = 1.05; (2) the standard Hot Dark Matter (HDM) model with omega = 1, h = 0.75, and sigma(sub 8) = 1; (3) the tilted CDM model with omega = 1, h = 0.5, n = 0.7, and sigma(sub 8) = 0.5; (4) a CDM + lambda model with omega = 0.3, lambda = 0.7, h = 2/3, and sigma(sub 8) = 2/3; (5) the PBI model with omega = 0.2, h = 0.8, x = 0.1, m = -0.5, and sigma(sub 8) = 0.9. Comparison of the five models with the presently available observational measurements v(sub LG) = 85 - 305 km/s (with mean of 250 km/s), delta(n(sub g))/(n(sub g)-bar) = 1.40 + or - 0.35) suggests that an open universe with omega approximately 0.5 (with or without lambda) and sigma(sub 8) approximately 0.8 is preferred, with omega = 0.3-1.0 (with or without lambda) and sigma(sub 8) = 0.7-1.0 being the acceptable range. At variance with some previous claims based on either direct N-body or spherical nonlinear approaches, we find that a flat model with sigma(sub 8) approximately 0.7-1.0 seems to be reasonably consistent with observations. However, if one favors the low limit of v(sub LG) = 85 km/s, then an omega approximately 0.2-0.3 universe seems to provide a better fit, and flat (omega = 1) models are ruled out at approximately 95% confidence level. On the other hand, if the high limit of v(sub LG) = 350 km/s is closer to the truth, then it appears that omega approximately 0.7-0.8 is more consistent. This test is insensitive to the shape of the power spectrum, but rather sensitive to the normalization of the perturbation amplitude on the relevant scale (e.g., sigma(sub 8)) and omega. We find that neither linear nor nonlinear relations (with spherical symmetry) are good approximations for the relation between radial peculiar velocity and density perturbation, i.e., nonspherical effects and gravitational tidal field are important. The derived omega using either of the two relations is underestimated. In some cases, this error is as large as a factor of 2-4.
TESTING NONSTANDARD COSMOLOGICAL MODELS WITH SNLS3 SUPERNOVA DATA AND OTHER COSMOLOGICAL PROBES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhengxiang; Yu Hongwei; Wu Puxun, E-mail: hwyu@hunnu.edu.cn
2012-01-10
We investigate the implications for some nonstandard cosmological models using data from the first three years of the Supernova Legacy Survey (SNLS3), assuming a spatially flat universe. A comparison between the constraints from the SNLS3 and those from other SN Ia samples, such as the ESSENCE, Union2, SDSS-II, and Constitution samples, is given and the effects of different light-curve fitters are considered. We find that analyzing SNe Ia with SALT2 or SALT or SiFTO can give consistent results and the tensions between different data sets and different light-curve fitters are obvious for fewer-free-parameters models. At the same time, we alsomore » study the constraints from SNLS3 along with data from the cosmic microwave background and the baryonic acoustic oscillations (CMB/BAO), and the latest Hubble parameter versus redshift (H(z)). Using model selection criteria such as {chi}{sup 2}/dof, goodness of fit, Akaike information criterion, and Bayesian information criterion, we find that, among all the cosmological models considered here ({Lambda}CDM, constant w, varying w, Dvali-Gabadadze-Porrati (DGP), modified polytropic Cardassian, and the generalized Chaplygin gas), the flat DGP is favored by SNLS3 alone. However, when additional CMB/BAO or H(z) constraints are included, this is no longer the case, and the flat {Lambda}CDM becomes preferred.« less
Ground-based Opportunities for Astrometry
2013-01-01
those stars (Dinescu eta/. 2005) leads to a measurement of the tangential velocity of the Sagittarius dwarf and a definitive orbit. Several other...Currently accepted Lambda cold-dark-matter (CDM) cosmological models (see also Chapter 28) predict several hundred merging dwarf galaxies within 1...nination of tations with I) diagrams. o parallaxes lial velocity tarius dwarf of possible eta/. 2005) a definitive ttion of their uti on. :Is
Testing and selection of cosmological models with (1+z){sup 6} corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szydlowski, Marek; Marc Kac Complex Systems Research Centre, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow; Godlowski, Wlodzimierz
2008-02-15
In the paper we check whether the contribution of (-)(1+z){sup 6} type in the Friedmann equation can be tested. We consider some astronomical tests to constrain the density parameters in such models. We describe different interpretations of such an additional term: geometric effects of loop quantum cosmology, effects of braneworld cosmological models, nonstandard cosmological models in metric-affine gravity, and models with spinning fluid. Kinematical (or geometrical) tests based on null geodesics are insufficient to separate individual matter components when they behave like perfect fluid and scale in the same way. Still, it is possible to measure their overall effect. Wemore » use recent measurements of the coordinate distances from the Fanaroff-Riley type IIb radio galaxy data, supernovae type Ia data, baryon oscillation peak and cosmic microwave background radiation observations to obtain stronger bounds for the contribution of the type considered. We demonstrate that, while {rho}{sup 2} corrections are very small, they can be tested by astronomical observations--at least in principle. Bayesian criteria of model selection (the Bayesian factor, AIC, and BIC) are used to check if additional parameters are detectable in the present epoch. As it turns out, the {lambda}CDM model is favored over the bouncing model driven by loop quantum effects. Or, in other words, the bounds obtained from cosmography are very weak, and from the point of view of the present data this model is indistinguishable from the {lambda}CDM one.« less
Dark interactions and cosmological fine-tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quartin, Miguel; Calvao, Mauricio O; Joras, Sergio E
2008-05-15
Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the {Lambda}CDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme,more » this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.« less
Gravitational redshift of galaxies in clusters as predicted by general relativity.
Wojtak, Radosław; Hansen, Steen H; Hjorth, Jens
2011-09-28
The theoretical framework of cosmology is mainly defined by gravity, of which general relativity is the current model. Recent tests of general relativity within the Lambda Cold Dark Matter (ΛCDM) model have found a concordance between predictions and the observations of the growth rate and clustering of the cosmic web. General relativity has not hitherto been tested on cosmological scales independently of the assumptions of the ΛCDM model. Here we report an observation of the gravitational redshift of light coming from galaxies in clusters at the 99 per cent confidence level, based on archival data. Our measurement agrees with the predictions of general relativity and its modification created to explain cosmic acceleration without the need for dark energy (the f(R) theory), but is inconsistent with alternative models designed to avoid the presence of dark matter. © 2011 Macmillan Publishers Limited. All rights reserved
A new f(R) model in the light of local gravity test and late-time cosmology
NASA Astrophysics Data System (ADS)
Nautiyal, Akhilesh; Panda, Sukanta; Patel, Avani
We propose a new model of f(R) gravity containing Arctan function in the Lagrangian. We show here that this model satisfies fifth force constraint unlike a similar model in 2013 by Kruglov. In addition to this, we carry out the fixed point analysis as well as comment on the existence of curvature singularity in this model. The cosmological evolution for this f(R) gravity model is also analyzed in the Friedmann-Robertson-Walker (FRW) background. To understand observational significance of the model, cosmological parameters are obtained numerically and compared with those of Lambda cold dark matter (ΛCDM) model. We also scrutinize the model with supernova data. We apply Om diagnostic given by Sahni et al. in 2008 to the model. Using this diagnostic, we detect the distinction between cosmic evolution caused by the f(R) model and ΛCDM. We find best-fit parameter values of the model using baryon acoustic oscillations data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ata, Metin; Baumgarten, Falk; Bautista, Julian
We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshiftsmore » $0.8 < z < 2.2$ and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5$$\\sigma$$. We determine the spherically averaged BAO distance to $z = 1.52$ to 4.4 per cent precision: $$D_V(z=1.52)=3855\\pm170 \\left(r_{\\rm d}/r_{\\rm d, fid}\\right)\\ $$Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat $$\\Lambda$$CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find $$\\Omega_{\\Lambda} > 0$$ at 6.5$$\\sigma$$ significance when testing a $$\\Lambda$$CDM model with free curvature.« less
Neutrino Mass Bounds from 0{nu}{beta}{beta} Decays and Large Scale Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keum, Y.-Y.; Department of Physics, National Taiwan University, Taipei, Taiwan 10672; Ichiki, K.
2008-05-21
We investigate the way how the total mass sum of neutrinos can be constrained from the neutrinoless double beta decay and cosmological probes with cosmic microwave background (WMAP 3-year results), large scale structures including 2dFGRS and SDSS data sets. First we discuss, in brief, on the current status of neutrino mass bounds from neutrino beta decays and cosmic constrain within the flat {lambda}CMD model. In addition, we explore the interacting neutrino dark-energy model, where the evolution of neutrino masses is determined by quintessence scalar filed, which is responsable for cosmic acceleration today. Assuming the flatness of the universe, the constraintmore » we can derive from the current observation is {sigma}m{sub {nu}}<0.87 eV at the 95% confidence level, which is consistent with {sigma}m{sub {nu}}<0.68 eV in the flat {lambda}CDM model.« less
New probes of Cosmic Microwave Background large-scale anomalies
NASA Astrophysics Data System (ADS)
Aiola, Simone
Fifty years of Cosmic Microwave Background (CMB) data played a crucial role in constraining the parameters of the LambdaCDM model, where Dark Energy, Dark Matter, and Inflation are the three most important pillars not yet understood. Inflation prescribes an isotropic universe on large scales, and it generates spatially-correlated density fluctuations over the whole Hubble volume. CMB temperature fluctuations on scales bigger than a degree in the sky, affected by modes on super-horizon scale at the time of recombination, are a clean snapshot of the universe after inflation. In addition, the accelerated expansion of the universe, driven by Dark Energy, leaves a hardly detectable imprint in the large-scale temperature sky at late times. Such fundamental predictions have been tested with current CMB data and found to be in tension with what we expect from our simple LambdaCDM model. Is this tension just a random fluke or a fundamental issue with the present model? In this thesis, we present a new framework to probe the lack of large-scale correlations in the temperature sky using CMB polarization data. Our analysis shows that if a suppression in the CMB polarization correlations is detected, it will provide compelling evidence for new physics on super-horizon scale. To further analyze the statistical properties of the CMB temperature sky, we constrain the degree of statistical anisotropy of the CMB in the context of the observed large-scale dipole power asymmetry. We find evidence for a scale-dependent dipolar modulation at 2.5sigma. To isolate late-time signals from the primordial ones, we test the anomalously high Integrated Sachs-Wolfe effect signal generated by superstructures in the universe. We find that the detected signal is in tension with the expectations from LambdaCDM at the 2.5sigma level, which is somewhat smaller than what has been previously argued. To conclude, we describe the current status of CMB observations on small scales, highlighting the tensions between Planck, WMAP, and SPT temperature data and how the upcoming data release of the ACTpol experiment will contribute to this matter. We provide a description of the current status of the data-analysis pipeline and discuss its ability to recover large-scale modes.
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results
NASA Technical Reports Server (NTRS)
Bennett, C. L.; Larson, D.; Weiland, J. L.; Jaorsik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M;
2013-01-01
We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = -0.0027+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter ?Lambda-CDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further.With no significant anomalies and an adequate goodness of fit, the inflationary flat Lambda-CDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.
Strong gravitational lensing statistics as a test of cosmogonic scenarios
NASA Technical Reports Server (NTRS)
Cen, Renyue; Gott, J. Richard, III; Ostriker, Jeremiah P.; Turner, Edwin L.
1994-01-01
Gravitational lensing statistics can provide a direct and powerful test of cosmic structure formation theories. Since lensing tests, directly, the magnitude of the nonlinear mass density fluctuations on lines of sight to distant objects, no issues of 'bias' (of mass fluctuations with respect to galaxy density fluctuations) exist here, although lensing observations provide their own ambiguities of interpretation. We develop numerical techniques for generating model density distributions with the very large spatial dynamic range required by lensing considerations and for identifying regions of the simulations capable of multiple image lensing in a conservative and computationally efficient way that should be accurate for splittings significantly larger than 3 seconds. Applying these techniques to existing standard Cold dark matter (CDM) (Omega = 1) and Primeval Baryon Isocurvature (PBI) (Omega = 0.2) simulations (normalized to the Cosmic Background Explorer Satellite (COBE) amplitude), we find that the CDM model predicts large splitting (greater than 8 seconds) lensing events roughly an order-of-magnitude more frequently than the PBI model. Under the reasonable but idealized assumption that lensing structrues can be modeled as singular isothermal spheres (SIS), the predictions can be directly compared to observations of lensing events in quasar samples. Several large splitting (Delta Theta is greater than 8 seconds) cases are predicted in the standard CDM model (the exact number being dependent on the treatment of amplification bias), whereas none is observed. In a formal sense, the comparison excludes the CDM model at high confidence (essentially for the same reason that CDM predicts excessive small-scale cosmic velocity dispersions.) A very rough assessment of low-density but flat CDM model (Omega = 0.3, Lambda/3H(sup 2 sub 0) = 0.7) indicates a far lower and probably acceptable level of lensing. The PBI model is consistent with, but not strongly tested by, the available lensing data, and other open models would presumably do as well as PBI. These preliminary conclusions and the assumptions on which they are based can be tested and the analysis can be applied to other cosmogonic models by straightforward extension of the work presented here.
Structure and dynamics of Andromeda's stellar disk
NASA Astrophysics Data System (ADS)
Dorman, Claire Elise
2015-10-01
Lambda cold dark matter (LambdaCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LambdaCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar 0Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion 150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with LambdaCDM cosmological predictions.
Chameleon dark energy models with characteristic signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gannouji, Radouane; Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601; Moraes, Bruno
2010-12-15
In chameleon dark energy models, local gravity constraints tend to rule out parameters in which observable cosmological signatures can be found. We study viable chameleon potentials consistent with a number of recent observational and experimental bounds. A novel chameleon field potential, motivated by f(R) gravity, is constructed where observable cosmological signatures are present both at the background evolution and in the growth rate of the perturbations. We study the evolution of matter density perturbations on low redshifts for this potential and show that the growth index today {gamma}{sub 0} can have significant dispersion on scales relevant for large scale structures.more » The values of {gamma}{sub 0} can be even smaller than 0.2 with large variations of {gamma} on very low redshifts for the model parameters constrained by local gravity tests. This gives a possibility to clearly distinguish these chameleon models from the {Lambda}-cold-dark-matter ({Lambda}CDM) model in future high-precision observations.« less
Tachyon cosmology, supernovae data, and the big brake singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keresztes, Z.; Gergely, L. A.; Gorini, V.
2009-04-15
We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard {lambda}CDM model.
NASA Astrophysics Data System (ADS)
Dolgov, A. D.
2017-09-01
Recent astronomical discoveries of supermassive black holes (quasars), gamma-bursters, super-novae, and dust at high redshifts, z = (5-10), are reviewed. Such a dense population of the early universe is at odds with the conventional mechanisms of its possible origin. Similar data from the contemporary universe, which are also in conflict with natural expectations, are considered too. Two possible mechanisms are suggested, at least one of which can potentially solve all these problems. As a by-product of the last model, an abundant cosmological antimatter may be created.
Non-linear structure formation in the `Running FLRW' cosmological model
NASA Astrophysics Data System (ADS)
Bibiano, Antonio; Croton, Darren J.
2016-07-01
We present a suite of cosmological N-body simulations describing the `Running Friedmann-Lemaïtre-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Lambda cold dark matter (ΛCDM) with a time-evolving vacuum density, Λ(z), and time-evolving gravitational Newton's coupling, G(z). In this paper, we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realization of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalization choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the deviations of R-FLRW from ΛCDM, which could be readily exploited by future cosmological observations to test and further constrain the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritschneder, Matthias; Lin, Douglas N. C., E-mail: gritschneder@ucolick.org
2013-03-01
In the widely adopted {Lambda} cold dark matter ({Lambda}CDM) scenario for galaxy formation, dwarf galaxies are the building blocks of larger galaxies. Since they formed at relatively early epochs when the background density was relatively high, they are expected to retain their integrity as satellite galaxies when they merge to form larger entities. Although many dwarf spheroidal galaxies are found in the galactic halo around the Milky Way, their phase-space density (or velocity dispersion) appears to be significantly smaller than that expected for satellite dwarf galaxies in the {Lambda}CDM scenario. In order to account for this discrepancy, we consider themore » possibility that they may have lost a significant fraction of their baryonic matter content during the first infall at the Hubble expansion turnaround. Such mass loss arises naturally due to the feedback by relatively massive stars that formed in their centers briefly before the maximum contraction. Through a series of N-body simulations, we show that the timely loss of a significant fraction of the dSphs initial baryonic matter content can have profound effects on their asymptotic half-mass radius, velocity dispersion, phase-space density, and the mass fraction between residual baryonic and dark matter.« less
Ata, Metin; Baumgarten, Falk; Bautista, Julian; ...
2017-10-11
We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshiftsmore » $0.8 < z < 2.2$ and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5$$\\sigma$$. We determine the spherically averaged BAO distance to $z = 1.52$ to 4.4 per cent precision: $$D_V(z=1.52)=3855\\pm170 \\left(r_{\\rm d}/r_{\\rm d, fid}\\right)\\ $$Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat $$\\Lambda$$CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find $$\\Omega_{\\Lambda} > 0$$ at 6.5$$\\sigma$$ significance when testing a $$\\Lambda$$CDM model with free curvature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kantowski, Ronald; Chen Bin; Dai Xinyu, E-mail: kantowski@nhn.ou.ed, E-mail: Bin.Chen-1@ou.ed, E-mail: dai@nhn.ou.ed
We compute the deflection angle to order (m/r {sub 0}){sup 2} and m/r{sub 0} x {Lambda}r {sup 2}{sub 0} for a light ray traveling in a flat {Lambda}CDM cosmology that encounters a completely condensed mass region. We use a Swiss cheese model for the inhomogeneities and find that the most significant correction to the Einstein angle occurs not because of the nonlinear terms but instead occurs because the condensed mass is embedded in a background cosmology. The Swiss cheese model predicts a decrease in the deflection angle of {approx}2% for weakly lensed galaxies behind the rich cluster A1689 and thatmore » the reduction can be as large as {approx}5% for similar rich clusters at z {approx} 1. Weak-lensing deflection angles caused by galaxies can likewise be reduced by as much as {approx}4%. We show that the lowest order correction in which {Lambda} appears is proportional to m/r{sub 0} x {radical}({Lambda}r{sub 0}{sup 2}) and could cause as much as a {approx}0.02% increase in the deflection angle for light that passes through a rich cluster. The lowest order nonlinear correction in the mass is proportional to m/r{sub 0}x{radical}(m/r{sub 0}) and can increase the deflection angle by {approx}0.005% for weak lensing by galaxies.« less
Cosmological Studies with Galaxy Clusters, Active Galactic Nuclei, and Strongly Lensed Quasars
NASA Astrophysics Data System (ADS)
Rumbaugh, Nicholas Andrew
The large-scale structure (LSS) of the universe provides scientists with one of the best laboratories for studying Lambda Cold Dark Matter (LambdaCDM) cosmology. Especially at high redshift, we see increased rates of galaxy cluster and galaxy merging in LSS relative to the field, which is useful for studying the hierarchical merging predicted by LambdaCDM. The largest identified bound structures, superclusters, have not yet virialized. Despite the wide range of dynamical states of their constituent galaxies, groups, and clusters, they are all still actively evolving, providing an ideal laboratory in which to study cluster and galaxy evolution. In this dissertation, I present original research on several aspects of LSS and LambdaCDM cosmology. Three separate studies are included, each one focusing on a different aspect. In the first study, we use X-ray and optical observations from nine galaxy clusters at high redshift, some embedded in larger structures and some isolated, to study their evolutionary states. We extract X-ray gas temperatures and luminosities as well as optical velocity dispersions. These cluster properties are compared using low-redshift scaling relations. In addition, we employ several tests of substructure, using velocity histograms, Dressler-Shectman tests, and centroiding offsets. We conclude that two clusters out of our sample are most likely unrelaxed, and find support for deviations from self-similarity in the redshift evolution of the Lx-T relation. Our numerous complementary tests of the evolutionary state of clusters suggest potential under-estimations of systematic error in studies employing only a single such test. In the second study, we use multi-band imaging and spectroscopy to study active galactic nuclei (AGN) in high-redshift LSS. The AGN were identified using X-ray imaging and matched to optical catalogs that contained spectroscopic redshifts to identify members of the structures. AGN host galaxies tended to be associated with the transitional `green valley' on a color-magnitude diagram. Spectral analysis of the AGN hosts showed that the average host galaxy had either on-going or recent star formation, and was younger than the average galaxy, across all LSS in our sample. We further subdivided our sample in two based on the average evolutionary state of the LSS. The AGN in the more evolved structures had lower X-ray luminosities and longer times since last starburst. These results provide some evidence for merger-based AGN triggering, although other mechanisms, and possibly more than one, could be responsible. In the third study, we probed LambdaCDM cosmology from a different angle. An important part of the model is the cosmological parameters that define our universe. As such, probes that can more accurately and precisely measure these parameters, such as H0 and the dark energy equation of state, w, can allow us to more closely inspect the model. Strongly-lensed quasars provide one such probe, and we sought to perform the first step in using them for cosmological inference, which is to measure the time delays between strongly lensed images. We performed radio monitoring campaigns on six strongly lensed quasars using the Very Large Array. Lightcurves were extracted for each lensed image and analyzed for intrinsic variability. Two lensed quasars showed strong time variations, but the variations were linear in time, preventing precise time delay measurements due to a degeneracy with the magnifications. These results suggest most of the systems should be targeted for followup monitoring, and we estimate that time delays can be measured for the most variable systems with precision of 0.5 to 3.5 days with two more seasons of monitoring. In a joint fit with previously studied systems, these measurements could tighten constraints on H 0 by up to ~1.4.
Cosmological constraints from Galaxy Clusters in 2500 square-degree SPT-SZ survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haan, T. de; Benson, B. A.; Bleem, L. E.
We present cosmological parameter constraints obtained from galaxy clusters identified by their SunyaevZel'dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel'dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at z > 0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming amore » spatially flat Lambda CDM cosmology, we combine the cluster data with a prior on H-0 and find sigma(8)= 0.784. +/- 0.039 and Omega(m) = 0.289. +/- 0.042, with the parameter combination sigma(8) (Omega(m)/0.27)(0.3) = 0.797 +/- 0.031. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to Lambda CDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species (N-eff) are free parameters. When combined with constraints from the Planck CMB, H-0, baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to w = -1.023 +/- 0.042.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.
2011-11-20
We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in 2006 October during a BCS observing run. Follow-up spectroscopic observations with the Gemini Multi-Object Spectrograph instrument on the Gemini-South 8 m telescope confirmed the lensing nature of this system. Using weak-plus-strong lensing, velocity dispersion, cluster richness N{sub 200}, and fitting to a Navarro-Frenk-White (NFW) cluster mass density profile,more » we have made three independent estimates of the mass M{sub 200} which are all very consistent with each other. The combination of the results from the three methods gives M{sub 200} = (5.1 {+-} 1.3) Multiplication-Sign 10{sup 14} M{sub Sun }, which is fully consistent with the individual measurements. The final NFW concentration c{sub 200} from the combined fit is c{sub 200} = 5.4{sup +1.4}{sub -1.1}. We have compared our measurements of M{sub 200} and c{sub 200} with predictions for (1) clusters from {Lambda}CDM simulations, (2) lensing-selected clusters from simulations, and (3) a real sample of cluster lenses. We find that we are most compatible with the predictions for {Lambda}CDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to {Lambda}CDM. Finally, using the flux measured from the [O II]3727 line we have determined the star formation rate of the source galaxy and find it to be rather modest given the assumed lens magnification.« less
Large-scale structure in the Southern Sky Redshift Survey
NASA Technical Reports Server (NTRS)
Park, Changbom; Gott, J. R., III; Da Costa, L. N.
1992-01-01
The power spectrum from the Southern Sky Redshift Survey and the CfA samples are measured in order to explore the amplitude of fluctuation in the galaxy density. At lambda of less than or equal to 30/h Mpc the observed power spectrum is quite consistent with the standard CDM model. At larger scales the data indicate an excess of power over the standard CDM model. The observed power spectrum from these optical galaxy samples is in good agreement with that drawn from the sparsely sampled IRAS galaxies. The shape of the power spectrum is also studied by examining the relation between the genus per unit volume and the smoothing length. It is found that, over Gaussian smoothing scales from 6 to 14/h Mpc, the power spectrum has a slope of about -1. The topology of the galaxy density field is studied by measuring the shift of the genus curve from the Gaussian case. Over all smoothing scales studied, the observed genus curves are consistent with a random phase distribution of the galaxy density field, as predicted by the inflationary scenarios.
Cosmological study with galaxy clusters detected by the Sunyaev-Zel'dovich effect
NASA Astrophysics Data System (ADS)
Mak, Suet-Ying
In this work, we present various studies to forecast the power of the galaxy clusters detected by the Sunyaev-Zel'dovich (SZ) effect in constraining cosmological models. The SZ effect is regarded as one of the new and promising technique to identify and study cluster physics. With the latest data being released in recent years from the SZ telescopes, it is essential to explore their potentials in providing cosmological information and investigate their relative strengths with respect to galaxy cluster data from X-ray and optical, as well as other cosmological probes such as Cosmic Microwave Background (CMB). One of the topics regard resolving the debate on the existence of an anomalous large scale bulk flow as measured from the kinetic SZ signal of galaxy clusters in the WMAP CMB data. We predict that if such measurement is done with the latest CMB data from the Planck satellite, the sensitivity will be improved by a factor of >5 and thus be able to provide an independent view of its existence. As it turns out, the Planck data, when using the technique developed in this work, find that the observed bulk flow amplitude is consistent with those expected from the LambdaCDM, which is in clear contradiction to the previous claim of a significant bulk flow detection in the WMAP data. We also forecast on the capability of the ongoing and future cluster surveys identified through thermal SZ (tSZ) in constraining three extended models to the LambdaCDM model: modified gravity f( R) model, primordial non-Gaussianity of density perturbation, and the presence of massive neutrinos. We do so by employing their effects on the cluster number count and power spectrum and using Fisher Matrix analysis to estimate the errors on the model parameters. We find that SZ cluster surveys can provide vital complementary information to those expected from non-cluster probes. Our results therefore give the confidence for pursuing these extended cosmological models with SZ clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, J. W.; Sayre, J. T.; Reichardt, C. L.
We present measurements of the E-mode polarization angular auto-power spectrum (EE) and temperature-E-mode cross-power spectrum (TE) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We report the power spectra over the spherical harmonic multipole range 50 < l <= 8000 and detect nine acoustic peaks in the EE spectrum with high signal-to-noise ratio. These measurements are the most sensitive to date of the EE and TE power spectra at l > 1050 and l > 1475, respectively. The observations cover 500 deg(2), a fivefold increase in area compared to previous SPTpol analyses,more » which increases our sensitivity to the photon diffusion damping tail of the CMB power spectra enabling tighter constraints on Lambda CDM model extensions. After masking all sources with unpolarized flux > 50 mJy, we place a 95% confidence upper limit on residual polarized point-source power of D-l= l(l + 1)C-l/2 pi < 0.107 mu K-2 at l = 3000, suggesting that the EE damping tail dominates foregrounds to at least l = 4050 with modest source masking. We find that the SPTpol data set is in mild tension with the Lambda CDM model (2.1 sigma), and different data splits prefer parameter values that differ at the similar to 1 sigma level. When fitting SPTpol data at l < 1000, we find cosmological parameter constraints consistent with those for Planck temperature. Including SPTpol data at l > 1000 results in a preference for a higher value of the expansion rate (H-0 = 71.3 +/- 2.1 km s(-1) Mpc(-1)) and a lower value for present-day density fluctuations (sigma(8) = 0.77 +/- 0.02).« less
Confronting Alternative Cosmological Models with the Highest-Redshift Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Shafer, Daniel; Scolnic, Daniel; Riess, Adam
2018-01-01
High-redshift Type Ia supernovae (SNe Ia) from the HST CANDELS and CLASH programs significantly extend the Hubble diagram with 7 SNe at z > 1.5 suitable for cosmology, including one at z = 2.3. This unique leverage helps us distinguish "alternative" cosmological models from the standard Lambda-CDM model. Analyzing the Pantheon SN compilation, which includes these high-z SNe, we employ model comparison statistics to quantify the extent to which several proposed alternative expansion histories (e.g., empty universe, power law expansion, timescape cosmology) are disfavored even with SN Ia data alone. Using mock data, we demonstrate that some likelihood analyses used in the literature to support these models are sensitive to unrealistic assumptions and are therefore unsuitable for analysis of realistic SN Ia data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavridis, Adamantios; Arun, K. G.; Will, Clifford M.
Spin induced precessional modulations of gravitational wave signals from supermassive black hole binaries can improve the estimation of luminosity distance to the source by space based gravitational wave missions like the Laser Interferometer Space Antenna (LISA). We study how this impacts the ability of LISA to do cosmology, specifically, to measure the dark energy equation of state (EOS) parameter w. Using the {lambda}CDM model of cosmology, we show that observations of precessing binaries with mass ratio 10 ratio 1 by LISA, combined with a redshift measurement, can improve the determination of w up to an order of magnitude with respectmore » to the nonprecessing case depending on the total mass and the redshift.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, D.; Bennett, C. L.; Gold, B.
2011-02-01
The WMAP mission has produced sky maps from seven years of observations at L2. We present the angular power spectra derived from the seven-year maps and discuss the cosmological conclusions that can be inferred from WMAP data alone. With the seven-year data, the temperature (TT) spectrum measurement has a signal-to-noise ratio per multipole that exceeds unity for l < 919; and in band powers of width {Delta}l = 10, the signal-to-noise ratio exceeds unity up to l = 1060. The third acoustic peak in the TT spectrum is now well measured by WMAP. In the context of a flat {Lambda}CDMmore » model, this improvement allows us to place tighter constraints on the matter density from WMAP data alone, {Omega}{sub m} h {sup 2} = 0.1334{sup +0.0056}{sub -0.0055}, and on the epoch of matter-radiation equality, z{sub eq} = 3196{sup +134}{sub -133}. The temperature-polarization (TE) spectrum is detected in the seven-year data with a significance of 20{sigma}, compared to 13{sigma} with the five-year data. We now detect the second dip in the TE spectrum near l {approx} 450 with high confidence. The TB and EB spectra remain consistent with zero, thus demonstrating low systematic errors and foreground residuals in the data. The low-l EE spectrum, a measure of the optical depth due to reionization, is detected at 5.5{sigma} significance when averaged over l = 2-7: l(l + 1)C {sup EE}{sub l}/(2{pi}) = 0.074{sup +0.034}{sub -0.025} {mu}K{sup 2} (68% CL). We now detect the high-l, 24 {<=} l {<=} 800, EE spectrum at over 8{sigma}. The BB spectrum, an important probe of gravitational waves from inflation, remains consistent with zero; when averaged over l = 2-7, l(l + 1)C {sup BB}{sub l}/(2{pi}) < 0.055 {mu}K{sup 2} (95% CL). The upper limit on tensor modes from polarization data alone is a factor of two lower with the seven-year data than it was using the five-year data. The data remain consistent with the simple {Lambda}CDM model: the best-fit TT spectrum has an effective {chi}{sup 2} of 1227 for 1170 degrees of freedom, with a probability to exceed of 9.6%. The allowable volume in the six-dimensional space of {Lambda}CDM parameters has been reduced by a factor of 1.5 relative to the five-year volume, while the {Lambda}CDM model that allows for tensor modes and a running scalar spectral index has a factor of three lower volume when fit to the seven-year data. We test the parameter recovery process for bias and find that the scalar spectral index, n{sub s} , is biased high, but only by 0.09{sigma}, while the remaining parameters are biased by <0.15{sigma}. The improvement in the third peak measurement leads to tighter lower limits from WMAP on the number of relativistic degrees of freedom (e.g., neutrinos) in the early universe: N{sub eff}>2.7(95%CL). Also, using WMAP data alone, the primordial helium mass fraction is found to be Y{sub He} = 0.28{sup +0.14}{sub -0.15}, and with data from higher-resolution cosmic microwave background experiments included, we now establish the existence of pre-stellar helium at >3{sigma}. These new WMAP measurements provide important tests of big bang cosmology.« less
FORECAST FOR THE PLANCK PRECISION ON THE TENSOR-TO-SCALAR RATIO AND OTHER COSMOLOGICAL PARAMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burigana, C.; Gruppuso, A.; Mandolesi, N.
2010-11-20
The Planck satellite, successfully launched on 2009 May 14 to measure with unprecedented accuracy the primary cosmic microwave background (CMB) anisotropies, is operating as expected. The Standard Model of the Universe ('concordance' model) provides the current realistic context to analyze the CMB and other cosmological/astrophysical data, inflation in the early universe being part of it. The Planck performance for the crucial primordial parameter r, the tensor-to-scalar ratio related to primordial B-mode polarization, will depend on the quality of data analysis and interpretation. The Ginzburg-Landau (G-L) approach to inflation allows us to take high benefit of the CMB data. The fourth-degreemore » double-well inflaton potential gives an excellent fit to the current CMB+LSS data. We evaluate the Planck precision to the recovery of cosmological parameters, taking into account a reasonable toy model for residuals of systematic effects of instrumental and astrophysical origin based on publicly available information. We use and test two relevant models: the {Lambda}CDMr model, i.e., the standard {Lambda}CDM model augmented by r, and the {Lambda}CDMrT model, where the scalar spectral index, n{sub s} , and r are related through the theoretical 'banana-shaped' curve r = r(n{sub s}) coming from the G-L theory with a double-well inflaton potential. In the latter case, the analytical expressions for n{sub s} and r are imposed as a hard constraint in a Monte Carlo Markov Chain (MCMC) data analysis. We consider two C{sub l}-likelihoods (with and without B modes) and take into account the white noise sensitivity of Planck (LFI and HFI) in the 70, 100, and 143 GHz channels as well as the residuals from systematic errors and foregrounds. We also consider a cumulative channel of the three mentioned. We produce the sky (mock data) for the CMB multipoles C{sup TT}{sub l} , C{sup TE}{sub l} , C{sup EE}{sub l} , and C{sup BB}{sub l} from the {Lambda}CDMr and {Lambda}CDMrT models and obtain the cosmological parameter marginalized likelihood distributions for the two models. Foreground residuals affect only the cosmological parameters sensitive to the B modes. As expected, the likelihood r distribution is more clearly peaked near the fiducial value (r = 0.0427) in the {Lambda}CDMrT model than in the {Lambda}CDMr model. The best value for r in the presence of residuals turns out to be about r {approx_equal} 0.04 for both the {Lambda}CDMr and the {Lambda}CDMrT models. The {Lambda}CDMrT model is very stable; its distributions do not change by including residuals and the B modes. For r we find 0.028 < r < 0.116 at a 95% confidence level (CL) with the best value r = 0.04. We also compute the B mode detection probability by the most sensitive HFI-143 channel. At the level of foreground residual equal to 30% of our toy model, only a 68% CL (1{sigma}) detection is very likely. For a 95% CL detection (2{sigma}), the level of foreground residual should be reduced to 10% or lower of the adopted toy model. The lower bounds (and most probable value) we infer for r support the searching of CMB B-mode polarization in the current data as well as the planned CMB missions oriented toward B polarization.« less
Measuring the universe with high-precision large-scale structure
NASA Astrophysics Data System (ADS)
Mehta, Kushal Tushar
Baryon acoustic oscillations (BAOs) are used to obtain precision measurements of cosmological parameters from large-scale surveys. While robust against most systematics, there are certain theoretical uncertainties that can affect BAO and galaxy clustering measurements. In this thesis I use data from the Sloan Digital Sky Survey (SDSS) to measure cosmological parameters and use N-body and smoothed-particle hydrodynamic (SPH) simulations to measure the effect of theoretical uncertainties by using halo occupation distributions (HODs). I investigate the effect of galaxy bias on BAO measurements by creating mock galaxy catalogs from large N-body simulations at z = 1. I find that there is no additional shift in the acoustic scale (0.10% +/- 0.10%) for the less biased HODs (b 3). I present the methodology and implementation of the simple one-step reconstruction technique introduced by Eisenstein et al. (2007) to biased tracers in N-body simulation. Reconstruction reduces the errorbars on the acoustic scale measurement by a factor of 1.5 - 2, and removes any additional shift due to galaxy bias for all HODs (0.07% +/- 0.15%) . Padmanabhan et al. (2012) and Xu et al. (2012) use this reconstruction technique in the SDSS DR7 data to measure DV (z = 0.35) (rsfidr s) = 1356 +/- 25 Mpc. Here I use this measurement in combination with measurements from the cosmic microwave background and the supernovae legacy survey to measure various cosmological parameters. I find the data consistent with the LambdaCDM Universe with a flat geometry. In particular, I measure H0 = 69.8 +/- 1.2 km/s/Mpc, w = 0.97 +/- 0.17, OK= -0.004 +/- 0.005 in the LambdaCDM, wCDM, and oCDM models respectively. Next, I measure the effect of large-scale (5 Mpc) halo environment density on the HOD by using an SPH simulation at z = 0, 0.35, 0.5, 0.75, 1.0$. I do not find any significant dependence of the HOD on the halo environment density for different galaxy mass thresholds, red and blue galaxies, and at different redshifts. I use the MultiDark N-body simualtion to measure the possible effect of environment density on the galaxy correlation function xi(r). I find that environment density enhances xi(r) by 3% at scales of 1 - 20 Mpc/h at z = 0 and up to 12% at 0.3 Mpc/h and 8% at 1 - 4 Mpc/h for z = 1.
THE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Se-Heon; De Blok, W. J. G.; Brook, Chris
2011-07-15
We make a direct comparison of the derived dark matter (DM) distributions between hydrodynamical simulations of dwarf galaxies assuming a {Lambda}CDM cosmology and the observed dwarf galaxies sample from the THINGS survey in terms of (1) the rotation curve shape and (2) the logarithmic inner density slope {alpha} of mass density profiles. The simulations, which include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating, and most importantly, physically motivated gas outflows driven by supernovae, form bulgeless galaxies with DM cores. We show that the stellar and baryonic mass is similar to thatmore » inferred from photometric and kinematic methods for galaxies of similar circular velocity. Analyzing the simulations in exactly the same way as the observational sample allows us to address directly the so-called cusp/core problem in the {Lambda}CDM model. We show that the rotation curves of the simulated dwarf galaxies rise less steeply than cold dark matter rotation curves and are consistent with those of the THINGS dwarf galaxies. The mean value of the logarithmic inner density slopes {alpha} of the simulated galaxies' DM density profiles is {approx}-0.4 {+-} 0.1, which shows good agreement with {alpha} = -0.29 {+-} 0.07 of the THINGS dwarf galaxies. The effect of non-circular motions is not significant enough to affect the results. This confirms that the baryonic feedback processes included in the simulations are efficiently able to make the initial cusps with {alpha} {approx}-1.0 to -1.5 predicted by DM-only simulations shallower and induce DM halos with a central mass distribution similar to that observed in nearby dwarf galaxies.« less
The Hubble Constant to 1%: Physics beyond LambdaCDM
NASA Astrophysics Data System (ADS)
Riess, Adam
2017-08-01
By steadily advancing the precision and accuracy of the Hubble constant, we now see 3.4-sigma evidence for a deviation from the standard LambdaCDM model and thus the exciting chance of discovering new fundamental physics such as exotic dark energy, a new relativistic particle, dark matter interactions, or a small curvature, to name a few possibilities. We propose a coordinated program to accomplish three goals with one set of observations: (1) improve the precision of the best route to H_0 with HST observations of Cepheids in the hosts of 11 SNe Ia, lowering the uncertainty to 1.3% to reach the discovery threshold of 5-sigma and begin resolving the underlying source of the deviation; (2) continue testing the quality of Cepheid distances, so far the most accurate and reliable indicators in the near Universe, using the tip of the red giant branch (TRGB); and (3) use oxygen-rich Miras to confirm the present tension with the CMB and establish a future route available to JWST. We can achieve all three goals with one dataset and take the penultimate step to reach 1% precision in H_0 after Gaia. With its long-pass filter and NIR capability, we can collect these data with WFC3 many times faster than previously possible while overcoming the extinction and metallicity effects that challenged the first generation of H_0 measurements. Our results will complement the leverage available at high redshift from other cosmological tools such as BAO, the CMB, and SNe Ia, and will provide a 40% improvement on the WFIRST measurements of dark energy. Reaching this precision will be a fitting legacy for the telescope charged to resolve decades of uncertainty regarding the Hubble constant.
Voids and constraints on nonlinear clustering of galaxies
NASA Technical Reports Server (NTRS)
Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.
1994-01-01
Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model (omega = 1, b = 1.5; see below for definitions) and nonzero cosmological constant CDM model (omega = 0.4, h = 0.6 lambda(sub 0) = 0.6, b = 1.3) produce voids that are too empty. All three simulations match the observed VPF and underdensity probability for samples of very bright (M less than M asterisk = -19.2) galaxies, but produce voids that are too empty when compared with samples that include fainter galaxies.
NASA Technical Reports Server (NTRS)
Luppino, G. A.; Gioia, I. M.
1995-01-01
During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo
We use both an H I-selected and an optically selected galaxy sample to directly measure the abundance of galaxies as a function of their 'baryonic' mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey and atomic gas masses are calculated using atomic hydrogen (H I) emission line data from the Arecibo Legacy Fast ALFA survey. By using the technique of abundance matching, we combine the measured baryonic function of galaxies with the dark matter halo mass function in a {Lambda}CDM universe, in order to determine the galactic baryon fraction asmore » a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon fractions of low-mass halos cannot be explained by reionization heating alone, and that additional feedback mechanisms (e.g., supernova blowout) must be invoked. However, the outflow rates needed to reproduce our result are not easily accommodated in the standard picture of galaxy formation in a {Lambda}CDM universe.« less
NASA Astrophysics Data System (ADS)
Mao, Tian-Xiang; Wang, Jie; Frenk, Carlos S.; Gao, Liang; Li, Ran; Wang, Qiao; Cao, Xiaoyue; Li, Ming
2018-07-01
Schwinn et al. have recently compared the abundance and distribution of massive substructures identified in a gravitational lensing analysis of Abell 2744 by Jauzac et al. and N-body simulation, and found no cluster in Lambda cold dark matter (ΛCDM) simulation that is similar to Abell 2744. Schwinn et al. identified the measured projected aperture masses with the actual masses associated with subhaloes in the Millenium XXL N-body simulation. We have used the high-resolution Phoenix cluster simulations to show that such an identification is incorrect: the aperture mass is dominated by mass in the body of the cluster that happens to be projected along the line of sight to the subhalo. This enhancement varies from factors of a few to factors of more than 100, particularly for subhaloes projected near the centre of the cluster. We calculate aperture masses for subhaloes in our simulation and compare them to the measurements for Abell 2744. We find that the data for Abell 2744 are in excellent agreement with the matched predictions from ΛCDM. We provide further predictions for aperture mass functions of subhaloes in idealized surveys with varying mass detection thresholds.
NASA Astrophysics Data System (ADS)
Fukushima, Kimichika; Sato, Hikaru
2018-04-01
Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.
DOE R&D Accomplishments Database
Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Lafoux, H.; Neill, J. D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Rich, J.; Sullivan, M.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R. S.; Filiol, M.; Goncalves, A. C.; Goobar, A.; Guide, D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon, R.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; Walton, N.
2005-10-14
We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.
COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mota, David F.; Winther, Hans A.
2011-05-20
In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to {Lambda}CDM, but can in some special cases enhance the growth of the linear perturbationsmore » at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.« less
The Diversity of Assembly Histories Leading to Disc Galaxy Formation in a ΛCDM Model
NASA Astrophysics Data System (ADS)
Font, Andreea S.; McCarthy, Ian G.; Le Brun, Amandine M. C.; Crain, Robert A.; Kelvin, Lee S.
2017-11-01
Disc galaxies forming in a LambdaCDM cosmology often experience violent mergers. The fact that disc galaxies are ubiquitous suggests that quiescent histories are not necessary. Modern cosmological simulations can now obtain realistic populations of disc galaxies, but it is still unclear how discs manage to survive massive mergers. Here we use a suite of hydrodynamical cosmological simulations to elucidate the fate of discs encountering massive mergers. We follow the changes in the post-merger disc-to-total ratios (D/T) of simulated galaxies and examine the relations between their present-day morphology, assembly history and gas fractions. We find that approximately half of present-day disc galaxies underwent at least one merger with a satellite more massive the host's stellar component and a third had mergers with satellites three times as massive. These mergers lead to a sharp, but often temporary, decrease in the D/T of the hosts, implying that discs are usually disrupted but then quickly re-grow. To do so, high cold gas fractions are required post-merger, as well as a relatively quiescent recent history (over a few Gyrs before z = 0). Our results show that discs can form via diverse merger pathways and that quiescent histories are not the dominant mode of disc formation.
The best-fit universe. [cosmological models
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1991-01-01
Inflation provides very strong motivation for a flat Universe, Harrison-Zel'dovich (constant-curvature) perturbations, and cold dark matter. However, there are a number of cosmological observations that conflict with the predictions of the simplest such model: one with zero cosmological constant. They include the age of the Universe, dynamical determinations of Omega, galaxy-number counts, and the apparent abundance of large-scale structure in the Universe. While the discrepancies are not yet serious enough to rule out the simplest and most well motivated model, the current data point to a best-fit model with the following parameters: Omega(sub B) approximately equal to 0.03, Omega(sub CDM) approximately equal to 0.17, Omega(sub Lambda) approximately equal to 0.8, and H(sub 0) approximately equal to 70 km/(sec x Mpc) which improves significantly the concordance with observations. While there is no good reason to expect such a value for the cosmological constant, there is no physical principle that would rule out such.
Constraints on isocurvature models from the WMAP first-year data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moodley, K.; Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH; Bucher, M.
2004-11-15
We investigate the constraints imposed by the first-year Wilkinson Microwave Anisotropy Probe (WMAP) cosmic microwave background (CMB) data extended to higher multipoles by data from ACBAR, BOOMERANG, CBI, and the VSA and by the large-scale structure data from the 2dF galaxy redshift survey on the possible amplitude of primordial isocurvature modes. A flat universe with cold dark matter (CDM) and cosmological constant {lambda} is assumed, and the baryon, CDM isocurvature (CI), and neutrino density (NID), and velocity (NIV) isocurvature modes are considered. Constraints on the allowed isocurvature contributions are established from the data for various combinations of the adiabatic modemore » and one, two, and three isocurvature modes, with intermode cross correlations allowed. Since baryon and CDM isocurvature are observationally virtually indistinguishable, these modes are not considered separately. We find that when just a single isocurvature mode is added, the present data allows an isocurvature fraction, in terms of the nonadiabatic contribution to the power in the CMB anisotropy, as large as 13{+-}6, 7{+-}4, and 13{+-}7 percent for adiabatic plus the CI, NID, and NIV modes, respectively. When two isocurvature modes plus the adiabatic mode and cross correlations are allowed, these percentages rise to 47{+-}16, 34{+-}12, and 44{+-}12 for the combinations CI+NID, CI+NIV, and NID+NIV, respectively. Finally, when all three isocurvature modes and cross correlations are allowed, the admissible isocurvature fraction rises to 57{+-}9 percent. In our analysis we consider only scalar modes with a single common tilt parameter for all the modes and do not consider any possible primordial anisotropies in the local neutrino velocity distribution beyond quadrupole order. The sensitivity of the results to the choice of prior probability distribution is examined.« less
SPT-CL J2040–4451: An SZ-selected galaxy cluster at x=1.478 with significant ongoing star formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, M. B.; Ashby, M. L. N.; Ruel, J.
2014-09-18
SPT-CL J2040-4451-spectroscopically confirmed at z = 1.478-is the highest-redshift galaxy cluster yet discovered via the Sunyaev-Zel'dovich effect. SPT-CL J2040-4451 was a candidate galaxy cluster identified in the first 720 deg(2) of the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey, and has been confirmed in follow-up imaging and spectroscopy. From multi-object spectroscopy with Magellan-I/Baade+ IMACS we measure spectroscopic redshifts for 15 cluster member galaxies, all of which have strong [O Pi]lambda lambda 3727 emission. SPT-CL J2040-4451 has an SZ-measured mass of M-500,(SZ) = 3.2 ± 0.8 x 10 14M(circle dot) h(-1) 70, corresponding to M-200,M- (SZ) = 5.8 ± 1.4 x 10more » 14M(circle dot) h(70-)(1.) The velocity dispersion measured entirely from blue star-forming members is sv = 1500 ± 520 km s -1. The prevalence of star-forming cluster members (galaxies with > 1.5M(circle dot) yr -1 implies that this massive, high-redshift cluster is experiencing a phase of active star formation, and supports recent results showing a marked increase in star formation occurring in galaxy clusters at z greater than or similar to 1.4. We also compute the probability of finding a cluster as rare as this in the SPT-SZ survey to be > 99%, indicating that its discovery is not in tension with the concordance Lambda CDM cosmological model.« less
The ISW effect and the lack of large-angle CMB temperature correlations
NASA Astrophysics Data System (ADS)
Copi, Craig J.; O'Dwyer, Márcio; Starkman, Glenn D.
2016-12-01
It is by now well established that the magnitude of the two-point angular-correlation function of the cosmic microwave background temperature anisotropies is anomalously low for angular separations greater than about 60°. Physics explanations of this anomaly typically focus on the properties of the Universe at the surface of last scattering, relying on the fact that large-angle temperature fluctuations are dominated by the Sachs-Wolfe effect (SW). However, these fluctuations also receive important contributions from the integrated Sachs-Wolfe effect (ISW) at both early (eISW) and late (ℓISW) times. Here, we study the correlations in those large-angle temperature fluctuations and their relative contributions to S1/2- the standard measure of the correlations on large angular scales. We find that in the best-fitting lambda cold dark matter (ΛCDM) cosmology, while the autocorrelation of the early contributions (SW plus eISW) dominates S1/2, there are also significant contributions originating from cross-terms between the early and late contributions. In particular, realizations of ΛCDM with low S1/2 are typically produced from a combination of somewhat low pure-early correlations and accidental cancellations among early-late correlations. We also find that if the pure ℓISW autocorrelations were the only contribution to S1/2 in ΛCDM, then the p-value of the observed cut-sky S1/2 would be unremarkable. This suggests that the physical mechanisms operating only at or near the last scattering surface could explain the observed lack of large-angle correlations, though this is not the typical resolution within ΛCDM.
Imprint of DES superstructures on the cosmic microwave background
Kovács, A.; Sánchez, C.; García-Bellido, J.; ...
2016-11-17
Here, small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshiftsmore » $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $$\\Delta T_{f} \\approx -5.0\\pm3.7~\\mu K$$ and a hot imprint of superclusters $$\\Delta T_{f} \\approx 5.1\\pm3.2~\\mu K$$ ; this is $$\\sim1.2\\sigma$$ higher than the expected $$|\\Delta T_{f}| \\approx 0.6~\\mu K$$ imprint of such super-structures in $$\\Lambda$$CDM. If we instead use an a posteriori selected filter size ($$R/R_{v}=0.6$$), we can find a temperature decrement as large as $$\\Delta T_{f} \\approx -9.8\\pm4.7~\\mu K$$ for voids, which is $$\\sim2\\sigma$$ above $$\\Lambda$$CDM expectations and is comparable to previous measurements made using SDSS super-structure data.« less
Imprint of DES superstructures on the cosmic microwave background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovács, A.; Sánchez, C.; García-Bellido, J.
Here, small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshiftsmore » $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $$\\Delta T_{f} \\approx -5.0\\pm3.7~\\mu K$$ and a hot imprint of superclusters $$\\Delta T_{f} \\approx 5.1\\pm3.2~\\mu K$$ ; this is $$\\sim1.2\\sigma$$ higher than the expected $$|\\Delta T_{f}| \\approx 0.6~\\mu K$$ imprint of such super-structures in $$\\Lambda$$CDM. If we instead use an a posteriori selected filter size ($$R/R_{v}=0.6$$), we can find a temperature decrement as large as $$\\Delta T_{f} \\approx -9.8\\pm4.7~\\mu K$$ for voids, which is $$\\sim2\\sigma$$ above $$\\Lambda$$CDM expectations and is comparable to previous measurements made using SDSS super-structure data.« less
NASA Technical Reports Server (NTRS)
Cen, Renyue
1994-01-01
The mass and velocity distributions in the outskirts (0.5-3.0/h Mpc) of simulated clusters of galaxies are examined for a suite of cosmogonic models (two Omega(sub 0) = 1 and two Omega(sub 0) = 0.2 models) utilizing large-scale particle-mesh (PM) simulations. Through a series of model computations, designed to isolate the different effects, we find that both Omega(sub 0) and P(sub k) (lambda less than or = 16/h Mpc) are important to the mass distributions in clusters of galaxies. There is a correlation between power, P(sub k), and density profiles of massive clusters; more power tends to point to the direction of a stronger correlation between alpha and M(r less than 1.5/h Mpc); i.e., massive clusters being relatively extended and small mass clusters being relatively concentrated. A lower Omega(sub 0) universe tends to produce relatively concentrated massive clusters and relatively extended small mass clusters compared to their counterparts in a higher Omega(sub 0) model with the same power. Models with little (initial) small-scale power, such as the hot dark matter (HDM) model, produce more extended mass distributions than the isothermal distribution for most of the mass clusters. But the cold dark matter (CDM) models show mass distributions of most of the clusters more concentrated than the isothermal distribution. X-ray and gravitational lensing observations are beginning providing useful information on the mass distribution in and around clusters; some interesting constraints on Omega(sub 0) and/or the (initial) power of the density fluctuations on scales lambda less than or = 16/h Mpc (where linear extrapolation is invalid) can be obtained when larger observational data sets, such as the Sloan Digital Sky Survey, become available.
Large-angle correlations in the cosmic microwave background
NASA Astrophysics Data System (ADS)
Efstathiou, George; Ma, Yin-Zhe; Hanson, Duncan
2010-10-01
It has been argued recently by Copi et al. 2009 that the lack of large angular correlations of the CMB temperature field provides strong evidence against the standard, statistically isotropic, inflationary Lambda cold dark matter (ΛCDM) cosmology. We compare various estimators of the temperature correlation function showing how they depend on assumptions of statistical isotropy and how they perform on the Wilkinson Microwave Anisotropy Probe (WMAP) 5-yr Internal Linear Combination (ILC) maps with and without a sky cut. We show that the low multipole harmonics that determine the large-scale features of the temperature correlation function can be reconstructed accurately from the data that lie outside the sky cuts. The reconstructions are only weakly dependent on the assumed statistical properties of the temperature field. The temperature correlation functions computed from these reconstructions are in good agreement with those computed from the ILC map over the whole sky. We conclude that the large-scale angular correlation function for our realization of the sky is well determined. A Bayesian analysis of the large-scale correlations is presented, which shows that the data cannot exclude the standard ΛCDM model. We discuss the differences between our results and those of Copi et al. Either there exists a violation of statistical isotropy as claimed by Copi et al., or these authors have overestimated the significance of the discrepancy because of a posteriori choices of estimator, statistic and sky cut.
The most massive galaxies and black holes allowed by ΛCDM
NASA Astrophysics Data System (ADS)
Behroozi, Peter; Silk, Joseph
2018-07-01
Given a galaxy's stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z> 4, galaxy stellar mass functions place lower limits on halo number densities that approach expected Lambda Cold Dark Matter halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z < 8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST(James Webb Space Telescope) and WFIRST(Wide-Field InfraRed Survey Telescope) will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from ΛCDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass to stellar mass ratios higher than the median z = 0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently ΛCDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.
Planck and the reionization of the universe
NASA Astrophysics Data System (ADS)
Crill, Brendan
2016-03-01
Planck is the third-generation satellite aimed at measuring the cosmic microwave background, a relic of the hot big bang. Planck's temperature and polarization maps of the millimeter-wave sky have constrained parameters of the standard lambda-CDM model of cosmology to incredible precision, and have provided constraints on inflation in the very early universe. Planck's all-sky survey of polarization in seven frequency bands can remove contamination from nearby Galactic emission and constrain the optical depth of the reionized Universe, giving insight into the properties of the earliest star formation. The final 2016 data release from Planck will include a refined optical depth measurement using the full sensitivity of both the High Frequency and Low Frequency instruments. I present the status of the reionization measurement and discuss future prospects for further measurements of the early Universe with the CMB from Planck and future space and suborbital platforms.
CLASH: PRECISE NEW CONSTRAINTS ON THE MASS PROFILE OF THE GALAXY CLUSTER A2261
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Dan; Postman, Marc; Bradley, Larry
2012-09-20
We precisely constrain the inner mass profile of A2261 (z = 0.225) for the first time and determine that this cluster is not 'overconcentrated' as found previously, implying a formation time in agreement with {Lambda}CDM expectations. These results are based on multiple strong-lensing analyses of new 16-band Hubble Space Telescope imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble. Combining this with revised weak-lensing analyses of Subaru wide-field imaging with five-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass M{sub vir} = (2.2 {+-} 0.2) Multiplication-Sign 10{sup 15} M{sub Sun}more » h {sup -1}{sub 70} (within r{sub vir} Almost-Equal-To 3 Mpc h {sup -1}{sub 70}) and concentration c{sub vir} = 6.2 {+-} 0.3 when assuming a spherical halo. This agrees broadly with average c(M, z) predictions from recent {Lambda}CDM simulations, which span 5 {approx}< (c) {approx}< 8. Our most significant systematic uncertainty is halo elongation along the line of sight (LOS). To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be {approx}35% lower than our lensing-derived profile at r{sub 2500} {approx} 600 kpc. Agreement can be achieved by a halo elongated with a {approx}2:1 axis ratio along our LOS. For this elongated halo model, we find M{sub vir} = (1.7 {+-} 0.2) Multiplication-Sign 10{sup 15} M{sub Sun} h {sup -1}{sub 70} and c{sub vir} = 4.6 {+-} 0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find that these tend to lower M{sub vir} further by {approx}7% and increase c{sub vir} by {approx}5%.« less
A New Measurement of the Expansion Rate of the Universe, Evidence of New Physics?
NASA Astrophysics Data System (ADS)
Riess, Adam
2018-01-01
The Hubble constant remains one of the most important parameters in the cosmological model, setting the size and age scales of the Universe. Present uncertainties in the cosmological model including the nature of dark energy, the properties of neutrinos and the scale of departures from flat geometry can be constrained by measurements of the Hubble constant made to higher precision than was possible with the first generations of Hubble Telescope instruments. A streamlined distance ladder constructed from infrared observations of Cepheids and type Ia supernovae with ruthless attention paid to systematics now provide 2.4% precision and offer the means to do even better. By steadily improving the precision and accuracy of the Hubble constant, we now see evidence for significant deviations from the standard model, referred to as LambdaCDM, and thus the exciting chance, if true, of discovering new fundamental physics such as exotic dark energy, a new relativistic particle, or a small curvature to name a few possibilities. I will review recent and expected progress in the near term.
ERIC Educational Resources Information Center
Efendioglu, Akin
2012-01-01
The main purpose of this study is to design a "Courseware Development Model" (CDM) and investigate its effects on pre-service teachers' academic achievements in the field of geography and attitudes toward computer-based education (ATCBE). The CDM consisted of three components: content (C), learning theory, namely, meaningful learning (ML), and…
NASA Astrophysics Data System (ADS)
Chakravarty, G. K.; Mohanty, S.; Lambiase, G.
Cosmological and astrophysical observations lead to the emerging picture of a universe that is spatially flat and presently undertaking an accelerated expansion. The observations supporting this picture come from a range of measurements encompassing estimates of galaxy cluster masses, the Hubble diagram derived from type-Ia supernovae observations, the measurements of Cosmic Microwave Background radiation anisotropies, etc. The present accelerated expansion of the universe can be explained by admitting the existence of a cosmic fluid, with negative pressure. In the simplest scenario, this unknown component of the universe, the Dark Energy, is represented by the cosmological constant (Λ), and accounts for about 70% of the global energy budget of the universe. The remaining 30% consist of a small fraction of baryons (4%) with the rest being Cold Dark Matter (CDM). The Lambda Cold Dark Matter (ΛCDM) model, i.e. General Relativity with cosmological constant, is in good agreement with observations. It can be assumed as the first step towards a new standard cosmological model. However, despite the satisfying agreement with observations, the ΛCDM model presents lack of congruence and shortcomings and therefore theories beyond Einstein’s General Relativity are called for. Many extensions of Einstein’s theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature R, coupling the Ricci curvature with scalar fields and generalized functions of R. In addition, when viewed from the perspective of Supergravity (SUGRA), many of these theories may originate from the same SUGRA theory, but interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these theories when applied to inflation (a rapid expansion of early universe in which primordial gravitational waves might be generated and might still be detectable by the imprint they left or by the ripples that persist today) can have distinct signatures in the Cosmic Microwave Background radiation temperature and polarization anisotropies. We give a review of ΛCDM cosmology and survey the theories of gravity beyond Einstein’s General Relativity, specially which arise from SUGRA, and study the consequences of these theories in the context of inflation and put bounds on the theories and the parameters therein from the observational experiments like PLANCK, Keck/BICEP, etc. The possibility of testing these theories in the near future in CMB observations and new data coming from colliders like the LHC, provides an unique opportunity for constructing verifiable models of particle physics and General Relativity.
Probing dark energy dynamics from current and future cosmological observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Gongbo; Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6; Zhang Xinmin
2010-02-15
We report the constraints on the dark energy equation-of-state w(z) using the latest 'Constitution' SNe sample combined with the WMAP5 and Sloan Digital Sky Survey data. Assuming a flat Universe, and utilizing the localized principal component analysis and the model selection criteria, we find that the {Lambda}CDM model is generally consistent with the current data, yet there exists a weak hint of the possible dynamics of dark energy. In particular, a model predicting w(z)<-1 at z is an element of [0.25,0.5) and w(z)>-1 at z is an element of [0.5,0.75), which means that w(z) crosses -1 in the range ofmore » z is an element of [0.25,0.75), is mildly favored at 95% confidence level. Given the best fit model for current data as a fiducial model, we make future forecast from the joint data sets of Joint Dark Energy Mission, Planck, and Large Synoptic Survey Telescope, and we find that the future surveys can reduce the error bars on the w bins by roughly a factor of 10 for a 5-w-bin model.« less
The Mira-Titan Universe. II. Matter Power Spectrum Emulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana
We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k similar to 5 Mpc(-1) and redshift z <= 2. In addition to covering the standard set of Lambda CDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with 16 medium-resolution simulations andmore » TimeRG perturbation theory results to provide accurate coverage over a wide k-range; the data set generated as part of this project is more than 1.2Pbytes. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-up results with more than a hundred cosmological models will soon achieve similar to 1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches.« less
NASA Astrophysics Data System (ADS)
Lovell, Mark R.; Zavala, Jesús; Vogelsberger, Mark; Shen, Xuejian; Cyr-Racine, Francis-Yan; Pfrommer, Christoph; Sigurdson, Kris; Boylan-Kolchin, Michael; Pillepich, Annalisa
2018-07-01
We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36 Mpc3 volume with gas cell mass of ˜ 105 M_{⊙} and minimum gas softening of ˜180 pc) within ETHOS to date - plus a CDM counterpart - to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionization less sensitive to the power spectrum cut-off: the ETHOS model differs from the CDM τ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1-0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep James Webb Space Telescope surveys of strongly lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDM's Local Group problems.
Topological analysis of the CfA redshift survey
NASA Technical Reports Server (NTRS)
Vogeley, Michael S.; Park, Changbom; Geller, Margaret J.; Huchra, John P.; Gott, J. Richard, III
1994-01-01
We study the topology of large-scale structure in the Center for Astrophysics Redshift Survey, which now includes approximately 12,000 galaxies with limiting magnitude m(sub B) is less than or equal to 15.5. The dense sampling and large volume of this survey allow us to compute the topology on smoothing scales from 6 to 20/h Mpc; we thus examine the topology of structure in both 'nonlinear' and 'linear' regimes. On smoothing scales less than or equal to 10/h Mpc this sample has 3 times the number of resolution elements of samples examined in previous studies. Isodensity surface of the smoothed galaxy density field demonstrate that coherent high-density structures and large voids dominate the galaxy distribution. We compute the genus-threshold density relation for isodensity surfaces of the CfA survey. To quantify phase correlation in these data, we compare the CfA genus with the genus of realizations of Gaussian random fields with the power spectrum measured for the CfA survey. On scales less than or equal to 10/h Mpc the observed genus amplitude is smaller than random phase (96% confidence level). This decrement reflects the degree of phase coherence in the observed galaxy distribution. In other words the genus amplitude on these scales is not good measure of the power spectrum slope. On scales greater than 10/h Mpc, where the galaxy distribution is rougly in the 'linear' regime, the genus ampitude is consistent with the random phase amplitude. The shape of the genus curve reflects the strong coherence in the observed structure; the observed genus curve appears broader than random phase (94% confidence level for smoothing scales less than or equal to 10/h Mpc) because the topolgoy is spongelike over a very large range of density threshold. This departre from random phase consistent with a distribution like a filamentary net of 'walls with holes.' On smoothing scales approaching approximately 20/h Mpc the shape of the CfA genus curve is consistent with random phase. There is very weak evidence for a shift of the genus toward a 'bubble-like' topology. To test cosmological models, we compute the genus for mock CfA surveys drawn from large (L greater than or approximately 400/h Mpc) N-body simulations of three variants of the cold dark matter (CDM) cosmogony. The genus amplitude of the 'standard' CDM model (omega h = 0.5, b = 1.5) differs from the observations (96% confidence level) on smoothing scales is less than or approximately 10/h Mpc. An open CDM model (omega h = 0.2) and a CDM model with nonzero cosmological constant (omega h = 0.24, lambda (sub 0) = 0.6) are consistent with the observed genus amplitude over the full range of smoothing scales. All of these models fail (97% confidence level) to match the broadness of the observed genus curve on smoothing scales is less than or equal to 10/h Mpc.
Shell-model predictions for Lambda Lambda hypernuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gal, A.; Millener, D.
2011-06-02
It is shown how the recent shell-model determination of {Lambda}N spin-dependent interaction terms in {Lambda} hypernuclei allows for a reliable deduction of {Lambda}{Lambda} separation energies in {Lambda}{Lambda} hypernuclei across the nuclear p shell. Comparison is made with the available data, highlighting {sub {Lambda}{Lambda}}{sup 11}Be and {sub {Lambda}{Lambda}}{sup 12}Be which have been suggested as possible candidates for the KEK-E373 HIDA event.
Cosmic microwave background snapshots: pre-WMAP and post-WMAP.
Bond, J Richard; Contaldi, Carlo; Pogosyan, Dmitry
2003-11-15
We highlight the remarkable evolution in the cosmic microwave background (CMB) power spectrum C(l) as a function of multipole l over the past few years, and in the cosmological parameters for minimal inflation models derived from it: from anisotropy results before 2000; in 2000 and 2001 from Boomerang, Maxima and the Degree Angular Scale Interferometer (DASI), extending l to approximately 1000; and in 2002 from the Cosmic Background Imager (CBI), Very Small Array (VSA), ARCHEOPS and Arcminute Cosmology Bolometer Array Receiver (ACBAR), extending l to approximately 3000, with more from Boomerang and DASI as well. Pre-WMAP (pre-Wilkinson Microwave Anisotropy Probe) optimal band powers are in good agreement with each other and with the exquisite one-year WMAP results, unveiled in February 2003, which now dominate the l less, similar 600 bands. These CMB experiments significantly increased the case for accelerated expansion in the early Universe (the inflationary paradigm) and at the current epoch (dark energy dominance) when they were combined with "prior" probabilities on the parameters. The minimal inflation parameter set, [omega(b), omega(cdm), Omega(tot), Omega(Lambda), n(s), tau(C), sigma(8)], is applied in the same way to the evolving data. C(l) database and Monte Carlo Markov Chain (MCMC) methods are shown to give similar values, which are highly stable over time and for different prior choices, with the increasing precision best characterized by decreasing errors on uncorrelated "parameter eigenmodes". Priors applied range from weak ones to stronger constraints from the expansion rate (HST-h), from cosmic acceleration from supernovae (SN1) and from galaxy clustering, gravitational lensing and local cluster abundance (LSS). After marginalizing over the other cosmic and experimental variables for the weak + LSS prior, the pre-WMAP data of January 2003 compared with the post-WMAP data of March 2003 give Omega(tot) = 1.03(-0.04)(+0.05) compared with 1.02(-0.03)(+0.04), consistent with (non-Baroque) inflation theory. Adding the flat Omega(tot) = 1 prior, we find a nearly scale-invariant spectrum, n(s) = 0.95(-0.04)(+0.07) compared with 0.97(-0.02)(+0.02). The evidence for a logarithmic variation of the spectral tilt is less than or approximately 2sigma. The densities are for: baryons, omega(b) identical with Omega(b)h(2) = 0.0217(-0.002)(+0.002) (compared with 0.0228(-0.001)(+0.001)), near the Big Bang nucleosynthesis (BBN) estimate of 0.0214 +/- 0.002; CDM, omega(cdm) = Omega(cdm)h(2) = 0.126(-0.012)(+0.012) (compared with 0.121(-0.010)(+0.010)); the substantial dark (unclustered) energy, Omega(Lambda) approximately 0.66(-0.09)(+0.07) (compared with 0.70(-0.05)(+0.05)). The dark energy pressure-to-density ratio w(Q) is not well constrained by our weak + LSS prior, but adding SN1 gives w(Q) less than or approximately -0.7 for January 2003 and March 2003, consistent with the w(Q) = -1 cosmological constant case. We find sigma(8) = 0.89(-0.07)(+0.06) (compared with 0.86(-0.04)(+0.04)), implying a sizable Sunyaev-Zel'dovich (SZ) effect from clusters and groups; the high-l power found in the January 2003 data suggest sigma(8) approximately 0.94(-0.16)(+0.08) is needed to be SZ-compatible.
Constraining the evolution of the Hubble Parameter using cosmic chronometer
NASA Astrophysics Data System (ADS)
Scarlata, Claudia; Dickinson, Hugh
2018-01-01
The Lambda-CDM model of Big Bang cosmology relies heavily on the assumption that two components - dark energy and dark matter - encompass 95% of the energy density of the Universe. Despite the dominant influence of these components, their nature is still entirely unknown.We present the initial results from a project that aims to provide new insights regarding the Dark Energy component. We do this by deriving independent constraints on the time-evolution of the Hubble parameter (H_0) using the “cosmic chronometer” method.By analyzing the HST NIR spectra from a large archival sample of passively evolving galaxies in distinct redshift bins between 1.3 and 2 we measure the typical stellar population ages (A) for the galaxies in each bin. The differential evolution of stellar population age with redshift (dA/dz) can be used to infer the corresponding evolution of H_0 which will provide important constraints on the nature of Dark Energy and its equation of state.
MultiNest: Efficient and Robust Bayesian Inference
NASA Astrophysics Data System (ADS)
Feroz, F.; Hobson, M. P.; Bridges, M.
2011-09-01
We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla LambdaCDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software is fully parallelized using MPI and includes an interface to CosmoMC. It will also be released as part of the SuperBayeS package, for the analysis of supersymmetric theories of particle physics, at this http URL.
Origin of the cosmic network in {Lambda}CDM: Nature vs nurture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shandarin, Sergei; Habib, Salman; Heitmann, Katrin
The large-scale structure of the Universe, as traced by the distribution of galaxies, is now being revealed by large-volume cosmological surveys. The structure is characterized by galaxies distributed along filaments, the filaments connecting in turn to form a percolating network. Our objective here is to quantitatively specify the underlying mechanisms that drive the formation of the cosmic network: By combining percolation-based analyses with N-body simulations of gravitational structure formation, we elucidate how the network has its origin in the properties of the initial density field (nature) and how its contrast is then amplified by the nonlinear mapping induced by themore » gravitational instability (nurture).« less
Consistency of the Planck CMB data and ΛCDM cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafieloo, Arman; Hazra, Dhiraj Kumar, E-mail: shafieloo@kasi.re.kr, E-mail: dhiraj.kumar.hazra@apc.univ-paris7.fr
We test the consistency between Planck temperature and polarization power spectra and the concordance model of Λ Cold Dark Matter cosmology (ΛCDM) within the framework of Crossing statistics. We find that Planck TT best fit ΛCDM power spectrum is completely consistent with EE power spectrum data while EE best fit ΛCDM power spectrum is not consistent with TT data. However, this does not point to any systematic or model-data discrepancy since in the Planck EE data, uncertainties are much larger compared to the TT data. We also investigate the possibility of any deviation from ΛCDM model analyzing the Planck 2015more » data. Results from TT, TE and EE data analysis indicate that no deviation is required beyond the flexibility of the concordance ΛCDM model. Our analysis thus rules out any strong evidence for beyond the concordance model in the Planck spectra data. We also report a mild amplitude difference comparing temperature and polarization data, where temperature data seems to have slightly lower amplitude than expected (consistently at all multiples), as we assume both temperature and polarization data are realizations of the same underlying cosmology.« less
A tilted cold dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Gnedin, Nickolay Y.; Kofman, Lev A.; Ostriker, Jeremiah P.
1992-01-01
A new cosmological scenario based on CDM but with a power spectrum index of about 0.7-0.8 is suggested. This model is predicted by various inflationary models with no fine tuning. This tilted CDM model, if normalized to COBE, alleviates many problems of the standard CDM model related to both small-scale and large-scale power. A physical bias of galaxies over dark matter of about two is required to fit spatial observations.
Comparison between the Logotropic and ΛCDM models at the cosmological scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavanis, Pierre-Henri; Kumar, Suresh, E-mail: chavanis@irsamc.ups-tlse.fr, E-mail: suresh.kumar@pilani.bits-pilani.ac.in
We perform a detailed comparison between the Logotropic model [P.H. Chavanis, Eur. Phys. J. Plus, 130 (2015)] and the ΛCDM model. These two models behave similarly at large (cosmological) scales up to the present. Differences will appear only in the far future, in about 25 Gyrs, when the Logotropic Universe becomes phantom while the ΛCDM Universe enters in the de Sitter era. However, the Logotropic model differs from the ΛCDM model at small (galactic) scales, where the latter encounters serious problems. Having a nonvanishing pressure, the Logotropic model can solve the cusp problem and the missing satellite problem of themore » ΛCDM model. In addition, it leads to dark matter halos with a constant surface density Σ{sub 0}=ρ{sub 0} r {sub h} , and can explain its observed value Σ{sub 0}=141 M {sub ⊙}/pc{sup 2} without adjustable parameter. This makes the logotropic model rather unique among all the models attempting to unify dark matter and dark energy. In this paper, we compare the Logotropic and ΛCDM models at the cosmological scale where they are very close to each other in order to determine quantitatively how much they differ. This comparison is facilitated by the fact that these models depend on only two parameters, the Hubble constant H {sub 0} and the present fraction of dark matter Ω{sub m0}. Using the latest observational data from Planck 2015+Lensing+BAO+JLA+HST, we find that the best fit values of H {sub 0} and Ω{sub m0} are H {sub 0}=68.30 km s{sup −1} Mpc{sup −1} and Ω{sub m0}=0.3014 for the Logotropic model, and H {sub 0}=68.02 km s{sup −1} Mpc{sup −1} and Ω{sub m0}=0.3049 for the ΛCDM model. The difference between the two models is at the percent level. As a result, the Logotropic model competes with the ΛCDM model at large scales and solves its problems at small scales. It may therefore represent a viable alternative to the ΛCDM model. Our study provides an explicit example of a theoretically motivated model that is almost indistinguishable from the ΛCDM model at the present time while having a completely different (phantom) evolution in the future. We analytically derive the statefinders of the Logotropic model for all values of the logotropic constant B . We show that the parameter s {sub 0} is directly related to this constant since s {sub 0}=− B /( B +1) independently of any other parameter like H {sub 0} or Ω{sub m0}. For the predicted value of B =3.53× 10{sup −3}, we obtain ( q {sub 0}, r {sub 0}, s {sub 0})=(−0.5516,1.011,−0.003518) instead of ( q {sub 0}, r {sub 0}, s {sub 0})=(−0.5427,1,0) for the ΛCDM model corresponding to 0 B =.« less
Can a void mimic the Λ in ΛCDM?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundell, Peter; Vilja, Iiro; Mörtsell, Edvard, E-mail: pgsund@utu.fi, E-mail: edvard@fysik.su.se, E-mail: iiro.vilja@utu.fi
2015-08-01
We investigate Lemaítre-Tolman-Bondi (LTB) models, whose early time evolution and bang time are homogeneous and the distance-redshift relation and local Hubble parameter are inherited from the ΛCDM model. We show that the obtained LTB models and the ΛCDM model predict different relative local expansion rates and that the Hubble functions of the models diverge increasingly with redshift. The LTB models show tension between low redshift baryon acoustic oscillation and supernova observations and including Lyman-α forest or cosmic microwave background observations only accentuates the better fit of the ΛCDM model compared to the LTB model. The result indicates that additional degreesmore » of freedom are needed to explain the observations, for example by renouncing spherical symmetry, homogeneous bang time, negligible effects of pressure, or the early time homogeneity assumption.« less
NASA Technical Reports Server (NTRS)
Martel, Hugo
1994-01-01
We study the effect of the cosmological constant Lambda on galaxy formation using a simple spherical top-hat overdensity model. We consider models with Omega(sub 0) = 0.2, lambda(sub 0) = 0, and Omega(sub 0) = 0.2, lambda(sub 0) = 0.8 (where Omega(sub 0) is the density parameter, and lambda(sub 0) identically equal Lambda/3 H(sub 0 exp 2) where H(sub 0) is the Hubble constant). We adjust the initial power spectrum amplitude so that both models reproduce the same large-scale structures. The galaxy formation era in the lambda(sub 0) = 0 model occurs early (z approximately 6) and is very short, whereas in the lambda(sub 0) = 0.8 model the galaxy formation era starts later (z approximately 4), and last much longer, possibly all the way to the present. Consequently, galaxies at low redshift (z less than 1) are significantly more evolved in the lambda(sub 0) = 0 model than in the lambda(sub 0) = 0.8 model. This result implies that previous attempts to determine Lambda using the number counts versus redshift test are probably unreliable.
Schröter, Hannes; Studzinski, Beatrix; Dietz, Pavel; Ulrich, Rolf; Striegel, Heiko; Simon, Perikles
2016-01-01
Purpose This study assessed the prevalence of physical and cognitive doping in recreational triathletes with two different randomized response models, that is, the Cheater Detection Model (CDM) and the Unrelated Question Model (UQM). Since both models have been employed in assessing doping, the major objective of this study was to investigate whether the estimates of these two models converge. Material and Methods An anonymous questionnaire was distributed to 2,967 athletes at two triathlon events (Frankfurt and Wiesbaden, Germany). Doping behavior was assessed either with the CDM (Frankfurt sample, one Wiesbaden subsample) or the UQM (one Wiesbaden subsample). A generalized likelihood-ratio test was employed to check whether the prevalence estimates differed significantly between models. In addition, we compared the prevalence rates of the present survey with those of a previous study on a comparable sample. Results After exclusion of incomplete questionnaires and outliers, the data of 2,017 athletes entered the final data analysis. Twelve-month prevalence for physical doping ranged from 4% (Wiesbaden, CDM and UQM) to 12% (Frankfurt CDM), and for cognitive doping from 1% (Wiesbaden, CDM) to 9% (Frankfurt CDM). The generalized likelihood-ratio test indicated no differences in prevalence rates between the two methods. Furthermore, there were no significant differences in prevalences between the present (undertaken in 2014) and the previous survey (undertaken in 2011), although the estimates tended to be smaller in the present survey. Discussion The results suggest that the two models can provide converging prevalence estimates. The high rate of cheaters estimated by the CDM, however, suggests that the present results must be seen as a lower bound and that the true prevalence of doping might be considerably higher. PMID:27218830
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirian, Yves; Foffa, Stefano; Kunz, Martin
We study the cosmological predictions of two recently proposed non-local modifications of General Relativity. Both models have the same number of parameters as ΛCDM, with a mass parameter m replacing the cosmological constant. We implement the cosmological perturbations of the non-local models into a modification of the CLASS Boltzmann code, and we make a full comparison to CMB, BAO and supernova data. We find that the non-local models fit these datasets very well, at the same level as ΛCDM. Among the vast literature on modified gravity models, this is, to our knowledge, the only example which fits data as wellmore » as ΛCDM without requiring any additional parameter. For both non-local models parameter estimation using Planck +JLA+BAO data gives a value of H{sub 0} slightly higher than in ΛCDM.« less
Five-Body Cluster Structure of the Double-{Lambda} Hypernucleus {sub {Lambda}{Lambda}}{sup 11}Be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiyama, E.; Kamimura, M.; Yamamoto, Y.
2010-05-28
Energy levels of the double {Lambda} hypernucleus, {sub {Lambda}{Lambda}}{sup 11}Be are calculated within the framework of a {alpha}{alpha}n{Lambda}{Lambda} five-body model. Interactions between constituent particles are determined so as to reproduce reasonably the observed low-energy properties of the {alpha}{alpha}, {alpha}{alpha}n nuclei and the existing data for {Lambda}-binding energies of the {alpha}{Lambda}, {alpha}{alpha}{Lambda}, {alpha}n{Lambda}, and {alpha}{alpha}n{Lambda} systems. An effective {Lambda}{Lambda} interaction is constructed so as to reproduce, within the {alpha}{Lambda}{Lambda} three-body model, the B{sub {Lambda}{Lambda}}of {sub {Lambda}{Lambda}}{sup 6}He, which was extracted from the emulsion experiment, the NAGARA event. With no adjustable parameters for the {alpha}{alpha}n{Lambda}{Lambda} system, B{sub {Lambda}{Lambda}}of the ground and boundmore » excited states of {sub {Lambda}{Lambda}}{sup 11}Be are calculated with the Gaussian expansion method. The Hida event, recently observed at KEK-E373 experiment, is interpreted as an observation of the ground state of the {sub {Lambda}{Lambda}}{sup 11}Be.« less
Development of in-vitro models to elucidate mechanisms of intrinsic cellular and tissue fluorescence
NASA Astrophysics Data System (ADS)
Savage, Howard E.; Kolli, Venkateswara; Saha, Sanjoy; Zhang, Jian C.; Glasgold, Mark; Sacks, Peter G.; Alfano, Robert R.; Schantz, Stimson P.
1995-04-01
In vitro cell model systems have been used to study the mechanisms of intrinsic cellular and tissue fluorescence as a potential biomarker for cancer. Phenotypic characteristics of cancer that are different from normal tissue include changes in histoarchitecture, proliferation rates and differentiation. a nitrosmethlybenzylamine (NMBA)/rat esophageal carcinogenesis model (NMBA), a transforming growth factor beta (TGF- (beta) )/normal epithelial cell model, and a retinoic acid (RA)/multicellular tumor spheroid model (RAMTS) were used to assess fluorescence changes associated respectively with changes in histoarchitecture, proliferation rates and differentiation. A xenon based fluorescence spectrophotometer (Mediscience Corp.) was used to collect excitation and emission spectra. Two excitation scans ((lambda) Ex 200-360 nm, (lambda) Em 380 nm; (lambda) Ex 240-430 nm, (lambda) Em 450 nm) and two emission scans ((lambda) Ex 300 nm, (lambda) Em 320-580 nm; (lambda) Ex 340 nm, (lambda) Em 360-660 nm) were used to analyze the three model systems. Using the NMBA model. Differences were seen in the excitation scan ((lambda) Ex 200-360 nm, (lambda) Em 380 nm) and the emission scan ((lambda) Ex 340 nm, (lambda) Em 360-660 nm) when normal rat esophageal tissue was compared to hyperplastic and tumor tissue. In the (TGF-(beta) ) model, differences were seen in the excitation scan ((lambda) Ex 240-430 nm, (lambda) Em 450 nm) when comparing proliferation slowed (TGF-(beta) treated) epithelial cells to their untreated controls. In the RAMTS model, differences were seen with all four scans when RA treated multicellular tumor spheroids (nondifferentiating) were compared to untreated control cells (differentiating). The data indicate that fluorescence changes seen in these model systems may relate to changes in histoarchitecture, proliferation rates and differentiation. Their relationship to in vivo fluorescence changes seen in cancer patients remains to be elucidated.
Constraints on Non-flat Cosmologies with Massive Neutrinos after Planck 2015
NASA Astrophysics Data System (ADS)
Chen, Yun; Ratra, Bharat; Biesiada, Marek; Li, Song; Zhu, Zong-Hong
2016-10-01
We investigate two dark energy cosmological models (I.e., the ΛCDM and ϕCDM models) with massive neutrinos assuming two different neutrino mass hierarchies in both the spatially flat and non-flat scenarios, where in the ϕCDM model the scalar field possesses an inverse power-law potential, V(ϕ) ∝ ϕ -α (α > 0). Cosmic microwave background data from Planck 2015, baryon acoustic oscillation data from 6dFGS, SDSS-MGS, BOSS-LOWZ and BOSS CMASS-DR11, the joint light-curve analysis compilation of SNe Ia apparent magnitude observations, and the Hubble Space Telescope H 0 prior, are jointly employed to constrain the model parameters. We first determine constraints assuming three species of degenerate massive neutrinos. In the spatially flat (non-flat) ΛCDM model, the sum of neutrino masses is bounded as Σm ν < 0.165(0.299) eV at 95% confidence level (CL). Correspondingly, in the flat (non-flat) ϕCDM model, we find Σm ν < 0.164(0.301) eV at 95% CL. The inclusion of spatial curvature as a free parameter results in a significant broadening of confidence regions for Σm ν and other parameters. In the scenario where the total neutrino mass is dominated by the heaviest neutrino mass eigenstate, we obtain similar conclusions to those obtained in the degenerate neutrino mass scenario. In addition, the results show that the bounds on Σm ν based on two different neutrino mass hierarchies have insignificant differences in the spatially flat case for both the ΛCDM and ϕCDM models; however, the corresponding differences are larger in the non-flat case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yun; Ratra, Bharat; Biesiada, Marek
We investigate two dark energy cosmological models (i.e., the ΛCDM and ϕ CDM models) with massive neutrinos assuming two different neutrino mass hierarchies in both the spatially flat and non-flat scenarios, where in the ϕ CDM model the scalar field possesses an inverse power-law potential, V ( ϕ ) ∝ ϕ {sup −} {sup α} ( α > 0). Cosmic microwave background data from Planck 2015, baryon acoustic oscillation data from 6dFGS, SDSS-MGS, BOSS-LOWZ and BOSS CMASS-DR11, the joint light-curve analysis compilation of SNe Ia apparent magnitude observations, and the Hubble Space Telescope H {sub 0} prior, are jointly employedmore » to constrain the model parameters. We first determine constraints assuming three species of degenerate massive neutrinos. In the spatially flat (non-flat) ΛCDM model, the sum of neutrino masses is bounded as Σ m {sub ν} < 0.165(0.299) eV at 95% confidence level (CL). Correspondingly, in the flat (non-flat) ϕ CDM model, we find Σ m {sub ν} < 0.164(0.301) eV at 95% CL. The inclusion of spatial curvature as a free parameter results in a significant broadening of confidence regions for Σ m {sub ν} and other parameters. In the scenario where the total neutrino mass is dominated by the heaviest neutrino mass eigenstate, we obtain similar conclusions to those obtained in the degenerate neutrino mass scenario. In addition, the results show that the bounds on Σ m {sub ν} based on two different neutrino mass hierarchies have insignificant differences in the spatially flat case for both the ΛCDM and ϕ CDM models; however, the corresponding differences are larger in the non-flat case.« less
Small-scale cosmic microwave background anisotropies as probe of the geometry of the universe
NASA Technical Reports Server (NTRS)
Kamionkowski, Marc; Spergel, David N.; Sugiyama, Naoshi
1994-01-01
We perform detailed calculations of cosmic microwave background (CMB) anisotropies in a cold dark matter (CDM)-dominated open universe with primordial adiabatic density perturbations for a variety of reionization histories. The CMB anisotropies depend primarily on the geometry of the universe, which in a matter-dominated universe is determined by Omega and the optical depth to the surface of last scattering. In particular, the location on the primary Doppler peak depends primarily on Omega and is fairly insensitive to the other unknown parameters, such as Omega(sub b), h, Lambda, and the shape of the power spectrum. Therefore, if the primordial density perturbations are adiabatic, measurements of CMB anisotropies on small scales may be used to determine Omega.
Consistency of the nonflat Λ CDM model with the new result from BOSS
NASA Astrophysics Data System (ADS)
Kumar, Suresh
2015-11-01
Using 137,562 quasars in the redshift range 2.1 ≤z ≤3.5 from the data release 11 (DR11) of the baryon oscillation spectroscopic survey (BOSS) of Sloan Digital Sky Survey (SDSS)-III, the BOSS-SDSS collaboration estimated the expansion rate H (z =2.34 )=222 ±7 km /s /Mpc of the Universe, and reported that this value is in tension with the predictions of flat Λ CDM model at around a 2.5 σ level. In this paper, we briefly describe some attempts made in the literature to relieve the tension, and show that the tension can naturally be alleviated in a nonflat Λ CDM model with positive curvature. We also perform the observational consistency check by considering the constraints on the nonflat Λ CDM model from Planck, WP and BAO data. We find that the nonflat Λ CDM model constrained with Planck+WP data fits better to the line of sight measurement H (z =2.34 )=222 ±7 km /s /Mpc , but only at the expense of still having a poor fit to the BAO transverse measurements.
Research Progress on Dark Matter Model Based on Weakly Interacting Massive Particles
NASA Astrophysics Data System (ADS)
He, Yu; Lin, Wen-bin
2017-04-01
The cosmological model of cold dark matter (CDM) with the dark energy and a scale-invariant adiabatic primordial power spectrum has been considered as the standard cosmological model, i.e. the ΛCDM model. Weakly interacting massive particles (WIMPs) become a prominent candidate for the CDM. Many models extended from the standard model can provide the WIMPs naturally. The standard calculations of relic abundance of dark matter show that the WIMPs are well in agreement with the astronomical observation of ΩDM h2 ≈0.11. The WIMPs have a relatively large mass, and a relatively slow velocity, so they are easy to aggregate into clusters, and the results of numerical simulations based on the WIMPs agree well with the observational results of cosmic large-scale structures. In the aspect of experiments, the present accelerator or non-accelerator direct/indirect detections are mostly designed for the WIMPs. Thus, a wide attention has been paid to the CDM model based on the WIMPs. However, the ΛCDM model has a serious problem for explaining the small-scale structures under one Mpc. Different dark matter models have been proposed to alleviate the small-scale problem. However, so far there is no strong evidence enough to exclude the CDM model. We plan to introduce the research progress of the dark matter model based on the WIMPs, such as the WIMPs miracle, numerical simulation, small-scale problem, and the direct/indirect detection, to analyze the criterion for discriminating the ;cold;, ;hot;, and ;warm; dark matter, and present the future prospects for the study in this field.
FitzHenry, F; Resnic, F S; Robbins, S L; Denton, J; Nookala, L; Meeker, D; Ohno-Machado, L; Matheny, M E
2015-01-01
Adoption of a common data model across health systems is a key infrastructure requirement to allow large scale distributed comparative effectiveness analyses. There are a growing number of common data models (CDM), such as Mini-Sentinel, and the Observational Medical Outcomes Partnership (OMOP) CDMs. In this case study, we describe the challenges and opportunities of a study specific use of the OMOP CDM by two health systems and describe three comparative effectiveness use cases developed from the CDM. The project transformed two health system databases (using crosswalks provided) into the OMOP CDM. Cohorts were developed from the transformed CDMs for three comparative effectiveness use case examples. Administrative/billing, demographic, order history, medication, and laboratory were included in the CDM transformation and cohort development rules. Record counts per person month are presented for the eligible cohorts, highlighting differences between the civilian and federal datasets, e.g. the federal data set had more outpatient visits per person month (6.44 vs. 2.05 per person month). The count of medications per person month reflected the fact that one system's medications were extracted from orders while the other system had pharmacy fills and medication administration records. The federal system also had a higher prevalence of the conditions in all three use cases. Both systems required manual coding of some types of data to convert to the CDM. The data transformation to the CDM was time consuming and resources required were substantial, beyond requirements for collecting native source data. The need to manually code subsets of data limited the conversion. However, once the native data was converted to the CDM, both systems were then able to use the same queries to identify cohorts. Thus, the CDM minimized the effort to develop cohorts and analyze the results across the sites.
Installé, Arnaud Jf; Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk
2014-10-20
Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM's design is split over a number of modules, to ensure future extendability. The TDD approach has enabled us to deliver high software quality. CDM's eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. To our knowledge, CDM is the only eCRF system integrating data preprocessing and machine-learning libraries. This integration improves the efficiency of the clinical diagnostic model research workflow. Moreover, by simplifying the generation of learning curves, CDM enables study coordinators to assess more accurately when data collection can be terminated, resulting in better models or lower patient recruitment costs.
MATTER IN THE BEAM: WEAK LENSING, SUBSTRUCTURES, AND THE TEMPERATURE OF DARK MATTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdi, Hareth S.; Elahi, Pascal J.; Lewis, Geraint F.
2016-08-01
Warm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows thatmore » the weak lensing magnification, convergence, and shear distributions can be used to distinguish between CDM and WDM models. WDM models increase the probability of weak magnifications, with the differences being significant to ≳5 σ , while leaving no significant imprint on the shear distribution. WDM clusters analyzed in this work are more homogeneous than CDM ones, and the fractional decrease in the amount of material in haloes is proportional to the average increase in the magnification. This difference arises from matter that would be bound in compact haloes in CDM being smoothly distributed over much larger volumes at lower densities in WDM. Moreover, the signature does not solely lie in the probability distribution function but in the full spatial distribution of the convergence field.« less
EFFECT OF QUALITY CHRONIC DISEASE MANAGEMENT FOR ALCOHOL AND DRUG DEPENDENCE ON ADDICTION OUTCOMES
Kim, Theresa W.; Saitz, Richard; Cheng, Debbie M.; Winter, Michael R; Witas, Julie; Samet, Jeffrey H.
2012-01-01
We examinedthe effect ofthe quality of primary care-basedchronic disease management (CDM)for alcohol and/or other drug (AOD) dependenceonaddiction outcomes.We assessed qualityusing 1)avisit frequencybased measure and 2) a self-reported assessment measuring alignment with the chronic care model. The visit frequency based measure had no significant association with addiction outcomes. Theself-reported measure of care - when care was at a CDM clinic - was associated with lower drug addiction severity.The self-reported assessment of care from any healthcare source (CDM clinic or elsewhere)was associated with lower alcoholaddiction severity and abstinence.These findings suggest that high quality CDM for AOD dependence may improve addiction outcomes.Quality measuresbased upon alignment with the chronic care model may better capture features of effective CDM care than a visitfrequency measure. PMID:22840687
Cosmological test with the QSO Hubble diagram
NASA Astrophysics Data System (ADS)
López-Corredoira, M.; Melia, F.; Lusso, E.; Risaliti, G.
2016-03-01
A Hubble diagram (HD) has recently been constructed in the redshift range 0 ≲ z ≲ 6.5 using a nonlinear relation between the ultraviolet (UV) and X-ray luminosities of quasi stellar objects (QSOs). The Type Ia Supernovae (SN) HD has already provided a high-precision test of cosmological models, but the fact that the QSO distribution extends well beyond the supernova range (z ≲ 1.8), in principle provides us with an important complementary diagnostic whose significantly greater leverage in z can impose tighter constraints on the distance versus redshift relationship. In this paper, we therefore perform an independent test of nine different cosmological models, among which six are expanding, while three are static. Many of these are disfavored by other kinds of observations (including the aforementioned Type Ia SNe). We wish to examine whether the QSO HD confirms or rejects these earlier conclusions. We find that four of these models (Einstein-de Sitter, the Milne universe, the static universe with simple tired light and the static universe with plasma tired light) are excluded at the > 99% C.L. The quasi-steady state model is excluded at > 95% C.L. The remaining four models (ΛCDM/wCDM, the Rh = ct universe, the Friedmann open universe and a static universe with a linear Hubble law) all pass the test. However, only ΛCDM/wCDM and Rh = ct also pass the Alcock-Paczyński (AP) test. The optimized parameters in ΛCDM/wCDM are Ωm = 0.20-0.20+0.24 and wde = -1.2-∞+1.6 (the dark energy equation-of-state). Combined with the AP test, these values become Ωm = 0.38-0.19+0.20 and wde = -0.28-0.40+0.52. But whereas this optimization of parameters in ΛCDM/wCDM creates some tension with their concordance values, the Rh = ct universe has the advantage of fitting the QSO and AP data without any free parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoeb, Mohammad; Sonika
2009-08-15
The energies of the ground and excited 2{sup +} states of {sub {lambda}}{sub {lambda}}{sup 10}Be have been calculated variationally in the Monte Carlo framework. The hypernucleus is treated as a partial ten-body problem in the {lambda}{lambda}+{alpha}{alpha} model where nucleonic degrees of freedom of {alpha}'s are taken into consideration ignoring the antisymmetrization between two {alpha}'s. The central two-body {lambda}N and {lambda}{lambda} and the three-body dispersive and two-pion exchange {lambda}NN forces, constrained by the {lambda}p scattering data and the observed ground state energies of {sub {lambda}}{sup 5}He and {sub {lambda}}{sub {lambda}}{sup 6}He, are employed. The product-type trial wave function predicts binding energymore » for the ground state considerably less than for the event reported by Danysz et al.; however, it is consistent with the value deduced assuming a {gamma} ray of 3.04 MeV must have escaped undetected in the decay of the product {sub {lambda}}{sup 9}Be* {yields} {sub {lambda}}{sup 9}Be+{gamma} of the emulsion event {sub {lambda}}{sub {lambda}}{sup 10}Be{yields} {pi}{sup -}+p+{sub {lambda}}{sup 9}Be* and for the excited 2{sup +} state closer to the value measured in the Demachi-Yanagi event. The hypernucleus {sub {lambda}}{sub {lambda}}{sup 10}Be has an oblate shape in the excited state. These results are consistent with the earlier four-body {alpha} cluster model approach where {alpha}'s are assumed to be structureless entities.« less
A Solution to ``Too Big to Fail''
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-10-01
Its a tricky business to reconcile simulations of our galaxys formation with our current observations of the Milky Way and its satellites. In a recent study, scientists have addressed one discrepancy between simulations and observations: the so-called to big to fail problem.From Missing Satellites to Too Big to FailThe favored model of the universe is the lambda-cold-dark-matter (CDM) cosmological model. This model does a great job of correctly predicting the large-scale structure of the universe, but there are still a few problems with it on smaller scales.Hubble image of UGC 5497, a dwarf galaxy associated with Messier 81. In the missing satellite problem, simulations of galaxy formation predict that there should be more such satellite galaxies than we observe. [ESA/NASA]The first is the missing satellites problem: CDM cosmology predicts that galaxies like the Milky Way should have significantly more satellite galaxies than we observe. A proposed solution to this problem is the argument that there may exist many more satellites than weve observed, but these dwarf galaxies have had their stars stripped from them during tidal interactions which prevents us from being able to see them.This solution creates a new problem, though: the too big to fail problem. This problem states that many of the satellites predicted by CDM cosmology are simply so massive that theres no way they couldnt have visible stars. Another way of looking at it: the observed satellites of the Milky Way are not massive enough to be consistent with predictions from CDM.Artists illustration of a supernova, a type of stellar feedback that can modify the dark-matter distribution of a satellite galaxy. [NASA/CXC/M. Weiss]Density Profiles and Tidal StirringLed by Mihai Tomozeiu (University of Zurich), a team of scientists has published a study in which they propose a solution to the too big to fail problem. By running detailed cosmological zoom simulations of our galaxys formation, Tomozeiu and collaborators modeled the dark matter and the stellar content of the galaxy, tracking the formation and evolution of dark-matter subhalos.Based on the results of their simulations, the team argues that the too big to fail problem can be resolved by combining two effects:Stellar feedback in a satellite galaxy can modify its dark-matter distribution, lowering the dark-matter density in the galaxys center and creating a shallower density profile. Satellites with such shallow density profiles evolve differently than those typically modeled, which have a high concentration of dark matter in their centers.After these satellites fall into the Milky Ways potential, tidal effects such as shocks and stripping modify the mass distribution of both the dark matter and the baryons even further.Each curve represents a simulated satellites circular velocity (which corresponds to its total mass) at z=0. Left: results using typical dark-matter density profiles. Right: results using the shallower profiles expected when stellar feedback is included. Results from the shallower profiles are consistent with observed Milky-Way satellites(black crosses). [Adapted from Tomozeiu et al. 2016]A Match to ObservationsTomozeiu and collaborators found that when they used traditional density profiles to model the satellites, the satellites at z=0 in the simulation were much larger than those we observe around the Milky Way consistent with the too big to fail problem.When the team used shallower density profiles and took into account tidal effects, however, the simulations produced a distribution of satellites at z=0 that is consistent with what we observe.This study provides a tidy potential solution to the too big to fail problem, further strengthening the support for CDM cosmology.CitationMihai Tomozeiu et al 2016 ApJ 827 L15. doi:10.3847/2041-8205/827/1/L15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirian, Yves; Foffa, Stefano; Kunz, Martin
We present a comprehensive and updated comparison with cosmological observations of two non-local modifications of gravity previously introduced by our group, the so called RR and RT models. We implement the background evolution and the cosmological perturbations of the models in a modified Boltzmann code, using CLASS. We then test the non-local models against the Planck 2015 TT, TE, EE and Cosmic Microwave Background (CMB) lensing data, isotropic and anisotropic Baryonic Acoustic Oscillations (BAO) data, JLA supernovae, H {sub 0} measurements and growth rate data, and we perform Bayesian parameter estimation. We then compare the RR, RT and ΛCDM models,more » using the Savage-Dickey method. We find that the RT model and ΛCDM perform equally well, while the performance of the RR model with respect to ΛCDM depends on whether or not we include a prior on H {sub 0} based on local measurements.« less
NASA Astrophysics Data System (ADS)
Gomer, Matthew R.; Williams, Liliya L. R.
2018-04-01
The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.
Testing Viable f(T) Models with Current Observations
NASA Astrophysics Data System (ADS)
Xu, Bing; Yu, Hongwei; Wu, Puxun
2018-03-01
We perform observational tests on the f(T) gravity with the BAO data (including the BOSS DR 12 galaxy sample, the DR12 Lyα-Forests measurement, the new eBOSS DR14 quasar sample, the 6dFGS, and the SDSS), the CMB distance priors from the Planck 2015, the SNIa data from the joint light-curve analysis, the latest H(z) data, and the local value of the Hubble constant. Six different f(T) models are investigated. Furthermore, the ΛCDM is also considered. All models are compared by using the Akaike information criteria (AIC) and the Bayesian information criteria (BIC). Our results show that the ΛCDM remains to be the most favored model by current observations. However, there are also the Hubble constant tension between the Planck measurements and the local Universe observations and the tension between the CMB data and the H(z) data in the ΛCDM. For f(T) models considered in this paper, half, which can reduce to the ΛCDM, have values of {{χ }2}\\min smaller than that of the ΛCDM and can relieve the tensions existing in the ΛCDM. However, they are punished slightly by the BIC due to one extra parameter. Two of six f(T) models, in which the crossing of the phantom divide line can be realized for the equation of state of the effective dark energy and this crossing is shown in this paper to be favored by current observations, are punished by the information criteria. In addition, we find that the logarithmic f(T) model is excluded by cosmological observations.
Effect of quality chronic disease management for alcohol and drug dependence on addiction outcomes.
Kim, Theresa W; Saitz, Richard; Cheng, Debbie M; Winter, Michael R; Witas, Julie; Samet, Jeffrey H
2012-12-01
We examined the effect of the quality of primary care-based chronic disease management (CDM) for alcohol and/or other drug (AOD) dependence on addiction outcomes. We assessed quality using (1) a visit frequency based measure and (2) a self-reported assessment measuring alignment with the chronic care model. The visit frequency based measure had no significant association with addiction outcomes. The self-reported measure of care-when care was at a CDM clinic-was associated with lower drug addiction severity. The self-reported assessment of care from any healthcare source (CDM clinic or elsewhere) was associated with lower alcohol addiction severity and abstinence. These findings suggest that high quality CDM for AOD dependence may improve addiction outcomes. Quality measures based upon alignment with the chronic care model may better capture features of effective CDM care than a visit frequency measure. Copyright © 2012 Elsevier Inc. All rights reserved.
Customer Decision Making in Web Services with an Integrated P6 Model
NASA Astrophysics Data System (ADS)
Sun, Zhaohao; Sun, Junqing; Meredith, Grant
Customer decision making (CDM) is an indispensable factor for web services. This article examines CDM in web services with a novel P6 model, which consists of the 6 Ps: privacy, perception, propensity, preference, personalization and promised experience. This model integrates the existing 6 P elements of marketing mix as the system environment of CDM in web services. The new integrated P6 model deals with the inner world of the customer and incorporates what the customer think during the DM process. The proposed approach will facilitate the research and development of web services and decision support systems.
Edelstein, Burton L; Ng, Man Wai
2015-01-01
An Institute of Medicine report places chronic disease management (CDM) as an intervention on a treatment spectrum between prevention and acute care. CDM commonly focuses on conditions in which patient self-care efforts are significant. Framing early childhood caries (ECC) as such a chronic condition invites dentistry to reconsider its approach to caries management and shift gears from a strictly surgical approach to one that also incorporates a medical approach. This paper's purpose was to explore the definition of and concepts inherent in CDM. An explanatory model is introduced to describe the multiple factors that influence ECC-CDM strategies. Reviewed literature suggests that early evidence from ECC-CDM interventions, along with results of pediatric asthma and diabetes CDM, supports CDM of ECC as a valid approach that is independent of both prevention and repair. Early results of ECC-CDM endeavors have demonstrated a reduction in rates of new cavitation, dental pain, and referral to the operating room compared to baseline rates. ECC-CDM strategies hold strong promise to curtail caries activity while complementing dental repair when needed, thereby reducing disease progression and cavity recurrence. Institutionalizing ECC-CDM will both require and benefit from evolving health care delivery and financing systems that reward positive health outcomes.
Joint measurement of lensing-galaxy correlations using SPT and DES SV data
Baxter, E. J.
2016-07-04
We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoredmore » $$\\Lambda$$CDM cosmological model. In conclusion, it also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.« less
Weak lensing magnification in the Dark Energy Survey Science Verification Data
Garcia-Fernandez, M.; et al.
2018-02-02
In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in themore » $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $$3.5\\sigma$$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $$\\Lambda$$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.« less
Weak lensing magnification in the Dark Energy Survey Science Verification Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Fernandez, M.; et al.
In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in themore » $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $$3.5\\sigma$$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $$\\Lambda$$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.« less
Weak lensing magnification in the Dark Energy Survey Science Verification Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Fernandez, M.; et al.
2016-11-30
In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in themore » $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $$3.5\\sigma$$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $$\\Lambda$$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.« less
Joint measurement of lensing-galaxy correlations using SPT and DES SV data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, E. J.
We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoredmore » $$\\Lambda$$CDM cosmological model. In conclusion, it also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.« less
Is there a concordance value for H0?
NASA Astrophysics Data System (ADS)
Luković, Vladimir V.; D'Agostino, Rocco; Vittorio, Nicola
2016-11-01
Context. We test the theoretical predictions of several cosmological models against different observables to compare the indirect estimates of the current expansion rate of the Universe determined from model fitting with the direct measurements based on Cepheids data published recently. Aims: We perform a statistical analysis of type Ia supernova (SN Ia), Hubble parameter, and baryon acoustic oscillation data. A joint analysis of these datasets allows us to better constrain cosmological parameters, but also to break the degeneracy that appears in the distance modulus definition between H0 and the absolute B-band magnitude of SN Ia, M0. Methods: From the theoretical side, we considered spatially flat and curvature-free ΛCDM, wCDM, and inhomogeneous Lemaître-Tolman-Bondi (LTB) models. To analyse SN Ia we took into account the distributions of SN Ia intrinsic parameters. Results: For the ΛCDM model we find that Ωm = 0.35 ± 0.02, H0 = (67.8 ± 1.0) km s-1 Mpc-1, while the corrected SN absolute magnitude has a normal distribution N(19.13,0.11). The wCDM model provides the same value for Ωm, while H0 = (66.5 ± 1.8) km s-1 Mpc-1 and w = -0.93 ± 0.07. When an inhomogeneous LTB model is considered, the combined fit provides H0 = (64.2 ± 1.9) km s-1 Mpc-1. Conclusions: Both the Akaike information criterion and the Bayes factor analysis cannot clearly distinguish between ΛCDM and wCDM cosmologies, while they clearly disfavour the LTB model. For the ΛCDM, our joint analysis of the SN Ia, the Hubble parameter, and the baryon acoustic oscillation datasets provides H0 values that are consistent with cosmic microwave background (CMB)-only Planck measurements, but they differ by 2.5σ from the value based on Cepheids data.
The H II galaxy Hubble diagram strongly favours Rh = ct over ΛCDM
NASA Astrophysics Data System (ADS)
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio
2016-12-01
We continue to build support for the proposal to use H II galaxies (HIIGx) and giant extragalactic H II regions (GEHR) as standard candles to construct the Hubble diagram at redshifts beyond the current reach of Type Ia supernovae. Using a sample of 25 high-redshift HIIGx, 107 local HIIGx, and 24 GEHR, we confirm that the correlation between the emission-line luminosity and ionized-gas velocity dispersion is a viable luminosity indicator, and use it to test and compare the standard model ΛCDM and the Rh = ct universe by optimizing the parameters in each cosmology using a maximization of the likelihood function. For the flat ΛCDM model, the best fit is obtained with Ω _m= 0.40_{-0.09}^{+0.09}. However, statistical tools, such as the Akaike (AIC), Kullback (KIC) and Bayes (BIC) Information Criteria favour Rh = ct over the standard model with a likelihood of ≈94.8-98.8 per cent versus only ≈1.2-5.2 per cent. For wCDM (the version of ΛCDM with a dark-energy equation of state wde ≡ pde/ρde rather than wde = wΛ = -1), a statistically acceptable fit is realized with Ω _m=0.22_{-0.14}^{+0.16} and w_de= -0.51_{-0.25}^{+0.15} which, however, are not fully consistent with their concordance values. In this case, wCDM has two more free parameters than Rh = ct, and is penalized more heavily by these criteria. We find that Rh = ct is strongly favoured over wCDM with a likelihood of ≈92.9-99.6 per cent versus only 0.4-7.1 per cent. The current HIIGx sample is already large enough for the BIC to rule out ΛCDM/wCDM in favour of Rh = ct at a confidence level approaching 3σ.
Canine degenerative myelopathy: a model of human amyotrophic lateral sclerosis.
Nardone, Raffaele; Höller, Yvonne; Taylor, Alexandra C; Lochner, Piergiorgio; Tezzon, Frediano; Golaszewski, Stefan; Brigo, Francesco; Trinka, Eugen
2016-02-01
Canine degenerative myelopathy (CDM) represents a unique naturally occurring animal model for human amyotrophic lateral sclerosis (ALS) because of similar clinical signs, neuropathologic findings, and involvement of the superoxide dismutase 1 (SOD1) mutation. A definitive diagnosis can only be made postmortem through microscopic detection of axonal degeneration, demyelination and astroglial proliferation, which is more severe in the dorsal columns of the thoracic spinal cord and in the dorsal portion of the lateral funiculus. Interestingly, the muscle acetylcholine receptor complexes are intact in CDM prior to functional impairment, thus suggesting that muscle atrophy in CDM does not result from physical denervation. Moreover, since sensory involvement seems to play an important role in CDM progression, a more careful investigation of the sensory pathology in ALS is also warranted. The importance of SOD1 expression remains unclear, while oxidative stress and denatured ubiquinated proteins appear to play a crucial role in the pathogenesis of CDM. In this updated narrative review we performed a systematic search of the published studies on CDM that may shed light on the pathophysiological mechanisms of human ALS. A better understanding of the factors that determine the disease progression in CDM may be beneficial for the development of effective treatments for ALS. Copyright © 2015 Elsevier GmbH. All rights reserved.
Constraints on Dark Energy from Baryon Acoustic Peak and Galaxy Cluster Gas Mass Measurements
NASA Astrophysics Data System (ADS)
Samushia, Lado; Ratra, Bharat
2009-10-01
We use baryon acoustic peak measurements by Eisenstein et al. and Percival et al., together with the Wilkinson Microwave Anisotropy Probe (WMAP) measurement of the apparent acoustic horizon angle, and galaxy cluster gas mass fraction measurements of Allen et al., to constrain a slowly rolling scalar field dark energy model, phiCDM, in which dark energy's energy density changes in time. We also compare our phiCDM results with those derived for two more common dark energy models: the time-independent cosmological constant model, ΛCDM, and the XCDM parameterization of dark energy's equation of state. For time-independent dark energy, the Percival et al. measurements effectively constrain spatial curvature and favor a close to the spatially flat model, mostly due to the WMAP cosmic microwave background prior used in the analysis. In a spatially flat model the Percival et al. data less effectively constrain time-varying dark energy. The joint baryon acoustic peak and galaxy cluster gas mass constraints on the phiCDM model are consistent with but tighter than those derived from other data. A time-independent cosmological constant in a spatially flat model provides a good fit to the joint data, while the α parameter in the inverse power-law potential phiCDM model is constrained to be less than about 4 at 3σ confidence level.
Constraints on deviations from ΛCDM within Horndeski gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellini, Emilio; Cuesta, Antonio J.; Jimenez, Raul
2016-02-01
Recent anomalies found in cosmological datasets such as the low multipoles of the Cosmic Microwave Background or the low redshift amplitude and growth of clustering measured by e.g., abundance of galaxy clusters and redshift space distortions in galaxy surveys, have motivated explorations of models beyond standard ΛCDM. Of particular interest are models where general relativity (GR) is modified on large cosmological scales. Here we consider deviations from ΛCDM+GR within the context of Horndeski gravity, which is the most general theory of gravity with second derivatives in the equations of motion. We adopt a parametrization in which the four additional Horndeskimore » functions of time α{sub i}(t) are proportional to the cosmological density of dark energy Ω{sub DE}(t). Constraints on this extended parameter space using a suite of state-of-the art cosmological observations are presented for the first time. Although the theory is able to accommodate the low multipoles of the Cosmic Microwave Background and the low amplitude of fluctuations from redshift space distortions, we find no significant tension with ΛCDM+GR when performing a global fit to recent cosmological data and thus there is no evidence against ΛCDM+GR from an analysis of the value of the Bayesian evidence ratio of the modified gravity models with respect to ΛCDM, despite introducing extra parameters. The posterior distribution of these extra parameters that we derive return strong constraints on any possible deviations from ΛCDM+GR in the context of Horndeski gravity. We illustrate how our results can be applied to a more general frameworks of modified gravity models.« less
Modeling of Stone-impact Resistance of Monolithic Glass Ply Using Continuum Damage Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xin; Khaleel, Mohammad A.; Davies, Richard W.
2005-04-01
We study the stone-impact resistance of a monolithic glass ply using a combined experimental and computational approach. Instrumented stone impact tests were first carried out in controlled environment. Explicit finite element analyses were then used to simulate the interactions of the indentor and the glass layer during the impact event, and a continuum damage mechanics (CDM) model was used to describe the constitutive behavior of glass. The experimentally measured strain histories for low velocity impact served as validation of the modeling procedures. Next, stair-stepping impact experiments were performed with two indentor sizes on two glass ply thickness, and the testmore » results were used to calibrate the critical stress parameters used in the CDM constitutive model. The purpose of this study is to establish the modeling procedures and the CDM critical stress parameters under impact loading conditions. The modeling procedures and the CDM model will be used in our future studies to predict through-thickness damage evolution patterns for different laminated windshield designs in automotive applications.« less
Validation of a common data model for active safety surveillance research
Ryan, Patrick B; Reich, Christian G; Hartzema, Abraham G; Stang, Paul E
2011-01-01
Objective Systematic analysis of observational medical databases for active safety surveillance is hindered by the variation in data models and coding systems. Data analysts often find robust clinical data models difficult to understand and ill suited to support their analytic approaches. Further, some models do not facilitate the computations required for systematic analysis across many interventions and outcomes for large datasets. Translating the data from these idiosyncratic data models to a common data model (CDM) could facilitate both the analysts' understanding and the suitability for large-scale systematic analysis. In addition to facilitating analysis, a suitable CDM has to faithfully represent the source observational database. Before beginning to use the Observational Medical Outcomes Partnership (OMOP) CDM and a related dictionary of standardized terminologies for a study of large-scale systematic active safety surveillance, the authors validated the model's suitability for this use by example. Validation by example To validate the OMOP CDM, the model was instantiated into a relational database, data from 10 different observational healthcare databases were loaded into separate instances, a comprehensive array of analytic methods that operate on the data model was created, and these methods were executed against the databases to measure performance. Conclusion There was acceptable representation of the data from 10 observational databases in the OMOP CDM using the standardized terminologies selected, and a range of analytic methods was developed and executed with sufficient performance to be useful for active safety surveillance. PMID:22037893
You, Seng Chan; Lee, Seongwon; Cho, Soo-Yeon; Park, Hojun; Jung, Sungjae; Cho, Jaehyeong; Yoon, Dukyong; Park, Rae Woong
2017-01-01
It is increasingly necessary to generate medical evidence applicable to Asian people compared to those in Western countries. Observational Health Data Sciences a Informatics (OHDSI) is an international collaborative which aims to facilitate generating high-quality evidence via creating and applying open-source data analytic solutions to a large network of health databases across countries. We aimed to incorporate Korean nationwide cohort data into the OHDSI network by converting the national sample cohort into Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM). The data of 1.13 million subjects was converted to OMOP-CDM, resulting in average 99.1% conversion rate. The ACHILLES, open-source OMOP-CDM-based data profiling tool, was conducted on the converted database to visualize data-driven characterization and access the quality of data. The OMOP-CDM version of National Health Insurance Service-National Sample Cohort (NHIS-NSC) can be a valuable tool for multiple aspects of medical research by incorporation into the OHDSI research network.
A non-parametric consistency test of the ΛCDM model with Planck CMB data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamousa, Amir; Shafieloo, Arman; Hamann, Jan, E-mail: amir@aghamousa.com, E-mail: jan.hamann@unsw.edu.au, E-mail: shafieloo@kasi.re.kr
Non-parametric reconstruction methods, such as Gaussian process (GP) regression, provide a model-independent way of estimating an underlying function and its uncertainty from noisy data. We demonstrate how GP-reconstruction can be used as a consistency test between a given data set and a specific model by looking for structures in the residuals of the data with respect to the model's best-fit. Applying this formalism to the Planck temperature and polarisation power spectrum measurements, we test their global consistency with the predictions of the base ΛCDM model. Our results do not show any serious inconsistencies, lending further support to the interpretation ofmore » the base ΛCDM model as cosmology's gold standard.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyuboshitz, V. L.; Lyuboshitz, V. V., E-mail: Valery.Lyuboshitz@jinr.r
2010-05-15
Spin correlations for the {Lambda}{Lambda} and {Lambda}{Lambda}-bar pairs, generated in relativistic heavy-ion collisions, and related angular correlations at the joint registration of hadronic decays of two hyperons, in which space parity is not conserved, are analyzed. The correlation tensor components can be derived from the double angular distribution of products of two decays by the method of 'moments'. The properties of the 'trace' of the correlation tensor (a sum of three diagonal components), determining the relative fractions of the triplet states and singlet state of respective pairs, are discussed. Spin correlations for two identical particles ({Lambda}{Lambda}) and two nonidentical particlesmore » ({Lambda}{Lambda}-bar) are considered from the viewpoint of the conventional model of one-particle sources. In the framework of this model, correlations vanish at sufficiently large relative momenta. However, under these conditions, in the case of two nonidentical particles ({Lambda}{Lambda}-bar) a noticeable role is played by two-particle annihilation (two-quark, two-gluon) sources, which lead to the difference of the correlation tensor from zero. In particular, such a situation may arise when the system passes through the 'mixed phase.'« less
Rieck, Allison; Pettigrew, Simone
2013-01-01
Community pharmacists (CPs) have been changing their role to focus on patient-centred services to improve the quality of chronic disease management (CDM) in primary care. However, CPs have not been readily included in collaborative CDM with other primary care professionals such as physicians. There is little understanding of the CP role change and whether it affects the utilisation of CPs in primary care collaborative CDM. To explore physician and CP perceptions of the CP's role in Australian primary care and how these perceptions may influence the quality of physician/CP CDM programmes. Data were collected from physicians and CPs using semi-structured interviews. A qualitative methodology utilising thematic analysis was employed during data analysis. Qualitative methodology trustworthiness techniques, negative case analysis and member checking were utilised to substantiate the resultant themes. A total of 22 physicians and 22 CPs were interviewed. Strong themes emerged regarding the participant perceptions of the CP's CDM role in primary care. The majority of interviewed physicians perceived that CPs did not have the appropriate CDM knowledge to complement physician knowledge to provide improved CDM compared with what they could provide on their own. Most of the interviewed CPs expressed a willingness and capability to undertake CDM; however, they were struggling to provide sustainable CDM in the business setting within which they function in the primary care environment. Role theory was selected as it provided the optimum explanation of the resultant themes. First, physician lack of confidence in the appropriateness of CP CDM knowledge causes physicians to be confused about the role CPs would undertake in a collaborative CDM that would benefit the physicians and their patients. Thus, by increasing physician awareness of CP CDM knowledge, physicians may see CPs as suitable CDM collaborators. Second, CPs are experiencing role conflict and stress in trying to change their role. Strengthening the service business model may reduce these CP role issues and allow CPs to reach their full potential in CDM and improve the quality of collaborative CDM in Australian primary care.
Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.
Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P
2010-01-14
For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.
Further improvements of a new model for turbulent convection in stars
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Mazzitelli, I.
1992-01-01
The effects of including a variable molecular weight and of using the newest opacities of Rogers and Iglesias (1991) as inputs to a recent model by Canuto and Mazzitelli (1991) for stellar turbulent convection are studied. Solar evolutionary tracks are used to conclude that the the original model for turbulence with mixing length Lambda = z, Giuli's variable Q unequal to 1 and the new opacities yields a fit to solar T(eff) within 0.5 percent. A formulation of Lambda is proposed that extends the purely nonlocal Lambda = z expression to include local effects. A new expression for Lambda is obtained which generalizes both the mixing length theory (MLT) phenomenological expression for Lambda as well as the model Lambda = z. It is argued that the MLT should now be abandoned.
Higgs-dilaton cosmology: An inflation-dark-energy connection and forecasts for future galaxy surveys
NASA Astrophysics Data System (ADS)
Casas, Santiago; Pauly, Martin; Rubio, Javier
2018-02-01
The Higgs-dilaton model is a scale-invariant extension of the Standard Model nonminimally coupled to gravity and containing just one additional degree of freedom on top of the Standard Model particle content. This minimalistic scenario predicts a set of measurable consistency relations between the inflationary observables and the dark-energy equation-of-state parameter. We present an alternative derivation of these consistency relations that highlights the connections and differences with the α -attractor scenario. We study how far these constraints allow one to distinguish the Higgs-dilaton model from Λ CDM and w CDM cosmologies. To this end we first analyze existing data sets using a Markov chain Monte Carlo approach. Second, we perform forecasts for future galaxy surveys using a Fisher matrix approach, both for galaxy clustering and weak lensing probes. Assuming that the best fit values in the different models remain comparable to the present ones, we show that both Euclid- and SKA2-like missions will be able to discriminate a Higgs-dilaton cosmology from Λ CDM and w CDM .
Can the Λ CDM model reproduce MOND-like behavior?
NASA Astrophysics Data System (ADS)
Dai, De-Chang; Lu, Chunyu
2017-12-01
It is usually believed that MOND can describe the galactic rotational curves with only baryonic matter and without any dark matter very well, while the Λ CDM model is expected to have difficulty in reproducing MOND-like behavior. Here, we use EAGLE's data to learn whether the Λ CDM model can reproduce MOND-like behavior. EAGLE's simulation result clearly reproduces the MOND-like behavior for ab⪆10-12 m/s 2 at z =0 , although the acceleration constant, a0, is a little larger than the observational data indicate. We find that a0 increases with the redshift in a way different from what Milgrom proposed (a0∝H ). Therefore, while galaxy rotation curves can be fitted by MOND's empirical function in the Λ CDM model, there is no clear connection between a0 and the Hubble constant. We also find that a0 at z ⪆1 is well separated from a0 at z =0 . Once we have enough galaxies observed at high redshifts, we will be able to rule out the modified gravity model based on MOND-like empirical function with a z -independent a0.
Application of a Cognitive Diagnostic Model to a High-Stakes Reading Comprehension Test
ERIC Educational Resources Information Center
Ravand, Hamdollah
2016-01-01
General cognitive diagnostic models (CDM) such as the generalized deterministic input, noisy, "and" gate (G-DINA) model are flexible in that they allow for both compensatory and noncompensatory relationships among the subskills within the same test. Most of the previous CDM applications in the literature have been add-ons to simulation…
Biomechanical stability analysis of the lambda-model controlling one joint.
Lan, L; Zhu, K Y
2007-06-01
Computer modeling and control of the human motor system might be helpful for understanding the mechanism of human motor system and for the diagnosis and treatment of neuromuscular disorders. In this paper, a brief view of the equilibrium point hypothesis for human motor system modeling is given, and the lambda-model derived from this hypothesis is studied. The stability of the lambda-model based on equilibrium and Jacobian matrix is investigated. The results obtained in this paper suggest that the lambda-model is stable and has a unique equilibrium point under certain conditions.
NASA Astrophysics Data System (ADS)
Cheng, Hok-Chuen
This thesis summaries the measurements of correlations between Lambda 0Lambda0, Lambda0Lambda 0, and Lambda0Lambda 0 hyperon pairs produced inclusively at the LHC, which are useful for a better understanding of the quark-antiquark pair production and jet fragmentation and hadronization processes. The analysis is based on hyperon pairs selected using the muon and minimum bias data samples collected at the ATLAS experiment from proton-proton collisions at a center-of-mass energy of 7 TeV in 2010. Excess Lambda0Lambda 0 are observed near the production threshold and are identified to be originated from the parton system in the string model in the MC sample, decaying either directly or through heavy strange resonances such as Sigma0 and Sigma*(1385). Dynamical correlations have been explored through a correlation function defined as the ratio of two-particle to single-particle densities. Positive correlation is observed for Lambda0Lambda0 and anticorrelation is observed for Lambda0Lambda 0 and Lambda0Lambda 0 for Q in [0,2] GeV. The structure replicates similar correlations in pp, pp, and pppp events in PYTHIA generator as predicted by the Lund string fragmentation model. Parameters of the "popcorn" mechanism implemented in the PYTHIA generator are tuned and are found to have little impact on the structure observed. The spin composition of the sample is extracted using a data-driven reference sample built by event mixing. Appropriate corrections have been made to the kinematic distributions in the reference sample by kinematic weighting to make sure that the detector effects are well modeled. A modified Pearson's chi2 test statistics is calculated for the costheta* distribution to determine the best-fitted A-value for data. The results are consistent with zero for both like-type and unlike-type hyperon pairs in Q ∈ [0,10] GeV and Q ∈ [1,10] GeV respectively. The data statistics in the range of Q ∈ [0, 1] GeV is currently too low for the estimation of the emitter size for Fermi-Dirac correlation.
NASA Astrophysics Data System (ADS)
Wang, Deng
2018-06-01
To explore whether there is new physics going beyond the standard cosmological model or not, we constrain seven cosmological models by combining the latest and largest Pantheon Type Ia supernovae sample with the data combination of baryonic acoustic oscillations, cosmic microwave background radiation, Planck lensing and cosmic chronometers. We find that a spatially flat universe is preferred in the framework of Λ CDM cosmology, that the constrained equation of state of dark energy is very consistent with the cosmological constant hypothesis in the ω CDM model, that there is no evidence of dynamical dark energy in the dark energy density-parametrization model, that there is no hint of interaction between dark matter and dark energy in the dark sector of the universe in the decaying vacuum model, and that there does not exist the sterile neutrino in the neutrino sector of the universe in the Λ CDM model. We also give the 95% upper limit of the total mass of three active neutrinos Σ mν<0.178 eV under the assumption of Λ CDM scenario. It is clear that there is no any departure from the standard cosmological model based on current observational datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto
Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here themore » possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a {Lambda}CDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2{sigma} error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.« less
Fracture simulation of restored teeth using a continuum damage mechanics failure model.
Li, Haiyan; Li, Jianying; Zou, Zhenmin; Fok, Alex Siu-Lun
2011-07-01
The aim of this paper is to validate the use of a finite-element (FE) based continuum damage mechanics (CDM) failure model to simulate the debonding and fracture of restored teeth. Fracture testing of plastic model teeth, with or without a standard Class-II MOD (mesial-occusal-distal) restoration, was carried out to investigate their fracture behavior. In parallel, 2D FE models of the teeth are constructed and analyzed using the commercial FE software ABAQUS. A CDM failure model, implemented into ABAQUS via the user element subroutine (UEL), is used to simulate the debonding and/or final fracture of the model teeth under a compressive load. The material parameters needed for the CDM model to simulate fracture are obtained through separate mechanical tests. The predicted results are then compared with the experimental data of the fracture tests to validate the failure model. The failure processes of the intact and restored model teeth are successfully reproduced by the simulation. However, the fracture parameters obtained from testing small specimens need to be adjusted to account for the size effect. The results indicate that the CDM model is a viable model for the prediction of debonding and fracture in dental restorations. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Pacaci, Anil; Gonul, Suat; Sinaci, A Anil; Yuksel, Mustafa; Laleci Erturkmen, Gokce B
2018-01-01
Background: Utilization of the available observational healthcare datasets is key to complement and strengthen the postmarketing safety studies. Use of common data models (CDM) is the predominant approach in order to enable large scale systematic analyses on disparate data models and vocabularies. Current CDM transformation practices depend on proprietarily developed Extract-Transform-Load (ETL) procedures, which require knowledge both on the semantics and technical characteristics of the source datasets and target CDM. Purpose: In this study, our aim is to develop a modular but coordinated transformation approach in order to separate semantic and technical steps of transformation processes, which do not have a strict separation in traditional ETL approaches. Such an approach would discretize the operations to extract data from source electronic health record systems, alignment of the source, and target models on the semantic level and the operations to populate target common data repositories. Approach: In order to separate the activities that are required to transform heterogeneous data sources to a target CDM, we introduce a semantic transformation approach composed of three steps: (1) transformation of source datasets to Resource Description Framework (RDF) format, (2) application of semantic conversion rules to get the data as instances of ontological model of the target CDM, and (3) population of repositories, which comply with the specifications of the CDM, by processing the RDF instances from step 2. The proposed approach has been implemented on real healthcare settings where Observational Medical Outcomes Partnership (OMOP) CDM has been chosen as the common data model and a comprehensive comparative analysis between the native and transformed data has been conducted. Results: Health records of ~1 million patients have been successfully transformed to an OMOP CDM based database from the source database. Descriptive statistics obtained from the source and target databases present analogous and consistent results. Discussion and Conclusion: Our method goes beyond the traditional ETL approaches by being more declarative and rigorous. Declarative because the use of RDF based mapping rules makes each mapping more transparent and understandable to humans while retaining logic-based computability. Rigorous because the mappings would be based on computer readable semantics which are amenable to validation through logic-based inference methods.
Use of chronic disease management programs for diabetes: in Alberta's primary care networks.
Campbell, David J T; Sargious, Peter; Lewanczuk, Richard; McBrien, Kerry; Tonelli, Marcello; Hemmelgarn, Brenda; Manns, Braden
2013-02-01
To determine the types of chronic disease management (CDM) programs offered for patients with diabetes in Alberta's primary care networks (PCNs). A survey was administered to PCNs to determine the types of CDM programs offered for patients with diabetes; CDM programs were organized into categories by their resource intensity and effectiveness. Results of the survey were reported using frequencies and percentages. Alberta has recently created PCNs-groups of family physicians who receive additional funds to enable them to support activities that fall outside the typical physician-based fee-for-service model, but which address specified objectives including CDM. It is currently unknown what additional programs are being provided through the PCN supplemental funding. A survey was administered to the individual responsible for CDM in each PCN. This included executive directors, chronic disease managers, and CDM nurses. We determined the CDM strategies used in each PCN to care for patients with diabetes, whether they were available to all patients, and whether the services were provided exclusively by the PCN or in conjunction with other agencies. There was considerable variation across PCNs with respect to the CDM programs offered for people with diabetes. Nearly all PCNs used multidisciplinary teams (which could include nurses, dietitians, and pharmacists) and patient education. Fewer than half of the PCNs permitted personnel other than the primary physician to write or alter prescriptions for medications. Alberta's PCNs have successfully established many different types of CDM programs. Multidisciplinary care teams, which are among the most effective CDM strategies, are currently being used by most of Alberta's PCNs.
Use of chronic disease management programs for diabetes
Campbell, David J.T.; Sargious, Peter; Lewanczuk, Richard; McBrien, Kerry; Tonelli, Marcello; Hemmelgarn, Brenda; Manns, Braden
2013-01-01
Objective To determine the types of chronic disease management (CDM) programs offered for patients with diabetes in Alberta's primary care networks (PCNs). Design A survey was administered to PCNs to determine the types of CDM programs offered for patients with diabetes; CDM programs were organized into categories by their resource intensity and effectiveness. Results of the survey were reported using frequencies and percentages. Setting Alberta has recently created PCNs—groups of family physicians who receive additional funds to enable them to support activities that fall outside the typical physician-based fee-for-service model, but which address specified objectives including CDM. It is currently unknown what additional programs are being provided through the PCN supplemental funding. Participants A survey was administered to the individual responsible for CDM in each PCN. This included executive directors, chronic disease managers, and CDM nurses. Main outcome measures We determined the CDM strategies used in each PCN to care for patients with diabetes, whether they were available to all patients, and whether the services were provided exclusively by the PCN or in conjunction with other agencies. Results There was considerable variation across PCNs with respect to the CDM programs offered for people with diabetes. Nearly all PCNs used multidisciplinary teams (which could include nurses, dietitians, and pharmacists) and patient education. Fewer than half of the PCNs permitted personnel other than the primary physician to write or alter prescriptions for medications. Conclusion Alberta's PCNs have successfully established many different types of CDM programs. Multidisciplinary care teams, which are among the most effective CDM strategies, are currently being used by most of Alberta's PCNs. PMID:23418263
Large-scale structure in superfluid Chaplygin gas cosmology
NASA Astrophysics Data System (ADS)
Yang, Rongjia
2014-03-01
We investigate the growth of the large-scale structure in the superfluid Chaplygin gas (SCG) model. Both linear and nonlinear growth, such as σ8 and the skewness S3, are discussed. We find the growth factor of SCG reduces to the Einstein-de Sitter case at early times while it differs from the cosmological constant model (ΛCDM) case in the large a limit. We also find there will be more stricture growth on large scales in the SCG scenario than in ΛCDM and the variations of σ8 and S3 between SCG and ΛCDM cannot be discriminated.
Evolution of Structure in the Intergalactic Medium and the Nature of the LY-Alpha Forest
NASA Technical Reports Server (NTRS)
Bi, Hongguang; Davidsen, Arthur F.
1997-01-01
We have performed a detailed statistical study of the evolution of structure in a photoionized intergalactic medium (IGM) using analytical simulations to extend the calculation into the mildly nonlinear density regime found to prevail at z = 3. Our work is based on a simple fundamental conjecture: that the probability distribution function of the density of baryonic diffuse matter in the universe is described by a lognormal (LN) random field. The LN distribution has several attractive features and follows plausibly from the assumption of initial linear Gaussian density and velocity fluctuations at arbitrarily early times. Starting with a suitably normalized power spectrum of primordial fluctuations in a universe dominated by cold dark matter (CDM), we compute the behavior of the baryonic matter, which moves slowly toward minima in the dark matter potential on scales larger than the Jeans length. We have computed two models that succeed in matching observations. One is a nonstandard CDM model with OMEGA = 1, h = 0.5, and GAMMA = 0.3, and the other is a low-density flat model with a cosmological constant (LCDM), with OMEGA = 0.4, OMEGA(sub LAMBDA) = 0.6, and h = 0.65. In both models, the variance of the density distribution function grows with time, reaching unity at about z = 4, where the simulation yields spectra that closely resemble the Ly-alpha forest absorption seen in the spectra of high-z quasars. The calculations also successfully predict the observed properties of the Ly-alpha forest clouds and their evolution from z = 4 down to at least z = 2, assuming a constant intensity for the metagalactic UV background over this redshift range. However, in our model the forest is not due to discrete clouds, but rather to fluctuations in a continuous intergalactic medium. At z = 3; typical clouds with measured neutral hydrogen column densities N(sub H I) = 10(exp 13.3), 10(exp 13.5), and 10(exp 11.5) /sq cm correspond to fluctuations with mean total densities approximately 10, 1, and 0.1 times the universal mean baryon density. Perhaps surprisingly, fluctuations whose amplitudes are less than or equal to the mean density still appear as "clouds" because in our model more than 70% of the volume of the IGM at z = 3 is filled with gas at densities below the mean value.
Using velocity dispersion to estimate halo mass: Is the Local Group in tension with ΛCDM?
NASA Astrophysics Data System (ADS)
Elahi, Pascal J.; Power, Chris; Lagos, Claudia del P.; Poulton, Rhys; Robotham, Aaron S. G.
2018-06-01
Satellite galaxies are commonly used as tracers to measure the line-of-sight (LOS)velocity dispersion (σLOS) of the dark matter halo associated with their central galaxy, and thereby to estimate the halo's mass. Recent observational dispersion estimates of the Local Group, including the Milky Way and M31, suggest σ ˜50 km s-1, which is surprisingly low when compared to the theoretical expectation of σ ˜100 km s-1 for systems of their mass. Does this pose a problem for Lambda cold dark matter (ΛCDM)? We explore this tension using the SURFS suite of N-body simulations, containing over 10000 (sub)haloes with well tracked orbits. We test how well a central galaxy's host halo velocity dispersion can be recovered by sampling σLOS of subhaloes and surrounding haloes. Our results demonstrate that σLOS is biased mass proxy. We define an optimal window in vLOS and projected distance (Dp) - 0.5 ≲ Dp/Rvir ≲ 1.0 and vLOS ≲ 0.5Vesc, where Rvir is the virial radius and Vesc is the escape velocity - such that the scatter in LOS to halo dispersion is minimized - σLOS = (0.5 ± 0.1)σv, H. We argue that this window should be used to measure LOS dispersions as a proxy for mass, as it minimises scatter in the σLOS-Mvir relation. This bias also naturally explains the results from McConnachie (2012), who used similar cuts when estimating σLOS, LG, producing a bias of σLG = (0.44 ± 0.14)σv, H. We conclude that the Local Group's velocity dispersion does not pose a problem for ΛCDM and has a mass of log M_{LG, vir}/M_{⊙}=12.0^{+0.8}_{-2.0}.
The formation of low-ionization emission in the halo of NGC 891
NASA Technical Reports Server (NTRS)
Sokolowski, James; Bland-Hawthorn, Jonathan
1993-01-01
Imaging and Spectroscopic study first revealed the presence of a diffuse ionized medium (DIM), having unusual excitation, pervading the lower halo of the edge-on spiral galaxy NGC 891. Emission from this DIM is strongest northeast of the nucleus, at radii between 2 and 8 kpc (hereafter region 1). The (N2)(lambda)6583/H(alpha) and (S2)(lambda) (lambda)6716,6731/H(alpha) ratios increase dramatically with z in region 1, from 0.6 and 0.5 respectively at z is approximately equal to 500 pc to 1.1 and 1.0 at z is approximately equal to 1 kpc, while nondetections of (O1)(lambda)6300 and (O3)(lambda)5007 emission yield upper limits of (O1)(lambda)6300/H(alpha) less than or equal to 0.05 and (O3)(lambda)5007/H(alpha) less than or equal to 0.15 for z less than 1 kpc. Previous photoionization models, using the radiation field from disk O and B stars, have been successful in reproducing the elevated (N2)(lambda)6583/H(alpha) and (S2)(lambda)(lambda)6716.6731/H(alpha) ratios observed. However, these radiation bounded models also produce significant (O3)(lambda)5007 emission, in conflict with the observed upper limit. Here, we report the results of new, matter bounded models for the photoionization of the DIM in region 1 of NGC 891.
Testing cold dark matter models using Hubble flow variations
NASA Astrophysics Data System (ADS)
Shi, Xiangdong
1999-05-01
COBE-normalized flat (matter plus cosmological constant) and open cold dark matter (CDM) models are tested by comparing their expected Hubble flow variations and the observed variations in a Type Ia supernova sample and a Tully-Fisher cluster sample. The test provides a probe of the CDM power spectrum on scales of 0.02h Mpc^-1<~ k<~ 0.2h Mpc^-1, free of the bias factor b. The results favour a low matter content universe, or a flat matter-dominated universe with a very low Hubble constant and/or a very small spectral index n^ps, with the best fits having Ο_0~ 0.3 to 0.4. The test is found to be more discriminative to the open CDM models than to the flat CDM models. For example, the test results are found to be compatible with those from the X-ray cluster abundance measurements at smaller length-scales, and consistent with the galaxy and cluster correlation analysis of Peacock & Dodds at similar length-scales, if our universe is flat; but the results are marginally incompatible with the X-ray cluster abundance measurements if our universe is open. The open CDM results are consistent with that of Peacock & Dodds only if the matter density of the universe is less than about 60 per cent of the critical density. The shortcoming of the test is discussed, so are ways to minimize it.
The Case for Chronic Disease Management for Addiction
Saitz, Richard; Larson, Mary Jo; LaBelle, Colleen; Richardson, Jessica; Samet, Jeffrey H.
2009-01-01
Chronic disease (care) management (CDM) is a patient-centered model of care that involves longitudinal care delivery; integrated, and coordinated primary medical and specialty care; patient and clinician education; explicit evidence-based care plans; and expert care availability. The model, incorporating mental health and specialty addiction care, holds promise for improving care for patients with substance dependence who often receive no care or fragmented ineffective care. We describe a CDM model for substance dependence and discuss a conceptual framework, the extensive current evidence for component elements, and a promising strategy to reorganize primary and specialty health care to facilitate access for people with substance dependence. The CDM model goes beyond integrated case management by a professional, colocation of services, and integrated medical and addiction care—elements that individually can improve outcomes. Supporting evidence is presented that: 1) substance dependence is a chronic disease requiring longitudinal care, although most patients with addictions receive no treatment (eg, detoxification only) or short-term interventions, and 2) for other chronic diseases requiring longitudinal care (eg, diabetes, congestive heart failure), CDM has been proven effective. PMID:19809579
The mass discrepancy acceleration relation in a ΛCDM context
NASA Astrophysics Data System (ADS)
Di Cintio, Arianna; Lelli, Federico
2016-02-01
The mass discrepancy acceleration relation (MDAR) describes the coupling between baryons and dark matter (DM) in galaxies: the ratio of total-to-baryonic mass at a given radius anticorrelates with the acceleration due to baryons. The MDAR has been seen as a challenge to the Λ cold dark matter (ΛCDM) galaxy formation model, while it can be explained by Modified Newtonian Dynamics. In this Letter, we show that the MDAR arises in a ΛCDM cosmology once observed galaxy scaling relations are taken into account. We build semi-empirical models based on ΛCDM haloes, with and without the inclusion of baryonic effects, coupled to empirically motivated structural relations. Our models can reproduce the MDAR: specifically, a mass-dependent density profile for DM haloes can fully account for the observed MDAR shape, while a universal profile shows a discrepancy with the MDAR of dwarf galaxies with M⋆ < 109.5 M⊙, a further indication suggesting the existence of DM cores. Additionally, we reproduce slope and normalization of the baryonic Tully-Fisher relation (BTFR) with 0.17 dex scatter. These results imply that in ΛCDM (I) the MDAR is driven by structural scaling relations of galaxies and DM density profile shapes, and (II) the baryonic fractions determined by the BTFR are consistent with those inferred from abundance-matching studies.
Application of the Consumer Decision-Making Model to Hearing Aid Adoption in First-Time Users
Amlani, Amyn M.
2016-01-01
Since 1980, hearing aid adoption rates have remained essentially the same, increasing at a rate equal to the organic growth of the population. Researchers have used theoretical models from psychology and sociology to determine those factors or constructs that lead to the adoption of hearing aids by first-time impaired listeners entering the market. In this article, a theoretical model, the Consumer Decision-Making Model (CDM), premised on the neobehavioral approach that considers an individual's psychological and cognitive emphasis toward a product or service, is described. Three theoretical models (i.e., transtheoretical, social model of disability, Health Belief Model), and their relevant findings to the hearing aid market, are initially described. The CDM is then presented, along with supporting evidence of the model's various factors from the hearing aid literature. Future applications of the CDM to hearing health care also are discussed. PMID:27516718
Application of the Consumer Decision-Making Model to Hearing Aid Adoption in First-Time Users.
Amlani, Amyn M
2016-05-01
Since 1980, hearing aid adoption rates have remained essentially the same, increasing at a rate equal to the organic growth of the population. Researchers have used theoretical models from psychology and sociology to determine those factors or constructs that lead to the adoption of hearing aids by first-time impaired listeners entering the market. In this article, a theoretical model, the Consumer Decision-Making Model (CDM), premised on the neobehavioral approach that considers an individual's psychological and cognitive emphasis toward a product or service, is described. Three theoretical models (i.e., transtheoretical, social model of disability, Health Belief Model), and their relevant findings to the hearing aid market, are initially described. The CDM is then presented, along with supporting evidence of the model's various factors from the hearing aid literature. Future applications of the CDM to hearing health care also are discussed.
f(R) gravity and chameleon theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine
2008-11-15
We analyze f(R) modifications of Einstein's gravity as dark energy models in the light of their connection with chameleon theories. Formulated as scalar-tensor theories, the f(R) theories imply the existence of a strong coupling of the scalar field to matter. This would violate all experimental gravitational tests on deviations from Newton's law. Fortunately, the existence of a matter dependent mass and a thin-shell effect allows one to alleviate these constraints. The thin-shell condition also implies strong restrictions on the cosmological dynamics of the f(R) theories. As a consequence, we find that the equation of state of dark energy is constrainedmore » to be extremely close to -1 in the recent past. We also examine the potential effects of f(R) theories in the context of the Eoet-wash experiments. We show that the requirement of a thin shell for the test bodies is not enough to guarantee a null result on deviations from Newton's law. As long as dark energy accounts for a sizeable fraction of the total energy density of the Universe, the constraints that we deduce also forbid any measurable deviation of the dark energy equation of state from -1. All in all, we find that both cosmological and laboratory tests imply that f(R) models are almost coincident with a {lambda}CDM model at the background level.« less
Coupled and extended quintessence: Theoretical differences and structure formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettorino, Valeria; Baccigalupi, Carlo
2008-05-15
The case of a coupling between dark energy and matter [coupled quintessence (CQ)] or gravity [extended quintessence (EQ)] has recently attracted a deep interest and has been widely investigated both in the Einstein and in the Jordan frames (EF, JF), within scalar-tensor theories. Focusing on the simplest models proposed so far, in this paper we study the relation existing between the two scenarios, isolating the Weyl scaling which allows one to express them in the EF and JF. Moreover, we perform a comparative study of the behavior of linear perturbations in both scenarios, which turn out to behave in amore » markedly different way. In particular, while the clustering is enhanced in the considered CQ models with respect to the corresponding quintessence ones where the coupling is absent and to the ordinary cosmologies with a cosmological constant and cold dark matter ({lambda}CDM), structures in EQ models may grow slower. This is likely to have direct consequences on the inner properties of nonlinear structures, like cluster concentration, as well as on the weak lensing shear on large scales. Finally, we specialize our study for interfacing linear dynamics and N-body simulations in these cosmologies, giving a recipe for the corrections to be included in N-body codes in order to take into account the modifications to the expansion rate, growth of structures, and strength of gravity.« less
Cosmology with decaying cosmological constant—exact solutions and model testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szydłowski, Marek; Stachowski, Aleksander, E-mail: marek.szydlowski@uj.edu.pl, E-mail: aleksander.stachowski@uj.edu.pl
We study dynamics of Λ(t) cosmological models which are a natural generalization of the standard cosmological model (the ΛCDM model). We consider a class of models: the ones with a prescribed form of Λ(t)=Λ{sub bare}+α{sup 2}/t{sup 2}. This type of a Λ(t) parametrization is motivated by different cosmological approaches. We interpret the model with running Lambda (Λ(t)) as a special model of an interacting cosmology with the interaction term −dΛ(t)/dt in which energy transfer is between dark matter and dark energy sectors. For the Λ(t) cosmology with a prescribed form of Λ(t) we have found the exact solution in themore » form of Bessel functions. Our model shows that fractional density of dark energy Ω{sub e} is constant and close to zero during the early evolution of the universe. We have also constrained the model parameters for this class of models using the astronomical data such as SNIa data, BAO, CMB, measurements of H(z) and the Alcock-Paczyński test. In this context we formulate a simple criterion of variability of Λ with respect to t in terms of variability of the jerk or sign of estimator (1−Ω{sub m},0−Ω{sub Λ,0}). The case study of our model enable us to find an upper limit α{sup 2} < 0.012 (2σ C.L.) describing the variation from the cosmological constant while the LCDM model seems to be consistent with various data.« less
CLUMP-3D: Testing ΛCDM with Galaxy Cluster Shapes
NASA Astrophysics Data System (ADS)
Sereno, Mauro; Umetsu, Keiichi; Ettori, Stefano; Sayers, Jack; Chiu, I.-Non; Meneghetti, Massimo; Vega-Ferrero, Jesús; Zitrin, Adi
2018-06-01
The ΛCDM model of structure formation makes strong predictions on the concentration and shape of dark matter (DM) halos, which are determined by mass accretion processes. Comparison between predicted shapes and observations provides a geometric test of the ΛCDM model. Accurate and precise measurements needs a full three-dimensional (3D) analysis of the cluster mass distribution. We accomplish this with a multi-probe 3D analysis of the X-ray regular Cluster Lensing and Supernova survey with Hubble (CLASH) clusters combining strong and weak lensing, X-ray photometry and spectroscopy, and the Sunyaev–Zel’dovich effect (SZe). The cluster shapes and concentrations are consistent with ΛCDM predictions. The CLASH clusters are randomly oriented, as expected given the sample selection criteria. Shapes agree with numerical results for DM-only halos, which hints at baryonic physics being less effective in making halos rounder.
DWARF GALAXIES AND THE COSMIC WEB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitez-Llambay, Alejandro; Abadi, Mario G.; Navarro, Julio F.
2013-02-01
We use a cosmological simulation of the formation of the Local Group of Galaxies to identify a mechanism that enables the removal of baryons from low-mass halos without appealing to feedback or reionization. As the Local Group forms, matter bound to it develops a network of filaments and pancakes. This moving web of gas and dark matter drifts and sweeps a large volume, overtaking many halos in the process. The dark matter content of these halos is unaffected but their gas can be efficiently removed by ram pressure. The loss of gas is especially pronounced in low-mass halos due tomore » their lower binding energy and has a dramatic effect on the star formation history of affected systems. This 'cosmic web stripping' may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in {Lambda}CDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. Although our results are based on a single high-resolution simulation, it is likely that the hydrodynamical interaction of dwarf galaxies with the cosmic web is a crucial ingredient so far missing from galaxy formation models.« less
Isotropic vs. anisotropic components of BAO data: a tool for model selection
NASA Astrophysics Data System (ADS)
Haridasu, Balakrishna S.; Luković, Vladimir V.; Vittorio, Nicola
2018-05-01
We conduct a selective analysis of the isotropic (DV) and anisotropic (AP) components of the most recent Baryon Acoustic Oscillations (BAO) data. We find that these components provide significantly different constraints and could provide strong diagnostics for model selection, also in view of more precise data to arrive. For instance, in the ΛCDM model we find a mild tension of ~ 2 σ for the Ωm estimates obtained using DV and AP separately. Considering both Ωk and w as free parameters, we find that the concordance model is in tension with the best-fit values provided by the BAO data alone at 2.2σ. We complemented the BAO data with the Supernovae Ia (SNIa) and Observational Hubble datasets to perform a joint analysis on the ΛCDM model and its standard extensions. By assuming ΛCDM scenario, we find that these data provide H0 = 69.4 ± 1.7 km/s Mpc‑1 as the best-fit value for the present expansion rate. In the kΛCDM scenario we find that the evidence for acceleration using the BAO data alone is more than ~ 5.8σ, which increases to 8.4 σ in our joint analysis.
NASA Technical Reports Server (NTRS)
Kashlinsky, A.
1993-01-01
Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.
NASA Astrophysics Data System (ADS)
Cao, Shu-Lei; Duan, Xiao-Wei; Meng, Xiao-Lei; Zhang, Tong-Jie
2018-04-01
Aiming at exploring the nature of dark energy (DE), we use forty-three observational Hubble parameter data (OHD) in the redshift range 0 < z ≤slant 2.36 to make a cosmological model-independent test of the ΛCDM model with two-point Omh^2(z2;z1) diagnostic. In ΛCDM model, with equation of state (EoS) w=-1, two-point diagnostic relation Omh^2 ≡ Ωmh^2 is tenable, where Ωm is the present matter density parameter, and h is the Hubble parameter divided by 100 {km s^{-1 Mpc^{-1}}}. We utilize two methods: the weighted mean and median statistics to bin the OHD to increase the signal-to-noise ratio of the measurements. The binning methods turn out to be promising and considered to be robust. By applying the two-point diagnostic to the binned data, we find that although the best-fit values of Omh^2 fluctuate as the continuous redshift intervals change, on average, they are continuous with being constant within 1 σ confidence interval. Therefore, we conclude that the ΛCDM model cannot be ruled out.
Large- and small-scale constraints on power spectra in Omega = 1 universes
NASA Technical Reports Server (NTRS)
Gelb, James M.; Gradwohl, Ben-Ami; Frieman, Joshua A.
1993-01-01
The CDM model of structure formation, normalized on large scales, leads to excessive pairwise velocity dispersions on small scales. In an attempt to circumvent this problem, we study three scenarios (all with Omega = 1) with more large-scale and less small-scale power than the standard CDM model: (1) cold dark matter with significantly reduced small-scale power (inspired by models with an admixture of cold and hot dark matter); (2) cold dark matter with a non-scale-invariant power spectrum; and (3) cold dark matter with coupling of dark matter to a long-range vector field. When normalized to COBE on large scales, such models do lead to reduced velocities on small scales and they produce fewer halos compared with CDM. However, models with sufficiently low small-scale velocities apparently fail to produce an adequate number of halos.
A hydrodynamic approach to cosmology: The mixed dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah P.
1994-01-01
We compute the evolution of spatially flat, mixed cold and hot dark matter models containing both baryonic matter and two kinds of dark matter. Hydrodynamics is treated with a highly developed Eulerian hydrodynamic code (see Cen 1992). A standard particle-mesh (PM) code is also used in parallel to calculate the motion of the dark matter components. We adopt the following parameters: h equivalent to (sub 0)/100 km/s Mpc(exp -1) = 0.5, OMEGA(sub C) = 0.3, and OMEGA(sub B) = 0.06, with amplitude of the perturbation spectrum fixed by the Cosmic Background Explorer Satellite (COBE) Dark Matter Radiation (DMR) measurements (Smoot et al. 1992) being sigma (sub 8) = 0.67. Four different boxes are simulated with box sizes of L = (64, 16, 4, 1) h(exp -1) Mpc, respectively, the two small boxes providing good resolution but little valid information due to absence of large-scale power. We use 128(exp 3) approximate 10(exp 6.3) baryonic cells, 128(exp .3) cold dark matter particles, and 2 x 128(exp 3) hot dark matter particles. In addition to the dark matter we follow separately six baryonic species (H, H(+), He, He(+), He(++), e(-)) with allowance for both (nonequilibrium) collisional and radiative ionization in every cell. The background radiation field is also followed in detail with allowance made for both continuum and line processes, to allow nonequilibrium heating and cooling processes to be followed in detail. The mean final Zeldovich-Sunyaev y parameter is estimated to be y Bar = (5.4 + or - 2.7) x 10(exp -7) below currently attainable observations, with a rms fluctuation of approximately delta bar y = (0.6 + or - 3.0) x 10(exp -7) on arcminute scales. The rate of galaxy formation peaks at an even later epoch (z approximate 0.3) than in the standard (OMEGA = 1, sigma sub 8 = 0.67) cold dark matter (CDM) model (z approximate 0.5) and, at a redshift of z = 4, is nearly a factor of 100 lower than for the CDM model with the same value of sigma sub 8. With regard to mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum has a broad peak in the vicinity of M(sub B) = 10(exp 9.5) solar mass with a reasonable fit to the Schechter luminosity function if the ratio of baryon mass to blue light is approximately 4. In addition, one very large PM simulation was made in a box with size (320 h(exp - 1) Mpc) containing 3 x 200(exp 3) = 10(exp 7.4) particles. Utilizing this simulation we find that the model yields a cluster mass function which is about a factor of 4 higher than observed, but a cluster-cluster correlation length marginally lower than observed, but that both are closer to observations than in the (COBE) normalized CDM model. The one-dimensional pairwise velocity dispersion is 605 + or - 8 km/s at 1/h separation, lower than that of the DCM model normalized to COBE, but still significant higher than observations (Davis & Peebles 1983). A plausible velocity bias b(sub v) = 0.8 + or - 0.1 on this scale will reduce but not remove the discrepancy. The velocity auto-correlat ion function has a coherence length of 40/h Mpc, which is somewhat lower than the observed counterpart. In all these respects the model would be improved by decreasing the cold fraction of the dark OMEGA(sub CDM)/ (OMEGA(sub CDM) + OMEGA(sub HDB). But formation of galaxies and clusters of galaxies is much later in this model than in COBE-normalized CDM, perhaps too late. To improve on these constraints a larger ratio of OMEGA(sub CDM)/ (OMEGA(sub CDM) + OMEGA(sub HDM)) is required than the value of 0.67 adopted here. It does not seem possible to find a value for this ratio which would satisfy all tests. Overall, the model is similar both on large and intermediate scales to the standard CDM model normalized to the same value of sigma(sub B), but the problem with regard to late formation of galaxies is more severe in this model than in that CDM model. Adding hot dark matter, significantly improves the ability of the COBE-normalized CDM scenario to fit existing observations, but the model is in fact not as good as the CDM model with the same sigma(sub 8) and is still probably unsatisfactory with regard to several critical tests.
Redshift space clustering of galaxies and cold dark matter model
NASA Technical Reports Server (NTRS)
Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt
1993-01-01
The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.
A gamma-ray constraint on the nature of dark matter
NASA Technical Reports Server (NTRS)
Silk, Joseph; Bloemen, Hans
1987-01-01
If even a small component of the Galactic spheroid consists of the weakly interacting majorana fermions that are cold-dark-matter candidate particles for the Galactic halo, there should be a substantial flux of annihilation gamma rays from a source of about 1-deg extent at the Galactic center. COS B observations already constrain the halo cold-dark-matter (CDM) content entrained in the inner spheroid to be less than about 10 percent. A somewhat weaker constraint applies to the CDM believed to be present in the Galactic disk, but still only about 15 percent can be in such particles. Monochromatic line photons of energy 3-10 GeV are also predicted, and future experiments may be capable of improving these limits. Since both theoretical models of galaxy formation in a CDM-dominated universe and mass models for the rotation curve in the inner Galaxy suggest that a substantial fraction of the spheroid component should be nonluminous and incorporate entrained halo CDM, the hypothesis that the halo CDM consists predominantly of weakly interacting fermions such as photinos or heavy majorana mass neutrinos or higgsinos may already be subject to observational test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xiaogang; Ding, Xuheng; Biesiada, Marek
2016-07-01
The two-point diagnostics Om ( z {sub i} , z {sub j} ) and Omh {sup 2}( z {sub i} , z {sub j} ) have been introduced as an interesting tool for testing the validity of the Λ cold dark matter (ΛCDM) model. Recently, Sahni et al. combined two independent measurements of H ( z ) from baryon acoustic oscillation (BAO) data with the value of the Hubble constant H {sub 0}, and used the second of these diagnostics to test the ΛCDM (a constant equation-of-state parameter for dark energy) model. Their result indicated a considerable tension between observationsmore » and predictions of the ΛCDM model. Since reliable data concerning the expansion rates of the universe at different redshifts H ( z ) are crucial for the successful application of this method, we investigate both two-point diagnostics on the most comprehensive set of N = 36 measurements of H ( z ) from BAOs and the differential ages (DAs) of passively evolving galaxies. We discuss the uncertainties of the two-point diagnostics and find that they are strongly non-Gaussian and follow the patterns deeply rooted in their very construction. Therefore we propose that non-parametric median statistics is the most appropriate way of treating this problem. Our results support the claims that ΛCDM is in tension with H ( z ) data according to the two-point diagnostics developed by Shafieloo, Sahni, and Starobinsky. However, other alternatives to the ΛCDM model, such as the wCDM or Chevalier–Polarski–Linder models, perform even worse. We also note that there are serious systematic differences between the BAO and DA methods that ought to be better understood before H ( z ) measurements can compete with other probes methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Bingnan; Zhao Enguang; Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
2011-07-15
The shapes of light normal nuclei and {Lambda} hypernuclei are investigated in the ({beta},{gamma}) deformation plane by using a newly developed constrained relativistic mean field (RMF) model. As examples, the results of some C, Mg, and Si nuclei are presented and discussed in details. We found that for normal nuclei the present RMF calculations and previous Skyrme-Hartree-Fock models predict similar trends of the shape evolution with the neutron number increasing. But some quantitative aspects from these two approaches, such as the depth of the minimum and the softness in the {gamma} direction, differ a lot for several nuclei. For {Lambda}more » hypernuclei, in most cases, the addition of a {Lambda} hyperon alters slightly the location of the ground state minimum toward the direction of smaller {beta} and softer {gamma} in the potential energy surface E{approx}({beta},{gamma}). There are three exceptions, namely, {sub {Lambda}}{sup 13}C, {sub {Lambda}}{sup 23}C, and {sub {Lambda}}{sup 31}Si in which the polarization effect of the additional {Lambda} is so strong that the shapes of these three hypernuclei are drastically different from their corresponding core nuclei.« less
Visser's massive graviton bimetric theory revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roany, Alain de; Chauvineau, Bertrand; Freitas Pacheco, Jose A. de
2011-10-15
A massive gravity theory was proposed by Visser in the late 1990s. This theory, based on a background metric b{sub {alpha}{beta}} and on an usual dynamical metric g{sub {alpha}{beta}} has the advantage of being free of ghosts as well as discontinuities present in other massive theories proposed in the past. In the present investigation, the equations of Visser's theory are revisited with particular care on the related conservation laws. It will be shown that a multiplicative factor is missing in the graviton tensor originally derived by Visser, which has no incidence on the weak field approach but becomes important inmore » the strong field regime when, for instance, cosmological applications are considered. In this case, contrary to some previous claims found in the literature, we conclude that a nonstatic background metric is required in order to obtain a solution able to mimic the {Lambda}CDM cosmology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogolyubskii-breve, M.Y.; Vinitskii-breve, A.A.; Ermolov, P.F.
1986-05-01
Inclusive and semi-inclusive ..lambda..-hyperon spectra in p-barp interactions at 32 GeV/c are presented. The processes whereby ..lambda.. hyperons are produced in various channels are analyzed by comparison with the predictions of the Lund model and with dual-topological-unitarization (DTU)-based models. The ..lambda..-hyperon characteristics differ from those predicted in the Lund model. The main cause of the differences is that multiple production of particles is represented in this model in terms of breaking of one string, thereby excluding correlation effects between the vertices.
Fitting the constitution type Ia supernova data with the redshift-binned parametrization method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Qingguo; Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190; Li Miao
2009-10-15
In this work, we explore the cosmological consequences of the recently released Constitution sample of 397 Type Ia supernovae (SNIa). By revisiting the Chevallier-Polarski-Linder (CPL) parametrization, we find that, for fitting the Constitution set alone, the behavior of dark energy (DE) significantly deviates from the cosmological constant {lambda}, where the equation of state (EOS) w and the energy density {rho}{sub {lambda}} of DE will rapidly decrease along with the increase of redshift z. Inspired by this clue, we separate the redshifts into different bins, and discuss the models of a constant w or a constant {rho}{sub {lambda}} in each bin,more » respectively. It is found that for fitting the Constitution set alone, w and {rho}{sub {lambda}} will also rapidly decrease along with the increase of z, which is consistent with the result of CPL model. Moreover, a step function model in which {rho}{sub {lambda}} rapidly decreases at redshift z{approx}0.331 presents a significant improvement ({delta}{chi}{sup 2}=-4.361) over the CPL parametrization, and performs better than other DE models. We also plot the error bars of DE density of this model, and find that this model deviates from the cosmological constant {lambda} at 68.3% confidence level (CL); this may arise from some biasing systematic errors in the handling of SNIa data, or more interestingly from the nature of DE itself. In addition, for models with same number of redshift bins, a piecewise constant {rho}{sub {lambda}} model always performs better than a piecewise constant w model; this shows the advantage of using {rho}{sub {lambda}}, instead of w, to probe the variation of DE.« less
Ocular Chromatic Aberrations and Their Effects on Polychromatic Retinal Image Quality
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxiao
Previous studies of ocular chromatic aberrations have concentrated on chromatic difference of focus (CDF). Less is known about the chromatic difference of image position (CDP) in the peripheral retina and no experimental attempt has been made to measure the ocular chromatic difference of magnification (CDM). Consequently, theoretical modelling of human eyes is incomplete. The insufficient knowledge of ocular chromatic aberrations is partially responsible for two unsolved applied vision problems: (1) how to improve vision by correcting ocular chromatic aberration? (2) what is the impact of ocular chromatic aberration on the use of isoluminance gratings as a tool in spatial-color vision?. Using optical ray tracing methods, MTF analysis methods of image quality, and psychophysical methods, I have developed a more complete model of ocular chromatic aberrations and their effects on vision. The ocular CDM was determined psychophysically by measuring the tilt in the apparent frontal parallel plane (AFPP) induced by interocular difference in image wavelength. This experimental result was then used to verify a theoretical relationship between the ocular CDM, the ocular CDF and the entrance pupil of the eye. In the retinal image after correcting the ocular CDF with existing achromatizing methods, two forms of chromatic aberration (CDM and chromatic parallax) were examined. The CDM was predicted by theoretical ray tracing and measured with the same method used to determine ocular CDM. The chromatic parallax was predicted with a nodal ray model and measured with the two-color vernier alignment method. The influence of these two aberrations on polychromatic MTF were calculated. Using this improved model of ocular chromatic aberration, luminance artifacts in the images of isoluminance gratings were calculated. The predicted luminance artifacts were then compared with experimental data from previous investigators. The results show that: (1) A simple relationship exists between two major chromatic aberrations and the location of the pupil; (2) The ocular CDM is measurable and varies among individuals; (3) All existing methods to correct ocular chromatic aberration face another aberration, chromatic parallax, which is inherent in the methodology; (4) Ocular chromatic aberrations have the potential to contaminate psychophysical experimental results on human spatial-color vision.
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder
Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis wasmore » measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd sources. Conclusions: An independent {Lambda} determination has been performed for the Advantage Pd-103 source. The {sub PST}{Lambda} obtained in this work provides additional information needed for establishing a more accurate consensus {Lambda} value for the Advantage Pd-103 source.« less
Airway Delivery of Soluble Factors from Plastic-Adherent Bone Marrow Cells Prevents Murine Asthma
Ionescu, Lavinia I.; Alphonse, Rajesh S.; Arizmendi, Narcy; Morgan, Beverly; Abel, Melanie; Eaton, Farah; Duszyk, Marek; Vliagoftis, Harissios; Aprahamian, Tamar R.; Walsh, Kenneth
2012-01-01
Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow–derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the TH2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10–induced and IL-10–secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma. PMID:21903873
Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma.
Ionescu, Lavinia I; Alphonse, Rajesh S; Arizmendi, Narcy; Morgan, Beverly; Abel, Melanie; Eaton, Farah; Duszyk, Marek; Vliagoftis, Harissios; Aprahamian, Tamar R; Walsh, Kenneth; Thébaud, Bernard
2012-02-01
Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow-derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the T(H)2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10-induced and IL-10-secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma.
NASA Technical Reports Server (NTRS)
Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.
1992-01-01
The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.
Zhu, Sha; Degnan, James H; Goldstien, Sharyn J; Eldon, Bjarki
2015-09-15
There has been increasing interest in coalescent models which admit multiple mergers of ancestral lineages; and to model hybridization and coalescence simultaneously. Hybrid-Lambda is a software package that simulates gene genealogies under multiple merger and Kingman's coalescent processes within species networks or species trees. Hybrid-Lambda allows different coalescent processes to be specified for different populations, and allows for time to be converted between generations and coalescent units, by specifying a population size for each population. In addition, Hybrid-Lambda can generate simulated datasets, assuming the infinitely many sites mutation model, and compute the F ST statistic. As an illustration, we apply Hybrid-Lambda to infer the time of subdivision of certain marine invertebrates under different coalescent processes. Hybrid-Lambda makes it possible to investigate biogeographic concordance among high fecundity species exhibiting skewed offspring distribution.
ERIC Educational Resources Information Center
Convertino, Christina
2016-01-01
This praxis article outlines the value of using a critical and dialogical model (CDM) to teach multicultural social justice education to preservice teachers. Based on practitioner research, the article draws on the author's own teaching experiences to highlight how key features of CDM can be used to help pre-service teachers move beyond thinking…
Oscar, T P
1999-12-01
Response surface models were developed and validated for effects of temperature (10 to 40 degrees C) and previous growth NaCl (0.5 to 4.5%) on lag time (lambda) and specific growth rate (mu) of Salmonella Typhimurium on cooked chicken breast. Growth curves for model development (n = 55) and model validation (n = 16) were fit to a two-phase linear growth model to obtain lambda and mu of Salmonella Typhimurium on cooked chicken breast. Response surface models for natural logarithm transformations of lambda and mu as a function of temperature and previous growth NaCl were obtained by regression analysis. Both lambda and mu of Salmonella Typhimurium were affected (P < 0.0001) by temperature but not by previous growth NaCl. Models were validated against data not used in their development. Mean absolute relative error of predictions (model accuracy) was 26.6% for lambda and 15.4% for mu. Median relative error of predictions (model bias) was 0.9% for lambda and 5.2% for mu. Results indicated that the models developed provided reliable predictions of lambda and mu of Salmonella Typhimurium on cooked chicken breast within the matrix of conditions modeled. In addition, results indicated that previous growth NaCl (0.5 to 4.5%) was not a major factor affecting subsequent growth kinetics of Salmonella Typhimurium on cooked chicken breast. Thus, inclusion of previous growth NaCl in predictive models may not significantly improve our ability to predict growth of Salmonella spp. on food subjected to temperature abuse.
A PRECISE CLUSTER MASS PROFILE AVERAGED FROM THE HIGHEST-QUALITY LENSING DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umetsu, Keiichi; Broadhurst, Tom; Zitrin, Adi
2011-09-01
We outline our methods for obtaining high-precision mass profiles, combining independent weak-lensing distortion, magnification, and strong-lensing measurements. For massive clusters, the strong- and weak-lensing regimes contribute equal logarithmic coverage of the radial profile. The utility of high-quality data is limited by the cosmic noise from large-scale structure along the line of sight. This noise is overcome when stacking clusters, as too are the effects of cluster asphericity and substructure, permitting a stringent test of theoretical models. We derive a mean radial mass profile of four similar mass clusters of high-quality Hubble Space Telescope and Subaru images, in the range Rmore » = 40-2800 kpc h {sup -1}, where the inner radial boundary is sufficiently large to avoid smoothing from miscentering effects. The stacked mass profile is detected at 58{sigma} significance over the entire radial range, with the contribution from the cosmic noise included. We show that the projected mass profile has a continuously steepening gradient out to beyond the virial radius, in remarkably good agreement with the standard Navarro-Frenk-White form predicted for the family of cold dark matter (CDM) dominated halos in gravitational equilibrium. The central slope is constrained to lie in the range, -dln {rho}/dln r = 0.89{sup +0.27}{sub -0.39}. The mean concentration is c{sub vir} = 7.68{sup +0.42}{sub -0.40} (at M{sub vir} = 1.54{sup +0.11}{sub -0.10} x 10{sup 15} M{sub sun} h {sup -1}), which is high for relaxed, high-mass clusters, but consistent with {Lambda}CDM when a sizable projection bias estimated from N-body simulations is considered. This possible tension will be more definitively explored with new cluster surveys, such as CLASH, LoCuSS, Subaru Hyper Suprime-Cam, and XXM-XXL, to construct the c{sub vir}-M{sub vir} relation over a wider mass range.« less
NASA Astrophysics Data System (ADS)
Somogyi, Gábor; Smith, Robert E.
2010-01-01
We generalize the renormalized perturbation theory (RPT) formalism of Crocce and Scoccimarro [M. Crocce and R. Scoccimarro, Phys. Rev. DPRVDAQ1550-7998 73, 063519 (2006)10.1103/PhysRevD.73.063519] to deal with multiple fluids in the Universe and here we present the complete calculations up to the one-loop level in the RPT. We apply this approach to the problem of following the nonlinear evolution of baryon and cold dark matter (CDM) perturbations, evolving from the distinct sets of initial conditions, from the high redshift post-recombination Universe right through to the present day. In current theoretical and numerical models of structure formation, it is standard practice to treat baryons and CDM as an effective single matter fluid—the so-called dark matter only modeling. In this approximation, one uses a weighed sum of late-time baryon and CDM transfer functions to set initial mass fluctuations. In this paper we explore whether this approach can be employed for high precision modeling of structure formation. We show that, even if we only follow the linear evolution, there is a large-scale scale-dependent bias between baryons and CDM for the currently favored WMAP5 ΛCDM model. This time evolving bias is significant (>1%) until the present day, when it is driven towards unity through gravitational relaxation processes. Using the RPT formalism we test this approximation in the nonlinear regime. We show that the nonlinear CDM power spectrum in the two-component fluid differs from that obtained from an effective mean-mass one-component fluid by ˜3% on scales of order k˜0.05hMpc-1 at z=10, and by ˜0.5% at z=0. However, for the case of the nonlinear evolution of the baryons the situation is worse and we find that the power spectrum is suppressed, relative to the total matter, by ˜15% on scales k˜0.05hMpc-1 at z=10, and by ˜3%-5% at z=0. Importantly, besides the suppression of the spectrum, the baryonic acoustic oscillation (BAO) features are amplified for baryon and slightly damped for CDM spectra. If we compare the total matter power spectra in the two- and one-component fluid approaches, then we find excellent agreement, with deviations being <0.5% throughout the evolution. Consequences: high precision modeling of the large-scale distribution of baryons in the Universe cannot be achieved through an effective mean-mass one-component fluid approximation; detection significance of BAO will be amplified in probes that study baryonic matter, relative to probes that study the CDM or total mass only. The CDM distribution can be modeled accurately at late times and the total matter at all times. This is good news for probes that are sensitive to the total mass, such as gravitational weak lensing as existing modeling techniques are good enough. Lastly, we identify an analytic approximation that greatly simplifies the evaluation of the full PT expressions, and it is better than <1% over the full range of scales and times considered.
SIDM on FIRE: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies
NASA Astrophysics Data System (ADS)
Robles, Victor H.; Bullock, James S.; Elbert, Oliver D.; Fitts, Alex; González-Samaniego, Alejandro; Boylan-Kolchin, Michael; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Hayward, Christopher C.
2017-12-01
We compare a suite of four simulated dwarf galaxies formed in 1010 M⊙ haloes of collisionless cold dark matter (CDM) with galaxies simulated in the same haloes with an identical galaxy formation model but a non-zero cross-section for DM self-interactions. These cosmological zoom-in simulations are part of the Feedback In Realistic Environments (FIRE) project and utilize the FIRE-2 model for hydrodynamics and galaxy formation physics. We find the stellar masses of the galaxies formed in self-interacting dark matter (SIDM) with σ/m = 1 cm2 g-1 are very similar to those in CDM (spanning M⋆ ≈ 105.7-7.0M⊙) and all runs lie on a similar stellar mass-size relation. The logarithmic DM density slope (α = d log ρ/d log r) in the central 250-500 pc remains steeper than α = -0.8 for the CDM-Hydro simulations with stellar mass M⋆ ∼ 106.6 M⊙ and core-like in the most massive galaxy. In contrast, every SIDM hydrodynamic simulation yields a flatter profile, with α > -0.4. Moreover, the central density profiles predicted in SIDM runs without baryons are similar to the SIDM runs that include FIRE-2 baryonic physics. Thus, SIDM appears to be much more robust to the inclusion of (potentially uncertain) baryonic physics than CDM on this mass scale, suggesting that SIDM will be easier to falsify than CDM using low-mass galaxies. Our FIRE simulations predict that galaxies less massive than M⋆ ≲ 3 × 106 M⊙ provide potentially ideal targets for discriminating models, with SIDM producing substantial cores in such tiny galaxies and CDM producing cusps.
Cosmic string wakes and large-scale structure
NASA Technical Reports Server (NTRS)
Charlton, Jane C.
1988-01-01
The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.
Hidden from view: coupled dark sector physics and small scales
NASA Astrophysics Data System (ADS)
Elahi, Pascal J.; Lewis, Geraint F.; Power, Chris; Carlesi, Edoardo; Knebe, Alexander
2015-09-01
We study cluster mass dark matter (DM) haloes, their progenitors and surroundings in a coupled dark matter-dark energy (DE) model and compare it to quintessence and Λ cold dark matter (ΛCDM) models with adiabatic zoom simulations. When comparing cosmologies with different expansions histories, growth functions and power spectra, care must be taken to identify unambiguous signatures of alternative cosmologies. Shared cosmological parameters, such as σ8, need not be the same for optimal fits to observational data. We choose to set our parameters to ΛCDM z = 0 values. We find that in coupled models, where DM decays into DE, haloes appear remarkably similar to ΛCDM haloes despite DM experiencing an additional frictional force. Density profiles are not systematically different and the subhalo populations have similar mass, spin, and spatial distributions, although (sub)haloes are less concentrated on average in coupled cosmologies. However, given the scatter in related observables (V_max,R_{V_max}), this difference is unlikely to distinguish between coupled and uncoupled DM. Observations of satellites of Milky Way and M31 indicate a significant subpopulation reside in a plane. Coupled models do produce planar arrangements of satellites of higher statistical significance than ΛCDM models; however, in all models these planes are dynamically unstable. In general, the non-linear dynamics within and near large haloes masks the effects of a coupled dark sector. The sole environmental signature we find is that small haloes residing in the outskirts are more deficient in baryons than their ΛCDM counterparts. The lack of a pronounced signal for a coupled dark sector strongly suggests that such a phenomena would be effectively hidden from view.
Hierarchy of N-point functions in the ΛCDM and ReBEL cosmologies
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.; Juszkiewicz, Roman; van de Weygaert, Rien
2010-11-01
In this work we investigate higher-order statistics for the ΛCDM and ReBEL scalar-interacting dark matter models by analyzing 180h-1Mpc dark matter N-body simulation ensembles. The N-point correlation functions and the related hierarchical amplitudes, such as skewness and kurtosis, are computed using the counts-in-cells method. Our studies demonstrate that the hierarchical amplitudes Sn of the scalar-interacting dark matter model significantly deviate from the values in the ΛCDM cosmology on scales comparable and smaller than the screening length rs of a given scalar-interacting model. The corresponding additional forces that enhance the total attractive force exerted on dark matter particles at galaxy scales lower the values of the hierarchical amplitudes Sn. We conclude that hypothetical additional exotic interactions in the dark matter sector should leave detectable markers in the higher-order correlation statistics of the density field. We focused in detail on the redshift evolution of the dark matter field’s skewness and kurtosis. From this investigation we find that the deviations from the canonical ΛCDM model introduced by the presence of the “fifth” force attain a maximum value at redshifts 0.5
Model Selection with Strong-lensing Systems
NASA Astrophysics Data System (ADS)
Leaf, Kyle; Melia, Fulvio
2018-05-01
In this paper, we use an unprecedentedly large sample (158) of confirmed strong lens systems for model selection, comparing five well studied Friedmann-Robertson-Walker cosmologies: ΛCDM, wCDM (the standard model with a variable dark-energy equation of state), the Rh = ct universe, the (empty) Milne cosmology, and the classical Einstein-de Sitter (matter dominated) universe. We first use these sources to optimize the parameters in the standard model and show that they are consistent with Planck, though the quality of the best fit is not satisfactory. We demonstrate that this is likely due to under-reported errors, or to errors yet to be included in this kind of analysis. We suggest that the missing dispersion may be due to scatter about a pure single isothermal sphere (SIS) model that is often assumed for the mass distribution in these lenses. We then use the Bayes information criterion, with the inclusion of a suggested SIS dispersion, to calculate the relative likelihoods and ranking of these models, showing that Milne and Einstein-de Sitter are completely ruled out, while Rh = ct is preferred over ΛCDM/wCDM with a relative probability of ˜73% versus ˜24%. The recently reported sample of new strong lens candidates by the Dark Energy Survey, if confirmed, may be able to demonstrate which of these two models is favoured over the other at a level exceeding 3σ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, Valerio; Kolb, Edward W.; Matarrese, Sabino
We analyze a toy Swiss-cheese cosmological model to study the averaging problem. In our Swiss-cheese model, the cheese is a spatially flat, matter only, Friedmann-Robertson-Walker solution (i.e., the Einstein-de Sitter model), and the holes are constructed from a Lemaitre-Tolman-Bondi solution of Einstein's equations. We study the propagation of photons in the Swiss-cheese model, and find a phenomenological homogeneous model to describe observables. Following a fitting procedure based on light-cone averages, we find that the expansion scalar is unaffected by the inhomogeneities (i.e., the phenomenological homogeneous model is the cheese model). This is because of the spherical symmetry of the model;more » it is unclear whether the expansion scalar will be affected by nonspherical voids. However, the light-cone average of the density as a function of redshift is affected by inhomogeneities. The effect arises because, as the universe evolves, a photon spends more and more time in the (large) voids than in the (thin) high-density structures. The phenomenological homogeneous model describing the light-cone average of the density is similar to the {lambda}CDM concordance model. It is interesting that, although the sole source in the Swiss-cheese model is matter, the phenomenological homogeneous model behaves as if it has a dark-energy component. Finally, we study how the equation of state of the phenomenological homogeneous model depends on the size of the inhomogeneities, and find that the equation-of-state parameters w{sub 0} and w{sub a} follow a power-law dependence with a scaling exponent equal to unity. That is, the equation of state depends linearly on the distance the photon travels through voids. We conclude that, within our toy model, the holes must have a present size of about 250 Mpc to be able to mimic the concordance model.« less
Where the world stands still: turnaround as a strong test of ΛCDM cosmology
NASA Astrophysics Data System (ADS)
Pavlidou, V.; Tomaras, T. N.
2014-09-01
Our intuitive understanding of cosmic structure formation works best in scales small enough so that isolated, bound, relaxed gravitating systems are no longer adjusting their radius; and large enough so that space and matter follow the average expansion of the Universe. Yet one of the most robust predictions of ΛCDM cosmology concerns the scale that separates these limits: the turnaround radius, which is the non-expanding shell furthest away from the center of a bound structure. We show that the maximum possible value of the turnaround radius within the framework of the ΛCDM model is, for a given mass M, equal to (3GM/Λ c2)1/3, with G Newton's constant and c the speed of light, independently of cosmic epoch, exact nature of dark matter, or baryonic effects. We discuss the possible use of this prediction as an observational test for ΛCDM cosmology. Current data appear to favor ΛCDM over alternatives with local inhomogeneities and no Λ. However there exist several local-universe structures that have, within errors, reached their limiting size. With improved determinations of their turnaround radii and the enclosed mass, these objects may challenge the limit and ΛCDM cosmology.
New observational constraints on f ( T ) gravity from cosmic chronometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N., E-mail: nunes@ecm.ub.edu, E-mail: span@iiserkol.ac.in, E-mail: Emmanuel_Saridakis@baylor.edu
2016-08-01
We use the local value of the Hubble constant recently measured with 2.4% precision, as well as the latest compilation of cosmic chronometers data, together with standard probes such as Supernovae Type Ia and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f ( T ) gravity models, where T is the torsion scalar in teleparallel gravity. In particular, we consider three f ( T ) models with two parameters, out of which one is independent, and we quantify their deviation from ΛCDM cosmology through a sole parameter. Our analysis reveals thatmore » for one of the models a small but non-zero deviation from ΛCDM cosmology is slightly favored, while for the other models the best fit is very close to ΛCDM scenario. Clearly, f ( T ) gravity is consistent with observations, and it can serve as a candidate for modified gravity.« less
Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Moore, David; Cohen, Ross D.
1996-01-01
We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in agreement with the greatest number of observational considerations has electron density decreasing outward from n(sub e) approx. equals 10(exp 6)/cu cm to n(sub e) approx. equals 10(exp 2)/cu cm and, due to collisional de-excitation effects in the lowest velocity clouds, it generates broad flat-topped profile peaks in the lines of lowest critical density (e.g., [O II] lambda3727 and [S II] lambda(lambda)6716, 6731). Because the observed profile peaks of both low and high critical density lines are often very similar, our favored model requires a contribution to NLR emission-line spectra from low-velocity, low-density, and low-ionization gas not included in the model NLR.
Disentangling interacting dark energy cosmologies with the three-point correlation function
NASA Astrophysics Data System (ADS)
Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea
2014-10-01
We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 < r [h-1 Mpc ] < 40) and redshifts (0 ≤ z ≤ 2). In all cDE models considered in this work, Q(θ) appears flat at small scales (for all redshifts) and at low redshifts (for all scales), while it builds up the characteristic V-shape anisotropy at increasing redshifts and scales. With respect to the ΛCDM predictions, cDE models show lower (higher) values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.
Propulsion Physics Using the Chameleon Density Model
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2011-01-01
To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.
Cosmic acceleration and the helicity-0 graviton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rham, Claudia de; Heisenberg, Lavinia; Gabadadze, Gregory
2011-05-15
We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the {Lambda}CDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved.more » Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements severely constrain the value of the cosmological constant that can be neutralized, making this scheme phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate on a possible way out of this issue.« less
Topology in two dimensions. IV - CDM models with non-Gaussian initial conditions
NASA Astrophysics Data System (ADS)
Coles, Peter; Moscardini, Lauro; Plionis, Manolis; Lucchin, Francesco; Matarrese, Sabino; Messina, Antonio
1993-02-01
The results of N-body simulations with both Gaussian and non-Gaussian initial conditions are used here to generate projected galaxy catalogs with the same selection criteria as the Shane-Wirtanen counts of galaxies. The Euler-Poincare characteristic is used to compare the statistical nature of the projected galaxy clustering in these simulated data sets with that of the observed galaxy catalog. All the models produce a topology dominated by a meatball shift when normalized to the known small-scale clustering properties of galaxies. Models characterized by a positive skewness of the distribution of primordial density perturbations are inconsistent with the Lick data, suggesting problems in reconciling models based on cosmic textures with observations. Gaussian CDM models fit the distribution of cell counts only if they have a rather high normalization but possess too low a coherence length compared with the Lick counts. This suggests that a CDM model with extra large scale power would probably fit the available data.
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan
1989-01-01
The spatial distribution of the cold-dark-matter (CDM) and baryonic components of CDM-dominated cosmological models are characterized, summarizing the results of recent theoretical investigations. The evolution and distribution of matter in an Einstein-de Sitter universe on length scales small enough so that the Newtonian approximation is valid is followed chronologically, assuming (1) that the galaxies, CDM, and the intergalactic medium (IGM) are coupled by gravity, (2) that galaxies form by taking mass and momentum from the IGM, and (3) that the IGM responds to the energy input from the galaxies. The results of the numerical computations are presented in extensive graphs and discussed in detail.
Updated reduced CMB data and constraints on cosmological parameters
NASA Astrophysics Data System (ADS)
Cai, Rong-Gen; Guo, Zong-Kuan; Tang, Bo
2015-07-01
We obtain the reduced CMB data {lA, R, z∗} from WMAP9, WMAP9+BKP, Planck+WP and Planck+WP+BKP for the ΛCDM and wCDM models with or without spatial curvature. We then use these reduced CMB data in combination with low-redshift observations to put constraints on cosmological parameters. We find that including BKP results in a higher value of the Hubble constant especially when the equation of state (EOS) of dark energy and curvature are allowed to vary. For the ΛCDM model with curvature, the estimate of the Hubble constant with Planck+WP+Lensing is inconsistent with the one derived from Planck+WP+BKP at about 1.2σ confidence level (CL).
Small scale clustering of late forming dark matter
NASA Astrophysics Data System (ADS)
Agarwal, S.; Corasaniti, P.-S.; Das, S.; Rasera, Y.
2015-09-01
We perform a study of the nonlinear clustering of matter in the late-forming dark matter (LFDM) scenario in which dark matter results from the transition of a nonminimally coupled scalar field from radiation to collisionless matter. A distinct feature of this model is the presence of a damped oscillatory cutoff in the linear matter power spectrum at small scales. We use a suite of high-resolution N-body simulations to study the imprints of LFDM on the nonlinear matter power spectrum, the halo mass and velocity functions and the halo density profiles. The model largely satisfies high-redshift matter power spectrum constraints from Lyman-α forest measurements, while it predicts suppressed abundance of low-mass halos (˜109- 1010 h-1 M⊙ ) at all redshifts compared to a vanilla Λ CDM model. The analysis of the LFDM halo velocity function shows a better agreement than the Λ CDM prediction with the observed abundance of low-velocity galaxies in the local volume. Halos with mass M ≳1011 h-1 M⊙ show minor departures of the density profiles from Λ CDM expectations, while smaller-mass halos are less dense, consistent with the fact that they form later than their Λ CDM counterparts.
Simple model for lambda-doublet propensities in bimolecular reactions
NASA Technical Reports Server (NTRS)
Bronikowski, Michael J.; Zare, Richard N.
1990-01-01
A simple geometric model is presented to account for lambda-doublet propensities in bimolecular reactions A + BC - AB + C. It applies to reactions in which AB is formed in a pi state, and in which the unpaired molecular orbital responsible for lambda-doubling arises from breaking the B-C bond. The lambda-doublet population ratio is predicted to be 2:1 provided that: (1) the motion of A in the transition state determines the plane of rotation of AB; (2) the unpaired pi orbital lying initially along the B-C bond may be resolved into a projection onto the AB plane of rotation and a projection perpendicular to this plane; (3) there is no preferred geometry for dissociation of ABC. The 2:1 lambda-doublet ratio is the 'unconstrained dynamics prior' lambda-doublet distribution for such reactions.
Cloutier, Denise; Cox, Amy; Kampen, Ruth; Kobayashi, Karen; Cook, Heather; Taylor, Deanne; Gaspard, Gina
2016-01-01
Residential, long-term care serves vulnerable older adults in a facility-based environment. A new care delivery model (CDM) designed to promote more equitable care for residents was implemented in a health region in Western Canada. Leaders and managers faced challenges in implementing this model alongside other concurrent changes. This paper explores the question: How did leadership style influence team functioning with the implementation of the CDM? Qualitative data from interviews with leadership personnel (directors and managers, residential care coordinators and clinical nurse educators), and direct care staff (registered nurses, licensed practical nurses, health care aides, and allied health therapists), working in two different facilities comprise the main sources of data for this study. The findings reveal that leaders with a servant leadership style were better able to create and sustain the conditions to support successful model implementation and higher team functioning, compared to a facility in which the leadership style was less inclusive and proactive, and more resistant to the change. Consequently, staff at the second facility experienced a greater sense of overload with the implementation of the CDM. This study concludes that strong leadership is key to facilitating team work and job satisfaction in a context of change. PMID:27417591
Cloutier, Denise; Cox, Amy; Kampen, Ruth; Kobayashi, Karen; Cook, Heather; Taylor, Deanne; Gaspard, Gina
2016-01-04
Residential, long-term care serves vulnerable older adults in a facility-based environment. A new care delivery model (CDM) designed to promote more equitable care for residents was implemented in a health region in Western Canada. Leaders and managers faced challenges in implementing this model alongside other concurrent changes. This paper explores the question: How did leadership style influence team functioning with the implementation of the CDM? Qualitative data from interviews with leadership personnel (directors and managers, residential care coordinators and clinical nurse educators), and direct care staff (registered nurses, licensed practical nurses, health care aides, and allied health therapists), working in two different facilities comprise the main sources of data for this study. The findings reveal that leaders with a servant leadership style were better able to create and sustain the conditions to support successful model implementation and higher team functioning, compared to a facility in which the leadership style was less inclusive and proactive, and more resistant to the change. Consequently, staff at the second facility experienced a greater sense of overload with the implementation of the CDM. This study concludes that strong leadership is key to facilitating team work and job satisfaction in a context of change.
THE CLUSTERING CHARACTERISTICS OF H I-SELECTED GALAXIES FROM THE 40% ALFALFA SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Ann M.; Giovanelli, Riccardo; Haynes, Martha P.
The 40% Arecibo Legacy Fast ALFA survey catalog ({alpha}.40) of {approx}10,150 H I-selected galaxies is used to analyze the clustering properties of gas-rich galaxies. By employing the Landy-Szalay estimator and a full covariance analysis for the two-point galaxy-galaxy correlation function, we obtain the real-space correlation function and model it as a power law, {xi}(r) = (r/r{sub 0}){sup -{gamma}}, on scales <10 h{sup -1} Mpc. As the largest sample of blindly H I-selected galaxies to date, {alpha}.40 provides detailed understanding of the clustering of this population. We find {gamma} = 1.51 {+-} 0.09 and r{sub 0} = 3.3 + 0.3, -0.2more » h{sup -1} Mpc, reinforcing the understanding that gas-rich galaxies represent the most weakly clustered galaxy population known; we also observe a departure from a pure power-law shape at intermediate scales, as predicted in {Lambda}CDM halo occupation distribution models. Furthermore, we measure the bias parameter for the {alpha}.40 galaxy sample and find that H I galaxies are severely antibiased on small scales, but only weakly antibiased on large scales. The robust measurement of the correlation function for gas-rich galaxies obtained via the {alpha}.40 sample constrains models of the distribution of H I in simulated galaxies, and will be employed to better understand the role of gas in environmentally dependent galaxy evolution.« less
{lambda}{sub b}{yields}p, {lambda} transition form factors from QCD light-cone sum rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yuming; Lue Caidian; Shen Yuelong
2009-10-01
Light-cone sum rules for the {lambda}{sub b}{yields}p, {lambda} transition form factors are derived from the correlation functions expanded by the twist of the distribution amplitudes of the {lambda}{sub b} baryon. In terms of the {lambda}{sub b} three-quark distribution amplitude models constrained by the QCD theory, we calculate the form factors at small momentum transfers and compare the results with those estimated in the conventional light-cone sum rules (LCSR) and perturbative QCD approaches. Our results indicate that the two different versions of sum rules can lead to the consistent numbers of form factors responsible for {lambda}{sub b}{yields}p transition. The {lambda}{sub b}{yields}{lambda}more » transition form factors from LCSR with the asymptotic {lambda} baryon distribution amplitudes are found to be almost 1 order larger than those obtained in the {lambda}{sub b}-baryon LCSR, implying that the preasymptotic corrections to the baryonic distribution amplitudes are of great importance. Moreover, the SU(3) symmetry breaking effects between the form factors f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup p} and f{sub 1}{sup {lambda}{sub b}}{sup {yields}}{sup {lambda}} are computed as 28{sub -8}{sup +14}% in the framework of {lambda}{sub b}-baryon LCSR.« less
Entropy corrected holographic dark energy models in modified gravity
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Azhar, Nadeem; Rani, Shamaila
We consider the power law and the entropy corrected holographic dark energy (HDE) models with Hubble horizon in the dynamical Chern-Simons modified gravity. We explore various cosmological parameters and planes in this framework. The Hubble parameter lies within the consistent range at the present and later epoch for both entropy corrected models. The deceleration parameter explains the accelerated expansion of the universe. The equation of state (EoS) parameter corresponds to quintessence and cold dark matter (ΛCDM) limit. The ωΛ-ωΛ‧ approaches to ΛCDM limit and freezing region in both entropy corrected models. The statefinder parameters are consistent with ΛCDM limit and dark energy (DE) models. The generalized second law of thermodynamics remain valid in all cases of interacting parameter. It is interesting to mention here that our results of Hubble, EoS parameter and ωΛ-ωΛ‧ plane show consistency with the present observations like Planck, WP, BAO, H0, SNLS and nine-year WMAP.
Bright high z SnIa: A challenge for ΛCDM
NASA Astrophysics Data System (ADS)
Perivolaropoulos, L.; Shafieloo, A.
2009-06-01
It has recently been pointed out by Kowalski et. al. [Astrophys. J. 686, 749 (2008).ASJOAB0004-637X10.1086/589937] that there is “an unexpected brightness of the SnIa data at z>1.” We quantify this statement by constructing a new statistic which is applicable directly on the type Ia supernova (SnIa) distance moduli. This statistic is designed to pick up systematic brightness trends of SnIa data points with respect to a best fit cosmological model at high redshifts. It is based on binning the normalized differences between the SnIa distance moduli and the corresponding best fit values in the context of a specific cosmological model (e.g. ΛCDM). These differences are normalized by the standard errors of the observed distance moduli. We then focus on the highest redshift bin and extend its size toward lower redshifts until the binned normalized difference (BND) changes sign (crosses 0) at a redshift zc (bin size Nc). The bin size Nc of this crossing (the statistical variable) is then compared with the corresponding crossing bin size Nmc for Monte Carlo data realizations based on the best fit model. We find that the crossing bin size Nc obtained from the Union08 and Gold06 data with respect to the best fit ΛCDM model is anomalously large compared to Nmc of the corresponding Monte Carlo data sets obtained from the best fit ΛCDM in each case. In particular, only 2.2% of the Monte Carlo ΛCDM data sets are consistent with the Gold06 value of Nc while the corresponding probability for the Union08 value of Nc is 5.3%. Thus, according to this statistic, the probability that the high redshift brightness bias of the Union08 and Gold06 data sets is realized in the context of a (w0,w1)=(-1,0) model (ΛCDM cosmology) is less than 6%. The corresponding realization probability in the context of a (w0,w1)=(-1.4,2) model is more than 30% for both the Union08 and the Gold06 data sets indicating a much better consistency for this model with respect to the BND statistic.
Probing dark energy using convergence power spectrum and bi-spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinda, Bikash R., E-mail: bikash@ctp-jamia.res.in
Weak lensing convergence statistics is a powerful tool to probe dark energy. Dark energy plays an important role to the structure formation and the effects can be detected through the convergence power spectrum, bi-spectrum etc. One of the most promising and simplest dark energy model is the ΛCDM . However, it is worth investigating different dark energy models with evolving equation of state of the dark energy. In this work, detectability of different dark energy models from ΛCDM model has been explored through convergence power spectrum and bi-spectrum.
The nursing contribution to chronic disease management: a discussion paper.
Forbes, Angus; While, Alison
2009-01-01
This paper explores the nature of the nursing contribution to chronic disease management (CDM) and identifies a number of key nursing activities within CDM both at the individual patient and care system levels. The activities were identified following a detailed review of the literature (160 reports and studies of nursing practice) relating to three tracer disorders: diabetes, chronic obstructive pulmonary disease and multiple sclerosis. The paper examines these activities collectively to generate models expressing some of the core functions of nursing within CDM. The paper illustrates some of the changing characteristics of nursing roles within CDM. More fundamentally, the paper questions the position of nursing in relation to the technologies that define CDM systems and proposes four levels of contribution: the nurse as technology; the nurse as technologist; the nurse as system engineer; and the nurse as architect. These different levels reflect distinctions in the nature of the nursing gaze and power relations within the health care workforce. The paper also highlights how nurses are failing to develop the evidence for their practice in CDM. The paper concludes that there is a need for some clear principles to guide clinical practice and encourage innovation in CDM. It is argued that the principles should not be rule-bound but define a distinctive nursing gaze that will position the nursing profession within the health care system and in relation to other professions. The gaze should incorporate the needs of the individual patient and the care system that they inhabit.
Bayesian correction of H(z) data uncertainties
NASA Astrophysics Data System (ADS)
Jesus, J. F.; Gregório, T. M.; Andrade-Oliveira, F.; Valentim, R.; Matos, C. A. O.
2018-07-01
We compile 41 H(z) data from literature and use them to constrain OΛCDM and flat ΛCDM parameters. We show that the available H(z) suffers from uncertainties overestimation and propose a Bayesian method to reduce them. As a result of this method, using H(z) only, we find, in the context of OΛCDM, H0 = 69.5 ± 2.5 km s-1 Mpc-1, Ωm = 0.242 ± 0.036, and Ω _Λ =0.68± 0.14. In the context of flat ΛCDM model, we have found H0 = 70.4 ± 1.2 km s-1 Mpc-1 and Ωm = 0.256 ± 0.014. This corresponds to an uncertainty reduction of up to ≈ 30 per cent when compared to the uncorrected analysis in both cases.
CDM: Teaching Discrete Mathematics to Computer Science Majors
ERIC Educational Resources Information Center
Sutner, Klaus
2005-01-01
CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…
ERIC Educational Resources Information Center
Rupp, André A.; van Rijn, Peter W.
2018-01-01
We review the GIDNA and CDM packages in R for fitting cognitive diagnosis/diagnostic classification models. We first provide a summary of their core capabilities and then use both simulated and real data to compare their functionalities in practice. We found that the most relevant routines in the two packages appear to be more similar than…
NASA Technical Reports Server (NTRS)
Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard
2015-01-01
Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.
Where the world stands still: turnaround as a strong test of ΛCDM cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlidou, V.; Tomaras, T.N., E-mail: pavlidou@physics.uoc.gr, E-mail: tomaras@physics.uoc.gr
Our intuitive understanding of cosmic structure formation works best in scales small enough so that isolated, bound, relaxed gravitating systems are no longer adjusting their radius; and large enough so that space and matter follow the average expansion of the Universe. Yet one of the most robust predictions of ΛCDM cosmology concerns the scale that separates these limits: the turnaround radius, which is the non-expanding shell furthest away from the center of a bound structure. We show that the maximum possible value of the turnaround radius within the framework of the ΛCDM model is, for a given mass M, equalmore » to (3GM/Λ c{sup 2}){sup 1/3}, with G Newton's constant and c the speed of light, independently of cosmic epoch, exact nature of dark matter, or baryonic effects. We discuss the possible use of this prediction as an observational test for ΛCDM cosmology. Current data appear to favor ΛCDM over alternatives with local inhomogeneities and no Λ. However there exist several local-universe structures that have, within errors, reached their limiting size. With improved determinations of their turnaround radii and the enclosed mass, these objects may challenge the limit and ΛCDM cosmology.« less
Model Identification and Control System Design for the Lambda Unmanned Research Vehicle
1991-09-01
AD-A241 859 D T IC_ _ _ _ _ __ OCT 21921MODEL IDENTIFICATION AND CONTROL SYSTEM DESIGN FOR THE LAMBDA UNMANNED RESEARCH VEHICLE: THESIS Gerald A...23 191K MODEL IDENTIFICATION AND CONTROL SYSTEM DESIGN FOR THE LAMBDA UNMANNED RESEARCH VEHICLE THESIS Gerald A. Swift, First Lieutenant, USAF AFIT...UNMANNED RESEARCH VEHICLE THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University in Partial
Gravitational Waves From The Hierarchical Buildup Of Intermediate Mass Black Holes
NASA Astrophysics Data System (ADS)
Micic, Miroslav; Sigurdsson, S.; Holley-Bockelmann, K.; Abel, T.
2006-12-01
Using high-resolution N-body simulations in LambdaCDM universe, we have constructed dark matter structure's merger tree that traces evolution of dark matter halos, their subhalos and massive black holes (MBH) formed from Population III stars. Such early black holes, formed at redshifts z > 10, could be the seed black holes for the many SMBH found in galaxies in the local universe. Mergers of MBH may be a prime signal for long wavelength gravitaional wave detectors. We study trajectories of MBH, formation of MBH binaries and calculate gravitational strain amplitude as a function of redshift. We also explore the implications of kick velocities conjectured by some formation models. The central concentration of early black holes in present day galaxies is reduced if they are born even with moderate kicks of tens km/s. The modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the lower mass black holes as compared to those still embedded in their parent halos. Therefore, merger rates may be reduced by more then an order of magnitude. We quantify the role of kicks on black hole merger rates. Our results also apply to black holes ejected by the gravitational slingshot mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeya, Atsushi; Harada, Toru; Research Center for Physics and Mathematics, Osaka Electro-Communication University, Neyagawa, Osaka 572-8530
2011-03-15
We theoretically investigate energy spacings of doublets in {sub {Lambda}L}i hypernuclear isotopes with A=7-10 in shell-model calculations with a {Lambda}N-{Sigma}N coupling effect. The calculated results show that the energy shifts are {Delta}{epsilon}=0.09-0.28 MeV and the {Sigma}-mixing probabilities are P{sub {Sigma}}=0.10%-0.34% in {Lambda} ground states for the isotopes because of the {Lambda}N-{Sigma}N coupling in the first-order perturbation. It is found that the energy spacing of the doublet is enhanced as a neutron number N increases; the contribution of the {Lambda}N-{Sigma}N coupling interaction is comparable to that of the {Lambda}N interaction in the neutron-rich {Lambda} hypernuclei. The coherent mechanism of this doublet-spacingmore » enhancement is also discussed in terms of Fermi-type and Gamow-Teller-type {Lambda}N-{Sigma}N couplings.« less
Quantifying substructures in Hubble Frontier Field clusters: comparison with ΛCDM simulations
Mohammed, Irshad; Saha, Prasenjit; Williams, Liliya L. R.; ...
2016-04-13
The Hubble Frontier Fields (HFF) are six clusters of galaxies, all showing indications of recent mergers, which have recently been observed for lensed images. As such they are the natural laboratories to study the merging history of galaxy clusters. In this work, we explore the 2D power spectrum of the mass distributionmore » $$P_{\\rm M}(k)$$ as a measure of substructure. We compare $$P_{\\rm M}(k)$$ of these clusters (obtained using strong gravitational lensing) to that of $$\\Lambda$$CDM simulated clusters of similar mass. In order to compute lensing $$P_{\\rm M}(k)$$, we produced free-form lensing mass reconstructions of HFF clusters, without any light traces mass (LTM) assumption. Moreover, the inferred power at small scales tends to be larger if (i)~the cluster is at lower redshift, and/or (ii)~there are deeper observations and hence more lensed images. In contrast, lens reconstructions assuming LTM show higher power at small scales even with fewer lensed images; it appears the small scale power in the LTM reconstructions is dominated by light information, rather than the lensing data. The average lensing derived $$P_{\\rm M}(k)$$ shows lower power at small scales as compared to that of simulated clusters at redshift zero, both dark-matter only and hydrodynamical. The possible reasons are: (i)~the available strong lensing data are limited in their effective spatial resolution on the mass distribution, (ii)~HFF clusters have yet to build the small scale power they would have at $$z\\sim 0$$, or (iii)~simulations are somehow overestimating the small scale power.« less
CMB-S4 and the hemispherical variance anomaly
NASA Astrophysics Data System (ADS)
O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.
2017-09-01
Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.
Dynamic processes in Be star atmospheres. 2: He I 2P-nD line formation in lambda Eridani (outburst)
NASA Technical Reports Server (NTRS)
Smith, Myron A.; Hubeny, Ivan; Lanz, Thierry; Meylan, Thomas
1994-01-01
The He I lambda 6678 line of early Be stars generally shows violet (V) and red (R) emission whenever hydrogen alpha emission is present, but its use as a diagnostic has been handicapped by a poor understanding of the processes that drive it into emission. In an attempt to address this problem we obtained three series of eschelle spectra of the first two members of the singlet and triplet 2P-nD series of lambda Eri (B2e) during 1992 November 3-5 at Kitt Peak. During these observations lambda 6678 showed substantial emission variability in both the wings and central profile, providing an opportunity to compare its behavior with that of the lambda 4922, lambda 5876, and lambda 4471 lines. We found that the responses of the lines were different in several respects. Whereas the emissions in the V wings of all four lines scaled together, the R wing of the lambda 4922 line invariably responded with increased absorption whenever the R wing of lambda 6678 line showed increased emission. These same trends occurred within the central photospheric profiles. The R-wing behavior shows that much, but not all of the emission in lambda 6678 is caused by matter projected against the stellar disk. The excitation temperatures of the neighboring 2(sup 1) P transitions, lambda 6678 and lambda 4922 must be greater than and less than the photospheric continuum temperature, respectively. We have investigated departures from local thermodynamic equilibrium (LTE) for the He I spectrum in a variety of ad hoc, perturbed model atmospheres. We have found only one way to cause the source function of lambda 6678 to increase so strongly, namely, by increasing the atmospheric temperature in the line formation region to 30,000 - 40,000 K. This effect was discovered by Auer and Mihalas for O3-O4 atmospheric models, but it has not been applied to active B stars. Our models suggest that lambda 6678 emission in Be stars can be used as a sensitive monitor of localized hot spots on these stars' surfaces. The energies involved in heating the active portions of the atmosphere are too high to be produced by gravitational infall. This leaves magnetically induced flares among the few known processes on the surfaces of stars capable of sustaining this energy level.
NASA Astrophysics Data System (ADS)
Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.
2015-08-01
Light attenuation by colored detrital material (CDM) was included in a fully coupled Earth system model (ESM). This study presents a modified parameterization for shortwave attenuation, which is an empirical relationship between 244 concurrent measurements of the diffuse attenuation coefficient for downwelling irradiance, chlorophyll concentration and light absorption by CDM. Two ESM model runs using this parameterization were conducted, with and without light absorption by CDM. The light absorption coefficient for CDM was prescribed as the average of annual composite MODIS Aqua satellite data from 2002 to 2013. Comparing results from the two model runs shows that changes in light limitation associated with the inclusion of CDM decoupled trends between surface biomass and nutrients. Increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients. Instead, surface chlorophyll, biomass and nutrients increased together. These changes can be attributed to the different impact of light limitation on surface productivity versus total productivity. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. The net effect over the euphotic zone was less total biomass leading to higher nutrient concentrations. Similar results were found in a regional analysis of the oceans by biome, investigating the spatial variability of response to changes in light limitation using a single parameterization for the surface ocean. In coastal regions, surface chlorophyll increased by 35 % while total integrated phytoplankton biomass diminished by 18 %. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while the largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign than depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.
Probing the matter and dark energy sources in a viable Big Rip model of the Universe
NASA Astrophysics Data System (ADS)
Kumar, Suresh
2014-08-01
Chevallier-Polarski-Linder (CPL) parametrization for the equation of state (EoS) of dark energy in terms of cosmic redshift or scale factor have been frequently studied in the literature. In this study, we consider cosmic time-based CPL parametrization for the EoS parameter of the effective cosmic fluid that fills the fabric of spatially flat and homogeneous Robertson-Walker (RW) spacetime in General Relativity. The model exhibits two worthy features: (i) It fits the observational data from the latest H(z) and Union 2.1 SN Ia compilations matching the success of ΛCDM model. (ii) It describes the evolution of the Universe from the matter-dominated phase to the recent accelerating phase similar to the ΛCDM model but leads to Big Rip end of the Universe contrary to the everlasting de Sitter expansion in the ΛCDM model. We investigate the matter and dark energy sources in the model, in particular, behavior of the dynamical dark energy responsible for the Big Rip end of Universe.
Reconstruction, thermodynamics and stability of the ΛCDM model in f(T,{ T }) gravity
NASA Astrophysics Data System (ADS)
Junior, Ednaldo L. B.; Rodrigues, Manuel E.; Salako, Ines G.; Houndjo, Mahouton J. S.
2016-06-01
We reconstruct the ΛCDM model for f(T,{ T }) theory, where T is the torsion scalar and { T } the trace of the energy-momentum tensor. The result shows that the action of ΛCDM is a combination of a linear term, a constant (-2{{Λ }}) and a nonlinear term given by the product \\sqrt{-T}{F}g[({T}1/3/16π G) (16π G{ T }+T+8{{Λ }})], with F g being a generic function. We show that to maintain conservation of the energy-momentum tensor, we should impose that {F}g[y] must be linear on the trace { T }. This reconstruction decays in f (T) theory for {F}g\\equiv Q, with Q a constant. Our reconstruction describes the cosmological eras to the present time. The model present stability within the geometric and matter perturbations for the choice {F}g=y, where y=({T}1/3/16π G)(16π G{ T }+T+8{{Λ }}), except for the geometric part in the de Sitter model. We impose the first and second laws of thermodynamics to ΛCDM and find the condition where they are satisfied, that is, {T}A,{G}{{eff}}\\gt 0, however where this is not possible in the cases that we choose, this leads to a breakdown of positive entropy and Misner-Sharp energy.
Angular Baryon Acoustic Oscillation measure at z=2.225 from the SDSS quasar survey
NASA Astrophysics Data System (ADS)
de Carvalho, E.; Bernui, A.; Carvalho, G. C.; Novaes, C. P.; Xavier, H. S.
2018-04-01
Following a quasi model-independent approach we measure the transversal BAO mode at high redshift using the two-point angular correlation function (2PACF). The analyses done here are only possible now with the quasar catalogue from the twelfth data release (DR12Q) from the Sloan Digital Sky Survey, because it is spatially dense enough to allow the measurement of the angular BAO signature with moderate statistical significance and acceptable precision. Our analyses with quasars in the redshift interval z in [2.20,2.25] produce the angular BAO scale θBAO = 1.77° ± 0.31° with a statistical significance of 2.12 σ (i.e., 97% confidence level), calculated through a likelihood analysis performed using the theoretical covariance matrix sourced by the analytical power spectra expected in the ΛCDM concordance model. Additionally, we show that the BAO signal is robust—although with less statistical significance—under diverse bin-size choices and under small displacements of the quasars' angular coordinates. Finally, we also performed cosmological parameter analyses comparing the θBAO predictions for wCDM and w(a)CDM models with angular BAO data available in the literature, including the measurement obtained here, jointly with CMB data. The constraints on the parameters ΩM, w0 and wa are in excellent agreement with the ΛCDM concordance model.
A nonlinear CDM based damage growth law for ductile materials
NASA Astrophysics Data System (ADS)
Gautam, Abhinav; Priya Ajit, K.; Sarkar, Prabir Kumar
2018-02-01
A nonlinear ductile damage growth criterion is proposed based on continuum damage mechanics (CDM) approach. The model is derived in the framework of thermodynamically consistent CDM assuming damage to be isotropic. In this study, the damage dissipation potential is also derived to be a function of varying strain hardening exponent in addition to damage strain energy release rate density. Uniaxial tensile tests and load-unload-cyclic tensile tests for AISI 1020 steel, AISI 1030 steel and Al 2024 aluminum alloy are considered for the determination of their respective damage variable D and other parameters required for the model(s). The experimental results are very closely predicted, with a deviation of 0%-3%, by the proposed model for each of the materials. The model is also tested with predictabilities of damage growth by other models in the literature. Present model detects the state of damage quantitatively at any level of plastic strain and uses simpler material tests to find the parameters of the model. So, it should be useful in metal forming industries to assess the damage growth for the desired deformation level a priori. The superiority of the new model is clarified by the deviations in the predictability of test results by other models.
Is ΛCDM an effective CCDM cosmology?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, J.A.S.; Santos, R.C.; Cunha, J.V., E-mail: limajas@astro.iag.usp.br, E-mail: cliviars@gmail.com, E-mail: jvcunha@ufpa.br
We show that a cosmology driven by gravitationally induced particle production of all non-relativistic species existing in the present Universe mimics exactly the observed flat accelerating ΛCDM cosmology with just one dynamical free parameter. This kind of scenario includes the creation cold dark matter (CCDM) model [1] as a particular case and also provides a natural reduction of the dark sector since the vacuum component is not needed to accelerate the Universe. The new cosmic scenario is equivalent to ΛCDM both at the background and perturbative levels and the associated creation process is also in agreement with the universality ofmore » the gravitational interaction and equivalence principle. Implicitly, it also suggests that the present day astronomical observations cannot be considered the ultimate proof of cosmic vacuum effects in the evolved Universe because ΛCDM may be only an effective cosmology.« less
Imprint of thawing scalar fields on the large scale galaxy overdensity
NASA Astrophysics Data System (ADS)
Dinda, Bikash R.; Sen, Anjan A.
2018-04-01
We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.
A COMPARATIVE ANALYSIS OF THE SUPERNOVA LEGACY SURVEY SAMPLE WITH ΛCDM AND THE R{sub h}=ct UNIVERSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio
The use of Type Ia supernovae (SNe Ia) has thus far produced the most reliable measurement of the expansion history of the universe, suggesting that ΛCDM offers the best explanation for the redshift–luminosity distribution observed in these events. However, analysis of other kinds of sources, such as cosmic chronometers, gamma-ray bursts, and high-z quasars, conflicts with this conclusion, indicating instead that the constant expansion rate implied by the R{sub h} = ct universe is a better fit to the data. The central difficulty with the use of SNe Ia as standard candles is that one must optimize three or fourmore » nuisance parameters characterizing supernova (SN) luminosities simultaneously with the parameters of an expansion model. Hence, in comparing competing models, one must reduce the data independently for each. We carry out such a comparison of ΛCDM and the R{sub h} = ct universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. However, since R{sub h} = ct has only one free parameter (the Hubble constant), it follows from a standard model selection technique that it is to be preferred over ΛCDM, the minimalist version of which has three (the Hubble constant, the scaled matter density, and either the spatial curvature constant or the dark energy equation-of-state parameter). We estimate using the Bayes Information Criterion that in a pairwise comparison, the likelihood of R{sub h} = ct is ∼90%, compared with only ∼10% for a minimalist form of ΛCDM, in which dark energy is simply a cosmological constant. Compared to R{sub h} = ct, versions of the standard model with more elaborate parametrizations of dark energy are judged to be even less likely.« less
Cosmological Parameters From Pre-Planck CMB Measurements: A 2017 Update
NASA Technical Reports Server (NTRS)
Calabrese, Erminia; Hlolzek, Renee A.; Bond, J. Richard; Devlin, Mark J.; Dunkley, Joanna; Halpern, Mark; Hincks, Adam D.; Irwin, Kent D.; Kosowsky, Arthur; Moodley, Kavilan;
2017-01-01
We present cosmological constraints from the combination of the full mission nine-year WMAP release and small-scale temperature data from the pre-Planck Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) generation of instruments. This is an update of the analysis presented in Calabrese et al. [Phys. Rev. D 87, 103012 (2013)], and highlights the impact on CDM cosmology of a 0.06 eV massive neutrino which was assumed in the Planck analysis but not in the ACTSPT analyses and a Planck-cleaned measurement of the optical depth to reionization. We show that cosmological constraints are now strong enough that small differences in assumptions about reionization and neutrino mass give systematic differences which are clearly detectable in the data. We recommend that these updated results be used when comparing cosmological constraints from WMAP, ACT and SPT with other surveys or with current and future full-mission Planck cosmology. Cosmological parameter chains are publicly available on the NASAs LAMBDA data archive.
Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy
2016-03-01
The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.
Evaluation of the lambda model for human postural control during ankle strategy.
Micheau, Philippe; Kron, Aymeric; Bourassa, Paul
2003-09-01
An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.
Once more on the equilibrium-point hypothesis (lambda model) for motor control.
Feldman, A G
1986-03-01
The equilibrium control hypothesis (lambda model) is considered with special reference to the following concepts: (a) the length-force invariant characteristic (IC) of the muscle together with central and reflex systems subserving its activity; (b) the tonic stretch reflex threshold (lambda) as an independent measure of central commands descending to alpha and gamma motoneurons; (c) the equilibrium point, defined in terms of lambda, IC and static load characteristics, which is associated with the notion that posture and movement are controlled by a single mechanism; and (d) the muscle activation area (a reformulation of the "size principle")--the area of kinematic and command variables in which a rank-ordered recruitment of motor units takes place. The model is used for the interpretation of various motor phenomena, particularly electromyographic patterns. The stretch reflex in the lambda model has no mechanism to follow-up a certain muscle length prescribed by central commands. Rather, its task is to bring the system to an equilibrium, load-dependent position. Another currently popular version defines the equilibrium point concept in terms of alpha motoneuron activity alone (the alpha model). Although the model imitates (as does the lambda model) spring-like properties of motor performance, it nevertheless is inconsistent with a substantial data base on intact motor control. An analysis of alpha models, including their treatment of motor performance in deafferented animals, reveals that they suffer from grave shortcomings. It is concluded that parameterization of the stretch reflex is a basis for intact motor control. Muscle deafferentation impairs this graceful mechanism though it does not remove the possibility of movement.
Hines, J.E.; Nichols, J.D.
2002-01-01
Pradel's (1996) temporal symmetry model permitting direct estimation and modelling of population growth rate, lambda sub i provides a potentially useful tool for the study of population dynamics using marked animals. Because of its recent publication date, the approach has not seen much use, and there have been virtually no investigations directed at robustness of the resulting estimators. Here we consider several potential sources of bias, all motivated by specific uses of this estimation approach. We consider sampling situations in which the study area expands with time and present an analytic expression for the bias in lambda hat sub i. We next consider trap response in capture probabilities and heterogeneous capture probabilities and compute large-sample and simulation-based approximations of resulting bias in lambda hat sub i. These approximations indicate that trap response is an especially important assumption violation that can produce substantial bias. Finally, we consider losses on capture and emphasize the importance of selecting the estimator for lambda sub i that is appropriate to the question being addressed. For studies based on only sighting and resighting data, Pradel's (1996) lambda hat prime sub i is the appropriate estimator.
Study of. lambda. parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigemitsu, J; Kogut, J B
1981-01-01
The spin system analogues of recent studies of the string tension and ..lambda.. parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the ..lambda.. parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the ..lambda.. parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are donemore » for all N and the constants of proportionality between the gap and the ..lambda.. parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N ..-->.. infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models.« less
What do parameterized Om(z) diagnostics tell us in light of recent observations?
NASA Astrophysics Data System (ADS)
Qi, Jing-Zhao; Cao, Shuo; Biesiada, Marek; Xu, Teng-Peng; Wu, Yan; Zhang, Si-Xuan; Zhu, Zong-Hong
2018-06-01
In this paper, we propose a new parametrization for Om(z) diagnostics and show how the most recent and significantly improved observations concerning the H(z) and SN Ia measurements can be used to probe the consistency or tension between the ΛCDM model and observations. Our results demonstrate that H 0 plays a very important role in the consistency test of ΛCDM with H(z) data. Adopting the Hubble constant priors from Planck 2013 and Riess, one finds considerable tension between the current H(z) data and ΛCDM model and confirms the conclusions obtained previously by others. However, with the Hubble constant prior taken from WMAP9, the discrepancy between H(z) data and ΛCDM disappears, i.e., the current H(z) observations still support the cosmological constant scenario. This conclusion is also supported by the results derived from the Joint Light-curve Analysis (JLA) SN Ia sample. The best-fit Hubble constant from the combination of H(z)+JLA ({H}0={68.81}-1.49+1.50 km s‑1 Mpc‑1) is very consistent with results derived both by Planck 2013 and WMAP9, but is significantly different from the recent local measurement by Riess.
Cosmological models with running cosmological term and decaying dark matter
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander
2017-03-01
We investigate the dynamics of the generalized ΛCDM model, which the Λ term is running with the cosmological time. On the example of the model Λ(t) =Λbare + α2/t2 we show the existence of a mechanism of the modification of the scaling law for energy density of dark matter: ρdm ∝a - 3 + λ(t). We use an approach developed by Urbanowski in which properties of unstable vacuum states are analyzed from the point of view of the quantum theory of unstable states. We discuss the evolution of Λ(t) term and pointed out that during the cosmic evolution there is a long phase in which this term is approximately constant. We also present the statistical analysis of both the Λ(t) CDM model with dark energy and decaying dark matter and the ΛCDM standard cosmological model. We use data such as Planck, SNIa, BAO, H(z) and AP test. While for the former we find the best fit value of the parameter Ωα2,0 is negative (energy transfer is from the dark matter to dark energy sector) and the parameter Ωα2,0 belongs to the interval (- 0 . 000040 , - 0 . 000383) at 2- σ level. The decaying dark matter causes to lowering a mass of dark matter particles which are lighter than CDM particles and remain relativistic. The rate of the process of decaying matter is estimated. Our model is consistent with the decaying mechanism producing unstable particles (e.g. sterile neutrinos) for which α2 is negative.
Differential Photoproduction Cross Sections of the Sigma0(1385), Lambda(1405), and Lambda(1520)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriya, Kei; Schumacher, Reinhard A.
2013-10-01
We report the exclusive photoproduction cross sections for the Sigma(1385), Lambda(1405), and Lambda(1520) in the reactions gamma + p -> K+ + Y* using the CLAS detector for energies from near the respective production thresholds up to a center-of-mass energy W of 2.85 GeV. The differential cross sections are integrated to give the total exclusive cross sections for each hyperon. Comparisons are made to current theoretical models based on the effective Lagrangian approach and fitted to previous data. The accuracy of these models is seen to vary widely. The cross sections for the Lambda(1405) region are strikingly different for themore » Sigma+pi-, Sigma0 pi0, and Sigma- pi+ decay channels, indicating the effect of isospin interference, especially at W values close to the threshold.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Story, K. T.; Keisler, R.; Benson, B. A.
2013-12-10
We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. This measurement is made from observations of 2540 deg{sup 2} of sky with arcminute resolution at 150 GHz, and improves upon previous measurements using the SPT by tripling the sky area. We report CMB temperature anisotropy power over the multipole range 650 < ℓ < 3000. We fit the SPT bandpowers, combined with the 7 yr Wilkinson Microwave Anisotropy Probe (WMAP7) data, with a six-parameter ΛCDM cosmological model and find that the two datasets aremore » consistent and well fit by the model. Adding SPT measurements significantly improves ΛCDM parameter constraints; in particular, the constraint on θ {sub s} tightens by a factor of 2.7. The impact of gravitational lensing is detected at 8.1σ, the most significant detection to date. This sensitivity of the SPT+WMAP7 data to lensing by large-scale structure at low redshifts allows us to constrain the mean curvature of the observable universe with CMB data alone to be Ω{sub k}=−0.003{sub −0.018}{sup +0.014}. Using the SPT+WMAP7 data, we measure the spectral index of scalar fluctuations to be n{sub s} = 0.9623 ± 0.0097 in the ΛCDM model, a 3.9σ preference for a scale-dependent spectrum with n{sub s} < 1. The SPT measurement of the CMB damping tail helps break the degeneracy that exists between the tensor-to-scalar ratio r and n{sub s} in large-scale CMB measurements, leading to an upper limit of r < 0.18 (95% C.L.) in the ΛCDM+r model. Adding low-redshift measurements of the Hubble constant (H {sub 0}) and the baryon acoustic oscillation (BAO) feature to the SPT+WMAP7 data leads to further improvements. The combination of SPT+WMAP7+H {sub 0}+BAO constrains n{sub s} = 0.9538 ± 0.0081 in the ΛCDM model, a 5.7σ detection of n{sub s} < 1, and places an upper limit of r < 0.11 (95% C.L.) in the ΛCDM+r model. These new constraints on n{sub s} and r have significant implications for our understanding of inflation, which we discuss in the context of selected single-field inflation models.« less
The protein interaction map of bacteriophage lambda
2011-01-01
Background Bacteriophage lambda is a model phage for most other dsDNA phages and has been studied for over 60 years. Although it is probably the best-characterized phage there are still about 20 poorly understood open reading frames in its 48-kb genome. For a complete understanding we need to know all interactions among its proteins. We have manually curated the lambda literature and compiled a total of 33 interactions that have been found among lambda proteins. We set out to find out how many protein-protein interactions remain to be found in this phage. Results In order to map lambda's interactions, we have cloned 68 out of 73 lambda open reading frames (the "ORFeome") into Gateway vectors and systematically tested all proteins for interactions using exhaustive array-based yeast two-hybrid screens. These screens identified 97 interactions. We found 16 out of 30 previously published interactions (53%). We have also found at least 18 new plausible interactions among functionally related proteins. All previously found and new interactions are combined into structural and network models of phage lambda. Conclusions Phage lambda serves as a benchmark for future studies of protein interactions among phage, viruses in general, or large protein assemblies. We conclude that we could not find all the known interactions because they require chaperones, post-translational modifications, or multiple proteins for their interactions. The lambda protein network connects 12 proteins of unknown function with well characterized proteins, which should shed light on the functional associations of these uncharacterized proteins. PMID:21943085
Antitumor activity of type I and type III interferons in BNL hepatoma model.
Abushahba, Walid; Balan, Murugabaskar; Castaneda, Ismael; Yuan, Yao; Reuhl, Kenneth; Raveche, Elizabeth; de la Torre, Andrew; Lasfar, Ahmed; Kotenko, Sergei V
2010-07-01
Hepatocellular carcinoma (HCC) occurs most commonly secondary to cirrhosis due to chronic hepatitis C or B virus (HCV/HBV) infections. Type I interferon (IFN-alpha) treatment of chronic HCV/HBV infections reduces the incidence of HCC in cirrhotic patients. However, IFN-alpha toxicity limits its tolerability and efficacy highlighting a need for better therapeutic treatments. A recently discovered type III IFN (IFN-lambda) has been shown to possess antiviral properties against HCV and HBV in vitro. In phase I clinical trials, IFN-lambda treatment did not cause significant adverse reactions. Using a gene therapy approach, we compared the antitumor properties of IFN-alpha and IFN-lambda in a transplantable hepatoma model of HCC. BALB/c mice were inoculated with syngeneic BNL hepatoma cells, or BNL cells expressing IFN-lambda (BNL.IFN-lambda cells) or IFN-alpha (BNL.IFN-alpha cells). Despite the lack of antiproliferative activity of IFNs on BNL cells, both BNL.IFN-lambda and BNL.IFN-alpha cells displayed retarded growth kinetics in vivo. Depletion of NK cells from splenocytes inhibited splenocyte-mediated cytotoxicity, demonstrating that NK cells play a role in IFN-induced antitumor responses. However, isolated NK cells did not respond directly to IFN-lambda. There was also a marked NK cell infiltration in IFN-lambda producing tumors. In addition, IFN-lambda and, to a lesser extent, IFN-alpha enhanced immunocytotoxicity of splenocytes primed with irradiated BNL cells. Splenocyte cytotoxicity against BNL cells was dependent on IL-12 and IFN-gamma, and mediated by dendritic cells. In contrast to NK cells, isolated from spleen CD11c+ and mPDCA+ dendritic cells responded directly to IFN-lambda. The antitumor activities of IFN-lambda against hepatoma, in combination with HCV and HBV antiviral activities warrant further investigation into the clinical use of IFN-lambda to prevent HCC in HCV/HBV-infected cirrhotic patients, as well as to treat liver cancer.
From Planck Data to Planck Era: Observational Tests of Holographic Cosmology
NASA Astrophysics Data System (ADS)
Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas
2017-01-01
We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (Λ CDM ) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in Λ CDM , they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that Λ CDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l ≲30 ), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.
From Planck Data to Planck Era: Observational Tests of Holographic Cosmology.
Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas
2017-01-27
We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (ΛCDM) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in ΛCDM, they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that ΛCDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l≲30), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.
Efficacy of a chronic disease management model for patients with chronic liver failure.
Wigg, Alan J; McCormick, Rosemary; Wundke, Rachel; Woodman, Richard J
2013-07-01
Despite the economic impacts of chronic liver failure (CLF) and the success of chronic disease management (CDM) programs in routine clinical practice, there have been no randomized controlled trials of CDM for CLF. We investigated the efficacy of CDM programs for CLF patients in a prospective, controlled trial. Sixty consecutive patients with cirrhosis and complications from CLF were assigned randomly to groups given intervention (n = 40) or usual care (n = 20), from 2009 to 2010. The 12-month intervention comprised 4 CDM components: delivery system redesign, self-management support, decision support, and clinical information systems. The primary outcome was the number of days spent in a hospital bed for liver-related reasons. Secondary outcomes were rates of other hospital use measures, rate of attendance at planned outpatient care, disease severity, quality of life, and quality of care. The intervention did not reduce the number of days patients spent in hospital beds for liver-related reasons, compared with usual care (17.8 vs 11.0 bed days/person/y, respectively; incidence rate ratio, 1.6; 95% confidence interval, 0.5-4.8; P = .39), or affect other measures of hospitalization. Patients given the intervention had a 30% higher rate of attendance at outpatient care (incidence rate ratio, 1.3; 95% confidence interval, 1.1-1.5; P = .004) and significant increases in quality of care, based on adherence to hepatoma screening, osteoporosis and vaccination guidelines, and referral to transplant centers (P < .05 for all). In a pilot study to determine the efficacy of CDM for patients with CLF, patients receiving CDM had significant increases in attendance at outpatient centers and quality of care, compared with patients who did not receive CDM. However, CDM did not appear to reduce hospital admission rates or disease severity or improve patient quality of life. Larger trials with longer follow-up periods are required to confirm these findings and assess cost effectiveness. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Stem revenue losses with effective CDM management.
Alwell, Michael
2003-09-01
Effective CDM management not only minimizes revenue losses due to denied claims, but also helps eliminate administrative costs associated with correcting coding errors. Accountability for CDM management should be assigned to a single individual, who ideally reports to the CFO or high-level finance director. If your organization is prone to making billing errors due to CDM deficiencies, you should consider purchasing CDM software to help you manage your CDM.
A ROBUST MEASURE OF DARK MATTER HALO ELLIPTICITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evslin, Jarah
2016-08-01
In simulations of the standard cosmological model (ΛCDM), dark matter halos are aspherical. However, so far the asphericity of an individual galaxy’s halo has never been robustly established. We use the Jeans equations to define a quantity that robustly characterizes a deviation from rotational symmetry. This quantity is essentially the gravitational torque and it roughly provides the ellipticity projected along the line of sight. We show that the Thirty Meter Telescope (TMT), with a single epoch of observations combined with those of the Gaia Space Telescope , can distinguish the ΛCDM value of the torque from zero for each Sculptor-likemore » dwarf galaxy with a confidence between 0 and 5 σ , depending on the orientation of each halo. With two epochs of observations, TMT will achieve a 5 σ discovery of torque and thus asphericity for most such galaxies, thus providing a new and powerful test of the ΛCDM model.« less
Mass and K{lambda} Coupling of the N*(1535)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, B.C.; Graduate School of the Chinese Academy of Sciences, Beijing 100049; Zou, B.S.
2006-02-03
Using a resonance isobar model and an effective Lagrangian approach, from recent BES results on J/{psi}{yields}pp{eta} and {psi}{yields}pK{sup +}{lambda}, we deduce the ratio between effective coupling constants of N*(1535) to K{lambda} and p{eta} to be R{identical_to}g{sub N*(1535)K{lambda}}/g{sub N*(1535)p{eta}}=1.3{+-}0.3. With the previous known value of g{sub N*(1535)p{eta}}, the obtained new value of g{sub N*(1535)K{lambda}} is shown to reproduce recent pp{yields}pK{sup +}{lambda} near-threshold cross section data as well. Taking into account this large N*K{lambda} coupling in the coupled channel Breit-Wigner formula for the N*(1535), its Breit-Wigner mass is found to be around 1400 MeV, much smaller than the previous value of aboutmore » 1535 MeV obtained without including its coupling to K{lambda}. The implication on the nature of N*(1535) is discussed.« less
The Rh = ct universe in alternative theories of gravity
NASA Astrophysics Data System (ADS)
Sultana, Joseph; Kazanas, Demosthenes
2017-12-01
The Λ cold dark matter (ΛCDM) model (one comprising of a cosmological constant Λ and cold dark matter) is generally considered the standard model in cosmology. One of the alternatives that has received attention in the last few years is the Rh = ct universe, which provides an age for the Universe similar to that of ΛCDM and whose (vanishing) deceleration parameter is apparently not inconsistent with observations. Like the ΛCDM, the Rh = ct universe is based on a Friedmann-Robertson-Walker cosmology with the total energy density ρ and pressure p of the cosmic fluid satisfying the simple equation of state ρ + 3p = 0, i.e. a vanishing total active gravitational mass. In an earlier paper, we examined the possible sources for the Rh = ct universe within general relativity, and we have shown that it still contains a dark energy component, albeit not in the form of a cosmological constant. The growing interest in gravitational theories, alternative to Einstein's general relativity, in cosmology, is mainly driven by the need for cosmological models that attain a late-time accelerated expansion without the presence of a cosmological constant as in the ΛCDM, and thereby avoiding the problems associated with it. In this paper, we discuss some of these common alternative theories and show that the Rh = ct is also a solution to some of them.
Cold dark matter. 2: Spatial and velocity statistics
NASA Technical Reports Server (NTRS)
Gelb, James M.; Bertschinger, Edmund
1994-01-01
We examine high-resolution gravitational N-body simulations of the omega = 1 cold dark matter (CDM) model in order to determine whether there is any normalization of the initial density fluctuation spectrum that yields acceptable results for galaxy clustering and velocities. Dense dark matter halos in the evolved mass distribution are identified with luminous galaxies; the most massive halos are also considered as sites for galaxy groups, with a range of possibilities explored for the group mass-to-light ratios. We verify the earlier conclusions of White et al. (1987) for the low-amplitude (high-bias) CDM model-the galaxy correlation function is marginally acceptable but that there are too many galaxies. We also show that the peak biasing method does not accurately reproduce the results obtained using dense halos identified in the simulations themselves. The Cosmic Background Explorer (COBE) anisotropy implies a higher normalization, resulting in problems with excessive pairwise galaxy velocity dispersion unless a strong velocity bias is present. Although we confirm the strong velocity bias of halos reported by Couchman & Carlberg (1992), we show that the galaxy motions are still too large on small scales. We find no amplitude for which the CDM model can reconcile simultaneously and galaxy correlation function, the low pairwise velocity dispersion, and the richness distribution of groups and clusters. With the normalization implied by COBE, the CDM spectrum has too much power on small scales if omega = 1.
Probing the nature of dark matter through the metal enrichment of the intergalactic medium
NASA Astrophysics Data System (ADS)
Bremer, Jonas; Dayal, Pratika; Ryan-Weber, Emma V.
2018-06-01
We focus on exploring the metal enrichment of the intergalactic medium (IGM) in cold and warm (1.5 and 3 keV) dark matter (DM) cosmologies, and the constraints this yields on the DM particle mass, using a semi-analytic model, DELPHI, that jointly tracks the DM and baryonic assembly of galaxies at z ≃ 4-20 including both supernova (SN) and (a range of) reionization feedback (models). We find that while M_{UV}≳ -15 galaxies contribute half of all IGM metals in the cold dark matter (CDM) model by z ≃ 4.5, given the suppression of low-mass haloes, larger haloes with M_{UV}≲ -15 provide about 80 per cent of the IGM metal budget in 1.5 keV warm dark matter (WDM) models using two different models for the metallicity of the interstellar medium. Our results also show that the only models compatible with two different high-redshift data sets, provided by the evolving ultraviolet luminosity function (UV LF) at z ≃ 6-10 and IGM metal density, are standard CDM and 3 keV WDM that do not include any reionization feedback; a combination of the UV LF and the Díaz et al. point provides a weaker constraint, allowing CDM and 3 and 1.5 keV WDM models with SN feedback only, as well as CDM with complete gas suppression of all haloes with v_{circ} ≲ 30 km s^{-1}. Tightening the error bars on the IGM metal enrichment, future observations, at z ≳ 5.5, could therefore represent an alternative way of shedding light on the nature of DM.
Near-Infrared (0.67-4.7 microns) Optical Constants Estimated for Montmorillonite
NASA Technical Reports Server (NTRS)
Roush, T. L.
2005-01-01
Various models of the reflectance from particulate surfaces are used for interpretation of remote sensing data of solar system objects. These models rely upon the real (n) and imaginary (k) refractive indices of the materials. Such values are limited for commonly encountered silicates at visual and near-infrared wavelengths (lambda, 0.4-5 microns). Availability of optical constants for candidate materials allows more thorough modeling of the observations obtained by Earth-based telescopes and spacecraft. Two approaches for determining the absorption coefficient (alpha=2pik/lambda) from reflectance measurements of particulates have been described; one relies upon Kubelka-Munk theory and the other Hapke theory. Both have been applied to estimate alpha and k for various materials. Neither enables determination of the wavelength dependence of n, n=f(lambda). Thus, a mechanism providing this ability is desirable. Using Hapke-theory to estimate k from reflectance measurements requires two additional quantities be known or assumed: 1) n=f(lambda) and 2) d, the sample particle diameter. Typically n is assumed constant (c) or modestly varying with lambda; referred to here as n(sub 0). Assuming n(sub 0), at each lambda an estimate of k is used to calculate the reflectance and is iteratively adjusted until the difference between the model and measured reflectance is minimized. The estimated k's (k(sub 1)) are the final results, and this concludes the typical analysis.
Effective field theory of cosmic acceleration: Constraining dark energy with CMB data
NASA Astrophysics Data System (ADS)
Raveri, Marco; Hu, Bin; Frusciante, Noemi; Silvestri, Alessandra
2014-08-01
We introduce EFTCAMB/EFTCosmoMC as publicly available patches to the commonly used camb/CosmoMC codes. We briefly describe the structure of the codes, their applicability and main features. To illustrate the use of these patches, we obtain constraints on parametrized pure effective field theory and designer f(R) models, both on ΛCDM and wCDM background expansion histories, using data from Planck temperature and lensing potential spectra, WMAP low-ℓ polarization spectra (WP), and baryon acoustic oscillations (BAO). Upon inspecting the theoretical stability of the models on the given background, we find nontrivial parameter spaces that we translate into viability priors. We use different combinations of data sets to show their individual effects on cosmological and model parameters. Our data analysis results show that, depending on the adopted data sets, in the wCDM background case these viability priors could dominate the marginalized posterior distributions. Interestingly, with Planck +WP+BAO+lensing data, in f(R) gravity models, we get very strong constraints on the constant dark energy equation of state, w0∈(-1,-0.9997) (95% C.L.).
Photon induced {lambda}(1520) production and the role of the K* exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toki, Hiroshi; Research Center for Nuclear Physics; Garcia-Recio, Carmen
2008-02-01
We study the photon induced {lambda}(1520) production in the effective Lagrangian method near threshold, E{sub {gamma}}{sup LAB}{<=}2 GeV, and in the quark-gluon string model at higher energies 3 GeV{<=}E{sub {gamma}}{sup LAB}{<=}5 GeV. In particular, we study the role of the K* exchange for the production of {lambda}(1520) within the SU(6) Weinberg-Tomozowa chiral unitary model proposed by Garcia-Recio, Nieves, and Salcedo [Phys. Rev. D 74, 034025 (2006)]. The coupling of the {lambda}(1520) resonance to the NK* pair, which is dynamically generated, turns out to be relatively small and, thus, the K exchange mechanism dominates the reaction. In the higher energy region,more » where experimental data are available, the quark-gluon string mechanism with the K Regge trajectory reproduces both the energy and the angular distribution dependences of the {lambda}(1520) photoproduction reaction.« less
Expansion and growth of structure observables in a macroscopic gravity averaged universe
NASA Astrophysics Data System (ADS)
Wijenayake, Tharake; Ishak, Mustapha
2015-03-01
We investigate the effect of averaging inhomogeneities on expansion and large-scale structure growth observables using the exact and covariant framework of macroscopic gravity (MG). It is well known that applying the Einstein's equations and spatial averaging do not commute and lead to the averaging problem and backreaction terms. For the MG formalism applied to the Friedman-Lemaitre-Robertson-Walker (FLRW) metric, the extra term can be encapsulated as an averaging density parameter denoted ΩA . An exact isotropic cosmological solution of MG for the flat FLRW metric is already known in the literature; we derive here an anisotropic exact solution. Using the isotropic solution, we compare the expansion history to current available data of distances to supernovae, baryon acoustic oscillations, cosmic microwave background last scattering surface data, and Hubble constant measurements, and find -0.05 ≤ΩA≤0.07 (at the 95% confidence level). For the flat metric case this reduces to -0.03 ≤ΩA≤0.05 . The positive part of the intervals can be rejected if a mathematical (and physical) prior is taken into account. We also find that the inclusion of this term in the fits can shift the values of the usual cosmological parameters by a few to several percents. Next, we derive an equation for the growth rate of large-scale structure in MG that includes a term due to the averaging and assess its effect on the evolution of the growth compared to that of the Lambda cold dark matter (Λ CDM ) concordance model. We find that an ΩA term of an amplitude range of [-0.04 ,-0.02 ] lead to a relative deviation of the growth from that of the Λ CDM of up to 2%-4% at late times. Thus, the shift in the growth could be of comparable amplitude to that caused by similar changes in cosmological parameters like the dark energy density parameter or its equation of state. The effect could also be comparable in amplitude to some systematic effects considered for future surveys. This indicates that the averaging term and its possible effect need to be tightly constrained in future precision cosmological studies.
Testing core creation in hydrodynamical simulations using the HI kinematics of field dwarfs
NASA Astrophysics Data System (ADS)
Papastergis, E.; Ponomareva, A. A.
2017-05-01
The majority of recent hydrodynamical simulations indicate the creation of central cores in the mass profiles of low-mass halos, a process that is attributed to star formation-related baryonic feedback. Core creation is regarded as one of the most promising solutions to potential issues faced by lambda cold dark matter (ΛCDM) cosmology on small scales. For example, the reduced dynamical mass enclosed by cores can explain the low rotational velocities measured for nearby dwarf galaxies, thus possibly lifting the seeming contradiction with the ΛCDM expectations (the so-called "too big to fail" problem). Here we test core creation as a solution of cosmological issues by using a sample of dwarfs with measurements of their atomic hydrogen (HI) kinematics extending to large radii. Using the NIHAO hydrodynamical simulation as an example, we show that core creation can successfully reproduce the kinematics of dwarfs with small kinematic radii, R ≲ 1.5 kpc. However, the agreement with observations becomes poor once galaxies with kinematic measurements extending beyond the core region, R ≈ 1.5-4 kpc, are considered. This result illustrates the importance of testing the predictions of hydrodynamical simulations that are relevant for cosmology against a broad range of observational samples. We would like to stress that our result is valid only under the following set of assumptions: I) that our sample of dwarfs with HI kinematics is representative of the overall population of field dwarfs; II) that there are no severe measurement biases in the observational parameters of our HI dwarfs (e.g., related to inclination estimates); and III) that the HI velocity fields of dwarfs are regular enough to allow the recovery of the true enclosed dynamical mass.
Nichols, J.D.; Hines, J.E.
2002-01-01
We first consider the estimation of the finite rate of population increase or population growth rate, lambda sub i, using capture-recapture data from open populations. We review estimation and modelling of lambda sub i under three main approaches to modelling open-population data: the classic approach of Jolly (1965) and Seber (1965), the superpopulation approach of Crosbie & Manly (1985) and Schwarz & Arnason (1996), and the temporal symmetry approach of Pradel (1996). Next, we consider the contributions of different demographic components to lambda sub i using a probabilistic approach based on the composition of the population at time i + 1 (Nichols et al., 2000b). The parameters of interest are identical to the seniority parameters, gamma sub i, of Pradel (1996). We review estimation of gamma sub i under the classic, superpopulation, and temporal symmetry approaches. We then compare these direct estimation approaches for lambda sub i and gamma sub i with analogues computed using projection matrix asymptotics. We also discuss various extensions of the estimation approaches to multistate applications and to joint likelihoods involving multiple data types.
An {alpha}-cluster model for {sub {Lambda}}{sup 9}Be spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filikhin, I. N., E-mail: ifilikhin@nccu.edu; Suslov, V. M.; Vlahovic, B.
An {alpha}-cluster model is applied to study low-lying spectrum of the {sub {Lambda}}{sup 9}Be hypernucleus. The three-body {alpha}{alpha}{Lambda} problem is numerically solved by the Faddeev equations in configuration space using phenomenological pair potentials. We found a set of the potentials that reproduces experimental data for the ground state (1/2{sup +}) binding energy and excitation energy of the 5/2{sup +} and 3/2{sup +} states, simultaneously. This set includes the Ali-Bodmer potential of the version 'e' for {alpha}{alpha} and modified Tang-Herndon potential for {alpha}{Lambda} interactions. The spin-orbit {alpha}{Lambda} interaction is given by modified Scheerbaum potential. Low-lying energy levels are evaluated applying amore » variant of the analytical continuation method in the coupling constant. It is shown that the spectral properties of {sub {Lambda}}{sup 9}Be can be classified as an analog of {sup 9}Be spectrum with the exception of several 'genuine hypernuclear states'. This agrees qualitatively with previous studies. The results are compared with experimental data and new interpretation of the spectral structure is discussed.« less
NASA Astrophysics Data System (ADS)
Nesbet, Robert K.
2018-05-01
Velocities in stable circular orbits about galaxies, a measure of centripetal gravitation, exceed the expected Kepler/Newton velocity as orbital radius increases. Standard Λ cold dark matter (ΛCDM) attributes this anomaly to galactic dark matter. McGaugh et al. have recently shown for 153 disc galaxies that observed radial acceleration is an apparently universal function of classical acceleration computed for observed galactic baryonic mass density. This is consistent with the empirical modified Newtonian dynamics (MOND) model, not requiring dark matter. It is shown here that suitably constrained ΛCDM and conformal gravity (CG) also produce such a universal correlation function. ΛCDM requires a very specific dark matter distribution, while the implied CG non-classical acceleration must be independent of galactic mass. All three constrained radial acceleration functions agree with the empirical baryonic v4 Tully-Fisher relation. Accurate rotation data in the nominally flat velocity range could distinguish between MOND, ΛCDM, and CG.
Mortality of patients with COPD participating in chronic disease management programmes: a happy end?
Peytremann-Bridevaux, I; Taffe, P; Burnand, B; Bridevaux, P O; Puhan, M A
2014-09-01
Concerns about increased mortality could question the role of COPD chronic disease management (CDM) programmes. We aimed at extending a recent Cochrane review to assess the effects of CDM on mortality in patients with COPD. Mortality data were available for 25 out of 29 trials identified in a COPD integrated care systematic review. Meta-analysis using random-effects models was performed, followed by subgroup analyses according to study length (3-12 months vs >12 months), main intervention component (exercise, self-management, structured follow-up) and use of an action plan. The meta-analysis showed no impact of CDM on mortality (pooled OR: 1.00, 95% CI 0.79 to 1.28). These results do not suggest that CDM programmes expose patients with COPD to excessive mortality risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Wang, Silun; Wu, Ed X; Qiu, Deqiang; Leung, Lucullus H T; Lau, Ho-Fai; Khong, Pek-Lan
2009-02-01
Radiation-induced white matter (WM) damage is a major side effect of whole brain irradiation among childhood cancer survivors. We evaluate longitudinally the diffusion characteristics of the late radiation-induced WM damage in a rat model after 25 and 30 Gy irradiation to the hemibrain at 8 time points from 2 to 48 weeks postradiation. We hypothesize that diffusion tensor magnetic resonance imaging (DTI) indices including fractional anisotropy (FA), trace, axial diffusivity (lambda(//)), and radial diffusivity (lambda( perpendicular)) can accurately detect and monitor the histopathologic changes of radiation-induced WM damage, measured at the EC, and that these changes are dose and time dependent. Results showed a progressive reduction of FA, which was driven by reduction in lambda(//) from 4 to 40 weeks postradiation, and an increase in lambda( perpendicular) with return to baseline in lambda(//) at 48 weeks postradiation. Histologic evaluation of irradiated WM showed reactive astrogliosis from 4 weeks postradiation with reversal at 36 weeks, and demyelination, axonal degeneration, and necrosis at 48 weeks postradiation. Moreover, changes in lambda(//) correlated with reactive astrogliosis (P < 0.01) and lambda( perpendicular) correlated with demyelination (P < 0.01). Higher radiation dose (30 Gy) induced earlier and more severe histologic changes than lower radiation dose (25 Gy), and these differences were reflected by the magnitude of changes in lambda(//) and lambda( perpendicular). DTI indices reflected the histopathologic changes of WM damage and our results support the use of DTI as a biomarker to noninvasively monitor radiation-induced WM damage.
Distributed modeling of diffusive solute transport in peritoneal dialysis.
Waniewski, Jacek
2002-01-01
The diffusive transport between blood and an ex-tissue medium (dialysis fluid) is evaluated using a mathematical model that takes into account the (quasicontinuous) distribution of capillaries within the tissue at various distances from the tissue surface, and includes diffusive-convective transport through the capillary wall and lymphatic absorption from the tissue. General formulas for solute penetration depth, lambda, and for the diffusive mass transport coefficient for the transport between blood and dialysis fluid, K(BD), are provided in terms of local transport coefficients for capillary wall, tissue, and lymphatic absorption. For pure diffusive transport between blood and dialysis fluid and thick tissue layers (i.e., if the solute penetration depth is much lower than the tissue thickness) these formulas yield previously known expressions. It is shown that apparent tissue layers, with widths lambdaTBL and lambdaT, respectively, may be defined according to the values of local transport parameters in such a way that K(BD) is equal to the solute clearance K(TBL) from the tissue by blood and lymph for a layer with width lambdaTBL or to the solute clearance K(T) from blood to dialysate by diffusion through the tissue layer with width lambdaT. For tissue layers with width much higher than the penetration depth: lambdaT approximately = lambdaTBL approximately = lambda. These characteristic width lengths depend on the transport parameters (and thus on the size) of solutes. Effective blood flow, which may be related to the exchange of the solute between blood and dialysate, is defined using an analogy to the extraction/absorption coefficients for blood-tissue exchange. Various approximations for the distributed model formula for diffusive mass transport coefficient (K(BD)) are possible. The appropriate range for their application is obtained from the general formula.
Makadia, Rupa; Matcho, Amy; Ma, Qianli; Knoll, Chris; Schuemie, Martijn; DeFalco, Frank J; Londhe, Ajit; Zhu, Vivienne; Ryan, Patrick B
2015-01-01
Objectives To evaluate the utility of applying the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) across multiple observational databases within an organization and to apply standardized analytics tools for conducting observational research. Materials and methods Six deidentified patient-level datasets were transformed to the OMOP CDM. We evaluated the extent of information loss that occurred through the standardization process. We developed a standardized analytic tool to replicate the cohort construction process from a published epidemiology protocol and applied the analysis to all 6 databases to assess time-to-execution and comparability of results. Results Transformation to the CDM resulted in minimal information loss across all 6 databases. Patients and observations excluded were due to identified data quality issues in the source system, 96% to 99% of condition records and 90% to 99% of drug records were successfully mapped into the CDM using the standard vocabulary. The full cohort replication and descriptive baseline summary was executed for 2 cohorts in 6 databases in less than 1 hour. Discussion The standardization process improved data quality, increased efficiency, and facilitated cross-database comparisons to support a more systematic approach to observational research. Comparisons across data sources showed consistency in the impact of inclusion criteria, using the protocol and identified differences in patient characteristics and coding practices across databases. Conclusion Standardizing data structure (through a CDM), content (through a standard vocabulary with source code mappings), and analytics can enable an institution to apply a network-based approach to observational research across multiple, disparate observational health databases. PMID:25670757
Universal subhalo accretion in cold and warm dark matter cosmologies
NASA Astrophysics Data System (ADS)
Kubik, Bogna; Libeskind, Noam I.; Knebe, Alexander; Courtois, Hélène; Yepes, Gustavo; Gottlöber, Stefan; Hoffman, Yehuda
2017-12-01
The influence of the large-scale structure on host haloes may be studied by examining the angular infall pattern of subhaloes. In particular, since warm dark matter (WDM) and cold dark matter (CDM) cosmologies predict different abundances and internal properties for haloes at the low-mass end of the mass function, it is interesting to examine if there are differences in how these low-mass haloes are accreted. The accretion events are defined as the moment a halo becomes a substructure, namely when it crosses its host's virial radius. We quantify the cosmic web at each point by the shear tensor and examine where, with respect to its eigenvectors, such accretion events occur in ΛCDM and ΛWDM (1 keV sterile neutrino) cosmological models. We find that the CDM and WDM subhaloes are preferentially accreted along the principal axis of the shear tensor corresponding to the direction of weakest collapse. The beaming strength is modulated by the host and subhalo masses and by the redshift at which the accretion event occurs. Although strongest for the most massive hosts and subhaloes at high redshift, the preferential infall is found to be always aligned with the axis of weakest collapse, thus we say that it has universal nature. We compare the strength of beaming in the ΛWDM cosmology with the one found in the ΛCDM scenario. While the main findings remain the same, the accretion in the ΛWDM model for the most massive host haloes appears more beamed than in ΛCDM cosmology across all the redshifts.
Anisotropies of the cosmic microwave background in nonstandard cold dark matter models
NASA Technical Reports Server (NTRS)
Vittorio, Nicola; Silk, Joseph
1992-01-01
Small angular scale cosmic microwave anisotropies in flat, vacuum-dominated, cold dark matter cosmological models which fit large-scale structure observations and are consistent with a high value for the Hubble constant are reexamined. New predictions for CDM models in which the large-scale power is boosted via a high baryon content and low H(0) are presented. Both classes of models are consistent with current limits: an improvement in sensitivity by a factor of about 3 for experiments which probe angular scales between 7 arcmin and 1 deg is required, in the absence of very early reionization, to test boosted CDM models for large-scale structure formation.
Negovetich, N J; Esch, G W
2008-10-01
Larval trematodes frequently castrate their snail intermediate hosts. When castrated, the snails do not contribute offspring to the population, yet they persist and compete with the uninfected individuals for the available food resources. Parasitic castration should reduce the population growth rate lambda, but the magnitude of this decrease is unknown. The present study attempted to quantify the cost of parasitic castration at the level of the population by mathematically modeling the population of the planorbid snail Helisoma anceps in Charlie's Pond, North Carolina. Analysis of the model identified the life-history trait that most affects lambda, and the degree to which parasitic castration can lower lambda. A period matrix product model was constructed with estimates of fecundity, survival, growth rates, and infection probabilities calculated in a previous study. Elasticity analysis was performed by increasing the values of the life-history traits by 10% and recording the percentage change in lambda. Parasitic castration resulted in a 40% decrease in lambda of H. anceps. Analysis of the model suggests that decreasing the size at maturity was more effective at reducing the cost of castration than increasing survival or growth rates of the snails. The current matrix model was the first to mathematically describe a snail population, and the predictions of the model are in agreement with published research.
Galileon gravity in light of ISW, CMB, BAO and H0 data
NASA Astrophysics Data System (ADS)
Renk, Janina; Zumalacárregui, Miguel; Montanari, Francesco; Barreira, Alexandre
2017-10-01
Cosmological models with Galileon gravity are an alternative to the standard ΛCDM paradigm with testable predictions at the level of its self-accelerating solutions for the expansion history, as well as large-scale structure formation. Here, we place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs-Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross-spectra, ClTg, of CMB temperature maps and foreground galaxies from the WISE survey. The sign of ClTg is set by the time evolution of the lensing potential in the redshift range of the galaxy sample: it is positive if the potential decays (like in ΛCDM), negative if it deepens. We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and Quintic Galileons. The cubic Galileon model predicts a negative ClTg and exhibits a 7.8σ tension with the data, which effectively rules it out. For the quartic and quintic models the ISW data also rule out a significant portion of the parameter space but permit regions where the goodness-of-fit is comparable to ΛCDM. The data prefers a non zero sum of the neutrino masses (∑mν ≈ 0.5eV) with ~ 5σ significance in these models. The best-fitting models have values of H0 consistent with local determinations, thereby avoiding the tension that exists in ΛCDM. We also identify and discuss a ~ 2σ tension that Galileon gravity exhibits with recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be ruled out by current data but future lensing, BAO and ISW data hold strong potential to do so.
Large scale structures in the kinetic gravity braiding model that can be unbraided
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Rampei; Yamamoto, Kazuhiro, E-mail: rampei@theo.phys.sci.hiroshima-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp
2011-04-01
We study cosmological consequences of a kinetic gravity braiding model, which is proposed as an alternative to the dark energy model. The kinetic braiding model we study is characterized by a parameter n, which corresponds to the original galileon cosmological model for n = 1. We find that the background expansion of the universe of the kinetic braiding model is the same as the Dvali-Turner's model, which reduces to that of the standard cold dark matter model with a cosmological constant (ΛCDM model) for n equal to infinity. We also find that the evolution of the linear cosmological perturbation inmore » the kinetic braiding model reduces to that of the ΛCDM model for n = ∞. Then, we focus our study on the growth history of the linear density perturbation as well as the spherical collapse in the nonlinear regime of the density perturbations, which might be important in order to distinguish between the kinetic braiding model and the ΛCDM model when n is finite. The theoretical prediction for the large scale structure is confronted with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky survey. We also discuss future prospects of constraining the kinetic braiding model using a future redshift survey like the WFMOS/SuMIRe PFS survey as well as the cluster redshift distribution in the South Pole Telescope survey.« less
Dynamics of supersymmetric chameleons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Davis, Anne-Christine; Sakstein, Jeremy, E-mail: Philippe.Brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk, E-mail: J.A.Sakstein@damtp.cam.ac.uk
2013-10-01
We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, wemore » go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nersisyan, Henrik; Cid, Adrian Fernandez; Amendola, Luca, E-mail: h.nersisyan@thphys.uni-heidelberg.de, E-mail: fernandez@thphys.uni-heidelberg.de, E-mail: l.amendola@thphys.uni-heidelberg.de
In this work, we extend previous analyses of the structure formation in the f (□{sup −1} R ) model of nonlocal gravity proposed by Deser and Woodard (DW), which reproduces the background expansion of ΛCDM with no need of a cosmological constant nor of any dimensional constant beside Newton's one. A previous analysis based on redshift-space distortions (RSD) data concluded that the model was ruled out. In this work we revisit the issue and find that, when recast in a localized model, the DW model is not ruled out and actually gives a better fit to RSD data than ΛCDM.more » In fact, the DW model presents a suppressed growth of matter perturbations with respect to ΛCDM and a slightly lower value of σ{sub 8}, as favored by observations. We also produce analytical approximations of the two modified gravity functions, i.e. the anisotropic stress η and the relative change of Newton's constant Y , and of f σ{sub 8}( z ) as a function of redshift. Finally, we also show how much the fit depends on initial conditions when these are generalized with respect to a standard matter-dominated era.« less
Application of cognitive diagnosis models to competency-based situational judgment tests.
García, Pablo Eduardo; Olea, Julio; De la Torre, Jimmy
2014-01-01
Profiling of jobs in terms of competency requirements has increasingly been applied in many organizational settings. Testing these competencies through situational judgment tests (SJTs) leads to validity problems because it is not usually clear which constructs SJTs measure. The primary purpose of this paper is to evaluate whether the application of cognitive diagnosis models (CDM) to competency-based SJTs can ascertain the underlying competencies measured by the items, and whether these competencies can be estimated precisely. The generalized deterministic inputs, noisy "and" gate (G-DINA) model was applied to 26 situational judgment items measuring professional competencies based on the great eight model. These items were applied to 485 employees of a Spanish financial company. The fit of the model to the data and the convergent validity between the estimated competencies and personality dimensions were examined. The G-DINA showed a good fit to the data and the estimated competency factors, adapting and coping and interacting and presenting were positively related to emotional stability and extraversion, respectively. This work indicates that CDM can be a useful tool when measuring professional competencies through SJTs. CDM can clarify the competencies being measured and provide precise estimates of these competencies.
NASA Astrophysics Data System (ADS)
Bonvin, V.; Courbin, F.; Suyu, S. H.; Marshall, P. J.; Rusu, C. E.; Sluse, D.; Tewes, M.; Wong, K. C.; Collett, T.; Fassnacht, C. D.; Treu, T.; Auger, M. W.; Hilbert, S.; Koopmans, L. V. E.; Meylan, G.; Rumbaugh, N.; Sonnenfeld, A.; Spiniello, C.
2017-03-01
We present a new measurement of the Hubble Constant H0 and other cosmological parameters based on the joint analysis of three multiply imaged quasar systems with measured gravitational time delays. First, we measure the time delay of HE 0435-1223 from 13-yr light curves obtained as part of the COSMOGRAIL project. Companion papers detail the modelling of the main deflectors and line-of-sight effects, and how these data are combined to determine the time-delay distance of HE 0435-1223. Crucially, the measurements are carried out blindly with respect to cosmological parameters in order to avoid confirmation bias. We then combine the time-delay distance of HE 0435-1223 with previous measurements from systems B1608+656 and RXJ1131-1231 to create a Time Delay Strong Lensing probe (TDSL). In flat Λ cold dark matter (ΛCDM) with free matter and energy density, we find H0 =71.9^{+2.4}_{-3.0} {km s^{-1} Mpc^{-1}} and Ω _{Λ }=0.62^{+0.24}_{-0.35}. This measurement is completely independent of, and in agreement with, the local distance ladder measurements of H0. We explore more general cosmological models combining TDSL with other probes, illustrating its power to break degeneracies inherent to other methods. The joint constraints from TDSL and Planck are H0 = 69.2_{-2.2}^{+1.4} {km s^{-1} Mpc^{-1}}, Ω _{Λ }=0.70_{-0.01}^{+0.01} and Ω _k=0.003_{-0.006}^{+0.004} in open ΛCDM and H0 =79.0_{-4.2}^{+4.4} {km s^{-1} Mpc^{-1}}, Ω _de=0.77_{-0.03}^{+0.02} and w=-1.38_{-0.16}^{+0.14} in flat wCDM. In combination with Planck and baryon acoustic oscillation data, when relaxing the constraints on the numbers of relativistic species we find Neff = 3.34_{-0.21}^{+0.21} in NeffΛCDM and when relaxing the total mass of neutrinos we find Σmν ≤ 0.182 eV in mνΛCDM. Finally, in an open wCDM in combination with Planck and cosmic microwave background lensing, we find H0 =77.9_{-4.2}^{+5.0} {km s^{-1} Mpc^{-1}}, Ω _de=0.77_{-0.03}^{+0.03}, Ω _k=-0.003_{-0.004}^{+0.004} and w=-1.37_{-0.23}^{+0.18}.
NASA Technical Reports Server (NTRS)
Silk, Joseph; Stebbins, Albert
1993-01-01
A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.
Gravitational lensing in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Narayan, Ramesh; White, Simon D. M.
1988-01-01
Gravitational lensing due to mass condensations in a biased cold dark matter (CDM) universe is investigated using the Press-Schechter (1974) theory with density fluctuation amplitudes taken from previous N-body work. Under the critical assumption that CDM haloes have small core radii, a distribution of image angular separations for high-z lensed quasars with a peak at about 1 arcsec and a half-width of a factor of about 10. Allowing for selection effects at small angular separations, this is in good agreement with the observed separations. The estimated frequency of lensing is somewhat lower than that observed, but the discrepancy can be removed by invoking amplification bias and by making a small upward adjustment to the density fluctuation amplitudes assumed in the CDM model.
A Comparative Analysis of the Supernova Legacy Survey Sample With ΛCDM and the Rh=ct Universe
NASA Astrophysics Data System (ADS)
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio; Maier, Robert S.
2015-03-01
The use of Type Ia supernovae (SNe Ia) has thus far produced the most reliable measurement of the expansion history of the universe, suggesting that ΛCDM offers the best explanation for the redshift-luminosity distribution observed in these events. However, analysis of other kinds of sources, such as cosmic chronometers, gamma-ray bursts, and high-z quasars, conflicts with this conclusion, indicating instead that the constant expansion rate implied by the Rh = ct universe is a better fit to the data. The central difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing supernova (SN) luminosities simultaneously with the parameters of an expansion model. Hence, in comparing competing models, one must reduce the data independently for each. We carry out such a comparison of ΛCDM and the Rh = ct universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. However, since Rh = ct has only one free parameter (the Hubble constant), it follows from a standard model selection technique that it is to be preferred over ΛCDM, the minimalist version of which has three (the Hubble constant, the scaled matter density, and either the spatial curvature constant or the dark energy equation-of-state parameter). We estimate using the Bayes Information Criterion that in a pairwise comparison, the likelihood of Rh = ct is ˜90%, compared with only ˜10% for a minimalist form of ΛCDM, in which dark energy is simply a cosmological constant. Compared to Rh = ct, versions of the standard model with more elaborate parametrizations of dark energy are judged to be even less likely. This work is dedicated to the memory of Prof. Tan Lu, who sadly passed away 2014 December 3. Among his many achievements, he is considered to be one of the founders of high-energy astrophysics, and a pioneer in modern cosmology, in China.
Carbon credit of renewable energy projects in Malaysia
NASA Astrophysics Data System (ADS)
Lim, X.; Lam, W. H.; Shamsuddin, A. H.
2013-06-01
The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.
[Modeling asthma evolution by a multi-state model].
Boudemaghe, T; Daurès, J P
2000-06-01
There are many scores for the evaluation of asthma. However, most do not take into account the evolutionary aspects of this illness. We propose a model for the clinical course of asthma by a homogeneous Markov model process based on data provided by the A.R.I.A. (Association de Recherche en Intelligence Artificielle dans le cadre de l'asthme et des maladies respiratoires). The criterion used is the activity of the illness during the month before consultation. The activity is divided into three levels: light (state 1), mild (state 2) and severe (state 3). The model allows the evaluation of the strength of transition between states. We found that strong intensities were implicated towards state 2 (lambda(12) and lambda(32)), less towards state 1 (lambda(21) and lambda(31)), and minimum towards state 3 (lambda(23)). This results in an equilibrium distribution essentially divided between state 1 and 2 (44.6% and 51.0% respectively) with a small proportion in state 3 (4.4%). In the future, the increasing amount of available data should permit the introduction of covariables, the distinction of subgroups and the implementation of clinical studies. The interest of this model falls within the domain of the quantification of the illness as well as the representation allowed thereof, while offering a formal framework for the clinical notion of time and evolution.
ΛCDM model with dissipative nonextensive viscous dark matter
NASA Astrophysics Data System (ADS)
Gimenes, H. S.; Viswanathan, G. M.; Silva, R.
2018-03-01
Many models in cosmology typically assume the standard bulk viscosity. We study an alternative interpretation for the origin of the bulk viscosity. Using nonadditive statistics proposed by Tsallis, we propose a bulk viscosity component that can only exist by a nonextensive effect through the nonextensive/dissipative correspondence (NexDC). In this paper, we consider a ΛCDM model for a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity, without any perturbative approach. In order to analyze cosmological constraints, we use one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations and cosmic microwave background data.
On the emergence of the ΛCDM model from self-interacting Brans-Dicke theory in d= 5
NASA Astrophysics Data System (ADS)
Reyes, Luz Marina; Perez Bergliaffa, Santiago Esteban
2018-01-01
We investigate whether a self-interacting Brans-Dicke theory in d=5 without matter and with a time-dependent metric can describe, after dimensional reduction to d=4, the FLRW model with accelerated expansion and non-relativistic matter. By rewriting the effective 4-dimensional theory as an autonomous 3-dimensional dynamical system and studying its critical points, we show that the ΛCDM cosmology cannot emerge from such a model. This result suggests that a richer structure in d=5 may be needed to obtain the accelerated expansion as well as the matter content of the 4-dimensional universe.
ERIC Educational Resources Information Center
Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan
2013-01-01
Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…
Scalar-tensor extension of the ΛCDM model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algoner, W.C.; Velten, H.E.S.; Zimdahl, W., E-mail: w.algoner@cosmo-ufes.org, E-mail: velten@pq.cnpq.br, E-mail: winfried.zimdahl@pq.cnpq.br
2016-11-01
We construct a cosmological scalar-tensor-theory model in which the Brans-Dicke type scalar Φ enters the effective (Jordan-frame) Hubble rate as a simple modification of the Hubble rate of the ΛCDM model. This allows us to quantify differences between the background dynamics of scalar-tensor theories and general relativity (GR) in a transparent and observationally testable manner in terms of one single parameter. Problems of the mapping of the scalar-field degrees of freedom on an effective fluid description in a GR context are discused. Data from supernovae, the differential age of old galaxies and baryon acoustic oscillations are shown to strongly limitmore » potential deviations from the standard model.« less
Low energy theorems and the unitarity bounds in the extra U(1) superstring inspired E{sub 6} models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, N.K.; Saxena, Pranav; Nagawat, Ashok K.
2005-11-01
The conventional method using low energy theorems derived by Chanowitz et al. [Phys. Rev. Lett. 57, 2344 (1986);] does not seem to lead to an explicit unitarity limit in the scattering processes of longitudinally polarized gauge bosons for the high energy case in the extra U(1) superstring inspired models, commonly known as {eta} model, emanating from E{sub 6} group of superstring theory. We have made use of an alternative procedure given by Durand and Lopez [Phys. Lett. B 217, 463 (1989);], which is applicable to supersymmetric grand unified theories. Explicit unitarity bounds on the superpotential couplings (identified as Yukawa couplings)more » are obtained from both using unitarity constraints as well as using renormalization group equations (RGE) analysis at one-loop level utilizing critical couplings concepts implying divergence of scalar coupling at M{sub G}. These are found to be consistent with finiteness over the entire range M{sub Z}{<=}{radical}(s){<=}M{sub G} i.e. from grand unification scale to weak scale. For completeness, the similar approach has been made use of in other models i.e., {chi}, {psi}, and {nu} models emanating from E{sub 6} and it has been noticed that at weak scale, the unitarity bounds on Yukawa couplings do not differ among E{sub 6} extra U(1) models significantly except for the case of {chi} model in 16 representations. For the case of the E{sub 6}-{eta} model ({beta}{sub E} congruent with 9.64), the analysis using the unitarity constraints leads to the following bounds on various parameters: {lambda}{sub t(max.)}(M{sub Z})=1.294, {lambda}{sub b(max.)}(M{sub Z})=1.278, {lambda}{sub H(max.)}(M{sub Z})=0.955, {lambda}{sub D(max.)}(M{sub Z})=1.312. The analytical analysis of RGE at the one-loop level provides the following critical bounds on superpotential couplings: {lambda}{sub t,c}(M{sub Z}) congruent with 1.295, {lambda}{sub b,c}(M{sub Z}) congruent with 1.279, {lambda}{sub H,c}(M{sub Z}) congruent with 0.968, {lambda}{sub D,c}(M{sub Z}) congruent with 1.315. Thus superpotential coupling values obtained by both the approaches are in good agreement. Theoretically we have obtained bounds on physical mass parameters using the unitarity constrained superpotential couplings. The bounds are as follows: (i) Absolute upper bound on top quark mass m{sub t}{<=}225 GeV (ii) the upper bound on the lightest neutral Higgs boson mass at the tree level is m{sub H{sub 2}{sup 0}}{sup tree}{<=}169 GeV, and after the inclusion of the one-loop radiative correction it is m{sub H{sub 2}{sup 0}}{<=}229 GeV when {lambda}{sub t}{ne}{lambda}{sub b} at the grand unified theory scale. On the other hand, these are m{sub H{sub 2}{sup 0}}{sup tree}{<=}159 GeV, m{sub H{sub 2}{sup 0}}{<=}222 GeV, respectively, when {lambda}{sub t}={lambda}{sub b} at the grand unified theory scale. A plausible range on D-quark mass as a function of mass scale M{sub Z{sub 2}} is m{sub D}{approx_equal}O(3 TeV) for M{sub Z{sub 2}}{approx_equal}O(1 TeV) for the favored values of tan{beta}{<=}1. The bounds on aforesaid physical parameters in the case of {chi}, {psi}, and {nu} models in the 27 representation are almost identical with those of {eta} model and are consistent with the present day experimental precision measurements.« less
2006-12-01
CDM Camp Dresser & McKee Inc. CSU Colorado State University DCA dichloroethane DO dissolved oxygen DoD Department of Defense EA EA...Ph.D. (PI), Camp Dresser & McKee Inc. (CDM); John Eisenbeis, Ph.D., CDM; Kristy Warren, CDM; Dan Adams, CDM; Michael Allen, Bangor Naval Submarine Base...alcohol (PVA) using cyanuric chloride, and the resulting product was cross -linked with glutaraldehyde in presence of HCl to form a hydrogel that was
Characteristics of Hospitalized Children With a Diagnosis of Malnutrition: United States, 2010.
Abdelhadi, Ruba A; Bouma, Sandra; Bairdain, Sigrid; Wolff, Jodi; Legro, Amanda; Plogsted, Steve; Guenter, Peggi; Resnick, Helaine; Slaughter-Acey, Jaime C; Corkins, Mark R
2016-07-01
Malnutrition is common in hospitalized patients in the United States. In 2010, 80,710 of 6,280,710 hospitalized children <17 years old had a coded diagnosis of malnutrition (CDM). This report summarizes nationally representative, person-level characteristics of hospitalized children with a CDM. Data are from the 2010 Healthcare Cost and Utilization Project, which contains patient-level data on hospital inpatient stays. When weighted appropriately, estimates from the project represent all U.S. hospitalizations. The data set contains up to 25 ICD-9-CM diagnostic codes for each patient. Children with a CDM listed during hospitalization were identified. In 2010, 1.3% of hospitalized patients <17 years had a CDM. Since the data include only those with a CDM, malnutrition's true prevalence may be underrepresented. Length of stay among children with a CDM was almost 2.5 times longer than those without a CDM. Hospital costs for children with a CDM were >3 times higher than those without a CDM. Hospitalized children with a CDM were less likely to have routine discharge and almost 3.5 times more likely to require postdischarge home care. Children with a CDM were more likely to have multiple comorbidities. Hospitalized children with a CDM are associated with more comorbidities, longer hospital stay, and higher healthcare costs than those without this diagnosis. These undernourished children may utilize more healthcare resources in the hospital and community. Clinicians and policymakers should factor this into healthcare resource utilization planning. Recognizing and accurately coding malnutrition in hospitalized children may reveal the true prevalence of malnutrition. © 2016 American Society for Parenteral and Enteral Nutrition.
[In vitro anti-angiogenic action of lambda-carrageenan oligosaccharides].
Chen, Hai-Min; Yan, Xiao-Jun; Wang, Feng; Lin, Jing; Xu, Wei-Feng
2007-06-01
This study was designed to evaluate the inhibition effect of lambda-carrageenan oligosaccharides on neovascularization in vitro by chick chorioallantoic membrane (CAM) model and human umbilical vein endothelial cell ( HUVEC). lambda-Carrageenan oligosaccharides caused a dose-dependent decrease of the vascular density of CAM, and adversely affected capillary plexus formation. At a high concentration of 1 mg x mL(-1), this compound inhibited the endothelial cell proliferation, while low concentration of lambda-carrageenan oligosaccharides (< 250 microg x mL(-1)) affected the cell survival slightly (> 95%). Different cytotoxic sensitivity of lambda-carrageenan oligosaccharides in three kinds of cells was observed, of which HUVEC is the most sensitive to this oligosaccharides. The inhibitory action of lambda-carrageenan oligosaccharides on the endothelial cell invasion and migration was also observed at relatively low concentration (150 - 300 microg x mL(-1)) through down-regulation of intracellular matrix metalloproteinases-2 (MMP-2) expression on endothelial cells. Current observations demonstrated that lambda-carrageenan oligosaccharides are potential angiogenesis inhibitor with combined effects of inhibiting invasion, migration and proliferation.
Effect of atmospheric extinction on laser rangefinder performance at 1.54 and 0.6 microns
NASA Technical Reports Server (NTRS)
Hutt, D. L.; Theriault, J.-M.; Larochelle, V.; Bonnier, D.
1992-01-01
Extinction of laser rangefinder (LRF) pulses by the atmosphere depends on the wavelength, weather conditions, and aerosol concentration along the optical path. In the IR, extinction is due to absorption by molecular constituents and scattering and absorption by aerosols. The total atmospheric extinction alpha(lambda) is the sum of the molecular and aerosol contributions, alpha(sub m)(lambda)and Alpha(sub a)(lambda). We present simple expressions for alpha(sub m)(lambda) and alpha(sub a)(lambda) for two LRF sources: Er:glass and CO2 which operate at 1.54 and 10.6 microns, respectively. The expressions are based on accepted models of atmospheric aerosols and molecular extinction and give an estimate of alpha(lambda) as a function of standard meteorological parameters, assuming horizontal beam propagation. Signal-to-noise ratios of LRF returns, measured from a reference target under different weather conditions are compared to predictions based on the estimate of alpha(lambda).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Väliviita, Jussi; Palmgren, Elina, E-mail: jussi.valiviita@helsinki.fi, E-mail: elina.palmgren@helsinki.fi
2015-07-01
We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological wCDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, ω{sub c}, allowing a large interaction rate |Γ| ∼ H{sub 0}. However, as has been known for a while, the BAO data break this degeneracy.more » Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift z ∼ 2 and is very sensitive to the growth of structure, and hence one of the tools for discerning between the ΛCDM model and its alternatives. However, we find that in the non-phantom models (w{sub de}>−1), the constraints remain unchanged by the inclusion of the lensing data and consistent with zero interaction, −0.14 < Γ/H{sub 0} < 0.02 at 95% CL. On the contrary, in the phantom models (w{sub de}<−1), energy transfer from dark energy to dark matter is moderately favoured over the non-interacting model; 0−0.57 < Γ/H{sub 0} < −0.1 at 95% CL with CMB+BAO, while addition of the lensing data shifts this to −0.46 < Γ/H{sub 0} < −0.01.« less
Constraints to Dark Energy Using PADE Parameterizations
NASA Astrophysics Data System (ADS)
Rezaei, M.; Malekjani, M.; Basilakos, S.; Mehrabi, A.; Mota, D. F.
2017-07-01
We put constraints on dark energy (DE) properties using PADE parameterization, and compare it to the same constraints using Chevalier-Polarski-Linder (CPL) and ΛCDM, at both the background and the perturbation levels. The DE equation of the state parameter of the models is derived following the mathematical treatment of PADE expansion. Unlike CPL parameterization, PADE approximation provides different forms of the equation of state parameter that avoid the divergence in the far future. Initially we perform a likelihood analysis in order to put constraints on the model parameters using solely background expansion data, and we find that all parameterizations are consistent with each other. Then, combining the expansion and the growth rate data, we test the viability of PADE parameterizations and compare them with CPL and ΛCDM models, respectively. Specifically, we find that the growth rate of the current PADE parameterizations is lower than ΛCDM model at low redshifts, while the differences among the models are negligible at high redshifts. In this context, we provide for the first time a growth index of linear matter perturbations in PADE cosmologies. Considering that DE is homogeneous, we recover the well-known asymptotic value of the growth index (namely {γ }∞ =\\tfrac{3({w}∞ -1)}{6{w}∞ -5}), while in the case of clustered DE, we obtain {γ }∞ ≃ \\tfrac{3{w}∞ (3{w}∞ -5)}{(6{w}∞ -5)(3{w}∞ -1)}. Finally, we generalize the growth index analysis in the case where γ is allowed to vary with redshift, and we find that the form of γ (z) in PADE parameterization extends that of the CPL and ΛCDM cosmologies, respectively.
A comparison of cosmological models using time delay lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu
2014-06-20
The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% formore » the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.« less
A TEST OF COSMOLOGICAL MODELS USING HIGH-z MEASUREMENTS OF H(z)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melia, Fulvio; McClintock, Thomas M., E-mail: fmelia@email.arizona.edu, E-mail: tmcclintock89@gmail.com
2015-10-15
The recently constructed Hubble diagram using a combined sample of SNLS and SDSS-II SNe Ia, and an application of the Alcock–Paczyński (AP) test using model-independent Baryon Acoustic Oscillation (BAO) data, have suggested that the principal constraint underlying the cosmic expansion is the total equation-of-state of the cosmic fluid, rather than that of its dark energy. These studies have focused on the critical redshift range (0 ≲ z ≲ 2) within which the transition from decelerated to accelerated expansion is thought to have occurred, and they suggest that the cosmic fluid has zero active mass, consistent with a constant expansion rate.more » The evident impact of this conclusion on cosmological theory calls for an independent confirmation. In this paper, we carry out this crucial one-on-one comparison between the R{sub h} = ct universe (a Friedmann–Robertson–Walker cosmology with zero active mass) and wCDM/ΛCDM, using the latest high-z measurements of H(z). Whereas the SNe Ia yield the integrated luminosity distance, while the AP diagnostic tests the geometry of the universe, the Hubble parameter directly samples the expansion rate itself. We find that the model-independent cosmic chronometer data prefer R{sub h} = ct over wCDM/ΛCDM with a Bayes Information Criterion likelihood of ∼95% versus only ∼5%, in strong support of the earlier SNe Ia and AP results. This contrasts with a recent analysis of H(z) data based solely on BAO measurements which, however, strongly depend on the assumed cosmology. We discuss why the latter approach is inappropriate for model comparisons, and emphasize again the need for truly model-independent observations to be used in cosmological tests.« less
Galbraith, Lauren; Jacobs, Casey; Hemmelgarn, Brenda R; Donald, Maoliosa; Manns, Braden J; Jun, Min
2018-01-01
Primary care providers manage the majority of patients with chronic kidney disease (CKD), although the most effective chronic disease management (CDM) strategies for these patients are unknown. We assessed the efficacy of CDM interventions used by primary care providers managing patients with CKD. The Medline, Embase and Cochrane Central databases were systematically searched (inception to November 2014) for randomized controlled trials (RCTs) assessing education-based and computer-assisted CDM interventions targeting primary care providers managing patients with CKD in the community. The efficacy of CDM interventions was assessed using quality indicators [use of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB), proteinuria measurement and achievement of blood pressure (BP) targets] and clinical outcomes (change in BP and glomerular filtration rate). Two independent reviewers evaluated studies for inclusion, quality and extracted data. Random effects models were used to estimate pooled odds ratios (ORs) and weighted mean differences for outcomes of interest. Five studies (188 clinics; 494 physicians; 42 852 patients with CKD) were included. Two studies compared computer-assisted intervention strategies with usual care, two studies compared education-based intervention strategies with computer-assisted intervention strategies and one study compared both these intervention strategies with usual care. Compared with usual care, computer-assisted CDM interventions did not increase the likelihood of ACEI/ARB use among patients with CKD {pooled OR 1.00 [95% confidence interval (CI) 0.83-1.21]; I2 = 0.0%}. Similarly, education-related CDM interventions did not increase the likelihood of ACEI/ARB use compared with computer-assisted CDM interventions [pooled OR 1.12 (95% CI 0.77-1.64); I2 = 0.0%]. Inconsistencies in reporting methods limited further pooling of data. To date, there have been very few randomized trials testing CDM interventions targeting primary care providers with the goal of improving care of people with CKD. Those conducted to date have shown minimal impact, suggesting that other strategies, or multifaceted interventions, may be required to enhance care for patients with CKD in the community. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhawan, Suhail; Goobar, Ariel; Mörtsell, Edvard
Recent re-calibration of the Type Ia supernova (SNe Ia) magnitude-redshift relation combined with cosmic microwave background (CMB) and baryon acoustic oscillation (BAO) data have provided excellent constraints on the standard cosmological model. Here, we examine particular classes of alternative cosmologies, motivated by various physical mechanisms, e.g. scalar fields, modified gravity and phase transitions to test their consistency with observations of SNe Ia and the ratio of the angular diameter distances from the CMB and BAO. Using a model selection criterion for a relative comparison of the models (the Bayes Factor), we find moderate to strong evidence that the data prefermore » flat ΛCDM over models invoking a thawing behaviour of the quintessence scalar field. However, some exotic models like the growing neutrino mass cosmology and vacuum metamorphosis still present acceptable evidence values. The bimetric gravity model with only the linear interaction term as well as a simplified Galileon model can be ruled out by the combination of SNe Ia and CMB/BAO datasets whereas the model with linear and quadratic interaction terms has a comparable evidence value to standard ΛCDM. Thawing models are found to have significantly poorer evidence compared to flat ΛCDM cosmology under the assumption that the CMB compressed likelihood provides an adequate description for these non-standard cosmologies. We also present estimates for constraints from future data and find that geometric probes from oncoming surveys can put severe limits on non-standard cosmological models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albertus, C.; Nieves, J.; Hernandez, E.
We present results for the strong widths corresponding to the {sigma}{sub c}{yields}{lambda}{sub c}{pi}, {sigma}{sub c}*{yields}{lambda}{sub c}{pi} and {xi}{sub c}*{yields}{xi}{sub c}{pi} decays. The calculations have been done in a nonrelativistic constituent quark model with wave functions that take advantage of the constraints imposed by heavy quark symmetry. Partial conservation of axial current hypothesis allows us to determine the strong vertices from an analysis of the axial current matrix elements. Our results {gamma}({sigma}{sub c}{sup ++}{yields}{lambda}{sub c}{sup +}{pi}{sup +})=2.41{+-}0.07{+-}0.02 MeV, {gamma}({sigma}{sub c}{sup +}{yields}{lambda}{sub c}{sup +}{pi}{sup 0})=2.79{+-}0.08{+-}0.02 MeV, {gamma}({sigma}{sub c}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})=2.37{+-}0.07{+-}0.02 MeV, {gamma}({sigma}{sub c}*{sup ++}{yields}{lambda}{sub c}{sup +}{pi}{sup +})=17.52{+-}0.74{+-}0.12 MeV, {gamma}({sigma}{sub c}*{supmore » +}{yields}{lambda}{sub c}{sup +}{pi}{sup 0})=17.31{+-}0.73{+-}0.12 MeV, {gamma}({sigma}{sub c}*{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})=16.90{+-}0.71{+-}0.12 MeV, {gamma}({xi}{sub c}*{sup +}{yields}{xi}{sub c}{sup 0}{pi}{sup +}+{xi}{sub c}{sup +}{pi}{sup 0})=3.18{+-}0.10{+-}0.01 MeV, and {gamma}({xi}{sub c}*{sup 0}{yields}{xi}{sub c}{sup +}{pi}{sup -}+{xi}{sub c}{sup 0}{pi}{sup 0})=3.03{+-}0.10{+-}0.01 MeV are in good agreement with experimental determinations.« less
Who's minding the charge description master?
Schaum, Kathleen D
2011-11-01
Just as it takes a team to manage chronic wounds, it takes a team to maintain the CDM. The technical staff from the wound care department should be represented on this team and should share the appropriate HCPCS codes and CPT codes, product descriptions, and costs for all procedures, services, supplies, drugs, and biologics used in their department. The billing department should ensure that the appropriate revenue codes for each payer are listed for each item on the CDM. Based on costs supplied by the wound care department, the finance department should consistently assign hospital charges to each line item on the CDM. The information technology department is responsible for making the specific changes to the CDM in the computer system. Most hospitals have a CDM coordinator. The technical staff from the wound care department should work closely with the CDM coordinator and should obtain from him/her the policies and procedures for maintaining the wound care department CDM. Most CDM coordinators will also provide a CDM Change Request Form. Use that form each year when the hospital is performing its annual CDM maintenance and throughout the year to add procedures, services, supplies, drugs, or biologics to your wound care offerings and/or when the cost for these offerings change.
Testing cosmogonic models with gravitational lensing.
Wambsganss, J; Cen, R; Ostriker, J P; Turner, E L
1995-04-14
Gravitational lensing provides a strict test of cosmogonic models because it is directly sensitive to mass inhomogeneities. Detailed numerical propagation of light rays through a universe that has a distribution of inhomogeneities derived from the standard CDM (cold dark matter) scenario, with the aid of massive, fully nonlinear computer simulations, was used to test the model. It predicts that more widely split quasar images should have been seen than were actually found. These and other inconsistencies rule out the Cosmic Background Explorer (COBE)-normalized CDM model with density parameter Omega = 1 and the Hubble constant (H(o)) = 50 kilometers second(-1) megaparsec(-1); but variants of this model might be constructed, which could pass the stringent tests provided by strong gravitational lensing.
NASA Astrophysics Data System (ADS)
Lovell, Mark R.; Bose, Sownak; Boyarsky, Alexey; Crain, Robert A.; Frenk, Carlos S.; Hellwing, Wojciech A.; Ludlow, Aaron D.; Navarro, Julio F.; Ruchayskiy, Oleg; Sawala, Till; Schaller, Matthieu; Schaye, Joop; Theuns, Tom
2017-07-01
We study galaxy formation in sterile neutrino dark matter models that differ significantly from both cold and from 'warm thermal relic' models. We use the eagle code to carry out hydrodynamic simulations of the evolution of pairs of galaxies chosen to resemble the Local Group, as part of the APOSTLE simulations project. We compare cold dark matter (CDM) with two sterile neutrino models with 7 keV mass: one, the warmest among all models of this mass (LA120) and the other, a relatively cold case (LA10). We show that the lower concentration of sterile neutrino subhaloes compared to their CDM counterparts makes the inferred inner dark matter content of galaxies like Fornax (or Magellanic Clouds) less of an outlier in the sterile neutrino cosmologies. In terms of the galaxy number counts, the LA10 simulations are indistinguishable from CDM when one takes into account halo-to-halo (or 'simulation-to-simulation') scatter. In order for the LA120 model to match the number of Local Group dwarf galaxies, a higher fraction of low-mass haloes is required to form galaxies than is predicted by the eagle simulations. As the census of the Local Group galaxies nears completion, this population may provide a strong discriminant between cold and warm dark matter models.
The Prolate Dark Matter Halo of the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
Hayashi, Kohei; Chiba, Masashi
2014-07-01
We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi & Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.
The prolate dark matter halo of the Andromeda galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp
We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for itsmore » dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.« less
Voss, Erica A; Makadia, Rupa; Matcho, Amy; Ma, Qianli; Knoll, Chris; Schuemie, Martijn; DeFalco, Frank J; Londhe, Ajit; Zhu, Vivienne; Ryan, Patrick B
2015-05-01
To evaluate the utility of applying the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) across multiple observational databases within an organization and to apply standardized analytics tools for conducting observational research. Six deidentified patient-level datasets were transformed to the OMOP CDM. We evaluated the extent of information loss that occurred through the standardization process. We developed a standardized analytic tool to replicate the cohort construction process from a published epidemiology protocol and applied the analysis to all 6 databases to assess time-to-execution and comparability of results. Transformation to the CDM resulted in minimal information loss across all 6 databases. Patients and observations excluded were due to identified data quality issues in the source system, 96% to 99% of condition records and 90% to 99% of drug records were successfully mapped into the CDM using the standard vocabulary. The full cohort replication and descriptive baseline summary was executed for 2 cohorts in 6 databases in less than 1 hour. The standardization process improved data quality, increased efficiency, and facilitated cross-database comparisons to support a more systematic approach to observational research. Comparisons across data sources showed consistency in the impact of inclusion criteria, using the protocol and identified differences in patient characteristics and coding practices across databases. Standardizing data structure (through a CDM), content (through a standard vocabulary with source code mappings), and analytics can enable an institution to apply a network-based approach to observational research across multiple, disparate observational health databases. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Bruschi, Michele; Krömer, Jens O; Steen, Jennifer A; Nielsen, Lars K
2014-08-19
Peptides are increasingly used in industry as highly functional materials. Bacterial production of recombinant peptides has the potential to provide large amounts of renewable and low cost peptides, however, achieving high product titers from Chemically Defined Media (CDM) supplemented with simple sugars remains challenging. In this work, the short peptide surfactant, DAMP4, was used as a model peptide to investigate production in Escherichia coli BL21(DE3), a classical strain used for protein production. Under the same fermentation conditions, switching production of DAMP4 from rich complex media to CDM resulted in a reduction in yield that could be attributed to the reduction in final cell density more so than a significant reduction in specific productivity. To maximize product titer, cell density at induction was maximized using a fed-batch approach. In fed-batch DAMP4 product titer increased 9-fold compared to batch, while maintaining 60% specific productivity. Under the fed-batch conditions, the final product titer of DAMP4 reached more than 7 g/L which is the highest titer of DAMP4 reported to date. To investigate production from sucrose, sucrose metabolism was engineered into BL21(DE3) using a simple plasmid approach. Using this strain, growth and DAMP4 production characteristics obtained from CDM supplemented with sucrose were similar to those obtained when culturing the parent strain on CDM supplemented with glucose. Production of a model peptide was increased to several grams per liter using a CDM medium with either glucose or sucrose feedstock. It is hoped that this work will contribute cost reduction for production of designer peptide surfactants to facilitate their commercial application.
Galactoseismology: From The Milky Way To XUV Disks
NASA Astrophysics Data System (ADS)
Chakrabarti, Sukanya
The variety of discrepancies between observations and simulations on galactic scales, from the anisotropic distribution of dwarf galaxies to the "too big to fail" problem (where massive satellites in simulations are too dense relative to observations), suggests that we may not yet fully understand galaxy formation. If these satellites exist, they would leave traces of their passage in extended HI disks. Extended HI disks of galaxies reach to several times the optical radius, presenting the largest possible cross-section for interaction with sub-halos at large distances (where theoretical models expect them to be). We will provide definitive constraints on the distribution of dark matter in spiral galaxies by building on our ongoing work in characterizing galactic satellites from analysis of disturbances in extended HI disks with respect to hydrodynamical simulations. Spiral galaxies in the Local Volume (from the Milky Way to the XUV disks discovered by GALEX) exhibit a wealth of unexplained morphology, but these morphological signatures have not yet been used to place constraints on the evolution of HI disks and the dark matter distribution. We are now poised to make significant progress in Galactoseismology, i.e. connect morphological disturbances with the mass distribution. By using the FIRE model for explicit star formation and feedback, we will also develop a better understanding for the star formation history of our Galaxy and XUV Disks. Our Milky Way models will be informed by the HST proper motions, and will match the observed planar disturbances, the warp, and vertical waves recently discovered by the RAVE and LAMOST surveys. We are also carrying high resolution simulations with the Gizmo code that incorporates the FIRE model to develop a comprehensive understanding of the star formation history and star formation rate (that matches Spitzer observations) of the Milky Way. These models will provide a much needed interpretative framework for JWST and WFIRST observations. By mapping to the HI image, the GALEX UV image, the multi-wavelength SED of XUV disks, as well as the masses and deprojected distances of the satellites in a statistically robust way using a Monte Carlo Markov Chain analysis, we will produce evolutionary histories of XUV disks and their satellite populations for the first time. This will enable an apples-to-apples comparison for XUV disks in the Local Volume. There is currently no study that has examined the morphological effects of satellites in cosmological simulations on the gas and stellar disk. This is a critical test of the distribution (the number, the mass, and orbits) of satellites in cosmological simulations. We will also investigate if the vast polar structure (VPOS) of dwarf galaxies around the Milky Way is a serious problem for the Lambda-CDM paradigm. Here we ask two simple questions: 1) Is the VPOS dynamically coherent? If the VPOS is a serious problem for Lambda-CDM, one expects that it should persist over a dynamical time and should not be unique to the present day. 2) Are there certain satellites that drive the appearance of the planar structure at present day? If so, it is critical to examine whether a sub-set excluding these satellites resembles cosmological simulations. Our preliminary results show that this structure is not dynamically coherent, and is driven by two satellites: Leo I and Leo II, both of which have extreme kinematic properties. We will also examine the evolution of the VPOS in non-spherical and time-dependent potentials. We will seek to obtain more accurate proper motions of Leo II in the upcoming HST cycle, as we find that Leo II particularly influences the fit to the planar structure. These results will have far-reaching impact in understanding data from many NASA missions - HST, GALEX, Spitzer, and Herschel to JWST and WFIRST missions. We will also provide a framework for understanding data from the GAIA and GALAH surveys of the Milky Way.
Narrow-line region kinematics in Seyfert nuclei
NASA Astrophysics Data System (ADS)
Moore, David J.
1994-01-01
We present results of a study of narrow-line region (NLR) kinematics in Seyfert nuclei. This study has involved extensive modeling which includes collimated emission, radially dependent rotation and turbulence, explicit photoionization calculations, realistic treatments of both internal and external obscuration, and allows for gradients in the electron density and the radial velocity of clouds throughout the NLR. Line profiles of (O II) lambda 3727, (Ne III) lambda 3869, (O III) lambda 5007, (Fe VII) lambda 6087, (Fe X) lambda 6374, (O I) lambda 6300, H alpha lambda 6563, and (S II) lambda 6731 are calculated for a wide range of physical conditions throughout the NLR. The model profiles are compared with line profiles derived from data taken with the Mount Palomar 5 m Hale Telescope as well as from profiles taken from the literature. The scenario in agreement with the largest of observational considerations consists of clouds which are accelerating outward with v varies as square root of r (i.e., constant force) and ne varies as 1/r2. The cloud start out at the inner NLR radium with ne approximately equal to 106/cu cm and with a very large column density (1023 - 10(exp 24/sq cm). These clouds are uniformly accelerated from a few tens of km/sec to approximately less than 1,000 km/sec. When the clouds reached the outer NLR radius, they have ne approximately greater than 102/cu cm and a column density of 1021-1022/sq cm. The clouds maintain an ionization parameter of about 0.3 throughout the NLR.
Puschner, Bernd; Steffen, Sabine; Slade, Mike; Kaliniecka, Helena; Maj, Mario; Fiorillo, Andrea; Munk-Jørgensen, Povl; Larsen, Jens Ivar; Egerházi, Anikó; Nemes, Zoltan; Rössler, Wulf; Kawohl, Wolfram; Becker, Thomas
2010-11-10
A considerable amount of research has been conducted on clinical decision making (CDM) in short-term physical conditions. However, there is a lack of knowledge on CDM and its outcome in long-term illnesses, especially in care for people with severe mental illness. The study entitled "Clinical decision making and outcome in routine care for people with severe mental illness" (CEDAR) is carried out in six European countries (Denmark, Germany, Hungary, Italy, Switzerland and UK). First, CEDAR establishes a methodology to assess CDM in people with severe mental illness. Specific instruments are developed (and psychometric properties established) to measure CDM style, key elements of CDM in routine care, as well as CDM involvement and satisfaction from patient and therapist perspectives. Second, these instruments are being put to use in a multi-national prospective observational study (bimonthly assessments during a one-year observation period; N = 560). This study investigates the immediate, short- and long-term effect of CDM on crucial dimensions of clinical outcome (symptom level, quality of life, needs) by taking into account significant variables moderating the relationship between CDM and outcome. The results of this study will make possible to delineate quality indicators of CDM, as well as to specify prime areas for further improvement. Ingredients of best practice in CDM in the routine care for people with severe mental illness will be extracted and recommendations formulated. With its explicit focus on the patient role in CDM, CEDAR will also contribute to strengthening the service user perspective. This project will substantially add to improving the practice of CDM in mental health care across Europe. ISRCTN75841675.
Effects of sample size on estimates of population growth rates calculated with matrix models.
Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M
2008-08-28
Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.
Testable solution of the cosmological constant and coincidence problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, Douglas J.; Barrow, John D.
2011-02-15
We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, {Lambda}, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of {Lambda}{approx_equal}(9.3 Gyrs){sup -2}[{approx_equal}10{sup -120} in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvaturemore » of {Omega}{sub k0}=-0.0056({zeta}{sub b}/0.5), where {zeta}{sub b}{approx}1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given {Lambda}. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t{sub {Lambda}={Lambda}}{sup -1/2} and the age of the Universe, t{sub U}, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different {Lambda} values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.« less
Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor.
Chen, Haimin; Yan, Xiaojun; Lin, Jing; Wang, Feng; Xu, Weifeng
2007-08-22
Since angiogenesis is involved in initiating and promoting several diseases such as cancer and cardiovascular events, this study was designed to evaluate the anti-angiogenesis of low-molecular-weight (LMW), highly sulfated lambda-carrageenan oligosaccharides (lambda-CO) obtained by carrageenan depolymerization, by CAM (chick chorioallantoic membrane) model and human umbilical vein endothelial cells (HUVECs). Significant inhibition of vessel growth was observed at 200 microg/pellet. A histochemistry assay also revealed a decrease of capillary plexus and connective tissue in lambda-CO treated samples. lambda-CO inhibited the viability of cells at the high concentration of 1 mg/mL, whereas it affected the cell survival slightly (>95%) at a low concentration (<250 microg/mL), and HUVEC is the most sensitive to lambda-CO among three kinds of cells. Furthermore, the inhibitory action of lambda-CO was also observed in the endothelial cell invasion and migration at relatively low concentration (150-300 microg/mL), through down-regulation of intracellular matrix metalloproteinases (MMP-2) expression on endothelial cells. Taken together, these findings demonstrate that lambda-CO is a potential angiogenesis inhibitor with combined effects of inhibiting invasion, migration, and proliferation.
NASA Astrophysics Data System (ADS)
Valogiannis, Georgios; Bean, Rachel
2017-05-01
We implement an adaptation of the cola approach, a hybrid scheme that combines Lagrangian perturbation theory with an N-body approach, to model nonlinear collapse in chameleon and symmetron modified gravity models. Gravitational screening is modeled effectively through the attachment of a suppression factor to the linearized Klein-Gordon equations. The adapted cola approach is benchmarked, with respect to an N-body code both for the Λ cold dark matter (Λ CDM ) scenario and for the modified gravity theories. It is found to perform well in the estimation of the dark matter power spectra, with consistency of 1% to k ˜2.5 h /Mpc . Redshift space distortions are shown to be effectively modeled through a Lorentzian parametrization with a velocity dispersion fit to the data. We find that cola performs less well in predicting the halo mass functions but has consistency, within 1 σ uncertainties of our simulations, in the relative changes to the mass function induced by the modified gravity models relative to Λ CDM . The results demonstrate that cola, proposed to enable accurate and efficient, nonlinear predictions for Λ CDM , can be effectively applied to a wider set of cosmological scenarios, with intriguing properties, for which clustering behavior needs to be understood for upcoming surveys such as LSST, DESI, Euclid, and WFIRST.
Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels
NASA Astrophysics Data System (ADS)
Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.
2017-12-01
9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.
WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan Huanyuan; Tao Charling; Kneib, Jean-Paul
2012-03-20
We present the first weak gravitational lensing analysis of the completed Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We study the 64 deg{sup 2} W1 field, the largest of the CFHTLS-Wide survey fields, and present the largest contiguous weak lensing convergence 'mass map' yet made. 2.66 million galaxy shapes are measured, using the Kaiser Squires and Broadhurst Method (KSB) pipeline verified against high-resolution Hubble Space Telescope imaging that covers part of the CFHTLS. Our i'-band measurements are also consistent with an analysis of independent r'-band imaging. The reconstructed lensing convergence map contains 301 peaks with signal-to-noise ratio {nu} > 3.5, consistent withmore » predictions of a {Lambda}CDM model. Of these peaks, 126 lie within 3.'0 of a brightest central galaxy identified from multicolor optical imaging in an independent, red sequence survey. We also identify seven counterparts for massive clusters previously seen in X-ray emission within 6 deg{sup 2} XMM-LSS survey. With photometric redshift estimates for the source galaxies, we use a tomographic lensing method to fit the redshift and mass of each convergence peak. Matching these to the optical observations, we confirm 85 groups/clusters with {chi}{sup 2}{sub reduced} < 3.0, at a mean redshift (z{sub c} ) = 0.36 and velocity dispersion ({sigma}{sub c}) = 658.8 km s{sup -1}. Future surveys, such as DES, LSST, KDUST, and EUCLID, will be able to apply these techniques to map clusters in much larger volumes and thus tightly constrain cosmological models.« less
Observational constraints on cosmological models with Chaplygin gas and quadratic equation of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharov, G.S., E-mail: german.sharov@mail.ru
Observational manifestations of accelerated expansion of the universe, in particular, recent data for Type Ia supernovae, baryon acoustic oscillations, for the Hubble parameter H ( z ) and cosmic microwave background constraints are described with different cosmological models. We compare the ΛCDM, the models with generalized and modified Chaplygin gas and the model with quadratic equation of state. For these models we estimate optimal model parameters and their permissible errors with different approaches to calculation of sound horizon scale r {sub s} ( z {sub d} ). Among the considered models the best value of χ{sup 2} is achieved formore » the model with quadratic equation of state, but it has 2 additional parameters in comparison with the ΛCDM and therefore is not favored by the Akaike information criterion.« less
Combined cosmological tests of a bivalent tachyonic dark energy scalar field model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keresztes, Zoltán; Gergely, László Á., E-mail: zkeresztes@titan.physx.u-szeged.hu, E-mail: gergely@physx.u-szeged.hu
A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω{sub b}h{sup 2} = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates intomore » a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω{sub CDM} = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model.« less
De Champlain, Andre F; Boulais, Andre-Philippe; Dallas, Andrew
2016-01-01
The aim of this research was to compare different methods of calibrating multiple choice question (MCQ) and clinical decision making (CDM) components for the Medical Council of Canada's Qualifying Examination Part I (MCCQEI) based on item response theory. Our data consisted of test results from 8,213 first time applicants to MCCQEI in spring and fall 2010 and 2011 test administrations. The data set contained several thousand multiple choice items and several hundred CDM cases. Four dichotomous calibrations were run using BILOG-MG 3.0. All 3 mixed item format (dichotomous MCQ responses and polytomous CDM case scores) calibrations were conducted using PARSCALE 4. The 2-PL model had identical numbers of items with chi-square values at or below a Type I error rate of 0.01 (83/3,499 or 0.02). In all 3 polytomous models, whether the MCQs were either anchored or concurrently run with the CDM cases, results suggest very poor fit. All IRT abilities estimated from dichotomous calibration designs correlated very highly with each other. IRT-based pass-fail rates were extremely similar, not only across calibration designs and methods, but also with regard to the actual reported decision to candidates. The largest difference noted in pass rates was 4.78%, which occurred between the mixed format concurrent 2-PL graded response model (pass rate= 80.43%) and the dichotomous anchored 1-PL calibrations (pass rate= 85.21%). Simpler calibration designs with dichotomized items should be implemented. The dichotomous calibrations provided better fit of the item response matrix than more complex, polytomous calibrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamousa, Amir; Shafieloo, Arman; Arjunwadkar, Mihir
2015-02-01
Estimation of the angular power spectrum is one of the important steps in Cosmic Microwave Background (CMB) data analysis. Here, we present a nonparametric estimate of the temperature angular power spectrum for the Planck 2013 CMB data. The method implemented in this work is model-independent, and allows the data, rather than the model, to dictate the fit. Since one of the main targets of our analysis is to test the consistency of the ΛCDM model with Planck 2013 data, we use the nuisance parameters associated with the best-fit ΛCDM angular power spectrum to remove foreground contributions from the data atmore » multipoles ℓ ≥50. We thus obtain a combined angular power spectrum data set together with the full covariance matrix, appropriately weighted over frequency channels. Our subsequent nonparametric analysis resolves six peaks (and five dips) up to ℓ ∼1850 in the temperature angular power spectrum. We present uncertainties in the peak/dip locations and heights at the 95% confidence level. We further show how these reflect the harmonicity of acoustic peaks, and can be used for acoustic scale estimation. Based on this nonparametric formalism, we found the best-fit ΛCDM model to be at 36% confidence distance from the center of the nonparametric confidence set—this is considerably larger than the confidence distance (9%) derived earlier from a similar analysis of the WMAP 7-year data. Another interesting result of our analysis is that at low multipoles, the Planck data do not suggest any upturn, contrary to the expectation based on the integrated Sachs-Wolfe contribution in the best-fit ΛCDM cosmology.« less
Dental Hygienist-Led Chronic Disease Management System to Control Early Childhood Caries.
Ng, Man Wai; Fida, Zameera
2016-06-01
Management of the complex chronic disease of early childhood caries requires a system of coordinated health care interventions which can be led by a dental hygienist and where patient self-care efforts are paramount. Even after receiving costly surgical treatment under general anesthesia in the operating room, many children develop new and recurrent caries after only 6-12 months, a sequela that can be prevented. This article describes the chronic disease management (CDM) of dental caries, a science-based approach that can prevent and control caries. In this article, we (1) introduce the concept of CDM of dental caries, (2) provide evidence that CDM improves oral health outcomes, and (3) propose a dental hygienist-led team-based oral health care approach to CDM. Although we will be describing the CDM approach for early childhood caries, CDM of caries is applicable in children, adolescents, and adults. Early childhood caries disease control requires meaningful engagement of patients and parents by the oral health care team to assist them with making behavioral changes in the unique context of their families and communities. The traditional dentist/hygienist/assistant model needs to evolve to a collaborative partnership between care providers and patients/families. This partnership will be focused on systematic risk assessment and behaviorally based management of the disease itself, with sensitivity toward the familial environment. Early pilot study results demonstrate reductions in the rates of new caries, dental pain, and referral to the operating room compared with baseline rates. Dental hygienists are the appropriate team members to lead this approach because of their expertise in behavior change and prevention. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Absorption of {Lambda}(1520) hyperons in photon-nucleus collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paryev, E. Ya.
2012-12-15
In the framework of the nuclear spectral function approach for incoherent primary photon-nucleon and secondary pion-nucleon production processes we study the inclusive {Lambda}(1520)-hyperon production in the interaction of 2-GeV photons with nuclei. In particular, the A and momentum dependences of the absolute and relative {Lambda}(1520)-hyperon yields are investigated in two scenarios for its in-medium width. Our model calculations show that the pion-nucleon production channel contributes appreciably to the {Lambda}(1520) creation at intermediate momenta both in light and heavy nuclei in the chosen kinematics and, hence, has to be taken into consideration on close examination of the dependences of the {Lambda}(1520)-hyperonmore » yields on the target mass number with the aim to get information on its width in the medium. They also demonstrate that the A and momentum dependences of the absolute and relative {Lambda}(1520)-hyperon production cross sections at incident energy of interest are markedly sensitive to the {Lambda}(1520) in-medium width, which means that these observables may be an important tool to determine the above width.« less
The use of resighting data to estimate the rate of population growth of the snail kite in Florida
Dreitz, V.J.; Nichols, J.D.; Hines, J.E.; Bennetts, R.E.; Kitchens, W.M.; DeAngelis, D.L.
2002-01-01
The rate of population growth (lambda) is an important demographic parameter used to assess the viability of a population and to develop management and conservation agendas. We examined the use of resighting data to estimate lambda for the snail kite population in Florida from 1997-2000. The analyses consisted of (1) a robust design approach that derives an estimate of lambda from estimates of population size and (2) the Pradel (1996) temporal symmetry (TSM) approach that directly estimates lambda using an open-population capture-recapture model. Besides resighting data, both approaches required information on the number of unmarked individuals that were sighted during the sampling periods. The point estimates of lambda differed between the robust design and TSM approaches, but the 95% confidence intervals overlapped substantially. We believe the differences may be the result of sparse data and do not indicate the inappropriateness of either modelling technique. We focused on the results of the robust design because this approach provided estimates for all study years. Variation among these estimates was smaller than levels of variation among ad hoc estimates based on previously reported index statistics. We recommend that lambda of snail kites be estimated using capture-resighting methods rather than ad hoc counts.
An assessment of bird habitat quality using population growth rates
Knutson, M.G.; Powell, L.A.; Hines, R.K.; Friberg, M.A.; Niemi, G.J.
2006-01-01
Survival and reproduction directly affect population growth rate (lambda) making lambda a fundamental parameter for assessing habitat quality. We used field data, literature review, and a computer simulation to predict annual productivity and lambda for several species of landbirds breeding in floodplain and upland forests in the Midwestern United States. We monitored 1735 nests of 27 species; 760 nests were in the uplands and 975 were in the floodplain. Each type of forest habitat (upland and floodplain) was a source habitat for some species. Despite a relatively low proportion of regional forest cover, the majority of species had stable or increasing populations in all or some habitats, including six species of conservation concern. In our search for a simple analog for lambda, we found that only adult apparent survival, juvenile survival, and annual productivity were correlated with lambda; daily nest survival and relative abundance estimated from point counts were not. Survival and annual productivity are among the most costly demographic parameters to measure and there does not seem to be a low-cost alternative. In addition, our literature search revealed that the demographic parameters needed to model annual productivity and lambda were unavailable for several species. More collective effort across North America is needed to fill the gaps in our knowledge of demographic parameters necessary to model both annual productivity and lambda. Managers can use habitat-specific predictions of annual productivity to compare habitat quality among species and habitats for purposes of evaluating management plans.
Constraints on holographic cosmologies from strong lensing systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cárdenas, Víctor H.; Bonilla, Alexander; Motta, Verónica
We use strongly gravitationally lensed (SGL) systems to put additional constraints on a set of holographic dark energy models. Data available in the literature (redshift and velocity dispersion) is used to obtain the Einstein radius and compare it with model predictions. We found that the ΛCDM is the best fit to the data. Although a preliminary statistical analysis seems to indicate that two of the holographic models studied show interesting agreement with observations, a stringent test lead us to the result that neither of the holographic models are competitive with the ΛCDM. These results highlight the importance of Strong Lensingmore » measurements to provide additional observational constraints to alternative cosmological models, which are necessary to shed some light into the dark universe.« less
Clinical Predictive Modeling Development and Deployment through FHIR Web Services.
Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng
2015-01-01
Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction.
Clinical Predictive Modeling Development and Deployment through FHIR Web Services
Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng
2015-01-01
Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction. PMID:26958207
NASA Astrophysics Data System (ADS)
Creasey, Peter; Sameie, Omid; Sales, Laura V.; Yu, Hai-Bo; Vogelsberger, Mark; Zavala, Jesús
2017-06-01
Galactic rotation curves are a fundamental constraint for any cosmological model. We use controlled N-body simulations of galaxies to study the gravitational effect of baryons in a scenario with collisionless cold dark matter (CDM) versus one with a self-interacting dark matter (SIDM) component. In particular, we examine the inner profiles of the rotation curves in the velocity range Vmax = [30-250] km s-1, whose diversity has been found to be greater than predicted by the ΛCDM scenario. We find that the scatter in the observed rotation curves exceeds that predicted by dark matter only mass-concentration relations in either the CDM nor SIDM models. Allowing for realistic baryonic content and spatial distributions, however, helps create a large variety of rotation curve shapes, which is in a better agreement with observations in the case of self-interactions due to the characteristic cored profiles being more accommodating to the slowly rising rotation curves than CDM. We find individual fits to model two of the most remarkable outliers of similar Vmax, UGC 5721 and IC 2574 - the former a cusp-like rotation curve and the latter a seemingly 8-kpc-cored profile. This diversity in SIDM arises as permutations of overly concentrated haloes with compact baryonic distributions versus underdense haloes with extended baryonic discs. The SIDM solution is promising and its feasibility ultimately depends on the sampling of the halo mass-concentration relation and its interplay with the baryonic profiles, emphasizing the need for a better understanding of the frequency of extreme outliers present in current observational samples.
Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N
2004-02-06
We present STAR measurements of the azimuthal anisotropy parameter v(2) and the binary-collision scaled centrality ratio R(CP) for kaons and lambdas (Lambda+Lambda) at midrapidity in Au+Au collisions at square root of s(NN)=200 GeV. In combination, the v(2) and R(CP) particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p(T) approximately 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K(0)(S) and Lambda+Lambda v(2) values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solano Salinas, Carlos Javier
Using data from fprmilab fixed-target experiment E791, we have measmed for the first time particle/antiparticle production asymmetries formore » $$\\Lambda^0 \\Xi^-$$ and $$\\Omega^-$$ hyperons in $$\\pi^-$$nucleon interactions at 500 GeV /c as joint functions of $$x_F$$ and $$p^2_{\\tau}$$ over the ranges $$-0.12 \\le x_F \\le 0.12$$ and $$0 \\le p^2_{\\tau} \\le 4 (GeV/c)^2$$. There is now direct evidence of a basic asymmetry, even at $$x_F$$ = 0.0, which may be due to associated production. In addition, there are leading-particle-type effects which are qualitativrly like what one would expect from rrcmnbination models or their alternatives. WP used the Dnal Parton Model (DPM) to cakulate the asymmetry for the $$\\Lambda^0$$ and compared with the Lund model (PYTHIA /JETSET) predictions and with om experimental results.« less
78 FR 32250 - CDM Smith and Dynamac Corp; Transfer of Data
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2013-0036; FRL-9387-5] CDM Smith and Dynamac Corp... the submitter, will be transferred to CDM Smith and its subcontractor, Dynamac Corp, in accordance with 40 CFR 2.307(h)(3) and 2.308(i)(2). CDM Smith and its subcontractor, Dynamac Corp, have been...
Ohashi, Ryoko; Nagao, Michinobu; Nakamura, Izumi; Okamoto, Takahiro; Sakai, Shuji
2018-04-12
The aim of this study was to determine if the diagnostic performance of breast lesion examinations could be improved using both digital breast tomosynthesis (DBT) and conventional digital mammography (CDM). Our institutional review board approved the protocol, and patients were provided the opportunity to opt out of the study. A total of 628 patients aged 22-91 years with abnormal screening results or clinical symptoms were consecutively enrolled between June 2015 and March 2016. All patients underwent DBT and CDM, and 1164 breasts were retrospectively analyzed by three radiologists who interpreted the results based on the Breast Imaging Reporting and Data System. Categories 4 and 5 were considered positive, and pathological results were the gold standard. The diagnostic performance of CDM and CDM plus DBT was compared using the mean areas under the receiver operating characteristic (ROC) curves. A total of 100 breast cancer cases were identified. The areas under the ROC curves were 0.9160 (95% confidence interval 0.8779-0.9541) for CDM alone and 0.9376 (95% confidence interval 0.9019-0.9733) for CDM plus DBT. The cut-off values for both CDM alone and CDM plus DBT measurements were 4, with sensitivities of 61.0% (61/100) and 83.0% (83/100), respectively, and specificities of 99.1% (1054/1064) and 98.9% (1052/1064), respectively. CDM yielded 39 false-negative diagnoses, while CDM plus DBT identified breast cancer in 22 of those cases (56.4%). The combination of DBT and CDM for the diagnosis of breast cancer in women with abnormal examination findings or clinical symptoms proved effective and should be used to improve the diagnostic performance of breast cancer examinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renk, Janina; Zumalacárregui, Miguel; Montanari, Francesco
Cosmological models with Galileon gravity are an alternative to the standard ΛCDM paradigm with testable predictions at the level of its self-accelerating solutions for the expansion history, as well as large-scale structure formation. Here, we place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs-Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross-spectra, C {sub ℓ}{sup Tg}, of CMB temperature maps and foreground galaxies from the WISE survey. The sign of C {sub ℓ}{supmore » Tg} is set by the time evolution of the lensing potential in the redshift range of the galaxy sample: it is positive if the potential decays (like in ΛCDM), negative if it deepens. We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and Quintic Galileons. The cubic Galileon model predicts a negative C {sub ℓ}{sup Tg} and exhibits a 7.8σ tension with the data, which effectively rules it out. For the quartic and quintic models the ISW data also rule out a significant portion of the parameter space but permit regions where the goodness-of-fit is comparable to ΛCDM. The data prefers a non zero sum of the neutrino masses (∑ m {sub ν} ≈ 0.5eV) with ∼ 5σ significance in these models. The best-fitting models have values of H {sub 0} consistent with local determinations, thereby avoiding the tension that exists in ΛCDM. We also identify and discuss a ∼ 2σ tension that Galileon gravity exhibits with recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be ruled out by current data but future lensing, BAO and ISW data hold strong potential to do so.« less
Nawrotzki, Raphael J.; Jiang, Leiwen
2015-01-01
Although data for the total number of international migrant flows is now available, no global dataset concerning demographic characteristics, such as the age and gender composition of migrant flows exists. This paper reports on the methods used to generate the CDM-IM dataset of age and gender specific profiles of bilateral net (not gross) migrant flows. We employ raw data from the United Nations Global Migration Database and estimate net migrant flows by age and gender between two time points around the year 2000, accounting for various demographic processes (fertility, mortality). The dataset contains information on 3,713 net migrant flows. Validation analyses against existing data sets and the historical, geopolitical context demonstrate that the CDM-IM dataset is of reasonably high quality. PMID:26692590
Cluster-void degeneracy breaking: Modified gravity in the balance
NASA Astrophysics Data System (ADS)
Sahlén, Martin; Silk, Joseph
2018-05-01
Combining galaxy cluster and void abundances is a novel, powerful way to constrain deviations from general relativity and the Λ CDM model. For a flat w CDM model with growth of large-scale structure parametrized by the redshift-dependent growth index γ (z )=γ0+γ1z /(1 +z ) of linear matter perturbations, combining void and cluster abundances in future surveys with Euclid and the four-meter multiobject spectroscopic telescope could improve the figure of merit for (w ,γ0,γ1) by a factor of 20 compared to individual abundances. In an ideal case, improvement on current cosmological data is a figure of merit factor 600 or more.
NASA Astrophysics Data System (ADS)
Velten, Hermano; Fazolo, Raquel Emy; von Marttens, Rodrigo; Gomes, Syrios
2018-05-01
As recently pointed out in [Phys. Rev. D 96, 083502 (2017), 10.1103/PhysRevD.96.083502] the evolution of the linear matter perturbations in nonadiabatic dynamical dark energy models is almost indistinguishable (quasidegenerated) to the standard Λ CDM scenario. In this work we extend this analysis to CMB observables in particular the integrated Sachs-Wolfe effect and its cross-correlation with large scale structure. We find that this feature persists for such CMB related observable reinforcing that new probes and analysis are necessary to reveal the nonadiabatic features in the dark energy sector.
Do current cosmological observations rule out all covariant Galileons?
NASA Astrophysics Data System (ADS)
Peirone, Simone; Frusciante, Noemi; Hu, Bin; Raveri, Marco; Silvestri, Alessandra
2018-03-01
We revisit the cosmology of covariant Galileon gravity in view of the most recent cosmological data sets, including weak lensing. As a higher derivative theory, covariant Galileon models do not have a Λ CDM limit and predict a very different structure formation pattern compared with the standard Λ CDM scenario. Previous cosmological analyses suggest that this model is marginally disfavored, yet cannot be completely ruled out. In this work we use a more recent and extended combination of data, and we allow for more freedom in the cosmology, by including a massive neutrino sector with three different mass hierarchies. We use the Planck measurements of cosmic microwave background temperature and polarization; baryonic acoustic oscillations measurements by BOSS DR12; local measurements of H0; the joint light-curve analysis supernovae sample; and, for the first time, weak gravitational lensing from the KiDS Collaboration. We find, that in order to provide a reasonable fit, a nonzero neutrino mass is indeed necessary, but we do not report any sizable difference among the three neutrino hierarchies. Finally, the comparison of the Bayesian evidence to the Λ CDM one shows that in all the cases considered, covariant Galileon models are statistically ruled out by cosmological data.
Searching for sterile neutrinos in dynamical dark energy cosmologies
NASA Astrophysics Data System (ADS)
Feng, Lu; Zhang, Jing-Fei; Zhang, Xin
2018-05-01
We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff < 0.2675 eV and Ne f f < 3.5718 for ACDM cosmology, m v,terile ff < 0.5313 eV and Ne f f < 3.5008 for wCDM cosmology, and raffterile < 0.1989 eV and Ne f f < 3.6701 for HDE cosmology, from the constraints of the combination of these data. Thus, without the addition of measurements of growth of structure, only upper limits on both m v,terile ff and Ne f f can be derived, indicating that no evidence of the existence of a sterile neutrino species with eV-scale mass is found in this analysis. Moreover, compared to the ACDM model, in the wCDM model the limit on m v,terile ff becomes much looser, but in the HDE model the limit becomes much tighter. Therefore, the dark energy properties could significantly influence the constraint limits of sterile neutrino parameters.
Supporting Open Access to European Academic Courses: The ASK-CDM-ECTS Tool
ERIC Educational Resources Information Center
Sampson, Demetrios G.; Zervas, Panagiotis
2013-01-01
Purpose: This paper aims to present and evaluate a web-based tool, namely ASK-CDM-ECTS, which facilitates authoring and publishing on the web descriptions of (open) academic courses in machine-readable format using an application profile of the Course Description Metadata (CDM) specification, namely CDM-ECTS. Design/methodology/approach: The paper…
Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology
NASA Astrophysics Data System (ADS)
Papastergis, Emmanouil
2013-03-01
The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital Sky Survey (SDSS), to measure the number density of galaxies as a function of their "baryonic" mass (stars + atomic gas). In the context of a ΛCDM cosmological model, the measured distribution reveals that low-mass halos are heavily "baryon depleted", i.e. their baryonic-to-dark mass ratio is much lower than the cosmological value. These baryon deficits are usually attributed to stellar feedback (e.g. supernova-driven gas outflows), but the efficiency implied by our measurement is extremely high. Whether such efficient feedback can be accommodated in a consistent picture of galaxy formation is an open question, and remains one of the principle scientific drivers for hydrodynamic simulations of galaxy formation. Lastly, we measure the clustering properties of HI-selected samples, through the two-point correlation function of ALFALFA galaxies. We find no compelling evidence for a dependence of clustering on HI mass, suggesting that the relationship between galactic gas mass and host halo mass is not tight. We furthermore find that HI galaxies cluster more weakly than optically selected ones, when no color selection is applied. However, SDSS galaxies with blue colors have very similar clustering characteristics with ALFALFA galaxies, both in real as well as in redshift space. On the other hand, HI galaxies cluster much more weakly than optical galaxies with red colors, and in fact "avoid" being located within ≈3 Mpc from the latter. By considering the clustering properties of ΛCDM halos, we confirm our previous intuition for an MHI-Mh relation with large scatter, and find that spin parameter may be a key halo property related to the gas content of present-day galaxies.
Reionization in sterile neutrino cosmologies
NASA Astrophysics Data System (ADS)
Bose, Sownak; Frenk, Carlos S.; Hou, Jun; Lacey, Cedric G.; Lovell, Mark R.
2016-12-01
We investigate the process of reionization in a model in which the dark matter is a warm elementary particle such as a sterile neutrino. We focus on models that are consistent with the dark matter decay interpretation of the recently detected line at 3.5 keV in the X-ray spectra of galaxies and clusters. In warm dark matter models, the primordial spectrum of density perturbations has a cut-off on the scale of dwarf galaxies. Structure formation therefore begins later than in the standard cold dark matter (CDM) model and very few objects form below the cut-off mass scale. To calculate the number of ionizing photons, we use the Durham semi-analytic model of galaxy formation, GALFORM. We find that even the most extreme 7 keV sterile neutrino we consider is able to reionize the Universe early enough to be compatible with the bounds on the epoch of reionization from Planck. This, perhaps surprising, result arises from the rapid build-up of high redshift galaxies in the sterile neutrino models which is also reflected in a faster evolution of their far-UV luminosity function between 10 > z > 7 than in CDM. The dominant sources of ionizing photons are systematically more massive in the sterile neutrino models than in CDM. As a consistency check on the models, we calculate the present-day luminosity function of satellites of Milky Way-like galaxies. When the satellites recently discovered in the Dark Energy Survey are taken into account, strong constraints are placed on viable sterile neutrino models.
Common Data Model for Neuroscience Data and Data Model Exchange
Gardner, Daniel; Knuth, Kevin H.; Abato, Michael; Erde, Steven M.; White, Thomas; DeBellis, Robert; Gardner, Esther P.
2001-01-01
Objective: Generalizing the data models underlying two prototype neurophysiology databases, the authors describe and propose the Common Data Model (CDM) as a framework for federating a broad spectrum of disparate neuroscience information resources. Design: Each component of the CDM derives from one of five superclasses—data, site, method, model, and reference—or from relations defined between them. A hierarchic attribute-value scheme for metadata enables interoperability with variable tree depth to serve specific intra- or broad inter-domain queries. To mediate data exchange between disparate systems, the authors propose a set of XML-derived schema for describing not only data sets but data models. These include biophysical description markup language (BDML), which mediates interoperability between data resources by providing a meta-description for the CDM. Results: The set of superclasses potentially spans data needs of contemporary neuroscience. Data elements abstracted from neurophysiology time series and histogram data represent data sets that differ in dimension and concordance. Site elements transcend neurons to describe subcellular compartments, circuits, regions, or slices; non-neuroanatomic sites include sequences to patients. Methods and models are highly domain-dependent. Conclusions: True federation of data resources requires explicit public description, in a metalanguage, of the contents, query methods, data formats, and data models of each data resource. Any data model that can be derived from the defined superclasses is potentially conformant and interoperability can be enabled by recognition of BDML-described compatibilities. Such metadescriptions can buffer technologic changes. PMID:11141510
An Empirically Calibrated Model of Cell Fate Decision Following Viral Infection
NASA Astrophysics Data System (ADS)
Coleman, Seth; Igoshin, Oleg; Golding, Ido
The life cycle of the virus (phage) lambda is an established paradigm for the way genetic networks drive cell fate decisions. But despite decades of interrogation, we are still unable to theoretically predict whether the infection of a given cell will result in cell death or viral dormancy. The poor predictive power of current models reflects the absence of quantitative experimental data describing the regulatory interactions between different lambda genes. To address this gap, we are constructing a theoretical model that captures the known interactions in the lambda network. Model assumptions and parameters are calibrated using new single-cell data from our lab, describing the activity of lambda genes at single-molecule resolution. We began with a mean-field model, aimed at exploring the population averaged gene-expression trajectories under different initial conditions. Next, we will develop a stochastic formulation, to capture the differences between individual cells within the population. The eventual goal is to identify how the post-infection decision is driven by the interplay between network topology, initial conditions, and stochastic effects. The insights gained here will inform our understanding of cell fate choices in more complex cellular systems.
f( R) gravity modifications: from the action to the data
NASA Astrophysics Data System (ADS)
Lazkoz, Ruth; Ortiz-Baños, María; Salzano, Vincenzo
2018-03-01
It is a very well established matter nowadays that many modified gravity models can offer a sound alternative to General Relativity for the description of the accelerated expansion of the universe. But it is also equally well known that no clear and sharp discrimination between any alternative theory and the classical one has been found so far. In this work, we attempt at formulating a different approach starting from the general class of f( R) theories as test probes: we try to reformulate f( R) Lagrangian terms as explicit functions of the redshift, i.e., as f( z). In this context, the f( R) setting to the consensus cosmological model, the Λ CDM model, can be written as a polynomial including just a constant and a third-order term. Starting from this result, we propose various different polynomial parameterizations f( z), including new terms which would allow for deviations from Λ CDM, and we thoroughly compare them with observational data. While on the one hand we have found no statistically preference for our proposals (even if some of them are as good as Λ CDM by using Bayesian Evidence comparison), we think that our novel approach could provide a different perspective for the development of new and observationally reliable alternative models of gravity.
A cosmology-independent calibration of type Ia supernovae data
NASA Astrophysics Data System (ADS)
Hauret, C.; Magain, P.; Biernaux, J.
2018-06-01
Recently, the common methodology used to transform type Ia supernovae (SNe Ia) into genuine standard candles has been suffering criticism. Indeed, it assumes a particular cosmological model (namely the flat ΛCDM) to calibrate the standardisation corrections parameters, i.e. the dependency of the supernova peak absolute magnitude on its colour, post-maximum decline rate and host galaxy mass. As a result, this assumption could make the data compliant to the assumed cosmology and thus nullify all works previously conducted on model comparison. In this work, we verify the viability of these hypotheses by developing a cosmology-independent approach to standardise SNe Ia data from the recent JLA compilation. Our resulting corrections turn out to be very close to the ΛCDM-based corrections. Therefore, even if a ΛCDM-based calibration is questionable from a theoretical point of view, the potential compliance of SNe Ia data does not happen in practice for the JLA compilation. Previous works of model comparison based on these data do not have to be called into question. However, as this cosmology-independent standardisation method has the same degree of complexity than the model-dependent one, it is worth using it in future works, especially if smaller samples are considered, such as the superluminous type Ic supernovae.
Integrated cosmological probes: concordance quantified
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicola, Andrina; Amara, Adam; Refregier, Alexandre, E-mail: andrina.nicola@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch
2017-10-01
Assessing the consistency of parameter constraints derived from different cosmological probes is an important way to test the validity of the underlying cosmological model. In an earlier work [1], we computed constraints on cosmological parameters for ΛCDM from an integrated analysis of CMB temperature anisotropies and CMB lensing from Planck, galaxy clustering and weak lensing from SDSS, weak lensing from DES SV as well as Type Ia supernovae and Hubble parameter measurements. In this work, we extend this analysis and quantify the concordance between the derived constraints and those derived by the Planck Collaboration as well as WMAP9, SPT andmore » ACT. As a measure for consistency, we use the Surprise statistic [2], which is based on the relative entropy. In the framework of a flat ΛCDM cosmological model, we find all data sets to be consistent with one another at a level of less than 1σ. We highlight that the relative entropy is sensitive to inconsistencies in the models that are used in different parts of the analysis. In particular, inconsistent assumptions for the neutrino mass break its invariance on the parameter choice. When consistent model assumptions are used, the data sets considered in this work all agree with each other and ΛCDM, without evidence for tensions.« less
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Leone, Frank A., Jr.
2016-01-01
A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.
Jansen, Sarah; Ball, Lauren; Lowe, Catherine
2015-04-01
This study explored private practice dietitians' perceptions of the impact of the Australian Chronic Disease Management (CDM) program on the conduct of their private practice, and the care provided to patients. Twenty-five accredited practising dietitians working in primary care participated in an individual semistructured telephone interview. Interview questions focussed on dietitians' perceptions of the proportion of patients receiving care through the CDM program, fee structures, adhering to reporting requirements and auditing. Transcript data were thematically analysed using a process of open coding. Half of the dietitians (12/25) reported that most of their patients (>75%) received care through the CDM program. Many dietitians (19/25) reported providing identical care to patients using the CDM program and private patients, but most (17/25) described spending substantially longer on administrative tasks for CDM patients. Dietitians experienced pressure from doctors and patients to keep their fees low or to bulk-bill patients using the CDM program. One-third of interviewed dietitians (8/25) expressed concern about the potential to be audited by Medicare. Recommendations to improve the CDM program included increasing the consultation length and subsequent rebate available for dietetic consultations, and increasing the number of consultations to align with dietetic best-practice guidelines. The CDM program creates challenges for dietitians working in primary care, including how to sustain the quality of patient-centred care and yet maintain equitable business practices. To ensure the CDM program appropriately assists patients to receive optimal care, further review of the CDM program within the scope of dietetics is required.
NASA Astrophysics Data System (ADS)
Li, Jun; Yang, Rongjia; Chen, Bohai
2014-12-01
We apply the Statefinder hierarchy and the growth rate of matter perturbations to discriminate modified Chaplygin gas (MCG), generalized Chaplygin gas (GCG), superfluid Chaplygin gas (SCG), purely kinetic k-essence (PKK), and ΛCDM model. We plot the evolutional trajectories of these models in the Statefinder plane and in the composite diagnostic plane. We find that GCG, MCG, SCG, PKK, and ΛCDM can be distinguished well from each other at the present epoch by using the composite diagnostic {epsilon(z), S(1)5}. Using other combinations, such as {S(1)3, S(1)4}, {S(1)3, S5}, {epsilon(z), S(1)3}, and {epsilon(z), S4}, some of these five dark energy models cannot be distinguished.
The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects
ERIC Educational Resources Information Center
Tang, Tian; Popp, David
2016-01-01
The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…
Effective Dark Matter Halo Catalog in f(R) Gravity.
He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi
2015-08-14
We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies.
An analytic formula for the supercluster mass function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seunghwan; Lee, Jounghun, E-mail: slim@astro.umass.edu, E-mail: jounghun@astro.snu.ac.kr
2014-03-01
We present an analytic formula for the supercluster mass function, which is constructed by modifying the extended Zel'dovich model for the halo mass function. The formula has two characteristic parameters whose best-fit values are determined by fitting to the numerical results from N-body simulations for the standard ΛCDM cosmology. The parameters are found to be independent of redshifts and robust against variation of the key cosmological parameters. Under the assumption that the same formula for the supercluster mass function is valid for non-standard cosmological models, we show that the relative abundance of the rich superclusters should be a powerful indicatormore » of any deviation of the real universe from the prediction of the standard ΛCDM model.« less
Periodic matrix population models: growth rate, basic reproduction number, and entropy.
Bacaër, Nicolas
2009-10-01
This article considers three different aspects of periodic matrix population models. First, a formula for the sensitivity analysis of the growth rate lambda is obtained that is simpler than the one obtained by Caswell and Trevisan. Secondly, the formula for the basic reproduction number R0 in a constant environment is generalized to the case of a periodic environment. Some inequalities between lambda and R0 proved by Cushing and Zhou are also generalized to the periodic case. Finally, we add some remarks on Demetrius' notion of evolutionary entropy H and its relationship to the growth rate lambda in the periodic case.
Lee, Kevin C; Lee, Victor Y; Zubiaurre, Laureen A; Grbic, John T; Eisig, Sidney B
2018-04-01
The Comprehensive Basic Science Examination (CBSE) is the entrance examination for oral and maxillofacial surgery, but its implementation among dental students is a relatively recent and unintended use. The aim of this study was to examine the relationship between pre-admission data and performance on the CBSE for dental students at the Columbia University College of Dental Medicine (CDM). This study followed a retrospective cohort, examining data for the CDM Classes of 2014-19. Data collected were Dental Admission Test (DAT) and CBSE scores and undergraduate GPAs for 49 CDM students who took the CBSE from September 2013 to July 2016. The results showed that the full regression model did not demonstrate significant predictive capability (F[8,40]=1.70, p=0.13). Following stepwise regression, only the DAT Perceptual Ability score remained in the final model (F[1,47]=7.97, p<0.01). Variations in DAT Perceptual Ability scores explained 15% of the variability in CBSE scores (R 2 =0.15). This study found that, among these students, pre-admission data were poor predictors of CBSE performance.
NASA Astrophysics Data System (ADS)
Dybalski, Wojciech; Pizzo, Alessandro
2018-02-01
Let $H_{P,\\sigma}$ be the single-electron fiber Hamiltonians of the massless Nelson model at total momentum $P$ and infrared cut-off $\\sigma>0$. We establish detailed regularity properties of the corresponding $n$-particle ground state wave functions $f^n_{P,\\sigma}$ as functions of $P$ and $\\sigma$. In particular, we show that \\[ |\\partial_{P^j}f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)|, \\ \\ |\\partial_{P^j} \\partial_{P^{j'}} f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)| \\leq \\frac{1}{\\sqrt{n!}} \\frac{(c\\lambda_0)^n}{\\sigma^{\\delta_{\\lambda_0}}} \\prod_{i=1}^n\\frac{ \\chi_{[\\sigma,\\kappa)}(k_i)}{|k_i|^{3/2}}, \\] where $c$ is a numerical constant, $\\lambda_0\\mapsto \\delta_{\\lambda_0}$ is a positive function of the maximal admissible coupling constant which satisfies $\\lim_{\\lambda_0\\to 0}\\delta_{\\lambda_0}=0$ and $\\chi_{[\\sigma,\\kappa)}$ is the (approximate) characteristic function of the energy region between the infrared cut-off $\\sigma$ and the ultraviolet cut-off $\\kappa$. While the analysis of the first derivative is relatively straightforward, the second derivative requires a new strategy. By solving a non-commutative recurrence relation we derive a novel formula for $f^n_{P,\\sigma}$ with improved infrared properties. In this representation $\\partial_{P^{j'}}\\partial_{P^{j}}f^n_{P,\\sigma}$ is amenable to sharp estimates obtained by iterative analytic perturbation theory in part II of this series of papers. The bounds stated above are instrumental for scattering theory of two electrons in the Nelson model, as explained in part I of this series.
Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.
van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo
2008-03-01
The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.
CMB constraints on β-exponential inflationary models
NASA Astrophysics Data System (ADS)
Santos, M. A.; Benetti, M.; Alcaniz, J. S.; Brito, F. A.; Silva, R.
2018-03-01
We analyze a class of generalized inflationary models proposed in ref. [1], known as β-exponential inflation. We show that this kind of potential can arise in the context of brane cosmology, where the field describing the size of the extra-dimension is interpreted as the inflaton. We discuss the observational viability of this class of model in light of the latest Cosmic Microwave Background (CMB) data from the Planck Collaboration through a Bayesian analysis, and impose tight constraints on the model parameters. We find that the CMB data alone prefer weakly the minimal standard model (ΛCDM) over the β-exponential inflation. However, when current local measurements of the Hubble parameter, H0, are considered, the β-inflation model is moderately preferred over the ΛCDM cosmology, making the study of this class of inflationary models interesting in the context of the current H0 tension.
The chemical composition of the Lambda Bootis stars
NASA Technical Reports Server (NTRS)
Baschek, B.; Slettebak, A.
1988-01-01
Measurements of the equivalent widths of 24 ultraviolet lines from IUE spectra of 10 Lambda Bootis or suspected Lambda Bootis stars and 19 normal standard stars of spectral types B8-A7 have been compared with line strengths determined using model atmospheres. Abundance differences are estimated via a differential analysis technique. It is found that the ratio of C, N, and O to the heavier elements Mg to Ni is significantly larger than that for solar composition stars.
Changing the Bayesian prior: Absolute neutrino mass constraints in nonlocal gravity*
NASA Astrophysics Data System (ADS)
Dirian, Yves
2017-10-01
Prior change is discussed in observational constraints studies of nonlocally modified gravity, where a model characterized by a modification of the form ˜m2R □-2R to the Einstein-Hilbert action was compared against the base Λ CDM one in a Bayesian way. It was found that the competing modified gravity model is significantly disfavored (at 22 ∶1 in terms of betting-odds) against Λ CDM given CMB +SNIa +BAO data, because of a tension appearing in the H0- ΩM plane. We identify the underlying mechanism generating such a tension and show that it is mostly caused by the late-time, quite smooth, phantom nature of the effective dark energy described by the nonlocal model. We find that the tension is resolved by considering an extension of the initial baseline, consisting in allowing the absolute mass of three degenerated massive neutrino species ∑mν/3 to take values within a prior interval consistent with existing data. As a net effect, the absolute neutrino mass is inferred to be nonvanishing at 2 σ level, best-fitting at ∑mν≈0.21 eV , and the Bayesian tension disappears rendering the nonlocal gravity model statistically equivalent to Λ CDM , given recent CMB +SNIa +BAO data. We also discuss constraints from growth rate measurements f σ8, whose fit is found to be improved by a larger massive neutrino fraction as well. The ν -extended nonlocal model also prefers a higher value of H0 than Λ CDM , therefore in better agreement with local measurements. Our study provides one more example suggesting that the neutrino density fraction Ων is partially degenerated with the nature of the dark energy. This emphasizes the importance of cosmological and terrestrial neutrino research and, as a massive neutrino background impacts structure formation observables non-negligibly, proves to be especially relevant for future galaxy surveys.
Pellejero-Ibanez, Marco; Chuang, Chia -Hsun; Rubino-Martin, J. A.; ...
2016-03-28
Here, we develop a new methodology called double-probe analysis with the aim of minimizing informative priors in the estimation of cosmological parameters. We extract the dark-energy-model-independent cosmological constraints from the joint data sets of Baryon Oscillation Spectroscopic Survey (BOSS) galaxy sample and Planck cosmic microwave background (CMB) measurement. We measure the mean values and covariance matrix of {R, l a, Ω bh 2, n s, log(A s), Ω k, H(z), D A(z), f(z)σ 8(z)}, which give an efficient summary of Planck data and 2-point statistics from BOSS galaxy sample, where R = √Ω mH 2 0, and l a =more » πr(z *)/r s(z *), z * is the redshift at the last scattering surface, and r(z *) and r s(z *) denote our comoving distance to z * and sound horizon at z * respectively. The advantage of this method is that we do not need to put informative priors on the cosmological parameters that galaxy clustering is not able to constrain well, i.e. Ω bh 2 and n s. Using our double-probe results, we obtain Ω m = 0.304 ± 0.009, H 0 = 68.2 ± 0.7, and σ 8 = 0.806 ± 0.014 assuming ΛCDM; and Ω k = 0.002 ± 0.003 and w = –1.00 ± 0.07 assuming owCDM. The results show no tension with the flat ΛCDM cosmological paradigm. By comparing with the full-likelihood analyses with fixed dark energy models, we demonstrate that the double-probe method provides robust cosmological parameter constraints which can be conveniently used to study dark energy models. We extend our study to measure the sum of neutrino mass and obtain Σm ν < 0.10/0.22 (68%/95%) assuming ΛCDM and Σm ν < 0.26/0.52 (68%/95%) assuming wCDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS.« less
Λ(t)CDM model as a unified origin of holographic and agegraphic dark energy models
NASA Astrophysics Data System (ADS)
Chen, Yun; Zhu, Zong-Hong; Xu, Lixin; Alcaniz, J. S.
2011-04-01
Motivated by the fact that any nonzero Λ can introduce a length scale or a time scale into Einstein's theory, r=ct=3/|Λ|. Conversely, any cosmological length scale or time scale can introduce a Λ(t), Λ(t)=3/rΛ2(t)=3/(c2tΛ2(t)). In this Letter, we investigate the time varying Λ(t) corresponding to the length scales, including the Hubble horizon, the particle horizon and the future event horizon, and the time scales, including the age of the universe and the conformal time. It is found out that, in this scenario, the Λ(t)CDM model can be taken as the unified origin of the holographic and agegraphic dark energy models with interaction between the matter and the dark energy, where the interacting term is determined by Q=-ρ. We place observational constraints on the Λ(t)CDM models originating from different cosmological length scales and time scales with the recently compiled “Union2 compilation” which consists of 557 Type Ia supernovae (SNIa) covering a redshift range 0.015⩽z⩽1.4. In conclusion, an accelerating expansion universe can be derived in the cases taking the Hubble horizon, the future event horizon, the age of the universe and the conformal time as the length scale or the time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, T.M.C.; et al.
We present angular diameter distance measurements obtained by locating the BAO scale in the distribution of galaxies selected from the first year of Dark Energy Survey data. We consider a sample of over 1.3 million galaxies distributed over a footprint of 1318 degmore » $^2$ with $$0.6 < z_{\\rm photo} < 1$$ and a typical redshift uncertainty of $0.03(1+z)$. This sample was selected, as fully described in a companion paper, using a color/magnitude selection that optimizes trade-offs between number density and redshift uncertainty. We investigate the BAO signal in the projected clustering using three conventions, the angular separation, the co-moving transverse separation, and spherical harmonics. Further, we compare results obtained from template based and machine learning photometric redshift determinations. We use 1800 simulations that approximate our sample in order to produce covariance matrices and allow us to validate our distance scale measurement methodology. We measure the angular diameter distance, $$D_A$$, at the effective redshift of our sample divided by the true physical scale of the BAO feature, $$r_{\\rm d}$$. We obtain close to a 4 per cent distance measurement of $$D_A(z_{\\rm eff}=0.81)/r_{\\rm d} = 10.75\\pm 0.43 $$. These results are consistent with the flat $$\\Lambda$$CDM concordance cosmological model supported by numerous other recent experimental results.« less
The COBE normalization for standard cold dark matter
NASA Technical Reports Server (NTRS)
Bunn, Emory F.; Scott, Douglas; White, Martin
1995-01-01
The Cosmic Background Explorer Satellite (COBE) detection of microwave anisotropies provides the best way of fixing the amplitude of cosmological fluctuations on the largest scales. This normalization is usually given for an n = 1 spectrum, including only the anisotropy caused by the Sachs-Wolfe effect. This is certainly not a good approximation for a model containing any reasonable amount of baryonic matter. In fact, even tilted Sachs-Wolfe spectra are not a good fit to models like cold dark matter (CDM). Here, we normalize standard CDM (sCDM) to the two-year COBE data and quote the best amplitude in terms of the conventionally used measures of power. We also give normalizations for some specific variants of this standard model, and we indicate how the normalization depends on the assumed values on n, Omega(sub B) and H(sub 0). For sCDM we find the mean value of Q = 19.9 +/- 1.5 micro-K, corresponding to sigma(sub 8) = 1.34 +/- 0.10, with the normalization at large scales being B = (8.16 +/- 1.04) x 10(exp 5)(Mpc/h)(exp 4), and other numbers given in the table. The measured rms temperature fluctuation smoothed on 10 deg is a little low relative to this normalization. This is mainly due to the low quadrupole in the data: when the quadrupole is removed, the measured value of sigma(10 deg) is quite consistent with the best-fitting the mean value of Q. The use of the mean value of Q should be preferred over sigma(10 deg), when its value can be determined for a particular theory, since it makes full use of the data.
NASA Astrophysics Data System (ADS)
Wetzel, Andrew R.; Hopkins, Philip F.; Kim, Ji-hoon; Faucher-Giguère, Claude-André; Kereš, Dušan; Quataert, Eliot
2016-08-01
Low-mass “dwarf” galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on Feedback in Realistic Environments (FIRE). This simulation models the formation of an MW-mass galaxy to z=0 within ΛCDM cosmology, including dark matter, gas, and stars at unprecedented resolution: baryon particle mass of 7070 {M}⊙ with gas kernel/softening that adapts down to 1 {pc} (with a median of 25{--}60 {pc} at z=0). Latte was simulated using the GIZMO code with a mesh-free method for accurate hydrodynamics and the FIRE-2 model for star formation and explicit feedback within a multi-phase interstellar medium. For the first time, Latte self-consistently resolves the spatial scales corresponding to half-light radii of dwarf galaxies that form around an MW-mass host down to {M}{star}≳ {10}5 {M}⊙ . Latte’s population of dwarf galaxies agrees with the LG across a broad range of properties: (1) distributions of stellar masses and stellar velocity dispersions (dynamical masses), including their joint relation; (2) the mass-metallicity relation; and (3) diverse range of star formation histories, including their mass dependence. Thus, Latte produces a realistic population of dwarf galaxies at {M}{star}≳ {10}5 {M}⊙ that does not suffer from the “missing satellites” or “too big to fail” problems of small-scale structure formation. We conclude that baryonic physics can reconcile observed dwarf galaxies with standard ΛCDM cosmology.
NASA Astrophysics Data System (ADS)
Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.
2008-03-01
Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.
Investigating the Cosmic Web with Topological Data Analysis
NASA Astrophysics Data System (ADS)
Cisewski-Kehe, Jessi; Wu, Mike; Fasy, Brittany; Hellwing, Wojciech; Lovell, Mark; Rinaldo, Alessandro; Wasserman, Larry
2018-01-01
Data exhibiting complicated spatial structures are common in many areas of science (e.g. cosmology, biology), but can be difficult to analyze. Persistent homology is a popular approach within the area of Topological Data Analysis that offers a new way to represent, visualize, and interpret complex data by extracting topological features, which can be used to infer properties of the underlying structures. In particular, TDA may be useful for analyzing the large-scale structure (LSS) of the Universe, which is an intricate and spatially complex web of matter. In order to understand the physics of the Universe, theoretical and computational cosmologists develop large-scale simulations that allow for visualizing and analyzing the LSS under varying physical assumptions. Each point in the 3D data set represents a galaxy or a cluster of galaxies, and topological summaries ("persistent diagrams") can be obtained summarizing the different ordered holes in the data (e.g. connected components, loops, voids).The topological summaries are interesting and informative descriptors of the Universe on their own, but hypothesis tests using the topological summaries would provide a way to make more rigorous comparisons of LSS under different theoretical models. For example, the received cosmological model has cold dark matter (CDM); however, while the case is strong for CDM, there are some observational inconsistencies with this theory. Another possibility is warm dark matter (WDM). It is of interest to see if a CDM Universe and WDM Universe produce LSS that is topologically distinct.We present several possible test statistics for two-sample hypothesis tests using the topological summaries, carryout a simulation study to investigate the suitableness of the proposed test statistics using simulated data from a variation of the Voronoi foam model, and finally we apply the proposed inference framework to WDM vs. CDM cosmological simulation data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya, E-mail: bill.wright@port.ac.uk, E-mail: hans.winther@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk
The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N -body simulations of ΛCDM and f ( R ) gravity withmore » massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N -body to percent level accuracy for both the total and CDM matter power-spectra up to k ∼< 1 h /Mpc.« less
NASA Astrophysics Data System (ADS)
Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya
2017-10-01
The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N-body simulations of ΛCDM and f(R) gravity with massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N-body to percent level accuracy for both the total and CDM matter power-spectra up to klesssim 1 h/Mpc.
Beyond Λ CDM: Problems, solutions, and the road ahead
NASA Astrophysics Data System (ADS)
Bull, Philip; Akrami, Yashar; Adamek, Julian; Baker, Tessa; Bellini, Emilio; Beltrán Jiménez, Jose; Bentivegna, Eloisa; Camera, Stefano; Clesse, Sébastien; Davis, Jonathan H.; Di Dio, Enea; Enander, Jonas; Heavens, Alan; Heisenberg, Lavinia; Hu, Bin; Llinares, Claudio; Maartens, Roy; Mörtsell, Edvard; Nadathur, Seshadri; Noller, Johannes; Pasechnik, Roman; Pawlowski, Marcel S.; Pereira, Thiago S.; Quartin, Miguel; Ricciardone, Angelo; Riemer-Sørensen, Signe; Rinaldi, Massimiliano; Sakstein, Jeremy; Saltas, Ippocratis D.; Salzano, Vincenzo; Sawicki, Ignacy; Solomon, Adam R.; Spolyar, Douglas; Starkman, Glenn D.; Steer, Danièle; Tereno, Ismael; Verde, Licia; Villaescusa-Navarro, Francisco; von Strauss, Mikael; Winther, Hans A.
2016-06-01
Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, Λ CDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of Λ CDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.
Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Haim, E Ben; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Di Ruzza, B; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H J; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S
2006-11-10
We search for excited and exotic muon states mu* using an integrated luminosity of 371 pb(-1) of p[over]p collision data at sqrt[s]=1.96 TeV. We search for associated production of mumu* followed by the decay mu*-->mugamma. We compare the data to model predictions as a function of the mass of the excited muon M(mu*), the compositeness energy scale Lambda, and the gauge coupling factor f. No signal above the standard model expectation is observed. We exclude 107
Prediction of narrow N* and {Lambda}* with hidden charm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Jiajun; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia; Molina, R.
2011-10-24
The interaction between various charmed mesons and charmed baryons, such as D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled channel unitary approach with the local hidden gauge formalism. Six narrow N* and {Lambda}* resonances are dynamically generated with mass above 4 GeV and width smaller than 100 MeV. These predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks. We make estimates of production cross sections of these predicted resonances in p-barp collisions for PANDA at the forthcoming FAIR facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubert, B
2004-02-29
Using events in which one of two neutral-B mesons from the decay of an {Upsilon}(4S) resonance is fully reconstructed, we set limits on the difference between the decay rates of the two neutral-B mass eigenstates and on CP, T, and CPT violation in B{sup 0}{bar B}{sup 0} mixing. The reconstructed decays, comprising both CP and flavor eigenstates, are obtained from 88 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We determine six independent parameters governing oscillations ({Delta}m, {Delta}{Lambda}/{Lambda}), CPT and CP violation (Re z, Im z), and CP andmore » T violation (Im {lambda}{sub CP}, |q/p|), where {lambda}{sub cp} characterizes B{sup 0} and {bar B}{sup 0} decays to states of charmonium plus K{sub S}{sup 0} or K{sub L}{sup 0}. The results are sgn(Re {lambda}{sub CP}){Delta}{Lambda}/{Lambda} = .0.008 {+-} 0.037(stat.) {+-} 0.018(syst.) [-0.084, 0.068], |q/p| = 1.029 {+-} 0.013(stat.) {+-} 0.011(syst.) [1.001, 1.057], (Re {lambda}{sub CP}/|{lambda}{sub CP}|)Re z = 0.014 {+-} 0.035(stat.) {+-} 0.034(syst.) [-0.072, 0.101], Imz = 0.038 {+-} 0.029(stat.) {+-} 0.025(syst.) [-0.028, 0.104]. The values inside square brackets indicate the 90% confidence-level intervals. The values of Im {lambda}{sub CP} and {Delta}m are consistent with previous analyses and are used as cross-checks. These measurements are in agreement with Standard Model expectations.« less
NASA Technical Reports Server (NTRS)
Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif
1994-01-01
We study the coupled evolution of the intergalactic medium (IGM) and the emerging structure in the universe in the context of the cold dark matter (CDM) model, with a special focus on the consequences of imposing reionization and the Gunn-Peterson constraint as a boundary condition on the model. We have calculated the time-varying density of the IGM by coupling our detailed, numerical calculations of the thermal and ionization balance and radiative transfer in a uniform, spatially averaged IGM of H and He, including the mean opacity of an evolving distribution of gas clumps which correspond to quasar absorption line clouds, to the linearized equations for the growth of density fluctuations in both the gaseous and dark matter components in a CDM universe. We use the linear growth equations to identify the fraction of the gas which must have collapsed out at each epoch, an approach similar in spirit to the so-called Press-Schechter formalism. We identify the IGM density with the uncollapsed baryon fraction. The collapsed fraction is postulated to be a source of energy injection into the IGM, by radiation or bulk hydrodynamical heating (e.g., via shocks) or both, at a rate which is marginally enough to satisfy the Gunn-Peterson constraint at z less than 5. Our results include the following: (1) We find that the IGM in a CDM model must have contained a substantial fraction of the total baryon density of the universe both during and after its reionization epoch. (2) As a result, our previous conclusion that the observed Quasi-Stellar Objects (QSOs) at high redshift are not sufficient to ionize the IGM enough to satisfy the Gunn-Peterson constraint is confirmed. (3) We predict a detectable He II Gunn-Peterson effect at 304(1 + z) A in the spectra of quasars at a range of redshift z greater than or approx. 3, depending on the nature of the sources of IGM reionization. (4) We find, moreover, that a CDM model with high bias parameter b (i.e., b greater than or approx. 2) cannot account for the baryon content of the universe at z approximately 3 observed in quasar absorption line gas unless Omega (sub B) significantly exceeds the maximum value allowed by big bang nucleocynthesis. (5) For a CDM model with bias parameter within the allowed range of (lower) values, the lower limit to Omega(sub B) imposed by big bang nucleosynthesis (Omega(sub B) h(sup 2) greater than or equal to 0.01) combines with our results to yield the minimum IGM density for the CDM fodel. For CDM with b = 1 (Cosmic Background Explorer (COBE) normalization), we find Omega(sub IGM)(sup min) (z approximately 4) approx. equal 0.02-0.03, and Omega(sub IGM)(sup min)(z approximately 0) approx. equal 0.005-0.03, depending upon the nature of the sources of IGM reionization. (6) In general, we find that self-consistent reionization of the IGM by the collapsed baryon fraction has a strong effect on the rate of collapse. (7) As a further example, we show that the feedback effect on the IGM of energy release by the collapsed baryon fraction may explain the slow evolution of the observed comoving QSO number density between z = 5 and z = 2, followed by the sharp decline after z = 2.
Revisiting dark energy models using differential ages of galaxies
NASA Astrophysics Data System (ADS)
Rani, Nisha; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha; Biesiada, Marek
2017-03-01
In this work, we use a test based on the differential ages of galaxies for distinguishing the dark energy models. As proposed by Jimenez and Loeb in [1], relative ages of galaxies can be used to put constraints on various cosmological parameters. In the same vein, we reconstruct H0dt/dz and its derivative (H0d2t/dz2) using a model independent technique called non-parametric smoothing. Basically, dt/dz is the change in the age of the object as a function of redshift which is directly linked with the Hubble parameter. Hence for reconstruction of this quantity, we use the most recent H(z) data. Further, we calculate H0dt/dz and its derivative for several models like Phantom, Einstein de Sitter (EdS), ΛCDM, Chevallier-Polarski-Linder (CPL) parametrization, Jassal-Bagla-Padmanabhan (JBP) parametrization and Feng-Shen-Li-Li (FSLL) parametrization. We check the consistency of these models with the results of reconstruction obtained in a model independent way from the data. It is observed that H0dt/dz as a tool is not able to distinguish between the ΛCDM, CPL, JBP and FSLL parametrizations but, as expected, EdS and Phantom models show noticeable deviation from the reconstructed results. Further, the derivative of H0dt/dz for various dark energy models is more sensitive at low redshift. It is found that the FSLL model is not consistent with the reconstructed results, however, the ΛCDM model is in concordance with the 3σ region of the reconstruction at redshift z>= 0.3.
No Evidence for Extensions to the Standard Cosmological Model.
Heavens, Alan; Fantaye, Yabebal; Sellentin, Elena; Eggers, Hans; Hosenie, Zafiirah; Kroon, Steve; Mootoovaloo, Arrykrishna
2017-09-08
We compute the Bayesian evidence for models considered in the main analysis of Planck cosmic microwave background data. By utilizing carefully defined nearest-neighbor distances in parameter space, we reuse the Monte Carlo Markov chains already produced for parameter inference to compute Bayes factors B for many different model-data set combinations. The standard 6-parameter flat cold dark matter model with a cosmological constant (ΛCDM) is favored over all other models considered, with curvature being mildly favored only when cosmic microwave background lensing is not included. Many alternative models are strongly disfavored by the data, including primordial correlated isocurvature models (lnB=-7.8), nonzero scalar-to-tensor ratio (lnB=-4.3), running of the spectral index (lnB=-4.7), curvature (lnB=-3.6), nonstandard numbers of neutrinos (lnB=-3.1), nonstandard neutrino masses (lnB=-3.2), nonstandard lensing potential (lnB=-4.6), evolving dark energy (lnB=-3.2), sterile neutrinos (lnB=-6.9), and extra sterile neutrinos with a nonzero scalar-to-tensor ratio (lnB=-10.8). Other models are less strongly disfavored with respect to flat ΛCDM. As with all analyses based on Bayesian evidence, the final numbers depend on the widths of the parameter priors. We adopt the priors used in the Planck analysis, while performing a prior sensitivity analysis. Our quantitative conclusion is that extensions beyond the standard cosmological model are disfavored by Planck data. Only when newer Hubble constant measurements are included does ΛCDM become disfavored, and only mildly, compared with a dynamical dark energy model (lnB∼+2).
No Evidence for Extensions to the Standard Cosmological Model
NASA Astrophysics Data System (ADS)
Heavens, Alan; Fantaye, Yabebal; Sellentin, Elena; Eggers, Hans; Hosenie, Zafiirah; Kroon, Steve; Mootoovaloo, Arrykrishna
2017-09-01
We compute the Bayesian evidence for models considered in the main analysis of Planck cosmic microwave background data. By utilizing carefully defined nearest-neighbor distances in parameter space, we reuse the Monte Carlo Markov chains already produced for parameter inference to compute Bayes factors B for many different model-data set combinations. The standard 6-parameter flat cold dark matter model with a cosmological constant (Λ CDM ) is favored over all other models considered, with curvature being mildly favored only when cosmic microwave background lensing is not included. Many alternative models are strongly disfavored by the data, including primordial correlated isocurvature models (ln B =-7.8 ), nonzero scalar-to-tensor ratio (ln B =-4.3 ), running of the spectral index (ln B =-4.7 ), curvature (ln B =-3.6 ), nonstandard numbers of neutrinos (ln B =-3.1 ), nonstandard neutrino masses (ln B =-3.2 ), nonstandard lensing potential (ln B =-4.6 ), evolving dark energy (ln B =-3.2 ), sterile neutrinos (ln B =-6.9 ), and extra sterile neutrinos with a nonzero scalar-to-tensor ratio (ln B =-10.8 ). Other models are less strongly disfavored with respect to flat Λ CDM . As with all analyses based on Bayesian evidence, the final numbers depend on the widths of the parameter priors. We adopt the priors used in the Planck analysis, while performing a prior sensitivity analysis. Our quantitative conclusion is that extensions beyond the standard cosmological model are disfavored by Planck data. Only when newer Hubble constant measurements are included does Λ CDM become disfavored, and only mildly, compared with a dynamical dark energy model (ln B ˜+2 ).
Effects of cross-correlated noises on the relaxation time of the bistable system
NASA Astrophysics Data System (ADS)
Xie, Chong-Wei; Mei, Dong-Cheng
2003-11-01
The stationary correlation function and the associated relaxation time for a general system driven by cross-correlated white noises are derived, by virtue of a Stratonovich-like ansatz. The effects of correlated noises on the relaxation time of a bistable kinetic model coupled to an additive and a multiplicative white noises are studied. It is proved that for small fluctuations the relaxation time Tc as a function of lambda (the correlated intensity between noises) exhibits very different behaviours for alpha
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, B; Davies, G; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Oguri, V; Oliveira, N; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vlimant, J-R; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G
2007-11-09
We search for the production of single top quarks via flavor-changing-neutral-current couplings of a gluon to the top quark and a charm (c) or up (u) quark. We analyze 230 pb{-1} of lepton+jets data from pp[over] collisions at a center of mass energy of 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We observe no significant deviation from standard model predictions, and hence set upper limits on the anomalous coupling parameters kappa{g}{c}/Lambda and kappa{g}{u}/Lambda, where kappa{g} define the strength of tcg and tug couplings, and Lambda defines the scale of new physics. The limits at 95% C.L. are kappa{g}{c}/Lambda<0.15 TeV-1 and kappa{g}{u}/Lambda<0.037 TeV-1.
Data management in clinical research: An overview
Krishnankutty, Binny; Bellary, Shantala; Kumar, Naveen B.R.; Moodahadu, Latha S.
2012-01-01
Clinical Data Management (CDM) is a critical phase in clinical research, which leads to generation of high-quality, reliable, and statistically sound data from clinical trials. This helps to produce a drastic reduction in time from drug development to marketing. Team members of CDM are actively involved in all stages of clinical trial right from inception to completion. They should have adequate process knowledge that helps maintain the quality standards of CDM processes. Various procedures in CDM including Case Report Form (CRF) designing, CRF annotation, database designing, data-entry, data validation, discrepancy management, medical coding, data extraction, and database locking are assessed for quality at regular intervals during a trial. In the present scenario, there is an increased demand to improve the CDM standards to meet the regulatory requirements and stay ahead of the competition by means of faster commercialization of product. With the implementation of regulatory compliant data management tools, CDM team can meet these demands. Additionally, it is becoming mandatory for companies to submit the data electronically. CDM professionals should meet appropriate expectations and set standards for data quality and also have a drive to adapt to the rapidly changing technology. This article highlights the processes involved and provides the reader an overview of the tools and standards adopted as well as the roles and responsibilities in CDM. PMID:22529469
NASA Technical Reports Server (NTRS)
Kowitt, Matt; Cheng, Ed; Silverberg, Bob; Ganga, Ken; Page, Lyman; Jarosik, Norm; Netterfield, Barth; Wilkinson, Dave; Meyer, Stephan; Inman, Casey;
1994-01-01
The observations and results from the FIRS, SK93, and MSAM-1, experiments are discussed. These experiments search for anisotropy in the cosmic microwave background over a range in angular scale from 180 deg to 0.5 deg and a range in frequency from 26 to 680 GHz. Emphasis is placed on the observing strategy and potential systematic errors. Contamination of the data by galactic sources is addressed. Future directions are indicated. The results for all three experiments, as found by us and others, are given in the context of the standard CDM model, Q(sub CDM), and the model-independent band-power estimates.
The algebraic theory of latent projectors in lambda matrices
NASA Technical Reports Server (NTRS)
Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.
1981-01-01
Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.
Influence of the sex of the transmitting grandparent in congenital myotonic dystrophy.
López de Munain, A; Cobo, A M; Poza, J J; Navarrete, D; Martorell, L; Palau, F; Emparanza, J I; Baiget, M
1995-09-01
To analyse the influence of the sex of the transmitting grandparents on the occurrence of the congenital form of myotonic dystrophy (CDM), we have studied complete three generation pedigrees of 49 CDM cases, analysing: (1) the sex distribution in the grandparents' generation, and (2) the intergenerational amplification of the CTG repeat, measured in its absolute and relative values, between grandparents and the mothers of CDM patients and between the latter and their CDM children. The mean relative intergenerational increase in the 32 grandparent-mother pairs was significantly greater than in the 56 mother-CDM pairs (Mann-Whitney U test, p < 0.001). The mean expansion of the grandfathers (103 CTG repeats) was also significantly different from that seen in the grandmothers' group (154 CTG repeats) (Mann-Whitney U test, p < 0.01). This excess of non-manifesting males between the CDM grandparents' generation with a smaller CTG length than the grandmothers could suggest that the premutation has to be transmitted by a male to reach the degree of instability responsible for subsequent intergenerational CTG expansions without size constraints characteristic of the CDM range.
Exploring the clean development mechanism: Malaysian case study.
Pedersen, Anne
2008-02-01
During 2006 the CDM market in Malaysia became established and by December 2007 a total of 20 Malaysian projects had registered with the CDM Executive Board. The Kyoto Protocol defines the Annex 1 countries, as countries that are obliged to reduce their greenhouse gas (GHG) emissions and the clean development mechanism (CDM) allows Annex 1 countries to develop projects, which contribute to emission reduction, in non-Annex 1 (developing) countries. Currently, two projects have been corrected due to request for review and there is one project for which review is requested. Two projects have been rejected by the Executive Board. The broad knowledge of CDM in Malaysia and the number of successful projects are partly due to the well-functioning CDM institutional framework in Malaysia. As an illustration this article focuses on a Malaysian-Danish project and describes the implementation of CDM in Malaysia and refers to this specific project. The project was registered with the CDM Executive Board in May 2007 and is a methane avoidance project in which methane is captured from a landfill and used to generate electricity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang Xianwei; Department of Physics, Henan Normal University, Xinxiang 453007; Li Haibo
2010-03-01
We discuss the possibility of searching for the {Lambda}-{Lambda} oscillations for coherent {Lambda}{Lambda} production in the J/{psi}{yields}{Lambda}{Lambda} decay process. The sensitivity of measurement of {Lambda}-{Lambda} oscillation in the external field at BES-III experiment is considered. These considerations indicate an alternative way to probe the {Delta}B=2 amplitude in addition to neutron oscillation experiments. Both coherent and time-dependent information can be used to extract the {Lambda}-{Lambda} oscillation parameter. With one year's luminosity at BES-III, we can set an upper limit of {delta}m{sub {Lambda}{Lambda}<}10{sup -15} MeV at 90% confidence level, corresponding to about 10{sup -6} s of {Lambda}-{Lambda} oscillation time.
Real- and redshift-space halo clustering in f(R) cosmologies
NASA Astrophysics Data System (ADS)
Arnalte-Mur, Pablo; Hellwing, Wojciech A.; Norberg, Peder
2017-05-01
We present two-point correlation function statistics of the mass and the haloes in the chameleon f(R) modified gravity scenario using a series of large-volume N-body simulations. Three distinct variations of f(R) are considered (F4, F5 and F6) and compared to a fiducial Λ cold dark matter (ΛCDM) model in the redshift range z ∈ [0, 1]. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales >20 h-1 Mpc agrees with the linear General Relativity (GR) Kaiser formula for the viable f(R) models considered. We consider three halo populations characterized by spatial abundances comparable to that of luminous red galaxies and galaxy clusters. The redshift-space halo correlation functions of F4 and F5 deviate significantly from ΛCDM at intermediate and high redshift, as the f(R) halo bias is smaller than or equal to that of the ΛCDM case. Finally, we introduce a new model-independent clustering statistic to distinguish f(R) from GR: the relative halo clustering ratio - R. The sampling required to adequately reduce the scatter in R will be available with the advent of the next-generation galaxy redshift surveys. This will foster a prospective avenue to obtain largely model-independent cosmological constraints on this class of modified gravity models.
Model-independent Evidence for Dark Energy Evolution from Baryon Acoustic Oscillations
NASA Astrophysics Data System (ADS)
Sahni, V.; Shafieloo, A.; Starobinsky, A. A.
2014-10-01
Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s-1 Mpc-1 at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh 2 from SDSS DR9 and DR11 data, namely, Omh 2 ≈ 0.122 ± 0.01, which is equivalent to Ω0m h 2 for the spatially flat ΛCDM model, is in tension with the value Ω0m h 2 = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.
RECONCILIATION OF WAITING TIME STATISTICS OF SOLAR FLARES OBSERVED IN HARD X-RAYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschwanden, Markus J.; McTiernan, James M., E-mail: aschwanden@lmsal.co, E-mail: jimm@ssl.berkeley.ed
2010-07-10
We study the waiting time distributions of solar flares observed in hard X-rays with ISEE-3/ICE, HXRBS/SMM, WATCH/GRANAT, BATSE/CGRO, and RHESSI. Although discordant results and interpretations have been published earlier, based on relatively small ranges (<2 decades) of waiting times, we find that all observed distributions, spanning over 6 decades of waiting times ({Delta}t {approx} 10{sup -3}-10{sup 3} hr), can be reconciled with a single distribution function, N({Delta}t) {proportional_to} {lambda}{sub 0}(1 + {lambda}{sub 0{Delta}}t){sup -2}, which has a power-law slope of p {approx} 2.0 at large waiting times ({Delta}t {approx} 1-1000 hr) and flattens out at short waiting times {Delta}t {approx}
England, Lucinda; Kotelchuck, Milton; Wilson, Hoyt G; Diop, Hafsatou; Oppedisano, Paul; Kim, Shin Y; Cui, Xiaohui; Shapiro-Mendoza, Carrie K
2015-10-01
Women with gestational diabetes mellitus (GDM) may be able to reduce their risk of recurrent GDM and progression to type 2 diabetes mellitus through lifestyle change; however, there is limited population-based information on GDM recurrence rates. We used data from a population of women delivering two sequential live singleton infants in Massachusetts (1998-2007) to estimate the prevalence of chronic diabetes mellitus (CDM) and GDM in parity one pregnancies and recurrence of GDM and progression from GDM to CDM in parity two pregnancies. We examined four diabetes classification approaches; birth certificate (BC) data alone, hospital discharge (HD) data alone, both sources hierarchically combined with a diagnosis of CDM from either source taking priority over a diagnosis of GDM, and both sources combined including only pregnancies with full agreement in diagnosis. Descriptive statistics were used to describe population characteristics, prevalence of CDM and GDM, and recurrence of diabetes in successive pregnancies. Diabetes classification agreement was assessed using the Kappa statistic. Associated maternal characteristics were examined through adjusted model-based t tests and Chi square tests. A total of 134,670 women with two sequential deliveries of parities one and two were identified. While there was only slight agreement on GDM classification across HD and BC records, estimates of GDM recurrence were fairly consistent; nearly half of women with GDM in their parity one pregnancy developed GDM in their subsequent pregnancy. While estimates of progression from GDM to CDM across sequential pregnancies were more variable, all approaches yielded estimates of ≤5 %. The development of either GDM or CDM following a parity one pregnancy with no diagnosis of diabetes was <3 % across approaches. Women with recurrent GDM were disproportionately older and foreign born. Recurrent GDM is a serious life course public health issue; the inter-pregnancy interval provides an important window for diabetes prevention.
Rowland, Christopher R; Glass, Katherine A; Ettyreddy, Adarsh R; Gloss, Catherine C; Matthews, Jared R L; Huynh, Nguyen P T; Guilak, Farshid
2018-05-30
Cartilage-derived matrix (CDM) has emerged as a promising scaffold material for tissue engineering of cartilage and bone due to its native chondroinductive capacity and its ability to support endochondral ossification. Because it consists of native tissue, CDM can undergo cellular remodeling, which can promote integration with host tissue and enables it to be degraded and replaced by neotissue over time. However, enzymatic degradation of decellularized tissues can occur unpredictably and may not allow sufficient time for mechanically competent tissue to form, especially in the harsh inflammatory environment of a diseased joint. The goal of the current study was to engineer cartilage and bone constructs with the ability to inhibit aberrant inflammatory processes caused by the cytokine interleukin-1 (IL-1), through scaffold-mediated delivery of lentiviral particles containing a doxycycline-inducible IL-1 receptor antagonist (IL-1Ra) transgene on anatomically-shaped CDM constructs. Additionally, scaffold-mediated lentiviral gene delivery was used to facilitate spatial organization of simultaneous chondrogenic and osteogenic differentiation via site-specific transduction of a single mesenchymal stem cell (MSC) population to overexpress either chondrogenic, transforming growth factor-beta 3 (TGF-β3), or osteogenic, bone morphogenetic protein-2 (BMP-2), transgenes. Controlled induction of IL-1Ra expression protected CDM hemispheres from inflammation-mediated degradation, and supported robust bone and cartilage tissue formation even in the presence of IL-1. In the absence of inflammatory stimuli, controlled cellular remodeling was exploited as a mechanism for fusing concentric CDM hemispheres overexpressing BMP-2 and TGF-β3 into a single bi-layered osteochondral construct. Our findings demonstrate that site-specific delivery of inducible and tunable transgenes confers spatial and temporal control over both CDM scaffold remodeling and neotissue composition. Furthermore, these constructs provide a microphysiological in vitro joint organoid model with site-specific, tunable, and inducible protein delivery systems for examining the spatiotemporal response to pro-anabolic and/or inflammatory signaling across the osteochondral interface. Copyright © 2018 Elsevier Ltd. All rights reserved.
An Investigation of Factors Influencing Nurses' Clinical Decision-Making Skills.
Wu, Min; Yang, Jinqiu; Liu, Lingying; Ye, Benlan
2016-08-01
This study aims to investigate the influencing factors on nurses' clinical decision-making (CDM) skills. A cross-sectional nonexperimental research design was conducted in the medical, surgical, and emergency departments of two university hospitals, between May and June 2014. We used a quantile regression method to identify the influencing factors across different quantiles of the CDM skills distribution and compared the results with the corresponding ordinary least squares (OLS) estimates. Our findings revealed that nurses were best at the skills of managing oneself. Educational level, experience, and the total structural empowerment had significant positive impacts on nurses' CDM skills, while the nurse-patient relationship, patient care and interaction, formal empowerment, and information empowerment were negatively correlated with nurses' CDM skills. These variables explained no more than 30% of the variance in nurses' CDM skills and mainly explained the lower quantiles of nurses' CDM skills distribution. © The Author(s) 2016.
Zweifler, John
2007-01-01
Bold steps are necessary to improve quality of care for patients with chronic diseases and increase satisfaction of both primary care physicians and patients. Office-based chronic disease management (CDM) workers can achieve these objectives by offering self-management support, maintaining disease registries, and monitoring compliance from the point of care. CDM workers can provide the missing link by connecting patients, primary care physicans, and CDM services sponsored by health plans or in the community. CDM workers should be supported financially by Medicare, Medicaid, and commercial health plans through reimbursements to physicians for units of service, analogous to California’s Comprehensive Perinatal Services Program. Care provided by CDM workers should be standardized, and training requirements should be sufficiently flexible to ensure wide dissemination. CDM workers can potentially improve quality while reducing costs for preventable hospitalizations and emergency department visits, but evaluation at multiple levels is recommended. PMID:17893388
Breaking CMB degeneracy in dark energy through LSS
NASA Astrophysics Data System (ADS)
Lee, Seokcheon
2016-03-01
The cosmic microwave background (CMB) and large-scale structure (LSS) are complementary probes in the investigatation of the early and late time Universe. After the current accomplishment of the high accuracies of CMB measurements, accompanying precision cosmology from LSS data is emphasized. We investigate the dynamical dark energy (DE) models which can produce the same CMB angular power spectra as that of the Λ CDM model with less than a sub-percent level accuracy. If one adopts the dynamical DE models using the so-called Chevallier-Polarski-Linder (CPL) parametrization, ω equiv ω 0 + ω a(1-a), then one obtains models (ω 0,ω a) = (-0.8,-0.767),(-0.9,-0.375), (-1.1,0.355), (-1.2,0.688) named M8, M9, M11, and M12, respectively. The differences of the growth rate, f, which is related to the redshift-space distortions (RSD) between different DE models and the Λ CDM model are about 0.2 % only at z = 0. The difference of f between M8 (M9, M11, M12) and the Λ CDM model becomes maximum at z ˜eq 0.25 with -2.4 (-1.2, 1.2, 2.5) %. This is a scale-independent quantity. One can investigate the one-loop correction of the matter power spectrum of each model using the standard perturbation theory in order to probe the scale-dependent quantity in the quasi-linear regime (i.e. k le 0.4 {h^{-1} Mpc}). The differences in the matter power spectra including the one-loop correction between M8 (M9, M11, M12) and the Λ CDM model for the k= 0.4 {h^{-1} Mpc} scale are 1.8 (0.9, 1.2, 3.0) % at z=0, 3.0 (1.6, 1.9, 4.2) % at z=0.5, and 3.2 (1.7, 2.0, 4.5) % at z=1.0. The larger departure from -1 of ω 0, the larger the difference in the power spectrum. Thus, one should use both the RSD and the quasi-linear observable in order to discriminate a viable DE model among a slew of the models which are degenerate in CMB. Also we obtain the lower limit on ω 0> -1.5 from the CMB acoustic peaks and this will provide a useful limitation on phantom models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akarsu, Özgür; Bouhmadi-López, Mariam; Brilenkov, Maxim
We study the late-time evolution of the Universe where dark energy (DE) is presented by a barotropic fluid on top of cold dark matter (CDM) . We also take into account the radiation content of the Universe. Here by the late stage of the evolution we refer to the epoch where CDM is already clustered into inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Under this condition the mechanical approach is an adequate tool to study the Universe deep inside the cell of uniformity. More precisely, we study scalar perturbations of the FLRW metric due to inhomogeneities ofmore » CDM as well as fluctuations of radiation and DE. For an arbitrary equation of state for DE we obtain a system of equations for the scalar perturbations within the mechanical approach. First, in the case of a constant DE equation of state parameter w, we demonstrate that our method singles out the cosmological constant as the only viable dark energy candidate. Then, we apply our approach to variable equation of state parameters in the form of three different linear parametrizations of w, e.g., the Chevallier-Polarski-Linder perfect fluid model. We conclude that all these models are incompatible with the theory of scalar perturbations in the late Universe.« less
CMB-galaxy correlation in Unified Dark Matter scalar field cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino
We present an analysis of the cross-correlation between the CMB and the large-scale structure (LSS) of the Universe in Unified Dark Matter (UDM) scalar field cosmologies. We work out the predicted cross-correlation function in UDM models, which depends on the speed of sound of the unified component, and compare it with observations from six galaxy catalogues (NVSS, HEAO, 2MASS, and SDSS main galaxies, luminous red galaxies, and quasars). We sample the value of the speed of sound and perform a likelihood analysis, finding that the UDM model is as likely as the ΛCDM, and is compatible with observations for amore » range of values of c{sub ∞} (the value of the sound speed at late times) on which structure formation depends. In particular, we obtain an upper bound of c{sub ∞}{sup 2} ≤ 0.009 at 95% confidence level, meaning that the ΛCDM model, for which c{sub ∞}{sup 2} = 0, is a good fit to the data, while the posterior probability distribution peaks at the value c{sub ∞}{sup 2} = 10{sup −4} . Finally, we study the time dependence of the deviation from ΛCDM via a tomographic analysis using a mock redshift distribution and we find that the largest deviation is for low-redshift sources, suggesting that future low-z surveys will be best suited to constrain UDM models.« less
Yang Baxter and anisotropic sigma and lambda models, cyclic RG and exact S-matrices
NASA Astrophysics Data System (ADS)
Appadu, Calan; Hollowood, Timothy J.; Price, Dafydd; Thompson, Daniel C.
2017-09-01
Integrable deformation of SU(2) sigma and lambda models are considered at the classical and quantum levels. These are the Yang-Baxter and XXZ-type anisotropic deformations. The XXZ type deformations are UV safe in one regime, while in another regime, like the Yang-Baxter deformations, they exhibit cyclic RG behaviour. The associ-ated affine quantum group symmetry, realized classically at the Poisson bracket level, has q a complex phase in the UV safe regime and q real in the cyclic RG regime, where q is an RG invariant. Based on the symmetries and RG flow we propose exact factorizable S-matrices to describe the scattering of states in the lambda models, from which the sigma models follow by taking a limit and non-abelian T-duality. In the cyclic RG regimes, the S-matrices are periodic functions of rapidity, at large rapidity, and in the Yang-Baxter case violate parity.
NASA Astrophysics Data System (ADS)
Dutton, Aaron A.; Treu, Tommaso
2014-03-01
Recent studies have shown that massive elliptical galaxies have total mass density profiles within an effective radius that can be approximated as ρ_tot∝ r^{-γ^', with mean slope <γ'> = 2.08 ± 0.03 and scatter σ _{γ ^' } }=0.16± 0.02. The small scatter of the slope (known as the bulge-halo conspiracy) is not generic in Λ cold dark matter (ΛCDM) based models and therefore contains information about the galaxy formation process. We compute the distribution of γ' for ΛCDM-based models that reproduce the observed correlations between stellar mass, velocity dispersion, and effective radius of early-type galaxies in the Sloan Digital Sky Survey. The models have a range of stellar initial mass functions (IMFs) and dark halo responses to galaxy formation. The observed distribution of γ' is well reproduced by a model with cosmologically motivated but uncontracted dark matter haloes, and a Salpeter-type IMF. Other models are on average ruled out by the data, even though they may happen in individual cases. Models with adiabatic halo contraction (and lighter IMFs) predict too small values of γ'. Models with halo expansion, or mass-follows-light predict too high values of γ'. Our study shows that the non-homologous structure of massive early-type galaxies can be precisely reproduced by ΛCDM models if the IMF is not universal and if mechanisms, such as feedback from active galactic nuclei, or dynamical friction, effectively on average counterbalance the contraction of the halo expected as a result of baryonic cooling.
Petry, Sandrine; Furlan, Sylviane; Crepeau, Marie-Jeanne; Cerning, Jutta; Desmazeaud, Michel
2000-01-01
We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production. PMID:10919802
[Research on identification of species of fruit trees by spectral analysis].
Xing, Dong-Xing; Chang, Qing-Rui
2009-07-01
Using the spectral reflectance data (R2) of canopies, the present paper identifies seven species of fruit trees bearing fruit in the fruit mature period. Firstly, it compares the fruit tree species identification capability of six kinds of satellite sensors and four kinds of vegetation index through re-sampling the spectral data with six kinds of pre-defined filter function and the related data processing of calculating vegetation indexes. Then, it structures a BP neural network model for identifying seven species of fruit trees on the basis of choosing the best transformation of R(lambda) and optimizing the model parameters. The main conclusions are: (1) the order of the identification capability of the six kinds of satellite sensors from strong to weak is: MODIS, ASTER, ETM+, HRG, QUICKBIRD and IKONOS; (2) among the four kinds of vegetation indexes, the identification capability of RVI is the most powerful, the next is NDVI, while the identification capability of SAVI or DVI is relatively weak; (3) The identification capability of RVI and NDVI calculated with the reflectance of near-infrared and red channels of ETM+ or MODIS sensor is relatively powerful; (4) Among R(lambda) and its 22 kinds of transformation data, d1 [log(1/R(lambda))](derivative gap is set 9 nm) is the best transformation for structuring BP neural network model; (5) The paper structures a 3-layer BP neural network model for identifying seven species of fruit trees using the best transformation of R(lambda) which is d1 [log(1/R(lambda))](derivative gap is set 9 nm).
Parameter estimation with Sandage-Loeb test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Jia-Jia; Zhang, Jing-Fei; Zhang, Xin, E-mail: gengjiajia163@163.com, E-mail: jfzhang@mail.neu.edu.cn, E-mail: zhangxin@mail.neu.edu.cn
2014-12-01
The Sandage-Loeb (SL) test directly measures the expansion rate of the universe in the redshift range of 2 ∼< z ∼< 5 by detecting redshift drift in the spectra of Lyman-α forest of distant quasars. We discuss the impact of the future SL test data on parameter estimation for the ΛCDM, the wCDM, and the w{sub 0}w{sub a}CDM models. To avoid the potential inconsistency with other observational data, we take the best-fitting dark energy model constrained by the current observations as the fiducial model to produce 30 mock SL test data. The SL test data provide an important supplement to the other dark energymore » probes, since they are extremely helpful in breaking the existing parameter degeneracies. We show that the strong degeneracy between Ω{sub m} and H{sub 0} in all the three dark energy models is well broken by the SL test. Compared to the current combined data of type Ia supernovae, baryon acoustic oscillation, cosmic microwave background, and Hubble constant, the 30-yr observation of SL test could improve the constraints on Ω{sub m} and H{sub 0} by more than 60% for all the three models. But the SL test can only moderately improve the constraint on the equation of state of dark energy. We show that a 30-yr observation of SL test could help improve the constraint on constant w by about 25%, and improve the constraints on w{sub 0} and w{sub a} by about 20% and 15%, respectively. We also quantify the constraining power of the SL test in the future high-precision joint geometric constraints on dark energy. The mock future supernova and baryon acoustic oscillation data are simulated based on the space-based project JDEM. We find that the 30-yr observation of SL test would help improve the measurement precision of Ω{sub m}, H{sub 0}, and w{sub a} by more than 70%, 20%, and 60%, respectively, for the w{sub 0}w{sub a}CDM model.« less
Babaie, Javad; Ardalan, Ali; Vatandoost, Hasan; Goya, Mohammad Mehdi; Akbarisari, Ali
2016-02-01
Communicable disease management (CDM) is an important component of disaster public health response operations. However, there is a lack of any performance assessment (PA) framework and related indicators for the PA. This study aimed to develop a PA framework and indicators in CDM in disasters. In this study, a series of methods were used. First, a systematic literature review (SLR) was performed in order to extract the existing PA frameworks and indicators. Then, using a qualitative approach, some interviews with purposively selected experts were conducted and used in developing the PA framework and indicators. Finally, the analytical hierarchy process (AHP) was used for weighting of the developed indicators. The input, process, products, and outcomes (IPPO) framework was found to be an appropriate framework for CDM PA. Seven main functions were revealed to CDM during disasters. Forty PA indicators were developed for the four categories. There is a lack of any existing PA framework in CDM in disasters. Thus, in this study, a PA framework (IPPO framework) was developed for the PA of CDM in disasters through a series of methods. It can be an appropriate framework and its indicators could measure the performance of CDM in disasters.
Relaxing the σ 8-tension through running vacuum in the Universe
NASA Astrophysics Data System (ADS)
Gómez-Valent, Adrià; Solà, Joan
2017-11-01
It has recently been shown that the class of running vacuum models (RVMs) has the capacity to fit the overall cosmological observations better than the concordance ΛCDM model, therefore supporting the possibility of dynamical dark energy (DE). Apart from the cosmic microwave background (CMB) anisotropies, the most crucial datasets involved are: i) baryonic acoustic oscillations (BAO), and ii) direct large scale structure (LSS) formation data. Analyses mainly focusing on CMB and with insufficient BAO + LSS input generally fail to capture the dynamical DE signature, whereas the few existing studies accounting for the wealth of known CMB+BAO+LSS data (see in particular Solà, Gómez-Valent and de Cruz Pérez (2015), (2017); and Zhao et al. (2017)) do converge to the remarkable conclusion that dynamical DE might well be encoded in the current cosmological observations at 3-4σ c.l. A decisive factor is the persistent σ 8-tension between the ΛCDM and the data. Because the issue is obviously pressing, we devote this work to explain how and why running vacuum in the expanding universe successfully relaxes the existing σ 8-tension and describes the LSS formation data significantly better than the ΛCDM.
First Evidence of Running Cosmic Vacuum: Challenging the Concordance Model
NASA Astrophysics Data System (ADS)
Solà, Joan; Gómez-Valent, Adrià; de Cruz Pérez, Javier
2017-02-01
Despite the fact that a rigid {{Λ }}-term is a fundamental building block of the concordance ΛCDM model, we show that a large class of cosmological scenarios with dynamical vacuum energy density {ρ }{{Λ }} together with a dynamical gravitational coupling G or a possible non-conservation of matter, are capable of seriously challenging the traditional phenomenological success of the ΛCDM. In this paper, we discuss these “running vacuum models” (RVMs), in which {ρ }{{Λ }}={ρ }{{Λ }}(H) consists of a nonvanishing constant term and a series of powers of the Hubble rate. Such generic structure is potentially linked to the quantum field theoretical description of the expanding universe. By performing an overall fit to the cosmological observables SN Ia+BAO+H(z)+LSS+BBN+CMB (in which the WMAP9, Planck 2013, and Planck 2015 data are taken into account), we find that the class of RVMs appears significantly more favored than the ΛCDM, namely, at an unprecedented level of ≳ 4.2σ . Furthermore, the Akaike and Bayesian information criteria confirm that the dynamical RVMs are strongly preferred compared to the conventional rigid {{Λ }}-picture of the cosmic evolution.
Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo
2014-04-01
We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.
Indications of a late-time interaction in the dark sector.
Salvatelli, Valentina; Said, Najla; Bruni, Marco; Melchiorri, Alessandro; Wands, David
2014-10-31
We show that a general late-time interaction between cold dark matter and vacuum energy is favored by current cosmological data sets. We characterize the strength of the coupling by a dimensionless parameter q(V) that is free to take different values in four redshift bins from the primordial epoch up to today. This interacting scenario is in agreement with measurements of cosmic microwave background temperature anisotropies from the Planck satellite, supernovae Ia from Union 2.1 and redshift space distortions from a number of surveys, as well as with combinations of these different data sets. Our analysis of the 4-bin interaction shows that a nonzero interaction is likely at late times. We then focus on the case q(V)≠0 in a single low-redshift bin, obtaining a nested one parameter extension of the standard ΛCDM model. We study the Bayesian evidence, with respect to ΛCDM, of this late-time interaction model, finding moderate evidence for an interaction starting at z=0.9, dependent upon the prior range chosen for the interaction strength parameter q(V). For this case the null interaction (q(V)=0, i.e., ΛCDM) is excluded at 99% C.L.
Rasekaba, T M; Williams, E; Hsu-Hage, B
2009-01-01
Chronic obstructive pulmonary disease (COPD) imposes a costly burden on healthcare. Pulmonary rehabilitation (PR) is the best practice to better manage COPD to improve patient outcomes and reduce acute hospital care utilization. To evaluate the impact of a once-weekly, eight-week multidisciplinary PR program as an integral part of the COPD chronic disease management (CDM) Program at Kyabram District Health Services. The study compared two cohorts of COPD patients: CDM-PR Cohort (4-8 weeks) and Opt-out Cohort (0-3 weeks) between February 2006 and March 2007. The CDM-PR Program involved multidisciplinary patient education and group exercise training. Nonparametric statistical tests were used to compare acute hospital care utilization 12 months before and after the introduction of CDM-PR. The number of patients involved in the CDM-PR Cohort was 29 (n = 29), and that in the Opt-out Cohort was 24 (n = 24). The CDM-PR Cohort showed significant reductions in cumulative acute hospital care utilization indicators (95% emergency department presentations, 95% inpatient admissions, 99% length of stay; effect sizes = 0.62-0.66, P < 0.001) 12 months after the introduction of the CDM Program; in contrast, changes in the cumulative indicators were statistically insignificant for the Opt-out Cohort (emergency department presentations decreased by 5%, inpatient admissions decreased by 12%, length of stay increased by 30%; effect size = 0.14-0.40, P > 0.05). Total costs associated with the hospital care utilization decreased from $130,000 to $7,500 for the CDM-PR Cohort and increased from $77,700 to $101,200 for the Opt-out Cohort. Participation in the CDM-PR for COPD patients can significantly reduce acute hospital care utilization and associated costs in a small rural health service.
Ultralight scalars as cosmological dark matter
NASA Astrophysics Data System (ADS)
Hui, Lam; Ostriker, Jeremiah P.; Tremaine, Scott; Witten, Edward
2017-02-01
Many aspects of the large-scale structure of the Universe can be described successfully using cosmological models in which 27 ±1 % of the critical mass-energy density consists of cold dark matter (CDM). However, few—if any—of the predictions of CDM models have been successful on scales of ˜10 kpc or less. This lack of success is usually explained by the difficulty of modeling baryonic physics (star formation, supernova and black-hole feedback, etc.). An intriguing alternative to CDM is that the dark matter is an extremely light (m ˜10-22 eV ) boson having a de Broglie wavelength λ ˜1 kpc , often called fuzzy dark matter (FDM). We describe the arguments from particle physics that motivate FDM, review previous work on its astrophysical signatures, and analyze several unexplored aspects of its behavior. In particular, (i) FDM halos or subhalos smaller than about 1 07(m /10-22 eV )-3 /2 M⊙ do not form, and the abundance of halos smaller than a few times 1 010(m /10-22 eV )-4 /3 M⊙ is substantially smaller in FDM than in CDM. (ii) FDM halos are comprised of a central core that is a stationary, minimum-energy solution of the Schrödinger-Poisson equation, sometimes called a "soliton," surrounded by an envelope that resembles a CDM halo. The soliton can produce a distinct signature in the rotation curves of FDM-dominated systems. (iii) The transition between soliton and envelope is determined by a relaxation process analogous to two-body relaxation in gravitating N-body systems, which proceeds as if the halo were composed of particles with mass ˜ρ λ3 where ρ is the halo density. (iv) Relaxation may have substantial effects on the stellar disk and bulge in the inner parts of disk galaxies, but has negligible effect on disk thickening or globular cluster disruption near the solar radius. (v) Relaxation can produce FDM disks but a FDM disk in the solar neighborhood must have a half-thickness of at least ˜300 (m /10-22 eV )-2/3 pc and a midplane density less than 0.2 (m /10-22 eV )2/3 times the baryonic disk density. (vi) Solitonic FDM subhalos evaporate by tunneling through the tidal radius and this limits the minimum subhalo mass inside ˜30 kpc of the Milky Way to a few times 1 08(m /10-22 eV )-3 /2 M⊙ . (vii) If the dark matter in the Fornax dwarf galaxy is composed of CDM, most of the globular clusters observed in that galaxy should have long ago spiraled to its center, and this problem is resolved if the dark matter is FDM. (viii) FDM delays galaxy formation relative to CDM but its galaxy-formation history is consistent with current observations of high-redshift galaxies and the late reionization observed by Planck. If the dark matter is composed of FDM, most observations favor a particle mass ≳10-22 eV and the most significant observational consequences occur if the mass is in the range 1 - 10 ×10-22 eV . There is tension with observations of the Lyman-α forest, which favor m ≳10 - 20 ×10-22 eV and we discuss whether more sophisticated models of reionization may resolve this tension.
Revisiting dark energy models using differential ages of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Nisha; Mahajan, Shobhit; Mukherjee, Amitabha
In this work, we use a test based on the differential ages of galaxies for distinguishing the dark energy models. As proposed by Jimenez and Loeb in [1], relative ages of galaxies can be used to put constraints on various cosmological parameters. In the same vein, we reconstruct H {sub 0} {sub dt} / dz and its derivative ( H {sub 0} {sub d} {sup 2} {sup t} / dz {sup 2}) using a model independent technique called non-parametric smoothing . Basically, dt / dz is the change in the age of the object as a function of redshift whichmore » is directly linked with the Hubble parameter. Hence for reconstruction of this quantity, we use the most recent H ( z ) data. Further, we calculate H {sub 0} {sub dt} / dz and its derivative for several models like Phantom, Einstein de Sitter (EdS), ΛCDM, Chevallier-Polarski-Linder (CPL) parametrization, Jassal-Bagla-Padmanabhan (JBP) parametrization and Feng-Shen-Li-Li (FSLL) parametrization. We check the consistency of these models with the results of reconstruction obtained in a model independent way from the data. It is observed that H {sub 0} {sub dt} / dz as a tool is not able to distinguish between the ΛCDM, CPL, JBP and FSLL parametrizations but, as expected, EdS and Phantom models show noticeable deviation from the reconstructed results. Further, the derivative of H {sub 0} {sub dt} / dz for various dark energy models is more sensitive at low redshift. It is found that the FSLL model is not consistent with the reconstructed results, however, the ΛCDM model is in concordance with the 3σ region of the reconstruction at redshift z ≥ 0.3.« less
Galaxy motions cause trouble for cosmology
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael
2018-02-01
According to the widely accepted dark energy plus cold dark matter (ΛCDM) model, dark matter is responsible for both the growth of cosmological structures and the motions of galaxies relative to the expansion of the universe. The dynamics of small galaxies orbiting larger ones provides a crucial window into this mysterious dark matter, which leaves its gravitational mark throughout the universe but has not yet been detected directly. On page 534 of this issue, Müller et al. (1) describe observations of satellite galaxies around Centaurus A, the largest galaxy system in the vicinity of the Milky Way. The results may lead to either a better understanding of galaxy formation within the ΛCDM model or a push to overthrow its underlying assumptions.
Three-dimensional implicit lambda methods
NASA Technical Reports Server (NTRS)
Napolitano, M.; Dadone, A.
1983-01-01
This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Yang, Rongjia; Chen, Bohai, E-mail: litianshiiiii@163.com, E-mail: yangrj08@gmail.com, E-mail: bchenphy@163.com
2014-12-01
We apply the Statefinder hierarchy and the growth rate of matter perturbations to discriminate modified Chaplygin gas (MCG), generalized Chaplygin gas (GCG), superfluid Chaplygin gas (SCG), purely kinetic k-essence (PKK), and ΛCDM model. We plot the evolutional trajectories of these models in the Statefinder plane and in the composite diagnostic plane. We find that GCG, MCG, SCG, PKK, and ΛCDM can be distinguished well from each other at the present epoch by using the composite diagnostic (ε(z), S{sup (1)}{sub 5}). Using other combinations, such as (S{sup (1)}{sub 3}, S{sup (1)}{sub 4}), (S{sup (1)}{sub 3}, S{sub 5}), (ε(z), S{sup (1)}{sub 3}),more » and (ε(z), S{sub 4}), some of these five dark energy models cannot be distinguished.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, Victor Mukhamedovich
Here, we studymore » $$\\Lambda$$ and $$\\bar{\\Lambda}$$ production asymmetries in $$p \\bar{p} \\rightarrow \\Lambda (\\bar{\\Lambda}) X$$, $$p \\bar{p} \\rightarrow J/\\psi \\Lambda (\\bar{\\Lambda}) X$$, and $$p \\bar{p} \\rightarrow \\mu^\\pm \\Lambda (\\bar{\\Lambda}) X$$ events recorded by the D0 detector at the Fermilab Tevatron collider at $$\\sqrt{s} = 1.96$$ TeV. We find an excess of $$\\Lambda$$'s ($$\\bar{\\Lambda}$$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $$\\bar{\\Lambda}/\\Lambda$$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.« less
Abazov, Victor Mukhamedovich
2016-02-09
Here, we studymore » $$\\Lambda$$ and $$\\bar{\\Lambda}$$ production asymmetries in $$p \\bar{p} \\rightarrow \\Lambda (\\bar{\\Lambda}) X$$, $$p \\bar{p} \\rightarrow J/\\psi \\Lambda (\\bar{\\Lambda}) X$$, and $$p \\bar{p} \\rightarrow \\mu^\\pm \\Lambda (\\bar{\\Lambda}) X$$ events recorded by the D0 detector at the Fermilab Tevatron collider at $$\\sqrt{s} = 1.96$$ TeV. We find an excess of $$\\Lambda$$'s ($$\\bar{\\Lambda}$$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $$\\bar{\\Lambda}/\\Lambda$$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.« less
Cirrus Parcel Model Comparison Project. Phase 1
NASA Technical Reports Server (NTRS)
Lin, Ruei-Fong; Starr, David O'C.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth
2000-01-01
The Cirrus Parcel Model Comparison (CPMC) is a project of the GEWEX Cloud System Study Working Group on Cirrus Cloud Systems (GCSS WG2). The primary goal of this project is to identify cirrus model sensitivities to the state of our knowledge of nucleation and microphysics. Furthermore, the common ground of the findings may provide guidelines for models with simpler cirrus microphysics modules. We focus on the nucleation regimes of the warm (parcel starting at -40 C and 340 hPa) and cold (-60 C and 170 hPa) cases studied in the GCSS WG2 Idealized Cirrus Model Comparison Project. Nucleation and ice crystal growth were forced through an externally imposed rate of lift and consequent adiabatic cooling. The background haze particles are assumed to be lognormally-distributed H2SO4 particles. Only the homogeneous nucleation mode is allowed to form ice crystals in the HN-ONLY runs; all nucleation modes are switched on in the ALL-MODE runs. Participants were asked to run the HN-lambda-fixed runs by setting lambda = 2 (lambda is further discussed in section 2) or tailoring the nucleation rate calculation in agreement with lambda = 2 (exp 1). The depth of parcel lift (800 m) was set to assure that parcels underwent complete transition through the nucleation regime to a stage of approximate equilibrium between ice mass growth and vapor supplied by the specified updrafts.
Dynamical dark energy: Scalar fields and running vacuum
NASA Astrophysics Data System (ADS)
Solà, Joan; Gómez-Valent, Adrià; de Cruz Pérez, Javier
2017-03-01
Recent analyses in the literature suggest that the concordance ΛCDM model with rigid cosmological term, Λ = const. may not be the best description of the cosmic acceleration. The class of “running vacuum models”, in which Λ = Λ(H) evolves with the Hubble rate, has been shown to fit the string of SNIa + BAO + H(z) + LSS + CMB data significantly better than the ΛCDM. Here, we provide further evidence on the time-evolving nature of the dark energy (DE) by fitting the same cosmological data in terms of scalar fields. As a representative model, we use the original Peebles and Ratra potential, V ∝ ϕ-α. We find clear signs of dynamical DE at ˜ 4σ c.l., thus reconfirming through a nontrivial scalar field approach the strong hints formerly found with other models and parametrizations.
Chen, K C; Nicholson, C
2000-07-18
Diffusion of molecules in brain extracellular space is constrained by two macroscopic parameters, tortuosity factor lambda and volume fraction alpha. Recent studies in brain slices show that when osmolarity is reduced, lambda increases while alpha decreases. In contrast, with increased osmolarity, alpha increases, but lambda attains a plateau. Using homogenization theory and a variety of lattice models, we found that the plateau behavior of lambda can be explained if the shape of brain cells changes nonuniformly during the shrinking or swelling induced by osmotic challenge. The nonuniform cellular shrinkage creates residual extracellular space that temporarily traps diffusing molecules, thus impeding the macroscopic diffusion. The paper also discusses the definition of tortuosity and its independence of the measurement frame of reference.
High Spectral Resolution MODIS Algorithms for Ocean Chlorophyll in Case II Waters
NASA Technical Reports Server (NTRS)
Carder, Kendall L.
2004-01-01
The Case 2 chlorophyll a algorithm is based on a semi-analytical, bio-optical model of remote sensing reflectance, R(sub rs)(lambda), where R(sub rs)(lambda) is defined as the water-leaving radiance, L(sub w)(lambda), divided by the downwelling irradiance just above the sea surface, E(sub d)(lambda,0(+)). The R(sub rs)(lambda) model (Section 3) has two free variables, the absorption coefficient due to phytoplankton at 675 nm, a(sub phi)(675), and the absorption coefficient due to colored dissolved organic matter (CDOM) or gelbstoff at 400 nm, a(sub g)(400). The R(rs) model has several parameters that are fixed or can be specified based on the region and season of the MODIS scene. These control the spectral shapes of the optical constituents of the model. R(sub rs)(lambda(sub i)) values from the MODIS data processing system are placed into the model, the model is inverted, and a(sub phi)(675), a(sub g)(400) (MOD24), and chlorophyll a (MOD21, Chlor_a_3) are computed. Algorithm development is initially focused on tropical, subtropical, and summer temperate environments, and the model is parameterized in Section 4 for three different bio-optical domains: (1) high ratios of photoprotective pigments to chlorophyll and low self-shading, which for brevity, we designate as 'unpackaged'; (2) low ratios and high self-shading, which we designate as 'packaged'; and (3) a transitional or global-average type. These domains can be identified from space by comparing sea-surface temperature to nitrogen-depletion temperatures for each domain (Section 5). Algorithm errors of more than 45% are reduced to errors of less than 30% with this approach, with the greatest effect occurring at the eastern and polar boundaries of the basins. Section 6 provides an expansion of bio-optical domains into high-latitude waters. The 'fully packaged' pigment domain is introduced in this section along with a revised strategy for implementing these variable packaging domains. Chlor_a_3 values derived semi-analytically and Chlor_a_2 values derived empirically using the O Reilly et al. OC3M algorithm from MODIS Terra radiances are compared to field chlorophyll-a concentrations in Sections 7 and 8.
NASA Astrophysics Data System (ADS)
Filippi, Anthony Matthew
For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables included bottom depth z b, chlorophyll a concentration [chl- a], spectral bottom irradiance reflectance Rb(lambda), and spectral total absorption a(lambda) and spectral total backscattering bb(lambda) coefficients. When applying the cybernetic and neural models to in situ HyperTSRB-derived Rrs, the difference in the means of the absolute error of the inversion estimates for zb was significant (alpha = 0.05). GMDH yielded significantly better zb than the ANN. The ANN model posted a mean absolute error (MAE) of 0.62214 m, compared with 0.55161 m for GMDH.
NASA Astrophysics Data System (ADS)
Bemelmans, Frédéric; Rashidnasab, Alaleh; Chesterman, Frédérique; Kimpe, Tom; Bosmans, Hilde
2016-03-01
Purpose: To evaluate lesion detectability and reading time as a function of luminance level of the monitor. Material and Methods: 3D mass models and microcalcification clusters were simulated into ROIs of for processing mammograms. Randomly selected ROIs were subdivided in three groups according to their background glandularity: high (>30%), medium (15-30%) and low (<15%). 6 non-spiculated masses (9 - 11mm), 6 spiculated masses (5 - 7mm) and 6 microcalcification clusters (2 - 4mm) were scaled in 3D to create a range of sizes. The linear attenuation coefficient (AC) of the masses was adjusted from 100% glandular tissue to 90%, 80%, 70%, to create different contrasts. Six physicists read the full database on Barco's Coronis Uniti monitor for four different luminance levels (300, 800, 1000 and 1200 Cd/m2), using a 4-AFC tool. Percentage correct (PC) and time were computed for all different conditions. A paired t-test was performed to evaluate the effect of luminance on PC and time. A multi-factorial analysis was performed using MANOVA.. Results: Paired t-test indicated a statistically significant difference for the average time per session between 300 and 1200; 800 and 1200; 1000 and 1200 Cd/m2, for all participants combined. There was no effect on PC. MANOVA denoted significantly lower reading times for high glandularity images at 1200 Cd/m2. Both types of masses were significantly faster detected at 1200 Cd/m2, for the contrast study. In the size study, microcalcification clusters and spiculated masses had a significantly higher detection rate at 1200 Cd/m2. Conclusion: These results demonstrate a significant decrease in reading time, while detectability remained constant.
Curvaton as dark matter with secondary inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jinn-Ouk; Kitajima, Naoya; Terada, Takahiro, E-mail: jinn-ouk.gong@apctp.org, E-mail: naoya.kitajima@apctp.org, E-mail: terada@kias.re.kr
2017-03-01
We consider a novel cosmological scenario in which a curvaton is long-lived and plays the role of cold dark matter (CDM) in the presence of a short, secondary inflation. Non-trivial evolution of the large scale cosmological perturbation in the curvaton scenario can affect the duration of the short term inflation, resulting in the inhomogeneous end of inflation. Non-linear parameters of the curvature perturbation are predicted to be f {sub NL} ≈ 5/4 and g {sub NL} ≈ 0. The curvaton abundance can be well diluted by the short-term inflation and accordingly, it does not have to decay into the Standardmore » Model particles. Then the curvaton can account for the present CDM with the isocurvature perturbation being sufficiently suppressed because both the adiabatic and CDM isocurvature perturbations have the same origin. As an explicit example, we consider the thermal inflation scenario and a string axion as a candidate for this curvaton-dark matter. We further discuss possibilities to identify the curvaton-dark matter with the QCD axion.« less
The tangential velocity of M31: CLUES from constrained simulations
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Hoffman, Yehuda; Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Courtois, Hélène; Tully, R. Brent
2016-07-01
Determining the precise value of the tangential component of the velocity of M31 is a non-trivial astrophysical issue that relies on complicated modelling. This has recently lead to conflicting estimates, obtained by several groups that used different methodologies and assumptions. This Letter addresses the issue by computing a Bayesian posterior distribution function of this quantity, in order to measure the compatibility of those estimates with Λ cold dark matter (ΛCDM). This is achieved using an ensemble of Local Group (LG) look-alikes collected from a set of constrained simulations (CSs) of the local Universe, and a standard unconstrained ΛCDM. The latter allows us to build a control sample of LG-like pairs and to single out the influence of the environment in our results. We find that neither estimate is at odds with ΛCDM; however, whereas CSs favour higher values of vtan, the reverse is true for estimates based on LG samples gathered from unconstrained simulations, overlooking the environmental element.
Probing a steep EoS for dark energy with latest observations
NASA Astrophysics Data System (ADS)
Jaber, Mariana; Macorra, Axel de la
2018-01-01
We present a parametrization for the Dark Energy Equation of State "EoS" which has a rich structure, performing a transition at pivotal redshift zT between the present day value w0 to an early time wi =wa +w0 ≡ w(z ≫ 0) with a steepness given in terms of q parameter. The proposed parametrization is w =w0 +wa(z /zT) q /(1 +(z /zT)) q , with w0, wi, q and zT constant parameters. It reduces to the widely used EoS w =w0 +wa(1 - a) for zT = q = 1 . This transition is motivated by scalar field dynamics such as for example quintessence models. We study if a late time transition is favored by BAO measurements combined with local determination of H0 and information from the CMB. We find that our dynamical DE model allows to simultaneously fit H0 from local determinations and Planck CMB measurements, alleviating the tension obtained in a ΛCDM model. We obtain a smaller χ2 in our DE model than in ΛCDM showing that a dynamical DE is preferred with a reduction of 4.8%, 20.2% and 42.8% using BAO + H0, BAO + CMB and BAO + CMB + H0 datasets, respectively. However due to the increased number of free parameters in the EoS information criteria favors ΛCDM over our DE model at this stage. Nevertheless it is crucial to obtain the dynamics of DE from the observational data to show the path for theoretical DE models based on fundamental physics.
Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys
NASA Astrophysics Data System (ADS)
Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan
2004-06-01
In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained independently from other observations.
The Measurement and Correlates of Career Decision Making.
ERIC Educational Resources Information Center
Harren, Vincent A.; Kass, Richard A.
This paper presents a theoretical framework for understanding career decision making (CDM); introduces an instrument, Assessment of Career Decision Making (ACDM) to measure CDM with college students; and presents correlational data on sex role and cognitive style factors hypothesized to influence CDM. The ACDM, designed to measure the Tiedeman and…
Computer Assisted Chronic Disease Management: Does It Work? A Pilot Study Using Mixed Methods
Jones, Kay M.; Biezen, Ruby; Piterman, Leon
2013-01-01
Background. Key factors for the effective chronic disease management (CDM) include the availability of practical and effective computer tools and continuing professional development/education. This study tested the effectiveness of a computer assisted chronic disease management tool, a broadband-based service known as cdmNet in increasing the development of care plans for patients with chronic disease in general practice. Methodology. Mixed methods are the breakthrough series methodology (workshops and plan-do-study-act cycles) and semistructured interviews. Results. Throughout the intervention period a pattern emerged suggesting GPs use of cdmNet initially increased, then plateaued practice nurses' and practice managers' roles expanded as they became more involved in using cdmNet. Seven main messages emerged from the GP interviews. Discussion. The overall use of cdmNet by participating GPs varied from “no change” to “significant change and developing many the GPMPs (general practice management plans) using cdmNet.” The variation may be due to several factors, not the least, allowing GPs adequate time to familiarise themselves with the software and recognising the benefit of the team approach. Conclusion. The breakthrough series methodology facilitated upskilling GPs' management of patients diagnosed with a chronic disease and learning how to use the broadband-based service cdmNet. PMID:24959576
[Rapid identification of hogwash oil by using synchronous fluorescence spectroscopy].
Sun, Yan-Hui; An, Hai-Yang; Jia, Xiao-Li; Wang, Juan
2012-10-01
To identify hogwash oil quickly, the characteristic delta lambda of hogwash oil was analyzed by three dimensional fluorescence spectroscopy with parallel factor analysis, and the model was built up by using synchronous fluorescence spectroscopy with support vector machines (SVM). The results showed that the characteristic delta lambda of hogwash oil was 60 nm. Collecting original spectrum of different samples under the condition of characteristic delta lambda 60 nm, the best model was established while 5 principal components were selected from original spectrum and the radial basis function (RBF) was used as the kernel function, and the optimal penalty factor C and kernel function g were 512 and 0.5 respectively obtained by the grid searching and 6-fold cross validation. The discrimination rate of the model was 100% for both training sets and prediction sets. Thus, it is quick and accurate to apply synchronous fluorescence spectroscopy to identification of hogwash oil.
Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Guenther, M; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefevre, R; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, M; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A-S; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Palmonari, F; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stefanini, A; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S
2005-03-18
We present a search for excited and exotic electrons (e(*)) decaying to an electron and a photon, both with high transverse momentum. We use 202 pb(-1) of data collected in pp collisions at sqrt[s] = 1.96 TeV with the Collider Detector at Fermilab II detector. No signal above standard model expectation is seen for associated ee(*) production. We discuss the e(*) sensitivity in the parameter space of the excited electron mass M(e(*)) and the compositeness energy scale Lambda. In the contact interaction model, we exclude 132 GeV/c(2)
Cosmological implications of quantum mechanics parametrization of dark energy
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander; Urbanowski, Krzysztof
2017-08-01
We consider the cosmology with the running dark energy. The parametrization of dark energy is derived from the quantum process of transition from the false vacuum state to the true vacuum state. This model is the generalized interacting CDM model. We consider the energy density of dark energy parametrization, which is given by the Breit-Wigner energy distribution function. The idea of the process of the quantum mechanical decay of unstable states was formulated by Krauss and Dent. We used this idea in our considerations. In this model is an energy transfer in the dark sector. In this evolutional scenario the universe starts from the false vacuum state and goes to the true vacuum state of the present day universe. The intermediate regime during the passage from false to true vacuum states takes place. In this way the cosmological constant problem can be tried to solve. We estimate the cosmological parameters for this model. This model is in a good agreement with the astronomical data and is practically indistinguishable from CDM model.
Exploring the evolution of color-luminosity parameter β and its effects on parameter estimation
NASA Astrophysics Data System (ADS)
Wang, Shuang; Li, Yun-He; Zhang, Xin
2014-03-01
It has been found in previous studies that, for the Supernova Legacy Survey three-year (SNLS3) data, there is strong evidence for the redshift evolution of color-luminosity parameter β. In this paper, using the three simplest dark energy models, i.e., the Λ-cold-dark-matter (ΛCDM) model, the wCDM model, and the Chevallier-Polarski-Linder model, we further explore the evolution of β and its effects on parameter estimation. In addition to the SNLS3 data, we also take into account the Planck distance priors data of the cosmic microwave background (CMB), as well as the latest galaxy clustering (GC) data extracted from SDSS DR7 and BOSS. We find that, for all the models, adding a parameter of β can reduce χmin2 by ˜36, indicating that β1=0 is ruled out at 6σ confidence levels. In other words, β deviates from a constant at 6σ confidence levels. This conclusion is insensitive to the dark energy models considered, showing the importance of considering the evolution of β in the cosmology fits. Furthermore, it is found that varying β can significantly change the fitting results of various cosmological parameters: using the SNLS3 data alone, varying β yields a larger Ωm for the ΛCDM model; using the SNLS3+CMB +GC data, varying β yields a larger Ωm and a smaller h for all the models. Moreover, we find that these results are much closer to those given by the CMB +GC data compared to the cases of treating β as a constant. This indicates that considering the evolution of β is very helpful for reducing the tension between supernova and other cosmological observations.
Is cosmic acceleration proven by local cosmological probes?
NASA Astrophysics Data System (ADS)
Tutusaus, I.; Lamine, B.; Dupays, A.; Blanchard, A.
2017-06-01
Context. The cosmological concordance model (ΛCDM) matches the cosmological observations exceedingly well. This model has become the standard cosmological model with the evidence for an accelerated expansion provided by the type Ia supernovae (SNIa) Hubble diagram. However, the robustness of this evidence has been addressed recently with somewhat diverging conclusions. Aims: The purpose of this paper is to assess the robustness of the conclusion that the Universe is indeed accelerating if we rely only on low-redshift (z ≲ 2) observations, that is to say with SNIa, baryonic acoustic oscillations, measurements of the Hubble parameter at different redshifts, and measurements of the growth of matter perturbations. Methods: We used the standard statistical procedure of minimizing the χ2 function for the different probes to quantify the goodness of fit of a model for both ΛCDM and a simple nonaccelerated low-redshift power law model. In this analysis, we do not assume that supernovae intrinsic luminosity is independent of the redshift, which has been a fundamental assumption in most previous studies that cannot be tested. Results: We have found that, when SNIa intrinsic luminosity is not assumed to be redshift independent, a nonaccelerated low-redshift power law model is able to fit the low-redshift background data as well as, or even slightly better, than ΛCDM. When measurements of the growth of structures are added, a nonaccelerated low-redshift power law model still provides an excellent fit to the data for all the luminosity evolution models considered. Conclusions: Without the standard assumption that supernovae intrinsic luminosity is independent of the redshift, low-redshift probes are consistent with a nonaccelerated universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Bai, J. Z.; Cai, X.
2007-11-01
Using 58x10{sup 6} J/{psi} and 14x10{sup 6} {psi}(2S) events collected by the BESII detector at the BEPC, branching fractions or upper limits for the decays J/{psi} and {psi}(2S){yields}{lambda}{lambda}{pi}{sup 0} and {lambda}{lambda}{eta} are measured. For the isospin violating decays, the upper limits are determined to be B(J/{psi}{yields}{lambda}{lambda}{pi}{sup 0})<6.4x10{sup -5} and B[{psi}(2S){yields}{lambda}{lambda}{pi}{sup 0}]<4.9x10{sup -5} at the 90% confidence level. The isospin conserving process J/{psi}{yields}{lambda}{lambda}{eta} is observed for the first time, and its branching fraction is measured to be B(J/{psi}{yields}{lambda}{lambda}{eta})=(2.62{+-}0.60{+-}0.44)x10{sup -4}, where the first error is statistical and the second one is systematic. No {lambda}{lambda}{eta} signal is observed in {psi}(2S) decays, and B[{psi}(2S){yields}{lambda}{lambda}{eta}]<1.2x10{supmore » -4} is set at the 90% confidence level. Branching fractions of J/{psi} decays into {sigma}{sup +}{pi}{sup -}{lambda} and {sigma}{sup -}{pi}{sup +}{lambda} are also reported, and the sum of these branching fractions is determined to be B(J/{psi}{yields}{sigma}{sup +}{pi}{sup -}{lambda}+c.c.)=(1.52{+-}0.08{+-}0.16)x10{sup -3}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.
We report an analysis of the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} decay in a data sample collected by the CDF II detector at the Fermilab Tevatron corresponding to 2.4 fb{sup -1} of integrated luminosity. We reconstruct the currently largest samples of the decay modes {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} (with {Lambda}{sub c}(2595){sup +} {yields} {Lambda}{sub c}{sup +}{pi}{sup +}{pi}{sup -}), {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} (with {Lambda}{sub c}(2625){sup +} {yields} {Lambda}{sub c}{sup +}{pi}{sup +}{pi}{sup -}), {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} (with {Sigma}{sub c}(2455){sup ++} {yields} {Lambda}{submore » c}{sup +}{pi}{sup +}), and {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455)0{pi}{sup +}{pi}{sup -} (with {Sigma}{sub c}(2455)0 {yields} {Lambda}{sub c}{sup +}{pi}{sup -}) and measure the branching fractions relative to the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -} branching fraction. We measure the ratio {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})/ {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -})=3.04 {+-} 0.33(stat){sub -0.55}{sup +0.70}(syst) which is used to derive {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})=(26.8{sub -11.2}{sup +11.9}) x 10{sup -3}.« less
Scalar perturbations in the late Universe: viability of the Chaplygin gas models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhmadi-López, Mariam; Brilenkov, Maxim; Brilenkov, Ruslan
We study the late-time evolution of the Universe where dark energy (DE) is parametrised by a modified generalised Chaplygin gas (mGCG) on top of cold dark matter (CDM) . We also take into account the radiation content of the Universe. In this context, the late stage of the evolution of the universe refers to the epoch where CDM is already clustered into inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Under these conditions, the mechanical approach is an adequate tool to study the Universe deep inside the cell of uniformity. To be more accurate, we study scalar perturbationsmore » of the Friedmann-Lemaȋtre-Robertson-Walker metric due to inhomogeneities of CDM as well as fluctuations of radiation and mGCG, the later driving the late-time acceleration of the universe. Our analysis applies as well to the case where mGCG plays the role of DM and DE . We select the sets of parameters of the mGCG that are compatible with the mechanical approach. These sets define prospective mGCG models. By comparing the selected sets of models with some of the latest observational data results, we conclude that the mGCG is in tight agreement with those observations particularly for a mGCG playing the role of DE and DM.« less
Successful chronic disease care for Aboriginal Australians requires cultural competence.
Liaw, Siaw Teng; Lau, Phyllis; Pyett, Priscilla; Furler, John; Burchill, Marlene; Rowley, Kevin; Kelaher, Margaret
2011-06-01
To review the literature to determine the attributes of culturally appropriate healthcare to inform the design of chronic disease management (CDM) models for Aboriginal patients in urban general practice. A comprehensive conceptual framework, drawing on the Access to Care, Pathway to Care, Chronic Care, Level of Connectedness, and Cultural Security, Cultural Competency and Cultural Respect models, was developed to define the search strategy, inclusion criteria and appraisal methods for the literature review. Selected papers were reviewed in detail if they examined a chronic disease intervention for an Aboriginal population and reported on its evaluation, impacts or outcomes. In the 173 papers examined, only 11 programs met the inclusion criteria. All were programs conducted in rural and remote Aboriginal community-controlled health services. Successful chronic disease care and interventions require adequate Aboriginal community engagement, utilising local knowledge, strong leadership, shared responsibilities, sustainable resources and integrated data and systems. These success factors fitted within the conceptual framework developed. Research and development of culturally appropriate CDM models concurrently in both urban and rural settings will enable more rigorous evaluation, leading to stronger evidence for best practice. A partnership of mainstream and Aboriginal-controlled health services is essential to successfully 'close the gap'. Findings will inform and guide the development, implementation and evaluation of culturally appropriate CDM in mainstream general practice and primary care. © 2011 The Authors. ANZJPH © 2011 Public Health Association of Australia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correnti, M.; Ferraro, F. R.; Bellazzini, M.
2010-09-20
We trace the tidal Stream of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) using Red Clump (RC) stars from the catalog of the Sloan Digital Sky Survey-Data Release 6, in the range 150{sup 0} {approx}< R.A. {approx}< 220{sup 0}, corresponding to the range of orbital azimuth 220{sup 0} {approx}< {Lambda} {approx}< 290{sup 0}. Substructures along the line of sight (los) are identified as significant peaks in the differential star count profiles (SCPs) of candidate RC stars. A proper modeling of the SCPs allows us to obtain (1) {<=}10% accurate, purely differential distances with respect to the main body of Sgr,more » (2) estimates of the FWHM along the los, and (3) estimates of the local density, for each detected substructure. In the range 255{sup 0} {approx}< {Lambda} {approx}< 290{sup 0} we cleanly and continuously trace various coherent structures that can be ascribed to the Stream, in particular: the well-known northern portion of the leading arm, running from d {approx_equal} 43 kpc at {Lambda} {approx_equal} 290{sup 0} to d {approx_equal} 30 kpc at {Lambda} {approx_equal} 255{sup 0}, and a more nearby coherent series of detections lying at a constant distance d {approx_equal} 25 kpc, that can be identified with a wrap of the trailing arm. The latter structure, predicted by several models of the disruption of Sgr dSph, was never traced before; comparison with existing models indicates that the difference in distance between these portions of the leading and trailing arms may provide a powerful tool to discriminate between theoretical models assuming different shapes of the Galactic potential. A further, more distant wrap in the same portion of the sky is detected only along a couple of los. For {Lambda} {approx}< 255{sup 0} the detected structures are more complex and less easily interpreted. We are confident of being able to trace the continuation of the leading arm down to {Lambda} {approx_equal} 220{sup 0} and d {approx_equal} 20 kpc; the trailing arm is seen up to {Lambda} {approx_equal} 240{sup 0} where it is replaced by more distant structures. Possible detections of more nearby wraps and of the Virgo Stellar Stream are also discussed. These measured properties provide a coherent set of observational constraints for the next generation of theoretical models of the disruption of Sgr.« less
The dynamics of the Local Group as a probe of dark energy and modified gravity
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Mota, David F.; Winther, Hans A.
2017-04-01
In this work, we study the dynamics of the Local Group (LG) within the context of cosmological models beyond General Relativity (GR). Using observable kinematic quantities to identify candidate pairs, we build up samples of simulated LG-like objects drawing from f(R), symmetron, Dvali, Gabadadze & Porrati and quintessence N-body simulations together with their Λ cold dark matter (ΛCDM) counterparts featuring the same initial random phase realizations. The variables and intervals used to define LG-like objects are referred to as LG model; different models are used throughout this work and adapted to study their dynamical and kinematic properties. The aim is to determine how well the observed LG dynamics can be reproduced within cosmological theories beyond GR, We compute kinematic properties of samples drawn from alternative theories and ΛCDM and compare them to actual observations of the LG mass, velocity and position. As a consequence of the additional pull, pairwise tangential and radial velocities are enhanced in modified gravity and coupled dark energy with respect to ΛCDM inducing significant changes to the total angular momentum and energy of the LG. For example, in models such as f(R) and the symmetron this increase can be as large as 60 per cent, peaking well outside of the 95 per cent confidence region allowed by the data. This shows how simple considerations about the LG dynamics can lead to clear small-scale observational signatures for alternative scenarios, without the need of expensive high-resolution simulations.
Study of B{yields}{lambda}{sub c}{lambda}{sub c} and B{yields}{lambda}{sub c}{lambda}{sub c}K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, H.-Y.; Hsiao, Y.-K.; Chua, C.-K.
2009-06-01
We study the doubly charmful two-body and three-body baryonic B decays B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -} and B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K. As pointed out before, a naive estimate of the branching ratio O(10{sup -8}) for the latter decay is too small by 3 to 4 orders of magnitude compared to experiment. Previously, it has been shown that a large enhancement for the {lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K production can occur due to a charmoniumlike resonance (e.g. X(4630) discovered by Belle) with a mass near the {lambda}{sub c}{lambda}{sub c} threshold. Motivated by the BABAR's observation of a resonance in themore » {lambda}{sub c}K system with a mass of order 2930 MeV, we study in this work the contribution to B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K from the intermediate state {xi}{sub c}(2980) which is postulated to be a first positive-parity excited D-wave charmed baryon state. Assuming that a soft qq quark pair is produced through the {sigma} and {pi} meson exchanges in the configuration for B{yields}{xi}{sub c}(2980){lambda}{sub c} and {lambda}{sub c}{lambda}{sub c}, it is found that branching ratios of B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K and B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -} are of order 3.5x10{sup -4} and 5x10{sup -5}, respectively, in agreement with experiment except that the prediction for the {lambda}{sub c}{lambda}{sub c}K{sup -} is slightly smaller. In conjunction with our previous analysis, we conclude that the enormously large rate of B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K arises from the resonances {xi}{sub c}(2980) and X(4630)« less
Bayesian evidences for dark energy models in light of current observational data
NASA Astrophysics Data System (ADS)
Lonappan, Anto. I.; Kumar, Sumit; Ruchika; Dinda, Bikash R.; Sen, Anjan A.
2018-02-01
We do a comprehensive study of the Bayesian evidences for a large number of dark energy models using a combination of latest cosmological data from SNIa, CMB, BAO, strong lensing time delay, growth measurements, measurements of Hubble parameter at different redshifts and measurements of angular diameter distance by Megamaser Cosmology Project. We consider a variety of scalar field models with different potentials as well as different parametrizations for the dark energy equation of state. Among 21 models that we consider in our study, we do not find strong evidences in favor of any evolving dark energy model compared to Λ CDM . For the evolving dark energy models, we show that purely nonphantom models have much better evidences compared to those models that allow both phantom and nonphantom behaviors. Canonical scalar field with exponential and tachyon field with square potential have highest evidences among all the models considered in this work. We also show that a combination of low redshift measurements decisively favors an accelerating Λ CDM model compared to a nonaccelerating power law model.
NASA Astrophysics Data System (ADS)
Kazantzidis, Lavrentios; Perivolaropoulos, Leandros
2018-05-01
We construct an updated extended compilation of distinct (but possibly correlated) f σ8(z ) redshift space distortion (RSD) data published between 2006 and 2018. It consists of 63 datapoints and is significantly larger than previously used similar data sets. After fiducial model correction we obtain the best fit Ω0 m-σ8 Λ CDM parameters and show that they are at a 5 σ tension with the corresponding Planck15 /Λ CDM values. Introducing a nontrivial covariance matrix correlating randomly 20% of the RSD datapoints has no significant effect on the above tension level. We show that the tension disappears (becomes less than 1 σ ) when a subsample of the 20 most recently published data is used. A partial cause for this reduced tension is the fact that more recent data tend to probe higher redshifts (with higher errorbars) where there is degeneracy among different models due to matter domination. Allowing for a nontrivial evolution of the effective Newton's constant as Geff(z )/GN=1 +ga(z/1+z ) 2-ga(z/1+z ) 4 (ga is a parameter) and fixing a Planck15 /Λ CDM background we find ga=-0.91 ±0.17 from the full f σ8 data set while the 20 earliest and 20 latest datapoints imply ga=-1.28-0.26+0.28 and ga=-0.4 3-0.41+0.46 respectively. Thus, the more recent f σ8 data appear to favor GR in contrast to earlier data. Finally, we show that the parametrization f σ8(z )=λ σ8Ω (z )γ/(1 +z )β provides an excellent fit to the solution of the growth equation for both GR (ga=0 ) and modified gravity (ga≠0 ).
NASA Astrophysics Data System (ADS)
Hall, Carlton Raden
A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf thickness Ltadj, LAI, and h (m). Its function is to translate leaf level estimates of diffuse absorption and backscatter to the canopy scale allowing the leaf optical properties to directly influence above canopy estimates of reflectance. The model was successfully modified and parameterized to operate in a canopy scale and a leaf scale mode. Canopy scale model simulations produced the best results. Simulations based on leaf derived coefficients produced calculated above canopy reflectance errors of 15% to 18%. A comprehensive sensitivity analyses indicated the most important parameters were beam to diffuse conversion c(lambda, m-1), diffuse absorption a(lambda, m-1), diffuse backscatter b(lambda, m-1), h (m), Q, and direct and diffuse irradiance. Sources of error include the estimation procedure for the direct beam to diffuse conversion and attenuation coefficients and other field and laboratory measurement and analysis errors. Applications of the model include creation of synthetic reflectance data sets for remote sensing algorithm development, simulations of stress and drought on vegetation reflectance signatures, and the potential to estimate leaf moisture and chemical status.
Chatrchyan, Serguei; et al.
2013-07-16
The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versusmore » pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.« less
MOSAIC--A Modular Approach to Data Management in Epidemiological Studies.
Bialke, M; Bahls, T; Havemann, C; Piegsa, J; Weitmann, K; Wegner, T; Hoffmann, W
2015-01-01
In the context of an increasing number of multi-centric studies providing data from different sites and sources the necessity for central data management (CDM) becomes undeniable. This is exacerbated by a multiplicity of featured data types, formats and interfaces. In relation to methodological medical research the definition of central data management needs to be broadened beyond the simple storage and archiving of research data. This paper highlights typical requirements of CDM for cohort studies and registries and illustrates how orientation for CDM can be provided by addressing selected data management challenges. Therefore in the first part of this paper a short review summarises technical, organisational and legal challenges for CDM in cohort studies and registries. A deduced set of typical requirements of CDM in epidemiological research follows. In the second part the MOSAIC project is introduced (a modular systematic approach to implement CDM). The modular nature of MOSAIC contributes to manage both technical and organisational challenges efficiently by providing practical tools. A short presentation of a first set of tools, aiming for selected CDM requirements in cohort studies and registries, comprises a template for comprehensive documentation of data protection measures, an interactive reference portal for gaining insights and sharing experiences, supplemented by modular software tools for generation and management of generic pseudonyms, for participant management and for sophisticated consent management. Altogether, work within MOSAIC addresses existing challenges in epidemiological research in the context of CDM and facilitates the standardized collection of data with pre-programmed modules and provided document templates. The necessary effort for in-house programming is reduced, which accelerates the start of data collection.
Can f(T) gravity theories mimic ΛCDM cosmic history
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir
2013-01-01
Recently the teleparallel Lagrangian density described by the torsion scalar T has been extended to a function of T. The f(T) modified teleparallel gravity has been proposed as the natural gravitational alternative for dark energy to explain the late time acceleration of the universe. In order to reconstruct the function f(T) by demanding a background ΛCDM cosmology we assume that, (i) the background cosmic history provided by the flat ΛCDM (the radiation ere with ω{sub eff} = (1/3), matter and de Sitter eras with ω{sub eff} = 0 and ω{sub eff} = −1, respectively) (ii) the radiation dominate in themore » radiation era with Ω{sub 0r} = 1 and the matter dominate during the matter phases when Ω{sub 0m} = 1. We find the cosmological dynamical system which can obey the ΛCDM cosmic history. In each era, we find a critical lines that, the radiation dominated and the matter dominated are one points of them in the radiation and matter phases, respectively. Also, we drive the cosmologically viability condition for these models. We investigate the stability condition with respect to the homogeneous scalar perturbations in each era and we obtain the stability conditions for the fixed points in each eras. Finally, we reconstruct the function f(T) which mimics cosmic expansion history.« less
Evaluation of Model Fit in Cognitive Diagnosis Models
ERIC Educational Resources Information Center
Hu, Jinxiang; Miller, M. David; Huggins-Manley, Anne Corinne; Chen, Yi-Hsin
2016-01-01
Cognitive diagnosis models (CDMs) estimate student ability profiles using latent attributes. Model fit to the data needs to be ascertained in order to determine whether inferences from CDMs are valid. This study investigated the usefulness of some popular model fit statistics to detect CDM fit including relative fit indices (AIC, BIC, and CAIC),…
Li I AND K I SCATTER IN COOL PLEIADES DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Jeremy R.; Schuler, Simon C.; Hobbs, L. M.
2010-02-20
We utilize high-resolution (R {approx} 60,000), high signal-to-noise ratio ({approx}100) spectroscopy of 17 cool Pleiades dwarfs to examine the confounding star-to-star scatter in the lambda6707 Li I line strengths in this young cluster. Our Pleiades, selected for their small projected rotational velocity and modest chromospheric emission, evince substantial scatter in the line strengths of lambda6707 Li I feature that is absent in the lambda7699 K I resonance line. The Li I scatter is not correlated with that in the high-excitation lambda7774 O I feature, and the magnitude of the former is greater than the latter despite the larger temperature sensitivitymore » of the O I feature. These results suggest that systematic errors in line strength measurements due to blending, color (or color-based T{sub eff}) errors, or line formation effects related to an overlying chromosphere are not the principal source of Li I scatter in our stars. There do exist analytic spot models that can produce, via line formation effects, the observed Li scatter without introducing scatter in the K I line strengths or the color-magnitude diagram. However, these models predict factor of >=3 differences in abundances derived from the subordinate lambda6104 and resonance lambda6707 Li I features; we find no difference in the abundances determined from these two features. These analytic spot models also predict CN line strengths significantly larger than we observe in our spectra. The simplest explanation of the Li, K, CN, and photometric data is that there must be a real abundance component to the Pleiades Li dispersion. We suggest that this real abundance component is the manifestation of relic differences in erstwhile pre-main-sequence Li burning caused by effects of surface activity on stellar structure. We discuss observational predictions of these effects, which may be related to other anomalous stellar phenomena.« less
STORM WATER MANAGEMENT MODEL (SWMM) MODERNIZATION
The U.S. Environmental Protection Agency's Water Supply and Water Resources Division in partnership with the consulting firm of CDM to redevelop and modernize the Storm Water Management Model (SWMM). In the initial phase of this project EPA rewrote SWMM's computational engine usi...
Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol
NASA Astrophysics Data System (ADS)
Pappas, Christine Goodwin
2016-01-01
The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.
EFFECT OF MASKED REGIONS ON WEAK-LENSING STATISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi, E-mail: masato.shirasaki@utap.phys.s.u-tokyo.ac.jp
2013-09-10
Sky masking is unavoidable in wide-field weak-lensing observations. We study how masks affect the measurement of statistics of matter distribution probed by weak gravitational lensing. We first use 1000 cosmological ray-tracing simulations to examine in detail the impact of masked regions on the weak-lensing Minkowski Functionals (MFs). We consider actual sky masks used for a Subaru Suprime-Cam imaging survey. The masks increase the variance of the convergence field and the expected values of the MFs are biased. The bias then compromises the non-Gaussian signals induced by the gravitational growth of structure. We then explore how masks affect cosmological parameter estimation.more » We calculate the cumulative signal-to-noise ratio (S/N) for masked maps to study the information content of lensing MFs. We show that the degradation of S/N for masked maps is mainly determined by the effective survey area. We also perform simple {chi}{sup 2} analysis to show the impact of lensing MF bias due to masked regions. Finally, we compare ray-tracing simulations with data from a Subaru 2 deg{sup 2} survey in order to address if the observed lensing MFs are consistent with those of the standard cosmology. The resulting {chi}{sup 2}/n{sub dof} = 29.6/30 for three combined MFs, obtained with the mask effects taken into account, suggests that the observational data are indeed consistent with the standard {Lambda}CDM model. We conclude that the lensing MFs are a powerful probe of cosmology only if mask effects are correctly taken into account.« less
Large-Scale Clustering of Galaxies in the CFA Survey
NASA Astrophysics Data System (ADS)
Park, Changbom
1992-03-01
The power spectrum of the galaxy distribution is accuarately measured up to wavelengths over 100h-1 Mpc from the CfA 1 and 2 catalogs. We find that our results agree with power spectra calculated by others from smaller samples of optical, radio and infrared galaxies. The power spectrum of an open CDM model (Omega h = 0.2 and delta8 = 1; see below for definitions) best approximates the observed power spectrum. The power spectrum of the standard CDM model(Omega h = 0.5 and delta8 = 1) is inconsistent with the observed one at the 99% confidence level. Our best estimation of the corresponding correlation function in real space is Xi(r) = (r/6.2h-1 Mpc)^-1.8 for r < 20h-1 Mpc.
Disruptive Technologies in Workmanship: pH-neutral Flux, CDM ESD Events, HDI PCBs
NASA Technical Reports Server (NTRS)
Plante, Jeannette F.
2010-01-01
This slide presentation describes what it calls "disruptive technologies", i.e., "Low-end disruption" occurs when the rate at which products improve exceeds the rate at which customers can adopt the new performance. Therefore, at some point the performance of the product overshoots the needs of certain customer segments. At this point, a disruptive technology may enter the market and provide a product which has lower performance than the incumbent but which exceeds the requirements of certain segments, thereby gaining a foothold in the market. This concept is viewed in impacting incumbent technologies Rosin Flux, with a pH-neutral water soluble Flux; electrostatic discharge models being disrupted by the charge device model (CDM) concept; and High Density Interconnect Printed Circuit Boards (HDI PCB).
Operationalizing clean development mechanism baselines: A case study of China's electrical sector
NASA Astrophysics Data System (ADS)
Steenhof, Paul A.
The global carbon market is rapidly developing as the first commitment period of the Kyoto Protocol draws closer and Parties to the Protocol with greenhouse gas (GHG) emission reduction targets seek alternative ways to reduce their emissions. The Protocol includes the Clean Development Mechanism (CDM), a tool that encourages project-based investments to be made in developing nations that will lead to an additional reduction in emissions. Due to China's economic size and rate of growth, technological characteristics, and its reliance on coal, it contains a large proportion of the global CDM potential. As China's economy modernizes, more technologies and processes are requiring electricity and demand for this energy source is accelerating rapidly. Relatively inefficient technology to generate electricity in China thereby results in the electrical sector having substantial GHG emission reduction opportunities as related to the CDM. In order to ensure the credibility of the CDM in leading to a reduction in GHG emissions, it is important that the baseline method used in the CDM approval process is scientifically sound and accessible for both others to use and for evaluation purposes. Three different methods for assessing CDM baselines and environmental additionality are investigated in the context of China's electrical sector: a method based on a historical perspective of the electrical sector (factor decomposition), a method structured upon a current perspective (operating and build margins), and a simulation of the future (dispatch analysis). Assessing future emission levels for China's electrical sector is a very challenging task given the complexity of the system, its dynamics, and that it is heavily influenced by internal and external forces, but of the different baseline methods investigated, dispatch modelling is best suited for the Chinese context as it is able to consider the important regional and temporal dimensions of its economy and its future development. For China, the most promising options for promoting sustainable development, one of the goals of the Kyoto Protocol, appear to be tied to increasing electrical end-use and generation efficiency, particularly clean coal technology for electricity generation since coal will likely continue to be a dominant primary fuel.
A comparison of cosmological models using strong gravitational lensing galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng, E-mail: fmelia@email.arizona.edu, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn
2015-01-01
Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the R{sub h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, thoughmore » the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out R{sub h}=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead R{sub h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the R{sub h}=ct universe eventually emerge as the correct cosmology, its lack of any free parameters for this kind of work will provide a remarkably powerful probe of the mass structure in lensing galaxies, and a means of better understanding the origin of the bulge-halo conspiracy.« less
Nonparametric test of consistency between cosmological models and multiband CMB measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamousa, Amir; Shafieloo, Arman, E-mail: amir@apctp.org, E-mail: shafieloo@kasi.re.kr
2015-06-01
We present a novel approach to test the consistency of the cosmological models with multiband CMB data using a nonparametric approach. In our analysis we calibrate the REACT (Risk Estimation and Adaptation after Coordinate Transformation) confidence levels associated with distances in function space (confidence distances) based on the Monte Carlo simulations in order to test the consistency of an assumed cosmological model with observation. To show the applicability of our algorithm, we confront Planck 2013 temperature data with concordance model of cosmology considering two different Planck spectra combination. In order to have an accurate quantitative statistical measure to compare betweenmore » the data and the theoretical expectations, we calibrate REACT confidence distances and perform a bias control using many realizations of the data. Our results in this work using Planck 2013 temperature data put the best fit ΛCDM model at 95% (∼ 2σ) confidence distance from the center of the nonparametric confidence set while repeating the analysis excluding the Planck 217 × 217 GHz spectrum data, the best fit ΛCDM model shifts to 70% (∼ 1σ) confidence distance. The most prominent features in the data deviating from the best fit ΛCDM model seems to be at low multipoles 18 < ℓ < 26 at greater than 2σ, ℓ ∼ 750 at ∼1 to 2σ and ℓ ∼ 1800 at greater than 2σ level. Excluding the 217×217 GHz spectrum the feature at ℓ ∼ 1800 becomes substantially less significance at ∼1 to 2σ confidence level. Results of our analysis based on the new approach we propose in this work are in agreement with other analysis done using alternative methods.« less
Cosmic acceleration in a dust only universe via energy-momentum powered gravity
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Katırcı, Nihan; Kumar, Suresh
2018-01-01
We propose a modified theory of gravitation constructed by the addition of the term f (Tμ νTμ ν) to the Einstein-Hilbert action, and elaborate a particular case f (Tμ νTμ ν)=α (Tμ νTμ ν)η, where α and η are real constants, dubbed energy-momentum powered gravity (EMPG). We search for viable cosmologies arising from EMPG, especially in the context of the late-time accelerated expansion of the Universe. We investigate the ranges of the EMPG parameters (α ,η ) on theoretical as well as observational grounds leading to the late-time acceleration of the Universe with pressureless matter only, while keeping the successes of standard general relativity at early times. We find that η =0 corresponds to the Λ CDM model, whereas η ≠0 leads to a w CDM -type model. However, the underlying physics of the EMPG model is entirely different in the sense that the energy in the EMPG Universe is sourced by pressureless matter only. Moreover, the energy of the pressureless matter is not conserved, namely, in general it does not dilute as ρ ∝a-3 with the expansion of the Universe. Finally, we constrain the parameters of an EMPG-based cosmology with a recent compilation of 28 Hubble parameter measurements, and find that this model describes an evolution of the Universe similar to that in the Λ CDM model. We briefly discuss that EMPG can be unified with Starobinsky gravity to describe the complete history of the Universe including the inflationary era.
Dynamical History Of The Local Group In ΛCDM slowromancapii@ - Including External Perturbers In 3D
NASA Astrophysics Data System (ADS)
Banik, Indranil; Zhao, Hongsheng
2017-05-01
We attempt to fit the observed radial velocities (RVs) of ˜30 Local Group (LG) galaxies using a 3D dynamical model of it and its immediate environment within the context of the standard cosmological paradigm, Λ cold dark matter (CDM). This extends and confirms the basic results of our previous axisymmetric investigation of the LG. We find that there remains a tendency for observed RVs to exceed those predicted by our best-fitting model. The typical mismatch is slightly higher than in our 2D model, with a root mean square value of ˜50 km s-1. Our main finding is that including the 3D distribution of massive perturbing dark matter haloes is unlikely to help greatly with the high-velocity galaxy problem. None the less, the 2D and 3D results differ in several other ways such as which galaxies' RVs are most problematic and the preferred values of parameters common to both models. The anomalously high RVs of several LG dwarfs may be better explained if the Milky Way (MW) and Andromeda (M31) were once moving much faster than in our models. This would allow LG dwarfs to gain very high RVs via gravitational slingshot encounters with a massive fast-moving galaxy. Such a scenario is possible in some modified gravity theories, especially those that require the MW and M31 to have previously undergone a close flyby. In a ΛCDM context, however, this scenario is not feasible as the resulting dynamical friction would cause a rapid merger.
Testing the Distance-Duality Relation in the Rh = ct Universe
NASA Astrophysics Data System (ADS)
Hu, J.; Wang, F. Y.
2018-04-01
In this paper, we test the cosmic distance duality (CDD) relation using the luminosity distances from joint light-curve analysis (JLA) type Ia supernovae (SNe Ia) sample and angular diameter distance sample from galaxy clusters. The Rh = ct and ΛCDM models are considered. In order to compare the two models, we constrain the CCD relation and the SNe Ia light-curve parameters simultaneously. Considering the effects of Hubble constant, we find that η ≡ DA(1 + z)2/DL = 1 is valid at the 2σ confidence level in both models with H0 = 67.8 ± 0.9 km/s/Mpc. However, the CDD relation is valid at 3σ confidence level with H0 = 73.45 ± 1.66 km/s/Mpc. Using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), we find that the ΛCDM model is very strongly preferred over the Rh = ct model with these data sets for the CDD relation test.
Testing the distance-duality relation in the Rh = ct universe
NASA Astrophysics Data System (ADS)
Hu, J.; Wang, F. Y.
2018-07-01
In this paper, we test the cosmic distance-duality (CDD) relation using the luminosity distances from joint light-curve analysis Type Ia supernovae (SNe Ia) sample and angular diameter distance sample from galaxy clusters. The Rh = ct and Λ cold dark matter (CDM) models are considered. In order to compare the two models, we constrain the CDD relation and the SNe Ia light-curve parameters simultaneously. Considering the effects of Hubble constant, we find that η ≡ DA(1 + z)2/DL = 1 is valid at the 2σ confidence level in both models with H0= 67.8 ± 0.9 km -1s-1 Mpc. However, the CDD relation is valid at 3σ confidence level with H0= 73.45 ± 1.66 km -1s-1Mpc. Using the Akaike Information Criterion and the Bayesian Information Criterion, we find that the ΛCDM model is very stongly preferred over the Rh = ct model with these data sets for the CDD relation test.
[The expression of interferon-lambda1 in CHO cell].
Yuan, Wu-Mei; Ma, Fen-Lian; Zhang, Qian; Zheng, Wen-Zhi; Zheng, Li-Shu
2013-06-01
To construct the eukaryotic expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which linked the enhancer SP163 with interferon lambda1. Then express the interferon lambda1 in CHO (dhfr-) cells. Using PCR method to introduce the restriction enzyme sites and through the fusion PCR binding the enhancer with the interferon Lambda1. After sequenced, lambda1 and SP163-lambda1 was inserted into PCI-dhfr forming the expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which was constructed successfully confirming by sequencing. Then the expressing vectors were transfected into CHO (dhfr-) cells using liposome transfection method and interferon lambda1 protein was assayed with indirect immunofluorescence and Western Blot. Using cytopathic effect inhibition evaluated the antiviral activity of interferon lambda1. Successfully constructing the eukaryotic expression vectors of interferon lambda and the vectors could express interferon lambda1. The result of immunofluorescence showed the enhancer developed the expression of interferon lambda1. Detecting the interferon lambda1 in CHO (dhfr-) cells after transfecting 48 hour using Western Blot. The cytopathic effect inhibition showed the expressed interferon lambda1 has the antiviral activity. Successfully expressed the interferon lambda1 in CHO (dhfr-) cells and the protein possesses antiviral activity, which may supply a valuable basis for building the stable cell line of interferon lambda1.
VLA observations of radio sources in interacting galaxy pairs in poor clusters
NASA Technical Reports Server (NTRS)
Batuski, David J.; Hanisch, Robert J.; Burns, Jack O.
1992-01-01
Observations of 16 radio sources in interacting galaxies in 14 poor clusters were made using the Very Large Array in the B configuration at lambda of 6 and 2 cm. These sources had been unresolved in earlier observations at lambda of 21 cm, and were chosen as a sample to determine which of three models for radio source formation actually pertains in interacting galaxies. From the analysis of this sample, the starburst model appears most successful, but the 'central monster' model could pertain in some cases.
Dynamic CDM strategies in an EHR environment.
Bieker, Michael; Bailey, Spencer
2012-02-01
A dynamic charge description master (CDM) integrates information from clinical ancillary systems into the charge-capture process, so an organization can reduce its reliance on the patient accounting system as the sole source of billing information. By leveraging the information from electronic ancillary systems, providers can eliminate the need for paper charge-capture forms and see increased accuracy and efficiency in the maintenance of billing information. Before embarking on a dynamic CDM strategy, organizations should first determine their goals for implementing an EHR system, include revenue cycle leaders on the EHR implementation team, and carefully weigh the pros and cons of CDM design decisions.
Accurate Modeling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model
NASA Astrophysics Data System (ADS)
Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron; Scoccimarro, Roman
2015-01-01
The large-scale distribution of galaxies can be explained fairly simply by assuming (i) a cosmological model, which determines the dark matter halo distribution, and (ii) a simple connection between galaxies and the halos they inhabit. This conceptually simple framework, called the halo model, has been remarkably successful at reproducing the clustering of galaxies on all scales, as observed in various galaxy redshift surveys. However, none of these previous studies have carefully modeled the systematics and thus truly tested the halo model in a statistically rigorous sense. We present a new accurate and fully numerical halo model framework and test it against clustering measurements from two luminosity samples of galaxies drawn from the SDSS DR7. We show that the simple ΛCDM cosmology + halo model is not able to simultaneously reproduce the galaxy projected correlation function and the group multiplicity function. In particular, the more luminous sample shows significant tension with theory. We discuss the implications of our findings and how this work paves the way for constraining galaxy formation by accurate simultaneous modeling of multiple galaxy clustering statistics.
Measuring the topology of large-scale structure in the universe
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1988-01-01
An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.
Measuring the topology of large-scale structure in the universe
NASA Astrophysics Data System (ADS)
Gott, J. Richard, III
1988-11-01
An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.
Pfaff, Alexander S.P.; Kerr, Suzi; Hughes, R. Flint; Liu, Shuguang; Sanchez-Azofeifa, G. Arturo; Schimel, David; Tosi, Joseph; Watson, Vicente
2000-01-01
Protecting tropical forests under the Clean Development Mechanism (CDM) could reduce the cost of emissions limitations set in Kyoto. However, while society must soon decide whether or not to use tropical forest-based offsets, evidence regarding tropical carbon sinks is sparse. This paper presents a general method for constructing an integrated model (based on detailed historical, remote sensing and field data) that can produce land-use and carbon baselines, predict carbon sequestration supply to a carbon-offsets market and also help to evaluate optimal market rules. Creating such integrated models requires close collaboration between social and natural scientists. Our project combines varied disciplinary expertise (in economics, ecology and geography) with local knowledge in order to create high-quality, empirically grounded, integrated models for Costa Rica.
A Clinical Data Warehouse Based on OMOP and i2b2 for Austrian Health Claims Data.
Rinner, Christoph; Gezgin, Deniz; Wendl, Christopher; Gall, Walter
2018-01-01
To develop simulation models for healthcare related questions clinical data can be reused. Develop a clinical data warehouse to harmonize different data sources in a standardized manner and get a reproducible interface for clinical data reuse. The Kimball life cycle for the development of data warehouse was used. The development is split into the technical, the data and the business intelligence pathway. Sample data was persisted in the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). The i2b2 clinical data warehouse tools were used to query the OMOP CDM by applying the new i2b2 multi-fact table feature. A clinical data warehouse was set up and sample data, data dimensions and ontologies for Austrian health claims data were created. The ability of the standardized data access layer to create and apply simulation models will be evaluated next.
IRAS 21391 + 5802 - A study in intermediate mass star formation
NASA Technical Reports Server (NTRS)
Wilking, Bruce; Mundy, Lee; Mcmullin, Joseph; Hezel, Thomas; Keene, Jocelyn
1993-01-01
We present infrared and millimeter wavelength observations of the cold IRAS source 21391 + 5802 and its associated molecular core. Infrared observations at lambda = 3.5 microns reveal a heavily obscured, central point source which is coincident with a compact lambda = 2.7 mm continuum and C18O emission region. The source radiates about 310 solar luminosities, primarily at FIR wavelengths, suggesting that it is a young stellar object of intermediate mass. The steeply rising spectral energy distribution and the large fraction of the system mass residing in circumstellar material imply that IRAS 21391 + 5802 is in an early stage of evolution. The inferred dust temperature indicates a temperature gradient in the core. A comprehensive model for the surrounding core of dust and gas is devised to match the observed dust continuum emission and multitransition CS emission from this and previous studies. We find a r exp -1.5 +/- 0.2 density gradient consistent with that of a gravitationally evolved core and a total core mass of 380 solar masses. The observed dust emission is most consistent with a lambda exp -1.5 - lambda exp -2 dust emissivity law; for a lambda exp -2 law, the data are best fit by a mass opacity coefficient of 3.6 x 10 exp -3 sq cm/g at lambda = 1.25 mm.
Reverberant acoustic energy in auditoria that comprise systems of coupled rooms
NASA Astrophysics Data System (ADS)
Summers, Jason Erik
A frequency-dependent model for levels and decay rates of reverberant energy in systems of coupled rooms is developed and compared with measurements conducted in a 1:10 scale model and in Bass Hall, Fort Worth, TX. Schroeder frequencies of subrooms, fSch, characteristic size of coupling apertures, a, relative to wavelength lambda, and characteristic size of room surfaces, l, relative to lambda define the frequency regions. At high frequencies [HF (f >> f Sch, a >> lambda, l >> lambda)], this work improves upon prior statistical-acoustics (SA) coupled-ODE models by incorporating geometrical-acoustics (GA) corrections for the model of decay within subrooms and the model of energy transfer between subrooms. Previous researchers developed prediction algorithms based on computational GA. Comparisons of predictions derived from beam-axis tracing with scale-model measurements indicate that systematic errors for coupled rooms result from earlier tail-correction procedures that assume constant quadratic growth of reflection density. A new algorithm is developed that uses ray tracing rather than tail correction in the late part and is shown to correct this error. At midfrequencies [MF (f >> f Sch, a ˜ lambda)], HF models are modified to account for wave effects at coupling apertures by including analytically or heuristically derived power transmission coefficients tau. This work improves upon prior SA models of this type by developing more accurate estimates of random-incidence tau. While the accuracy of the MF models is difficult to verify, scale-model measurements evidence the expected behavior. The Biot-Tolstoy-Medwin-Svensson (BTMS) time-domain edge-diffraction model is newly adapted to study transmission through apertures. Multiple-order BTMS scattering is theoretically and experimentally shown to be inaccurate due to the neglect of slope diffraction. At low frequencies (f ˜ f Sch), scale-model measurements have been qualitatively explained by application of previously developed perturbation models. Measurements newly confirm that coupling strength between three-dimensional rooms is related to unperturbed pressure distribution on the coupling surface. In Bass Hall, measurements are conducted to determine the acoustical effects of the coupled stage house on stage and in the audience area. The high-frequency predictions of statistical- and geometrical-acoustics models agree well with measured results. Predictions of the transmission coefficients of the coupling apertures agree, at least qualitatively, with the observed behavior.
Impact of a clinical decision making module on the attitudes and perceptions of surgical trainees.
Bhatt, Nikita R; Doherty, Eva M; Mansour, Ehab; Traynor, Oscar; Ridgway, Paul F
2016-09-01
Decision making, a cognitive non-technical skill, is a key element for clinical practice in surgery. Specific teaching about methods in clinical decision making (CDM) is a very recent addition to surgical training curricula in the UK and Ireland. Baseline trainee opinion on decision-making modules is unknown. The Royal College of Surgeons in Ireland's postgraduate training boot camp inaugural CDM module was investigated to elucidate the impact on the attitudes of CDM naïf trainees. Three standardized two-hour workshops for three trainee groups were delivered. The trainees were assessed by an anonymous questionnaire before and after the module. Change in attitude of the trainees was determined by comparing Likert scale ratings using the Wilcoxon signed-rank test. Fifty-seven newly appointed basic surgical trainees attended these workshops. A statistically significant rise in the proportion of candidates recognizing the importance of being taught CDM skills (P == 0.002) revealed the positive impact of the module, as did the increased understanding of different aspects of CDM like shared decision making (P == 0.035) and different styles of decision making (P == 0.013). These observed positive changes in trainee understanding and attitude toward CDM teaching supports the adoption of standardized modules into the curricula. More study is needed to define whether these modules will have measurable sustained enhancements of CDM skills. © 2016 Royal Australasian College of Surgeons.
Exploring cosmic homogeneity with the BOSS DR12 galaxy sample
NASA Astrophysics Data System (ADS)
Ntelis, Pierros; Hamilton, Jean-Christophe; Le Goff, Jean-Marc; Burtin, Etienne; Laurent, Pierre; Rich, James; Guillermo Busca, Nicolas; Tinker, Jeremy; Aubourg, Eric; du Mas des Bourboux, Hélion; Bautista, Julian; Palanque Delabrouille, Nathalie; Delubac, Timothée; Eftekharzadeh, Sarah; Hogg, David W.; Myers, Adam; Vargas-Magaña, Mariana; Pâris, Isabelle; Petitjean, Partick; Rossi, Graziano; Schneider, Donald P.; Tojeiro, Rita; Yeche, Christophe
2017-06-01
In this study, we probe the transition to cosmic homogeneity in the Large Scale Structure (LSS) of the Universe using the CMASS galaxy sample of BOSS spectroscopic survey which covers the largest effective volume to date, 3 h-3 Gpc3 at 0.43 <= z <= 0.7. We study the scaled counts-in-spheres, N(
EDGES result versus CMB and low-redshift constraints on ionization histories
NASA Astrophysics Data System (ADS)
Witte, Samuel; Villanueva-Domingo, Pablo; Gariazzo, Stefano; Mena, Olga; Palomares-Ruiz, Sergio
2018-05-01
We examine the results from the Experiment to Detect the Global Epoch of Reionization Signature (EDGES), which has recently claimed the detection of a strong absorption in the 21 cm hyperfine transition line of neutral hydrogen, at redshifts demarcating the early stages of star formation. More concretely, we study the compatibility of the shape of the EDGES absorption profile, centered at a redshift of z ˜17.2 , with measurements of the reionization optical depth, the Gunn-Peterson optical depth, and Lyman-α emission from star-forming galaxies, for a variety of possible reionization models within the standard Λ CDM framework (that is, a Universe with a cosmological constant Λ and cold dark matter CDM). When, conservatively, we only try to accommodate the location of the absorption dip, we identify a region in the parameter space of the astrophysical parameters that successfully explains all of the aforementioned observations. However, one of the most abnormal features of the EDGES measurement is the absorption amplitude, which is roughly a factor of 2 larger than the maximum allowed value in the Λ CDM framework. We point out that the simple considered astrophysical models that produce the largest absorption amplitudes are unable to explain the depth of the dip and of reproducing the observed shape of the absorption profile.
Observational tests for Λ(t)CDM cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigozzo, C.; Carneiro, S.; Dantas, M.A.
2011-08-01
We investigate the observational viability of a class of cosmological models in which the vacuum energy density decays linearly with the Hubble parameter, resulting in a production of cold dark matter particles at late times. Similarly to the flat ΛCDM case, there is only one free parameter to be adjusted by the data in this class of Λ(t)CDM scenarios, namely, the matter density parameter. To perform our analysis we use three of the most recent SNe Ia compilation sets (Union2, SDSS and Constitution) along with the current measurements of distance to the BAO peaks at z = 0.2 and zmore » = 0.35 and the position of the first acoustic peak of the CMB power spectrum. We show that in terms of χ{sup 2} statistics both models provide good fits to the data and similar results. A quantitative analysis discussing the differences in parameter estimation due to SNe light-curve fitting methods (SALT2 and MLCS2k2) is studied using the current SDSS and Constitution SNe Ia compilations. A matter power spectrum analysis using the 2dFGRS is also performed, providing a very good concordance with the constraints from the SDSS and Constitution MLCS2k2 data.« less
NASA Astrophysics Data System (ADS)
Yu, Hai; Ratra, Bharat; Wang, Fa-Yin
2018-03-01
We compile a complete collection of reliable Hubble parameter H(z) data to redshift z ≤ 2.36 and use them with the Gaussian Process method to determine continuous H(z) functions for various data subsets. From these continuous H(z)'s, summarizing across the data subsets considered, we find H 0 ∼ 67 ± 4 km s‑1 Mpc‑1, more consistent with the recent lower values determined using a variety of techniques. In most data subsets, we see a cosmological deceleration–acceleration transition at 2σ significance, with the data subsets transition redshifts varying over 0.33< {z}da}< 1.0 at 1σ significance. We find that the flat-ΛCDM model is consistent with the H(z) data to a z of 1.5 to 2.0, depending on data subset considered, with 2σ deviations from flat-ΛCDM above this redshift range. Using the continuous H(z) with baryon acoustic oscillation distance-redshift observations, we constrain the current spatial curvature density parameter to be {{{Ω }}}K0=-0.03+/- 0.21, consistent with a flat universe, but the large error bar does not rule out small values of spatial curvature that are now under debate.
Effects of coupled dark energy on the Milky Way and its satellites
NASA Astrophysics Data System (ADS)
Penzo, Camilla; Macciò, Andrea V.; Baldi, Marco; Casarini, Luciano; Oñorbe, Jose; Dutton, Aaron A.
2016-09-01
We present the first numerical simulations in coupled dark energy cosmologies with high enough resolution to investigate the effects of the coupling on galactic and subgalactic scales. We choose two constant couplings and a time-varying coupling function and we run simulations of three Milky Way-sized haloes (˜1012 M⊙), a lower mass halo (6 × 1011 M⊙) and a dwarf galaxy halo (5 × 109 M⊙). We resolve each halo with several million dark matter particles. On all scales, the coupling causes lower halo concentrations and a reduced number of substructures with respect to Λ cold dark matter (ΛCDM). We show that the reduced concentrations are not due to different formation times. We ascribe them to the extra terms that appear in the equations describing the gravitational dynamics. On the scale of the Milky Way satellites, we show that the lower concentrations can help in reconciling observed and simulated rotation curves, but the coupling values necessary to have a significant difference from ΛCDM are outside the current observational constraints. On the other hand, if other modifications to the standard model allowing a higher coupling (e.g. massive neutrinos) are considered, coupled dark energy can become an interesting scenario to alleviate the small-scale issues of the ΛCDM model.
FUSE Observations of Warm Gas in the Cooling Flow Clusters A1795 and A2597
NASA Technical Reports Server (NTRS)
Oegerle, W. R.; Cowie, L.; Davidsen, A.; Hu, E.; Hutchings, J.; Murphy, E.; Sembach, K.; Woodgate, B.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We present far-ultraviolet spectroscopy of the cores of the massive cooling flow clusters Abell 1795 and 2597 obtained with FUSE. As the intracluster gas cools through 3 x 10(exp 5)K, it should emit strongly in the O VI lambda(lambda)1032,1038 resonance lines. We report the detection of O VI (lambda)1032 emission in A2597, with a line flux of 1.35 +/- 0.35 x 10(exp -15) erg/sq cm s, as well as detection of emission from C III (lambda)977. A marginal detection of C III (lambda)977 emission is also reported for A1795. These observations provide evidence for a direct link between the hot (10(exp 7) K) cooling flow gas and the cool (10(exp 4) K) gas in the optical emission line filaments. Assuming simple cooling flow models, the O VI line flux in A2597 corresponds to a mass deposition rate of approx. 40 solar mass /yr within the central 36 kpc. Emission from O VI (lambda)1032 was not detected in A1795, with an upper limit of 1.5 x 10(exp -15) erg/sq cm s, corresponding to a limit on the mass cooling flow rate of M(28 kpc) less than 28M solar mass/ yr. We have considered several explanations for the lack of detection of O VI emission in A1795 and the weaker than expected flux in A2597, including extinction by dust in the outer cluster, and quenching of thermal conduction by magnetic fields. We conclude that a turbulent mixing model, with some dust extinction, could explain our O VI results while also accounting for the puzzling lack of emission by Fe(sub XVII) in cluster cooling flows.
NASA Technical Reports Server (NTRS)
Smith, Myron A.; Polidan, Ronald S.
1993-01-01
Several examples of weakenings of the C IV and N V resonance lines are found to coincide with the appearance of lambda 6678 dimples. The absence of variations in other UV lines and in the UV continuum at the same time or nearly the same time argues against dimples being caused by thermal variations from the underlying star. It is instead suggested that the resonance line weakenings are caused by non-LTE effects associated with the condensation of high density structures at some elevation over the star. A simple model of an opaque, essentially stationary slab which backscatters lambda 6678 line radiation into a surrounding 'penumbral' region is presented. Lambda 6678 photons are scattered a second time in this region back into the observer's line of sight and in the process acquire the local projected Doppler shift from rotation. Slabs would probably produce too little emission to be easily detected in the H alpha profile. Their detection in strong He I lines seems the best strategy among early Be stars.
Numerical simulations of detonation propagation in gaseous fuel-air mixtures
NASA Astrophysics Data System (ADS)
Honhar, Praveen; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine
2017-11-01
Unsteady multidimensional numerical simulations of detonation propagation and survival in mixtures of fuel (hydrogen or methane) diluted with air were carried out with a fully compressible Navier-Stokes solver using a simplified chemical-diffusive model (CDM). The CDM was derived using a genetic algorithm combined with the Nelder-Mead optimization algorithm and reproduces physically correct laminar flame and detonation properties. Cases studied are overdriven detonations propagating through confined mediums, with or without gradients in composition. Results from simulations confirm that the survival of the detonation depends on the channel heights. In addition, the simulations show that the propagation of the detonation waves depends on the steepness in composition gradients.
The Formation of Shell Galaxies Similar to NGC 7600 in the Cold Dark Matter Cosmogony
NASA Astrophysics Data System (ADS)
Cooper, Andrew P.; Martínez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.; GaBany, R. Jay
2011-12-01
We present new deep observations of "shell" structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.
Testing modified gravity using a marked correlation function
NASA Astrophysics Data System (ADS)
Armijo, Joaquí n.; Cai, Yan-Chuan; Padilla, Nelson; Li, Baojiu; Peacock, John A.
2018-05-01
In theories of modified gravity with the chameleon screening mechanism, the strength of the fifth force depends on environment. This induces an environment dependence of structure formation, which differs from ΛCDM. We show that these differences can be captured by the marked correlation function. With the galaxy correlation functions and number densities calibrated to match between f(R) and ΛCDM models in simulations, we show that the marked correlation functions from using either the local galaxy number density or halo mass as the marks encode extra information, which can be used to test these theories. We discuss possible applications of these statistics in observations.
Cognitive Diagnostic Modeling Using R
ERIC Educational Resources Information Center
Ravand, Hamdollah
2015-01-01
Cognitive diagnostic models (CDM) have been around for more than a decade but their application is far from widespread for mainly two reasons: (1) CDMs are novel, as compared to traditional IRT models. Consequently, many researchers lack familiarity with them and their properties, and (2) Software programs doing CDMs have been expensive and not…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryemadhi, Abaz
The results from Tevatron in the baryonic sector are presented. The lifetime of {lambda}b {yields} J/{psi}{lambda}, the observation of hadronic decay of {lambda}b {yields} {lambda}c{pi}, the semileptonic decays of {lambda}b {yields} {lambda}c{mu}{nu}, the hadronization of the b-baryons, and the {lambda}b decays to {lambda}b {yields} p{pi} and {lambda}b {yields} pK are discussed. These measurements paint a nice picture of our understanding of the beauty baryons.
Effects of anisotropy on interacting ghost dark energy in Brans-Dicke theories
NASA Astrophysics Data System (ADS)
Hossienkhani, H.; Fayaz, V.; Azimi, N.
2017-03-01
In this work we concentrate on the ghost dark energy model within the framework of the Brans-Dicke theory in an anisotropic Universe. Within this framework we discuss the behavior of equation of state, deceleration and dark energy density parameters of the model. We consider the squared sound speed and quest for signs of stability of the model. We also probe observational constraints by using the latest observational data on the ghost dark energy models as the unification of dark matter and dark energy. In order to do so, we focus on observational determinations of the Hubble expansion rate (namely, the expansion history) H(z). Then we evaluate the evolution of the growth of perturbations in the linear regime for both ghost DE and Brans-Dicke theory and compare the results with standard FRW and ΛCDM models. We display the effects of the anisotropy on the evolutionary behavior the ghost DE models where the growth rate is higher in this models. Eventually the growth factor for the ΛCDM Universe will always fall behind the ghost DE models in an anisotropic Universe.
Improved measurement of the form factors in the decay lambda+c-->lambda + nue.
Hinson, J W; Huang, G S; Lee, J; Miller, D H; Pavlunin, V; Rangarajan, R; Sanghi, B; Shibata, E I; Shipsey, I P J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Dambasuren, E; Dorjkhaidav, O; Mountain, R; Muramatsu, H; Nandakumar, R; Skwarnicki, T; Stone, S; Wang, J C; Csorna, S E; Danko, I; Bonvicini, G; Cinabro, D; Dubrovin, M; McGee, S; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Patterson, J R; Peterson, D; Pivarski, J; Richichi, S J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Wilksen, T; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Benslama, K; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Anderson, S; Frolov, V V; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ahmed, S; Alam, M S; Ernst, J; Jian, L; Saleem, M; Wappler, F; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Honscheid, K; Kagan, H; Kass, R; Pedlar, T K; von Toerne, E; Severini, H; Skubic, P; Dytman, S A; Mueller, J A; Nam, S; Savinov, V
2005-05-20
Using the CLEO detector at the Cornell Electron Storage Ring, we have studied the distribution of kinematic variables in the decay lambda(+)(c)lambda--> e(+)nu(e). By performing a four-dimensional maximum likelihood fit, we determine the form factor ratio, R= f(2)/f(1) = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole mass, M(pole) = [2.21 +/- 0.08(stat) +/- 0.14(syst)] GeV/c(2), and the decay asymmetry parameter of the lambda(+)(c), alpha (lambda(c)) = -0.86 +/-0.03(stat) +/- 0.02(syst), for q(2) = 0.67 (GeV/c(2))(2). We compare the angular distributions of the lambda(+)(c) and lambda(-)(c) and find no evidence for CP violation: A(lambda(c)) = (alpha(lambda(c)) + alpha (lambda(c)))/(alpha(lambda(c))-alpha(lambda(c))) = 0.00 +/- 0.03(stat) +/- 0.01(syst) +/- 0.02, where the third error is from the uncertainty in the world average of the CP-violating parameter, A(lambda), for ppi(-).
Self-Organized Service Negotiation for Collaborative Decision Making
Zhang, Bo; Zheng, Ziming
2014-01-01
This paper proposes a self-organized service negotiation method for CDM in intelligent and automatic manners. It mainly includes three phases: semantic-based capacity evaluation for the CDM sponsor, trust computation of the CDM organization, and negotiation selection of the decision-making service provider (DMSP). In the first phase, the CDM sponsor produces the formal semantic description of the complex decision task for DMSP and computes the capacity evaluation values according to participator instructions from different DMSPs. In the second phase, a novel trust computation approach is presented to compute the subjective belief value, the objective reputation value, and the recommended trust value. And in the third phase, based on the capacity evaluation and trust computation, a negotiation mechanism is given to efficiently implement the service selection. The simulation experiment results show that our self-organized service negotiation method is feasible and effective for CDM. PMID:25243228
Self-organized service negotiation for collaborative decision making.
Zhang, Bo; Huang, Zhenhua; Zheng, Ziming
2014-01-01
This paper proposes a self-organized service negotiation method for CDM in intelligent and automatic manners. It mainly includes three phases: semantic-based capacity evaluation for the CDM sponsor, trust computation of the CDM organization, and negotiation selection of the decision-making service provider (DMSP). In the first phase, the CDM sponsor produces the formal semantic description of the complex decision task for DMSP and computes the capacity evaluation values according to participator instructions from different DMSPs. In the second phase, a novel trust computation approach is presented to compute the subjective belief value, the objective reputation value, and the recommended trust value. And in the third phase, based on the capacity evaluation and trust computation, a negotiation mechanism is given to efficiently implement the service selection. The simulation experiment results show that our self-organized service negotiation method is feasible and effective for CDM.
Schorr, Ethlynn S; Sidou, Farzi; Kerrouche, Nabil
2012-09-01
To assess the benefit of adjunctive use of a SPF 30 moisturizing lotion in reducing local side effects associated with atopical tretinoin cream. This was a randomized, investigator/evaluator-blinded, split-face comparison in subjects with healthy skin. Subjects applied tretinoin cream 0.05% once daily to the whole face and Cetaphil 174; Dermacontrol Moisturizer (CDM) once daily to one side of the face based on randomization. Tolerability, perference and skin hydration were evaluated at each week, and a cosmetic acceptability questionnaire regarding CDM was completed at the end of the study. The majority (about 83% to 86%) of subjects experienced skin irritations on both sides of their face, though predominantly mild for the CDM + tretinoin treated side. Tolerability preferences favored the CDM+tretinoin sides. Adjunctive use of CDM with a topical tretinoin cream improves tolerance of the treatment.
Effective crisis decision-making.
Kaschner, Holger
2017-01-01
When an organisation's reputation is at stake, crisis decision-making (CDM) is challenging and prone to failure. Most CDM schemes are strong at certain aspects of the overall CDM process, but almost none are strong at all of them. This paper defines criteria for good CDM schemes, analyses common approaches and introduces an alternative, stakeholder-driven scheme. Focusing on the most important stakeholders and directing any actions to preserve the relationships with them is crucial. When doing so, the interdependencies between the stakeholders must be identified and considered. Without knowledge of the sometimes less than obvious links, wellmeaning actions can cause adverse effects, so a cross-check for the impacts of potential options is recommended before making the final decision. The paper also gives recommendations on how to implement these steps at any organisation in order to enhance the quality of CDM and thus protect the organisation's reputation.
Linear Power Spectra in Cold+Hot Dark Matter Models: Analytical Approximations and Applications
NASA Astrophysics Data System (ADS)
Ma, Chung-Pei
1996-11-01
This paper presents simple analytic approximations to the linear power spectra, linear growth rates, and rms mass fluctuations for both components in a family of cold + hot dark matter (CDM + HDM) models that are of current cosmological interest. The formulas are valid for a wide range of wavenumbers, neutrino fractions, redshifts, and Hubble constants: k ≤ 1O h Mpc-1, 0.05 ≤ Ωv le; 0.3 0 ≤ z ≤ 15, and 0.5 ≤ h ≤ 0.8. A new, redshift-dependent shape parameter, Γv = a½Ωvh2, is introduced to simplify the multidimensional parameter space and to characterize the effect of massive neutrinos on the power spectrum. The physical origin of Γv lies in the neutrino free-streaming process, and the analytic approximations can be simplified to depend only on this variable and Ωv. Linear calculations with these power spectra as input are performed to compare the predictions of Ωv ≤ 0.3 models with observational constraints from the reconstructed linear power spectrum and cluster abundance. The usual assumption of an exact scale-invariant primordial power spectrum is relaxed to allow a spectral index of 0.8 ≤ n ≤ 1. It is found that a slight tilt of n = 0.9 (no tensor mode) or n = 0.95 (with tensor mode) in 0.t-0.2 CDM + HDM models gives a power spectrum similar to that of an open CDM model with a shape parameter Γ = 0.25, providing good agreement with the power spectrum reconstructed by Peacock & Dodds and the observed cluster abundance at low redshifts. Late galaxy formation at high redshifts, however, will be a more severe problem in tilted models.
Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models
NASA Astrophysics Data System (ADS)
Wojtak, Radosław; Prada, Francisco
2017-10-01
The standard relation between the cosmological redshift and cosmic scalefactor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the Λ cold-dark-matter (ΛCDM) cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryon acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, but affecting both low-redshift observations and the CMB. The model predicts a significant difference between the actual Hubble constant, h = 0.48 ± 0.02, and its local determination, hobs = 0.73 ± 0.02. The ratio of these two values coincides closely with the maximum expansion rate inside voids formed in the corresponding open cosmological model with Ωm = 0.87 ± 0.03, whereas the actual value of the Hubble constant implies the age of the Universe that is compatible with the Planck ΛCDM cosmology. The model with redshift remapping provides excellent fits to all data and eliminates recently reported tensions between the PlanckΛCDM cosmology, the local determination of the Hubble constant and the BAO measurements from the Ly α forest of high-redshift quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Y.-W.; Wang, M.-Z.; Chao, Y.
2009-03-01
We study the charmless decays B{yields}{lambda}{lambda}h, where h stands for {pi}{sup +}, K{sup +}, K{sup 0},K*{sup +}, or K*{sup 0}, using a 605 fb{sup -1} data sample collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric energy e{sup +}e{sup -} collider. We observe B{sup 0}{yields}{lambda}{lambda}K{sup 0} and B{sup 0}{yields}{lambda}{lambda}K*{sup 0} with branching fractions of (4.76{sub -0.68}{sup +0.84}(stat){+-}0.61(syst))x10{sup -6} and (2.46{sub -0.72}{sup +0.87}{+-}0.34)x10{sup -6}, respectively. The significances of these signals in the threshold-mass enhanced mass region, M{sub {lambda}}{sub {lambda}}<2.85 GeV/c{sup 2}, are 12.4{sigma} and 9.3{sigma}, respectively. We also update the branching fraction B(B{sup +}{yields}{lambda}{lambda}K{sup +})=(3.38{sub -0.36}{sup +0.41}{+-}0.41)x10{supmore » -6} with better accuracy, and report the following measurement or 90% confidence level upper limit in the threshold-mass-enhanced region: B(B{sup +}{yields}{lambda}{lambda}K*{sup +})=(2.19{sub -0.88}{sup +1.13}{+-}0.33)x10{sup -6} with 3.7{sigma} significance; B(B{sup +}{yields}{lambda}{lambda}{pi}{sup +})<0.94x10{sup -6}. A related search for B{sup 0}{yields}{lambda}{lambda}D{sup 0} yields a branching fraction B(B{sup 0}{yields}{lambda}{lambda}D{sup 0})=(1.05{sub -0.44}{sup +0.57}{+-}0.14)x10{sup -5}. This may be compared with the large, {approx}10{sup -4}, branching fraction observed for B{sup 0}{yields}ppD{sup 0}. The M{sub {lambda}}{sub {lambda}} enhancements near threshold and related angular distributions for the observed modes are also reported.« less
Evaluation results for the positive deep-UV resist AZ DX 46
NASA Astrophysics Data System (ADS)
Spiess, Walter; Lynch, Thomas J.; Le Cornec, Charles; Escher, Gary C.; Kinoshita, Yoshiaki; Kochan, John; Kudo, Takanori; Masuda, Seiya; Mourier, Thierry; Nozaki, Yuko; Olson, Setha G.; Okazaki, Hiroshi; Padmanaban, Munirathna; Pawlowski, Georg; Przybilla, Klaus J.; Roeschert, Horst; Suehiro, Natusmi; Vinet, Francoise; Wengenroth, Horst
1994-05-01
This contribution emphasizes resist application site by communicating lithographic results for AZ DX 46, obtained using the GCA XLS 7800/31 stepper, NA equals 0.53, equipped with krypton fluoride excimer laser ((lambda) equals 248 nm), model 4500 D, as exposure source, delivered by Cymer Laser Technologies. As far as delay time experiments are concerned ASM-L PAS 5500/70 stepper, NA equals 0.42, was used in combination with Lambda Physik excimer laser, model 248 L.
Osipiuk, J; Georgopoulos, C; Zylicz, M
1993-03-05
It is known that the initiation of bacteriophage lambda replication requires the orderly assembly of the lambda O.lambda P.DnaB helicase protein preprimosomal complex at the ori lambda DNA site. The DnaK, DnaJ, and GrpE heat shock proteins act together to destabilize the lambda P.DnaB complex, thus freeing DnaB and allowing it to unwind lambda DNA near the ori lambda site. The first step of this disassembly reaction is the binding of DnaK to the lambda P protein. In this report, we examined the influence of the DnaJ and GrpE proteins on the stability of the lambda P.DnaK complex. We present evidence for the existence of the following protein-protein complexes: lambda P.DnaK, lambda P.DnaJ, DnaJ.DnaK, DnaK.GrpE, and lambda P.DnaK.GrpE. Our results suggest that the presence of GrpE alone destabilizes the lambda P.DnaK complex, whereas the presence of DnaJ alone stabilizes the lambda P.DnaK complex. Using immunoprecipitation, we show that in the presence of GrpE, DnaK exhibits a higher affinity for the lambda P.DnaJ complex than it does alone. Using cross-linking with glutaraldehyde, we show that oligomeric forms of DnaK exhibit a higher affinity for lambda P than monomeric DnaK. However, in the presence of GrpE, monomeric DnaK can efficiently bind lambda P protein. These findings help explain our previous results, namely that in the GrpE-dependent lambda DNA replication system, the DnaK protein requirement can be reduced up to 10-fold.
Power law cosmology model comparison with CMB scale information
NASA Astrophysics Data System (ADS)
Tutusaus, Isaac; Lamine, Brahim; Blanchard, Alain; Dupays, Arnaud; Zolnierowski, Yves; Cohen-Tanugi, Johann; Ealet, Anne; Escoffier, Stéphanie; Le Fèvre, Olivier; Ilić, Stéphane; Pisani, Alice; Plaszczynski, Stéphane; Sakr, Ziad; Salvatelli, Valentina; Schücker, Thomas; Tilquin, André; Virey, Jean-Marc
2016-11-01
Despite the ability of the cosmological concordance model (Λ CDM ) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius, R (t )∝tn, has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO can be well reproduced by both Λ CDM and power law expansion models with n ˜1.5 , while the constant expansion rate model (n =1 ) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data are well known to provide the most stringent constraints on standard cosmological models, in particular, through the position of the first peak of the temperature angular power spectrum, corresponding to the sound horizon at recombination, a scale physically related to the BAO scale. Models with n ≥1 lead to a divergence of the sound horizon and do not naturally provide the relevant scales for the BAO and the CMB. We retain an empirical footing to overcome this issue: we let the data choose the preferred values for these scales, while we recompute the ionization history in power law models, to obtain the distance to the CMB. In doing so, we find that the scale coming from the BAO data is not consistent with the observed position of the first peak of the CMB temperature angular power spectrum for any power law cosmology. Therefore, we conclude that when the three standard probes (SNIa, BAO, and CMB) are combined, the Λ CDM model is very strongly favored over any of these alternative models, which are then essentially ruled out.
On the wind geometry of the Wolf-Rayet star EZ Canis Majoris
NASA Technical Reports Server (NTRS)
Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Taylor, M.; Nook, M. A.; Bjorkman, K. S.; Magalhaes, A. M.; Anderson, C. M.
1991-01-01
Recent models of Wolf-Rayet star winds have been tailored to EZ CMa, and make predictions of the envelope structure and location of line-emitting regions. It is discussed how the wind structure of EZ CMa can be probed observationally through electron distribution integrals as measured by spectropolarimetry, and then present, analyze, and interpret a time-dependent spectropolarimetric data set of EZ CMa. The observations further the view of an electron-scattering wind that is axisymmetric, rotating, and expanding, with a variable mass-loss rate being responsible for the quasi-periodic polarimetric variability. It is demonstrated that the emission lines of EZ CMa are partially polarized, indicating that line photons are electron-scattered in the wind. The polarization in N V lambda 4945 and N IV lambda 4058 is observed to be larger than that of He II lambda 4686 and He I lambda 5876, as expected from ionization stratification.
Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix
Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid
2011-01-01
Aim To investigate the cell growth, matrix accumulation and mechanical properties of neocartilage formed by human or porcine articular chondrocytes on a porous, porcine cartilage-derived matrix (CDM) for use in cartilage tissue engineering. Materials & methods We examined the physical properties, cell infiltration and matrix accumulation in different formulations of CDM and selected a CDM made of homogenized cartilage slurry as an appropriate scaffold for long-term culture of human and porcine articular chondrocytes. Results The CDM scaffold supported growth and proliferation of both human and porcine chondrocytes. Histology and immunohistochemistry showed abundant cartilage-specific macromolecule deposition at day 28. Human chondrocytes migrated throughout the CDM, showing a relatively homogeneous distribution of new tissue accumulation, whereas porcine chondrocytes tended to form a proteoglycan-rich layer primarily on the surfaces of the scaffold. Human chondrocyte-seeded scaffolds had a significantly lower aggregate modulus and hydraulic permeability at day 28. Conclusions These data show that a scaffold derived from native porcine articular cartilage can support neocartilage formation in the absence of exogenous growth factors. The overall characteristics and properties of the constructs depend on factors such as the concentration of CDM used, the porosity of the scaffold, and the species of chondrocytes. PMID:21175289
Editorial Comments, 1974-1986: The Case For and Against the Use of Computer-Assisted Decision Making
Weaver, Robert R.
1987-01-01
Journal editorials are an important medium for communicating information about medical innovations. Evaluative statements contained in editorials pertain to the innovation's technical merits, as well as its probable economic, social and political, and ethical consequences. This information will either promote or impede the subsequent diffusion of innovations. This paper analyzes the evaluative information contained in thirty editorials that pertain to the topic of computer-assisted decision making (CDM). Most editorials agree that CDM technology is effective and economical in performing routine clinical tasks; controversy surrounds the use of more sophisticated CDM systems for complex problem solving. A few editorials argue that the innovation should play an integral role in transforming the established health care system. Most, however, maintain that it can or should be accommodated within the existing health care framework. Finally, while few editorials discuss the ethical ramifications of CDM technology, those that do suggest that it will contribute to more humane health care. The editorial analysis suggests that CDM technology aimed at routine clinical task will experience rapid diffusion. In contrast, the diffusion of more sophisticated CDM systems will, in the foreseeable future, likely be sporadic at best.
Pairwise velocities in the "Running FLRW" cosmological model
NASA Astrophysics Data System (ADS)
Bibiano, Antonio; Croton, Darren J.
2017-05-01
We present an analysis of the pairwise velocity statistics from a suite of cosmological N-body simulations describing the 'Running Friedmann-Lemaître-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Λ cold dark matter (CDM) with a time-evolving vacuum energy density, ρ _Λ. To enforce local conservation of matter, a time-evolving gravitational coupling is also included. Our results constitute the first study of velocities in the R-FLRW cosmology, and we also compare with other dark energy simulations suites, repeating the same analysis. We find a strong degeneracy between the pairwise velocity and σ8 at z = 0 for almost all scenarios considered, which remains even when we look back to epochs as early as z = 2. We also investigate various coupled dark energy models, some of which show minimal degeneracy, and reveal interesting deviations from ΛCDM that could be readily exploited by future cosmological observations to test and further constrain our understanding of dark energy.
Liberek, K; Osipiuk, J; Zylicz, M; Ang, D; Skorko, J; Georgopoulos, C
1990-02-25
The process of initiation of lambda DNA replication requires the assembly of the proper nucleoprotein complex at the origin of replication, ori lambda. The complex is composed of both phage and host-coded proteins. The lambda O initiator protein binds specifically to ori lambda. The lambda P initiator protein binds to both lambda O and the host-coded dnaB helicase, giving rise to an ori lambda DNA.lambda O.lambda P.dnaB structure. The dnaK and dnaJ heat shock proteins have been shown capable of dissociating this complex. The thus freed dnaB helicase unwinds the duplex DNA template at the replication fork. In this report, through cross-linking, size chromatography, and protein affinity chromatography, we document some of the protein-protein interactions occurring at ori lambda. Our results show that the dnaK protein specifically interacts with both lambda O and lambda P, and that the dnaJ protein specifically interacts with the dnaB helicase.
Ittenbach, Richard F; Baker, Cynthia L; Corsmo, Jeremy J
2014-05-01
Standard operating procedures (SOPs) were once considered the province of the pharmaceutical industry but are now viewed as a key component of quality assurance programs. To address variability and increase the rigor of clinical data management (CDM) operations, the Cincinnati Children's Hospital Medical Center (CCHMC) decided to create CDM SOPs. In response to this challenge, and as part of a broader institutional initiative, the CCHMC leadership established an executive steering committee to oversee the development and implementation of CDM SOPs. This resulted in the creation of a quality assurance review process with three review panels: an SOP development team (16 clinical data managers and technical staff members), a faculty review panel (8 senior faculty and administrators), and an expert advisory panel (3 national CDM experts). This innovative, tiered review process helped ensure that the new SOPs would be created and implemented in accord with good CDM practices and standards. Twelve fully vetted, institutionally endorsed SOPs and one CDM template resulted from the intensive, iterative 10-month process (December 2011 to early October 2012). Phased implementation, which incoporated the CDM SOPs into the existing audit process for certain types of clinical research studies, was on schedule at the time of this writing. Once CCHMC researchers have had the opportunity to use the SOPs over time and across a broad range of research settings and conditions, the SOPs will be revisited and revalidated.
Lensing convergence in galaxy clustering in ΛCDM and beyond
NASA Astrophysics Data System (ADS)
Villa, Eleonora; Di Dio, Enea; Lepori, Francesca
2018-04-01
We study the impact of neglecting lensing magnification in galaxy clustering analyses for future galaxy surveys, considering the ΛCDM model and two extensions: massive neutrinos and modifications of General Relativity. Our study focuses on the biases on the constraints and on the estimation of the cosmological parameters. We perform a comprehensive investigation of these two effects for the upcoming photometric and spectroscopic galaxy surveys Euclid and SKA for different redshift binning configurations. We also provide a fitting formula for the magnification bias of SKA. Our results show that the information present in the lensing contribution does improve the constraints on the modified gravity parameters whereas the lensing constraining power is negligible for the ΛCDM parameters. For photometric surveys the estimation is biased for all the parameters if lensing is not taken into account. This effect is particularly significant for the modified gravity parameters. Conversely for spectroscopic surveys the bias is below one sigma for all the parameters. Our findings show the importance of including lensing in galaxy clustering analyses for testing General Relativity and to constrain the parameters which describe its modifications.
Timilsina, Govinda R; Shrestha, Ram M
2006-09-01
The Clean Development Mechanism (CDM) under the Kyoto Protocol to the United Nations Framework Convention on Climate Change is considered a key instrument to encourage developing countries' participation in the mitigation of global climate change. Reduction of greenhouse gas (GHG) emissions through the energy supply and demand side activities are the main options to be implemented under the CDM. This paper analyses the general equilibrium effects of a supply side GHG mitigation option-the substitution of thermal power with hydropower--in Thailand under the CDM. A static multi-sector general equilibrium model has been developed for the purpose of this study. The key finding of the study is that the substitution of electricity generation from thermal power plants with that from hydropower plants would increase economic welfare in Thailand. The supply side option would, however, adversely affect the gross domestic product (GDP) and the trade balance. The percentage changes in economic welfare, GDP and trade balance increase with the level of substitution and the price of certified emission reduction (CER) units.
Spatiotemporal variation in reproductive parameters of yellow-bellied marmots.
Ozgul, Arpat; Oli, Madan K; Olson, Lucretia E; Blumstein, Daniel T; Armitage, Kenneth B
2007-11-01
Spatiotemporal variation in reproductive rates is a common phenomenon in many wildlife populations, but the population dynamic consequences of spatial and temporal variability in different components of reproduction remain poorly understood. We used 43 years (1962-2004) of data from 17 locations and a capture-mark-recapture (CMR) modeling framework to investigate the spatiotemporal variation in reproductive parameters of yellow-bellied marmots (Marmota flaviventris), and its influence on the realized population growth rate. Specifically, we estimated and modeled breeding probabilities of two-year-old females (earliest age of first reproduction), >2-year-old females that have not reproduced before (subadults), and >2-year-old females that have reproduced before (adults), as well as the litter sizes of two-year old and >2-year-old females. Most reproductive parameters exhibited spatial and/or temporal variation. However, reproductive parameters differed with respect to their relative influence on the realized population growth rate (lambda). Litter size had a stronger influence than did breeding probabilities on both spatial and temporal variations in lambda. Our analysis indicated that lambda was proportionately more sensitive to survival than recruitment. However, the annual fluctuation in litter size, abetted by the breeding probabilities, accounted for most of the temporal variation in lambda.
New observational constraints on f ( R ) gravity from cosmic chronometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.
We use the recently released cosmic chronometer data and the latest measured value of the local Hubble parameter, combined with the latest joint light curves of Supernovae Type Ia, and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f ( R ) gravity models. We consider four f ( R ) models, namely the Hu-Sawicki, the Starobinsky, the Tsujikawa, and the exponential one, and we parametrize them introducing a distortion parameter b that quantifies the deviation from ΛCDM cosmology. Our analysis reveals that a small but non-zero deviation from ΛCDM cosmology ismore » slightly favored, with the corresponding fittings exhibiting very efficient AIC and BIC Information Criteria values. Clearly, f ( R ) gravity is consistent with observations, and it can serve as a candidate for modified gravity.« less
Power spectrum estimation from peculiar velocity catalogues
NASA Astrophysics Data System (ADS)
Macaulay, E.; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.
2012-09-01
The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large-scale excess in the matter power spectrum and can appear to be in some tension with the Λ cold dark matter (ΛCDM) model. We use a composite catalogue of 4537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results by Macaulay et al., studying minimum variance moments of the velocity field, as calculated by Feldman, Watkins & Hudson. We find good agreement with the ΛCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1 with a 1σ uncertainty which includes the ΛCDM model. We find that the uncertainty in excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and non-linear clustering in simulated peculiar velocity catalogues and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.
Rotation curves of galaxies and the stellar mass-to-light ratio
NASA Astrophysics Data System (ADS)
Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel
2018-03-01
Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c - Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration and virial mass. Although accounting for a NFW dark halo profile can explain rotation curve observations, the implied c - Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L -color correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L - ratios of 51 galaxies (30% of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark halos of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disk galaxies.
Rotation curves of galaxies and the stellar mass-to-light ratio
NASA Astrophysics Data System (ADS)
Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel
2018-07-01
Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c-Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration, and virial mass. Although accounting for a NFW dark halo profile can explain RC observations, the implied c-Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L-colour correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L ratios of 51 galaxies (30 per cent of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark haloes of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disc galaxies.
Canine diabetes mellitus risk factors: A matched case-control study.
Pöppl, Alan Gomes; de Carvalho, Guilherme Luiz Carvalho; Vivian, Itatiele Farias; Corbellini, Luis Gustavo; González, Félix Hilário Díaz
2017-10-01
Different subtypes of canine diabetes mellitus (CDM) have been described based on their aetiopathogenesis. Therefore, manifold risk factors may be involved in CDM development. This study aims to investigate canine diabetes mellitus risk factors. Owners of 110 diabetic dogs and 136 healthy controls matched by breed, sex, and age were interviewed concerning aspects related to diet, weight, physical activity, oral health, reproductive history, pancreatitis, and exposure to exogenous glucocorticoids. Two multivariate multivariable statistical models were created: The UMod included males and females without variables related to oestrous cycle, while the FMod included only females with all analysed variables. In the UMod, "Not exclusively commercial diet" (OR 4.86, 95%CI 2.2-10.7, P<0.001) and "Overweight" (OR 3.51, 95%CI 1.6-7.5, P=0.001) were statistically significant, while in the FMod, "Not exclusively commercial diet" (OR 4.14, 95%CI 1.3-12.7, P=0.01), "Table scraps abuse" (OR 3.62, 95%CI 1.1-12.2, P=0.03), "Overweight" (OR 3.91, 95%CI 1.2-12.6, P=0.02), and "Dioestrus" (OR 5.53, 95%CI 1.9-16.3, P=0.002) were statistically significant. The findings in this study support feeding not exclusively balanced commercial dog food, overweight, treats abuse, and diestrus, as main CDM risk factors. Moreover, those results give subside for preventive care studies against CDM development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Do Processing Patterns of Strengths and Weaknesses Predict Differential Treatment Response?
Miciak, Jeremy; Williams, Jacob L; Taylor, W Pat; Cirino, Paul T; Fletcher, Jack M; Vaughn, Sharon
2016-08-01
No previous empirical study has investigated whether the LD identification decisions of proposed methods to operationalize processing strengths and weaknesses (PSW) approaches for LD identification are associated with differential treatment response. We investigated whether the identification decisions of the concordance/discordance model (C/DM; Hale & Fiorello, 2004) and Cross Battery Assessment approach (XBA method; Flanagan, Ortiz, & Alfonso, 2007) were consistent and whether they predicted intervention response beyond that accounted for by pretest performance on measures of reading. Psychoeducational assessments were administered at pretest to 203 4 th graders with low reading comprehension and individual results were utilized to identify students who met LD criteria according to the C/DM and XBA methods and students who did not. Resulting group status permitted an investigation of agreement for identification methods and whether group status at pretest (LD or not LD) was associated with differential treatment response to an intensive reading intervention. The LD identification decisions of the XBA and C/DM demonstrated poor agreement with one another (κ = -.10). Comparisons of posttest performance for students who met LD criteria and those who did not meet were largely null, with small effect sizes across all measures. LD status, as identified through the C/DM and XBA approaches, was not associated with differential treatment response and did not contribute educationally meaningful information about how students would respond to intensive reading intervention. These results do not support the value of cognitive assessment utilized in this way as part of the LD identification process.