Science.gov

Sample records for laminar diffusion flames

  1. Burning Laminar Jet Diffusion Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (518KB, 20-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300182.html.

  2. Laminar Jet Diffusion Flame Burning

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (983KB, 9-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300184.html.

  3. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  4. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)

    2001-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  5. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  6. Structure of laminar sooting inverse diffusion flames

    SciTech Connect

    Mikofski, Mark A.; Fernandez-Pello, A. Carlos; Williams, Timothy C.; Shaddix, Christopher R.; Blevins, Linda G.

    2007-06-15

    The flame structure of laminar inverse diffusion flames (IDFs) was studied to gain insight into soot formation and growth in underventilated combustion. Both ethylene-air and methane-air IDFs were examined, fuel flow rates were kept constant for all flames of each fuel type, and airflow rates were varied to observe the effect on flame structure and soot formation. Planar laser-induced fluorescence of hydroxyl radicals (OH PLIF) and polycyclic aromatic hydrocarbons (PAH PLIF), planar laser-induced incandescence of soot (soot PLII), and thermocouple-determined gas temperatures were used to draw conclusions about flame structure and soot formation. Flickering, caused by buoyancy-induced vortices, was evident above and outside the flames. The distances between the OH, PAH, and soot zones were similar in IDFs and normal diffusion flames (NDFs), but the locations of those zones were inverted in IDFs relative to NDFs. Peak OH PLIF coincided with peak temperature and marked the flame front. Soot appeared outside the flame front, corresponding to temperatures around the minimum soot formation temperature of 1300 K. PAHs appeared outside the soot layer, with characteristic temperature depending on the wavelength detection band. PAHs and soot began to appear at a constant axial position for each fuel, independent of the rate of air flow. PAH formation either preceded or coincided with soot formation, indicating that PAHs are important components in soot formation. Soot growth continued for some time downstream of the flame, at temperatures below the inception temperature, probably through reaction with PAHs. (author)

  7. Velocity profiles in laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Margle, Janice M.

    1986-01-01

    Velocity profiles in vertical laminar diffusion flames were measured by using laser Doppler velocimetry (LDV). Four fuels were used: n-heptane, iso-octane, cyclohexane, and ethyl alcohol. The velocity profiles were similar for all the fuels, although there were some differences in the peak velocities. The data compared favorably with the theoretical velocity predictions. The differences could be attributed to errors in experimental positioning and in the prediction of temperature profiles. Error in the predicted temperature profiles are probably due to the difficulty in predicting the radiative heat losses from the flame.

  8. Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Laminar diffusion flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than more practical turbulent diffusion flames. Certainly, understanding flame processes within laminar diffusion flames must precede understanding these processes in more complex turbulent diffusion flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar jet diffusion flame shapes (luminous flame boundaries) have been of particular interest since the classical study of Burke and Schumann because they are a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Thus, consideration of laminar flame shapes is undertaken in the following, emphasizing conditions where effects of gravity are small, due to the importance of such conditions to practical applications. Another class of interesting properties of laminar diffusion flames are their laminar soot and smoke point properties (i.e., the flame length, fuel flow rate, characteristic residence time, etc., at the onset of soot appearance in the flame (the soot point) and the onset of soot emissions from the flame (the smoke point)). These are useful observable soot properties of nonpremixed flames because they provide a convenient means to rate several aspects of flame sooting properties: the relative propensity of various fuels to produce soot in flames; the relative effects of fuel structure, fuel dilution, flame temperature and ambient pressure on the soot appearance and emission properties of flames; the relative levels of continuum radiation from soot in flames; and effects of the intrusion of gravity (or buoyant motion) on emissions of soot from flames. An important motivation to define conditions for soot emissions is that observations of laminar jet diffusion flames in critical environments, e.g., space shuttle and space station

  9. Soot Formation in Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Faeth, G. M.

    1994-01-01

    Soot processes within hydrocarbon/air diffusion flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, this investigation involved an experimental study of the structure and soot properties of round laminar jet diffusion flames, seeking an improved understanding of soot formation (growth and nucleation) within diffusion flames. The present study extends earlier work in this laboratory concerning laminar smoke points (l) and soot formation in acetylene/air laminar jet diffusion flames (2), emphasizing soot formation in hydrocarbon/air laminar jet diffusion flames for fuels other than acetylene. In the flame system, acetylene is the dominant gas species in the soot formation region and both nucleation and growth were successfully attributed to first-order reactions of acetylene, with nucleation exhibiting an activation energy of 32 kcal/gmol while growth involved negligible activation energy and a collision efficiency of O.53%. In addition, soot growth in the acetylene diffusion flames was comparable to new soot in premixed flame (which also has been attributed to first-order acetylene reactions). In view of this status, a major issue is the nature of soot formation processes in diffusion flame involving hydrocarbon fuels other than acetylene. In particular, information is needed about th dominant gas species in the soot formation region and the impact of gas species other than acetylene on soot nucleation and growth.

  10. Structure and Early Soot Oxidation Properties of Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot is an important unsolved problem of combustion science because it is present in most hydrocarbon-fueled flames and current understanding of the reactive and physical properties of soot in flame environments is limited. This lack of understanding affects progress toward developing reliable predictions of flame radiation properties, reliable predictions of flame pollutant emission properties and reliable methods of computational combustion, among others. Motivated by these observations, the present investigation extended past studies of soot formation in this laboratory, to consider soot oxidation in laminar diffusion flames using similar methods. Early work showed that O2 was responsible for soot oxidation in high temperature O2-rich environments. Subsequent work in high temperature flame environments having small O2 concentrations, however, showed that soot oxidation rates substantially exceeded estimates based on the classical O2 oxidation rates of Nagle and Strickland-Constable and suggests that radicals such as O and OH might be strong contributors to soot oxidation for such conditions. Neoh et al. subsequently made observations in premixed flames, supported by later work, that showed that OH was responsible for soot oxidation at these conditions with a very reasonable collision efficiency of 0.13. Subsequent studies in diffusion flames, however, were not in agreement with the premixed flame studies: they agreed that OH played a dominant role in soot oxidation in flames, but found collision efficiencies that varied with flame conditions and were not in good agreement with each other or with Neoh et al. One explanation for these discrepancies is that optical scattering and extinction properties were used to infer soot structure properties for the studies that have not been very successful for representing the optical properties of soot. Whatever the source of the problem, however, these differences among observations of soot oxidation in premixed and

  11. Flame and Soot Boundaries of Laminar Jet Diffusion Flames. Appendix A

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2002-01-01

    The shapes (flame-sheet and luminous-flame boundaries) or steady weakly buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K. ambient pressures of 4-50 kPa, jet-exit Reynolds numbers of 3-54, initial air/fuel velocity ratios of 0-9, and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at microgravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary-layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 of the lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions because of the presence of luminous soot particles in the fuel-lean region of the flames.

  12. Buoyancy induced extinction of laminar gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Altenkirch, R. A.; Eichhorn, R.; Brancic, A. B.

    1977-01-01

    The behavior of laminar gas jet diffusion flames subjected to elevated gravity in order to investigate the role of buoyancy in such flames has been studied experimentally. Higher than earth normal gravity was achieved using a 1.83 m diameter centrifuge. Methane, ethane, propane and hydrogen air flames were stabilized at the exit of small tubular burners ranging in size from .05 to .21 cm in diameter. The experimental arrangement was such that the flames were burnt vertically upward. Following a shortening of the flame and a decrease in luminosity with increasing gravity level, further increases in gravity caused the hydrocarbon flames to separate from the rim and eventually extinguish. The extinction gravity levels appear to correlate with the parameter g alpha (u)/S to the 3rd (u), which should be a constant for buoyancy controlled extinction. This parameter is developed by a rudimentary analysis of the heat loss from the premixed stabilizing flame in the lifted flame base. When the loss is excessive, the flame is extinguished.

  13. Laminar flamelet modeling of turbulent diffusion flames

    NASA Astrophysics Data System (ADS)

    Mell, W. E.; Kosaly, G.; Planche, O.; Poinsot, T.; Ferziger, J. H.

    1990-12-01

    In modeling turbulent combustion, decoupling the chemistry from the turbulence is of great practical significance. In cases in which the equilibrium chemistry model breaks down, laminar flamelet modeling (LFM) is a promising approach to decoupling. Here, the validity of this approach is investigated using direct numerical simulation of a simple chemical reaction in two-dimensional turbulence.

  14. A theoretical study of a laminar diffusion flame

    NASA Technical Reports Server (NTRS)

    Frair, K. L.

    1978-01-01

    Theoretical models of an axisymmetric laminar diffusion flame are discussed, with an emphasis on the behavior of such flames at increasing pressures. The flame-sheet or Burke-Schumann model (in terms of Bessel functions) and various boundary layer numerical solutions are presented and their results compared with experimental data. The most promising theoretical model combines the numerical flow field solution of the Patankar-Spalding computer code with the Pratt-Wormeck chemical reaction subroutine. The flame shapes for pressures of 1, 5, 10, 20, and 50 atmospheres were computed and agree remarkably well with experimental data. There is a noticeable shape change with pressure, believed to be a result of buoyancy effects. The chemical concentration profiles do not exhibit much dependence on pressure, a reflection of the fact that only one chemical mechanism was utilized at all pressures.

  15. Structure of confined laminar spray diffusion flames: Numerical investigation

    NASA Technical Reports Server (NTRS)

    Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.

    1993-01-01

    The structure of confined laminar spray diffusion flames is investigated numerically by solving the gas-phase conservation equations for mass species, continuity, momentum, and energy and the liquid-phase equations for droplet position, velocity, size, and temperature. A one-step global reaction scheme along with six equilibrium reactions are employed to model the flame chemistry. Monodisperse as well as polydisperse sprays are considered. The numerical results demonstrate that liquid spray flames substantially differ from gaseous flames in their structure, i.e., temperature, concentration, and velocity fields, shape, and dimensions under the same conditions. Spray flames are predicted to be taller and narrower than their counterpart gaseous ones and their shapes are almost cylindrical. This is in agreement with experimental observations. The numerical computations also show that the use of the equilibrium reactions with the one-step reaction scheme decreases the flame temperature compared to the one-step reaction scheme without the equilibrium reactions and more importantly increases the surface area of the flame zone due to a phenomenon termed 'equilibrium broadening.' The spray flames also possess a finite thickness with minimal overlap of the fuel and oxygen species. A case for which a fuel-mixture consisting of 20 to 80 percent gas-liquid by mass is introduced into the combustor is also investigated and compared with predictions using only gaseous or liquid fuel.

  16. Suppression of Soot Formation and Shapes of Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.

    2001-01-01

    Laminar nonpremixed (diffusion) flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than practical turbulent flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Finally, laminar diffusion flame shapes have been of interest since the classical study of Burke and Schumann because they involve a simple nonintrusive measurement that is convenient for evaluating flame shape predictions. Motivated by these observations, the shapes of round hydrocarbon-fueled laminar jet diffusion flames were considered, emphasizing conditions where effects of buoyancy are small because most practical flames are not buoyant. Earlier studies of shapes of hydrocarbon-fueled nonbuoyant laminar jet diffusion flames considered combustion in still air and have shown that flames at the laminar smoke point are roughly twice as long as corresponding soot-free (blue) flames and have developed simple ways to estimate their shapes. Corresponding studies of hydrocarbon-fueled weakly-buoyant laminar jet diffusion flames in coflowing air have also been reported. These studies were limited to soot-containing flames at laminar smoke point conditions and also developed simple ways to estimate their shapes but the behavior of corresponding soot-free flames has not been addressed. This is unfortunate because ways of selecting flame flow properties to reduce soot concentrations are of great interest; in addition, soot-free flames are fundamentally important because they are much more computationally tractable than corresponding soot-containing flames. Thus, the objectives of the present investigation were to observe the shapes of weakly-buoyant laminar jet diffusion flames at both soot-free and smoke point conditions and to use the results to evaluate simplified flame shape models. The present discussion is brief.

  17. A theoretical and experimental study of preferential-diffusion/stretch interactions of laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Chae

    Recent work shows that preferential-diffusion/stretch interactions of laminar premixed flames are sufficiently robust to affect the stability of practical strongly-turbulent flames. In addition, past measurements of laminar burning velocities should be re-assessed because there generally was no attempt to control flame stretch. Finally, the sensitivity of laminar premixed flames to stretch (represented by the Markstein number) should be studied to better understand and model the properties of laminar premixed flames. Motivated by these considerations, an experimental and computational study of preferential-diffusion/stretch interactions for laminar premixed flames, for both alkane/alcohol-fuel-vapor-fueled flames (as practical fuels) and hydrogen-fueled flames (considering diluent-variation effects) was carried out during the present investigation. Considering outwardly-propagating spherical laminar premixed flames, laminar burning velocities of fuel-vapor/oxygen/nitrogen flames and hydrogen/oxygen/diluent (nitrogen, argon or helium) flames were measured for various values of stretch, fuel-equivalence ratios (0.6--4.5) and pressures (0.3--3 atm). The measurements were reduced to find fundamental unstretched laminar burning velocities and Markstein numbers. The measurements were also used to evaluate corresponding numerical simulations of the experimentally-observed flames, based on contemporary detailed H2/O2 reaction mechanisms. Both measured and predicted ratios of unstretched to stretched laminar burning velocities varied linearly with flame stretch (represented by the Karlovitz number), yielding a constant Markstein number for a particular reactant mixture. The present flames were very sensitive to flame stretch (i.e., they had large Markstein numbers with significant ratios of unstretched to stretched laminar burning velocities) for levels of flame stretch well below quenching conditions. Increasing flame temperatures tended to reduce flame sensitivity to

  18. Structure and Soot Properties of Non-Buoyant Laminar Round-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Mortazavi, Saeed; Sunderland, Peter B.; Jurng, Jongsoo; Faeth, Gerard M.

    1993-01-01

    The structure and soot properties of nonbuoyant laminar diffusion flames are being studied experimentally and theoretically in order to better understand the soot and thermal radiation emissions from luminous flames. The measurements involve weakly-buoyant flames at low pressure in normal gravity (ng) and nonbuoyant flames at normal pressures in microgravity (micro g). The objectives of the present investigation are to study the differences of soot properties between nonbuoyant and buoyant diffusion flames, and to evaluate predictions based on the laminar flamelet approach.

  19. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames. Appendix H

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Ross, Howard B. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness, Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding; this approach provided successful correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  20. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    NASA Astrophysics Data System (ADS)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  1. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    NASA Technical Reports Server (NTRS)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  2. Experiments on Diffusion Flame Structure of a Laminar Vortex Ring

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Dahm, Werner J. A.

    1999-01-01

    The study of flame-vortex interactions provides one of the means to better understand turbulent combustion, and allows for canonical configurations that contain the fundamental elements found in turbulent flames, These include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, and heat release effects. In flame- vortex configurations, these fundamental elements can be studied under more controlled conditions than is possible in direct investigations of turbulent flames. Since the paper of Marble, the problem of the flame-vortex interaction has received considerable attention theoretically, numerically and experimentally. Several configurations exist for study of the premixed flame/vortex ring interaction but more limited results have been obtained to date for the diffusion flame/vortex ring case. The setup of Chen and Dahm, which is conceptually similar to that of Karagozian and Manda and Karagozian, Suganuma and Strom where the ring is composed of fuel and air and combustion begins during the ring formation process, is used in the current study. However, it is essential to conduct the experiments in microgravity to remove the asymmetries caused by buoyancy and thus obtain highly symmetric and repeatable interactions. In previous studies it was found that the flame structure of the vortex ring was similar to that obtained analytically by Karagozian and Manda. Dilution of propane with nitrogen led mainly to a reduction in flame luminosities, flame burnout times were affected by both fuel volumes and amount of dilution, and a simple model of the burnout times was developed. In this paper, a discussion on reacting ring displacement and flame burnout time will be given, and the flame structures of vortex rings containing ethane and air will be compared to those of propane reacting in air.

  3. Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during

  4. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during

  5. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.

    1999-01-01

    Nonpremixed (diffusion) flames are attractive for practical applications because they avoid the stability, autoignition, flashback, etc. problems of premixed flames. Unfortunately, soot formation in practical hydrocarbon-fueled diffusion flames reduces their attractiveness due to widely-recognized public health and combustor durability problems of soot emissions. For example, more deaths are attributed to the emission of soot (15,000-60,000 deaths annually in the U.S. alone) than any other combustion-generated pollutant. In addition, continuum radiation from soot-containing flames is the principle heat load to combustor components and is mainly responsible for engine durability problems of aircraft and gas turbine engines. As a result, there is considerable interest in controlling both soot concentrations within flames and soot emissions from flames. Thus, the objective of the present investigation is to study ways to control soot formation in diffusion flames by manipulating the mixing process between the fuel and oxidant streams. In order to prevent the intrusion of gravity from masking flow properties that reduce soot formation in practical flames (where effects of gravity are small), methods developed during past work will be exploited to minimize effects of buoyant motion.

  6. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal

  7. Hydrodynamic Suppression of Soot Formation in Laminar Coflowing Jet Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Effects of flow (hydrodynamic) properties on limiting conditions for soot-free laminar non-premixed hydrocarbon/air flames (called laminar soot-point conditions) were studied, emphasizing non-buoyant laminar coflowing jet diffusion flames. Effects of air/fuel-stream velocity ratios were of particular interest; therefore, the experiments were carried out at reduced pressures to minimize effects of flow acceleration due to the intrusion of buoyancy. Test conditions included reactant temperatures of 300 K; ambient pressures of 3.7-49 8 kPa; methane-, acetylene-, ethylene-, propane-, and methane-fueled flames burning in coflowing air with fuel-port diameters of 1.7, 3.2, and 6.4 mm, fuel jet Reynolds numbers of 18-121; air coflow velocities of 0-6 m/s; and air/fuel-stream velocity ratios of 0.003-70. Measurements included laminar soot-point flame lengths, laminar soot-point fuel flow rates, and laminar liftoff conditions. The measurements show that laminar soot-point flame lengths and fuel flow rates can be increased, broadening the range of fuel flow rates where the flames remain soot free, by increasing air/fuel-stream velocity ratios. The mechanism of this effect involves the magnitude and direction of flow velocities relative to the flame sheet where increased air/fuel-stream velocity ratios cause progressive reduction of flame residence times in the fuel-rich soot-formation region. The range of soot-free conditions is limited by both liftoff, particularly at low pressures, and the intrusion of effects of buoyancy on effective air/fuel-stream velocity ratios, particularly at high pressures. Effective correlations of laminar soot- and smoke-point flame lengths were also found in terms of a corrected fuel flow rate parameter, based on simplified analysis of laminar jet diffusion flame structure. The results show that laminar smoke-point flame lengths in coflowing air environments are roughly twice as long as soot-free (blue) flames under comparable conditions due to

  8. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  9. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  10. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  11. Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.

    1993-01-01

    Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the

  12. Gaseous Species Measurements of Alternative Jet Fuels in Sooting Laminar Coflow Diffusion Flames

    NASA Astrophysics Data System (ADS)

    Zabeti, Parham

    The gaseous species concentration of Jet A-1, GTL, CTL and a blend of 80 vol.% GTL and 20 vol.% hexanol jet fuels in laminar coflow diffusion flames have been measured and studied. These species are carbon monoxide, carbon dioxide, oxygen, methane, ethane, ethylene, propylene, and acetylene. Benzene and propyne concentrations were also detected in CTL flames. 1-Butene has been quantified for the blend of GTL and hexanol flame. The detailed experimental setup has been described and results from different flames are compared. The CO is produced in a same amount in all the flames. The CTL flame had the largest and GTL/hexanol flame had lowest CO2 concentrations. The results indicate that GTL and GTL hexanol blend flames produce similar concentrations for all the measured hydrocarbon species and have the highest concentration among all the jet fuels. The experimental results from Jet A-1 fuel are also compared with numerical studies by Saffaripour et al .

  13. Shapes of Nonbuoyant Round Luminous Laminar-Jet Diffusion Flames in Coflowing Air. Appendix F

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, David L. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of steady nonbuoyant round luminous hydrocarbon-fueled laminar-jet diffusion flames in coflowing air were studied both experimentally and theoretically. Flame shapes were measured from photographs of flames burning at low pressures in order to minimize the effects of buoyancy. Test conditions involved acetylene-, propylene. and 1,3-butadiene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 19-50 kPa, jet-exit Reynolds numbers of 18-121, and initial air/fuel velocity ratios of 0.22-32.45 to yield luminous flame lengths of 21-198 mm. The present flames were close to the laminar smoke point but were not soot emitting. Simple expressions to estimate the shapes of nonbuoyant laminar-jet diffusion flames in coflow were found by extending an earlier analysis of Mahalingam et al. These formulas provided a good correlation of present measurements except near the burner exit where self-similar approximations used in the simplified analysis are no longer appropriate.

  14. Experimental Investigation of Laminar Gas Jet Diffusion Flames in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Cochran, Thomas H.

    1972-01-01

    An experimental program was conducted to study the burning of laminar gas jet diffusion flames in a zero-gravity environment. The tests were conducted in a 2.2-Second-Zero-Gravity Facility and were a part of a continuing effort investigating the effects of gravity on basic combustion processes. The photographic results indicate that steady state gas jet diffusion flames existed in zero gravity but they were geometrically quite different than their normal-gravity counterparts. Methane-air flames were found to be approximately 50 percent longer and wider in zero gravity than in normal gravity.

  15. On the structure of gaseous confined laminar diffusion flames: Numerical investigation

    NASA Technical Reports Server (NTRS)

    Mawid, M. A.; Bulzan, D. L.; Aggarwal, S. K.

    1993-01-01

    The structure and characteristics of gaseous confined laminar diffusion flames are investigated by numerically solving the time-dependent two-dimensional axisymmetric conservation equations. The numerical model accounts for the important chemical and physical processes involved, including axial diffusion, viscous effects, radial convection, and finite-rate chemistry. The numerical results clearly show that the flame has a finite thickness and leakage of fuel vapor into the flame zone is possible. The effect of heat release is found to induce some radial flow. Predicted flame shape and dimensions are compared to the classical Burke-Schumann flame. The numerically calculated flame is observed to be about 15 percent taller and 5 percent narrower than that of the Burke-Schumann solution under the same conditions.

  16. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  17. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  18. Laminar counterflow spray diffusion flames: A comparison between experimental results and complex chemistry calculations

    SciTech Connect

    Darabiha, N.; Lacas, F.; Rolon, J.C.; Candel, S. . Lab. EM2C)

    1993-11-01

    Experimental and numerical studies of laminar flames formed by the counterflow of a monodisperse fuel spray with an air stream are reported in this article. In this simple configuration it is possible to analyze the influence of the phase transfer terms on the flame structure. The experimental setup used to produce such laminar spray diffusion flames is first described. A set of experiments are carried with liquid heptane fuel sprays. The flame is characterized with a laser sheet imaging system and with a particle sizing apparatus based on laser light diffraction. Results of a numerical study are then presented. The two phase-reacting flow equations are solved through Newton iterations and adaptive gridding using detailed transport and complex chemistry. An iterative procedure is devised to solve the gas- and liquid-phase balance equations. Comparison between experimental and numerical values of the diameter are found to be in good agreement.

  19. Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1997-01-01

    The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.

  20. Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames. Appendix E

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.

  1. Structure of Laminar Permanently Blue, Opposed-Jet Ethylene-Fueled Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently blue) ethylene-fueled diffusion flames at various strain rates were studied both experimentally and computationally using an opposed-jet configuration. Measurements of gas velocities, temperatures, and compositions were carried out along the stagnation stream line. Corresponding predictions of flame structure were obtained, based on numerical simulations using several contemporary reaction mechanisms for methane oxidation. Flame conditions studied included ethylene-fueled opposed-jet diffusion flames having stoichiometric mixture fractions of 0.7 with measurements involving strain rates of 60-240/s and predictions involving strain rates of 0-1140/s at normal temperature and pressure. It was found that measured major gas species concentrations and temperature distributions were in reasonably good agreement with predictions using mechanisms due to GRI-Mech and Peters and that effects of preferential diffusion significantly influence flame structure even when reactant mass diffusivities are similar. Oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures were found to exist over a broad range of strain rates, providing potential for significant computational simplifications for modeling purposes in some instances.

  2. A Numerical and Experimental Study of Coflow Laminar Diffusion Flames: Effects of Gravity and Inlet Velocity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Bennett, B. A. V.; Ma, B.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2015-01-01

    In this work, the influence of gravity, fuel dilution, and inlet velocity on the structure, stabilization, and sooting behavior of laminar coflow methane-air diffusion flames was investigated both computationally and experimentally. A series of flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) was assessed numerically under microgravity and normal gravity conditions with the fuel stream CH4 mole fraction ranging from 0.4 to 1.0. Computationally, the MC-Smooth vorticity-velocity formulation of the governing equations was employed to describe the reactive gaseous mixture; the soot evolution process was considered as a classical aerosol dynamics problem and was represented by the sectional aerosol equations. Since each flame is axisymmetric, a two-dimensional computational domain was employed, where the grid on the axisymmetric domain was a nonuniform tensor product mesh. The governing equations and boundary conditions were discretized on the mesh by a nine-point finite difference stencil, with the convective terms approximated by a monotonic upwind scheme and all other derivatives approximated by centered differences. The resulting set of fully coupled, strongly nonlinear equations was solved simultaneously using a damped, modified Newton's method and a nested Bi-CGSTAB linear algebra solver. Experimentally, the flame shape, size, lift-off height, and soot temperature were determined by flame emission images recorded by a digital camera, and the soot volume fraction was quantified through an absolute light calibration using a thermocouple. For a broad spectrum of flames in microgravity and normal gravity, the computed and measured flame quantities (e.g., temperature profile, flame shape, lift-off height, and soot volume fraction) were first compared to assess the accuracy of the numerical model. After its validity was established, the influence of gravity, fuel dilution, and inlet velocity on the structure, stabilization, and sooting

  3. Numerical modelling of sooting laminar diffusion flames at elevated pressures and microgravity

    NASA Astrophysics Data System (ADS)

    Charest, Marc Robert Joseph

    Fully understanding soot formation in flames is critical to the development of practical combustion devices, which typically operate at high pressures, and fire suppression systems in space. Flames display significant changes under microgravity and high-pressure conditions as compared to normal-gravity flames at atmospheric pressure, but the exact causes of these changes are not well-characterized. As such, the effects of gravity and pressure on the stability characteristics and sooting behavior of laminar coflow diffusion flames were investigated. To study these effects, a new highly-scalable combustion modelling tool was developed specifically for use on large multi-processor computer architectures. The tool is capable of capturing complex processes such as detailed chemistry, molecular transport, radiation, and soot formation/destruction in laminar diffusion flames. The proposed algorithm represents the current state of the art in combustion modelling, making use of a second-order accurate finite-volume scheme and a parallel adaptive mesh refinement algorithm on body-fitted, multi-block meshes. An acetylene-based, semi-empirical model was used to predict the nucleation, growth, and oxidation of soot particles. Reasonable agreement with experimental measurements for different fuels and pressures was obtained for predictions of flame height, temperature and soot volume fraction. Overall, the algorithm displayed excellent strong scaling performance by achieving a parallel efficiency of 70% on 384 processors. The effects of pressure and gravity were studied for flames of two different fuels: ethylene-air flames between pressures of 0.5--5 atm and methane-air flames between 1--60 atm. Based on the numerical predictions, zero-gravity flames had lower temperatures, broader soot-containing zones, and higher soot concentrations than normal-gravity flames at the same pressure. Buoyant forces caused the normal-gravity flames to narrow with increasing pressure while the

  4. Models And Experiments Of Laminar Diffusion Flames In Non-Uniform Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Baker, J.; Varagani, R.; Saito, K.

    2003-01-01

    Non-uniform magnetic fields affect laminar diffusion flames as a result of the paramagnetic and diamagnetic properties of the products and reactants. Paramagnetism is the weak attraction to a magnetic field a material exhibits as a result of permanent magnetic dipole moments in the atoms of the material. Diamagnetism is the weak repulsion to a magnetic field exhibited by a material due to the lack of permanent magnetic dipole moments in the atoms of a material. The forces associated with paramagnetic and diamagnetism are several orders of magnitude less than the forces associated with the more familiar ferromagnetism. A typical example of a paramagnetic gas is oxygen while hydrocarbon fuels and products of combustion are almost always diamagnetic. The fact that magnets can affect flame behavior has been recognized for more than one hundred years. Early speculation was that such behavior was due to the magnetic interaction with the ionized gases associated with a flame. Using a scaling analysis, it was later shown that for laminar diffusion flames the magnetic field/ionized gas interaction was insignificant to the paramagnetic and diamagnetic influences. In this effort, the focus has been on examining laminar diffusion slot flames in the presence of non-uniform upward decreasing magnetic fields produced using permanent magnets. The principal reason for choosing slot flames was mathematical models of such flames show an explicit dependence on gravitational body forces, in the buoyancy-controlled regime, and an applied magnetic field would also impose a body force. In addition, the behavior of such flames was more easily visualized while maintaining the symmetry of the two-dimensional problem whereas it would have been impossible to obtain a symmetric magnetic field around a circular flame and still visually record the flame height and shape along the burner axis. The motivation for choosing permanent magnets to produce the magnetic fields was the assumption that

  5. Numerical Simulation of an Enclosed Laminar Jet Diffusion Flame in Microgravity Environment: Comparison with ELF Data

    NASA Technical Reports Server (NTRS)

    Jia, Kezhong; Venuturumilli, Rajasekhar; Ryan, Brandon J.; Chen, Lea-Der

    2001-01-01

    been some research on the stability of laminar flames, but most studies have focused on turbulent flames. It is also well known that the airflow around the fuel jet can significantly alter the lift off, reattachment and blow out of the jet diffusion flame. Buoyant convection is sufficiently strong in 1-g flames that it can dominate the flow-field, even at the burner rim. In normal-gravity testing, it is very difficult to delineate the effects of the forced airflow from those of the buoyancy-induced flow. Comparison of normal-gravity and microgravity flames provides clear indication of the influence of forced and buoyant flows on the flame stability. The overall goal of the Enclosed Laminar Flames (ELF) investigation (STS-87/USMP-4 Space Shuttle mission, November to December 1997) is to improve our understanding of the effects of buoyant convection on the structure and stability of co-flow diffusion flame, e.g., see http://zeta.lerc.nasa.gov/expr/elf.htm. The ELF hardware meets the experiment hardware limit of the 35-liter interior volume of the glovebox working area, and the 180x220-mm dimensions of the main door. The ELF experiment module is a miniature, fan-driven wind tunnel, equipped with a gas supply system. A 1.5-mm diameter nozzle is located on the duct's flow axis. The cross section of the duct is nominally a 76-mm square with rounded corners. The forced air velocity can be varied from about 0.2 to 0.9 m/s. The fuel flow can be set as high as 3 std. cubic centimeter (cc) per second, which corresponds to a nozzle exit velocity of up to 1.70 m/s. The ELF hardware and experimental procedure are discussed in detail in Brooker et al. The 1-g test results are repeated in several experiments following the STS-87 Mission. The ELF study is also relevant to practical systems because the momentum-dominated behavior of turbulent flames can be achieved in laminar flames in microgravity. The specific objectives of this paper are to evaluate the use reduced model for

  6. High fidelity radiative heat transfer models for high-pressure laminar hydrogen-air diffusion flames

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Lei, Shenghui; Dasgupta, Adhiraj; Modest, Michael F.; Haworth, Daniel C.

    2014-11-01

    Radiative heat transfer is studied numerically for high-pressure laminar H2-air jet diffusion flames, with pressure ranging from 1 to 30 bar. Water vapour is assumed to be the only radiatively participating species. Two different radiation models are employed, the first being the full spectrum k-distribution model together with conventional Radiative Transfer Equation (RTE) solvers. Narrowband k-distributions of water vapour are calculated and databased from the HITEMP 2010 database, which claims to retain accuracy up to 4000 K. The full-spectrum k-distributions are assembled from their narrowband counterparts to yield high accuracy with little additional computational cost. The RTE is solved using various spherical harmonics methods, such as P1, simplified P3 (SP3) and simplified P5 (SP5). The resulting partial differential equations as well as other transport equations in the laminar diffusion flames are discretized with the finite-volume method in OpenFOAM®. The second radiation model is a Photon Monte Carlo (PMC) method coupled with a line-by-line spectral model. The PMC absorption coefficient database is derived from the same spectroscopy database as the k-distribution methods. A time blending scheme is used to reduce PMC calculations at each time step. Differential diffusion effects, which are important in laminar hydrogen flames, are also included in the scalar transport equations. It was found that the optically thin approximation overpredicts radiative heat loss at elevated pressures. Peak flame temperature is less affected by radiation because of faster chemical reactions at high pressures. Significant cooling effects are observed at downstream locations. As pressure increases, the performance of RTE models starts to deviate due to increased optical thickness. SPN models perform only marginally better than P1 because P1 is adequate except at very high pressure.

  7. On molecular transport effects in real gas laminar diffusion flames at large pressure

    NASA Astrophysics Data System (ADS)

    Palle, Sridhar; Nolan, Christopher; Miller, Richard S.

    2005-10-01

    Direct numerical simulations are conducted of unsteady, exothermic and one-dimensional laminar diffusion flames at large pressures. The simulations are used to assess the impact of molecular diffusion and real gas effects under high pressure conditions with simplified chemical kinetics. The formulation includes the fully compressible form of the governing equations, real gas effects modeled by the cubic Peng-Robinson equation of state, and a generalized form of the Soret and Dufour mass and heat diffusion vectors derived from nonequilibrium thermodynamics and fluctuation theory. The cross diffusion fluxes are derived for a ternary species system and include the effects of both heat and mass diffusion in the presence of temperature, concentration and pressure gradients (i.e., Soret and Dufour diffusion). The ternary species formulation is applied to a simplified single step reaction elucidating molecular and thermodynamic effects apparent in general combustion. Realistic models for pressure, temperature and species dependent heat capacities, viscosities, thermal conductivities and mass diffusivities are also included. Three different model reactions are simulated both including and neglecting Soret and Dufour cross diffusion. The simulation results show that Soret and Dufour effects are negligible for reactions comprised of species with equal or near equal molecular weights. However, Soret diffusion effects are apparent when species with nonequal molecular weights are involved in the reaction and result in reductions of the peak flame temperature. In addition, it is shown that neglect of cross diffusion leads to deviations in the predicted flame thicknesses, with under predictions for a hydrogen-oxygen system and over predictions for a heavy hydrocarbon reaction. These effects are explained in detail through examinations of the individual heat and mass flux vectors as well as through associated thermodynamic properties. A parametric study addresses the effects of

  8. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  9. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Bhatia, Pramod; Singh, Ravinder

    2017-01-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  10. Optical determination of incipient soot particle concentrations in ethene laminar diffusion flames.

    SciTech Connect

    Gupta, S. B.; Santoro, R. J.

    1999-07-06

    Recent studies in premixed flames have shown the existence of ''transparent particles.'' These particles, 2 nm in size and in high number densities are considered to be a phase transitional between the gas phase PAH species and particulate soot. In the present study, various optical diagnostics were evaluated for measuring the concentration of these particles in situ, Through such evaluations, a technique using extinction at two wavelengths was found to be ideal. While employing such a technique, the volume fractions of these particles in an ethene laminar diffusion flame were measured. Low in the flame, these particles were found to be concentrated in the fuel rich core, while at higher locations, they could be found with appreciable volume fractions even in the soot laden regions. Having given due consideration for the errors due to uncertainties in the optical constants, we report the existence of these particles in an ethene flame with volume fractions comparable to those of soot. Also, similar measurements performed in a low sooting ethene/methanol flame show the concentration of these particles to be of the same order of magnitude as in a pure ethene flame.

  11. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2000-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  12. Quantitative Measurements of CH* Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the CH* spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of CH* chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on CH* concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the CH* emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the CH* concentration was possible. Results show that, in microgravity, the maximum flame CH* concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend, albeit with different peak concentrations. Comparisons with numerical simulations display reasonably good agreement between measured and

  13. Quantitative Measurements of Electronically Excited CH Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A. V.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the electronically excited CH spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of electronically excited CH chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on electronically excited CH concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the electronically excited CH emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the electronically excited CH concentration was possible. Results show that, in microgravity, the maximum flame electronically excited CH concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend

  14. Soot Formation in Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Krishnan, S. S.; Faeth, G. M.

    1999-01-01

    Soot processes within hydrocarbon-fueled flames affect emissions of pollutant soot, thermal loads on combustors, hazards of unwanted fires and capabilities for computational combustion. In view of these observations, the present study is considering processes of soot formation in both burner-stabilized and freely-propagating laminar premixed flames. These flames are being studied in order to simplify the interpretation of measurements and to enhance computational tractability compared to the diffusion flame environments of greatest interest for soot processes. In addition, earlier studies of soot formation in laminar premixed flames used approximations of soot optical and structure properties that have not been effective during recent evaluations, as well as questionable estimates of flow residence times). The objective of present work was to exploit methods of avoiding these difficulties developed for laminar diffusion flames to study soot growth in laminar premixed flames. The following description of these studies is brief.

  15. Laminar round jet diffusion flame buoyant instabilities: Study on the disappearance of varicose structures at ultra-low Froude number

    SciTech Connect

    Boulanger, Joan

    2010-04-15

    At very low Froude number, buoyancy instabilities of round laminar jet diffusion flames disappear (except for small tip oscillations referred to as flickering) and those flames look stable and smooth. This study examines the contributions of the different phenomena in the flow dynamics that may explain this effect. It is observed that, at ultra-low Froude/Reynolds numbers, the material influenced by buoyancy is the plume of the flame and not the flame itself (reaction zone) that is short. Therefore, the vorticity creation zone does not profit from the reaction neighbourhood promoting a sharp gradient of density. Expansion and stretch are also important as they push vorticity creation terms more inside the flame and closer to the burner rim compared to moderate Froude flames. In these latter, the vorticity is continuously created around the flame reaction zone, along its developed height and closer to the vertical direction (in average). (author)

  16. Structural Effects of Biodiesel on Soot Volume Fraction in a Laminar Co-Flow Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Weingarten, Jason

    An experimental study was performed to determine the structural effects of biodiesel on soot volume fraction in a laminar co-flow diffusion flame. These include the effects of the ester function group, the inclusion of a double bond, and its positional effect. The soot volume fraction and temperature profiles of a biodiesel surrogate, n-Decane, 1-Decene, and 5-Decene fuels were measured. Improvements were made to existing laser extinction and rapid thermocouple insertion apparatus and were used to measure soot volume fraction and temperature profiles respectively. Flow rates of each fuel were determined in order to keep the temperature effects on soot negligible. Using n-Decane as a baseline, the double bond increased soot production and was further increased with a more centrally located double bond. The ester function group containing oxygen decreased soot production. The order of most to least sooting fuels were as follows 5-Decene > 1-Decene > n-Decane > Biodiesel Surrogate.

  17. Experimental and Computational Study fo CH, CH*, and OH* in an Axisymmetric Laminar Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Walsh, K. T.

    1998-01-01

    In this study, we extend the results of previous combined numerical and experimental investigations of an axisymmetric laminar diffusion flame in which difference Raman spectroscopy, laser-induced fluorescence (LIF), and a multidimensional flame model were used to generate profiles of the temperature and major and minor species. A procedure is outlined by which the number densities of ground-state CH (X(sup 2)II) excited-state CH (A(sup 2)Delta, denoted CH*), and excited-state OH (A(sup 2)Sigma, denoted OH*) are measured and modeled. CH* and OH* number densities are deconvoluted from line-of-sight flame-emission measurements. Ground-state CH is measured using linear LIF. The computations are done with GRI Mech 2.11 as well as an alternate hydrocarbon mechanism. In both cases, additional reactions for the production and consumption of CH* and OH* are added from recent kinetic studies. Collisional quenching and spontaneous emission are responsible for the de-excitation of the excited-state radicals. As with our previous investigations, GRI Mech 2.11 continues to produce very good agreement with the overall flame length observed in the experiments, while significantly under predicting the flame lift-off height. The alternate kinetic scheme is much more accurate in predicting lift-off height but overpredicts the over-all flame length. Ground-state CH profiles predicted with GRI Mech 2.11 are in excellent agreement with the corresponding measurements, regarding both spatial distribution and absolute concentration (measured at 4 ppm) of the CH radical. Calculations of the excited-state species show reasonable agreement with the measurements as far as spatial distribution and overall characteristics are concerned. For OH*, the measured peak mole fraction, 1.3 x 10(exp -8), compared well with computed peaks, while the measured peak level for CH*, 2 x 10(exp -9), was severely underpredicted by both kinetic schemes, indicating that the formation and destruction kinetics

  18. Effect of CF3H and CF3Br on laminar diffusion flames in normal and microgravity

    NASA Technical Reports Server (NTRS)

    Vanderwege, B. A.; Bush, Michael T.; Hochgreb, Simone; Linteris, Gregory T.

    1995-01-01

    Chemical inhibition of diffusion flames through addition of halogenated inhibitors is a problem of significant practical and scientific interest. Extensive studies on diffusion flames in microgravity have shown that these flames have significantly different characteristics than those under normal gravity. However, the mechanisms through which inhibitors reach the reaction zone to suppress combustion in diffusion flames and the effectiveness of these compounds under reduced gravity have yet to be investigated. This study reports preliminary results of investigations on the behavior of laminar jet diffusion flames upon the addition of bromotrifluoromethane (CF3Br) and trifluoromethane (CF3H) to the surroundings under normal and microgravity conditions. The results show that the flame structure in microgravity is significantly different from that under normal gravity conditions, and more importantly, that conditions for flame stability are less stringent under microgravity. Experiments show that flames that cannot be stabilized under normal gravity are quite stable under microgravity conditions. In addition, normal gravity experiments at reduced pressure (low buoyancy) did not reproduce the structure or stability limits of inhibited flames in microgravity.

  19. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  20. An Analytical Model for Non-Uniform Magnetic Field Effects on Two-Dimensional Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Calvert, M. E.; Baker, J.; Saito, K.; VanderWal, R. L.

    2001-01-01

    In 1846, Michael Faraday found that permanent magnets could cause candle flames to deform into equatorial disks. He believed that the change in flame shape was caused by the presence of charged particles within the flames interacting with the magnetic fields. Later researchers found that the interaction between the flame ions and the magnetic fields were much too small to cause the flame deflection. Through a force analysis, von Engel and Cozens showed that the change in the flame shape could be attributed to the diamagnetic flame gases in the paramagnetic atmosphere. Paramagnetism occurs in materials composed of atoms with permanent magnetic dipole moments. In the presence of magnetic field gradients, the atoms align with the magnetic field and are drawn into the direction of increasing magnetic field. Diamagnetism occurs when atoms have no net magnetic dipole moment. In the presence of magnetic gradient fields, diamagnetic substances are repelled towards areas of decreasing magnetism. Oxygen is an example of a paramagnetic substance. Nitrogen, carbon monoxide and dioxide, and most hydrocarbon fuels are examples of diamagnetic substances. In order to evaluate the usefulness of these magnets in altering flame behavior, a study has been undertaken to develop an analytical model to describe the change in the flame length of a laminar diffusion jet in the presence of a nonuniform magnetic field.

  1. Holographic Interferometry and Laminar Jet Diffusion Flames in the Presence of Non-Uniform Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Baker, J.; Calvert, M. E.; Saito, K.; VanderWal, R.

    2001-01-01

    Magnetic fields impact combustion processes in a manner analogous to that of buoyancy, i.e., as a body force. It is well known that in a terrestrial environment buoyancy is one of the principal transport mechanisms associated with diffusion flame behavior. Unfortunately, in a terrestrial environment it is difficult if not impossible to isolate flame behavior due magnetic fields from the behavior associated with buoyancy. A micro-, or reduced, gravity environment is ideally suited for studying the impact of magnetic fields on diffusion flames due to the decreased impact of buoyancy on flame behavior.

  2. A numerical study of soot aggregate formation in a laminar coflow diffusion flame

    SciTech Connect

    Zhang, Q.; Thomson, M.J.; Guo, H.; Liu, F.; Smallwood, G.J.

    2009-03-15

    Soot aggregate formation in a two-dimensional laminar coflow ethylene/air diffusion flame is studied with a pyrene-based soot model, a detailed sectional aerosol dynamics model, and a detailed radiation model. The chemical kinetic mechanism describes polycyclic aromatic hydrocarbon formation up to pyrene, the dimerization of which is assumed to lead to soot nucleation. The growth and oxidation of soot particles are characterized by the HACA surface mechanism and pyrene-soot surface condensation. The mass range of the solid soot phase is divided into thirty-five discrete sections and two equations are solved in each section to model the formation of the fractal-like soot aggregates. The coagulation model is improved by implementing the aggregate coagulation efficiency. Several physical processes that may cause sub-unitary aggregate coagulation efficiency are discussed. Their effects on aggregate structure are numerically investigated. The average number of primary soot particles per soot aggregate n{sub p} is found to be a strong function of the aggregate coagulation efficiency. Compared to the available experimental data, n{sub p} is well reproduced with a constant 20% aggregate coagulation efficiency. The predicted axial velocity, OH mole fraction, and C{sub 2}H{sub 2} mole fraction are validated against experimental data in the literature. Reasonable agreements are obtained. Finally, a sensitivity study of the effects of particle coalescence on soot volume fraction and soot aggregate nanostructure is conducted using a coalescence cutoff diameter method. (author)

  3. Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method

    NASA Astrophysics Data System (ADS)

    Ghezelbash, Mahsa; Majd, Abdollah Eslami; Darbani, Seyyed Mohammad Reza; Mousavi, Seyyed Jabbar; Ghasemi, Ali; Tehrani, Masoud Kavosh

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique is used to record some plasma emissions of different laminar diffusion methanol, ethanol, and n-propanol alcohol flames, to investigate the shapes, structures (i.e., reactants and products zones), kind, and quality of burning in different areas. For this purpose, molecular bands of CH, CH*, C2, CN, and CO as well as atomic and ionic lines of C, H, N, and O are identified, simultaneously. Experimental results indicate that the CN and C2 emissions have highest intensity in LIBS spectrum of n-propanol flame and the lowest in methanol. In addition, lowest content of CO pollution and better quality of burning process in n-propanol fuel flame toward ethanol and methanol are confirmed by comparison between their CO molecular band intensities. Moreover, variation of the signal intensity from these three flames with that from a known area of burner plate is compared. Our findings in this research advance the prior results in time-integrated LIBS combustion application and suggesting that LIBS can be used successfully with the CCD detector as a non-gated analytical tool, given its simple instrumentation needs, real-time capability applications of molecular detection in laminar diffusion flame samples, requirements.

  4. Forced and natural convection in laminar-jet diffusion flames. [normal-gravity, inverted-gravity and zero-gravity flames

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.

    1981-01-01

    An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed.

  5. Experimental and Numerical Studies for Soot Formation in Laminar Coflow Diffusion Flames of Jet A-1 and Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Saffaripour, Meghdad

    In the present doctoral thesis, fundamental experimental and numerical studies are conducted for the laminar, atmospheric pressure, sooting, coflow diffusion flames of Jet A-1 and synthetic jet fuels. The first part of this thesis presents a comparative experimental study for Jet A-1, which is a widely used petroleum-based fuel, and four synthetically produced alternative jet fuels. The main goals of this part of the thesis are to compare the soot emission levels of the alternative fuels to those of a standard fuel, Jet A-1, and to determine the effect of fuel chemical composition on soot formation characteristics. To achieve these goals, experimental measurements are constructed and performed for flame temperature, soot concentration, soot particle size, and soot aggregate structure in the flames of pre-vaporized jet fuels. The results show that a considerable reduction in soot production, compared to the standard fuel, can be obtained by using synthetic fuels which will help in addressing future regulations. A strong correlation between the aromatic content of the fuels and the soot concentration levels in the flames is observed. The second part of this thesis presents the development and experimental validation of a fully-coupled soot formation model for laminar coflow jet fuel diffusion flames. The model is coupled to a detailed kinetic mechanism to predict the chemical structure of the flames and soot precursor concentrations. This model also provides information on size and morphology of soot particles. The flames of a three-component surrogate for Jet A-1, a three-component surrogate for a synthetic jet fuel, and pure n-decane are simulated using this model. Concentrations of major gaseous species and flame temperatures are well predicted by the model. Soot volume fractions are predicted reasonably well everywhere in the flame, except near the flame centerline where soot concentrations are underpredicted by a factor of up to five. There is an excellent

  6. The Effects of Buoyancy and Dilution on the Structure and Lift-Off of Coflow Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin T.; Long, Marshall B.; Smooke, Mitchell D.

    1999-01-01

    The ability to predict the coupled effects of complex transport phenomena with detailed chemical kinetics in diffusion flames is critical in the modeling of turbulent reacting flows and in understanding the processes by which soot formation and radiative transfer take place. In addition, an understanding of those factors that affect flame extinction in diffusion flames is critical in the suppression of fires and in improving engine efficiency. A goal of this work is to bring to microgravity flame studies the detailed experimental and numerical tools that have been used to study ground-based systems. This will lead to a more detailed understanding of the interaction of convection, diffusion and chemistry in a nonbuoyant environment. To better understand these phenomena, experimental and computational studies of a coflow laminar diffusion flame have been carried out. To date, these studies have focused on a single set of flow conditions, in which a nitrogen-diluted methane fuel stream (65% methane by volume) was surrounded by an air coflow, with exit velocities matched at 35 cm/s. Of particular interest is the change in flame shape due to the absence of buoyant forces, as well as the amount of diluent in the fuel stream and the coflow velocity. As a sensitive marker of changes in the flame shape, the number densities of excited-state CH (A(exp 2 delta) denoted CH*), and excited-state OH (A(exp 2 sigma, denoted OH*) are measured. CH* and OH* number densities are deconvoluted from line-of-sight chemiluminescence measurements made on the NASA KC135 reduced-gravity aircraft. Measured signal levels are calibrated, post-flight, with Rayleigh scattering. In extending the study to microgravity conditions, improvements to the computational model have been made and new calculations performed for a range of gravity conditions. In addition, modifications to the experimental approach were required as a consequence of the constraints imposed by existing microgravity facilities

  7. State Relationships of Laminar Permanently-Blue Opposed-Jet Hydrocarbon-Fueled Diffusion Flames. Appendix D

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2000-01-01

    The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240 s (exp -1) at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon

  8. Flame Structure and Scalar Properties in Microgravity Laminar Fires

    NASA Technical Reports Server (NTRS)

    Feikema, D. A.; Lim, J.; Sivathanu, Y.

    2006-01-01

    Recent results from microgravity combustion experiments conducted in the Zero Gravity Facility (ZGF) 5.18 second drop tower are reported. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in a microgravity laminar ethylene/air flame. The ethylene/air laminar flame conditions are similar to previously reported experiments including the Flight Project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long duration microgravity laminar diffusion flames as demonstrated in this paper.

  9. The Effects of Buoyancy and Dilution on the Structure and Lift-off of Coflow Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin T.; Long, Marshall B.; Smooke, Mitchell D.

    1999-01-01

    The ability to predict the coupled effects of complex transport phenomena with detailed chemical kinetics in diffusion flames is critical in the modeling of turbulent reacting flows and in understanding the processes by which soot formation and radiative transfer take place. In addition, an understanding of the factors that affect flame extinction in diffusion flames is critical in the suppression of fires and in improving engine efficiency. The goal of our characterizations of coflow laminar diffusion flames is to bring to microgravity the multidimensional diagnostic tools available in normal gravity, and in so doing provide a broader understanding of the successes and limitations of current combustion models. This will lead to a more detailed understanding of the interaction of convection, diffusion and chemistry in both buoyant and nonbuoyant environments. As a sensitive marker of changes in the flame shape, the number densities of excited-state CH (A(exp 2)delta, denoted CH*), and excited-state OH (A(exp 2)Sigma, denoted OH*) are measured in mu-g and normal gravity. Two-dimensional CH* and OH* number densities are deconvoluted from line-of-sight chemiluminescence measurements made on the NASA KC-135 reduced-gravity aircraft. Measured signal levels are calibrated, post-flight, with Rayleigh scattering. Although CH* and OH* kinetics are not well understood, the CH*, OH*, and ground-state CH distributions are spatially coincident in the flame anchoring region. Therefore, the ground-state CH distribution, which is easily computed, and the readily measured CH*/OH* distributions can be used to provide a consistent and convenient way of measuring lift-off height and flame shape in the diffusion flame under investigation. Given that the fuel composition affects flame chemistry and that buoyancy influences the velocity profile of the flow, we have the opportunity to computationally and experimentally study the roles of fluids and chemistry. In performing this

  10. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames.

    PubMed

    Singh, Ajay V; Gollner, Michael J

    2016-06-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.

  11. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames

    PubMed Central

    Singh, Ajay V.; Gollner, Michael J.

    2016-01-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827

  12. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  13. The interaction between soot and NO formation in a laminar axisymmetric coflow ethylene/air diffusion flame

    SciTech Connect

    Guo, Hongsheng; Smallwood, Gregory J.

    2007-04-15

    The interaction between soot and NO formation in a laminar axisymmetric coflow ethylene/air diffusion flame was investigated by numerical simulation. A detailed gas-phase reaction scheme and a simplified soot model were employed. The results show that the formation of NO has little effect on that of soot. However, the formation of soot in the flame significantly suppresses the formation of NO. The peak NO concentration and NO emission index are reduced by 28 and 46%, respectively, due to the formation of soot. The influence of soot on NO formation is caused by not only the radiation-induced thermal effect, but also the reaction-induced chemical effect. Relatively the thermal effect is more significant, causing 25 and 38% reduction, respectively, in peak NO concentration and NO emission index. The chemical effect is caused by the competition for acetylene (C{sub 2}H{sub 2}) between soot and NO formation. The formation of soot consumes acetylene in the flame and thus lowers the formation rate of radical CH. This reduces the reaction rate of CH + N{sub 2} = HCN + N, which is the rate-limiting step of the prompt NO formation route, the dominant route in the studied flame. (author)

  14. Investigation of in-flame soot optical properties in laminar coflow diffusion flames using thermophoretic particle sampling and spectral light extinction

    NASA Astrophysics Data System (ADS)

    Kempema, Nathan J.; Ma, Bin; Long, Marshall B.

    2016-09-01

    Soot optical properties are essential to the noninvasive study of the in-flame evolution of soot particles since they allow quantitative interpretation of optical diagnostics. Such experimental data are critical for comparison to results from computational models and soot sub-models. In this study, the thermophoretic sampling particle diagnostic (TSPD) technique is applied along with data from a previous spectrally resolved line-of-sight light attenuation experiment to determine the soot volume fraction and absorption function. The TSPD technique is applied in a flame stabilized on the Yale burner, and the soot scattering-to-absorption ratio is calculated using the Rayleigh-Debye-Gans theory for fractal aggregates and morphology information from a previous sampling experiment. The soot absorption function is determined as a function of wavelength and found to be in excellent agreement with previous in-flame measurements of the soot absorption function in coflow laminar diffusion flames. Two-dimensional maps of the soot dispersion exponent are calculated and show that the soot absorption function may have a positive or negative exponential wavelength dependence depending on the in-flame location. Finally, the wavelength dependence of the soot absorption function is related to the ratio of soot absorption functions, as would be found using two-excitation-wavelength laser-induced incandescence.

  15. On the determination of laminar flame speeds from stretched flames

    NASA Technical Reports Server (NTRS)

    Wu, C. K.; Law, C. K.

    1985-01-01

    The effects of stretch on the determination of the laminar flame speed are experimentally studied by using the positively-stretched stagnation flame and negatively-stretched bunsen flame, and by using lean and rich mixtures of methane, propane, butane, and hydrogen with air whose effective Lewis numbers are either greater or less than unity. Results demonstrate that flame speed determination can be influenced by stretch through two factors: (1) Preferential diffusion which tends to increase or decrease the flame temperature and burning rate depending on the effective Lewis number, and (2) Flow divergence which causes the flame speed to assume higher values when evaluated at the upstream boundary of the preheat zone instead of the reaction zone. Recent data on flame speed including the present ones are then examined from the unified viewpoint of flame stretch, leading to satisfactory resolution of the discrepancies between them. The present study also proposes a methodology of determining the laminar flame speeds by using the stagnation flame and linearly extrapolating the data to zero stretch rate.

  16. An active particle diffusion theory of flame quenching for laminar flames / Dorothy M. Simon and Frank E. Belles

    NASA Technical Reports Server (NTRS)

    Simon, Dorothy M; Belles, Frank E

    1952-01-01

    An equation for quenching distance based on the destruction of chain carriers by the surface is derived. The equation expresses the quenching distance in terms of the diffusion coefficients and partial pressures of the chain carriers and gas phase molecules, the efficiency of the surface as a chain breaker, the total pressure of the mixture, and a constant which depends on the geometry of the quenching surface. Quenching distances measured by flashback for propane-air flames are shown to be consistent with the mechanism. The derived equation is used with the lean inflammability limit and a rate constant calculated from burning velocity data to estimate quenching distances for propane-air (hydrocarbon lean) flames satisfactorily.

  17. (ELF) Enclosed Laminar Flames

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The goal of the ELF investigation is to improve our fundamental understanding of the effects of the flow environment on flame stability. The flame's stability refers to the position of its base and ultimately its continued existence. Combustion research focuses on understanding the important hidden processes of ignitions, flame spreading, and flame extinction. Understanding these processes will directly affect the efficiency of combustion operations in converting chemical energy to heat and will create a more balanced ecology and healthy environment by reducing pollutants emitted during combustion.

  18. Triple flame structure and diffusion flame stabilization

    NASA Technical Reports Server (NTRS)

    Veynante, D.; Vervisch, L.; Poinsot, T.; Linan, A.; Ruetsch, G.

    1994-01-01

    The stabilization of diffusion flames is studied using asymptotic techniques and numerical tools. The configuration studied corresponds to parallel streams of cold oxidizer and fuel initially separated by a splitter plate. It is shown that stabilization of a diffusion flame may only occur in this situation by two processes. First, the flame may be stabilized behind the flame holder in the wake of the splitter plate. For this case, numerical simulations confirm scalings previously predicted by asymptotic analysis. Second, the flame may be lifted. In this case a triple flame is found at longer distances downstream of the flame holder. The structure and propagation speed of this flame are studied by using an actively controlled numerical technique in which the triple flame is tracked in its own reference frame. It is then possible to investigate the triple flame structure and velocity. It is shown, as suggested from asymptotic analysis, that heat release may induce displacement speeds of the triple flame larger than the laminar flame speed corresponding to the stoichiometric conditions prevailing in the mixture approaching the triple flame. In addition to studying the characteristics of triple flames in a uniform flow, their resistance to turbulence is investigated by subjecting triple flames to different vortical configurations.

  19. Fuel Preheat Effects on Soot-Field Structure in Laminar Gas Jet Diffusion Flames Burning in 0-g and 1-g

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    An experimental investigation conducted at the 2.2-s drop tower of the NASA Lewis Research Center is presented to quantify the influence of moderate fuel preheat on soot-field structure within 0-g laminar gas jet diffusion flames. Parallel work in 1-g is also presented to delineate the effect of elevated fuel temperatures on soot-field structure in buoyant flames. The experimental methodology implements jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Fuel preheat of approximately 100 K in the 0-g laminar jet diffusion flames is found to reduce soot loadings in the annular region, but causes an increase in soot volume fractions at the centerline. In addition, fuel preheat reduces the radial extent of the soot field in 0-g. In 1-g, the same fuel preheat levels have a more moderated influence on soot loadings in the annular region, but are also seen to enhance soot concentrations near the axis low in the flame. The increased soot loadings near the flame centerline, as caused by fuel preheat, are consistent with the hypothesis that preheat levels of approximately 100 K enhance fuel pyrolysis rates. The results show that the growth stage of particles transported along the soot annulus is shortened both in 1-g and 0-g when elevated fuel temperatures are used.

  20. Scale-Invariant Forms of Conservation Equations in Reactive Fields and a Modified Hydro-Thermo-Diffusive Theory of Laminar Flames

    NASA Technical Reports Server (NTRS)

    Sohrab, Siavash H.; Piltch, Nancy (Technical Monitor)

    2000-01-01

    A scale-invariant model of statistical mechanics is applied to present invariant forms of mass, energy, linear, and angular momentum conservation equations in reactive fields. The resulting conservation equations at molecular-dynamic scale are solved by the method of large activation energy asymptotics to describe the hydro-thermo-diffusive structure of laminar premixed flames. The predicted temperature and velocity profiles are in agreement with the observations. Also, with realistic physico-chemical properties and chemical-kinetic parameters for a single-step overall combustion of stoichiometric methane-air premixed flame, the laminar flame propagation velocity of 42.1 cm/s is calculated in agreement with the experimental value.

  1. Analysis of the laminar flamelet concept for nonpremixed laminar flames

    SciTech Connect

    Claramunt, K.; Consul, R.; Carbonell, D.; Perez-Segarra, C.D.

    2006-06-15

    The goal of this paper is to investigate the application of the laminar flamelet concept to the multidimensional numerical simulation of nonpremixed laminar flames. The performance of steady and unsteady flamelets is analyzed. The deduction of the mathematical formulation of flamelet modeling is exposed and some commonly used simplifications are examined. Different models for the scalar dissipation rate dependence on the mixture fraction variable are analyzed. Moreover, different criteria to evaluate the Lagrangian-type flamelet lifetime for unsteady flamelets are investigated. Inclusion of phenomena such as differential diffusion with constant Lewis number for each species and radiation heat transfer are also studied. A confined co-flow axisymmetric nonpremixed methane/air laminar flame experimentally investigated by McEnally and Pfefferle (Combust. Sci. Technol. 116-117 (1996) 183-209) and numerically investigated by Bennett, McEnally, Pfefferle, and Smooke (Combust. Flame 123 (2000) 522-546), Consul, Perez-Segarra, Claramunt, Cadafalch, and Oliva (Combust. Theory Modelling 7 (3) (2003) 525-544), and Claramunt, Consul, Perez-Segarra, and Oliva (Combust. Flame 137 (2004) 444-457) has been used as a test case. Results obtained using the flamelet concept have been compared to data obtained from the full resolution of the complete transport equations using primitive variables. Finite-volume techniques over staggered grids are used to discretize the governing equations. A parallel multiblock algorithm based on domain decomposition techniques running with loosely coupled computers has been used. To assess the quality of the numerical solutions presented in this paper, a verification process based on the generalized Richardson extrapolation technique and on the grid convergence index (GCI) has been applied. (author)

  2. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  3. High-Resolution Height-Profile Analysis and Laser-Ionization Characterization of a Wide Range of Fullerenes in Laminar Diffusion Flames

    NASA Astrophysics Data System (ADS)

    Siegmann, K.; Hepp, H.; Sattler, K.

    Neutral fullerenes are detected online in laminar, atmospheric pressure methane diffusion flames using time-of-flight mass spectrometry combined with laser ionization. The intensity of the C60 signal shows a quadratic dependence of the laser-pulse energy, which is consistent with two-photon ionization. Poly-cyclic aromatic hydrocarbons (PAH) are also found in these flames. Height profiles of fullerenes are compared with height profiles of PAH and it is found that the concentration of fullerenes most strongly at a height where the concentration of PAH decreases the most. This height in the flame probably marks the burnout of the available hydrogen. Since all fullerenes, independent of their number of carbons, peak at the same height above burner, we conclude that fullerenes in flames do not grow by the addition of small molecules.

  4. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix E; Repr. from AIAA Journal, v. 36 p 1346-1360

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2001-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230-s) experiments at microgravity carried out on orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous flame lengths of 49-64 mm Measurements included luminous flame shapes using color video imaging soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, soot structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer.The present flames were larger, and emitted soot more readily, than comparable flames observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  5. Ignition and structure of a laminar diffusion flame in the field of a vortex

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.

    1991-01-01

    The distortion of flames in flows with vortical motion is examined via asymptotic analysis and numerical simulation. The model consists of a constant density, one step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a vortex. The evolution in time of the temperature and mass fraction fields is followed. Emphasis is placed on the ignition time and location as a function of vortex Reynolds number and initial temperature differences of the reacting species. The study brings out the influence of the vortex on the chemical reaction. In all phases, good agreement is observed between asymptotic analysis and the full numerical solution of the model equations.

  6. A Series of Laminar Jet Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (249KB JPEG, 1350 x 1524 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300185.html.

  7. Implementation of two-equation soot flamelet models for laminar diffusion flames

    SciTech Connect

    Carbonell, D.; Oliva, A.; Perez-Segarra, C.D.

    2009-03-15

    The two-equation soot model proposed by Leung et al. [K.M. Leung, R.P. Lindstedt, W.P. Jones, Combust. Flame 87 (1991) 289-305] has been derived in the mixture fraction space. The model has been implemented using both Interactive and Non-Interactive flamelet strategies. An Extended Enthalpy Defect Flamelet Model (E-EDFM) which uses a flamelet library obtained neglecting the soot formation is proposed as a Non-Interactive method. The Lagrangian Flamelet Model (LFM) is used to represent the Interactive models. This model uses direct values of soot mass fraction from flamelet calculations. An Extended version (E-LFM) of this model is also suggested in which soot mass fraction reaction rates are used from flamelet calculations. Results presented in this work show that the E-EDFM predict acceptable results. However, it overpredicts the soot volume fraction due to the inability of this model to couple the soot and gas-phase mechanisms. It has been demonstrated that the LFM is not able to predict accurately the soot volume fraction. On the other hand, the extended version proposed here has been shown to be very accurate. The different flamelet mathematical formulations have been tested and compared using well verified reference calculations obtained solving the set of the Full Transport Equations (FTE) in the physical space. (author)

  8. On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame

    SciTech Connect

    Guo, Hongsheng; Thomson, Kevin A.; Smallwood, Gregory J.

    2009-06-15

    The effect of carbon monoxide addition on soot formation in an ethylene/air diffusion flame is investigated by experiment and detailed numerical simulation. The paper focuses on the chemical effect of carbon monoxide addition by comparing the results of carbon monoxide and nitrogen diluted flames. Both experiment and simulation show that although overall the addition of carbon monoxide monotonically reduces the formation of soot, the chemical effect promotes the formation of soot in an ethylene/air diffusion flame. The further analysis of the details of the numerical result suggests that the chemical effect of carbon monoxide addition may be caused by the modifications to the flame temperature, soot surface growth and oxidation reactions. Flame temperature increases relative to a nitrogen diluted flame, which results in a higher surface growth rate, when carbon monoxide is added. Furthermore, the addition of carbon monoxide increases the concentration of H radical owing to the intensified forward rate of the reaction CO + OH = CO{sub 2} + H and therefore increases the surface growth reaction rates. The addition of carbon monoxide also slows the oxidation rate of soot because the same reaction CO + OH = CO{sub 2} + H results in a lower concentration of OH. (author)

  9. Experimental determination of the velocity and strain rate field in a laminar H2/Air counter-flow diffusion flame via LDA

    NASA Technical Reports Server (NTRS)

    Yeo, S. H.; Dancey, C. L.

    1991-01-01

    Measurements of the axial and radial components of velocity on the air side of stagnation in an axisymmetric H2/Air laminar counter-flow diffusion flame are reported. Results include the two-dimensional velocity field and computed velocity gradients (strain rates) along the stagnation streamline at two 'characteristic' strain rates, below the extinction limit. The measurements generally verify the modeling assumptions appropriate to the model of Kee et al. (1988). The 'traditional' potential flow model is not consistent with the measured results.

  10. Structure and Soot Formation Properties of Laminar Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science for several reasons: soot emissions are responsible for more deaths than any other combustion-generated pollutant, thermal loads due to continuum radiation from soot limit the durability of combustors, thermal radiation from soot is mainly responsible for the growth and spread of unwanted fires, carbon monoxide emissions associated with soot emissions are responsible for most fire deaths, and limited understanding of soot processes in flames is a major impediment to the development of computational combustion. Motivated by these observations, soot processes within laminar premixed and nonpremixed (diffusion) flames are being studied during this investigation. The study is limited to laminar flames due to their experimental and computational tractability, noting the relevance of these results to practical flames through laminar flamelet concepts. Nonbuoyant flames are emphasized because buoyancy affects soot processes in laminar diffusion flames whereas effects of buoyancy are small for most practical flames. This study involves both ground- and space-based experiments, however, the following discussion will be limited to ground-based experiments because no space-based experiments were carried out during the report period. The objective of this work was to complete measurements in both premixed and nonpremixed flames in order to gain a better understanding of the structure of the soot-containing region and processes of soot nucleation and surface growth in these environments, with the latter information to be used to develop reliable ways of predicting soot properties in practical flames. The present discussion is brief, more details about the portions of the investigation considered here can be found in refs. 8-13.

  11. A numerical study of laminar flames propagating in stratified mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng

    Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate

  12. Flame Radiation, Structure, and Scalar Properties in Microgravity Laminar Fires

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas; Lim, Jongmook; Sivathanu, Yudaya

    2007-01-01

    Results from microgravity combustion experiments conducted in the Zero Gravity Research Facility (ZGF) 5.18 second drop facility are reported. The results quantify flame radiation, structure, and scalar properties during the early phase of a microgravity fire. Emission mid-infrared spectroscopy measurements have been completed to quantitatively determine the flame temperature, water and carbon dioxide vapor concentrations, radiative emissive power, and soot concentrations in microgravity laminar methane/air, ethylene/nitrogen/air and ethylene/air jet flames. The measured peak mole fractions for water vapor and carbon dioxide are found to be in agreement with state relationship predictions for hydrocarbon/air combustion. The ethylene/air laminar flame conditions are similar to previously reported results including those from the flight project, Laminar Soot Processes (LSP). Soot concentrations and gas temperatures are in reasonable agreement with similar results available in the literature. However, soot concentrations and flame structure dramatically change in long-duration microgravity laminar diffusion flames as demonstrated in this report.

  13. Ignition and structure of a laminar diffusion flame in a compressible mixing layer with finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Jackson, T. L.

    1991-01-01

    The ignition and structure of a reacting compressible mixing layer is considered using finite rate chemistry lying between two streams of reactants with different freestream speeds and temperatures. Numerical integration of the governing equations show that the structure of the reacting flow can be quite complicated depending on the magnitude of the Zeldovich number. An analysis of both the ignition a diffusion flame regimes is presented using a combination of large Zeldovich number asymptotics and numerics. This allows to analyze the behavior of these regimes as a function of the parameters of the problem.

  14. Ignition and structure of a laminar diffusion flame in a compressible mixing layer with finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Jackson, T. L.

    1991-01-01

    The ignition and structure of a reacting compressible mixing layer is considered using finite rate chemistry lying between two streams of reactants with different freestream speeds and temperatures. Numerical integration of the governing equations show that the structure of the reacting flow can be quite complicated depending on the magnitude of the Zeldovich number. An analysis of both the ignition and diffusion flame regimes is presented using a combination of large Zeldovich number asymptotics and numerics. This allows to analyze the behavior of these regimes as a function of the parameters of the problem.

  15. Development of PIV for Microgravity Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  16. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  17. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  18. Transitional Gas Jet Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  19. Laminar flame propagation in a stratified charge

    NASA Astrophysics Data System (ADS)

    Ra, Youngchul

    The propagation of laminar flame from a rich or stoichiometric mixture to a lean mixture in a stratified methane-air charge was investigated experimentally and numerically. Emphasis was on the understanding of the flame behavior in the transition region; in particular, on the mechanism of burning velocity enhancement in this region. In the experimental setup, mixtures of two different equivalence ratios were separated by a soap bubble in a spherical constant volume combustion vessel. The richer mixture inside the bubble was ignited by a focused laser beam. The flame development was observed by Schlieren technique and flame speeds were measured by heat release analysis of the pressure data. An one-dimensional, time- dependant numerical simulation of the flame propagation in a charge with step-stratification was used to interpret the experimental results. Both the experimental and numerical studies showed that the instantaneous flame speed depended on the previous flame history. Thus a `strong' (with mixture equivalence ratio close to stoichiometric) flame can sustain propagation into finite regions of substantially lean equivalence ratio. Both thermal and chemical effects were crucial for explaining the mechanism of the flame speed enhancement in the transition period. Because of the presence of this `back- support' effect, the usual concept of specifying the burning velocity as a function of the end gas state is inadequate for a stratified charge. A simple correlation for instantaneous flame velocity based on the local burned gas temperature is developed. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  20. An investigation of streaklike instabilities in laminar boundary layer flames

    NASA Astrophysics Data System (ADS)

    Miller, Colin; Finney, Mark; Forthofer, Jason; McAllister, Sara; Gollner, Michael

    2016-11-01

    Observations of coherent structures in boundary layer flames, particularly wildland fires, motivated an investigation on flame instabilities within a boundary layer. This experimental study examined streaklike structures in a stationary diffusion flame stabilized within a laminar boundary layer. Flame streaks were found to align with pre-existing velocity perturbations, enabling stabilization of these coherent structures. Thermocouple measurements were used to quantify streamwise amplification of flame streaks. Temperature mapping indicated a temperature rise in the flame streaks, while the region in between these streaks, the trough, decreased in temperature. The heat flux to the surface was measured with a total heat flux gauge, and the heat flux below the troughs was found to be higher at all measurement locations. This was likely a function of the flame standoff distance, and indicated that the flame streaks were acting to modify the spanwise distribution of heat flux. Instabilities in boundary layer combustion can have an effect on the spanwise distribution of heat transfer. This finding has significant implications for boundary layer combustion, indicating that instantaneous properties can vary significantly in a three-dimensional flow field.

  1. Laminar dust flames in a reduced-gravity environment

    NASA Astrophysics Data System (ADS)

    Goroshin, Samuel; Tang, Francois-David; Higgins, Andrew J.; Lee, John H. S.

    2011-04-01

    The propagation of laminar dust flames in suspensions of iron in gaseous oxidizers was studied in a low-gravity environment onboard a parabolic flight aircraft. The reduction of buoyancy-induced convective flows and particle settling permitted the measurement of fundamental combustion parameters, such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. Experimentally measured flame speeds and quenching distances were found in good agreement with theoretical predictions of a simplified analytical model that assumes particles burning in a diffusive mode. However, the comparison of flame speeds in oxygen-argon and oxygen-helium iron suspensions indicates the possibility that fine micron-sized particles burn in the kinetic mode. Furthermore, when the particle spacing is large compared to the scale of the reaction zone, a theoretical analysis suggests the existence of a new so-called discrete flame propagation regime. Discrete flames are strongly dependent on particle density fluctuations and demonstrate directed percolation behavior near flame propagation limits. The experimental observation of discrete flames in particle suspensions will require low levels of gravity over extended periods available only on orbital platforms.

  2. Chemical kinetic model uncertainty minimization through laminar flame speed measurements.

    PubMed

    Park, Okjoo; Veloo, Peter S; Sheen, David A; Tao, Yujie; Egolfopoulos, Fokion N; Wang, Hai

    2016-10-01

    Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358-2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.

  3. Ignition dynamics of a laminar diffusion flame in the field of a vortex embedded in a shear flow

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.

    1994-01-01

    The role of streamwise-spanwise vorticity interactions that occur in turbulent shear flows on flame/vortex interactions is examined by means of asymptotic analysis and numerical simulation in the limit of small Mach number. An idealized model is employed to describe the interaction process. The model consists of a one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a streamwise vortex embedded in a shear flow. It is found that the interaction of the streamwise vortex with shear gives rise to small-scale velocity oscillations which increase in magnitude with shear strength. These oscillations give rise to regions of strong temperature gradients via viscous heating, which can lead to multiple ignition points and substantially decrease ignition times. The evolution in time of the temperature and mass-fraction fields is followed, and emphasis is placed on the ignition time and structure as a function of vortex and shear strength.

  4. The Effects of Gravity on Wrinkled Laminar Flames

    NASA Technical Reports Server (NTRS)

    Kostiuk, Larry W.; Zhou, Liming; Cheng, Robert K.

    1993-01-01

    The effects of gravity are significant to the dynamics of idealized unconfined open premixed flames. Moderate to low turbulence Reynolds number flames, i.e., wrinkled laminar flames, of various unconfined geometries have been used extensively for investigating fundamental processes of turbulent flame propagation and to validate theoretical models. Without the wall constraints, the flames are free to expand and interact with surrounding ambient air. The flow field in which the flame exists is determined by a coupling of burner geometry, flame orientation and the gravity field. These complex interactions raise serious questions regarding the validity of comparing the experimental data of open flames with current theoretical and numerical models that do not include the effects of gravity nor effects of the larger aerodynamic flowfield. Therefore, studies of wrinkled laminar flame in microgravity are needed for a better understanding of the role of gravity on flame characteristics such as the orientation, mean aerodynamics stretch, flame wrinkle size and burning rate. Our approach to characterize and quantify turbulent flame structures under microgravity is to exploit qualitative and quantitative flow visualization techniques coupled with video recording and computer controlled image analysis technologies. The experiments will be carried out in the 2.2 second drop tower at the NASA Lewis Research Center. The longest time scales of typical wrinkled laminar flames in the geometries considered here are in the order of 10 msec. Hence, the duration of the drop is sufficient to obtain the amount of statistical data necessary for characterize turbulent flame structures.

  5. Unsteady planar diffusion flames: Ignition, travel, burnout

    NASA Technical Reports Server (NTRS)

    Fendell, F.; Wu, F.

    1995-01-01

    In microgravity, a thin planar diffusion flame is created and thenceforth travels so that the flame is situated at all times at an interface at which the hydrogen and oxygen meet in stoichiometric proportion. If the initial amount of hydrogen is deficient relative to the initial amount of oxygen, then the planar flame will travel further and further into the half volume initially containing hydrogen, until the hydrogen is (virtually) fully depleted. Of course, when the amount of residual hydrogen becomes small, the diffusion flame is neither vigorous nor thin; in practice, the flame is extinguished before the hydrogen is fully depleted, owing to the finite rate of the actual chemical-kinetic mechanism. The rate of travel of the hydrogen-air diffusion flame is much slower than the rate of laminar flame propagation through a hydrogen-air mixture. This slow travel facilitates diagnostic detection of the flame position as a function of time, but the slow travel also means that the time to burnout (extinction) probably far exceeds the testing time (typically, a few seconds) available in earth-sited facilities for microgravity-environment experiments. We undertake an analysis to predict (1) the position and temperature of the diffusion flame as a function of time, (2) the time at which extinction of the diffusion flame occurs, and (3) the thickness of quench layers formed on side walls (i.e., on lateral boundaries, with normal vectors parallel to the diffusion-flame plane), and whether, prior to extinction, water vapor formed by burning will condense on these cold walls.

  6. Numerical assessment of accurate measurements of laminar flame speed

    NASA Astrophysics Data System (ADS)

    Goulier, Joules; Bizon, Katarzyna; Chaumeix, Nabiha; Meynet, Nicolas; Continillo, Gaetano

    2016-12-01

    In combustion, the laminar flame speed constitutes an important parameter that reflects the chemistry of oxidation for a given fuel, along with its transport and thermal properties. Laminar flame speeds are used (i) in turbulent models used in CFD codes, and (ii) to validate detailed or reduced mechanisms, often derived from studies using ideal reactors and in diluted conditions as in jet stirred reactors and in shock tubes. End-users of such mechanisms need to have an assessment of their capability to predict the correct heat released by combustion in realistic conditions. In this view, the laminar flame speed constitutes a very convenient parameter, and it is then very important to have a good knowledge of the experimental errors involved with its determination. Stationary configurations (Bunsen burners, counter-flow flames, heat flux burners) or moving flames (tubes, spherical vessel, soap bubble) can be used. The spherical expanding flame configuration has recently become popular, since it can be used at high pressures and temperatures. With this method, the flame speed is not measured directly, but derived through the recording of the flame radius. The method used to process the radius history will have an impact on the estimated flame speed. Aim of this work is to propose a way to derive the laminar flame speed from experimental recording of expanding flames, and to assess the error magnitude.

  7. Influence of Buoyant Convection on the Stability of Enclosed Laminar Flames

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Jia, Kezhong; Stocker, Dennis P.; Chen. Lea-Der

    1999-01-01

    Enclosed diffusion flames are commonly found in practical combustion systems, such as the power-plant combustor, gas turbine combustor, and jet engine after-burner. In these systems, fuel is injected into a duct with a co-flowing or cross-flowing air stream. In combustors, this flame is anchored at the burner (i.e., fuel jet inlet) unless adverse conditions cause the flame to lift off or blow out. Investigations of burner stability study the lift off, reattachment, and blow out of the flame. There have been numerous studies of flame stability. Relatively few studies have investigated the stability of flames with an oxidizer co-flow, compared with the number of studies on (nearly) free jet diffusion flames. The air flow around the fuel jet can significantly alter the lift off, reattachment and blow out of the jet diffusion flame. In normal gravity, however, the effects of the air flow on flame stability are often complicated by the presence of buoyant convection. A comparison of normal-gravity and microgravity flames can provide clear indication of the influence of forced and buoyant flows on the flame stability. The overall goal of the Enclosed Laminar Flames (ELF) research, described at the following URL site: http://zeta.lerc.nasa.gov/expr/elf.htm, is to improve our understanding of the effects of buoyant convection on the structure and stability of co-flow diffusion flames.

  8. Studies of premixed laminar and turbulent flames at microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    A two and one-half year experimental and theoretical research program on the properties of laminar and turbulent premixed gas flames at microgravity was conducted. Progress during this program is identified and avenues for future studies are discussed.

  9. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  10. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    SciTech Connect

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  11. Numerical Study of Buoyancy and Differential Diffusion Effects on the Structure and Dynamics of Triple Flames

    NASA Technical Reports Server (NTRS)

    Chen, J. -Y.; Echekki, T.

    1999-01-01

    Triple flames arise in a number of practical configurations where fuel and oxidizer are partially premixed, such as in the base of a lifted jet flame. Past experimental studies, theoretical analyses, and numerical modeling of triple flames suggested the potential role of triple flames in stabilizing turbulent flames and in promoting flame propagation. From recent numerical simulations of laminar triple flames, a strong influence of differential diffusion among species and heat on the triple flame structure has been gradually appreciated. This paper reports preliminary numerical results on the influence of gravity and differential diffusion effects on the structure and dynamics of triple flames with a one-step global irreversible chemistry model.

  12. Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames

    NASA Astrophysics Data System (ADS)

    Richardson, E. S.; Granet, V. E.; Eyssartier, A.; Chen, J. H.

    2010-11-01

    The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. 'Back supported' lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.

  13. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames

    SciTech Connect

    Chen, Zheng

    2011-02-15

    Large discrepancies among the laminar flame speeds and Markstein lengths of methane/air mixtures measured by different researchers using the same constant-pressure spherical flame method are observed. As an effort to reduce these discrepancies, one linear model (LM, the stretched flame speed changes linearly with the stretch rate) and two non-linear models (NM I and NM II, the stretched flame speed changes non-linearly with the stretch rate) for extracting the laminar flame speed and Markstein length from propagating spherical flames are investigated. The accuracy and performance of the LM, NM I, and NM II are found to strongly depend on the Lewis number. It is demonstrated that NM I is the most accurate for mixtures with large Lewis number (positive Markstein length) while NM II is the most accurate for mixtures with small Lewis number (negative Markstein length). Therefore, in order to get accurate laminar flame speed and Markstein length from spherical flame experiments, different non-linear models should be used for different mixtures. The validity of the theoretical results is further demonstrated by numerical and experimental studies. The results of this study can be used directly in spherical flame experiments measuring the laminar flame speed and Markstein length. (author)

  14. Effects of Buoyancy on Lean Premixed V-Flames Part I: Laminar and Turblent Flame Structure

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit; Kostiuk, Larry W.

    1998-01-01

    Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in +g, -g, and micro g under flow conditions that span the regimes of momentum domination (Ri < 0. 1) and buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and -g flame angles decrease with Ri (i.e., increasing Re) and converge to the microgravity flame angle at the momentum limit (Ri - 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and -g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and -g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in -g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy effects on flame instability mechanisms. It seems to be associated with the field effects of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in -g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.

  15. Soot Formation in Purely-Curved Premixed Flames and Laminar Flame Speeds of Soot-Forming Flames

    NASA Technical Reports Server (NTRS)

    Buchanan, Thomas; Wang, Hai

    2005-01-01

    The research addressed here is a collaborative project between University of Delaware and Case Western Reserve University. There are two basic and related scientific objectives. First, we wish to demonstrate the suitability of spherical/cylindrical, laminar, premixed flames in the fundamental study of the chemical and physical processes of soot formation. Our reasoning is that the flame standoff distance in spherical/cylindrical flames under microgravity can be substantially larger than that in a flat burner-stabilized flame. Therefore the spherical/cylindrical flame is expected to give better spatial resolution to probe the soot inception and growth chemistry than flat flames. Second, we wish to examine the feasibility of determining the laminar flame speed of soot forming flames. Our basic assumption is that under the adiabatic condition (in the absence of conductive heat loss), the amount and dynamics of soot formed in the flame is unique for a given fuel/air mixture. The laminar flame speed can be rigorously defined as long as the radiative heat loss can be determined. This laminar flame speed characterizes the flame soot formation and dynamics in addition to the heat release rate. The research involves two integral parts: experiments of spherical and cylindrical sooting flames in microgravity (CWRU), and the computational counterpart (UD) that aims to simulate sooting laminar flames, and the sooting limits of near adiabatic flames. The computations work is described in this report, followed by a summary of the accomplishments achieved to date. Details of the microgra+ experiments will be discussed in a separate, final report prepared by the co-PI, Professor C-J. Sung of CWRU. Here only a brief discussion of these experiments will be given.

  16. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  17. FEM-simulation of laminar flame propagation. I: Two-dimensional flames

    NASA Astrophysics Data System (ADS)

    Michaelis, B.; Rogg, B.

    2004-05-01

    In this paper, we present a numerical model for two-dimensional low-Mach-number flows of reactive ideal-gas mixtures based on the fundamental conservation equations in primitive variables. Chemical reaction is described by a detailed mechanism of elementary reactions, and detailed models for molecular transport and thermodynamics are taken into account. The equations are discretized by a finite-element method on unstructured grids using the well known Taylor-Hood element. A streamline-diffusion upwinding technique is used to avoid instabilities in convection-dominated regions of the flowfield. A fully operative local adaptive mesh-refinement procedure is used. As numerical examples we consider steadily propagating laminar flames in flat channels, which appear in a variety of shapes depending on the boundary conditions.

  18. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  19. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.

    PubMed

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  20. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed methanefoxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt; the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogenabstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames, for reasons that still must be explained.

  1. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  2. Computatonal and experimental study of laminar flames

    SciTech Connect

    Smooke, M.D.; Long, M.B.

    1993-12-01

    This research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in counterflow, cylindrical and coflowing axisymmetric configurations. The authors have pursued both computational and experimental aspects of the research in parallel. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the one and two-dimensional nonlinear boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. In particular, spontaneous Raman scattering and laser induced fluorescence were used to measure the temperature, major and minor species profiles.

  3. Dynamic response of a pulsed Burke-Schumann diffusion flame

    NASA Technical Reports Server (NTRS)

    Sheu, Jyh-Cherng; Stocker, Dennis P.; Chen, Lea-Der

    1995-01-01

    Turbulent flames are often envisioned as an ensemble of random vortices interacting with the combustion process. A better understanding of the vortex-flame interactions therefore would be useful in improving the modeling of turbulent diffusion flames. Substantial simplification may be made by investigating controlled interactions in a laminar flame, as opposed to random interactions in a turbulent flame. The general goals of the research project are to improve our understanding of (1) the influence of buoyancy on co-flow diffusion flames and (2) the effects of buoyancy on vortex-flame interactions in co-flow diffusion flames. As a first step toward objective (2), we conducted a joint experimental and numerical investigation of the vortex-flame interaction. Vortices were produced by mechanically pulsing the fuel flow at a low frequency, e.g., 10 Hz. Experiments were conducted using a nonflickering Burke-Schumann flame in both microgravity (mu-g) and normal gravity (1g) as a means of varying the buoyant force without modification of the pressure (i.e., density). The effects of buoyant convection may then be determined by a comparison of the mu-g and 1g results. The mu-g results may also reveal the important mechanisms which are masked or overwhelmed by buoyant convection in 1g. A numerical investigation was conducted using a validated, time-accurate numerical code to study the underlying physics during the flame interaction and to assist the interpretation of the experimental results.

  4. Computational and experimental study of laminar flames

    SciTech Connect

    Smooke, Mitchell

    2015-05-29

    During the past three years, our research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in coflowing axisymmetric configurations. We have pursued both computational and experimental aspects of the research in parallel on both steady-state and time-dependent systems. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the steady-state and time-dependent boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. Previously, spontaneous Raman scattering, chemiluminescence, and laser-induced fluorescence were used to measure the temperature, major and minor species profiles. Particle image velocimetry (PIV) has been used to investigate velocity distributions and for calibration of time-varying flames. Laser-induced incandescence (LII) with an extinction calibration was used to determine soot volume fractions, while soot surface temperatures were measured with three-color optical pyrometry using a color digital camera. A blackbody calibration of the camera allows for determination of soot volume fraction as well, which can be compared with the LII measurements. More recently, we have concentrated on a detailed characterization of soot using a variety of techniques including time-resolved LII (TiRe-LII) for soot primary particles sizes, multi-angle light scattering (MALS) for soot radius of gyration, and spectrally-resolved line of sight attenuation (spec-LOSA). Combining the information from all of these soot measurements can be used to determine the soot optical properties, which are observed to vary significantly depending on spatial location and fuel dilution. Our goal has been to obtain a more fundamental understanding of the important fluid dynamic and chemical interactions in

  5. Further experiments on the stability of laminar and turbulent hydrogen-air flames at reduced pressures

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1957-01-01

    Stability limits for laminar and turbulent hydrogen-air burner flames were measured as a function of pressure, burner diameter, and composition. On the basis of a simple flame model, turbulent flashback involved a smaller effective penetration distance than laminar flashback. No current theoretical treatment predicts the observed pressure and diameter dependence of laminar and turbulent blowoff.

  6. Implementation of Thermal Diffusion in Chemistry Tabulation for Unstable Premixed Flames

    NASA Astrophysics Data System (ADS)

    Schlup, Jason; Blanquart, Guillaume

    2016-11-01

    The inclusion of thermal diffusion, by means of multicomponent diffusion transport models, has been shown to affect the results of numerical simulations of thermo-diffusively unstable lean hydrogen flames. However, the multicomponent diffusion model involves costly matrix inversion operations, leading it to be useful in only simplified flame configurations and computational domains. In this work, a mixture-averaged thermal diffusion model is implemented into a tabulated chemistry framework. The resulting reacting flows are compared to one- and two-dimensional detailed chemistry simulations of lean hydrogen-air flames with multicomponent diffusion. The configurations used to validate the mixture-averaged thermal diffusion model with tabulated chemistry include flat and cellular tubular flames. Three-dimensional flames, both laminar and turbulent, are also considered as an application of the mixture-averaged thermal diffusion model using tabulated chemistry. These flames are compared to cases neglecting thermal diffusion and cases using detailed chemistry with the mixture-averaged thermal diffusion model.

  7. Soot Aerosol Properties in Laminar Soot-Emitting Microgravity Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    The spatial distributions and morphological properties of the soot aerosol are examined experimentally in a series of 0-g laminar gas-jet nonpremixed flames. The methodology deploys round jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Full-field laser-light extinction is utilized to determine transient soot spatial distributions within the flames. Thermophoretic sampling is employed in conjunction with transmission electron microscopy to define soot microstructure within the soot-emitting 0-g flames. The microgravity tests indicate that the 0-g flames attain a quasi-steady state roughly 0.7 s after ignition, and sustain their annular structure even beyond their luminous flame tip. The measured peak soot volume fractions show a complex dependence on burner exit conditions, and decrease in a nonlinear fashion with decreasing characteristic flow residence times. Fuel preheat by approximately 140 K appears to accelerate the formation of soot near the flame axis via enhanced fuel pyrolysis rates. The increased soot presence caused by the elevated fuel injection temperatures triggers higher flame radiative losses, which may account for the premature suppression of soot growth observed along the annular region of preheated-fuel flames. Electron micrographs of soot aggregates collected in 0-g reveal the presence of soot precursor particles near the symmetry axis at midflame height, The observations also verify that soot primary particle sizes are nearly uniform among aggregates present at the same flame location, but vary considerably with radius at a fixed distance from the burner. The maximum primary size in 0-g is found to be by 40% larger than in 1-g, under the same burner exit conditions. Estimates of the number concentration of primary particles and surface area of soot particulate phase per unit volume of the combustion gases are also made for selected in-flame locations.

  8. IFTS measurements of a laboratory scale laminar flame

    NASA Astrophysics Data System (ADS)

    Rhoby, Michael R.; Harley, Jacob L.; Gross, Kevin C.

    2011-10-01

    A point-and-shoot, passive remote sensing technology is highly desired to accurately monitor the combustion efficiency (CE) of petrochemical flares. A Phase II DOE-funded SBIR effort is being led by Spectral Sciences, Inc. to develop the methodologies needed to enable remote CE measurements via spectral remote sensing. Part of this effort entails standing up a laboratory-scale flare measurement laboratory to develop and validate CE measurements. This paper presents an overview and summarizes current progress of the Air Force Institute of Technology's (AFIT) contribution to this multi-organization, two-year effort. As a first step, a Telops Hyper-Cam longwave infrared (LWIR, 750-1300cm-1 or 7.7-13.3μm) imaging Fourier-transformspectrometer (IFTS) is used to examine a laminar, calibration flame produced by a Hencken burner. Ethylene and propane were combusted under several different fuel/air mixing ratios. For each event, 300 hyperspectral datacubes were collected on a 172(W)×200(H) pixel window at a 1.5cm-1 spectral resolution. Each pixel had approximately a 1.5×1.5mm2 instantaneous field-of-view (IFOV). Structured emission is evident throughout the combustion region with several lines arising from H2O; other lines have not yet been assigned. These first known IFTS measurements of a laminar Hencken-burner flame are presented along with some preliminary analysis. While the laminar flame appears stationary to the eye, significant flame flicker at a fundamental frequency of 17Hz was observed in the LWIR, and this is expected to complicate spectral interpretation for species concentrations and temperature retrieval. Changes to the fuel-air ratio (FAR) produced sizable changes in spectral intensity. Combustion spectra of ethylene and propane corresponding to ideal FAR were nearly identical.

  9. Effects of Buoyancy in Hydrogen Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Agrawal, A. K.; Al-Ammar, K.; Gollahalli, S. R.; Griffin, D. W.

    1999-01-01

    This project was carried out to understand the effects of heat release and buoyancy on the flame structure of diffusion flames. Experiments were conducted at atmospheric pressure in both normal gravity and microgravity conditions in the NASA LeRC 2.2 s drop tower. Experiments were also conducted in a variable pressure combustion facility in normal gravity to scale buoyancy and thus, to supplement the drop tower experiments. Pure H2 or H2 mixed with He was used as the jet fluid to avoid the complexities associated with soot formation. Fuel jet burning in quiescent air was visualized and quantified by the Rainbow Schlieren Deflectometry (RSD) to obtain scalar profiles (temperature, oxygen concentration) within the flame. Burner tube diameter (d) was varied from 0.3 to 1.19 mm producing jet exit Reynolds numbers ranging from 40 to 1900, and generating flames encompassing laminar and transitional (laminar to turbulent) flow structure. Some experiments were also complemented with the CFD analysis. In a previous paper, we have presented details of the RSD technique, comparison of computed and measured scalar distributions, and effects of buoyancy on laminar and transitional H2 gas-jet diffusion flames. Results obtained from the RSD technique, variable pressure combustion chamber, and theoretical models have been published. Subsequently, we have developed a new drop rig with improved optical and image acquisition. In this set up, the schlieren images are acquired in real time and stored digitally in RAM of an onboard computer. This paper deals with laminar diffusion flames of pure H2 in normal and microgravity.

  10. Formation and Combustion of Smoke in Laminar Flames

    NASA Technical Reports Server (NTRS)

    Schalla, Rose L; Clark, Thomas P; Mcdonald, Glen E

    1954-01-01

    The nature and formation of smoke and its combustion were investigated. Smoke, which consist of tiny mesomorphous crystals tightly packed into popcorn-ball-like particles that agglomerate to give filaments, was found to contain about 5 percent of the hydrogen originally present in the fuel. Factors affecting smoke formation were studied in both diffusion flames and premixed Bunsen flames. It is suggested that smoking tendency increases with increasing stability of the carbon skeleton of the molecule, as determined by relative bond strength.

  11. Effects of buoyancy on gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.

    1993-01-01

    The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.

  12. Representing Model Inadequacy in Combustion Mechanisms of Laminar Flames

    NASA Astrophysics Data System (ADS)

    Morrison, Rebecca; Moser, Robert; Oliver, Todd

    2015-11-01

    An accurate description of the chemical processes involved in the oxidation of hydrocarbons may include hundreds of reactions and thirty or more chemical species. Kinetics models of these chemical mechanisms are often embedded in a fluid dynamics solver to represent combustion. Because the computational cost of such detailed mechanisms is so high, it is common practice to use drastically reduced mechanisms. But, this introduces modeling errors which may render the model inadequate. In this talk, we present a formulation of the model inadequacy in reduced models of combustion mechanisms. Our goal is to account for the discrepancy between the detailed model and its reduced version by incorporating an additive, linear, probabilistic inadequacy model. In effect, it is a random matrix, whose entries are characterized by probability distributions and which displays interesting properties due to conservation constraints. In particular, we investigate how the inclusion of the random matrix affects the prediction of flame speed in a one-dimensional hydrogen laminar flame.

  13. Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G

    NASA Technical Reports Server (NTRS)

    Xu, F.; Sunderland, P. B.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2001-01-01

    Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling. and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suavest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in, the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.

  14. Finite amplitude wave interaction with premixed laminar flames

    NASA Astrophysics Data System (ADS)

    Aslani, Mohamad; Regele, Jonathan D.

    2014-11-01

    The physics underlying combustion instability is an active area of research because of its detrimental impact in many combustion devices, such as turbines, jet engines, and liquid rocket engines. Pressure waves, ranging from acoustic waves to strong shocks, are potential sources of these disturbances. Literature on flame-disturbance interactions are primarily focused on either acoustics or strong shock wave interactions, with little information about the wide spectrum of behaviors that may exist between these two extremes. For example, the interaction between a flame and a finite amplitude compression wave is not well characterized. This phenomenon is difficult to study numerically due to the wide range of scales that need to be captured, requiring powerful and efficient numerical techniques. In this work, the interaction of a perturbed laminar premixed flame with a finite amplitude compression wave is investigated using the Parallel Adaptive Wavelet Collocation Method (PAWCM). This method optimally solves the fully compressible Navier-Stokes equations while capturing the essential scales. The results show that depending on the amplitude and duration of a finite amplitude disturbance, the interaction between these waves and premixed flames can produce a broad range of responses.

  15. Extinction of premixed H{sub 2}/air flames: Chemical kinetics and molecular diffusion effects

    SciTech Connect

    Dong, Yufei; Holley, Adam T.; Andac, Mustafa G.; Egolfopoulos, Fokion N.; Wang, Hai; Davis, Scott G.; Middha, Prankul

    2005-09-01

    Laminar flame speed has traditionally been used for the partial validation of flame kinetics. In most cases, however, its accurate determination requires extensive data processing and/or extrapolations, thus rendering the measurement of this fundamental flame property indirect. Additionally, the presence of flame front instabilities does not conform to the definition of laminar flame speed. This is the case for Le<1 flames, with the most notable example being ultralean H{sub 2}/air flames, which develop cellular structures at low strain rates so that determination of laminar flame speeds for such mixtures is not possible. Thus, this low-temperature regime of H{sub 2} oxidation has not been validated systematically in flames. In the present investigation, an alternative/supplemental approach is proposed that includes the experimental determination of extinction strain rates for these flames, and these rates are compared with the predictions of direct numerical simulations. This approach is meaningful for two reasons: (1) Extinction strain rates can be measured directly, as opposed to laminar flame speeds, and (2) while the unstretched lean H{sub 2}/air flames are cellular, the stretched ones are not, thus making comparisons between experiment and simulations meaningful. Such comparisons revealed serious discrepancies between experiments and simulations for ultralean H{sub 2}/air flames by using four kinetic mechanisms. Additional studies were conducted for lean and near-stoichiometric H{sub 2}/air flames diluted with various amounts of N{sub 2}. Similarly to the ultralean flames, significant discrepancies between experimental and predicted extinction strain rates were also found. To identify the possible sources of such discrepancies, the effect of uncertainties on the diffusion coefficients was assessed and an improved treatment of diffusion coefficients was advanced and implemented. Under the conditions considered in this study, the sensitivity of diffusion

  16. Radiation from Gas-Jet Diffusion Flames in Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.; Sotos, Raymond G.; Stocker, Dennis P.

    1991-01-01

    This paper presents the first demonstration of quantitative flame-radiation measurement in microgravity environments, with the objective of studying the influences and characteristics of radiative transfer on the behavior of gas-jet diffusion flames with possible application to spacecraft fire detection. Laminar diffusion flames of propane, burning in quiescent air at atmospheric pressure, are studied in the 5.18-Second Zero-Gravity Facility of NASA Lewis Research Center. Radiation from these flames is measured using a wide-view angle, thermopile-detector radiometer, and comparisons are made with normal-gravity flames. The results show that the radiation level is significantly higher in microgravity compared to normal-gravity environments due to larger flame size, enhanced soot formation, and entrapment of combustion products in the vicinity of the flame. These effects are the consequences of the removal of buoyancy which makes diffusion the dominant mechanism of transport. The results show that longer test times may be needed to reach steady state in microgravity environments.

  17. Oxygen and Fuel Jet Diffusion Flame Studies in Microgravity Motivated by Spacecraft Oxygen Storage Fire Safety

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Yuan, Z.-G.; Krishnan, S. S.; Abshire, J. M.; Gore, J. P.

    2003-01-01

    Owing to the absence of past work involving flames similar to the Mir fire namely oxygen-enhanced, inverse gas-jet diffusion flames in microgravity the objectives of this work are as follows: 1. Observe the effects of enhanced oxygen conditions on laminar jet diffusion flames with ethane fuel. 2. Consider both earth gravity and microgravity. 3. Examine both normal and inverse flames. 4. Compare the measured flame lengths and widths with calibrated predictions of several flame shape models. This study expands on the work of Hwang and Gore which emphasized radiative emissions from oxygen-enhanced inverse flames in earth gravity, and Sunderland et al. which emphasized the shapes of normal and inverse oxygen-enhanced gas-jet diffusion flames in microgravity.

  18. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

    SciTech Connect

    Burke, Michael P.; Chen, Zheng; Ju, Yiguang; Dryer, Frederick L.

    2009-04-15

    The effect of nonspherical (i.e. cylindrical) bomb geometry on the evolution of outwardly propagating flames and the determination of laminar flame speeds using the conventional constant-pressure technique is investigated experimentally and theoretically. The cylindrical chamber boundary modifies the propagation rate through the interaction of the wall with the flow induced by thermal expansion across the flame (even with constant pressure), which leads to significant distortion of the flame surface for large flame radii. These departures from the unconfined case, especially the resulting nonzero burned gas velocities, can lead to significant errors in flame speeds calculated using the conventional assumptions, especially for large flame radii. For example, at a flame radius of 0.5 times the wall radius, the flame speed calculated neglecting confinement effects can be low by {proportional_to}15% (even with constant pressure). A methodology to estimate the effect of nonzero burned gas velocities on the measured flame speed in cylindrical chambers is presented. Modeling and experiments indicate that the effect of confinement can be neglected for flame radii less than 0.3 times the wall radius while still achieving acceptable accuracy (within 3%). The methodology is applied to correct the flame speed for nonzero burned gas speeds, in order to extend the range of flame radii useful for flame speed measurements. Under the proposed scaling, the burned gas speed can be well approximated as a function of only flame radius for a given chamber geometry - i.e. the correction function need only be determined once for an apparatus and then it can be used for any mixture. Results indicate that the flow correction can be used to extract flame speeds for flame radii up to 0.5 times the wall radius with somewhat larger, yet still acceptable uncertainties for the cases studied. Flow-corrected burning velocities are measured for hydrogen and syngas mixtures at atmospheric and

  19. A novel scaling approach for sooting laminar coflow flames at elevated pressures

    NASA Astrophysics Data System (ADS)

    Abdelgadir, Ahmed; Steinmetz, Scott A.; Attili, Antonio; Bisetti, Fabrizio; Roberts, William L.

    2016-11-01

    Laminar coflow diffusion flames are often used to study soot formation at elevated pressures due to their well-characterized configuration. In these expriments, these flames are operated at constant mass flow rate (constant Reynolds number) at increasing pressures. Due to the effect of gravity, the flame shape changes and as a results, the mixing field changes, which in return has a great effect on soot formation. In this study, a novel scaling approach of the flame at different pressures is proposed. In this approach, both the Reynolds and Grashof's numbers are kept constant so that the effect of gravity is the same at all pressures. In order to keep the Grashof number constant, the diameter of the nozzle is modified as pressure varies. We report both numerical and experimental data proving that this approach guarantees the same nondimensional flow fields over a broad range of pressures. In the range of conditions studied, the Damkoehler number, which varies when both Reynolds and Grashof numbers are kept constant, is shown to play a minor role. Hence, a set of suitable flames for investigating soot formation at pressure is identified. This research made use of the resources of IT Research Computing at King Abdullah University of Science & Technology (KAUST), Saudi Arabia.

  20. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  1. Modeling aerosol formation in opposed-flow diffusion flames.

    PubMed

    Violi, Angela; D'Anna, Andrea; D'Alessio, Antonio; Sarofim, Adel F

    2003-06-01

    The microstructures of atmospheric pressure, counter-flow, sooting, flat, laminar ethylene diffusion flames have been studied numerically by using a new kinetic model developed for hydrocarbon oxidation and pyrolysis. Modeling results are in reasonable agreement with experimental data in terms of concentration profiles of stable species and gas-phase aromatic compounds. Modeling results are used to analyze the controlling steps of aromatic formation and soot growth in counter-flow configurations. The formation of high molecular mass aromatics in diffusion controlled conditions is restricted to a narrow area close to the flame front where these species reach a molecular weight of about 1000 u. Depending on the flame configuration, soot formation is controlled by the coagulation of nanoparticles or by the addition of PAH to soot nuclei.

  2. Computation of Steady and Unsteady Laminar Flames: Theory

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Radhakrishnan, Krishnan; Zhou, Ruhai

    1999-01-01

    In this paper we describe the numerical analysis underlying our efforts to develop an accurate and reliable code for simulating flame propagation using complex physical and chemical models. We discuss our spatial and temporal discretization schemes, which in our current implementations range in order from two to six. In space we use staggered meshes to define discrete divergence and gradient operators, allowing us to approximate complex diffusion operators while maintaining ellipticity. Our temporal discretization is based on the use of preconditioning to produce a highly efficient linearly implicit method with good stability properties. High order for time accurate simulations is obtained through the use of extrapolation or deferred correction procedures. We also discuss our techniques for computing stationary flames. The primary issue here is the automatic generation of initial approximations for the application of Newton's method. We use a novel time-stepping procedure, which allows the dynamic updating of the flame speed and forces the flame front towards a specified location. Numerical experiments are presented, primarily for the stationary flame problem. These illustrate the reliability of our techniques, and the dependence of the results on various code parameters.

  3. Buoyancy Effects on Flow Transition in Hydrogen Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Albers, Burt W.; Agrawal, Ajay K.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Experiments were performed in earth-gravity to determine how buoyancy affected transition from laminar to turbulent flow in hydrogen gas jet diffusion flames. The jet exit Froude number characterizing buoyancy in the flame was varied from 1.65 x 10(exp 5) to 1.14 x 10(exp 8) by varying the operating pressure and/or burner inside diameter. Laminar fuel jet was discharged vertically into ambient air flowing through a combustion chamber. Flame characteristics were observed using rainbow schlieren deflectometry, a line-of-site optical diagnostic technique. Results show that the breakpoint length for a given jet exit Reynolds number increased with increasing Froude number. Data suggest that buoyant transitional flames might become laminar in the absence of gravity. The schlieren technique was shown as effective in quantifying the flame characteristics.

  4. Structure and Stability of Burke-Schumann Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lee, Yong G.; Chen, Lea-Der; Brooker, John E.; Stocker, Dennis P.

    1997-01-01

    The general goal of this NASA Grant is twofold: to improve our understanding of (1) the influence of buoyancy on the stability and structure of Burke-Schumann type diffusion flames, and (2) the effects of buoyancy on vortex-flame interactions in co-flow diffusion flames. A numerical code with a higher order accuracy for spatial discretization is developed in this project for simulation of time-dependent diffusion flames by Sheu and Sheu and Chen, and an extended reduced mechanism is incorporated for prediction of methane oxidation and NO(x)(NO, NO2, and N2O) formation and emission from methane Burke-Schumann diffusion flame (BSDF) as reported in Sheu, and Sheu and Chen. Initial investigation of vortex and flame interaction within the context of fast chemistry is reported. Experiments are conducted in reduced pressure to study the lift-off and stabilization of methane-fueled BSDF in reduced buoyancy environments due to reduced pressure. Measurements of temperature and species concentrations are made in normal and reduced pressure environments to study the effects of buoyancy on the structure of BSDF, and will be reported in this paper. To study the buoyancy effects on the lift-off and stabilization of methane-fueled jet diffusion flames in coflowing air, a glovebox investigation, Enclosed Laminar Flames (ELF), has been proposed and approved for space-based testing on the fourth United States Microgravity Payload (USMP-4) mission, scheduled for October 1997. A brief description of the ELF investigation is also presented.

  5. Unsteady Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Berhan, S.; Chernovsky, M.; Sacksteder, Kurt R.

    2001-01-01

    The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and (mu-g) flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (i) It reduces the complexity by making the problem one

  6. Radiant Extinction Of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.

    2003-01-01

    The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem

  7. Soot and Radiation Measurements in Microgravity Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.

    1996-01-01

    The subject of soot formation and radiation heat transfer in microgravity jet diffusion flames is important not only for the understanding of fundamental transport processes involved but also for providing findings relevant to spacecraft fire safety and soot emissions and radiant heat loads of combustors used in air-breathing propulsion systems. Our objectives are to measure and model soot volume fraction, temperature, and radiative heat fluxes in microgravity jet diffusion flames. For this four-year project, we have successfully completed three tasks, which have resulted in new research methodologies and original results. First is the implementation of a thermophoretic soot sampling technique for measuring particle size and aggregate morphology in drop-tower and other reduced gravity experiments. In those laminar flames studied, we found that microgravity soot aggregates typically consist of more primary particles and primary particles are larger in size than those under normal gravity. Comparisons based on data obtained from limited samples show that the soot aggregate's fractal dimension varies within +/- 20% of its typical value of 1.75, with no clear trends between normal and reduced gravity conditions. Second is the development and implementation of a new imaging absorption technique. By properly expanding and spatially-filtering the laser beam to image the flame absorption on a CCD camera and applying numerical smoothing procedures, this technique is capable of measuring instantaneous full-field soot volume fractions. Results from this technique have shown the significant differences in local soot volume fraction, smoking point, and flame shape between normal and reduced gravity flames. We observed that some laminar flames become open-tipped and smoking under microgravity. The third task we completed is the development of a computer program which integrates and couples flame structure, soot formation, and flame radiation analyses together. We found good

  8. Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames

    DOE PAGES

    Han, Chao; Lignell, David O.; Hawkes, Evatt R.; ...

    2017-02-09

    Here, the effect of differential molecular diffusion (DMD) in turbulent non-premixed flames is studied by examining two previously reported DNS of temporally evolving planar jet flames, one with CO/H2 as the fuel and the other with C2H4 as the fuel. The effect of DMD in the CO/H2 DNS flames in which H2 is part of fuel is found to behave similar to laminar flamelet, while in the C2H4 DNS flames in which H2 is not present in the fuel it is similar to laminar flamelet in early stages but becomes different from laminar flamelet later. The scaling of the effectmore » of DMD with respect to the Reynolds number Re is investigated in the CO/H2 DNS flames, and an evident power law scaling (~Re–a with a a positive constant) is observed. The scaling of the effect of DMD with respect to the Damkohler number Da is explored in both laminar counter-flow jet C2H4 diffusion flames and the C2H4 DNS flames. A power law scaling (~Daa with a a positive constant) is clearly demonstrated for C2H4 nonpremixed flames.« less

  9. Radiant extinction of gaseous diffusion flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.

    1995-01-01

    The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel

  10. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  11. Modelling of Landau-Darrieus and thermo-diffusive instability effects for CFD simulations of laminar and turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Keppeler, Roman; Pfitzner, Michael

    2015-01-01

    An algebraic model is derived that accounts for the effects of non-resolved Landau-Darrieus and thermo-diffusive instabilities on the propagation speed of fully premixed laminar and turbulent flame fronts in the Large Eddy Simulation (LES) context provided that the laminar flame speed appears as a model parameter in the LES combustion model. The model is derived assuming fractal characteristics of flames which exhibit cellular structures due to instabilities. The smallest and largest unstable wavelengths are computed employing a dispersion relation for nominally planar flames. Values for the fractal dimension characterising the flame structures are taken from the literature. A phenomenological model accounts for the stabilising effect of strain. Based on experimental data, a correlation for a critical strain rate, which indicates the onset of instabilities, is formulated. To validate the new model which accounts for instabilities on the effective speed of laminar flame propagation, laminar expanding spherical methane-air flames at p = 5 bar and p = 10 bar are simulated in the LES context. Values for the fractal dimension, as proposed in the literature, are varied. The predicted flame propagation speed is in very good agreement with experimental data when applying a fractal dimension of about D = 2.06. The critical strain turns out to be a suitable parameter to indicate the onset of instabilities and to quantify the influence of instabilities. Simulations applying a second model proposed by Bradley and valid for spherically expanding flames show similar results. LES of turbulent Bunsen flames at 1, 5 and 10 bar, which are characterised by u‧/s0L < 1, are performed to evaluate the derived instability model for turbulent flames. The simulated flames (from the Kobayashi database) have already been experimentally investigated in the context of Landau-Darrieus and thermo-diffusive instabilities. In agreement with conclusions from these investigations, for the

  12. Counterflow diffusion flames of general fluids: Oxygen/hydrogen mixtures

    SciTech Connect

    Ribert, Guillaume; Zong, Nan; Yang, Vigor; Pons, Laetitia; Darabiha, Nasser; Candel, Sebastien

    2008-08-15

    A comprehensive framework has been established for studying laminar counterflow diffusion flames for general fluids over the entire regime of thermodynamic states. The model incorporates a unified treatment of fundamental thermodynamic and transport theories into an existing flow solver DMCF to treat detailed chemical kinetic mechanisms and multispecies transport. The resultant scheme can thus be applied to fluids in any state. Both subcritical and supercritical conditions are considered. As a specific example, diluted and undiluted H{sub 2}/O{sub 2} flames are investigated at pressures of 1-25 MPa and oxygen inlet temperatures of 100 and 300 K. The effects of pressure p and strain rate {epsilon}{sub s} on the heat release rate q{sub s}-dot, extinction limit, and flame structure are examined. In addition, the impact of cross-diffusion terms, such as the Soret and Dufour effects, on the flame behavior is assessed. Results indicate that the flame thickness {delta}{sub f} and heat release rate correlate well with the square root of the pressure multiplied by the strain rate. The strain rate at the extinction limit exhibits a quasi-linear dependence on p. Significant real-fluid effects take place in the transcritical regimes, as evidenced by the steep property variations in the local flowfield. However, their net influence on the flame properties appears to be limited due to the ideal-gas behavior of fluids in the high-temperature zone. (author)

  13. Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.

    1993-01-01

    Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.

  14. Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture

    NASA Astrophysics Data System (ADS)

    Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram

    2017-03-01

    In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.

  15. High-pressure soot formation and diffusion flame extinction characteristics of gaseous and liquid fuels

    NASA Astrophysics Data System (ADS)

    Karatas, Ahmet Emre

    High-pressure soot formation and flame stability characteristics were studied experimentally in laminar diffusion flames. For the former, radially resolved soot volume fraction and temperature profiles were measured in axisymmetric co-flow laminar diffusion flames of pre-vaporized n-heptane-air, undiluted ethylene-air, and nitrogen and carbon dioxide diluted ethylene-air at elevated pressures. Abel inversion was used to re-construct radially resolved data from the line-of-sight spectral soot emission measurements. For the latter, flame extinction strain rate was measured in counterflow laminar diffusion flames of C1-4 alcohols and hydrocarbon fuels of n-heptane, n-octane, iso-octane, toluene, Jet-A, and biodiesel. The luminous flame height, as marked by visible soot radiation, of the nitrogen- and helium-diluted n-heptane and nitrogen- and carbon dioxide-diluted ethylene flames stayed constant at all pressures. In pure ethylene flames, flame heights initially increased with pressure, but changed little above 5 atm. The maximum soot yield as a function of pressure in nitrogen-diluted n-heptane diffusion flames indicate that n-heptane flames are slightly more sensitive to pressure than gaseous alkane hydrocarbon flames at least up to 7 atm. Ethylene's maximum soot volume fractions were much higher than those of ethane and n-heptane diluted with nitrogen (fuel to nitrogen mass flow ratio is about 0.5). Pressure dependence of the peak carbon conversion to soot, defined as the percentage of fuel's carbon content converted to soot, was assessed and compared to previous measurements with other gaseous fuels. Maximum soot volume fractions were consistently lower in carbon dioxide-diluted flames between 5 and 15 atm but approached similar values to those in nitrogen-diluted flames at 20 atm. This observation implies that the chemical soot suppression effect of carbon dioxide, previously demonstrated at atmospheric pressure, is also present at elevated pressures up to 15 atm

  16. Effect of pressure on structure and NO sub X formation in CO-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1979-01-01

    A study was made of nitric oxide formation in a laminar CO-air diffusion flame over a pressure range from 1 to 50 atm. The carbon monoxide (CO) issued from a 3.06 mm diameter port coaxially into a coflowing stream of air confined within a 20.5 mm diameter chimney. Nitric oxide concentrations from the flame were measured at two carbon monoxide (fuel) flow rates: 73 standard cubic/min and 146 sccm. Comparison of the present data with data in the literature for a methane-air diffusion flame shows that for flames of comparable flame height (8 to 10 mm) and pseudoequivalence ratio (0.162), the molar emission index of a CO-air flame is significantly greater than that of a methane-air flame.

  17. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)

  18. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  19. Development of a Spherical Combustion Chamber for Measuring Laminar Flame Speeds in Navy Bulk Fuels and Biofuel Blends

    DTIC Science & Technology

    2011-12-01

    determine laminar flame speeds using the spherical flame method. An experimental combustion chamber, based on the constant-volume bomb method, was...INTENTIONALLY LEFT BLANK v ABSTRACT This thesis presents the results of an experimental study to determine laminar flame speeds using the spherical...unstudied. The determination of laminar burning velocities can be determined using various approaches. There are five basic types of experiments

  20. Study of Turbulent Premixed Flame Propagation using a Laminar Flamelet Model

    NASA Technical Reports Server (NTRS)

    Im, H. G.

    1995-01-01

    The laminar flamelet concept in turbulent reacting flows is considered applicable to many practical combustion systems (Linan & Williams 1993). For turbulent premixed combustion, the laminar flamelet regime is valid when turbulent Karlovitz number is less than unity, which is equivalent to stating that the characteristic thickness of the flame is less than that of a Kolmogorov eddy; this is known as the Klimov-Williams criterion (Williams 1985). In such a case, the flame maintains its laminar structure, and the effect of turbulent flow is merely to wrinkle and strain the flame front. The propagating wrinkled premixed flame can then be described as an infinitesimally thin surface dividing the unburnt fresh mixture and the burnt product.

  1. Carbon Monoxide and Soot Formation in Inverse Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Blevins, L. G.; Mulholland, G. W.; Davis, R. W.

    1999-01-01

    The objective of this project is to study carbon monoxide (CO) and soot formation in laminar, inverse diffusion flames (IDFs). The IDF is used because it is a special case of underventilated combustion. The microgravity environment is crucial for this study because buoyancy-induced instabilities impede systematic variation of IDF operating conditions in normal gravity. The project described in this paper is just beginning, and no results are available. Hence, the goals of this paper are to establish the motivation for the research, to review the IDF literature, and to briefly introduce the experimental and computational plan for the research.

  2. Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames

    SciTech Connect

    Sullivan, Neal; Jensen, Anker; Glarborg, Peter; Day, Marcus S.; Grcar, Joseph F.; Bell, John B.; Pope, Christopher J.; Kee, Robert J.

    2002-01-07

    This paper reports on a combined experimental and modeling investigation of NOx formation in nitrogen-diluted laminar methane diffusion flames seeded with ammonia. The methane-ammonia mixture is a surrogate for biomass fuels which contain significant fuel-bound nitrogen. The experiments use flue-gas sampling to measure the concentration of stable species in the exhaust gas, including NO, O2, CO, and CO2. The computations evolve a two-dimensional low Mach number model using a solution-adaptive projection algorithm to capture fine-scale features of the flame. The model includes detailed thermodynamics and chemical kinetics, differential diffusion, buoyancy, and radiative losses. The model shows good agreement with the measurements over the full range of experimental NH3 seeding amounts. As more NH3 is added, a greater percentage is converted to N2 rather than to NO. The simulation results are further analyzed to trace the changes in NO formation mechanisms with increasing amounts of ammonia in the fuel.

  3. Conditions for a split diffusion flame

    SciTech Connect

    Hertzberg, J.R.

    1997-05-01

    An unusual phenomenon has been observed in a methane jet diffusion flame subjected to axial acoustic forcing. At specific excitation frequencies and amplitudes, the driven flame splits into a central jet and one or two side jets. The splitting is accompanied by a partial detachment of the flame from the nozzle exit, a shortening of the flame by a factor of 2, and a change from the common yellow color of soot radiation to a clear blue flame. Such a phenomenon may be useful for the control of soot production or product species. The splitting is intermittent in time, bifurcating between the split flame and an ordinary single jet diffusion flame. The experiment consists of an unconfined axisymmetric methane jet formed by a short length of 0.4 cm diameter pipe. The pipe is connected to a large plenum surrounding a bass reflex loudspeaker enclosure that provides the excitation. Conditions producing split and bifurcated flames are presented. The drive frequencies required to cause bifurcation correspond to the first two peaks in the system`s frequency response curve. Bifurcating behavior was observed at a wide range of flow rates, ranging from very small flames of Reynolds number 240 up to turbulent lift-off, at Re = 1,000, based on the inner pipe diameter. It was not sensitive to nozzle length, but the details of the nozzle tip, such as orifice or pipe geometry, can affect the frequency range.

  4. Edge Diffusion Flame Propagation and Stabilization Studied

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2004-01-01

    In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.

  5. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames

    SciTech Connect

    Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D.; de Goey, L.P.H.

    2008-04-15

    The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)

  6. Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations.

    SciTech Connect

    Chen, Jacqueline H.; Hawkes, Evatt R.

    2004-08-01

    Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damkhler number conditions, well beyond the regime in which agreement was expected. For lower Damkhler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however, they

  7. Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations

    SciTech Connect

    Hawkes, Evatt R.; Chen, Jacqueline H.

    2006-01-01

    Direct numerical simulation (DNS) with complex chemistry was used to study statistics of displacement and consumption speeds in turbulent lean premixed methane-air flames. The main focus of the study is an evaluation of the extent to which a turbulent flame in the thin reaction zones regime can be described by an ensemble of strained laminar flames. Conditional averages with respect to strain for displacement and consumption speeds are presented over a wide range of strain typically encountered in a turbulent flame, compared with previous studies that either made local pointwise comparisons or conditioned the data on small strain and curvature. The conditional averages for positive strains are compared with calculated data from two different canonical strained laminar configurations to determine which is the optimal representation of a laminar flame structure embedded in a turbulent flame: the reactant-to-product (R-to-P) configuration or the symmetric twin flame configuration. Displacement speed statistics are compared for the progress-variable isosurface of maximum reaction rate and an isosurface toward the fresh gases, which are relevant for both modeling and interpretation of experiment results. Displacement speeds in the inner reaction layer are found to agree very well with the laminar R-to-P calculations over a wide range of strain for higher Damkohler number conditions, well beyond the regime in which agreement was expected. For lower Damkohler numbers, a reduced response to strain is observed, consistent with previous studies and theoretical expectations. Compared with the inner layer, broader and shifted probability density functions (PDFs) of displacement speed were observed in the fresh gases, and the agreement with the R-to-P calculations deteriorated. Consumption speeds show a poorer agreement with strained laminar calculations, which is attributed to multidimensional effects and a more attenuated unsteady response to strain fluctuations; however

  8. Stratification effects on laminar premixed-flame response to mixture perturbations

    NASA Astrophysics Data System (ADS)

    Casey, Tiernan; Chen, Jyh-Yuan

    2015-11-01

    While complete mixing on the molecular level is desirable for ensuring that combustion processes are limited by chemical kinetics rather than mass transport, it is often the case that practical devices operate with some degree of unmixedness. As such, phenomena such as ignition or flame propagation will inevitably occur in regions that exhibit mixture or thermal non-uniformity. Here we present unsteady simulations of laminar premixed flames in the low-Mach limit subject to mixture perturbations of varying wavelength and amplitude, and qualify their effect on the flame behavior. When flames experience variations in mixture the transport processes in the flame zone vary with time and the flame behavior can depend on the burned gas history. Also, the possibility of extending flames beyond their flammability limits so as to maximize the overall mass of fuel burned is explored by exploiting these unsteady effects.

  9. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    The work of the Principal Investigator (PI) has encompassed four topics related to the experimental and theoretical study of combustion limits in premixed flames at microgravity, as discussed in the following sections. These topics include: (1) radiation effects on premixed gas flames; (2) flame structure and stability at low Lewis number; (3) flame propagation and extinction is cylindrical tubes; and (4) experimental simulation of combustion processes using autocatalytic chemical reactions.

  10. Nonpremixed ignition, laminar flame propagation, and mechanism reduction of n-butanol, iso-butanol, and methyl butanoate

    SciTech Connect

    Lu, Wei; Kelley, A. P.; Law, C. K.

    2011-01-01

    The non-premixed ignition temperature of n-butanol (CH{sub 3}CH{sub 2}CH{sub 2}CH{sub 2}OH), iso-butanol ((CH{sub 3}){sub 2}CHCH{sub 2}OH) and methyl butanoate (CH{sub 3}CH{sub 2}CH{sub 2}COOCH{sub 3}) was measured in a liquid pool assembly by heated oxidizer in a stagnation flow for system pressures of 1 and 3 atm. In addition, the stretch-corrected laminar flame speeds of mixtures of air–n-butanol/iso-butanol/methyl butanoate were determined from the outwardly propagating spherical flame at initial pressures of up to 2 atm, for an extensive range of equivalence ratio. The ignition temperature and laminar flame speeds of n-butanol and methyl butanoate were computationally simulated with three recently developed kinetic mechanisms in the literature. Dominant reaction pathways to ignition and flame propagation were identified and discussed through a chemical explosive mode analysis (CEMA) and sensitivity analysis. The detailed models were further reduced through a series of systematic strategies. The reduced mechanisms provided excellent agreement in both homogeneous and diffusive combustion environments and greatly improved the computation efficiency.

  11. Study of Buoyancy Effects in Diffusion Flames Using Rainbow Schlieren Deflectometry

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Gollahalli, Subramanyam R.; Griffin, DeVon

    1997-01-01

    Diffusion flames are extensively encountered in many domestic and industrial processes. Even after many decades of research, a complete understanding of the diffusion flame structure is not available. The structure and properties of the flames are governed by the mixing (laminar or turbulent), chemical kinetics, radiation and soot processes. Another important phenomenon that affects flame structure in normal gravity is buoyancy. The presence of buoyancy has long hindered the rational understanding of many combustion processes. In gas jet diffusion flames, buoyancy affects the structure of the shear layer, the development of fluid instabilities, and formation of the coherent structures in the near nozzle region of the gas jets. The buoyancy driven instabilities generate vorticial structures outside the flame resulting in flame flicker. The vortices also strongly interact with the small-scale structures in the jet shear layer. This affects the transitional and turbulence characteristics of the flame. For a fundamental understanding of diffusion flames it is essential to isolate the effects of buoyancy. This is the primary goal of the experiments conducted in microgravity. Previous investigations, have shown dramatic differences between the jet flames in microgravity and normal gravity. It has been observed that flames in microgravity are taller and more sooty than in normal gravity. The fuels used in these experiments were primarily hydrocarbons. In the absence of buoyancy the soot resides near the flame region, which adversely affects the entrainment of reactants. It is very important to eliminate the interference of soot on flame characteristics in microgravity. The present work, therefore, focuses on the changes in the flame structure due to buoyancy without the added complexities of heterogeneous reactions. Clean burning hydrogen is used as the fuel to avoid soot formation and minimize radiative losses. Because of the low luminosity of hydrogen flames, we use

  12. Interaction between a laminar flame and its self-generated flow

    SciTech Connect

    Dunn-Rankin, D.

    1985-04-01

    The interaction between a premixed laminar flame and its self-generated flow is experimentally studied in a closed duct. A laser Doppler anemometer measures two components of the enclosed gas velocity during the flame propagation. High-speed schlieren cinematography is used to observe changes in flame shape and location. Pressure records correlate with the qualitative schlieren movies and help quantify the progress of the combustion process. A one-dimensional model accurately predicts the unburned gas motion. The flow in the burned gas is rotational because of vorticity generated from flow deflection through the curved flame front. The density difference between the burned and unburned gas requires a velocity jump at the flame front to maintain continuity of mass flux. The measured velocity jump corresponds to this predicted value. A large flame cusp, called a ''tulip'' flame, appears during the flame propagation. Flame instability, pressure wave/flame interaction, and large scale circulation in the unburned gas are suggested explanation for the ''tulip'' flame. Velocity measurements of this work show that no large scale circulation exists in the unburned gas. The onset of the ''tulip'' process coincides with the quench of part of the flame at the sidewalls of the combustion vessel. The velocity decrease in the unburned gas and the curved flame shape at the time of quench combine to generate a vortex in the burned gas. The vortex remains in the proximity of the flame and modifies the flame shape and unburned gas field such that the flame cusp or ''tulip'' is formed.

  13. Numerical investigation of steady laminar flame propagation in a circular tube

    SciTech Connect

    Lee, S.T.; Chien, C.H. . Dept. of Mechanical Engineering)

    1994-12-01

    The steady propagation of a premixed laminar flame in circular tubes with adiabatic wall and isothermal wall is numerically investigated in the present study. It is assumed that the flow is axisymmetric and the flame chemistry is modeled by an one-step overall reaction which simulates the reaction of a lean methane-air mixture. The numerical results show that the flame propagating steadily in a tube can take two distinct shapes: tulip shape and mushroom shape. It is found that, in a insulated tube, the tulip-shaped flame is a more robust manifestation than the mushroom-shaped flame, and is the primary mode of the solutions. The opposite is true in a tube with isothermal wall. The effect of the gravity along the tube axis is also studied. It is found that the gravity not only modifies the flame speed, it also affects the flame shape. For example, under zero-gravity, only tulip-shaped flame can be found in a small tube with adiabatic wall, but under the normal gravitational force, both mushroom-shaped flame and tulip-shaped flame exist.

  14. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    Lin, K. -C.; Dai, Z.; Faeth, G. M.

    1999-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science for several reasons: soot emissions are responsible for more deaths than any other combustion pollutant, thermal loads due to continuum radiation from soot limit the durability of combustors, thermal radiation from soot is mainly responsible for the growth and spread of unwanted fires, carbon monoxide associated with soot emissions is responsible for most fire deaths, and limited understanding of soot processes is a major impediment to the development of computational combustion. Thus, soot processes within laminar nonpremixed (diffusion) flames are being studied, emphasizing space-based experiments at microgravity. The study is limited to laminar flames due to their experimental and computational tractability, noting the relevance of these results to practical flames through laminar flamelet concepts. The microgravity environment is emphasized because buoyancy affects soot processes in laminar diffusion flames whereas effects of buoyancy are small for most practical flames. Results discussed here were obtained from experiments carried out on two flights of the Space Shuttle Columbia. After a brief discussion of experimental methods, results found thus far are described, including soot concentration measurements, laminar flame shapes, laminar smoke points and flame structure. The present discussion is brief.

  15. Experimental study of unsteady laminar and turbulent flame propagation in an enclosure by Rayleigh scattering

    SciTech Connect

    Tamai, R.; Shepherd, I.G.; Cheng, R.K.

    1992-09-01

    The Rayleigh scattering technique has been used to investigate the flame structure of unsteady propane/air flames propagating under quiescent and turbulent conditions initiated by three ignition methods: (1) conventional spark plug (2) pulse jet combustion (PJC) and (3) Pre-Chamber ignition (PCI). The Rayleigh signal obtained for the laminar cases are all characterized by a sharp transition associated with the large density change which occurs as leading flame front of the expanding flame kernel crosses the measurement point. This indicates that the local flame structures are independent of the ignition source and may be characterized as flamelets. The maximum burning rates deduced from the pressure records show that PJC and PCI increases the burning rate from two to three times above that of conventional spark ignition. The Rayleigh scattering signal obtained for the turbulent cases are also characterized by sharp transition. The wrinkled laminar flamelet model, therefore, provides a valid description of the flame structures for all these unsteady flames. For a given equivalence ratio, the maximum turbulent burning rate deduced for the three turbulent cases with different ignition sources are similar. This suggests that while PJC and PCI enhances burning rate when conditions in the chamber are quiescent, the enhancement is not significant when turbulence fluctuations are present. The PJC and PCI, however, are capable of igniting leaner conditions than the spark plug. This may be due to the injection process which initially disperses ignition sites to a larger volume at a faster rate.

  16. Unsupervised analysis of experiments of laminar flame propagation in a spherical enclosure

    NASA Astrophysics Data System (ADS)

    Barone, Mario; Chaumeix, Nabiha; Comandini, Andrea; Continillo, Gaetano; Lombardi, Simone; Nativel, Damien

    2016-12-01

    The paper illustrates the methodology developed for unsupervised analysis to be conducted on high-definition, high sampling rate image sequences collected in experiments with a single spark ignition optically accessible spherical bomb. Images recorded along the line-of-sight were first processed to identify the reaction front, and then analyzed by means of a two-dimensional numerical estimation technique. The laminar flame front is detected by making use of the concept of "scalar dissipation rate" basing on flame luminosity data, i.e. the square of the gradient of flame luminosity. The new scalar field is then tracked to derive the time history of the flame radius. In order to extract the Region Of Interest from the images, masking techniques are employed, whereas signal-to-noise ratio is improved by means of data binning. The proposed automatic, non-intrusive method proves effective in providing a fast characterization of the flame propagation phenomenon in terms of apparent velocity.

  17. Structure and dynamics of diffusion flames in microgravity

    NASA Technical Reports Server (NTRS)

    Matalon, Moshe

    1995-01-01

    The objectives of this project are to gain insight into diffusion flames by modeling various configurations related to ongoing experimental investigations in the microgravity combustion science program. The emphasis of the work is to understand the structure and dynamics of diffusion flames. Improving our fundamental understanding of diffusion flames is most relevant to issues related to fire safety and fire prevention because most fires consist of diffusion flames.

  18. Laminar Dust Flames: A Program of Microgravity and Ground Based Studies at McGill

    NASA Technical Reports Server (NTRS)

    Goroshin, Sam; Lee, John

    1999-01-01

    Fundamental knowledge of heterogeneous combustion mechanisms is required to improve utilization of solid fuels (e.g. coal), safe handling of combustible dusts in industry, and solid propulsion systems. The objective of the McGill University research program on dust combustion is to obtain a reliable set of data on basic combustion parameters for dust suspensions (i.e. laminar burning velocity, flame structure, quenching distance, flammability limits, etc.) over a range of particle sizes, dust concentrations, and types of fuel. This set of data then permits theoretical models to be validated and, when necessary, new models to be developed to describe the detailed reaction mechanisms and transport processes. Microgravity is essential to the generation of a uniform dust suspension of arbitrary particle size and concentration. When particles with a characteristic size on the order of tens of microns are suspended, they rapidly settle in a gravitational field. To maintain a particulate in suspension for time duration adequate to carry out combustion experiments invariably requires continuous convective flow in excess of the gravitational settling velocity (which is comparable with and can even exceed the dust laminar burning velocity). This makes the experiments turbulent in nature and thus renders it impossible to study laminar dust flames. Even for small particle sizes on the order of microns, a stable laminar dust flow can be maintained only for relatively low dust concentrations at normal gravity conditions. High dust loading leads to gravitational instability of the dust cloud and to the formation of recirculation cells in the dust suspension in a confined volume, or to the rapid sedimentation of the dense dust cloud, as a whole, in an unconfined volume. Many important solid fuels such as carbon and boron also have low laminar flame speeds (of the order of several centimeters per second). Convection that occurs in combustion products due to buoyancy disrupts the

  19. Quantifying real-gas effects on a laminar n-dodecane - air premixed flame

    NASA Astrophysics Data System (ADS)

    Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan

    2015-11-01

    With the increasing demand for higher efficiencies in aircraft gas-turbine engines, there has been a progressive march towards high pressure-ratio cycles. Under these conditions, the aviation fuel, Jet A, is injected into the combustor at supercritical pressures. In this work, we study and quantify the effects of transcriticality on a 1D freely propagating laminar n-dodecane - air premixed flame. The impact of the constitutive state relations arising from the Ideal Gas equation of state(EOS) and Peng-Robinson EOS on flame structure and propagation is presented. The effects of real-gas models of transport properties, such as viscosity on laminar flame speed, are also presented.

  20. Nonluminous diffusion flame of diluted acetylene in oxygen-enriched air

    SciTech Connect

    Sugiyama, G.

    1994-12-31

    A soot-reducing mechanism of fuel dilution and oxygen enrichment in laminar diffusion flames is suggested. Analysis using the Burke-Schumann theory for the shape of over ventilated diffusion flames has shown that there is a critical ratio of stoichiometric coefficients of the fuel and the oxidizer under which the gas flows from the fuel side to the oxidizer side throughout the flame. When this condition is satisfied, the soot growth region vanishes. A similar result is also found in a numerical simulation for diffusion flames that do not satisfy the Burke-Schumann assumption of uniform flow field. KIVA code is used for that purpose. The theoretically predicted direction of gas-flow across the flame sheet is verified in an experiment in a coaxial-flow diffusion flame. Soot cloud and velocity fields are visualized through a laser sheet method in the experiment. The fuel is a mixture of acetylene and nitrogen. The oxidizer is a mixture of oxygen and nitrogen. The compositions of the reactants are controlled so that the adiabatic flame temperature is kept constant to avoid the effect of temperature change. Experimental results show substantial reduction of scattered light intensity by fuel dilution and oxygen enrichment. When a sufficient amount of nitrogen is added to the fuel, nonluminous blue flames are obtained. At higher oxygen concentrations, blue flames are obtained at higher flame temperature region. When oxygen concentration in the oxidizer is 70 vol.%, blue flames are obtained up to 2,250 K. The critical condition of the reactants for nonluminous flames agrees with the theoretical prediction when the oxidizer is ordinary air. In oxygen-enriched conditions, the fuel must be diluted more, than theoretically predicted.

  1. Effects of Flame Structure and Hydrodynamics on Soot Particle Inception and Flame Extinction in Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Chen, R.; Sunderland, P. B.; Urban, D. L.; Liu, S.; Chao, B. H.

    2001-01-01

    This paper summarizes recent studies of the effects of stoichiometric mixture fraction (structure) and hydrodynamics on soot particle inception and flame extinction in diffusion flames. Microgravity experiments are uniquely suited for these studies because, unlike normal gravity experiments, they allow structural and hydrodynamic effects to be independently studied. As part of this recent flight definition program, microgravity studies have been performed in the 2.2 second drop tower. Normal gravity counterflow studies also have been employed and analytical and numerical models have been developed. A goal of this program is to develop sufficient understanding of the effects of flame structure that flames can be "designed" to specifications - consequently, the program name Flame Design. In other words, if a soot-free, strong, low temperature flame is required, can one produce such a flame by designing its structure? Certainly, as in any design, there will be constraints imposed by the properties of the available "materials." For hydrocarbon combustion, the base materials are fuel and air. Additives could be considered, but for this work only fuel, oxygen and nitrogen are considered. Also, the structure of these flames is "designed" by varying the stoichiometric mixture fraction. Following this line of reasoning, the studies described are aimed at developing the understanding of flame structure that is needed to allow for optimum design.

  2. Opposed Jet Turbulent Diffusion Flames

    DTIC Science & Technology

    1990-09-05

    40F -2 0 204 to9 FRACTAL PLOTS OF THE FUEL SIDE OF THE REACTION ZONE EoulS. Elm . 9S= 0-2. 18 (b) -1.3- -1. 4 -1.5 -1.6 - -2.5 -2.0 -1.5 -1.0 -. 5 0.0...irregular. This may explain the large size of the recircula- tion zone and may be viewed as a precursor to blow-off. It is of interest to compare the...fluctuations do not strongly affect the flame oscillations and so a measurement technique such as Schlieren, which detects density gradients, would not

  3. Theory of attached and lifted diffusion flames

    NASA Astrophysics Data System (ADS)

    Wichman, Indrek S.; Ramadan, Bassem

    1998-12-01

    Diffusion flame (DF) attachment and liftoff are examined, leading to (1) explanations of the origins of previous, successful empirical correlations; (2) the discovery of multiple lifting regimes. The latter includes a very slow flow regime, a slow-to-moderate flow regime, and a moderate-to-fast flow regime. Formulas for liftoff height (l̂g) and characteristic flame tip breadth (l̂r) are developed from a combination of the differential and integral form of the conservation equations. These formulas are compared with numerical solutions of the same equations.

  4. Applications of Laser Scattering Probes to Turbulent Diffusion Flames

    DTIC Science & Technology

    1983-11-01

    APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame

  5. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    NASA Astrophysics Data System (ADS)

    Vargas, Alex M.; Gülder, Ömer L.

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  6. A comparison of transport algorithms for premixed, laminar steady state flames

    NASA Technical Reports Server (NTRS)

    Coffee, T. P.; Heimerl, J. M.

    1980-01-01

    The effects of different methods of approximating multispecies transport phenomena in models of premixed, laminar, steady state flames were studied. Five approximation methods that span a wide range of computational complexity were developed. Identical data for individual species properties were used for each method. Each approximation method is employed in the numerical solution of a set of five H2-02-N2 flames. For each flame the computed species and temperature profiles, as well as the computed flame speeds, are found to be very nearly independent of the approximation method used. This does not indicate that transport phenomena are unimportant, but rather that the selection of the input values for the individual species transport properties is more important than the selection of the method used to approximate the multispecies transport. Based on these results, a sixth approximation method was developed that is computationally efficient and provides results extremely close to the most sophisticated and precise method used.

  7. Improvement of Laminar Lifted Flame Stability Excited by High-Frequency Acoustic Oscillation

    NASA Astrophysics Data System (ADS)

    Hirota, Mitsutomo; Hashimoto, Kota; Oso, Hiroki; Masuya, Goro

    A high-frequency (20kHz) standing wave was applied to the unburned mixture upstream of a methane-air lifted jet flame using a bolt-clamped Langevin transducer (BLT) to improve stability. The flow field near the flame was visualized using acetone planar-laser-induced fluorescence (PLIF). The standing wave decreased the lifted flame height and increased the blow-off limit. The upstream flow field of the center jet then bent. This phenomenon appeared when there was a density difference between the center jet and the surrounding secondary flow. When the density of the center jet was less than that of the co-flow, the center jet was redirected to the pressure anti-node side. Conversely, when the density of the center jet was greater than that of the co-flow, the center jet was redirected to the pressure node side. This redirection tended to stabilize the laminar lifted flame.

  8. Soot formation and temperature structure in small methane-oxygen diffusion flames at subcritical and supercritical pressures

    SciTech Connect

    Joo, Hyun I.; Guelder, Oemer L.

    2010-06-15

    An experimental study was conducted to examine the characteristics of laminar methane-oxygen diffusion flames up to 100 atmospheres. The influence of pressure on soot formation and on the structure of the temperature field was investigated over the pressure range of 10-90 atmospheres in a high-pressure combustion chamber using a non-intrusive, line-of-sight spectral soot emission diagnostic technique. Two distinct zones characterized the appearance of a methane and pure oxygen diffusion flame: an inner luminous zone similar to the methane-air diffusion flames, and an outer diffusion flame zone which is mostly blue. The flame height, marked by the visible soot radiation emission, was reduced by over 50% over the pressure range of 10-100 atmospheres. Between 10 and 40 atmospheres, the soot levels increased with increasing pressure; however, above 40 atmospheres the soot concentrations decreased with increasing pressure. (author)

  9. A Computational Investigation of Sooting Limits of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lecoustre, V. R.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01.

  10. Fullerenes, PAH, Carbon Nanostructures, and Soot in Low Pressure Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Grieco, William J.; Lafleur, Arthur L.; Rainey, Lenore C.; Taghizadeh, Koli; VanderSande, John B.; Howard, Jack B.

    1997-01-01

    The formation of fullerenes C60 and C7O is known to occur in premixed laminar benzene/oxygen/argon flames operated at reduced pressures. High resolution transmission electron microscopy (HRTEM) images of material collected from these flames has identified a variety of multishelled nanotubes and fullerene 'onions' as well as some trigonous structures. These fullerenes and nanostructures resemble the material that results from commercial fullerene production systems using graphite vaporization. As a result, combustion is an interesting method for fullerenes synthesis. If commercial scale operation is to be considered, the use of diffusion flames might be safer and less cumbersome than premixed flames. However, it is not known whether diffusion flames produce the types and yields of fullerenes obtained from premixed benzene/oxygen flames. Therefore, the formation of fullerenes and carbon nanostructures, as well as polycyclic aromatic hydrocarbons (PAH) and soot, in acetylene and benzene diffusion flames is being studied using high performance liquid chromatography (HPLC) and high resolution transmission electron microscopy (HRTEM).

  11. On the structure, propagation, and stabilization of laminar premixed flames. Final report

    SciTech Connect

    Law, Chung K.

    1999-07-01

    The primary objective of the funded program was to qualitatively understand and quantitatively determine the structure and dynamics of laminar premixed flames. The investigation was conducted using laser-based experimentation, computational simulation with detailed chemistry and transport, and activation energy asymptotic analysis. Highlights of accomplishments were discussed in the annual reports submitted to the program monitor for this project. Details are reported in the thirty journal publications cited in the journal article list which is the major component of this final report.

  12. Experimental studies on the extinction of hydrogen-air counterflow diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Wilson, L. G.; Northam, G. B.

    1990-01-01

    The paper presents data on the extinction of hydrogen-air counterflow diffusion flames (CFDFs). In the experiments, five coaxial tubular opposed jet burners were used to form dish-shaped CFDFs, centered by opposing laminar jets of N2-diluted H2 and both clean and contaminated air in the argon-purged chamber at 1 atm. Air jet velocities, U(air), characterized extinction of the air-side flame (blowoff) as functions of input H2/N2 (20-100 mole pct) on the fuel side, and air contaminant (0-20 percent) steam, CO2 and O2 (16-30 percent) on the air side.

  13. Structure of the Soot Growth Region of Laminar Premixer Methane/Oxygen Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.

    1999-01-01

    Soot is a dominant feature of hydrocarbon/air flames, affecting their reaction mechanisms and structure. As a result, soot processes affect capabilities for computational combustion as well as predictions of flame radiation and pollution emissions. Motivated by these observations, the present investigation extended past work on soot growth in laminar premixed flames, seeking to evaluate model predictions of flame structure. Xu et al. report direct measurements of soot residence times, soot concentrations, soot structure, gas temperatures and gas compositions for premixed flames similar to those studied by Harris and Weiner and Ramer et al. respectively. It was found that predictions of major stable gas species concentrations based on mechanisms of Leung and Lindstedt and Frenklach and coworkers, were in good agreement with the measurements. The results were also used to evaluate the hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms of Frenklach and coworkers and Colket and Hall. It was found that these mechanisms were effective using quite reasonable correlations for the steric factors appearing in the theories. The successful evaluation of the HACA mechanism of soot growth in Refs. 1 and 2 is encouraging but one aspect of this evaluation is a concern. In particular, H-atom concentrations play a crucial role in the HACA mechanism and it was necessary to estimate these concentrations because they were not measured directly. These estimates were made assuming local thermodynamic equilibrium between H, and H based on measured temperatures and H2 concentrations and the equilibrium constant data of Kee et al.. This approach was justified by the flame structure predictions; nevertheless, direct evaluation of equilibrium estimates of H-atom concentrations in the soot growth regions of laminar premixed flames is needed to provide more convincing proof of this behavior. Thus, the objective of the present investigation was to complete new measurements of the

  14. Linear stability analysis of Clarke-Riley diffusion flames

    NASA Astrophysics Data System (ADS)

    Gomez-Lendinez, Daniel; Coenen, Wilfried; Sanchez, Antonio L.

    2016-11-01

    The buoyancy-driven laminar flow associated with the Burke-Schumann diffusion flame developing from the edge of a semi-infinite horizontal fuel surface burning in a quiescent oxidizing atmosphere displays a self-similar structure, first described by Clarke and Riley (Journal of Fluid Mechanics, 74:415-431). Their analysis was performed for unity reactant Lewis numbers, with the viscosity and thermal conductivity taken to be linearly proportional to the temperature. Our work extends this seminal work by considering fuels with non-unity Lewis numbers and gas mixtures with a realistic power-law dependence of the different transport properties. The problem is formulated in terms of chemistry-free, Shvab-Zel'dovich, linear combinations of the temperature and reactant mass fractions, not changed directly by the reactions, as conserved scalars. The resulting self-similar base-flow solution is used in a linear stability analysis to determine the critical value of the boundary-layer thickness-measured by the local Grashof number-at which the flow becomes unstable, leading to the development of Görtler-like streamwise vortices. The analysis provides the dependence of the critical Grashof number on the relevant flame parameters.

  15. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames

    SciTech Connect

    Wang, H.; Frenklach, M.

    1997-07-01

    A computational study was performed for the formation and growth of polycyclic aromatic hydrocarbons (PAHs) in laminar premixed acetylene and ethylene flames. A new detailed reaction mechanism describing fuel pyrolysis and oxidation, benzene formation, and PAH mass growth and oxidation is presented and critically tested. It is shown that the reaction model predicts reasonably well the concentration profiles of major and intermediate species and aromatic molecules in a number of acetylene and ethylene flames reported in the literature. It is demonstrated that reactions of n-C{sub 4}H{sub x} + C{sub 2}H{sub 2} leading to the formation of one-ring aromatics are as important as the propargyl recombination, and hence must be included in kinetic modeling of PAH formation in hydrocarbon flames. It is further demonstrated that the mass growth of PAHs can be accounted for by the previously proposed H-abstraction-C{sub 2}H{sub 2}-addiction mechanism.

  16. Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion

    SciTech Connect

    Choi, B.C.; Kim, K.N.; Chung, S.H.

    2009-02-15

    Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

  17. Attached and lifted diffusion flames in a mixing layer

    NASA Astrophysics Data System (ADS)

    Matalon, Moshe; Lu, Zhanbin

    2016-11-01

    Many practical combustion devices are concerned with the stabilization of diffusion flames that are formed by injecting gaseous fuels into a co-flowing stream containing an oxidizer. A primary concern of these configurations is the attachment and lift-off characteristics of the diffusion flame relative to the rim of the injector. In such circumstances, the edge of the flame, which possesses a distinct structure that combines characteristics of both premixed an diffusion flames, is found to play a crucial role in determining the stabilization of the diffusion flame. In this study, we examine the effect of streams of unequal flow rates on the structural and dynamical properties of the edge flame. We show that, depending on the stoichiometric conditions and the diffusive properties of the fuel and oxidizer, the diffusion flame may either be attached to the rim of the injector, lifted and stabilized at a downstream equilibrium position, or blown off by the flow. Under certain conditions the diffusion flame may undergo spontaneous oscillations, whereby the edge of the flame exhibits a back and forth motion along a direction that coincides with the diffusion flame surface.

  18. Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame

    SciTech Connect

    Shaddix, C.R.; Harrington, J.E.; Smyth, K.C. . Building and Fire Research Lab.)

    1994-12-01

    Integrated models of soot production and oxidation are based upon experimental results obtained in steady, laminar flames. For successful application of these descriptions to turbulent combustion, it is instructive to test predictions of soot concentrations against experimental measurements obtained in time-varying flowfields. This paper reports quantitative measurements of the local soot volume fraction in a co-flowing, flickering CH[sub 4]/air diffusion flame burning at atmospheric pressure. Acoustic forcing of the fuel flow rate is used to phase lock the periodic flame flicker close to the natural flicker frequency. Measurements show that soot production is four time greater for a forcing condition in which flame tip clipping occurs, compared with a steady flame burning with the same mean fuel flow velocity. The soot field in the flickering flame has been characterized using tomographic reconstruction of extinction data obtained at 632.8 nm, laser-induced incandescence (LII) images calibrated against steady CH[sub 4]/air extinction results, and vertically polarized scattering data. The LII method is found to track the soot volume fraction closely and to give better signal-to-noise than the extinction measurements in both the steady and time-varying flowfields. A Mie analysis of these results suggests that the flickering flame exhibits similar number densities but larger particle sizes that the corresponding steady flame.

  19. Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report.

    SciTech Connect

    Suo-Anttila, Jill Marie; Williams, Timothy C.; Shaddix, Christopher R.; Jensen, Kirk A.; Blevins, Linda Gail; Kearney, Sean Patrick; Schefer, Robert W.

    2004-10-01

    Fires pose the dominant risk to the safety and security of nuclear weapons, nuclear transport containers, and DOE and DoD facilities. The thermal hazard from these fires primarily results from radiant emission from high-temperature flame soot. Therefore, it is necessary to understand the local transport and chemical phenomena that determine the distributions of soot concentration, optical properties, and temperature in order to develop and validate constitutive models for large-scale, high-fidelity fire simulations. This report summarizes the findings of a Laboratory Directed Research and Development (LDRD) project devoted to obtaining the critical experimental information needed to develop such constitutive models. A combination of laser diagnostics and extractive measurement techniques have been employed in both steady and pulsed laminar diffusion flames of methane, ethylene, and JP-8 surrogate burning in air. For methane and ethylene, both slot and coannular flame geometries were investigated, as well as normal and inverse diffusion flame geometries. For the JP-8 surrogate, coannular normal diffusion flames were investigated. Soot concentrations, polycyclic aromatic hydrocarbon (PAH) laser-induced fluorescence (LIF) signals, hydroxyl radical (OH) LIF, acetylene and water vapor concentrations, soot zone temperatures, and the velocity field were all successfully measured in both steady and unsteady versions of these various flames. In addition, measurements were made of the soot microstructure, soot dimensionless extinction coefficient (&), and the local radiant heat flux. Taken together, these measurements comprise a unique, extensive database for future development and validation of models of soot formation, transport, and radiation.

  20. Strain-induced extinction of hydrogen-air counterflow diffusion flames - Effects of steam, CO2, N2, and O2 additives to air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.

    1992-01-01

    A fundamental study was performed using axisymmetric nozzle and tubular opposed jet burners to measure the effects of laminar plug flow and parabolic input velocity profiles on the extinction limits of H2-air counterflow diffusion flames. Extinction limits were quantified by 'flame strength', (average axial air jet velocity) at blowoff of the central flame. The effects of key air contaminants, on the extinction limits, are characterized and analyzed relative to utilization of combustion contaminated vitiated air in high enthalpy supersonic test facilities.

  1. Effects of CO addition on the characteristics of laminar premixed CH{sub 4}/air opposed-jet flames

    SciTech Connect

    Wu, C.-Y.; Chao, Y.-C.; Chen, C.-P.; Ho, C.-T.; Cheng, T.S.

    2009-02-15

    The effects of CO addition on the characteristics of premixed CH{sub 4}/air opposed-jet flames are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position, temperature, and velocity are performed in stoichiometric CH{sub 4}/CO/air opposed-jet flames with various CO contents in the fuel. Thermocouple is used for the determination of flame temperature, velocity measurement is made using particle image velocimetry (PIV), and the flame front position is measured by direct photograph as well as with laser-induced predissociative fluorescence (LIPF) of OH imaging techniques. The laminar burning velocity is calculated using the PREMIX code of Chemkin collection 3.5. The flame structures of the premixed stoichiometric CH{sub 4}/CO/air opposed-jet flames are simulated using the OPPDIF package with GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position, temperature, and velocity of the stoichiometric CH{sub 4}/CO/air flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that as the CO content in the fuel is increased from 0% to 80%, CO oxidation (R99) increases significantly and contributes to a significant level of heat-release rate. It is also shown that the laminar burning velocity reaches a maximum value (57.5 cm/s) at the condition of 80% of CO in the fuel. Based on the results of sensitivity analysis, the chemistry of CO consumption shifts to the dry oxidation kinetics when CO content is further increased over 80%. Comparison between the results of computed laminar burning velocity, flame temperature, CO consumption rate, and sensitivity analysis reveals that the effect of CO addition on the laminar burning velocity of the stoichiometric CH{sub 4}/CO/air flames is due mostly to the transition of the dominant chemical kinetic steps. (author)

  2. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    NASA Technical Reports Server (NTRS)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  3. Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames

    SciTech Connect

    Su, L.K.; Sun, O.S.; Mungal, M.G.

    2006-02-01

    Simultaneous planar-laser induced fluorescence (PLIF) and particle image velocimetry (PIV) provide a comprehensive view of the molecular mixing and velocity fields in the stabilization region of turbulent, lifted jet diffusion flames. The Mie scattering medium for PIV is a glycerol-water fog, which evaporates at elevated temperatures and allows inference of the location of the high-temperature interface at the flame base. The jet Reynolds numbers vary from 4400 to 10,700. The mixing and velocity fields upstream of the flame base evolve consistently with nonreacting jet scaling. Conditional statistics of the fuel mole fraction at the instantaneous high-temperature interface show that the flame stabilization point does not generally correspond to the most upstream point on the interface (called here the leading point), because the mixture there is typically too lean to support combustion. Instead, the flame stabilization point lies toward the jet centerline relative to the leading point. Conditional axial velocity statistics indicate that the mean axial velocity at the flame front is {approx}1.8S{sub L}, where S{sub L} is the stoichiometric laminar flame speed. The data also permit determination of the scalar dissipation rates, {chi}, with the results indicating that {chi} values near the high-temperature interfaces do not typically exceed the quenching value. Thus, the flame stabilization process is more consistent with theories based on partial fuel-air premixing than with those dependent on diffusion flame quenching. We propose a description of flame stabilization that depends on the large-scale organization of the mixing field. (author)

  4. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames

    SciTech Connect

    Wang, Y.; Yao, Q.; Nathan, G.J.; Alwahabi, Z.T.; King, K.D.; Ho, K.

    2010-07-15

    The effect of a nominally uniform electric field on the initially uniform distribution of soot has been assessed for laminar premixed ethylene/air flames from a McKenna burner. An electrophoretic influence on charged soot particles was measured through changes to the deposition rate of soot on the McKenna plug, using laser extinction (LE). Soot volume fraction was measured in situ using laser-induced incandescence (LII). Particle size and morphologies were assessed through ex situ transmission electron microscopy (TEM) using thermophoretic sampling particle diagnostics (TSPD). The results show that the majority of these soot particles are positively charged. The presence of a negatively charged plug was found to decrease the particle residence times in the flame and to influence the formation and oxidation progress. A positively charged plug has the opposite effect. The effect on soot volume fraction, particles size and morphology with electric field strength is also reported. Flame stability was also found to be affected by the presence of the electric field, with the balance of the electrophoretic force and drag force controlling the transition to unstable flame flicker. The presence of charged species generated by the flame was found to reduce the dielectric field strength to one seventh that of air. (author)

  5. A comparison of experimental results of soot production in laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Caetano, Nattan R.; Soares, Diego; Nunes, Roger P.; Pereira, Fernando M.; Smith Schneider, Paulo; Vielmo, Horácio A.; van der Laan, Flávio Tadeu

    2015-05-01

    Soot emission has been the focus of numerous studies due to the numerous applications in industry, as well as the harmful effects caused to the environment. Thus, the purpose of this work is to analyze the soot formation in a flat flame burner using premixed compressed natural gas and air, where these quasi-adiabatic flames have one-dimensional characteristics. The measurements were performed applying the light extinction technique. The air/fuel equivalence ratiowas varied to assess the soot volume fractions for different flame configurations. Soot production along the flamewas also analyzed by measurements at different heights in relation to the burner surface. Results indicate that soot volume fraction increases with the equivalence ratio. The higher regions of the flamewere analyzed in order to map the soot distribution on these flames. The results are incorporated into the experimental database for measurement techniques calibration and for computational models validation of soot formation in methane premixed laminar flames, where the equivalence ratio ranging from 1.5 up to 8.

  6. Structure of the Soot Growth Region of Laminar Premixed Methane/Oxygen Flames. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The structure of the soot growth region of laminar premixed methane/oxygen flames (fuel-equivalence ratios of 1.60-2.77) was studied both experimentally and computationally. Measurements were carried out in flames stabilized on a flat flame burner operated at standard temperature and pressure, and included velocities by laser velocimetry, soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, major gas species concentrations by sampling and gas chromatography, and hydrogen atom concentrations by the Li/LiOH technique in conjunction with atomic absorption to find the proportion of free lithium in the flames. The measured concentrations of major gas species were in reasonably good agreement with predictions based on the detailed mechanisms of Leung and Lindstedt, and Frenklach and coworkers. The measurements also confirmed predictions of both these mechanisms that H-atom concentrations are in local thermodynamic equilibrium throughout the soot growth region even through the concentrations of major gas species are not. Thus, present findings support recent evaluations of the hydrogen-abstraction/carbon-addition (HACA) soot growth mechanism in similar flames, where the approximation that H-atom concentrations were in local thermodynamic equilibrium was adopted, based on predictions using the two mechanisms, due to the absence of direct H-atom concentration measurements.

  7. Structure of Soot Growth Region of Laminar Premixed Methane/Oxygen Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The structure of the soot growth region of laminar premixed methane/oxygen flames (fuel-equivalence ratios of 1.60 - 2.77) was studied both experimentally and computationally. Measurements were carried out in flames stabilized on a flat flame burner operated at standard temperature and pressure, and included velocities by laser velocimetry, soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, major gas species concentrations by sampling and gas chromatography, and hydrogen atom concentrations by the Li/LiOH technique in conjunction with atomic absorption to find the proportion of free lithium in the flames. The measured concentrations of major gas species were in reasonably good agreement with predictions based on the detailed mechanisms of Leung and Lindstedt, and Frenklach and coworkers. The measurements also confirmed predictions of both these mechanisms that H-atom concentrations are in local thermodynamic equilibrium throughout the soot growth region even through the concentrations of major gas species are not. Thus, present findings support recent evaluations of the hydrogen-abstraction/carbon-addition (HACA) soot growth mechanism in similar flames, where the approximation that H-atom concentrations were in local thermodynamic equilibrium was adopted, based on predictions using the two mechanisms, due to the absence of direct H-atom concentration measurements.

  8. Structure of the Soot Growth Region of Laminar Premixed Methane/Oxygen Flames. Appendix G

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The structure of the soot growth region of laminar premixed methane/oxygen flames (fuel-equivalence ratios of 1.60-2.77) was studied both experimentally and computationally. Measurements were carried out in flames stabilized on a flat flame burner operated at standard temperature and pressure, and included velocities by laser velocimetry, soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, major gas species concentrations by sampling and gas chromatography, and hydrogen atom concentrations by the Li/LiOH technique in conjunction with atomic absorption to find the proportion of free lithium in the flames. The measured concentrations of major gas species were in reasonably good agreement with predictions based on the detailed mechanisms of Leung and Lindstedt, and Frenklach and coworkers. The measurements also confirmed predictions of both these mechanisms that H-atom concentrations are in local thermodynamic equilibrium throughout the soot growth region even through the concentrations of major gas species are not. Thus, present findings support recent evaluations of the hydrogen-abstraction/carbon-addition (HACA) soot growth mechanism in similar flames, where the approximation that H-atom concentrations were in local thermodynamic equilibrium was adopted, based on predictions using the two mechanisms, due to the absence of direct H-atom concentration measurements.

  9. Application of Shear Plate Interferometry to Jet Diffusion Flame Temperature Measurements

    NASA Technical Reports Server (NTRS)

    VanDerWege, Brad A.; OBrien, Chris J.; Hochgreb, Simone

    1997-01-01

    The recent ban on the production of bromotrifluoromethane (CF3Br) because of its high stratospheric ozone depletion potential has led to interest in finding alternative agents for fire extinguishing applications. Some of the promising alternatives are fluorinated hydrocarbons. A clear understanding of the effects of CF3Br and alternative chemical suppressants on diffusion flames is therefore necessary in the selection of alternative suppressants for use in normal and microgravity. The flame inhibition effects of halogen compounds have been studied extensively in premixed systems. The effect of addition of halocarbons (carbon-halogen compounds) to diffusion flames has been studied experimentally in coflow configurations and in counterflow gaseous and liquid-pool flames. Halogenated compounds are believed to inhibit combustion by scavenging hydrogen radicals to form the relatively unreactive compound HF, or through a catalytic recombination cycle involving HBr to form H2. Comparisons between halogens show that bromine inhibition is significantly more effective than chlorine or fluorine. Although fluorinated compounds are only slightly more effective inhibitors on a mass basis than nitrogen, they are more effective on a volume basis and are easily stored in liquid form. The objectives of this study are (a) to determine the stability limits of laminar jet diffusion flames with respect to inhibitor concentration in both normal and microgravity, and (b) to investigate the structure of halocarbon-inhibited flames. In the initial phase of this project, visual diagnostics were used to observe the structure and behavior of normal and microgravity flames. The initial observations showed significant changes in the structure of the flames with the addition of halocarbons to the surrounding environment, as discussed below. Furthermore, the study established that the flames are more stable relative to the addition of halocarbons in microgravity than in normal gravity. Visual

  10. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    SciTech Connect

    Choi, B.C.; Chung, S.H.

    2010-12-15

    The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. (author)

  11. Scalar measurements and analysis of hydrogen gas jet diffusion flames in normal and microgravity

    NASA Astrophysics Data System (ADS)

    Al-Ammar, Khalid Nasser

    The quantitative Rainbow Schlieren Deflectometry (RSD) technique was used for the first time to measure scalar profiles in laminar and transitional hydrogen gas-jet diffusion flames burning in quiescent air in normal and microgravity. The angular deflection data obtained across the field-of-view by the RSD technique were used with Abel inversion to find the refractive index of the reacting mixture. The refractive index was related to the temperature and oxygen mole using the conserved scalar approach, combined with chemical equilibrium. Probe measurements of temperature and oxygen mole fraction were taken to validate the RSD technique. Good agreement was reached between the probe and RSD measurements in the fuel-lean side of the flame surface. The RSD measurements in the fuel-rich side of the flame were less reliable, in part, because of the measurement uncertainty and the assumption of chemical equilibrium. Contour plots of angular deflection reveal higher radial gradients in normal gravity compared to those in microgravity. Temperature profiles during transition from normal to microgravity in the drop tower were obtained to determine the extent of steady-state microgravity conditions achieved in experiments. The results show that the high temperature regions e.g., the flame surface, reached steady-state prior to the lower temperature regions e.g., the schlieren boundary. The time to reach steady-state decreased as the jet exit Reynolds number was increased. The schlieren boundary did not reach steady-state at low jet exit Reynolds numbers because of the greater influence of gravity. Effects of burner diameter and jet exit Reynolds number on flame shape and scalar profiles in normal and microgravity were evaluated. It was confirmed that the flame height varies linearly with Reynolds number in the laminar cases. Further, the flame height was shown to be independent of gravity within the range of jet-exit Reynolds numbers used (40 to 70). At a given jet

  12. Unlocking the Keys to Vortex/Flame Interactions in Turbulent Gas-Jet Diffusion Flames--Dynamic Behavior Explored on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Stocker, Dennis P.

    1999-01-01

    Most combustion processes in industrial applications (e.g., furnaces and engines) and in nature (e.g., forest fires) are turbulent. A better understanding of turbulent combustion could lead to improved combustor design, with enhanced efficiency and reduced emissions. Despite its importance, turbulent combustion is poorly understood because of its complexity. The rapidly changing and random behavior of such flames currently prevents detailed analysis, whether experimentally or computationally. However, it is possible to learn about the fundamental behavior of turbulent flames by exploring the controlled interaction of steady laminar flames and artificially induced flow vortices. These interactions are an inherent part of turbulent flames, and understanding them is essential to the characterization of turbulent combustion. Well-controlled and defined experiments of vortex interaction with laminar flames are not possible in normal gravity because of the interference of buoyancy- (i.e., gravity) induced vortices. Therefore, a joint microgravity study was established by researchers from the Science and Technology Development Corp. and the NASA Lewis Research Center. The experimental study culminated in the conduct of the Turbulent Gas-Jet Diffusion Flames (TGDF) Experiment on the STS-87 space shuttle mission in November 1997. The fully automated hardware, shown in photo, was designed and built at Lewis. During the mission, the experiment was housed in a Get Away Special (GAS) canister in the cargo bay.

  13. Numerical investigation of flame-vortex interactions in laminar cross-flow non-premixed flames in the presence of bluff bodies

    NASA Astrophysics Data System (ADS)

    Kozhumal Shijin, Puthiyaparambath; Raghavan, Vasudevan; Babu, Viswanathan

    2016-07-01

    Flame stabilisation in a combustor having vortices generated by flame holding devices constitutes an interesting fundamental problem. The presence of vortices in many practical combustors ranging from industrial burners to high speed propulsion systems induces vortex-flame interactions and complex stabilisation conditions. The scenario becomes more complex if the flame sustains after separating itself from the flame holder. In a recent study [P.K. Shijin, S.S. Sundaram, V. Raghavan, and V. Babu, Numerical investigation of laminar cross-flow non-premixed flames in the presence of a bluff-body, Combust. Theory Model. 18, 2014, pp. 692-710], the authors reported details of the regimes of flame stabilisation of non-premixed laminar flames established in a cross-flow combustor in the presence of a square cylinder. In that, the separated flame has been shown to be three dimensional and highly unsteady. Such separated flames are investigated further in the present study. Flame-vortex interactions in separated methane-air cross flow flames established behind three bluff bodies, namely a square cylinder, an isosceles triangular cylinder and a half V-gutter, have been analysed in detail. The mixing process in the reactive flow has been explained using streamlines of species velocities of CH4 and O2. The time histories of z-vorticity, net heat release rate and temperature are analysed to reveal the close relationship between z-vorticity and net heat release rate spectra. Two distinct fluctuating layers are visible in the proper orthogonal decomposition and discrete Fourier transform of OH mass fraction data. The upper fluctuating layer observed in the OH field correlates well with that of temperature. A detailed investigation of the characteristics of OH transport has also been carried out to show the interactions between factors affecting fluid dynamics and chemical kinetics that cause multiple fluctuating layers in the OH.

  14. Flame Oscillations In Non-Premixed Systems Diffusion Flames and Edge-Flames

    NASA Technical Reports Server (NTRS)

    Matalon, Moshe

    2003-01-01

    Diffusive-thermal instabilities are well known features of premixed and diffusion flames. In one of its form the instability appears as spontaneous oscillations. In premixed systems oscillations are predicted to occur when the effective Lewis number, defined as the ratio of the thermal diffusivity of the mixture to the mass diffusivity of the deficient component, is sufficiently larger than one. Oscillations would therefore occur in mixtures that are deficient in the less mobile reactant, namely in lean hydrocarbon-air or rich hydrogen-air mixtures. The theoretical predictions summarized above are in general agreement with experimental results; see for example [5] where a jet configuration was used and experiments were conducted for various inert-diluted propane and methane flames burning in inert-diluted oxygen. Nitrogen, argon and SF6 were used as inert in order to produce conditions of substantially different Lewis numbers and mixture strength. In accord with the predicted trend, it was found that oscillations arise at near extinction conditions, that for oscillations to occur it suffices that one of the two Lewis numbers be sufficiently large, and that oscillations are more likely to be observed when is relatively large.

  15. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  16. Effects of Lewis Number on Temperatures of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Sun, Z.; Chao, B. H.; Sunderland, P. B.; Axelbaum, R. I.; Urban, D. L.; Stocker, D. P.

    2007-01-01

    Spherical diffusion flames supported on a porous sphere were studied numerically and experimentally. Experiments were performed in 2.2 s and 5.2 s microgravity facilities. Numerical results were obtained from a Chemkin-based program. The program simulates flow from a porous sphere into a quiescent environment, yields both steady-state and transient results, and accounts for optically thick gas-phase radiation. The low flow velocities and long residence times in these diffusion flames lead to enhanced radiative and diffusive effects. Despite similar adiabatic flame temperatures, the measured and predicted temperatures varied by as much as 700 K. The temperature reduction correlates with flame size but characteristic flow times and, importantly, Lewis number also influence temperature. The numerical results show that the ambient gas Lewis number would have a strong effect on flame temperature if the flames were steady and nonradiating. For example, a 10% decrease in Lewis number would increase the steady-state flame temperature by 200 K. However, for these transient, radiating flames the effect of Lewis number is small. Transient predictions of flame sizes are larger than those observed in microgravity experiments. Close agreement could not be obtained without either increasing the model s thermal and mass diffusion properties by 30% or reducing mass flow rate by 25%.

  17. Laser imaging of chemistry-flowfield interactions: Enhanced soot formation in time-varying diffusion flames

    SciTech Connect

    Harrington, J.E.; Shaddix, C.R.; Smyth, K.C.

    1994-12-31

    Models of detailed flame chemistry and soot formation are based upon experimental results obtained in steady, laminar flames. For successful application of these descriptions to turbulent combustion, it is instructive to test predictions against measurements in time-varying flowfields. This paper reports the use of optical methods to examine soot production and oxidation processes in a co-flowing, axisymmetric CH{sub 4}/air diffusion flame in which the fuel flow rate is acoustically forced to create a time-varying flowfield. For a particular forcing condition in which tip clipping occurs (0.75 V loudspeaker excitation), elastic scattering of vertically polarized light from the soot particles increases by nearly an order of magnitude with respect to that observed for a steady flame with the same mean fuel flow rate. The visible flame luminosity and laser-induced fluorescence attributed to polycyclic aromatic hydrocarbons (PAH) are also enhanced. Peak soot volume fractions, as measured by time-resolved laser extinction/tomography at 632.8 and 454.5 nm and calibrated laser-induced incandescence (LII), show a factor of 4--5 enhancement in this flickering flame. The LII method is found to track the soot volume fraction closely and to give better signal-to-noise than the extinction measurements in both the steady and time-varying flowfields. A Mie analysis suggests that most of the enhanced soot production results from the formation of larger particles in the time-varying flowfield.

  18. Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.

  19. Heat transfer characteristics of laminar methane/air flame impinging normal to a cylindrical surface

    SciTech Connect

    Chander, Subhash; Ray, Anjan

    2007-11-15

    An experimental study has been conducted to determine the heat transfer characteristics of methane/air laminar flames impinging normal to a cylindrical surface. Effects of variations in the values of Reynolds number (Re = 600-1300), equivalence ratio ({phi} = 0.8-1.3), dimensionless separation distance (H/d = 1-5), and burner diameter to cylinder diameter ratio (d/D = 0.0538-0.1076) have been investigated. Three important configurations, viz., flame inner reaction zone far away, just touching and intercepted by the impingement surface, were examined in detail. High stagnation point heat fluxes were obtained when tip of the flame inner reaction zone just touched the target surface. Stagnation point heat fluxes were either zero or negative when the inner reaction zone was intercepted by the impingement surface. An off-stagnation peak in heat flux was obtained at moderate separation distances above the flame tip. Both stagnation point and peak heat fluxes increased with Re when the inner reaction zone length was less than the separation distance. Heat fluxes in the wall-jet region were high at high Re. Maximum heat fluxes were obtained for initially fuel-rich mixture conditions due to entrainment of the surrounding air. Smaller burner diameters produced high heat flux at the stagnation region for fixed Reynolds number and opposite trends were seen in the wall-jet region. A secondary rise in stagnation point heat flux was obtained at larger separation distances. This secondary rise in heat flux was quite significant for larger burner diameters and at low flow rates. Correlations were developed for stagnation point heat flux. Results were also compared with flat plate under identical operating conditions. (author)

  20. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  1. Laminar Soot Processes (LSP) Experiment: Findings From Space Flight Measurements

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Urban, D. L.; Yuan, Z. G.; Aalburg, C.; Diez, F. J.; Faeth, G. M.

    2003-01-01

    The present experimental study of soot processes in hydrocarbon-fueled laminar nonbuoyant and nonpremixed (diffusion) flames at microgravity within a spacecraft was motivated by the relevance of soot to the performance of power and propulsion systems, to the hazards of unwanted fires, and to the emission of combustion-generated pollutants. Soot processes in turbulent flames are of greatest practical interest, however, direct study of turbulent flames is not tractable because the unsteadiness and distortion of turbulent flames limit available residence times and spatial resolution within regions where soot processes are important. Thus, laminar diffusion flames are generally used to provide more tractable model flame systems to study processes relevant to turbulent diffusion flames, justified by the known similarities of gas-phase processes in laminar and turbulent diffusion flames, based on the widely-accepted laminar flamelet concept of turbulent flames. Unfortunately, laminar diffusion flames at normal gravity are affected by buoyancy due to their relatively small flow velocities and, as discussed next, they do not have the same utility for simulating the soot processes as they do for simulating the gas phase processes of turbulent flames.

  2. Nongradient diffusion in premixed turbulent flames

    NASA Technical Reports Server (NTRS)

    Libby, Paul A.

    1988-01-01

    Recent theoretical and experimental results demonstrating the interaction between force fields and density inhomogeneities as they arise in premixed turbulent flames are discussed. In such flames, the density fluctuates between two levels, the high density in reactants rho sub r and the low density in products rho sub p, with the ratio rho sub r/rho sub p on the order of five to ten in flows of applied interest. The force fields in such flames arise from the mean pressure drop across the flame or from the Reynolds shear stresses in tangential flames with constrained streamlines. The consequence of the interaction is nongradient turbulent transport, countergradient in the direction normal to the flame and nongradient in the tangential direction. The theoretical basis for these results, the presently available experimental support therefore and the implications for other variable density turbulent flows are discussed.

  3. Soot precursor measurements in benzene and hexane diffusion flames

    SciTech Connect

    Kobayashi, Y.; Furuhata, T.; Amagai, K.; Arai, M.

    2008-08-15

    To clarify the mechanism of soot formation in diffusion flames of liquid fuels, measurements of soot and its precursors were carried out. Sooting diffusion flames formed by a small pool combustion equipment system were used for this purpose. Benzene and hexane were used as typical aromatic and paraffin fuels. A laser-induced fluorescence (LIF) method was used to obtain spatial distributions of polycyclic aromatic hydrocarbons (PAHs), which are considered as soot particles. Spatial distributions of soot in test flames were measured by a laser-induced incandescence (LII) method. Soot diameter was estimated from the temporal change of LII intensity. A region of transition from PAHs to soot was defined from the results of LIF and LII. Flame temperatures, PAH species, and soot diameters in this transition region were investigated for both benzene and hexane flames. The results show that though the flame structures of benzene and hexane were different, the temperature in the PAHs-soot transition region of the benzene flame was similar to that of the hexane flame. Furthermore, the relationship between the PAH concentrations measured by gas chromatography in both flames and the PAH distributions obtained from LIF are discussed. It was found that PAHs with smaller molecular mass, such as benzene and toluene, remained in both the PAHs-soot transition and sooting regions, and it is thought that molecules heavier than pyrene are the leading candidates for soot precursor formation. (author)

  4. The multispecies modeling of the premixed, laminar steady-state ozone flame

    NASA Technical Reports Server (NTRS)

    Heimerl, J. M.; Coffee, T. P.

    1980-01-01

    Species dependent kinetic, transport and thermodynamic coefficients were employed in a one dimensional model of the premixed, laminar, steady state ozone flame. Convenient expressions for these coefficients are reported. They are based on independent measurements, no arbitrary parameters are used. The governing equations are solved using a relaxation technique and the partial differential equation package, PDECOL. Species and temperature profiles and the burning velocities are found over the range of initial ozone mole fraction of 0.25 to 1.00. The computed burning velocities are no more than 30% greater than the measurements of Streng and Grosses. Comparison with the computed results of Warnatz shows agreement within + or - 12%, even though quite different expressions for some of the kinetic coefficients were used. These differences are most obvious in the atomic oxygen and temperature profiles at an initial ozone mole fraction of unity.

  5. Turbulent Chemical Diffusion in Convectively Bounded Carbon Flames

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel; Schwab, Josiah; Quataert, Eliot; Bildsten, Lars; Timmes, F. X.; Burns, Keaton J.; Vasil, Geoffrey M.; Oishi, Jeffrey S.; Brown, Benjamin P.

    2016-11-01

    It has been proposed that mixing induced by convective overshoot can disrupt the inward propagation of carbon deflagrations in super-asymptotic giant branch stars. To test this theory, we study an idealized model of convectively bounded carbon flames with 3D hydrodynamic simulations of the Boussinesq equations using the pseudo-spectral code Dedalus. Because the flame propagation timescale is much longer than the convection timescale, we approximate the flame as fixed in space, and only consider its effects on the buoyancy of the fluid. By evolving a passive scalar field, we derive a turbulent chemical diffusivity produced by the convection as a function of height, {D}{{t}}(z). Convection can stall a flame if the chemical mixing timescale, set by the turbulent chemical diffusivity, {D}{{t}}, is shorter than the flame propagation timescale, set by the thermal diffusivity, κ, i.e., when {D}{{t}}\\gt κ . However, we find {D}{{t}}\\lt κ for most of the flame because convective plumes are not dense enough to penetrate into the flame. Extrapolating to realistic stellar conditions, this implies that convective mixing cannot stall a carbon flame and that “hybrid carbon-oxygen-neon” white dwarfs are not a typical product of stellar evolution.

  6. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  7. Flame Design: A Novel Approach Developed to Produce Clean, Efficient Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Axelbaum, Richard L.; Urban, David L.; Sunderland, Peter B.; Chao, Beei-Huan

    2000-01-01

    Soot formation and flame extinction are vital concerns in the combustion of fossil fuels. In particular, soot is responsible for pollutant emissions, and extinction can cause inefficient or unstable burning. Normal-gravity experiments have demonstrated that flames can be designed to improve both characteristics by redirecting some or all of the nitrogen from the oxidizer into the fuel. Such nitrogen exchange can produce permanently blue flames, which are soot free under all possible flame conditions. Furthermore, this approach can lead to stronger, extinction-resistant flames. Past investigations of nitrogen exchange were unable to identify the physical mechanisms responsible for its benefits because these mechanisms cannot be isolated when normal-gravity flames are studied. In contrast, the Diffusion Flame Extinction and Soot Inception (DESI) experiment considers spherical flames, where nearly perfect spherical symmetry affords new levels of control. Because of buoyancy, spherical flames cannot be created in Earth s gravity. DESI was conceived by principal investigator Professor R.L. Axelbaum of Washington University in St. Louis. Tests to date have utilized the 2.2-Second Drop Tower at the NASA Glenn Research Center at Lewis Field. The experiment is slated for testing aboard the International Space Station in a few years. Two mechanisms have been proposed to explain the connection between nitrogen exchange and permanently blue flames. These are the structure (chemical effects) and hydrodynamics (flow direction and speed). In normal-gravity flames, the structure and hydrodynamics are coupled, since nitrogen exchange simultaneously modifies both. Spherical microgravity flames, on the other hand, allow independent control of these factors. Specifically, structure can be modified via nitrogen exchange, and flow direction can be reversed by swapping the ambient and burner-feed gases. In DESI, these variations can be accomplished without changing the theoretical flame

  8. A modelling study of aromatic soot precursors formation in laminar methane and ethene flames

    SciTech Connect

    Slavinskaya, N.A.; Frank, P.

    2009-09-15

    A relatively short kinetic mechanism (93 species and 729 reactions) was developed to predict the formation of poly-aromatic hydrocarbons (PAH) and their growth of up to five aromatic rings in methane and ethane-fueled flames. The model is based on the C{sub 0}-C{sub 2} chemistry with recent well-established chemical kinetic data. Reaction paths for mostly stable and well studied PAH molecules were delineated and the reaction rate constants for PAH growth were collected. These were obtained by analysing the data reported in the literature during the last 30 years, or by using the estimates and optimisations of experimentally measured concentration profiles for small and PAH molecules. These profiles were collected by 12 independent work groups in laminar premixed CH{sub 4} and C{sub 2}H{sub 4} flames under atmospheric pressure or in shock tube experiments under elevated pressure. The simulated flame speeds, temporal profiles of small and large aromatics and also soot particles volume fraction data are in good agreement with the experimental data received for different temperatures, mixing ratios and diluents. The extensive analysis of PAH reaction steps showed that the main reaction routes can be conditionally divided into ''low temperature'' reaction routes, dominating at T < 1550 K, and ''high temperature'' reaction routes, which contribute mostly to PAH formation at T > 1550 K. The presented mechanism can be used as the basis for further extensions or reductions applied in kinetic schemes involving PAH and soot production in practical fuel combustion. (author)

  9. Theoretical and Numerical Investigation of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ray, Anjan

    1996-01-01

    The influence of soot radiation on diffusion flames was investigated using both analytical and numerical techniques. Soot generated in diffusion flames dominate the flame radiation over gaseous combustion products and can significantly lower the temperature of the flame. In low gravity situations there can be significant accumulation of soot and combustion products in the vicinity of the primary reaction zone owing to the absence of any convective buoyant flow. Such situations may result in substantial suppression of chemical activities in a flame, and the possibility of a radiative extinction may also be anticipated. The purpose of this work was to not only investigate the possibility of radiative extinction of a diffusion flame but also to qualitatively and quantitatively analyze the influence of soot radiation on a diffusion flame. In this study, first a hypothetical radiative loss profile of the form of a sech(sup 2) was assumed to influence a pure diffusion flame. It was observed that the reaction zone can, under certain circumstances, move through the radiative loss zone and locate itself on the fuel side of the loss zone contrary to our initial postulate. On increasing the intensity and/or width of the loss zone it was possible to extinguish the flame, and extinction plots were generated. In the presence of a convective flow, however, the movement of the temperature and reaction rate peaks indicated that the flame behavior is more complicated compared to a pure diffusional flame. A comprehensive model of soot formation, oxidation and radiation was used in a more involved analysis. The soot model of Syed, Stewart and Moss was used for soot nucleation and growth and the model of Nagle and Strickland-Constable was used for soot oxidation. The soot radiation was considered in the optically thin limit. An analysis of the flame structure revealed that the radiative loss term is countered both by the reaction term and the diffusion term. The essential balance for

  10. Planar Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Extinction

    NASA Technical Reports Server (NTRS)

    Fendell, Francis; Gokoglu, Suleyman; Rungaldier, Harald; Schultz, Donald

    1999-01-01

    An effectively strain-rate-free diffusion flame constitutes the most vigorous laminar combustion of initially unmixed reactive gases. Such a diffusion flame is characterized by a relatively long residence time and by a relatively large characteristic length scale. If such a flame were also planar, providing high symmetry, it would be particularly suitable for experimental and theoretical investigations of key combustion phenomena, such as multicomponent diffusion, chemical kinetics, and soot inception, growth, and oxidation. Unfortunately, a planar strain-rate-free diffusion flame is highly disrupted in earth-gravity (e.g., in a counterflow-diffusion-flame apparatus) because of the very rapid onset (approx. 100 ms) of gravity-induced instability. Accordingly, a specially dedicated apparatus was designed, fabricated, and initially checked out for the examination of a planar strain-rate-free diffusion flame in microgravity. Such a diffusion flame may be formed within a hollowed-out squat container (initially configured as 25 cm x 25 cm x 9 cm), with isothermal, noncatalytic, impervious walls. At test initiation, a thin metallic sheet (approx. 1 mm in thickness) that separates the internal volume into two equal portions, each of dimensions 25 cm x 25 cm x 4.5 cm, is withdrawn, by uniform translation (approx. 50 cm/s) in its own plane, through a tightly fitting slit in one side wall. Thereupon, diluted fuel vapor (initially confined to one half-volume of the container) gains access to diluted oxygen (initially with the same pressure, density, and temperature as the fuel, but initially confined to the other half-volume). After a brief delay (approx. 10 ms), to permit limited but sufficient-for-flammability diffusional interpenetration of fuel vapor and oxidizer, burning is initiated by discharge of a line igniter, located along that side wall from which the trailing edge of the separator withdraws. The ignition spawns a triple-flame propagation across the 25 cm x 25 cm

  11. Numerical Parametric Studies of Laminar Flame Structures in Opposed Jets of Partially Premixed Methane-Air Streams

    NASA Astrophysics Data System (ADS)

    Arun, C. R.; Raghavan, Vasudevan

    2012-09-01

    Interactions of fuel-rich and fuel-lean mixtures and formation of interlinked multiple flame zones are observed in gas turbines and industrial furnaces. For fundamentally understanding such flames, numerical investigation of heat and mass transport, and chemical reaction processes, in laminar, counter flowing partially premixed rich and lean streams of methane and air mixtures, is presented. An axisymmetric numerical reactive flow model, with C2 detailed mechanism for describing methane oxidation in air and an optically thin radiation sub-model, is used in simulations. The numerical results are validated against the experimental results from literature. The equivalence ratios of counter flowing rich and lean reactant streams and the resulting strain rates have been varied. The effect of these parameters on the flame structure is presented. For a given rich and lean side equivalence ratios, by varying the strain rates, triple, double and single flame zones are obtained.

  12. Lateral Diffusion of Bedload Transport under Laminar Flow

    NASA Astrophysics Data System (ADS)

    Ortiz, C. P.; Houssais, M.; Purohit, P. K.; Durian, D. J.; Jerolmack, D. J.

    2014-12-01

    Lateral sediment transport is a key momentum-exchange mechanism to model equilibrium channel geometry and channel bar evolution. We study sediment transport from a statistical mechanical point of view akin to Furbish et al. 2012. This approach holds promise for linking grain-scale motion to macroscopic transport, but there are few data to definitively develop and test such models. We study an experimental model river, composed of monodisperse acrylic spheres dispersed in silicon oil, driven by a layer of fluid under steady shear. We choose to drive fluid flow in the laminar regime (Re < 1) to suppress fluid turbulence and isolate granular and bed structure controls. We use a refractive-index-matched laser scanning technique to observe the motion of particles at the surface of the bed as well as the particle dynamics below the surface. We study how the probability distribution of displacements varies as a function of distance from the bed surface and as a function of distance to the channel center. In the streamwise direction, in agreement with Furbish et al. 2012, we find that the dynamics can be decomposed into an advection and a diffusion term. In the lateral direction, we find a competition between diffusion and an elastic-like interaction with the bed. We study this lateral stochastic process and find a need to introduce two parameters to quantify this competition. The first parameter describes the tendency for particles to reside near the center of the channel and the second parameter describes the kinetic energy distribution of the particles. We study how the requisite averaging scales and ensemble sizes to achieve statistically convergent parameters, and we explore how these parameters depend on the driving rate.

  13. Time-dependent solution of pre-mixed laminar flames with a known temperature profile

    SciTech Connect

    Olsson, J.O.; Andersson, L.L.

    1985-07-01

    A computer program designed for the evaluation of molecular flows interacting through chemical kinetics and molecular diffusion is described. Measured values of temperature profile and mass flow are used. The starting profiles and the hot boundary values are calculated by a kinetics approximation found by neglecting diffusion. A time-dependent method is used together with successive grid refinements. The successive grid refinements reduced the execution times by a factor of 5 for a H/sub 2//air flame at a pressure of 1 atm. For a CH/sub 4//O/sub 2/ flame at 0.05 atm the reduction due to grid refinements was a factor 50 or more according to the estimations. The execution times for the test flames were a factor 4 slower than a current implementation of the steady state method. Possible optimizations of the present time-dependent version can decrease that difference significantly. The computed concentration profiles agreed with published computed results with 1%.

  14. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.

    1990-01-01

    The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a

  15. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOEpatents

    Katz, Joseph L.; Miquel, Philippe F.

    1997-01-01

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.

  16. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOEpatents

    Katz, J.L.; Miquel, P.F.

    1997-07-22

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.

  17. A study of hydrogen diffusion flames using PDF turbulence model

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    The application of probability density function (pdf) turbulence models is addressed. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional computational fluid dynamic (CFD) flow solver with the Monte Carlo simulation of the pdf evolution equation was developed. The algorithm was validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames was carried out using this algorithm. Numerical results compared favorably with experimental data. The computations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.

  18. Laminar Soot Processes (LSP)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Kim, C. H.; Krishnan, S. S.; Lin, K.-C.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering the structure and the soot surface reaction properties of laminar nonpremixed (diffusion) flames. The study was limited to ground-based measurements of buoyant laminar jet diffusion flames at pressures of 0.1-1.0 atm. The motivation for the research is that soot formation in flames is a major unresolved problem of combustion science that influences the pollutant emissions, durability and performance of power and propulsion systems, as well as the potential for developing computational combustion. The investigation was divided into two phases considering the structure of laminar soot-containing diffusion flames and the soot surface reaction properties (soot surface growth and oxidation) of these flames, in turn. The first phase of the research addressed flame and soot structure properties of buoyant laminar jet diffusion flames at various pressures. The measurements showed that H, OH and O radical concentrations were generally in superequilibrium concentrations at atmospheric pressure but tended toward subequilibrium concentrations as pressures decreased. The measurements indicated that the original fuel decomposed into more robust compounds at elevated temperatures, such as acetylene (unless the original fuel was acetylene) and H, which are the major reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. The second phase of the research addressed soot surface reaction properties, e.g., soot surface growth and surface oxidation. It was found that soot surface growth rates in both laminar premixed and diffusion flames were in good agreement, that these rates were relatively independent of fuel type, and that these rates could be correlated by the Hydrogen-Abstraction/Carbon-Addition (HACA) mechanisms of Colket and Hall (1994), Frenklach et al. (1990,1994), and Kazakov et al. (1995). It was also

  19. Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    A detailed numerical study was conducted on the dynamics and thermal response of inert, spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport, For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations

  20. Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Campbell, Charles S.; Wu, Ming-Shin (Technical Monitor)

    1999-01-01

    A detailed numerical study was conducted on the dynamics and thermal response of inert spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport. For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations

  1. Dynamics of Diffusion Flames in von Karman Swirling Flows Studied

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Williams, Forman A.

    2002-01-01

    Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.

  2. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    NASA Astrophysics Data System (ADS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l- 1 and 1.0 ng l- 1, respectively.

  3. Measurements and Modeling of Soot Formation and Radiation in Microgravity Jet Diffusion Flames. Volume 4

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, Li; Greenberg, Paul S.

    1996-01-01

    This is a computational and experimental study for soot formation and radiative heat transfer in jet diffusion flames under normal gravity (1-g) and microgravity (0-g) conditions. Instantaneous soot volume fraction maps are measured using a full-field imaging absorption technique developed by the authors. A compact, self-contained drop rig is used for microgravity experiments in the 2.2-second drop tower facility at NASA Lewis Research Center. On modeling, we have coupled flame structure and soot formation models with detailed radiation transfer calculations. Favre-averaged boundary layer equations with a k-e-g turbulence model are used to predict the flow field, and a conserved scalar approach with an assumed Beta-pdf are used to predict gaseous species mole fraction. Scalar transport equations are used to describe soot volume fraction and number density distributions, with formation and oxidation terms modeled by one-step rate equations and thermophoretic effects included. An energy equation is included to couple flame structure and radiation analyses through iterations, neglecting turbulence-radiation interactions. The YIX solution for a finite cylindrical enclosure is used for radiative heat transfer calculations. The spectral absorption coefficient for soot aggregates is calculated from the Rayleigh solution using complex refractive index data from a Drude- Lorentz model. The exponential-wide-band model is used to calculate the spectral absorption coefficient for H20 and C02. It is shown that when compared to results from true spectral integration, the Rosseland mean absorption coefficient can provide reasonably accurate predictions for the type of flames studied. The soot formation model proposed by Moss, Syed, and Stewart seems to produce better fits to experimental data and more physically sound than the simpler model by Khan et al. Predicted soot volume fraction and temperature results agree well with published data for a normal gravity co-flow laminar

  4. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    SciTech Connect

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that

  5. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    DOE PAGES

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; ...

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization aremore » located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that hydrogen

  6. Effects of H2O, CO2, and N2 Air Contaminants on Critical Airside Strain Rates for Extinction of Hydrogen-Air Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary

    1989-01-01

    Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.

  7. Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    1999-01-01

    A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.

  8. Buoyancy Effects in Fully-Modulated, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.; Page, K. L.

    2003-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Normal-gravity experiments suggest that the fully-modulated technique also has the potential for producing turbulent jet flames significantly more compact than steady flames with no increase in exhaust emissions. The technique also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Fundamental issues addressed in this experiment include the impact of buoyancy on the structure and flame length, temperatures, radiation, and emissions of fully-modulated flames.

  9. Structure and radiation properties of turbulent diffusion flames

    SciTech Connect

    Kounalakis, M. E.

    1990-01-01

    A theoretical and experimental study of the flame structure and gas band radiation of carbon monoxide/hydrogen/air diffusion flames is described. The results have applications to analysis of the rate of spread of natural fires, design and development of furnaces, determination of radiant heat loads to engine components, development of rocket plume visibility, safe operations of industrial flares, development of material test codes for fire properties and development of fire detectors. The structure of the turbulent flames was studied using the Mie scattering technique to measure single and two-point mixture fraction statistics, and laser Doppler anemometery to measure single-point velocity statistics along the centerline. A stochastic methodology for treating the nonlinear flame radiation fluctuations caused by turbulence/radiation interactions was developed. The methodology was evaluated by comparison with high resolution emission spectroscopy measurements of gas-band radiation.

  10. Pressure effect on soot formation in turbulent diffusion flames.

    PubMed

    Roditcheva, O V; Bai, X S

    2001-01-01

    Soot formation in a methane air turbulent jet diffusion flame is investigated numerically using a semi-empirical model. The temperature, density and species (the soot precursor C2H2) fields are calculated using detailed chemical kinetic mechanism based on the flamelet library approach. The influence of pressure on the soot formation and the behavior of the semi-empirical model in different flame situations are investigated. It is found that the flame shape and the flame temperature can be well predicted by the flamelet library approach. The calculated soot yield is mostly sensitive to the soot surface growth rate and the increase of pressure. The increase of pressure leads to the increase of soot surface growth rate and therefore to the increase of soot volume fraction. By adjusting a model constant in the soot surface growth rate, the soot emissions in both pressure p = 1 atm and p = 3 atm are properly simulated by the current semi-empirical soot model.

  11. Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Quenching

    NASA Technical Reports Server (NTRS)

    Fendell, Francis; Rungaldier, Harald; Gokoglu, Suleyman; Schultz, Donald

    1997-01-01

    For about a half century, the stabilization of a steady planar deflagration on a heat-sink-type flat-flame burner has been of extraordinary service for the theoretical modeling and diagnostic probing of combusting gaseous mixtures. However, most engineering devices and most unwanted fire involve the burning of initially unmixed reactants. The most vigorous burning of initially separated gaseous fuel and oxidizer is the diffusion flame. In this useful idealization (limiting case), the reactants are converted to product at a mathematically thin interface, so no interpenetration of fuel and oxidizer occurs. This limit is of practical importance because it often characterizes the condition of optimal performance (and sometimes environmentally objectionable operation) of a combustor. A steady planar diffusion flame is most closely approached in the laboratory in the counterflow apparatus. The utility of this simple-strain-rate flow for the modeling and probing of diffusion flames was noted by Pandya and Weinberg 35 years ago, though only in the last decade or so has its use become internationally common place. However, typically, as the strain rate a is reduced below about 20 cm(exp -1), and the diffusion-flame limit (reaction rate much faster than the flow rate) is approached, the burning is observed to become unstable in earth gravity. The advantageous steady planar flow is not available in the diffusion-flame limit in earth gravity. This is unfortunate because the typical spatial scale in a counterflow is (k/a)(sup 1/2), where k denotes a characteristic diffusion coefficient; thus, the length scale becomes large, and the reacting flow is particularly amenable to diagnostic probing, as the diffusion-flame limit is approached. The disruption of planar symmetry is owing the fact that, as the strain rate a decreases, the residence time (l/a) of the throughput in the counterflow burner increases. Observationally, when the residence time exceeds about 50 msec, the

  12. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei

    2017-03-01

    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  13. A simple reaction-rate model for turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.

    1975-01-01

    A simple reaction rate model is proposed for turbulent diffusion flames in which the reaction rate is proportional to the turbulence mixing rate. The reaction rate is also dependent on the mean mass fraction and the mean square fluctuation of mass fraction of each reactant. Calculations are compared with experimental data and are generally successful in predicting the measured quantities.

  14. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    SciTech Connect

    Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.

    2015-04-15

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

  15. Diffusion flame extinction in slow convenctive flow under microgravity environment

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1986-01-01

    A theoretical analysis is presented to study the extinction characteristics of a diffusion flame near the leading edge of a thin fuel plate in slow, forced convective flows in a microgravity environment. The mathematical model includes two-dimensional Navier-Stokes momentum, energy and species equations with one-step overall chemical reaction using second-order finite rate Arrhenius kinetics. Radiant heat loss on the fuel plate is applied in the model as it is the dominant mechanism for flame extinguishment in the small convective flow regime. A parametric study based on the variation of convective flow velocity, which varies the Damkohler number (Da), and the surface radiant heat loss parameter (S) simultaneously, is given. An extinction limit is found in the regime of slow convective flow when the rate of radiant heat loss from fuel surface outweighs the rate of heat generation due to combustion. The transition from existent envelope flame to extinguishment consists of gradual flame contraction in the opposed flow direction together with flame temperature reduction as the convective flow velocity decreases continuously until the extinction limit is reached. A case of flame structure subjected to surface radiant heat loss is also presented and discussed.

  16. Blue nano titania made in diffusion flames.

    PubMed

    Teleki, Alexandra; Pratsinis, Sotiris E

    2009-05-21

    Blue titanium suboxide nanoparticles (including Magneli phases) were formed directly without any post-processing or addition of dopants by combustion of titanium-tetra-isopropoxide (TTIP) vapor at atmospheric pressure. Particle size, phase composition, rutile and anatase crystal sizes as well as the blue coloration were controlled by rapid quenching of the flame with a critical flow nozzle placed at various heights above the burner. The particles showed a broad absorption in the near-infrared region and retained their blue color upon storage in ambient atmosphere. A high concentration of paramagnetic Ti3+ centres was found in the substoichiometric particles by electron paramagnetic resonance (EPR) spectroscopy. Furthermore particles with controlled band gap energy from 3.2 to 3.6 eV were made by controlling the burner-nozzle-distance from 10 to 1 cm, respectively. The color robustness and extent of suboxidation could be further enhanced by co-oxidation of TTIP with hexamethyldisiloxane in the flame resulting in SiO2-coated titanium suboxide particles. The process is cost-effective and green while the particles produced can replace traditional blue colored, cobalt-containing pigments.

  17. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame

    SciTech Connect

    Tian, Z; Pitz, W J; Fournet, R; Glaude, P; Battin-Leclerc, F

    2009-12-18

    An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene, decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C{sub 4} + C{sub 2} species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C{sub 6}H{sub 4}CH{sub 3} radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C{sub 6}H{sub 4}CH{sub 3} radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics.

  18. Effects of non-unity Lewis numbers in diffusion flames

    NASA Technical Reports Server (NTRS)

    Linan, A.; Orlandi, P.; Verzicco, R.; Higuera, F. J.

    1994-01-01

    The purpose of this work is to carry out direct numerical simulations of diffusion controlled combustion with non-unity Lewis numbers for the reactants and products, thus accounting for the differential diffusion effects of the temperature and concentration fields. We use a formulation based on combining the conservation equations in a way to eliminate the reaction terms similar to the method used by Burke and Schumann (1928) for unity Lewis numbers. We present calculations for an axisymmetric fuel jet and for a planar, time evolving mixing layer, leaving out the effects of thermal expansion and variations of the transport coefficients due to the heat release. Our results show that the front of the flame shifts toward the fuel or oxygen sides owing to the effect of the differential diffusion and that the location of maximum temperature may not coincide with the flame. The dependence of the distribution of the reaction products on their Lewis number has been investigated.

  19. Interaction of a laminar flame with its self-generated flow during constant volume combustion

    SciTech Connect

    Dunn-Rankin, D.; Sawyer, R.F.

    1985-02-01

    The formation of cusp shaped or ''tulip'' flames during closed tube flame propagation has been recorded by combustion researchers for nearly sixty years. Flame instability, pressure wave/flame interaction, and large scale circulation in the unburned gas have been suggested as explanations for the ''tulip'' flame phenomenon, but the cause of the ''tulip'' flame has not been conclusively determined. This work uses laser Doppler anemometer measurements of the flow field during flame propagation in a closed tube to describe the combustion generated flow and to support a fluid mechanical explanation for the ''tulip'' flame formation. The flame behaves as a fluid mechanical discontinuity which deflects the velocity of the gas passing through it. As the flame quenches at the side walls of the combustion vessel, the flow deflection generates a vortex in the burned gas. The vortex remains in the proximity of the flame and modifies the unburned gas field such that the flame propagates more quickly near the wall than at the center. The discrepancy in propagation rates leads to the ''tulip'' flame.

  20. Preflame zone structure and main features of fuel conversion in atmospheric pressure premixed laminar hydrocarbon flames

    SciTech Connect

    Ksandopulo, G.I.

    1995-08-25

    This report describes the structure study of the premixed hydrocarbon-oxidizer Bunsen flames burning at the atmospheric pressure and also the ones with some inhibitors added. Studies were performed on hexane, propane, methane, acetylene, and hexene flames.

  1. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    SciTech Connect

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T

    2008-02-08

    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

  2. A counterflow diffusion flame study of branched octane isomers

    SciTech Connect

    Sarathy, S. Mani; Niemann, Ulrich; Yeung, Coleman; Gehmlich, Ryan; Westrbrook, Charles K.; Plomer, Max; Luo, Zhaoyu; Mehl, Marco; Pitz, William J.; Seshadri, Kalyanasundaram; Thomson, Murray J.; Lu, Tianfeng

    2012-09-25

    Conventional petroleum, Fischer–Tropsch (FT), and other alternative hydrocarbon fuels typically contain a high concentration of lightly methylated iso-alkanes. However, until recently little work has been done on this important class of hydrocarbon components. In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for 3-methylheptane and 2,5-dimethylhexane in counterflow diffusion flames. This new dataset includes flame ignition, extinction, and speciation profiles. The high temperature oxidation of these fuels has been modeled using an extended transport database and a high temperature skeletal chemical kinetic model. The skeletal model is generated from a detailed model reduced using the directed relation graph with expert knowledge (DRG-X) methodology. The proposed skeletal model contains sufficient chemical fidelity to accurately predict the experimental speciation data in flames. The predictions are compared to elucidate the effects of number and location of the methyl substitutions. The location is found to have little effect on ignition and extinction in these counterflow diffusion flames. However, increasing the number of methyl substitutions was found to inhibit ignition and promote extinction. Chemical kinetic modelling simulations were used to correlate a fuel’s extinction propensity with its ability to populate the H radical concentration. In conclusion, species composition measurements indicate that the location and number of methyl substitutions was found to particularly affect the amount and type of alkenes observed.

  3. A counterflow diffusion flame study of branched octane isomers

    DOE PAGES

    Sarathy, S. Mani; Niemann, Ulrich; Yeung, Coleman; ...

    2012-09-25

    Conventional petroleum, Fischer–Tropsch (FT), and other alternative hydrocarbon fuels typically contain a high concentration of lightly methylated iso-alkanes. However, until recently little work has been done on this important class of hydrocarbon components. In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for 3-methylheptane and 2,5-dimethylhexane in counterflow diffusion flames. This new dataset includes flame ignition, extinction, and speciation profiles. The high temperature oxidation of these fuels has been modeled using an extended transport database and a high temperature skeletal chemical kinetic model. The skeletal model is generated from a detailed modelmore » reduced using the directed relation graph with expert knowledge (DRG-X) methodology. The proposed skeletal model contains sufficient chemical fidelity to accurately predict the experimental speciation data in flames. The predictions are compared to elucidate the effects of number and location of the methyl substitutions. The location is found to have little effect on ignition and extinction in these counterflow diffusion flames. However, increasing the number of methyl substitutions was found to inhibit ignition and promote extinction. Chemical kinetic modelling simulations were used to correlate a fuel’s extinction propensity with its ability to populate the H radical concentration. In conclusion, species composition measurements indicate that the location and number of methyl substitutions was found to particularly affect the amount and type of alkenes observed.« less

  4. DNS investigation of differential-diffusion effects on temporarily evolving turbulent diffusion flames

    NASA Astrophysics Data System (ADS)

    Almagro, Antonio; Garcia-Villalba, Manuel; Flores, Oscar; Sanchez, Antonio L.

    2016-11-01

    The peak temperature of nonpremixed flames is known to have a profound effect on kinetically controlled processes with a strong temperature dependence, such as strain-induced extinction and NOx production. Here, the influence of differential diffusion on the flame temperature in diffusion-controlled combustion is investigated by direct numerical simulations of a turbulent diffusion flame in a temporarily evolving mixing layer for non-unity Lewis numbers of the fuel. The problem is formulated in the limit of infinitely fast combustion in terms of Shvab-Zel'dovich conserved scalars, not changed directly by the reactions, obtained through chemistry-free linear combinations of the temperature and reactant mass fractions. A previously developed low-Mach-number code is used in the numerical integrations, which consider values of the thermochemical parameters - characterizing the exothermicity and stoichiometry of diffusion-controlled combustion - and fuel Lewis number typical of hydrogen-air and hydrocarbon-air flames. The results of the simulations are used to asses the effect of turbulence and fuel diffusivity on the flame response. This work was funded by the Spanish MCININ under project CSD2010-00011. The computational resources were provided by the XSEDE program, supported by NSF Grant Number ACI-1053575.

  5. Features of the propagation of laminar spherical flames initiated by a spark discharge in mixtures of methane, pentane, and hydrogen with air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Rubtsov, N. M.; Seplyarskii, B. S.; Troshin, K. Ya.; Chernysh, V. I.; Tsvetkov, G. I.

    2011-10-01

    Using high-speed digital color cinematography, we studied the propagation of a laminar spherical flame in stoichiometric mixtures of hydrogen, methane, and pentane with air in the presence of additives at atmospheric pressure in constant-volume reactors, and derived quantitative data on the time of formation of a stable flame front. Cellular flames caused by gas-dynamic instability attributable to convective flows arising during the afterburning of gas were observed in hydrocarbon-air stoichiometric mixtures diluted with inert additives. It was found that the effect of additives of carbon dioxide and argon (>10%) and minor additives of CCl4 on the combustion of hydrocarbons, and of propylene on the combustion of hydrogen-rich mixtures, lead to periods of delay in the development of a laminar spherical flame; in addition, additives of propylene promote the combustion of hydrogen poor mixtures.

  6. Effects of H2O, CO2, and N2 air contaminants on critical airside strain rates for extinction of hydrogen-air counterflow diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Guerra, Rosemary

    1989-01-01

    Dish-shaped counterflow diffusion flames centered by opposing laminar jets of H2 and clean and contaminant O2/N2 mixtures in an argon bath at 1 atm were used to study the effects of contaminants on critical airside strain. The jet velocities for both flame extinction and restoration are found for a wide range of contaminant and O2 concentrations in the air jet. The tests are also conducted for a variety of input H2 concentrations. The results are compared with those from several other studies.

  7. Velocity Fields of Axisymmetric Hydrogen-Air Counterflow Diffusion Flames from LDV, PIV, and Numerical Computation

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Wilson, Lloyd G.; Humphreys, William M., Jr.; Bartram, Scott M.; Gartrell, Luther R.; Isaac, K. M.

    1995-01-01

    Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.

  8. Effects of Inert Dust Clouds on the Extinction of Strained, Laminar Flames at Normal and Micro Gravity

    NASA Technical Reports Server (NTRS)

    Andac, M. Gurhan; Egolfopoulos, Fokion N.; Campbell, Charles S.; Lauvergne, Romain; Wu, Ming-Shin (Technical Monitor)

    2000-01-01

    A combined experimental and detailed numerical study was conducted on the interaction between chemically inert solid particles and strained, atmospheric methane/air and propane/air laminar flames, both premixed and non-premixed. Experimentally, the opposed jet configuration was used with the addition of a particle seeder capable of operating in conditions of varying gravity. The particle seeding system was calibrated under both normal and micro gravity and a noticeable gravitational effect was observed. Flame extinction experiments were conducted at normal gravity by seeding inert particles at various number densities and sizes into the reacting gas phase. Experimental data were taken for 20 and 37 (mu) nickel alloy and 25 and 60 (mu) aluminum oxide particles. The experiments were simulated by solving along the stagnation streamline the conservation equations of mass, momentum, energy, and species conservation for both phases, with detailed descriptions of chemical kinetics, molecular transport, and thermal radiation. The experimental data were compared with numerical simulations, and insight was provided into the effects on extinction of the fuel type, equivalence ratio, flame configuration, strain rate. particle type. particle size. particle mass, delivery rate. the orientation of particle injection with respect to the flame and gravity. It was found that for the same injected solid mass, larger particles can result in more effective flame cooling compared to smaller particles, despite the fact that equivalent masses of the larger particles have smaller total surface area to volume ratio. This counter-intuitive finding resulted from the fact that the heat exchange between the two phases is controlled by the synergistic effect of the total contact area and the temperature difference between the two phases. Results also demonstrate that meaningful scaling of interactions between the two phases may not be possible due to the complexity of the couplings between the

  9. Effects of C/O Ratio and Temperature on Sooting Limits of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lecoustre, V. R.; Sunderland, P. B.; Chao, B. H.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2008-01-01

    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, residence time and scalar dissipation rate. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with scalar dissipation rate lower than 2/s were found to have temperatures near 1400 K where C/O = 0.51, whereas flames with greater scalar dissipation rate required increased temperatures. This finding was valid across a broad range of fuel and oxidizer compositions and convection directions.

  10. Soot Aerosol Properties in Laminar Soot-Emitting Microgravity Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    The 0-g flame soot measurements reported in previous studies are extended by adding new 0-g data for different fuel flow rates and burner diameters. The new flame conditions allow more conclusive comparisons regarding the effect of characteristic flow residence times on soot field structure, the influence of fuel preheat on fuel pyrolysis rates near the flame centerline, and the premature cessation of soot growth along the soot annulus in 0-g when the fuel is preheated. The paper also reports on the implementation of thermophoretic soot sampling in a specific 0-g flame featuring burner exit velocities typical of buoyant flames and presents quantitative data on the radial variation of soot microstructure at a fixed height above the burner mouth.

  11. Application of superplastically formed and diffusion bonded aluminum to a laminar flow control leading edge

    NASA Technical Reports Server (NTRS)

    Goodyear, M. D.

    1987-01-01

    NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.

  12. Dynamic Weakening (Extinction) of Simple Hydrocarbon-air Counterflow Diffusion Flames by Oscillatory Inflows

    NASA Technical Reports Server (NTRS)

    Pellett, G.; Kabaria, A.; Panigrahi, B.; Sammons, K.; Convery, J.; Wilson, L.

    2005-01-01

    This study of laminar non-premixed HC-air flames used an Oscillatory-input Opposed Jet Burner (OOJB) system developed from a previously well-characterized 7.2-mm Pyrex-nozzle OJB system. Over 600 dynamic Flame Strength (FS) measurements were obtained on unanchored (free-floating) laminar Counterflow Diffusion Flames (CFDF's). Flames were stabilized using plug inflows having steady-plus-sinusoidal axial velocities of varied magnitude, frequency, f, up to 1600 Hz, and phase angle from 0 (most data) to 360 degrees. Dynamic FS is defined as the maximum average air input velocity (U(sub air), at nozzle exit) a CFDF can sustain before strain-induced extinction occurs due to prescribed oscillatory peak-to-peak velocity inputs superimposed on steady inputs. Initially, dynamic flame extinction data were obtained at low f, and were supported by 25-120 Hz Hot-Wire cold-flow velocity data at nozzle exits. Later, expanded extinction data were supported by 4-1600 Hz Probe Microphone (PM) pk/pk P data at nozzle exits. The PM data were first obtained without flows, and later with cold stagnating flows, which better represent speaker-diaphragm dynamics during runs. The PM approach enabled characterizations of Dynamic Flame Weakening (DFW) of CFDF's from 8 to 1600 Hz. DFW was defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = - 100 d(U(sub air) / U(sub air),0Hz) / d(pkpk P). The linear normalization with respect to acoustic pressure magnitude (and steady state (SS) FS) led to a DFW unaffected by strong internal resonances. For the C2H4/N2-air system, from 8 to 20 Hz, DFW is constant at 8.52 plus or minus 0.20 (% weakening)/Pa. This reflects a quasi-steady flame response to an acoustically induced dU(sub air)/dP. Also, it is surprisingly independent of C2H4/N2 mole fraction due to normalization by SS FS. From 20 to approximately 150 Hz, the C2H4/N2 air-flames weakened progressively less, with an inflection at approximately 70 Hz, and became asymptotically

  13. Kinetic Effects of Aromatic Molecular Structures on Diffusion Flame Extinction

    SciTech Connect

    Won, Sang Hee; Dooley, S.; Dryer, F. L.; Ju, Yiguang

    2011-01-01

    Kinetic effects of aromatic molecular structures for jet fuel surrogates on the extinction of diffusion flames have been investigated experimentally and numerically in the counterflow configuration for toluene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. Quantitative measurement of OH concentration for aromatic fuels was conducted by directly measuring the quenching rate from the emission lifetimes of OH planar laser induced fluorescence (LIF). The kinetic models for toluene and 1,2,4-trimethylbenzene were validated against the measurements of extinction strain rates and LIF measurements. A semi-detailed n-propylbenzene kinetic model was developed and tested. The experimental results showed that the extinction limits are ranked from highest to lowest as n-propylbenzene, toluene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. The present models for toluene and n-propylbenzene agree reasonably well with the measurements, whereas the model for 1,2,4-trimethylbenzene under-estimates extinction limits. Kinetic pathways of OH production and consumption were analyzed to investigate the impact of fuel fragmentation on OH formation. It was found that, for fuels with different molecular structures, the fuel decomposition pathways and their propagation into the formation of radical pool play an important role to determine the extinction limits of diffusion flames. Furthermore, OH concentrations were found to be representative of the entire radical pool concentration, the balance between chain branching and propagation/termination reactions and the balance between heat production from the reaction zone and heat losses to the fuel and oxidizer sides. Finally, a proposed “OH index,” was defined to demonstrate a linear correlation between extinction strain rate and OH index and fuel mole fraction, suggesting that the diffusion flame extinctions for the tested aromatic fuels can be determined by the capability of a fuel to establish a radical pool

  14. Properties of turbulence in natural gas-oxygen diffusion flames

    SciTech Connect

    Sautet, J.C.; Ditaranto, M. ); Samaniego, J.M.; Charon, O. )

    1999-07-01

    Measurements of turbulent flow field velocities, including first and second order velocity moments and the shear stress are carried out by laser Doppler velocimetry in five different, 25 kW, turbulent natural gas-oxygen diffusion flames. The mean flow behavior is described including the velocity half value radius as well as centerline velocity. Mean radial velocity profiles are fitted by a Gaussian function. According to the initial momentum ratio, different jet dynamic behaviors are pointed out by the description of the fluctuating velocity field.

  15. Numerical investigation of the shape of a laminar flame in a channel

    SciTech Connect

    Makhviladze, G.M.; Melikhov, V.I.; Sivashinskii, G.I.

    1994-11-01

    The method of numerical integration of the nonstationary two-dimensional equations describing the essentially subsonic motions of a reacting gas is used to investigate the characteristics of the shape and structure of the flame from propagating in a plane closed channel. It is shown that at fairly high Reynolds numbers a two-humped front shape ({open_quotes}tulip{close_quotes}), caused by the development of hydrodynamic flame instability, is formed.

  16. Aerodynamic and Kinetic Processes in Flames

    DTIC Science & Technology

    1988-05-01

    Soot Extinction by Aerodynamic Straining In Counterflow Diffusion Flames," by D. X. Du, R. L. Axelbaum, W. L. Flower and C. K. Law, to appear in Proc...8217 by R. L. Axelbaum, W. L. Flower and C. K. Law, submitted. 14. "Laminar Flame Speeds pf Methane/Air Mixtures Under Reduced and Elevated Pressures," by F

  17. Studies of Flame Structure in Microgravity

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Sung, C. J.; Zhu, D. L.

    1997-01-01

    The present research endeavor is concerned with gaining fundamental understanding of the configuration, structure, and dynamics of laminar premixed and diffusion flames under conditions of negligible effects of gravity. Of particular interest is the potential to establish and hence study the properties of spherically- and cylindrically-symmetric flames and their response to external forces not related to gravity. For example, in an earlier experimental study of the burner-stabilized cylindrical premixed flames, the possibility of flame stabilization through flow divergence was established, while the resulting one-dimensional, adiabatic, stretchless flame also allowed an accurate means of determining the laminar flame speeds of combustible mixtures. We have recently extended our studies of the flame structure in microgravity along the following directions: (1) Analysis of the dynamics of spherical premixed flames; (2) Analysis of the spreading of cylindrical diffusion flames; (3) Experimental observation of an interesting dual luminous zone structure of a steady-state, microbuoyancy, spherical diffusion flame of air burning in a hydrogen/methane mixture environment, and its subsequent quantification through computational simulation with detailed chemistry and transport; (4) Experimental quantification of the unsteady growth of a spherical diffusion flame; and (5) Computational simulation of stretched, diffusionally-imbalanced premixed flames near and beyond the conventional limits of flammability, and the substantiation of the concept of extended limits of flammability. Motivation and results of these investigations are individually discussed.

  18. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    DOE PAGES

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; ...

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals aremore » observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.« less

  19. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    SciTech Connect

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.

  20. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames.

    PubMed

    Michael, James B; Venkateswaran, Prabhakar; Shaddix, Christopher R; Meyer, Terrence R

    2015-04-10

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. To quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10-50 kHz. Guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.

  1. Characterizing Laminar Flame Interactions with Turbulent Fluidic Jets and Solid Obstacles for Turbulence Induction

    NASA Astrophysics Data System (ADS)

    Gerdts, Stephen; Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    A detonation engine's fundamental design concept focuses on enhancing the Deflagration to Detonation Transition (DDT), the process through which subsonic flames accelerate to form a spontaneous detonation wave. Flame acceleration is driven by turbulent interactions that expand the reaction zone and induce mixing of products and reactants. Turbulence in a duct can be generated using solid obstructions, fluidic obstacles, duct angle changes, and wall skin friction. Solid obstacles have been previously explored and offer repeatable turbulence induction at the cost of pressure losses and additional system weight. Fluidic jet obstacles are a novel technique that provide advantages such as the ability to be throttled, allowing for active control of combustion modes. The scope of the present work is to expand the experimental database of varying parameters such as main flow and jet equivalence ratios, fluidic momentum ratios, and solid obstacle blockage ratios. Schlieren flow visualization and particle image velocimetry (PIV) are employed to investigate turbulent flame dynamics throughout the interaction. Optimum conditions that lead to flame acceleration for both solid and fluidic obstacles will be determined. American Chemical Society.

  2. Thermoacoustic instability of a laminar premixed flame in Rijke tube with a hydrodynamic region

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Chow, Z. H.

    2013-07-01

    In this work, a Rijke tube with a hydrodynamic region confined is considered to investigate its non-normality and the effect of the hydrodynamic region on the system stability behaviors. Experiments are first conducted on Rijke tubes with different lengths. It is found that the fundamental mode frequency is decreased and then increased, as the flame is placed at different axial positions at the bottom half of the tube. This trend agrees well with the prediction from the thermoacoustic model developed, of which the hydrodynamic region is modelled as an oscillating 'airplug' and the flame dynamics is captured by using classical G-equation. In addition, the flame as measured is found to respond differently to oncoming acoustic disturbances. Modal and non-modal stability analyses are then conducted to determine the eigenmode growth rate and the transient one of acoustic disturbances. The 'safest' and most 'dangerous' flame locations as defined as those corresponding to extreme eigenmode and transient growth rate are estimated, and compared with those from the model without the hydrodynamic region. In order to mitigate such detrimental oscillations, identification and mitigation algorithms are experimentally implemented on the Rijke tube. The sound pressure level is reduced by approximately 50 dB. To gain insights on the thermoacoustic system, transfer function of the actuated Rijke tube system is measured by injecting a broad-band white noise. Compared with the estimation from our model, good agreement is observed. Finally, the marginal stability regions are estimated.

  3. A Role of the Reaction Kernel in Propagation and Stabilization of Edge Diffusion Flames of C1-C3 Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2003-01-01

    Diffusion flame stabilization is of essential importance in both Earth-bound combustion systems and spacecraft fire safety. Local extinction, re-ignition, and propagation processes may occur as a result of interactions between the flame zone and vortices or fire-extinguishing agents. By using a computational fluid dynamics code with a detailed chemistry model for methane combustion, the authors have revealed the chemical kinetic structure of the stabilizing region of both jet and flat-plate diffusion flames, predicted the flame stability limit, and proposed diffusion flame attachment and detachment mechanisms in normal and microgravity. Because of the unique geometry of the edge of diffusion flames, radical back-diffusion against the oxygen-rich entrainment dramatically enhanced chain reactions, thus forming a peak reactivity spot, i.e., reaction kernel, responsible for flame holding. The new results have been obtained for the edge diffusion flame propagation and attached flame structure using various C1-C3 hydrocarbons.

  4. Buoyancy Effects in Strongly-pulsed, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.

    2004-01-01

    The objective of this experiment is to better understand the combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. The fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Experiments are conducted both in laboratories at UW and WPI and in the GRC 2.2s Drop Tower. A single fuel nozzle with diameter d = 2 mm is centered in a combustor 20 x 20 cm in cross section and 67 cm in height. The gaseous fuel flow (ethylene or a 50/50 ethylene/nitrogen mixture by volume) is fully-modulated by a fast-response solenoid valve with injection times from tau = 4 to tau = 300 ms. The nominal Reynolds number based on the fuel velocity during injection, U(sub jet), is 5,000. A slow oxidizer co-flow properly ventilates the flame and an electrically heated wire loop serves as a continuous ignition source. Diagnostic techniques include video imaging, fine-wire thermocouples and thermopile radiometers, and gas sampling and standard emissions instruments (the last in the laboratory only).

  5. Buoyancy Effects in Strongly-Pulsed, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.

    2004-01-01

    The objective of this experiment is to better understand the combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. The fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Experiments are conducted both in laboratories at UW and WPI and in the GRC 2.2s Drop Tower. A single fuel nozzle with diameter d = 2 mm is centered in a combustor 20 20 cm in cross section and 67 cm in height. The gaseous fuel flow (ethylene or a 50/50 ethylene/nitrogen mixture by volume) is fully-modulated by a fast-response solenoid valve with injection times from tau = 4 to tau = 300 ms. The nominal Reynolds number based on the fuel velocity during injection, U(sub jet), is 5,000. A slow oxidizer co-flow properly ventilates the flame and an electrically heated wire loop serves as a continuous ignition source. Diagnostic techniques include video imaging, fine-wire thermocouples and thermopile radiometers, and gas sampling and standard emissions instruments (the last in the laboratory only).

  6. Laminar Soot Processes (Lsp) Experiment: Findings From Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Kim, C. H.; El-Leathy, A. M.; Faeth, G. M.; Xu, F.

    2003-01-01

    Processes of soot formation and oxidation must be understood in order to achieve reliable computational combustion calculations for nonpremixed (diffusion) flames involving hydrocarbon fuels. Motivated by this observation, the present investigation extended earlier work on soot formation and oxidation in laminar jet ethylene/air and methane/oxygen premixed and acetylene-nitrogen/air diffusion flames at atmospheric pressure in this laboratory, emphasizing soot surface growth and early soot surface oxidation in laminar diffusion flames fueled with a variety of hydrocarbons at pressures in the range 0.1 - 1.0 atm.

  7. Apparatus for studying premixed laminar flames using mass spectrometry and fiber-optic spectrometry

    NASA Astrophysics Data System (ADS)

    Olsson, Jim O.; Andersson, Lars L.; Lenner, Magnus; Simonson, Margaret

    1990-03-01

    An integrated flat-flame/ microprobe sampling quadrupole mass spectrometer system, complemented by optical spectrometry based on optical fibers, is presented. The short microprobe sampling line (total 25 cm) is directly connected to an open ion source closely flanked by two nude cryopumps (900 l/s) yielding a background pressure of 10-9 Torr and a sampling pressure of about 10-5 Torr. Due to this improved microprobe system, mass spectrometry can be used for analysis of stable species (including fuel, O2, H2O, CO2, CO, and Ar) with less disturbance of the sample than with a conventional microprobe with a back pressure of about 1 Torr. Optical spectrometry is used for the study of emission from important radical species (such as C2, CH, and OH). The system is proposed as a complement to more conventional flat-flame/MBMS systems in which the sampling cone can effect the experimental system. Details are provided concerning the configuration of the whole system ranging from gas delivery to data evaluation. Test data are presented for a 16% methanol/68% oxygen/16% argon flame studied at a pressure of 40 Torr, to elucidate the special features of this system.

  8. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Wichman, Indrek; Guenther, Mark; Ray, Anjan; Agrawal, Sanjay

    1993-01-01

    In a recent paper on 'Observations of candle flames under various atmospheres in microgravity' by Ross et al., it was found that for the same atmosphere, the burning rate per unit wick surface area and the flame temperature were considerably reduced in microgravity as compared with normal gravity. Also, the flame (spherical in microgravity) was much thicker and further removed from the wick. It thus appears that the flame becomes 'weaker' in microgravity due to the absence of buoyancy generated flow which serves to transport the oxidizer to the combustion zone and remove the hot combustion products from it. The buoyant flow, which may be characterized by the strain rate, assists the diffusion process to execute these essential functions for the survival of the flame. Thus, the diffusion flame is 'weak' at very low strain rates and as the strain rate increases the flame is initially 'strengthened' and eventually it may be 'blown out'. The computed flammability boundaries of T'ien show that such a reversal in material flammability occurs at strain rates around 5 sec. At very low or zero strain rates, flame radiation is expected to considerably affect this 'weak' diffusion flame because: (1) the concentration of combustion products which participate in gas radiation is high in the flame zone; and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which is usually responsible for a major portion of the radiative heat loss. We anticipate that flame radiation will eventually extinguish this flame. Thus, the objective of this project is to perform an experimental and theoretical investigation of radiation-induced extinction of diffusion flames under microgravity conditions. This is important for spacecraft fire safety.

  9. Laser soot-scattering imaging of a large buoyant diffusion flame

    SciTech Connect

    Lye, R.C.M.; Toner, S.J.

    1987-01-01

    A novel diagnostic technique, which makes use of laser light scattered by soot particles, was used in an effort to identify the flame sheets within a natural gas diffusion flame. Soot particles, inherently created and consumed in the flame, were used as the scattering medium, which obviated the need for externally supplied seed material. Since no foreign material was added to the flame, the current technique can be considered truly nonintrusive. The soot distribution within a large buoyant natural gas diffusion flame is argued to be a reasonable marker of the flame sheets. Measurements made in 47.4-190 kW natural gas flames stabilized on a 0.5 m diameter burner show that the flame sheets are highly wrinkled and convoluted surfaces. The flame sheets are distributed fairly uniformly within the instantaneous volume of the flame, based on images of the associated soot, and the instantaneous flame volume is devoid of soot for 40-60% of the time. When soot is present, it is observed as thin sheets which become narrower in regions where the average strain rate is estimated to be greater.

  10. Pattern Formation in Diffusion Flames Embedded in von Karman Swirling Flows

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha

    2006-01-01

    Pattern formation is observed in nature in many so-called excitable systems that can support wave propagation. It is well-known in the field of combustion that premixed flames can exhibit patterns through differential diffusion mechanism between heat and mass. However, in the case of diffusion flames where fuel and oxidizer are separated initially there have been only a few observations of pattern formation. It is generally perceived that since diffusion flames do not possess an inherent propagation speed they are static and do not form patterns. But in diffusion flames close to their extinction local quenching can occur and produce flame edges which can propagate along stoichiometric surfaces. Recently, we reported experimental observations of rotating spiral flame edges during near-limit combustion of a downward-facing polymethylmethacrylate disk spinning in quiescent air. These spiral flames, though short-lived, exhibited many similarities to patterns commonly found in quiescent excitable media including compound tip meandering motion. Flame disks that grow or shrink with time depending on the rotational speed and in-depth heat loss history of the fuel disk have also been reported. One of the limitations of studying flame patterns with solid fuels is that steady-state conditions cannot be achieved in air at normal atmospheric pressure for experimentally reasonable fuel thickness. As a means to reproduce the flame patterns observed earlier with solid fuels, but under steady-state conditions, we have designed and built a rotating, porous-disk burner through which gaseous fuels can be injected and burned as diffusion flames. The rotating porous disk generates a flow of air toward the disk by a viscous pumping action, generating what is called the von K rm n boundary layer which is of constant thickness over the entire burner disk. In this note we present a map of the various dynamic flame patterns observed during the combustion of methane in air as a function of

  11. Counterflow diffusion flames of hydrogen, and hydrogen plus methane, ethylene, propane, and silane vs. air - Strain rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. Burton; Wilson, L. G.

    1991-01-01

    Five coaxial tubular opposed jet burners (OJBs) with tube diameter D(T) of 1.8-10 mm and 5 mm conical nozzles were used to form dish-shaped counterflow diffusion flames centered by opposing laminar jets of nitrogen and hydrocarbon-diluted H2 versus air in an argon-purged chamber at 1 atm. Area-averaged air jet velocities at blowoff of the central flame, U(air), characterized extinction of the airside flame as functions of input H2 concentration on the fuelside. A master plot of extensive U(air) data at blowoff versus D(T) shows that U(air) varies linearly with D(T). This and other data sets are used to find that nozzle OJB results for U(air)/diameter average 4.24 + or - 0.28 times larger than tubular OJB results for the same fuel compositions. Critical radial velocity gradients consistent with one-dimensional stagnation point boundary theory and with plug flow inputs are estimated. The results compare favorably with published numerical results based only on potential flow.

  12. Study of laminar boundary layer instability noise study on a controlled diffusion airfoil

    NASA Astrophysics Data System (ADS)

    Jaiswal, Prateek; Sanjose, Marlene; Moreau, Stephane

    2016-11-01

    Detailed experimental study has been carried out on a Controlled Diffusion (CD) airfoil at 5° angle of attack and at chord based Reynolds number of 1 . 5 ×105 . All the measurements were done in an open-jet anechoic wind tunnel. The airfoil mock-up is held between two side plates, to keep the flow two-dimensional. PIV measurements have been performed in the wake and on the boundary layer of the airfoil. Pressure sensor probes on the airfoil were used to detect mean airfoil loading and remote microphone probes were used to measure unsteady pressure fluctuations on the surface of the airfoil. Furthermore the far field acoustic pressure was measured using an 1/2 inch ICP microphone. The results confirm very later transition of a laminar boundary layer to a turbulent boundary layer on the suction side of the airfoil. The process of transition of laminar to turbulent boundary layer comprises of turbulent reattachment of a separated shear layer. The pressure side of the boundary layer is found to be laminar and stable. Therefore tonal noise generated is attributed to events on suction side of the airfoil. The flow transition and emission of tones are further investigated in detail thanks to the complementary DNS study.

  13. Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames

    SciTech Connect

    Singh, Jasdeep; Patterson, Robert I.A.; Kraft, Markus; Wang, Hai

    2006-04-15

    In this paper, the prediction of a soot model [J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122-136] is compared to a recently published set of highly detailed soot particle size distributions [B. Zhao, Z. Yang, Z. Li, M.V. Johnston, H. Wang, Proc. Combust. Inst. 30 (2005)]. A stochastic approach is used to obtain soot particle size distributions (PSDs). The key features of the measured and simulated particle size distributions are identified and used as a simple way of comparing PSDs. The sensitivity of the soot PSDs to the parameters defining parts of the soot model, such as soot inception, particle and PAH collision efficiency and enhancement, and surface activity is investigated. Incepting soot particle size is found to have a very significant effect on the small-size end of the PSDs, especially the position of the trough for a bimodal soot PSDs. A new model for the decay in the surface activity is proposed in which the activity of the soot particle depends only on the history of that particle and the local temperature in the flame. This is a first attempt to use local flame variables to define the surface aging which has major impact on the prediction of the large-size end of the PSDs. Using these modifications to the soot model it is possible to improve the agreement between some of the points of interest in the simulated and measured PSDs. The paper achieves the task to help advance the soot models to predict soot PSD in addition to soot volume fraction and number density, which has been the focus of the literature. (author)

  14. Effects of Structure and Hydrodynamics on the Sooting Behavior of Spherical Microgravity Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Axelbaum, Richard L.; Urban, D. L.

    2000-01-01

    We have examined the sooting behavior of spherical microgravity diffusion flames burning ethylene at atmospheric pressure in the NASA Glenn 2.2-second drop tower. In a novel application of microgravity, spherical flames allowed convection across the flame to be either from fuel to oxidizer or from oxidizer to fuel. Thus, microgravity flames are uniquely capable of allowing independent variation of convection direction across the flame and stoichiometric mixture fraction, Z(sub st). This allowed us to determine the dominant mechanism responsible for the phenomenon of permanently-blue diffusion flames -- flames that remain blue as strain rate approaches zero. Stoichiometric mixture fraction was varied by changing inert concentrations such that adiabatic flame temperature did not change. At low and high Z(sub st) nitrogen was supplied with the oxidizer and the fuel, respectively. For the present flames, structure (Z(sub st)) was found to have a profound effect on soot production. Soot-free conditions were observed at high Z(sub st) (Z(sub st) = 0.78) and sooting conditions were observed at low Z(sub st) (Z(sub st) = 0.064) regardless of the direction of convection. Convection direction was found to have a lesser impact on soot inception, with formation being suppressed when convection at the flame sheet was directed towards the oxidizer.

  15. Transient Evolution of a Planar Diffusion Flame Aft of a Translating Flat Plate

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    2003-01-01

    The high degree of spatial symmetry of a planar diffusion flame affords great simplifications for experimental and modeling studies of gaseous fuel combustion. Particularly, in a microgravity environment, where buoyancy effects are negligible, an effectively strain-rate-free, vigorous flame may be obtained. Such a flame can also provide long residence times and large length scales for practical probing of flame structures and soot processes. This 2-D numerical study explores the feasibility of establishing such a planar diffusion flame in an enclosed container utilizing a realistic test protocol for a microgravity experiment. Fuel and oxygen mixtures, initially segregated into two half-volumes of a squat rectangular container by a thin separator, are ignited as soon as a flammable mixture is formed in the wake of the separator withdrawn in the centerplane. A triple-flame ensues that propagates behind the trailing edge of the separator. The results of calculations show that the mechanically- and thermally-induced convection decays in about two seconds. The establishment of a planar diffusion flame after this period seems feasible in the central region of the container with sufficient quantities of reactants left over for subsequent studies. An analysis of the flame initiation and formation process suggests how the feasibility of creating such a flame can be further improved.

  16. Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels.

    PubMed Central

    Kamholz, A E; Yager, P

    2001-01-01

    The T-sensor is a microfluidic analytical device that operates at low Reynolds numbers to ensure entirely laminar flow. Diffusion of molecules between streams flowing side by side may be observed directly. The pressure-driven velocity profile in the duct-shaped device influences diffusive transport in ways that affect the use of the T-sensor to measure molecular properties. The primary effect is a position-dependent variation in the extent of diffusion that occurs due to the distribution of residence time among different fluid laminae. A more detailed characterization reveals that resultant secondary concentration gradients yield variations in the scaling behavior between diffusive displacement and elapsed time in different regions of the channel. In this study, the time-dependent evolution of analyte distribution has been quantified using a combination of one- and two-dimensional models. The results include an accurate portrayal of the shape of the interdiffusion region in a representative T-sensor assay, calculation of the diffusive scaling law across the width of the channel, and quantification of artifacts that occur when making diffusion coefficient measurements in the T-sensor. PMID:11159391

  17. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  18. Numerical Simulation of Transient Development of Flame, Temperature and Velocity under Reduced Gravity in a Methane Air Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Bhowal, Arup Jyoti; Mandal, Bijan Kumar

    2017-02-01

    A methane air co flow diffusion flame has been numerically simulated with the help of an in-house developed code at normal gravity, 0.5 G, and 0.0001 G (microgravity) for the study of transient behavior of the flame in terms of flame shape, temperature profile and velocity (streamlines). The study indicates that lower is the gravity level, the higher is the time of early transience. The flame developments during transience are marked by the formation of a secondary flamelet at different heights above the primary flame at all gravity levels. The development of temperature profile at microgravity takes a much longer time to stabilize than the flame development. At normal gravity and 0.5 G gravity level, streamlines, during transience, show intermediate vortices which are finally replaced by recirculation of ambient air from the exit plane. At microgravity, neither any vortex nor any recirculation at any stage is observed. Centerline temperature plots, at all gravity levels during transience, demonstrate a secondary peak at some instants as a consequence of the secondary flamelet formation. The centerline velocity at microgravity decreases gradually during transience, unlike at other two gravity levels where the fall is very sharp and is indicative of negligible buoyancy at microgravity.

  19. Flame Propagation in Low-Intensity Turbulence under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Aldredge, R. C.

    2001-01-01

    The goal of the research is to understand the influences of the hydrodynamic instability on premixed-flame propagation. It is known that coupling between flame and flow-field dynamics in association with the hydrodynamic instability may lead to flame-generated turbulence, flame acceleration and enhancement of burning rates. As a result of such hydrodynamic coupling the transition from initially planar or wrinkled laminar flames to fast turbulent flames or detonations is possible, even when diffusive-thermal effects associated with non-unity reactant Lewis numbers are not destabilizing. It is important to identify methods of suppressing the hydrodynamic instability so as to insure fire safety, particularly in space.

  20. Growth of a diffusion flame in the field of a vortex

    NASA Technical Reports Server (NTRS)

    Marble, F. E.

    1985-01-01

    In the present study of the growth of a diffusion flame in the field of a vortex, the motion in the core is converted into a solid body rotation. The flame extension and distortion kinematics are presented, and the effect of the local flow field on local flame structure is analyzed in detail. The combustion field is found to consist of a totally reacted core region whose radius is time-dependent, and an external flame region which consists of a pair of spiral arms that extend at large radii toward their original positions on the horizontal axis. Two similarity rules are formulated which are independent of kinematic viscosity.

  1. The Extinction of Low Strain Rate Diffusion Flames by a Suppressant

    NASA Technical Reports Server (NTRS)

    Hamins, A.; Yang, J.; Puri, I. K.

    1999-01-01

    This paper describes plans for an experimental and computational study on the structure and extinction of low strain rate diffusion flames by a suppressant added to the oxidizer stream. Stable low strain rate flames will be established through ground based reduced gravity experiments using the 2.2 s drop tower. A variety of agents will be investigated, including both physically and chemically acting agents (He, N2, CO2, and CF3Br) for flames burning methane and propane. A computational model of flame structure and extinction will be modified to include radiative losses, which is thought to be a significant heat loss mechanism at low strain rates.

  2. TRAJECTORY AND INCINERATION OF ROGUE DROPLETS IN A TURBULENT DIFFUSION FLAME

    EPA Science Inventory

    The trajectory and incineration efficiency of individual droplet streams of a fuel mixture injected into a swirling gas turbulent diffusion flame were measured as a function of droplet size, droplet velocity, interdroplet spacing, and droplet injection angle. Additional experimen...

  3. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  4. Observations of Methane and Ethylene Diffusion Flames Stabilized Around a Blowing Porous Sphere Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Agrawal, Sanjay; Sacksteder, Kurt; Baum, Howard R.

    1994-01-01

    This paper presents the experimental and theoretical results for expanding methane and ethylene diffusion flames in microgravity. A small porous sphere made from a low-density and low-heat-capacity insulating material was used to uniformly supply fuel at a constant rate to the expanding diffusion flame. A theoretical model which includes soot and gas radiation is formulated but only the problem pertaining to the transient expansion of the flame is solved by assuming constant pressure infinitely fast one-step ideal gas reaction and unity Lewis number. This is a first step toward quantifying the effect of soot and gas radiation on these flames. The theoretically calculated expansion rate is in good agreement with the experimental results. Both experimental and theoretical results show that as the flame radius increases, the flame expansion process becomes diffusion controlled and the flame radius grows as gamma t. Theoretical calculations also show that for a constant fuel mass injection rate a quasi-steady state is developed in the region surrounded by the flame and the mass flow rate at any location inside this region equals the mass injection rate.

  5. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  6. Homogeneous nucleation rate measurements of 1-butanol in helium: a comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber.

    PubMed

    Brus, David; Hyvärinen, Antti-Pekka; Zdímal, Vladimír; Lihavainen, Heikki

    2005-06-01

    Isothermal homogeneous nucleation rates of 1-butanol were measured both in a thermal diffusion cloud chamber and in a laminar flow diffusion chamber built recently at the Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Prague, Czech Republic. The chosen system 1-butanol-helium can be studied reasonably well in both devices, in the overlapping range of temperatures. The results were compared with those found in the literature and those measured by Lihavainen in a laminar flow diffusion chamber of a similar design. The same isotherms measured with the thermal diffusion cloud chamber occur at highest saturation ratios of the three devices. Isotherms measured with the two laminar flow diffusion chambers are reasonably close together; the measurements by Lihavainen occur at lowest saturation ratios. The temperature dependences observed were similar in all three devices. The molecular content of critical clusters was calculated using the nucleation theorem and compared with the Kelvin equation. Both laminar flow diffusion chambers provided very similar sizes slightly above the Kelvin equation, whereas the thermal diffusion cloud chamber suggests critical cluster sizes significantly smaller. The results found elsewhere in the literature were in reasonable agreement with our results.

  7. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C2H6/O2/N2 flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.

    1992-01-01

    Saturation of a transition of the OH molecule in high-pressure flames is demonstrated by obtaining saturation curves in C2H6/O2/N2 laminar flames at 1, 6.1, 9.2, and 12.3 atm. Quantitative fluorescence measurements of OH number density at pressures to 12.3 atm are presented. To assess the efficacy of the balanced cross-rate model for high-pressure flames, laser-saturated fluorescence measurements, which were calibrated in an atmospheric-pressure flame, are compared with absorption measurements at 3.1 and 6.1 atm. At 3.1 atm the absorption and fluorescence measurements compare well. At 6.1 atm, however, the concentrations given by lasre-saturated fluorescence are about 25 percent lower than the absorption values, indicating some depletion of the laser-coupled levels beyond that at atmospheric pressure. By using a reasonable estimate for the finite sensitivity to quenching, it is anticipated that fluorescence measurements that are calibrated at 1 atm can be applied to flames at about 10 atm with absolute errors within +/- 50 percent.

  8. Development of a convective diffusion model for lead pipe rigs operating in laminar flow.

    PubMed

    Cardew, P T

    2006-06-01

    As part of achieving lower lead standards water undertakers are utilising lead pipe rigs to quantify the benefit of treatment measures. A convective diffusion model is developed for lead pipe rigs operating in laminar flow, and applied to the three operating steps of flushing, sampling and stagnation. The model is used to determine the appropriate time-scales for each stage, and the sensitivity of the measure to variations in flow-rate. In contrast to rigs operating in turbulent flow the average lead observed leaving the pipe and that in the pipe, after a period of stagnation, are substantially different. Equations are derived for both, and take into account the residual distribution of lead left in the pipe after flushing. It is shown that the lead concentration observed leaving the pipe is well approximated by a single exponential term in contrast to the concentration within the pipe. Predictions are made on the residual lead concentration that can be achieved through flushing, and its dependence on flow-rate. The relevance of the laminar flow model to that in domestic lead pipes is discussed.

  9. On the structure and dynamics of stationary and rotating spherical diffusion flames

    NASA Astrophysics Data System (ADS)

    Yoo, Sean Won S.

    This dissertation research is concerned with diffusion flames generated by a porous spherical burner. It consists of two parts: the structure and extinction of weakly buoyant, nearly spherical, stationary flames, and the structure and dynamics of these flames in response to rotation of the burner in micro-gravity. In the first part of the investigation, normal-gravity experiments were conducted with nearly spherical, inverse diffusion flames of small density difference with the ambient to study the chemiluminescent flame structure and oscillatory extinction. The flames were imaged by a UV camera, with narrow-band-limited filters corresponding to electronically excited OH and CH. The experimental results were then compared with computations allowing for detailed chemistry and transport. While the comparison was very satisfactory for the hydrogen flames, OH* chemiluminescence exhibited two peaks for the hydrogen/methane flames, demonstrating the importance of the H + O + M ⇄ OH* + M reaction. By decreasing the reactant concentrations in the ambient, the transient extinction behavior of these flames was also studied. In particular, pulsating instabilities were experimentally observed and measured for a spherical diffusion flame. This was further validated by comparing the measured frequency of oscillations to that obtained from computations, showing good agreement. In the second part of the investigation, the coupled effects of the rotational motion and non-unity Lewis number diffusion for both fuel and oxidizer were first studied theoretically through perturbation analysis. The analysis showed that the rotational motion induces a secondary flow that distorts the otherwise spherical flame into a pancake shape. The flame temperature was also affected, such that the flame became more susceptible to extinction either at the poles or the equator depending on the system Lewis numbers. Microgravity experiments were subsequently conducted at the NASA Glenn Research Center

  10. Consistent flamelet modeling of differential molecular diffusion for turbulent non-premixed flames

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng

    2016-03-01

    Treating differential molecular diffusion correctly and accurately remains as a great challenge to the modeling of turbulent non-premixed combustion. The aim of this paper is to develop consistent modeling strategies for differential molecular diffusion in flamelet models. Two types of differential molecular diffusion models are introduced, linear differential diffusion models and nonlinear differential diffusion models. A multi-component turbulent mixing layer problem is analyzed in detail to gain insights into differential molecular diffusion and its characteristics, particularly the dependence of differential molecular diffusion on the Reynolds number and the Lewis number. These characteristics are then used to validate the differential molecular diffusion models. Finally, the new models are applied to the modeling of a series of laboratory-scale turbulent non-premixed jet flames with different Reynolds number (Sandia Flames B, C, and D) to further assess the models' performance.

  11. Numerical Study of Buoyancy and Different Diffusion Effects on the Structure and Dynamics of Triple Flames

    NASA Technical Reports Server (NTRS)

    Chen, Jyh-Yuan; Echekki, Tarek

    2001-01-01

    Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames. Results of numerical simulations show that gravity strongly affects the triple flame speed through its contribution to the overall flow field. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed. Downward-propagating triple flames at relatively strong gravity effects have exhibited instabilities. These instabilities are generated without any artificial forcing of the flow. Instead disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame configurations have been performed to identify the most amplified frequency in spatially developed flows. The eigenfunction equations obtained from the linearized disturbance equations are solved using the shooting method. The linear stability analysis yields reasonably good agreements with the observed frequencies of the unstable triple flames. The frequencies and amplitudes of

  12. Soot topography in a planar diffusion flame wrapped by a line vortex

    SciTech Connect

    Cetegen, B.M.; Basu, S.

    2006-09-15

    An experimental study of the interaction of a planar diffusion flame with a line vortex is presented. A planar diffusion flame is established between two coflowing, equal velocity streams of acetylene diluted with nitrogen and air. A line vortex is generated on demand by momentarily pulsing one of the flow streams by way of electromagnetic actuation of a piston in the flow apparatus. The flame-vortex interactions are diagnosed by planar laser-induced incandescence for soot yield and by particle image velocimetry for vortex flow characterization. The results show that soot formation and distribution are influenced by the reactant streams from which vortices are initiated. The vortices interacting with the flame from the air side produce more soot and soot is distributed in and around the vortex core in diffuse layers. In contrast, topography of soot in vortices interacting from the fuel side is such that soot is confined to thinner layers around the vortex core which does not contain any soot. The flame curvature is found to influence the local soot production with the flame regions convex to the fuel side containing more soot locally. It is also found that the overall soot yield is less sensitive to the vortex strength and is of lower magnitude when vortex is spun from the fuel side. The knowledge of this type of asymmetry in soot yield in flame-vortex interactions is useful for combustion engineering and design of practical devices. (author)

  13. Spherical Ethylene/Air Diffusion Flames Subject to Concentric DC Electric Field in Microgravity

    NASA Technical Reports Server (NTRS)

    Yuan, Z. -G.; Hegde, U.; Faeth, G. M.

    2001-01-01

    It is well known that microgravity conditions, by eliminating buoyant flow, enable many combustion phenomena to be observed that are not possible to observe at normal gravity. One example is the spherical diffusion flame surrounding a porous spherical burner. The present paper demonstrates that by superimposing a spherical electrical field on such a flame, the flame remains spherical so that we can study the interaction between the electric field and flame in a one-dimensional fashion. Flames are susceptible to electric fields that are much weaker than the breakdown field of the flame gases owing to the presence of ions generated in the high temperature flame reaction zone. These ions and the electric current of the moving ions, in turn, significantly change the distribution of the electric field. Thus, to understand the interplay between the electric field and the flame is challenging. Numerous experimental studies of the effect of electric fields on flames have been reported. Unfortunately, they were all involved in complex geometries of both the flow field and the electric field, which hinders detailed study of the phenomena. In a one-dimensional domain, however, the electric field, the flow field, the thermal field and the chemical species field are all co-linear. Thus the problem is greatly simplified and becomes more tractable.

  14. Transition of carbon nanostructures in heptane diffusion flames

    NASA Astrophysics Data System (ADS)

    Hu, Wei-Chieh; Hou, Shuhn-Shyurng; Lin, Ta-Hui

    2017-02-01

    The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20-30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1-2.5 mm below the flame front were in the range of 20-25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.

  15. Effects of H{sub 2} and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames

    SciTech Connect

    Liu, Fengshan; Guelder, OEmer L.

    2005-11-01

    The structures of freely propagating rich CH{sub 4}/air and CH{sub 4}/O{sub 2} flames were studied numerically using a relatively detailed reaction mechanism. Species diffusion was modeled using five different methods/assumptions to investigate the effects of species diffusion, in particular H{sub 2} and H, on superadiabatic flame temperature. With the preferential diffusion of H{sub 2} and H accounted for, significant amount of H{sub 2} and H produced in the flame front diffuse from the reaction zone to the preheat zone. The preferential diffusion of H{sub 2} from the reaction zone to the preheat zone has negligible effects on the phenomenon of superadiabatic flame temperature in both CH{sub 4}/air and CH{sub 4}/O{sub 2} flames. It is therefore demonstrated that the superadiabatic flame temperature phenomenon in rich hydrocarbon flames is not due to the preferential diffusion of H{sub 2} from the reaction zone to the preheat zone as recently suggested by Zamashchikov et al. [V.V. Zamashchikov, I.G. Namyatov, V.A. Bunev, V.S. Babkin, Combust. Explosion Shock Waves 40 (2004) 32]. The suppression of the preferential diffusion of H radicals from the reaction zone to the preheat zone drastically reduces the degree of superadiabaticity in rich CH{sub 4}/O{sub 2} flames. The preferential diffusion of H radicals plays an important role in the occurrence of superadiabatic flame temperature. The assumption of unity Lewis number for all species leads to the suppression of H radical diffusion from the reaction zone to the preheat zone and significant diffusion of CO{sub 2} from the postflame zone to the reaction zone. Consequently, the degree of superadiabaticity of flame temperature is also significantly reduced. Through reaction flux analyses and numerical experiments, the chemical nature of the superadiabatic flame temperature phenomenon in rich CH{sub 4}/air and CH{sub 4}/O{sub 2} flames was identified to be the relative scarcity of H radical, which leads to overshoot of

  16. Effects of Structure and Hydrodynamics on the Sooting Behavior of Spherical Microgravity Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Axelbaum, R. L.; Urban, D. L.

    1999-01-01

    Recent experimental, numerical and analytical work has shown that the stoichiometric mixture fraction (Z(sub st)) can have a profound effect on soot formation in diffusion flames. These findings were obtained at constant flame temperature (T(sub ad)), employing the approach described in Du and Axelbaum (1995, 1996). For example, a fuel mixture containing 1 mole of ethylene and 11.28 moles of nitrogen burning in pure oxygen ((Z(sub st)) = 0.78) has the same adiabatic flame temperature (2370 K) as that of pure ethylene burning in air ((Z(sub st)) = 0.064). An important finding of these works was that at sufficiently high (Z(sub st)), flames remain blue as strain rate approaches zero in counterflow flames, or as flame height and residence time approach infinity in coflowing flames. Lin and Faeth (1996a) coined the term permanently blue to describe such flames. Two theories have been proposed to explain the appearance of permanently-blue flames at high (Z(sub st)). They are based on (1) hydrodynamics and (2) flame structure. Previous experimental studies in normal gravity are not definitive as to which, if either, mechanism is dominant because both hydrodynamics and structure suppress soot formation at high (Z(sub st)) in coflowing and counterflowing diffusion flames. In counterflow flames with (Z(sub st)) < 0.5 streamlines at the flame sheet are directed toward the fuel. Newly formed soot is convected into richer regions, favoring soot growth over oxidation. For (Z(sub st)) > 0.5, convection at the flame is toward the oxidizer, thus enhancing soot oxidization. Thus, in counterflow flames, hydrodynamics causes soot to be convected towards the oxidizer at high (Z(sub st)) which suppresses soot formation. Axelbaum and co-workers maintain that while the direction of convection can impact soot growth and oxidation, these processes alone cannot cause permanently-blue flames. Soot growth and oxidation are dependent on the existence of soot particles and the presence of soot

  17. A lean methane premixed laminar flame doped with components of diesel fuel part III: Indane and comparison between n-butylbenzene, n-propylcyclohexane and indane

    SciTech Connect

    Pousse, E.; Tian, Z.Y.; Glaude, P.A.; Fournet, R.; Battin-Leclerc, F.

    2010-07-15

    To better understand the chemistry of the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with indane has been investigated. The inlet gases contained 7.1% (molar) of methane, 36.8% of oxygen and 0.9% of indane corresponding to an equivalence ratio of 0.67 and a ratio C{sub 10}H{sub 14}/CH{sub 4} of 12.8%. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as diluent, with a gas velocity at the burner of 49.1 cm s{sup -1} at 333 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products, but also 16 C{sub 3}-C{sub 5} non-aromatic hydrocarbons, 6 C{sub 1}-C{sub 3} non-aromatic oxygenated compounds, as well as 22 aromatic products, namely benzene, toluene, xylenes, phenylacetylene, ethylbenzene, styrene, propenylbenzene, allylbenzene, n-propylbenzene, methylstyrenes, ethyltoluenes, trimethylbenzenes, n-butylbenzene, dimethylethylbenzene, indene, methylindenes, methylindane, benzocyclobutene, naphthalene, phenol, benzaldehyde, and benzofuran. A new mechanism for the oxidation of indane was proposed whose predictions were in satisfactory agreement with measured species profiles in both flames and jet-stirred reactor experiments. The main reaction pathways of consumption of indane have been derived from flow rate analyses in the two types of reactors. A comparison of the effect of the addition of three components of diesel fuel, namely indane, n-butylbenzene and n-propylcyclohexane (parts I and II of this series of paper), on the structure of a laminar lean premixed methane flame is also presented. (author)

  18. OH radical imaging in a DI diesel engine and the structure of the early diffusion flame

    SciTech Connect

    Dec, J.E.; Coy, E.B.

    1996-03-01

    Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

  19. Flame propagation under partially-premixed conditions

    NASA Technical Reports Server (NTRS)

    Ruetsch, Gregory R.

    1994-01-01

    This study concentrates on developing a better understanding of triple flames. We relax the assumption of zero heat release, address the issue of stabilization, and, in order to investigate the role that heat release plays in flame propagation in partially premixed combustion, we return to a simple flow field and investigate the behavior of flames in a laminar environment. We solve the compressible Navier-Stokes equations in a two-dimensional domain. At the boundaries, we use an inflow boundary condition on the left and nearly-perfect reflective boundary conditions, required to avoid pressure drift, at the outflow and sides. After the flow and flame are initialized, the mixture fraction is varied at the inlet from its uniform stoichiometric value to a tanh profile varying from zero to one. As the mixture fraction gradient reaches the flame surface only the centerline is exposed to the stoichionetric mixture fraction and locally maintains the planar flame speed and reaction rate. Above this point the mixture is fuel rich, and below fuel lean. As a result, these regions of non-unity equivalence ratio burn less, the reaction rate drops, and the local flame speed is reduced. The excess fuel and oxidizer then combine behind the premixed flame along the stoichiometric surface and burn in a trailing diffusion flame. Thus the 'triple' flame refers to the fuel-rich premixed flame, the fuel-lean premixed flame, and the trailing diffusion flame. Due to heat release, the normal velocity across the flame is increased, whereas the tangential component remains unchanged. Far-field flame speed, local flame speed, and their differences are shown as a function of the local mixing thickness. It was also determined that the lateral position of the flame affects stabilization, and the distribution of the reaction rate along the premixed wings of triple flames affects flame propagation.

  20. Unsteady Diffusion Flames: Ignition, Travel, and Burnout (SUBCORE Project: Simplified Unsteady Burning of Contained Reactants)

    NASA Technical Reports Server (NTRS)

    Fendell, Francis; Rungaldier, Harald

    1999-01-01

    An experimental apparatus for the examination of a planar, virtually strain-rate-free diffusion flame in microgravity has been designed and fabricated. Such a diffusion flame is characterized by relatively large spatial scale and high symmetry (to facilitate probing), and by relatively long fluid-residence time (to facilitate investigation of rates associated with sooting phenomena). Within the squat rectangular apparatus, with impervious, noncatalytic isothermal walls of stainless steel, a thin metallic splitter plate subdivides the contents into half-volumes. One half-volume initially contains fuel vapor diluted with an inert gas, and the other, oxidizer diluted with another inert gas-so that the two domains have equal pressure, density, and temperature. As the separator is removed, by translation in its own plane, through a tightly fitting slit in one side wall, a line ignitor in the opposite side wall initiates a triple-flame propagation across the narrow layer of combustible mixture formed near midheight in the chamber. The planar diffusion flame so emplaced is quickly disrupted in earth gravity. In microgravity, the planar flame persists, and travels ultimately into the half-volume containing the stoichiometrically deficient reactant; the flame eventually becomes extinguished owing to reactant depletion and heat loss to the walls.

  1. Standard and high-throughput microfluidic disposables based on laminar fluid diffusion interfaces

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Morris, Chris; Kesler, Natasa; Battrell, Fred; Bardell, Ron L.

    2002-06-01

    Laminar Fluid Diffusion Interfaces are generated when tow or more streams flow in parallel in a microfluidic structure. This technology can be used for diffusion-based separation and detection applications, for example: DNA desalting, the extraction of small proteins from whole-blood samples, and the detection of various constituents in while blood. Additional applications are the establishment of stable concentration gradients, and the exposure of chemical constituents or biological particles to these concentration gradients, enabling the uniform and controlled exposure of cells to lysing agents, allowing the differentiation of cells by their sensitivity to specific agents in an on-chip cytometer coupled directly to the lysing structure. We have developed integrated systems using machine-controlled disposable cartridges and passive self-contained disposable cards including particle separators, flow cytometers, valves, detection channels, mixers, and diluters that are used in a hematology analyzer, stand-alone blood plasma separators, and a variety of chemical and biological assays. Microfluidic arrays compatible with common well-plate formats have been designed for high-throughout toxicology screening applications. All these devices were manufactured using Micronics' unique rapid-prototyping process yielding low-cost plastic disposable microfluidic chips.

  2. An analysis of turbulent diffusion flame in axismmetric jet

    NASA Astrophysics Data System (ADS)

    Chung, P. M.; Im, K. H.

    1980-04-01

    The kinetic theory of turbulent flow was employed to study the mixing limited combustion of hydrogen in axisymmetric jets. The integro-differential equations in two spatial and three velocity coordinates describing the combustion were reduced to a set of hyperbolic partial differential equations in the two spatial coordinates by a binodal approximation. The MacCormick's finite difference method was then employed for solution. The flame length was longer than that predicted by the flame-sheet analysis, and was found to be in general agreement with a recent experimental result. Increase of the turbulence energy and scale resulted in an enhancement of the combustion rate and, hence, in a shorter flame length. Details of the numerical method as well as of the physical findings are discussed.

  3. An analysis of turbulent diffusion flame in axisymmetric jet

    NASA Technical Reports Server (NTRS)

    Chung, P. M.; Im, K. H.

    1980-01-01

    The kinetic theory of turbulent flow was employed to study the mixing limited combustion of hydrogen in axisymmetric jets. The integro-differential equations in two spatial and three velocity coordinates describing the combustion were reduced to a set of hyperbolic partial differential equations in the two spatial coordinates by a binodal approximation. The MacCormick's finite difference method was then employed for solution. The flame length was longer than that predicted by the flame-sheet analysis, and was found to be in general agreement with a recent experimental result. Increase of the turbulence energy and scale resulted in an enhancement of the combustion rate and, hence, in a shorter flame length. Details of the numerical method as well as of the physical findings are discussed.

  4. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind

    1995-01-01

    The objective of this research was to experimentally and theoretically investigate the radiation-induced extinction of gaseous diffusion flames in microgravity. The microgravity conditions were required because radiation-induced extinction is generally not possible in 1-g but is highly likely in microgravity. In 1-g, the flame-generated particulates (e.g. soot) and gaseous combustion products that are responsible for flame radiation, are swept away from the high temperature reaction zone by the buoyancy-induced flow and a steady state is developed. In microgravity, however, the absence of buoyancy-induced flow which transports the fuel and the oxidizer to the combustion zone and removes the hot combustion products from it enhances the flame radiation due to: (1) transient build-up of the combustion products in the flame zone which increases the gas radiation, and (2) longer residence time makes conditions appropriate for substantial amounts of soot to form which is usually responsible for most of the radiative heat loss. Numerical calculations conducted during the course of this work show that even non-radiative flames continue to become "weaker" (diminished burning rate per unit flame area) due to reduced rates of convective and diffusive transport. Thus, it was anticipated that radiative heat loss may eventually extinguish the already "weak" microgravity diffusion flame. While this hypothesis appears convincing and our numerical calculations support it, experiments for a long enough microgravity time could not be conducted during the course of this research to provide an experimental proof. Space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in microgravity will burn indefinitely. It was hoped that radiative extinction can be experimentally shown by the aerodynamically stabilized gaseous diffusion flames where the fuel supply rate was externally controlled. While substantial progress toward this

  5. Near-Limit Flamelet Phenomena in Buoyant Low Stretch Diffusion Flames Beneath a Solid Fuel

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    2000-01-01

    A unique near-limit low stretch multidimensional stable flamelet phenomena has been observed for the first time which extends the material flammability limit beyond the one-dimensional low stretch flammability limit to lower burning rates and higher relative heat losses than is possible with uniform flame coverage. During low stretch experiments burning the underside of very large radii (greater than or = 75 cm stretch rate less than or = 3/s) cylindrical cast PMMA samples, multidimensional flamelets were observed, in contrast with a one-dimensional flame that was found to blanket the surface for smaller radii samples ( higher stretch rate). Flamelets were observed by decreasing the stretch rate or by increasing the conductive heat loss from the flame. Flamelets are defined as flames that cover only part of the burning sample at any given time, but persist for many minutes. Flamelet phenomena is viewed as the flame's method of enhancing oxygen flow to the flame, through oxygen transport into the edges of the flamelet. Flamelets form as heat losses (surface radiation and solid-phase conduction) become large relative to the weakened heat release of the low stretch flame. While heat loss rates remain fairly constant, the limiting factor in the heat release of the flame is hypothesized to be the oxygen transport to the flame in this low stretch (low convective) environment. Flamelet extinction is frequently caused by encroachment of an adjacent flamelet. Large-scale whole-body flamelet oscillations at 1.2 - 1.95 Hz are noted prior to extinction of a flamelet. This oscillation is believed to be due a repeated process of excess fuel leakage through the dark channels between the flamelets, fuel premixing with slow incoming oxidizer, and subsequent rapid flame spread and retreat of the flamelet through the premixed layer. The oscillation frequency is driven by gas-phase diffusive time scales.

  6. Trioxane-Air Counterflow Diffusion Flames in Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Linteris, Gregory T.; Urban, David L.

    2001-01-01

    Trioxane, a weakly bound polymer of formaldehyde (C3H6O3, m.p. 61 C, b.p. 115 C), is a uniquely suited compound for studying material flammability. Like many of the more commonly used materials for such tests (e.g., delrin, polyethylene, acrylic sheet, wood, and paper), it displays relevant phenomena (internal heat conduction, melting, vaporization, thermal decomposition, and gas phase reaction of the decomposition products). Unlike the other materials, however, it is non-sooting and has simple and well-known chemical kinetic pathways for its combustion. Hence it should prove to be much more useful for numerical modeling of surface combustion than the complex fuels typically used. We have performed the first exploratory tests of trioxane combustion in the counterflow configuration to determine its potential as a surrogate solid fuel which allows detailed modeling. The experiments were performed in the spring and summer of 1998 at the National Institute of Standards and Technology in Gaithersburg, MD, and at NASA-GRC in Cleveland. Using counterflow flames at 1-g, we measured the fuel consumption rate and the extinction conditions with added N2 in the air; at mg conditions, we observed the ignition characteristics and flame shape from video images. We have performed numerical calculations of the flame structure, but these are not described here due to space limitations. This paper summarizes some burning characteristics of trioxane relevant to its use for studying flame spread and fire suppression.

  7. A MODEL OF TURBULENT DIFFUSION FLAMES AND NITRIC OXIDE GENERATION

    EPA Science Inventory

    The report describes a new view of mixing and chemical reactions in turbulent fuel jets discharging into air. Review of available fundamental data from jet flames leads to the idea that mixing begins with a large scale, inviscid intertwining of entrained air and fuel throughout t...

  8. The effect of soot modeling on thermal radiation in buoyant turbulent diffusion flames

    NASA Astrophysics Data System (ADS)

    Snegirev, A.; Kokovina, E.; Tsoy, A.; Harris, J.; Wu, T.

    2016-09-01

    Radiative impact of buoyant turbulent diffusion flames is the driving force in fire development. Radiation emission and re-absorption is controlled by gaseous combustion products, mainly CO2 and H2O, and by soot. Relative contribution of gas and soot radiation depends on the fuel sooting propensity and on soot distribution in the flame. Soot modeling approaches incorporated in big commercial codes were developed and calibrated for momentum-dominated jet flames, and these approaches must be re-evaluated when applied to the buoyant flames occurring in fires. The purpose of this work is to evaluate the effect of the soot models available in ANSYS FLUENT on the predictions of the radiative fluxes produced by the buoyant turbulent diffusion flames with considerably different soot yields. By means of large eddy simulations, we assess capability of the Moss-Brooks soot formation model combined with two soot oxidation submodels to predict methane- and heptane-fuelled fires, for which radiative flux measurements are available in the literature. We demonstrate that the soot oxidation models could be equally important as soot formation ones to predict the soot yield in the overfire region. Contribution of soot in the radiation emission by the flame is also examined, and predicted radiative fluxes are compared to published experimental data.

  9. Single-walled carbon nanotube formation on iron oxide catalysts in diffusion flames

    NASA Astrophysics Data System (ADS)

    Unrau, Chad J.; Axelbaum, Richard L.; Fraundorf, Phil

    2010-08-01

    Single-walled carbon nanotubes (SWCNTs) are shown to grow rapidly on iron oxide catalysts on the fuel side of an inverse ethylene diffusion flame. The pathway of carbon in the flame is controlled by the flame structure, leading to formation of SWCNTs free of polycyclic aromatic hydrocarbons (PAH) or soot. By using a combination of oxygen-enrichment and fuel dilution, fuel oxidation is favored over pyrolysis, PAH growth, and subsequent soot formation. The inverse configuration of the flame prevents burnout of the SWCNTs while providing a long carbon-rich region for nanotube formation. Furthermore, flame structure is used to control oxidation of the catalyst particles. Iron sub-oxide catalysts are highly active toward SWCNT formation while Fe and Fe2O3 catalysts are less active. This can be understood by considering the effects of particle oxidation on the dissociative adsorption of gas-phase hydrocarbons. The optimum catalyst particle composition and flame conditions were determined in near real-time using a scanning mobility particle sizer (SMPS) to measure the catalyst and SWCNT size distributions. In addition, SMPS results were combined with flame velocity measurement to measure SWCNT growth rates. SWCNTs were found to grow at rates of over 100 μm/s.

  10. Effects of heat loss, preferential diffusion, and flame stretch on flame-front instability and extinction of propane/air mixtures

    NASA Technical Reports Server (NTRS)

    Ishizuka, S.; Miyasaka, K.; Law, C. K.

    1982-01-01

    Flame configurations, flame-front cellular instability, and extinction of propane/air mixtures in the stagnation-point flow are experimentally studied for their dependence on downstream heat loss, preferential diffusion, and flame stretch. Boundaries for lean- and rich-limit extinction, stabilization of corrugated flames, and local extinction caused by sharp curvatures are mapped for varying propane concentrations and freestream velocities. Flame location and temperature at extinction are determined as functions of stagnation surface temperature, extent of preheating, propane concentration, and freestream velocity. Results substantiate the theoretical predictions of the different extinction modes for lean and rich flames in the absence of downstream heat loss, and yield useful insight on the extinction characteristics when finite downstream heat loss does exist. It is further shown that flame-front instability occurs only for rich mixtures in accordance with preferential diffusion considerations, and that flame stretch has a stabilizing effect such that flame-front instability is completely inhibited before the onset of extinction.

  11. Propagation of intense laser radiation through a diffusion flame of burning oil

    SciTech Connect

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Pleshkov, V M

    2015-06-30

    We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 10{sup 3} to 1.2 × 10{sup 6} W cm{sup -2}) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented. (laser applications and other topics in quantum electronics)

  12. Synthesis of Fullerenes in Low Pressure Benzene/Oxygen Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hebgen, Peter; Howard, Jack B.

    1999-01-01

    The interest in fullerenes is strongly increasing since their discovery by Kroto et al. in 1985 as products of the evaporation of carbon into inert gas at low pressure. Due to their all carbon closed-shell structure, fullerenes have many exceptional physical and chemical properties and a large potential for applications such as superconductors, sensors, catalysts, optical and electronic devices, polymers, high energy fuels, and biological and medical materials. This list is still growing, because the research on fullerenes is still at an early stage. Fullerenes can be formed not only in a system containing only carbon and an inert gas, but also in premixed hydrocarbon flames under reduced pressure and fuel rich conditions. The highest yields of fullerenes in flames are obtained under conditions of substantial soot formation. There is a need for more information on the yields of fullerenes under different conditions in order to understand the mechanisms of their formation and to enable the design of practical combustion systems for large-scale fullerene production. Little work has been reported on the formation of fullerenes in diffusion flames. In order to explore the yields of fullerenes and the effect of low pressure in diffusion flames, therefore we constructed and used a low pressure diffusion flame burner in this study.

  13. Influence of a Simple Heat Loss Profile on a Pure Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Ray, Anjan; Wichman, Indrek S.

    1996-01-01

    The presence of soot on the fuel side of a diffusion flame results in significant radiative heat losses. The influence of a fuel side heat loss zone on a pure diffusion flame established between a fuel and an oxidizer wall is investigated by assuming a hypothetical sech(sup 2) heat loss profile. The intensity and width of the loss zone are parametrically varied. The loss zone is placed at different distances from the Burke-Schumann flame location. The migration of the temperature and reactivity peaks are examined for a variety of situations. For certain cases the reaction zone breaks through the loss zone and relocates itself on the fuel side of the loss zone. In all cases the temperature and reactivity peaks move toward the fuel side with increased heat losses. The flame structure reveals that the primary balance for the energy equation is between the reaction term and the diffusion term. Extinction plots are generated for a variety of situations. The heat transfer from the flame to the walls and the radiative fraction is also investigated, and an analytical correlation formula, derived in a previous study, is shown to produce excellent predictions of our numerical results when an O(l) numerical multiplicative constant is employed.

  14. Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects

    NASA Technical Reports Server (NTRS)

    Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.

    1999-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe

  15. Formation of soot and nitrogen oxides in unsteady counterflow diffusion flames

    SciTech Connect

    Cuoci, A.; Frassoldati, A.; Faravelli, T.; Ranzi, E.

    2009-10-15

    The formation of pollutant species in turbulent diffusion flames is strongly affected by turbulence/chemistry interactions. Unsteady counterflow diffusion flames can be conveniently used to address the unsteady effects of hydrodynamics on the pollutant chemistry, because they exhibit a larger range of combustion conditions than those observed in steady flames. In this paper, unsteady effects on the formation of soot (and its main precursors) and nitrogen oxides (NO{sub x}) are investigated by imposing harmonic oscillations on the strain rate of several counterflow diffusion flames fed with propane. Numerical results confirm that the dynamic response of each species is strongly affected by the strain rate oscillations and the characteristic time governing its chemistry. At low frequencies of imposed oscillations the soot and NO{sub x} profiles show strong deviations from the steady-state profile. At large frequencies a decoupling between the concentration and the velocity field is evident. In particular, the formation of soot and NO{sub x} is found less sensitive to velocity fluctuations for flames with large initial strain rate. The significant increase of soot and NO{sub x} concentrations in unsteady conditions appears to be a function of both forcing frequency and flame global strain rate. Moreover, the cut-off frequency, defined as the minimum frequency above which the strain rate oscillations have negligible effects on the formation of each species, was found to be strongly dependent on the chemical characteristic time and the flame global strain rate, but only marginally affected by the amplitude of imposed oscillations. (author)

  16. Design and Fabrication of a Hele-Shaw Apparatus for Observing Instabilities of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Wichman, I. S.; Oravecz-Simpkins, L.; Olson, S.

    2001-01-01

    Examinations of flame fronts spreading over solid fuels in an opposed flow of oxidizer have shown that the flame front fragments into smaller (cellular) flames. These 'flamelets' will oscillate, recombine, or extinguish, indicating that they are in the near extinction limit regime (i.e., to one side of the quenching branch of the flammability map). Onset of unstable cellular flamelet formation for flame spread over thin fuels occurs when a heat-sink substrate is placed a small distance from the underside of the fuel. This heat-sink substrate (or backing) displaces the quenching branch of the flammability map in a direction that causes the instabilities to occur at higher air velocities. Similar near-limit behavior has been observed in other works using different fuels, thus suggesting that these dynamic mechanisms are fuel-independent and therefore fundamental attributes of flames in this near-limit flame spread regime. The objective of this project is to determine the contributions of the hydrodynamic and thermodiffusive mechanisms to the observed formation of flame instabilities. From this, a model of diffusion flame instabilities shall be generated. Previously, experiments were conducted in NASA drop towers, thereby limiting observation time to O(1-5 sec). The NASA tests exhibited flamelet survival for the entire drop time, suggesting that flamelets (i.e., small cellular flames) might exist, if permitted, for longer time periods. By necessity, experiments were limited to thermally thin cellulose fuels (approximately 0.001 in thick): instabilities could form by virtue of faster spread rates over thin fuels. Unstable behavior was unlikely in the short drop time for thicker fuels. In the International Space Station (ISS), microgravity time is unlimited, so both thin and thick fuels can be tested.

  17. A numerical study of the stability of one-dimensional laminar premixed flames in inert porous media

    SciTech Connect

    Mendes, M.A.A.; Pereira, J.M.C.; Pereira, J.C.F.

    2008-06-15

    This work presents a numerical study of the stabilization diagram of methane/air premixed flames in a finite porous media foam with a uniform ambient temperature. A set of steady computations are considered, using a 1D numerical model that takes into account solid and gas energy equations as well as chemistry and radiation models. The present results show that both stable and unstable solutions, for upper and lower flames, exist either at the surface or submerged in the porous matrix. The influence of the 1D computational domain, boundary conditions, and gas/solid interface treatment on the stability of the calculated flames is also discussed. A linearized version of the discrete-ordinates radiation model is included in the linear stability analysis to discuss the influence of radiation on the stability of the flames. The full stabilization diagram and the linear stability analysis provide information on the stability of the flames, pointing to the existence of unstable upstream surface flames as well as unstable submerged flames on the downstream part of the porous media. (author)

  18. The Impact of Buoyancy and Flame Structure on Soot, Radiation and NOx Emissions from a Turbulent Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Kennedy, I. M.; Kollman, W.; VanderWal, R. L.

    1999-01-01

    It is hypothesized that the spatial structure of a turbulent diffusion flame plays an important role in determining the emissions of radiative energy, soot and NO, from a combustor. This structure, manifested in the two point statistics, is influenced by buoyancy. Radiation, soot and NOx emissions are the cumulative result of processes that occur throughout a flame. For example, radiation fluxes along a line of sight can be found from summing up the contributions from sources in individual pockets of hot soot that emit, and from sinks in cold soot that absorb. Soot and NOx are both the results of slow chemistry and are not equilibrium products. The time that is available for production and burnout is crucial in determining the eventual emissions of these pollutants. Turbulence models generally rely on a single point closure of the appropriate time averaged equations. Hence, spatial information is lost and needs to be modeled using solution variables such as turbulence kinetic energy and dissipation rate, often with the assumption of isotropy. However, buoyancy can affect the physical structure of turbulent flames and can change the spatial extent of soot bearing regions. Theoretical comparisons with models are best done in the limit of infinite Froude number because the inclusion of buoyancy in flow models introduces significant uncertainties. Hence, LII measurements of soot, measurements of radiation fluxes from soot, Particle Imaging Velocimetry (PIV) of the flow field and measurements of post flame NOX will be carried out on the NASA Lewis 2.2 sec drop tower and eventually on the parabolic flight aircraft. The drop rig will be a modified version of a unit that has been successfully used at Lewis in the past.

  19. Numerical simulation of premixed H2-air cellular tubular flames

    NASA Astrophysics Data System (ADS)

    Hall, Carl Alan; Wendell Pitz, Robert

    2016-03-01

    The detailed flame structure of laminar premixed cellular flames in the tubular domain is simulated in 2D using a fully-implicit primitive variable finite difference formulation that includes multicomponent transport and detailed chemical kinetics. Numerical results for H2/air flames are presented and compared against spatially resolved experimental measurements of temperature and chemical species including atomic H and OH. The experimental results compare well for flame structure and cell number, despite the numerical model under-predicting the peak temperature by 200 K. Numerical experiments were performed to assess the ability for cellular tubular flames to impact experimental and numerical investigations of practical flames. The cellular flame structure is found to provide a highly sensitive geometry that is useful for validating diffusive transport modelling approximations. This capability is exemplified through the development of a simple and accurate approximation for thermal diffusion (i.e. the Soret effect) that is suitable for practical combustion codes.

  20. Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ravikrishna, Rayavarapu V.

    2000-01-01

    The feasibility of making quantitative nonintrusive NO concentration ([NO]) measurements in nonpremixed flames has been assessed by obtaining laser-induced fluorescence (LIF) measurements of [NO] in counterflow diffusion flames at atmospheric and higher pressures. Comparisons at atmospheric pressure between laser-saturated fluorescence (LSF) and linear LIF measurements in four diluted ethane-air counterflow diffusion flames with strain rates from 5 to 48/s yielded excellent agreement from fuel-lean to moderately fuel-rich conditions, thus indicating the utility of a model-based quenching correction technique, which was then extended to higher pressures. Quantitative LIF measurements of [NO] in three diluted methane-air counterflow diffusion flames with strain rates from 5 to 35/s were compared with OPPDIF model predictions using the GRI (version 2.11) chemical kinetic mechanism. The comparisons revealed that the GRI mechanism underpredicts prompt-NO by 30-50% at atmospheric pressure. Based on these measurements, a modified reaction rate coefficient for the prompt-NO initiation reaction was proposed which causes the predictions to match experimental data. Temperature measurements using thin filament pyrometry (TFP) in conjunction with a new calibration method utilizing a near-adiabatic H2-air Hencken burner gave very good comparisons with model predictions in these counterflow diffusion flames. Quantitative LIF measurements of [NO] were also obtained in four methane-air counterflow partially-premixed flames with fuel-side equivalence ratios (phi(sub B)) of 1.45, 1.6, 1.8 and 2.0. The measurements were in excellent agreement with model predictions when accounting for radiative heat loss. Spatial separation between regions dominated by the prompt and thermal NO mechanisms was observed in the phi(sub B) = 1.45 flame. The modified rate coefficient proposed earlier for the prompt-NO initiation reaction improved agreement between code predictions and measurements in the

  1. Real Time Quantitative 3-D Imaging of Diffusion Flame Species

    NASA Technical Reports Server (NTRS)

    Kane, Daniel J.; Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or ground-based facilities such as drop towers, provides a unique setting for study of combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Even the use of so-called 'limiting cases' or the construction of 1-D or 2-D models and experiments fail to make the analysis of combustion simultaneously simple and accurate. Ideally, to bridge the gap between chemistry and fluid mechanics in microgravity combustion, species concentrations and temperature profiles are needed throughout the flame. However, restrictions associated with performing measurements in reduced gravity, especially size and weight considerations, have generally limited microgravity combustion studies to the capture of flame emissions on film or video laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated studies are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the computational models. While there have been a myriad of fluid mechanical visualization studies in microgravity combustion, little experimental work has been completed to obtain reactant and product concentrations within a microgravity flame. This is largely due to the fact that traditional sampling methods (quenching microprobes using GC and/or mass spec analysis) are too heavy, slow, and cumbersome for microgravity experiments. Non-intrusive optical spectroscopic techniques have - up until now - also required excessively bulky, power hungry equipment. However, with the advent of near-IR diode

  2. An Investigation of Fully Modulated, Turbulent Diffusion Flames in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Usowicz, J. E.; Sangras, R.; Stocker, D. P.; Hegde, U. G.; Nagashima, T.; Obata, S.

    2001-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this Flight-Definition experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing mechanisms not operative for the case of acoustically excited or partially-modulated jets. The fully-modulated injection approach also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Relatively little is known about the behavior of turbulent flames in reduced-gravity conditions, even in the absence of pulsing. Fundamental issues addressed in this experiment include the impact of buoyancy on the fuel/air mixing and combustion characteristics of fully-modulated flames. It is also important for the planned space experiments to establish the effects of confinement and oxidizer co-flow on these flames.

  3. Radiation pressure of standing waves on liquid columns and small diffusion flames

    NASA Astrophysics Data System (ADS)

    Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Marston, Philip L.

    2002-11-01

    The radiation pressure of standing ultrasonic waves in air is demonstrated in this investigation to influence the dynamics of liquid columns and small flames. With the appropriate choice of the acoustic amplitude and wavelength, the natural tendency of long columns to break because of surface tension was suppressed in reduced gravity [M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Phys. Rev. Lett. 86, 2293-2296 (2001); 87(20), 9001(E) (2001)]. Evaluation of the radiation force shows that narrow liquid columns are attracted to velocity antinodes. The response of a small vertical diffusion flame to ultrasonic radiation pressure in a horizontal standing wave was observed in normal gravity. In agreement with our predictions of the distribution of ultrasonic radiation stress on the flame, the flame is attracted to a pressure antinode and becomes slightly elliptical with the major axis in the plane of the antinode. The radiation pressure distribution and the direction of the radiation force follow from the dominance of the dipole scattering for small flames. Understanding radiation stress on flames is relevant to the control of hot fluid objects. [Work supported by NASA.

  4. Characterization of diffusion flames for synthesis of single-walled carbon nanotubes

    SciTech Connect

    Unrau, C.J.; Axelbaum, R.L.

    2010-09-15

    Recent studies have shown that Fe/Si/O catalysts on the fuel side of an oxygen-enriched inverse diffusion flame produce micron-length single-walled carbon nanotubes at rapid rates (>100{mu}m/s). Despite the favorable catalyst/flame interaction for nanotube nucleation and growth, the catalyst lifetimes are only a few milliseconds. To increase catalyst lifetime and hence, carbon nanotube length, it is necessary to know how the local environment changes as the catalyst moves through the flame. A 2-D computational fluid dynamics model with detailed chemistry is employed to investigate the nature of the flame environment along various catalyst trajectories. The results indicate that temperature and species concentrations do not change significantly along individual catalyst trajectories, although not all trajectories experience the same environment due to the steep gradients in the radial direction. On the other hand, analysis of catalyst particle composition before and after nanotube growth shows that catalyst oxygen content decreases significantly during nanotube growth. This change in catalyst composition could affect the relative rates of carbon supply versus removal from the catalyst surface, such that carbon encapsulation and thus poisoning of the catalyst is favored after sufficient time. The results of this work indicate that catalyst deactivation, not a changing catalyst environment, is responsible for rapid encapsulation of the catalyst by amorphous carbon and thus, the short catalyst lifetimes observed in oxygen-enriched diffusion flames. (author)

  5. Buoyant low stretch stagnation point diffusion flames over a solid fuel

    NASA Astrophysics Data System (ADS)

    Olson, Sandra L.

    Many diffusion flames in microgravity are subject to very low stretch. To study flame structure and extinction characteristics of these unusual flames, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Solid-phase conductive heat loss was also varied by modifying the back surface boundary conditions on the samples. Burning rates, flame thickness and standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 7-8 secsp{-1}, as determined by the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame. Applications of this work include fire safety in spacecraft where low velocity flows from spacecraft ventilation equipment or small cooling fans for electronic hardware can impinge upon flammable surface materials and create low stretch environments. Knowledge of the characteristics of these potential fires is vital to prompt detection and proper response to such events.

  6. Characteristics of Non-Premixed Turbulent Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.

    2001-01-01

    This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.

  7. Experimental Assessment and Enhancement of Planar Laser-Induced Fluorescence Measurements of Nitric Oxide in an Inverse Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Partridge, William P.; Laurendeau, Normand M.

    1997-01-01

    We have experimentally assessed the quantitative nature of planar laser-induced fluorescence (PLIF) measurements of NO concentration in a unique atmospheric pressure, laminar, axial inverse diffusion flame (IDF). The PLIF measurements were assessed relative to a two-dimensional array of separate laser saturated fluorescence (LSF) measurements. We demonstrated and evaluated several experimentally-based procedures for enhancing the quantitative nature of PLIF concentration images. Because these experimentally-based PLIF correction schemes require only the ability to make PLIF and LSF measurements, they produce a more broadly applicable PLIF diagnostic compared to numerically-based correction schemes. We experimentally assessed the influence of interferences on both narrow-band and broad-band fluorescence measurements at atmospheric and high pressures. Optimum excitation and detection schemes were determined for the LSF and PLIF measurements. Single-input and multiple-input, experimentally-based PLIF enhancement procedures were developed for application in test environments with both negligible and significant quench-dependent error gradients. Each experimentally-based procedure provides an enhancement of approximately 50% in the quantitative nature of the PLIF measurements, and results in concentration images nominally as quantitative as LSF point measurements. These correction procedures can be applied to other species, including radicals, for which no experimental data are available from which to implement numerically-based PLIF enhancement procedures.

  8. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    SciTech Connect

    Pellett, G.L.; Northam, G.B.; Wilson, L.G.; Jarrett, O. Jr.; Antcliff, R.R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF. 42 refs.

  9. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.

  10. Heat and mass transfer in flames

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  11. The interaction of high-speed turbulence with flames: Turbulent flame speed

    SciTech Connect

    Poludnenko, A.Y.; Oran, E.S.

    2011-02-15

    Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S{sub T}, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S{sub L}, resulting in the Damkoehler number Da=0.05. The simulations were performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model, based on the one-step Arrhenius kinetics, represents a stoichiometric H{sub 2}-air mixture under the assumption of the Lewis number Le=1. Global properties and the internal structure of the flame were analyzed in an earlier paper, which showed that this system represents turbulent combustion in the thin reaction zone regime. This paper demonstrates that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S{sub T} is predominantly determined by the increase of the flame surface area, A{sub T}, caused by turbulence. (4) The observed increase of S{sub T} relative to S{sub L} exceeds the corresponding increase of A{sub T} relative to the surface area of the planar laminar flame, on average, by {approx}14%, varying from only a few percent to as high as {approx}30%. (5) This exaggerated response is the result of tight flame packing by turbulence, which causes frequent flame collisions and formation of regions of high flame curvature >or similar 1/{delta}{sub L}, or ''cusps,'' where {delta}{sub L} is the thermal width of the laminar flame. (6) The local flame speed in the cusps

  12. The effects of ferrocene concentration on soot in an ethylene laminar diffusion flame

    EPA Science Inventory

    Metal fuel-borne catalysts are of interest in the combustion and environmental communities due principally to their ability to reduce carbon particulate mass emissions. However, a negative aspect to their use is the potential emission of the metals themselves. Post-combustion, th...

  13. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.

  14. A numerical study on the effect of hydrogen/reformate gas addition on flame temperature and NO formation in strained methane/air diffusion flames

    SciTech Connect

    Guo, Hongsheng; Neill, W. Stuart

    2009-02-15

    This paper investigates the effects of hydrogen/reformate gas addition on flame temperature and NO formation in strained methane/air diffusion flames by numerical simulation. The results reveal that flame temperature changes due to the combined effects of adiabatic temperature, fuel Lewis number and radiation heat loss, when hydrogen/reformate gas is added to the fuel of a methane/air diffusion flame. The effect of Lewis number causes the flame temperature to increase much faster than the corresponding adiabatic equilibrium temperature when hydrogen is added, and results in a qualitatively different variation from the adiabatic equilibrium temperature as reformate gas is added. At some conditions, the addition of hydrogen results in a super-adiabatic flame temperature. The addition of hydrogen/reformate gas causes NO formation to change because of the variations in flame temperature, structure and NO formation mechanism, and the effect becomes more significant with increasing strain rate. The addition of a small amount of hydrogen or reformate gas has little effect on NO formation at low strain rates, and results in an increase in NO formation at moderate or high strain rates. However, the addition of a large amount of hydrogen increases NO formation at all strain rates, except near pure hydrogen condition. Conversely, the addition of a large amount of reformate gas results in a reduction in NO formation. (author)

  15. An experimental and theoretical study of radiative extinction of diffusion flames

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.; Atreya, A.

    1994-01-01

    Our work was primarily theoretical and numerical. We investigated the simplified modeling of heat losses in diffusion flames, then we 'ramped up' the level of complexity in each successive study until the final chapter discussed the general problem of soot/flame interaction. With regard to the specific objective of studying radiative extinction, we conclude that in the steady case a self-extinguishing zero-g flame is unlikely to occur. The soot volume fractions are too small. On the other hand, our work does provide rational means for assessing the mixture of chemical energy release and radiative heat release. It also provides clues for suitable 'tailoring' this balance. Thus heat fluxes to surrounding surfaces can be substantially increased by exploiting and modifying its sooting capability.

  16. Enhanced soot formation in flickering CH{sub 4}/air diffusion flames

    SciTech Connect

    Shaddix, C.R.; Harrington, J.E.; Smyth, K.C.

    1994-12-31

    Optical methods are used to examine soot production in a co-flowing, axisymmetric CH{sub 4}/air diffusion flame in which the fuel flow rate is acoustically forced to create a time-varying flowfield. For a particular forcing condition in which tip clipping occurs (0.75 V loudspeaker excitation), elastic scattering of vertically polarized light from the soot particles increases by nearly an order of magnitude with respect to that observed for a steady flame with the same mean fuel flow rate. Peak soot volume fractions, as measured by time-resolved laser extinction/tomography at 632.8 and 454.5 run and calibrated laser-induced incandescence (LII), show a factor of 4-5 enhancement in this flickering flame. A Mie analysis suggests that most of the enhanced soot production results from the formation of larger particles in the time-varying flowfield.

  17. Large Eddy Simulation Of Gravitational Effects In Transitional And Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Jaberi, Farhad A.; Givi, Peyman

    2003-01-01

    The influence of gravity on the spatial and the compositional structures of transitional and turbulent hydrocarbon diffusion flames are studies via large eddy simulation (LES) and direct numerical simulation (DNS) of round and planar jets. The subgrid-scale (SGS) closures in LES are based on the filtered mass density function (FMDF) methodology. The FMDF represents the joint probability density function (PDF) of the SGS scalars, and is obtained by solving its transport equation. The fundamental advantage of LES/FMDF is that it accounts for the effects of chemical reaction and buoyancy exactly. The methodology is employed for capturing some of the fundamental influences of gravity in equilibrium flames via realistic chemical kinetic schemes. Some preliminary investigation of the gravity effects in non-equilibrium flames is also conducted, but with idealized chemical kinetics models.

  18. Sooting Limits Of Diffusion Flames With Oxygen-Enriched Air And Diluted Fuel

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Chao, B. H.; Axelbaum, R. L.

    2003-01-01

    Oxygen-enhanced combustion permits certain benefits and flexibility that are not otherwise available in the design of practical combustors, as discussed by Baukal. The cost of pure and enriched oxygen has declined to the point that oxygen-enhanced combustion is preferable to combustion in air for many applications. Carbon sequestration is greatly facilitated by oxygen enrichment because nitrogen can be eliminated from the product stream. For example, when natural gas (or natural gas diluted with CO2) is burned in pure oxygen, the only significant products are water and CO2. Oxygen-enhanced combustion also has important implications for soot formation, as explored in this work. We propose that soot inception in nonpremixed flames requires a region where C/O ratio, temperature, and residence time are above certain critical values. Soot does not form at low temperatures, with the threshold in nonpremixed flames ranging from about 1250-1650 K, a temperature referred to here as the critical temperature for soot inception, Tc. Soot inception also can be suppressed when residence time is short (equivalently, when the strain rate in counterflow flames is high). Soot induction times of 0.8-15 ms were reported by Tesner and Shurupov for acetylene/nitrogen mixtures at 1473 K. Burner stabilized spherical microgravity flames are employed in this work for two main reasons. First, this configuration offers unrestricted control over convection direction. Second, in steady state these flames are strain-free and thus can yield intrinsic sooting limits in diffusion flames, similar to the way past work in premixed flames has provided intrinsic values of C/O ratio associated with soot inception limits.

  19. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    SciTech Connect

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  20. Reduction of soot emissions by iron pentacarbonyl in isooctane diffusion flames

    SciTech Connect

    Kim, K.B.; Masiello, K.A.; Hahn, D.W.

    2008-07-15

    Light-scattering measurements, in situ laser-induced fluorescence, and thermophoretic sampling with transmission electron microscopy (TEM) analysis, were performed in laboratory isooctane diffusion flames seeded with 4000 ppm iron pentacarbonyl. These measurements allowed the determination of the evolution of the size, number density, and volume fraction of soot particles through the flame. Comparison to unseeded flame data provided a detailed assessment of the effects of iron addition on soot particle inception, growth, and oxidation processes. Iron was found to produce a minor soot-enhancing effect at early residence times, while subsequent soot particle growth was largely unaffected. It is concluded that primarily elemental iron is incorporated within the soot particles during particle inception and growth. However, iron addition was found to enhance the rate of soot oxidation during the soot burnout regime, yielding a two-thirds reduction in overall soot emissions. In situ spectroscopic measurements probed the transient nature of elemental iron throughout the flame, revealing significant loss of elemental iron, presumably to iron oxides, with increasing flame residence, suggesting catalysis of soot oxidation via iron oxide species. (author)

  1. Analysis of opposed jet hydrogen-air counter flow diffusion flame

    NASA Technical Reports Server (NTRS)

    Ho, Y. H.; Isaac, K. M.

    1989-01-01

    A computational simulation of the opposed-jet diffusion flame is performed to study its structure and extinction limits. The present analysis concentrates on the nitrogen-diluted hydrogen-air diffusion flame, which provides the basic information for many vehicle designs such as the aerospace plane for which hydrogen is a candidate as the fuel. The computer program uses the time-marching technique to solve the energy and species equations coupled with the momentum equation solved by the collocation method. The procedure is implemented in two stages. In the first stage, a one-step forward overal chemical reaction is chosen with the gas phase chemical reaction rate determined by comparison with experimental data. In the second stage, a complete chemical reaction mechanism is introduced with detailed thermodynamic and transport property calculations. Comparison between experimental extinction data and theoretical predictions is discussed. The effects of thermal diffusion as well as Lewis number and Prandtl number variations on the diffusion flame are also presented.

  2. A comparative study of TiO2 nanoparticles synthesized in premixed and diffusion flames

    NASA Astrophysics Data System (ADS)

    Ma, Hsiao-Kang; Yang, Hsiung-An

    2010-12-01

    Previous studies have been shown that synthesis of titania (TiO2) crystalline phase purity could be effectively controlled by the oxygen concentration through titanium tetra-isopropoxide (TTIP) via premixed flame from a Bunsen burner. In this study, a modified Hencken burner was used to synthesize smaller TiO2 nanoparticles via short diffusion flames. The frequency of collisions among particles would decrease and reduce TiO2 nanoparticle size in a short diffusion flame height. The crystalline structure of the synthesized nanoparticles was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) measurements. The characteristic properties of TiO2 nanoparticles synthesized from a modified Hencken burner were compared with the results from a Bunsen burner and commercial TiO2 (Degussa P25). The results showed that the average particle size of 6.63 nm from BET method was produced by a modified Hencken burner which was smaller than the TiO2 in a Bunsen burner and commercial TiO2. Moreover, the rutile content of TiO2 nanoparticles increased as the particle collecting height increased. Also, the size of TiO2 nanoparticles was highly dependent on the TTIP loading and the collecting height in the flame.

  3. Description of fluid dynamics and coupled transports in models of a laminar flow diffusion chamber.

    PubMed

    Trávníčková, Tereza; Havlica, Jaromír; Ždímal, Vladimír

    2013-08-14

    The aim of this study is to assess how much the results of nucleation experiments in a laminar flow diffusion chamber (LFDC) are influenced by the complexity of the model of the transport properties. The effects of the type of fluid dynamic model (the steady state compressible Navier-Stokes system for an ideal gas/parabolic profile approximation) and the contributions of the coupled terms describing the Dufour effects and thermodiffusion on the predicted magnitude of the nucleation maxima and its location were investigated. This study was performed on the model of the homogeneous nucleation of an n-butanol-He vapor mixture in a LFDC. The isothermal dependencies of the nucleation rate on supersaturation were determined at three nucleation temperatures: 265 K, 270 K, and 280 K. For this purpose, the experimental LFDC data measured by A. P. Hyvärinen et al. [J. Chem. Phys. 124, 224304 (2006)] were reevaluated using transport models at different levels of complexity. Our results indicate that the type of fluid dynamical model affects both the position of the nucleation maxima in the LFDC and the maximum value of the nucleation rate. On the other hand, the Dufour effects and thermodiffusion perceptibly influence only the value of the maximal nucleation rate. Its position changes only marginally. The dependence of the maximum experimental nucleation rate on the saturation ratio and nucleation temperature was acquired for each case. Based on this dependence, we presented a method for the comparison and evaluation of the uncertainties of simpler models' solutions for the results, where we assumed that the model with Navier-Stokes equations and both coupled effects taken into account was the basis. From this comparison, it follows that an inappropriate choice of mathematical models could lead to relative errors of the order of several hundred percent in the maximum experimental nucleation rate. In the conclusion of this study, we also provide some general recommendations

  4. Description of fluid dynamics and coupled transports in models of a laminar flow diffusion chamber

    NASA Astrophysics Data System (ADS)

    Trávníčková, Tereza; Havlica, Jaromír; Ždímal, Vladimír

    2013-08-01

    The aim of this study is to assess how much the results of nucleation experiments in a laminar flow diffusion chamber (LFDC) are influenced by the complexity of the model of the transport properties. The effects of the type of fluid dynamic model (the steady state compressible Navier-Stokes system for an ideal gas/parabolic profile approximation) and the contributions of the coupled terms describing the Dufour effects and thermodiffusion on the predicted magnitude of the nucleation maxima and its location were investigated. This study was performed on the model of the homogeneous nucleation of an n-butanol-He vapor mixture in a LFDC. The isothermal dependencies of the nucleation rate on supersaturation were determined at three nucleation temperatures: 265 K, 270 K, and 280 K. For this purpose, the experimental LFDC data measured by A. P. Hyvärinen et al. [J. Chem. Phys. 124, 224304 (2006), 10.1063/1.2200341] were reevaluated using transport models at different levels of complexity. Our results indicate that the type of fluid dynamical model affects both the position of the nucleation maxima in the LFDC and the maximum value of the nucleation rate. On the other hand, the Dufour effects and thermodiffusion perceptibly influence only the value of the maximal nucleation rate. Its position changes only marginally. The dependence of the maximum experimental nucleation rate on the saturation ratio and nucleation temperature was acquired for each case. Based on this dependence, we presented a method for the comparison and evaluation of the uncertainties of simpler models' solutions for the results, where we assumed that the model with Navier-Stokes equations and both coupled effects taken into account was the basis. From this comparison, it follows that an inappropriate choice of mathematical models could lead to relative errors of the order of several hundred percent in the maximum experimental nucleation rate. In the conclusion of this study, we also provide some

  5. A skewed PDF combustion model for jet diffusion flames. [Probability density function (PDF)

    SciTech Connect

    Abou-Ellail, M.M.M.; Salem, H. )

    1990-11-01

    A combustion model based on restricted chemical equilibrium is described. A transport equation for the skewness of the mixture fraction is derived. It contains two adjustable constants. The computed values of the mean mixture fraction (f) and its variance and skewness (g and s) for a jet diffusion methane flame are used to obtain the shape of a shewed pdf. The skewed pdf is split into a turbulent part (beta function) and a nonturbulent part (delta function) at f = 0. The contribution of each part is directly related to the values of f, g, and s. The inclusion of intermittency in the skewed pdf appreciably improves the numerical predictions obtained for a turbulent jet diffusion methane flame for which experimental data are available.

  6. Temperature Measurements in an Ethylene-Air-Opposed Flow Diffusion Flame

    DTIC Science & Technology

    2012-01-01

    Temperature Measurements in an Ethylene-Air-Opposed Flow Diffusion Flame by Matthew S. Kurman, John M. Densmore, Chol -Bum M. Kweon, and...Oak Ridge Associated Universities John M. Densmore Lawrence Livermore National Laboratory Chol -Bum M. Kweon Vehicle Technology Directorate... Chol -Bum M. Kweon, and Kevin L. McNesby 5d. PROJECT NUMBER 1VP2J1 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND

  7. Extinguishment of a Methane Air Diffusion Flame by Using Blast Wave

    NASA Astrophysics Data System (ADS)

    Torikai, H.; Saito, S.; Ito, A.

    After the occurrence of a large-scale disaster such as the Great East Japan Earthquake, multiple simultaneous fires, consisting of diffusion flames, often break out. At the same time, infrastructure, such as water utilization for firefighting, roads and etc., is destroyed violently by the disaster impact. Therefore, it is difficult to use conventional firefighting techniques against the post-disaster fires. To mitigate and minimize the damages, the development of a new firefighting method which can extinguish each fire promptly is needed.

  8. Fuel Structure and Pressure Effects on the Formation of Soot Particles in Diffusion Flames

    DTIC Science & Technology

    1990-05-01

    higher values of the pressure power dependence appear to be related to fuel structure effects , the direct nature of which remains to be understood...61102F 2308 A2 11. TITLE (Include Security Classification) "Fuel Structure and Pressure Effects on the Formation of Soot Particlesin Diffusion Flames...block number) Studies emphasizing the effects of fuel concentration and operating pressure on the formation of soot particles have been conducted in a

  9. The Coherent Flame Model for Turbulent Chemical Reactions

    DTIC Science & Technology

    1977-01-01

    the strained laminar diffusion flame may be determined by analysis, numerical computation, and by experiment without significant change to the model...numerical integration of the resulting differential equations. The model predicts the flame length and superficial comparison with experiments suggest a...of Hawthorne, et al.,(3 Hottel,(4 Karlovitz, et al.(5 Wohl,(6 and others. That brief period provided some provacative experiments through (7) (8

  10. Experimental apparatus with full optical access for combustion experiments with laminar flames from a single circular nozzle at elevated pressures

    NASA Astrophysics Data System (ADS)

    Joo, Peter H.; Gao, Jinlong; Li, Zhongshan; Aldén, Marcus

    2015-03-01

    The design and features of a high pressure chamber and burner that is suitable for combustion experiments at elevated pressures are presented. The high pressure combustion apparatus utilizes a high pressure burner that is comprised of a chamber burner module and an easily accessible interchangeable burner module to add to its flexibility. The burner is well suited to study both premixed and non-premixed flames. The optical access to the chamber is provided through four viewports for direct visual observations and optical-based diagnostic techniques. Auxiliary features include numerous access ports and electrical connections and as a result, the combustion apparatus is also suitable to work with plasmas and liquid fuels. Images of methane flames at elevated pressures up to 25 atm and preliminary results of optical-based measurements demonstrate the suitability of the high pressure experimental apparatus for combustion experiments.

  11. Size and Shape of Solid Fuel Diffusion Flames in Very Low Speed Flows. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Foutch, David W.

    1987-01-01

    The effect of very low speed forced flows on the size and shape of a solid fuel diffusion flame are investigated experimentally. Flows due to natural convection are eliminated by performing the experiment in low gravity. The range of velocities tested is 1.5 cm/s to 6.3 cm/s and the mole fraction of oxygen in the O2/N2 atmosphere ranges from 0.15 to 0.19. The flames did not reach steady state in the 5.2 sec to which the experiment was limited. Despite limited data, trends in the transient flame temperature and, by means of extrapolation, the steady state flame size are deduced. As the flow velocity is reduced, the flames move farther from the fuel surface, and the transient flame temperature is lowered. As the oxygen concentration is reduced the flames move closer to the fuel sample and the transient flame temperature is reduced. With stand off distances up to 8.5 + or - 0.7 mm and thicknesses around 1 or 2 mm, these flames are much weaker than flames observed at normal gravity. Based on the performance of the equipment and several qualitative observations, suggestions for future work are made.

  12. Turbulent flame propagation in partially premixed flames

    NASA Technical Reports Server (NTRS)

    Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.

    1996-01-01

    the fuel flow rate and thereby modulating the equivalence ratio (Bloxsidge et al. 1987). Models of partially premixed combustion would be extremely useful in addressing all these questions related to practical systems. Unfortunately, the lack of a fundamental understanding regarding partially premixed combustion has resulted in an absence of models which accurately capture the complex nature of these flames. Previous work on partially premixed combustion has focused primarily on laminar triple flames. Triple flames correspond to an extreme case where fuel and oxidizer are initially totally separated (Veynante et al. 1994 and Ruetsch et al. 1995). These flames have a nontrivial propagation speed and are believed to be a key element in the stabilization process of jet diffusion flames. Different theories have also been proposed in the literature to describe a turbulent flame propagating in a mixture with variable equivalence ratio (Muller et al. 1994), but few validations are available. The objective of the present study is to provide basic information on the effects of partial premixing in turbulent combustion. In the following, we use direct numerical simulations to study laminar and turbulent flame propagation with variable equivalence ratio.

  13. Testing of a Hydrogen Diffusion Flame Array Injector at Gas Turbine Conditions

    SciTech Connect

    Weiland, Nathan T.; Sidwell, Todd G.; Strakey, Peter A.

    2013-07-03

    High-hydrogen gas turbines enable integration of carbon sequestration into coal-gasifying power plants, though NO{sub x} emissions are often high. This work explores nitrogen dilution of hydrogen diffusion flames to reduce thermal NO{sub x} emissions and avoid problems with premixing hydrogen at gas turbine pressures and temperatures. The burner design includes an array of high-velocity coaxial fuel and air injectors, which balances stability and ignition performance, combustor pressure drop, and flame residence time. Testing of this array injector at representative gas turbine conditions (16 atm and 1750 K firing temperature) yields 4.4 ppmv NO{sub x} at 15% O{sub 2} equivalent. NO{sub x} emissions are proportional to flame residence times, though these deviate from expected scaling due to active combustor cooling and merged flame behavior. The results demonstrate that nitrogen dilution in combination with high velocities can provide low NO{sub x} hydrogen combustion at gas turbine conditions, with significant potential for further NO{sub x} reductions via suggested design changes.

  14. Series of Laminar Soot Processes Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (189KB JPEG, 1350 x 1517 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300183.html.

  15. Molecular Characterization of Organic Content of Soot along the Centerline of a Coflow Diffusion Flame

    SciTech Connect

    Cain, Jeremy P.; Laskin, Alexander; Kholghy, Mohammad Reza; Thomson, Murray; Wang, Hai

    2014-10-29

    High-resolution mass spectrometry coupled with nanospray desorption electrospray ionization was used to probe chemical constituents of young soot particles sampled along the centerline of a coflow diffusion flame of a three-component Jet-A1 surrogate. In lower positions where particles are transparent to light extinction (n= 632.8 nm), peri-condensed polycyclic aromatic hydrocarbons (PAHs) are found to be the major components of the particle material. These particles become enriched with aliphatic components as they grow in mass and size. Before carbonization occurs, the constituent species in young soot particles are aliphatic and aromatic compounds 200-600 amu in mass, some of which are oxygenated. Particles dominated by PAHs or mixtures of PAHs and aliphatics can both exhibit liquid-like appearance observed by electron microscopy and be transparent to visible light. The variations in chemical composition observed here indicate that the molecular processes of soot formation in coflow diffusion flames may be more complex than previously thought. For example, the mass growth and enrichment of aliphatic components in an initially, mostly aromatic structure region of the flame that is absent of H atoms or other free radicals indicates that there must exist at least another mechanism of soot mass growth in addition to the hydrogen-abstraction-carbon addition mechanism currently considered in fundamental models of soot formation.

  16. Weakly Bound Free Radicals in Combustion: "Prompt" Dissociation of Formyl Radicals and Its Effect on Laminar Flame Speeds

    SciTech Connect

    Labbe, Nicole J.; Sivaramakrishnan, Raghu; Goldsmith, C. Franklin; Georgievskii, Yuri; Miller, James A.; Klippenstein, Stephen J.

    2016-01-07

    Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, timescales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational-rotational relaxation process. Here we characterize this “prompt” dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH2O and H + CH2O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain branching reactions. Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations

  17. Experimental and modeling studies of the micro-structures of opposed flow diffusion flames: Methane

    SciTech Connect

    Vincitore, A.M.; Senkan, S.M.; Marinov, N.; Pitz, W.J.; Westbrook, C.K.; Melius, C.F.

    1996-01-15

    The micro-structure of an atmospheric pressure, opposed flow, methane diffusion flame has been studied using heated micro-probe sampling and chemical kinetic modeling. Mole fraction profiles of major products as well as trace aromatic, substituted aromatic, and polycyclic aromatic hydrocarbons (PAH up to C{sub 16}H{sub 10}, e.g. pyrene) were quantified by direct gas chromatography/mass spectrometry (GC/MS) analysis of samples withdrawn from within the flame without any pre-concentration. Mole fractions range from 0.8 to 1.0 {times} 10{sup {minus}7}. The experimental measurements are compared to results from a newly-developed chemical kinetic model that includes chemistry for the production and consumption of aromatics and PAH species. The model predictions are in reasonable agreement with the experimental data for the major species profiles and for the peak concentrations of many of the trace aromatics and PAH species. 36 refs.

  18. Large Eddy Simulation of Gravitational Effects on Transitional and Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Jaberi, Farhad A.

    2001-01-01

    The basic objective of this work is to assess the influence of gravity on "the compositional and the spatial structures" of transitional and turbulent diffusion flames via large eddy simulation (LES), and direct numerical simulation (DNS). The DNS is conducted for appraisal of the various closures employed in LES, and to study the effect of buoyancy on the small scale flow features. The LES is based on our "filtered mass density function"' (FMDF) model. The novelty of the methodology is that it allows for reliable simulations with inclusion of "realistic physics." It also allows for detailed analysis of the unsteady large scale flow evolution and compositional flame structure which is not usually possible via Reynolds averaged simulations.

  19. The effects of time-periodic shear on a diffusion flame anchored to a propellant

    SciTech Connect

    Buckmaster, J.; Jackson, T.L.

    2000-01-01

    The authors examine a single diffusion flame anchored to 1/4-spaces of solid fuel and oxidizer, a configuration relevant to the combustion of heterogeneous solid propellants. A time-periodic shear flow is applied, to model the shear that can be generated by the interaction of acoustic waves and the rotational base flow in a rocket chamber. The response of the flame to this shear, the heat flux to the surface, etc., are calculated numerically. Significant enhancement of the maximum temperature and the time-averaged total heat flux to the surface re found. These enhancements are essentially maximized at zero frequency, and at low frequencies the response depends critically on the instantaneous direction of the shear.

  20. OPPDIF: A Fortran program for computing opposed-flow diffusion flames

    SciTech Connect

    Lutz, A.E.; Kee, R.J.; Grcar, J.F.; Rupley, F.M.

    1997-05-01

    OPPDIF is a Fortran program that computes the diffusion flame between two opposing nozzles. A similarity transformation reduces the two-dimensional axisymmetric flow field to a one-dimensional problem. Assuming that the radial component of velocity is linear in radius, the dependent variables become functions of the axial direction only. OPPDIF solves for the temperature, species mass fractions, axial and radial velocity components, and radial pressure gradient, which is an eigenvalue in the problem. The TWOPNT software solves the two-point boundary value problem for the steady-state form of the discretized equations. The CHEMKIN package evaluates chemical reaction rates and thermodynamic and transport properties.

  1. Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey Scott

    1996-01-01

    Extinction of a diffusion flame burning over horizontal PMMA (Polymethyl methacrylate) cylinders in low-gravity was examined experimentally and via numerical simulations. Low-gravity conditions were obtained using the NASA Lewis Research Center's reduced-gravity aircraft. The effects of velocity and pressure on the visible flame were examined. The flammability of the burning solid was examined as a function of pressure and the solid-phase centerline temperature. As the solid temperature increased, the extinction pressure decreased, and with a centerline temperature of 525 K, the flame was sustained to 0.1 atmospheres before extinguishing. The numerical simulation iteratively coupled a two-dimensional quasi-steady, gas-phase model with a transient solid-phase model which included conductive heat transfer and surface regression. This model employed an energy balance at the gas/solid interface that included the energy conducted by the gas-phase to the gas/solid interface, Arrhenius pyrolysis kinetics, surface radiation, and the energy conducted into the solid. The ratio of the solid and gas-phase conductive fluxes Phi was a boundary condition for the gas-phase model at the solid-surface. Initial simulations modeled conditions similar to the low-gravity experiments and predicted low-pressure extinction limits consistent with the experimental limits. Other simulations examined the effects of velocity, depressurization rate and Phi on extinction.

  2. Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Low-Gravity

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.; Tien, James S.; Urban, David L.

    1997-01-01

    The behavior of flames in low-speed flows in low-gravity is relevant to spacecraft fire safety. Previous work has shown that flames in the presence of low-speed forced flows in low-gravity may be more flammable than in a forced flow of the same magnitude in normal gravity. Additionally, fire suppression plans for the International Space Station include the use of venting (depressurization) as an emergency option for extinguishing fires. This procedure would induce flows in the affected compartment that could temporarily intensify the fire, as was observed in flammability tests of solids conducted on board Skylab. Despite a general Understanding, current knowledge of the combined effects of reduced pressure and forced flow on a burning solid in low-gravity is inadequate for the design of a venting extinguishment system. Previous studies in low-g have examined flammability limits for thermally thin solids. However, there are differences when burning thick materials because the interior solid-phase temperature continuously changes, which affects the percentage of gas-phase heat feedback to the solid-phase. Changes in the heat feedback to the solid-phase can affect the flammability characteristics of the material. In the current work, the extinction of a diffusion flame burning over PMMA (polymethyl methacrylate) cylinders during depressurization with a low-speed cross flow was examined experimentally and via numerical simulations.

  3. Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. Appendix F

    NASA Technical Reports Server (NTRS)

    Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered. Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index junction for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.

  4. Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. Appendix D

    NASA Technical Reports Server (NTRS)

    Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index function for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.

  5. Effects of radiation on NO kinetics in turbulent hydrogen/air diffusion flames

    SciTech Connect

    Sivathanu, Y.R.; Gore, J.P.; Laurendeau, N.M.

    1997-07-01

    The authors describe a coupled radiation and NO kinetics calculation of turbulent hydrogen/air diffusion flame properties. Transport equations for mass, momentum, mixture fraction, enthalpy (sensible + chemical) including gas band radiation, and NO mass fraction are solved. NO kinetics is described by a one step thermal production mechanism. The local temperature is obtained by solving the enthalpy equation taking radiation loss from H{sub 2}O into consideration. Radiation/turbulence and chemical kinetics/turbulence interactions are treated using a clipped Gaussian probability density function (PDF) for the mixture fraction, and a delta PDF for the enthalpy. The source terms in the enthalpy and mass fraction of NO equations are treated using assumed PDF integration over the mixture fraction space. The results of the simulation are compared with existing measurements of the Emission Indices of NO (EINO) in turbulent H{sub 2}/air diffusion flames. The major conclusion of the paper is that coupled turbulence/radiation interactions should be taken into account while computing the EINO.

  6. Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.

    1991-01-01

    Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. The single shot measurement precision for concentration and temperature measurement is 5 to 10 pct. Calibration constants and bandwidth factors are determined from the flat burner measurements and used in a data reduction program to arrive at temperature and species concentration measurements. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.

  7. Numerical investigation of high pressure and high Reynolds diffusion flame using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Nichkoohi, Ali Lohrasbi; Tousi, Abolghasem Mesgarpour

    2014-10-01

    Today, with nonstop improvement in computational power, Large-Eddy Simulation (LES) is a high demanding research tool for predicting engineering flows. Such flows on high pressure condition like diesel engines is extensively employed in ground and marine transportation, oblige the designer to control and predict toxic pollutants, while maintaining or improving their high thermal efficiency. This becomes one of the main challenging issues in decades. In the present work, numerical investigation of diffusion flame dynamics is performed in the near-field of high-Reynolds jet flow on high pressure condition encountered in diesel engine applications. This work discusses the implementation of Partially Stirred Reactor (PaSR) combustion model by the approaches of large eddy simulation (LES). The simulation results show that LES, in comparison with Reynolds-Averaged Navier-Stokes (RANS) simulation predicts and captures transient phenomena very well. These phenomena such as unsteadiness and curvature are inherent in the near-field of high Reynolds diffusion flame. The outcomes of this research are compared and validated by other researchers' results. Detailed comparisons of the statistics show good agreement with the corresponding experiments.

  8. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuels

    SciTech Connect

    Matti Maricq, M.

    2011-01-15

    Data are presented to compare soot formation in both surrogate and practical fatty acid methyl ester biodiesel and petroleum fuel diffusion flames. The approach here uses differential mobility analysis to follow the size distributions and electrical charge of soot particles as they evolve in the flame, and laser ablation particle mass spectrometry to elucidate their composition. Qualitatively, these soot properties exhibit a remarkably similar development along the flames. The size distributions begin as a single mode of precursor nanoparticles, evolve through a bimodal phase marking the onset of aggregate formation, and end in a self preserving mode of fractal-like particles. Both biodiesel and hydrocarbon fuels yield a common soot composition dominated by C{sub x}H{sub y}{sup +} ions, stabilomer PAHs, and fullerenes in the positive ion mass spectrum, and C{sub x}{sup -} and C{sub 2x}H{sup -} in the negative ion spectrum. These ion intensities initially grow with height in the diffusion flames, but then decline during later stages, consistent with soot carbonization. There are important quantitative differences between fuels. The surrogate biodiesel fuel methyl butanoate substantially reduces soot levels, but soot formation and evolution in this flame are delayed relative to both soy and petroleum fuels. In contrast, soots from soy and hexadecane flames exhibit nearly quantitative agreement in their size distribution and composition profiles with height, suggesting similar soot precursor chemistry. (author)

  9. Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame

    SciTech Connect

    Cheng, T.S.; Wehrmeyer, J.A.; Pitz, R.W. . Dept. of Mechanical Engineering); Jarrett, O. Jr.; Northam, G.B. . Langley Research Center)

    1994-10-01

    Ultraviolet (UV) spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) from a KrF excimer laser are combined to simultaneously measure temperature, major species concentrations (H[sub 2], O[sub 2], N[sub 2], H[sub 2]O), and OH radical concentration in a supersonic lifted co-flowing hydrogen-air diffusion flame. The axisymmetric flame is formed when a sonic jet of hydrogen mixes with a Mach 2 annular jet of vitiated air. Mean and rms profiles of temperature, species concentrations, and mixture fraction are obtained throughout the supersonic flame. Simultaneous measurements of the chemical species and temperature are compared with frozen chemistry and equilibrium chemistry limits to assess the local state of the mixing and chemistry. Upstream of the lifted flame base, a very small amount of reaction occurs form mixing with hot vitiated air. Downstream of the lifted flame base, strong turbulent mixing leads to sub equilibrium values of temperature and OH concentration. Due to the interaction of velocity and temperature in supersonic compressible flames, the fluctuations of temperature and species concentrations are found to be higher than subsonic flames. Farther downstream, slow three-body recombination reactions result in super equilibrium OH concentrations that depress temperatures below their equilibrium values.

  10. Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames

    SciTech Connect

    Won, Sang Hee; Sun, Wenting; Ju, Yiguang

    2010-03-15

    The impact of toluene addition in n-decane on OH concentrations, maximum heat release rates, and extinction limits were studied experimentally and computationally by using counterflow diffusion flames with laser induced fluorescence imaging. Sensitivity analyses of kinetic path ways and species transport on flame extinction were also conducted. The results showed that the extinction strain rate of n-decane/toluene/nitrogen flames decreased significantly with an increase of toluene addition and depended linearly on the maximum OH concentration. It was revealed that the maximum OH concentration, which depends on the fuel H/C ratio, can be used as an index of the radical pool and chemical heat release rate, since it plays a significant role on the heat production via the reaction with other species, such as CO, H{sub 2}, and HCO. Experimental results further demonstrated that toluene addition in n-decane dramatically reduced the peak OH concentration via H abstraction reactions and accelerated flame extinction via kinetic coupling between toluene and n-decane mechanisms. Comparisons between experiments and simulations revealed that the current toluene mechanism significantly over-predicts the radical destruction rate, leading to under-prediction of extinction limits and OH concentrations, especially caused by the uncertainty of the H abstraction reaction from toluene, which rate coefficient has a difference by a factor of 5 in the tested toluene models. In addition, sensitivity analysis of diffusive transport showed that in addition to n-decane and toluene, the transport of OH and H also considerably affects the extinction limit. A reduced linear correlation between the extinction limits of n-decane/toluene blended fuels and the H/C ratio as well as the mean fuel molecular weight was obtained. The results suggest that an explicit prediction of the extinction limits of aromatic and alkane blended fuels can be established by using H/C ratio (or radical index) and the

  11. Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Valdivia, Juan-Carlos; Marquez, Jesús; Susarrey, Orlando; Solorio-Avila, Marco A.

    2016-08-01

    In this Letter, we report experimental and theoretical studies of Newtonian fluid flow through permeable media with fractal porosity. Darcy flow experiments were performed on samples with a deterministic pre-fractal pore network. We found that the seepage velocity is linearly proportional to the pressure drop, but the apparent absolute permeability increases with the increase of sample length in the flow direction L. We claim that a violation of the Hagen-Poiseuille law is due to an anomalous diffusion of the fluid momentum. In this regard we argue that the momentum diffusion is governed by the flow metric induced by the fractal topology of the pore network. The Darcy-like equation for laminar flow in a fractal pore network is derived. This equation reveals that the apparent absolute permeability is independent of L, only if the number of effective spatial degrees of freedom in the pore-network ν is equal to the network fractal (self-similarity) dimension D, e.g. it is in the case of fractal tree-like networks. Otherwise, the apparent absolute permeability either decreases with L, if ν < D, e.g. in media with self-avoiding fractal channels, or increases with L, if ν > D, as this is in the case of the inverse Menger sponge.

  12. Opposed jet burner studies of silane-methane, silane-hydrogen and hydrogen diffusion flames with air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Guerra, Rosemary; Wilson, L. G.; Northam, G. B.

    1986-01-01

    An atmospheric pressure tubular opposed jet burner technique was used to characterize certain diffusion-flame transitions and associated burning rates for N2-diluted mixtures of highly-reactive fuels. Presented are: (1) details of the technique, with emphasis on features permitting the study of flames involving pyrophoric gases and particle-forming combustion reactions: (2) discoveries on the properties of these flames which correspond to physically and chemically distinct stages of silane and hydrogen combustion; and (3) unburnt gas velocity data obtained from flames based on SiH4-CH4-N2, SiH4-H2-N2, and H2-N2 fuel mixtures, and plotted as functions of combustible-fuel mole fraction and fuel/oxygen molar input flow ratios. In addition, these burning velocity results are analyzed and interpreted.

  13. Opposed jet burner studies of silane-methane, silane-hydrogen, and hydrogen diffusion flames with air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Guerra, Rosemary; Wilson, L. G.; Northam, G. B.

    1986-01-01

    An atmospheric pressure tubular opposed jet burner technique was used to characterize certain diffusion-flame transitions and associated burning rates for N2-diluted mixtures of highly-reactive fuels. The paper presents: (1) details of the technique, with emphasis on features permitting the study of flames involving pyrophoric gases and particle-forming combustion reactions; (2) discoveries on the properties of these flames which correspond to physically and chemically distinct stages of silane and hydrogen combustion; and (3) unburnt gas velocity data obtained from flames based on SiH4-CH4-N2, SiH4-H2-N2, and H2-N2 fuel mixtures, and plotted as functions of combustible-fuel mole fraction and fuel/oxygen molar input flow ratios. In addition, these burning velocity results are analyzed and interpreted.

  14. Vortex-scalar element calculations of a diffusion flame stabilized on a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Ghoniem, Ahmed F.; Givi, Peyman

    1987-01-01

    The vortex-scalar element method, a scheme which utilizes vortex elements to discretize the region of high vorticity and scalar elements to represent species or temperature fields, is utilized in the numerical simulations of a two-dimensional reacting mixing layer. Computations are performed for a diffusion flame at high Reynolds and Peclet numbers without resorting to turbulence models. In the nonreacting flow, the mean and fluctuation profiles of a conserved scalar show good agreement with experimental measurements. Results for the reacting flow indicate that for temperature independent kinetics, the chemical reaction begins immediately downstream of the splitter plate where mixing starts. Results for the reacting flow with Arrhenius kinetics show an ignition delay, which depends on reactant temperature, before significant chemical reaction occurs. Harmonic forcing changes the structure of the layer, and concomitantly the rates of mixing and reaction, in accordance with experimental results. Strong stretch within the braids in the nonequilibrium kinetics case causes local flame quenching due to the temperature drop associated with the large convective fluxes.

  15. Sooting Limits Of Microgravity Spherical Diffusion Flames. [conducted in the NASA Glenn 2.2-second drop tower

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Chao, B.-H.; Axelbaum, Richard L.; Salzman, Jack (Technical Monitor)

    2001-01-01

    Limiting conditions for soot-particle inception were studied in microgravity spherical diffusion flames burning ethylene at atmospheric pressure. Nitrogen was supplied in the fuel and/or oxidizer to obtain the broadest range of stoichiometric mixture fraction. Both normal flames (oxygen in ambience) and inverted flames (fuel in ambience) were considered. Microgravity was obtained in the NASA Glenn 2.2-second drop tower. The flames were observed with a color video camera and sooting conditions were defined as conditions for which yellow emission was present throughout the duration of the drop. Sooting limit results were successfully correlated in terms of adiabatic flame temperature and stoichiometric mixture fraction. Soot free conditions were favored by increased stoichiometric mixture fractions. No statistically significant effect of convection direction on sooting limits was observed. The relationship between adiabatic flame temperature and stoichiometric mixture fraction at the sooting limits was found to be in qualitative agreement with a simple theory based on the assumption that soot inception can occur only where temperature and local C/O ratio exceed threshold values (circa 1250 K and 1, respectively).

  16. Consideration of Turbulence Effects in One-Dimensional Laminar Flamelet Equations

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lee; Ihme, Matthias

    2014-11-01

    The laminar flamelet formulation has been used as a fundamental building block for the construction of turbulent combustion closures. By assuming that turbulence only leads to a deformation and straining of the local flame structure, the turbulence/chemistry interaction is then considered through a presumed shape probability density function (PDF) approach. However, the consistency of this approach remains unclear in the context of large-eddy simulations (LES), and the objective of this study is to examine the representation of turbulent scalar fluxes and turbulence/chemistry coupling on the flame structure. To this end, a detailed numerical simulation of a turbulent counterflow diffusion flame is performed, and the simulation results are used to analyze the limitations of the classic laminar flamelet formulation and explore a possible alternative approach. Financial support through the Air Force Office of Scientific Research under Award No. FA9550-11-1-0031 is gratefully acknowledged.

  17. Homogenous nucleation rates of n-propanol measured in the Laminar Flow Diffusion Chamber at different total pressures

    NASA Astrophysics Data System (ADS)

    Görke, Hanna; Neitola, Kimmo; Hyvärinen, Antti-Pekka; Lihavainen, Heikki; Wölk, Judith; Strey, Reinhard; Brus, David

    2014-05-01

    Nucleation rates of n-propanol were investigated in the Laminar Flow Diffusion Chamber. Nucleation temperatures between 270 and 300 K and rates between 100 and 106 cm-3 s-1 were achieved. Since earlier measurements of n-butanol and n-pentanol suggest a dependence of nucleation rates on carrier gas pressure, similar conditions were adjusted for these measurements. The obtained data fit well to results available from literature. A small positive pressure effect was found which strengthen the assumption that this effect is attributed to the carbon chain length of the n-alcohol [D. Brus, A. P. Hyvärinen, J. Wedekind, Y. Viisanen, M. Kulmala, V. Ždímal, J. Smolík, and H. Lihavainen, J. Chem. Phys. 128, 134312 (2008)] and might be less intensive for substances in the homologous series with higher equilibrium vapor pressure. A comparison with the theoretical approach by Wedekind et al. [Phys. Rev. Lett. 101, 12 (2008)] shows that the effect goes in the same direction but that the intensity is much stronger in experiments than in theory.

  18. RANS predictions of turbulent diffusion flames: comparison of a reactor and a flamelet combustion model to the well stirred approach

    NASA Astrophysics Data System (ADS)

    Kösters, Anne; Karlsson, Anders; Oevermann, Michael; D'Errico, Gianluca; Lucchini, Tommaso

    2015-01-01

    The flame stabilisation process in turbulent non-premixed flames is not fully understood and several models have been developed to describe the turbulence-chemistry interaction. This work compares the performance of the multiple Representative Interactive Flamelet (mRIF) model, the Volume Reactor Fraction Model (VRFM), and the Well-Stirred reactor (WS) model in describing such flames. The predicted ignition delay and flame lift-off length of n-heptane sprays are compared to experimental results published within the Engine Combustion Network (ECN). All of the models predict the trend of ignition delay reasonably well. At a low gas pressure (42 bar) the ignition delay is overpredicted compared to the experimental data, but the difference between the models is not significant. However, the predicted lift-off lengths differ. At high pressure (87 bar) the difference between the models is small. All models slightly underpredict the lift-off length compared to the experimental data. At low gas pressure (42 bar) the mRIF model gives the best results. The VRFM and WS models predict excessively short lift-off lengths, but the VRFM model gives better results than the WS model. The flame structures of the models are also compared. The WS model and the VRFM model yield a well defined flame stabilisation point whereas the mRIF model does not. The flame of the mRIF model is more diffuse and the model is not able to predict flame propagation. All models were able to predict the experimental trends in lift-off and ignition delay, but certain differences between them are demonstrated.

  19. Gaussian diffusion sphere model to predict deposition velocity onto wafers in laminar parallel airflow considering thermophoresis

    NASA Astrophysics Data System (ADS)

    Woo, Sang-Hee; Yook, Se-Jin; Han, Seog Young

    2012-11-01

    The Gaussian Diffusion Sphere Model (GDSM) was developed and improved to predict the particle deposition velocity onto a flat plate exposed to parallel airflow by considering thermophoresis in addition to the Brownian diffusion and the gravitational settling of particles. The plate surface temperature was varied and considered to be either hotter or colder than the temperature of the parallel airflow. The GDSM was able to estimate the particle deposition velocity under the influence of thermophoresis not only correctly but also very quickly, compared to the numerical approach to calculate the deposition velocity by simulating thermo-flow and particle transport. As the next step, the particle deposition velocities onto both face-up and face-down surfaces of the 450 mm wafer exposed to the parallel airflow were predicted with the GDSM by varying the wafer temperature. It was anticipated that the schemes of heating the wafer and placing the critical surface inverted during the horizontal transport of the wafer could greatly reduce the particulate contamination of the wafer critical surface.

  20. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Interior of the Equipment Module for the Laminar Soot Processes (LSP-2) experiment that fly in the STS-107 Research 1 mission in 2002 (LSP-1 flew on Microgravity Sciences Lab-1 mission in 1997). The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner (yellow ellipse), similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a radiometer or heat sensor (blue circle), and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  1. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Image of soot (smoke) plume made for the Laminar Soot Processes (LSP) experiment during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2002. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  2. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Laminar Soot Processes (LSP) experiment under way during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2001. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  3. Estimation of Laminar Burning Velocities by Direct Digital Photography

    ERIC Educational Resources Information Center

    Uske, J.; Barat, R.

    2004-01-01

    The Bunsen burner flame, which is the most common flame in the laboratory, can be easily studied for its dynamics because of modern, economical digital technology available to student laboratories. Direct digital photography of Bunsen flames is used to obtain laminar burning velocities of selected gaseous hydrocarbon/air flames.

  4. Effect of ethanol on the chemical structure of the soot extractable material of an ethylene inverse diffusion flame

    SciTech Connect

    Santamaria, Alexander; Mondragon, Fanor; Eddings, Eric G.

    2007-10-15

    The effect of fuel-side ethanol addition on the chemical structure of the soot extractable material generated in an ethylene inverse diffusion flame was evaluated by means of average structural parameters. The results indicate that the ethanol effect on the aromatic components was more pronounced, with an increase of about 40% in the average number of aromatic fused rings (R{sub a}) as compared to the results of a neat flame. This observation also helps explain the low percentage of chloroform-extractable material in the soot samples obtained from the flame with ethanol addition. In contrast, the aliphatic component of the extractable material did not demonstrate significant changes with ethanol addition. (author)

  5. The Effect of Velocity on the Extinction Behavior of a Diffusion Flame during Transient Depressurization

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.; Urban, David L.; Tien, James

    1999-01-01

    Current fire suppression plans for the International Space Station include the use of venting (depressurization) as a method for extinguishing a fire. Until recently this process had only been examined as part of a material flammability experiment performed on Skylab in the early 1970's. Due to the low initial pressure (0.35 Atm) and high oxygen concentration (65%), the Skylab experimental results are not applicable for understanding the effects of venting on a fire in a space station environment (21%O2, 1 Atm). Recent research examined the extinction behavior of a diffusion flame over a polymethyl methacrylate (PMMA) cylinder during a transient depressurization in low-gravity. The numerical model was used to examine extinction limits as a function of depressurization rate, forced flow velocity, and initial solid phase temperature. The experimental and numerically predicted extinction data indicated that as the solid phase temperature increased the pressure required to extinguish the flame decreased. The numerical model was also used to examine conditions not obtainable in the low-gravity experiments. From these simulations, a series of extinction boundaries were generated that showed a region of increased flammability existed at a forced flow of 10 cm/s. Analysis of these extinction boundaries indicated that they were quasi-steady in nature, and that the final extinction conditions were independent of the transient process. The velocity range in the previous study was limited and thus the results did not examine the effects of velocities less than 1 cm/s or greater than 20 cm/s. This study utilized low-gravity experiments performed on NASA's Reduced-gravity Research Aircraft Laboratory and numerical simulations to examine conditions applicable to the Space Station environment. This paper extends the analysis of the previous study to a comprehensive examination of the effect of increased velocity on extinction behavior and extinction limits during a transient

  6. Analysis of reaction-diffusion systems for flame capturing in type IA supernova simulations

    NASA Astrophysics Data System (ADS)

    Zhyglo, Andriy V.

    2009-06-01

    We present a study of numerical behavior of a thickened flame used in Flame Capturing (FC, Khokhlov (1995)) for tracking thin physical flames in deflagration simulations. This technique, used extensively in astrophysics, utilizes artificial flame variable to evolve flame region, width of which is resolved in simulations, with physically motivated propagation speed. We develop a steady-state procedure for calibrating flame model used in FC, and test it against analytical results. Original flame model is properly calibrated with taking matter expansion into consideration and keeping artificial flame width at predetermined value regardless of expansion. We observe numerical noises generated by original realization of the technique. Alternative artificial burning rates are discussed, which produce acceptably quiet flames (relative dispersion in propagation speed within 0.1% at physically interesting ratios of fuel and ash densities). Two new quiet models are calibrated to yield required "flame" speed and width, and further studied in 2D and 3D setting. Landau-Darrieus type instabilities of the flames are observed. One model also shows significantly anisotropic propagation speed on the grid, both effects increasingly pronounced at larger matter expansion as a result of burning; these 2D/3D effects make that model unacceptable for use in type Ia supernova simulations at fuel densities below about 100 tons per cubic centimeter. Another model, first presented here, looks promising for use in flame capturing at fuel to ash density ratio of order 3 and below, the interval of most interest for astrophysical applications. No model was found to significantly inhibit LD instability development at larger expansions without increasing flame width. The model we propose, "Model B", yields flames completely localized within a region 6 cells wide at any expansion. We study Markstein effect (speed of the flame dependence on its curvature) for flame models described, through direct

  7. Structure of Propagating and Attached Hydrocarbon Flames

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath

    2004-01-01

    Direct numerical simulations with C3-chemistry and radiative heat-loss models have been performed to reveal the internal structure of propagating and attached flames in an axisymmetric fuel jet of methane, ethane, ethylene, acetylene, or propane in air under normal and zero gravity. Observations of the flames were also made at the NASA Glenn 2.2-Second Drop Tower. In computations, the fuel issued into quasi-quiescent air for a fixed mixing time before it was ignited along the centerline at stoichiometry. The edge of the flame propagated through a flammable layer at the laminar flame speed of the stoichiometric fuel-air mixture independent of gravity. For all cases, a peak reactivity spot, i.e., reaction kernel, was formed in the flame base, thereby holding a trailing diffusion flame. The location of the reaction kernel in the attached flames depended inversely on the reactivity. The reaction-kernel correlations between the reactivity and the velocity were developed further using variables related to local Damkahler and Peclet numbers.

  8. Influence of sulfur in fuel on the properties of diffusion flame soot

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Ma, Qingxin; Liu, Yongchun; He, Hong

    2016-10-01

    Previous studies indicate that sulfur in fuel affects the hygroscopicity of soot. However, the issue of the effect of sulfur in fuel on soot properties is not fully understood. Here, the properties of soot prepared from fuel with a variable sulfur content were investigated under lean and rich flame conditions. Lean flame soot was influenced more by sulfur in fuel than rich flame soot. The majority of sulfur in fuel in lean flame was converted to gaseous SO2, while a small fraction appeared as sulfate and bisulfate (referred to as sulfate species) in soot. As the sulfur content in fuel increased, sulfate species in lean flame soot increased nonlinearly, while sulfate species on the surface of lean flame soot increased linearly. The hygroscopicity of lean flame soot from sulfur-containing fuel was enhanced mainly due to sulfate species. Meanwhile, more alkynes were formed in lean flame. The diameter of primary lean flame soot particles increased and accumulation mode particle number concentrations of lean flame soot from sulfur-containing fuel increased as a result of more alkynes. Because the potential effects of soot particles on air pollution development greatly depend on the soot properties, which are related to both chemical aging and combustion conditions, this work will aid in understanding the impacts of soot on air quality and climate.

  9. An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties

    NASA Technical Reports Server (NTRS)

    Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.

    2007-01-01

    The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.

  10. Numerical Study of Unsteady Properties of Ethylene/Air Turbulent Jet Diffusion Flame with Detached Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Ma, Sugang; Zhong, Fengquan; Zhang, Xinyu

    2016-12-01

    In this paper, unsteady process of ignition and combustion of turbulent plane-jet diffusion flame of ethylene/air is numerically simulated with detached eddy simulation (DES) and a reduced kinetic mechanism of ethylene. The kinetic mechanism consisting of 25 species and 131 steps is reduced from a 25 species/131 steps detailed mechanism via the method of error-propagation-based directed relation graph (DRGEP). The DES results of averaged temperature profiles at varied downstream locations are compared with the DNS results of Yoo et al. and satisfactory agreement between them is found. Ignition and combustion of ethylene plane-jet diffusion flame is simulated and dynamic changes of temperature field and OH radical are obtained. The present numerical study shows that DES method with a qualified reduced mechanism of hydrocarbon fuels can effectively simulate temporal and spatial evolution of ignition and combustion process.

  11. Computational modeling of nanoparticle charging mechanism in a hydrocarbon flame

    NASA Astrophysics Data System (ADS)

    Shah, Parth; Saveliev, Alexei

    2014-10-01

    A model that describes the charging mechanism of a 20 nm nanoparticle introduced in a methane-air counterflow laminar diffusion flame was developed and analyzed. The detailed kinetic model considers the production of ions and electrons in a methane-air flame due to chemi-ionization, thermal ionization and charging due to diffusion. The chemi-ionization model considers a one-step reaction that produces ions and electrons in a flame in addition to the detailed neutral reaction mechanism. The model is analyzed to study the effects of temperature, total nanoparticle concentration and chemi-ionization on charge formation in nanoparticles as well as on ions and electrons. The results show that thermal ionization is more dominant at high temperatures whereas diffusion charging is important at low temperatures. High concentration of nanoparticles influences the gas-phase ion and electron concentration to a very significant level whereas low concentration has a negligible effect on the same.

  12. Chemical response of methane/air diffusion flames to unsteady strain rate

    SciTech Connect

    Im, H.G.; Chen, J.H.; Chen, J.Y.

    1998-03-01

    Effects of unsteady strain rate on the response of methane/air diffusion flames are studied. The authors use the finite-domain opposed flow configuration in which the nozzle exit velocity is imposed as a function of time. The GRI mechanism v2.11 is used for the detailed methane/air chemistry. The response of individual species to monochromatic oscillation in strain rate with various frequencies reveals that the fluctuation of slow species, such as CO and NO{sub x}, is more rapidly suppressed as the flow time scale decreases. It is also observed that the maximum CO concentration is very insensitive to the variation in the scalar dissipation rate. An extinction event due to an abrupt imposition of high strain rates is also simulated by an impulsive velocity with various frequencies. For a fast impulse, a substantial overshoot in NO{sub 2} concentration is observed after extinction. Finally, the overall fuel burning rate shows a nonmonotonic response to the variation in characteristic unsteady time scale, while the emission indices for NO{sub x} shows monotonic decay in response as frequency is increased.

  13. Diffusion-flame ignition by shock-wave impingement on a supersonic mixing layer

    NASA Astrophysics Data System (ADS)

    Sanchez, Antonio L.; Huete, Cesar; Williams, Forman A.; Urzay, Javier

    2015-11-01

    Ignition in a supersonic mixing layer interacting with an oblique shock wave is investigated analytically and numerically under conditions such that the post-shock flow remains supersonic. The study requires consideration of the structure of the post-shock ignition kernel that is found to exist around the point of maximum temperature, which may be located either near the edge of the mixing layer or in its interior. The ignition kernel displays a balance between the rates of chemical reaction and of post-shock flow expansion, including the acoustic interactions of the chemical heat release with the shock wave, leading to increased front curvature. The analysis, which adopts a one-step chemistry model with large activation energy, indicates that ignition develops as a fold bifurcation, the turning point in the diagram of the peak perturbation induced by the chemical reaction as a function of the Damköhler number providing the critical conditions for ignition. Subsequent to ignition the lead shock will rapidly be transformed into a thin detonation on the fuel side of the ignition kernel, and, under suitable conditions, a deflagration may extend far downstream, along with the diffusion flame that must separate the rich and lean reaction products.

  14. Experimental Measurements of Two-dimensional Planar Propagating Edge Flames

    NASA Technical Reports Server (NTRS)

    Villa-Gonzalez, Marcos; Marchese, Anthony J.; Easton, John W.; Miller, Fletcher J.

    2007-01-01

    The study of edge flames has received increased attention in recent years. This work reports the results of a recent study into two-dimensional, planar, propagating edge flames that are remote from solid surfaces (called here, free-layer flames, as opposed to layered flames along floors or ceilings). They represent an ideal case of a flame propagating down a flammable plume, or through a flammable layer in microgravity. The results were generated using a new apparatus in which a thin stream of gaseous fuel is injected into a low-speed laminar wind tunnel thereby forming a flammable layer along the centerline. An airfoil-shaped fuel dispenser downstream of the duct inlet issues ethane from a slot in the trailing edge. The air and ethane mix due to mass diffusion while flowing up towards the duct exit, forming a flammable layer with a steep lateral fuel concentration gradient and smaller axial fuel concentration gradient. We characterized the flow and fuel concentration fields in the duct using hot wire anemometer scans, flow visualization using smoke traces, and non-reacting, numerical modeling using COSMOSFloWorks. In the experiment, a hot wire near the exit ignites the ethane air layer, with the flame propagating downwards towards the fuel source. Reported here are tests with the air inlet velocity of 25 cm/s and ethane flows of 967-1299 sccm, which gave conditions ranging from lean to rich along the centerline. In these conditions the flame spreads at a constant rate faster than the laminar burning rate for a premixed ethane air mixture. The flame spread rate increases with increasing transverse fuel gradient (obtained by increasing the fuel flow rate), but appears to reach a maximum. The flow field shows little effect due to the flame approach near the igniter, but shows significant effect, including flow reversal, well ahead of the flame as it approaches the airfoil fuel source.

  15. The Laminar Soot Processes (LSP)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Laminar Soot Processes (LSP) Experiment Mounting Structure (EMS) was used to conduct the LSP experiment on Combustion Module-1. The EMS was inserted into the nozzle on the EMS and ignited by a hot wire igniter. The flame and its soot emitting properties were studied.

  16. DNS of a turbulent lifted DME jet flame

    SciTech Connect

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatial locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.

  17. DNS of a turbulent lifted DME jet flame

    DOE PAGES

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less

  18. FT-IR and {sup 1}H NMR characterization of the products of an ethylene inverse diffusion flame

    SciTech Connect

    Santamaria, Alexander; Mondragon, Fanor; Molina, Alejandro; Marsh, Nathan D.; Eddings, Eric G.; Sarofim, Adel F.

    2006-07-15

    Knowledge of the chemical structure of young soot and its precursors is very useful in the understanding of the paths leading to soot particle inception. This paper presents analyses of the chemical functional groups, based on FT-IR and {sup 1}H NMR spectroscopy of the products obtained in an ethylene inverse diffusion flame. The trends in the data indicate that the soluble fraction of the soot becomes progressively more aromatic and less aliphatic as the height above the burner increases. Results from {sup 1}H NMR spectra of the chloroform-soluble soot samples taken at different heights above the burner corroborate the infrared results based on proton chemical shifts (Ha, H{alpha}, H{beta}, and H{gamma}). The results indicate that the aliphatic {beta} and {gamma} hydrogens suffered the most drastic reduction, while the aromatic character increased considerably with height, particularly in the first half of the flame. (author)

  19. PIV Measurements in Weakly Buoyant Gas Jet Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  20. Dynamics and structure of turbulent premixed flames

    NASA Technical Reports Server (NTRS)

    Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.

    1995-01-01

    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the

  1. A numerical study of a laminar methane/air flame impinged upon by a two-dimensional counter-rotating vortex pair

    NASA Astrophysics Data System (ADS)

    Womeldorf, Carole A.

    Today's electricity, transportation, and manufacturing all fundamentally rely on the turbulent combustion of fuel. However, modeling the deep complexity inside a realistic turbulent flame is well beyond the capability of today's fastest computers. By studying flame/vortex interactions we can build insights that will illuminate much of the complex interplay of kinetics, fluid dynamics, and heat and mass transfer of turbulent combustion. For this study, the interaction of a freely-propagating premixed methane-air flame with a two-dimensional counter-rotating vortex pair is simulated under fuel-rich conditions using a detailed C1-C2 chemical mechanism and mixture-averaged Dipole Reduced Formalism (DRFM) transport properties. The effect of the strength and size of the vortex pair on the transient flame response and the evolution of its structure along the centerline of the vortex pair are examined. Additional effects of initial air dilution and/or heating of the vortex pair are also analyzed. Further refinements of the distribution of added air are also postulated in an effort to reconcile previous experimental results observed by Nguyen and Paul (1996) and Najm et al. (1999). Observations of qualitative changes in the response of OH and CH, their source terms, and rate-of-progress variables are presented.

  2. Laser-induced fluorescence measurements of nitric oxide in laminar C2H6/O2/N2 flames at high pressure

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Carter, Campbell D.; Laurendeau, Normand M.

    1993-01-01

    Quantitative measurements of nitric oxide in C2H6/O2/N2 flames at 1-9 atm were successfully carried out using laser-induced fluorescence. The location of maximum NO concentration is found to shift towards leaner equivalence ratios with increasing pressure. Details of the experimental apparatus and measurement procedure are described.

  3. Measurements and modeling of nitric oxide formation in counterflow, premixed, methane/oxygen/nitrogen flames

    NASA Astrophysics Data System (ADS)

    Thomsen, Duane Douglas

    1999-10-01

    Laser-induced fluorescence (LIF) measurements of NO concentration in a variety of CH4/O2/N2 flames are used to evaluate the chemical kinetics of NO formation. The analysis begins with previous measurements in flat, laminar, premixed CH4/O2/N 2 flames stabilized on a water-cooled McKenna burner at pressures ranging from 1 to 14.6 atm, equivalence ratios from 0.5 to 1.6, and volumetric nitrogen/oxygen dilution ratios of 2.2, 3.1 and 3.76. These measured results are compared to predictions to determine the capabilities and limitations of the comprehensive kinetic mechanism developed by the Gas Research Institute (GRI), version 2.11. The model is shown to predict well the qualitative trends of NO formation in lean-premixed flames, while quantitatively underpredicting NO concentration by 30-50%. For rich flames, the model is unable to even qualitatively match the experimental results. These flames were found to be limited by low temperatures and an inability to separate the flame from the burner surface. In response to these limitations, a counterflow burner was designed for use in opposed premixed flame studies. A new LIF calibration technique was developed and applied to obtain quantitative measurements of NO concentration in laminar, counterflow premixed, CH 4/O2/N2 flames at pressures ranging from 1 to 5.1 atm, equivalence ratios of 0.6 to 1.5, and an N2/O2 dilution ratio of 3.76. The counterflow premixed flame measurements are combined with measurements in burner-stabilized premixed flames and counterflow diffusion flames to build a comprehensive database for analysis of the GRI kinetic mechanism. Pathways, quantitative reaction path and sensitivity analyses are applied to the GRI mechanism for these flame conditions. The prompt NO mechanism is found to severely underpredict the amount of NO formed in rich premixed and nitrogen-diluted diffusion flames. This underprediction is traced to uncertainties in the CH kinetics as well as in the nitrogen oxidation chemistry

  4. Prediction of flame velocities of hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Simon, Dorothy M

    1954-01-01

    The laminar-flame-velocity data previously reported by the Lewis Laboratory are surveyed with respect to the correspondence between experimental flame velocities and values predicted by semitheoretical and empirical methods. The combustible mixture variables covered are hydrocarbon structure (56 hydrocarbons), equivalence ratio of fuel-air mixture, mole fraction of oxygen in the primary oxygen-nitrogen mixture (0.17 to 0.50), and initial mixture temperature (200 degrees to 615 degrees k). The semitheoretical method of prediction considered are based on three approximate theoretical equations for flame velocity: the Semenov equation, the Tanford-Pease equation, and the Manson equation.

  5. Two-dimensional imaging of molecular hydrogen in H2-air diffusion flames using two-photon laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Lempert, W.; Kumar, V.; Glesk, I.; Miles, R.; Diskin, G.

    1991-01-01

    The use of a tunable ArF laser at 193.26 nm to record simultaneous single-laser-shot, planar images of molecular hydrogen and hot oxygen in a turbulent H2-air diffusion flame. Excitation spectra of fuel and oxidant-rich flame zones confirm a partial overlap of the two-photon H2 and single-photon O2 Schumann-Runge absorption bands. UV Rayleigh scattering images of flame structure and estimated detection limits for the H2 two-photon imaging are also presented.

  6. Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames

    NASA Astrophysics Data System (ADS)

    Stella, A.; Guj, G.; Giammartini, S.

    A unified methodology for the application of reference beam and shearing interferometry to measure axisymmetric temperature fields within flames is proposed. Sensitivity and accuracy of the techniques are analyzed basing on interferograms of reference temperature profiles and CARS measurements obtained in test laminar flames. The rapid decay of temperature measurements accuracy with increasing both intensity of errors sources and uncertainty on independent parameters is assessed. The spatial variation of mixture composition in diffusive combusting flows requires the application of complementary methods to obtain a satisfactory accuracy, while flow fields with lean premixed combustion can be treated as optically-homogeneous media. The temperature maps resulting from the investigation of the test laminar flames are presented and discussed. The capability to disclose the thermal structure and to provide reliable quantitative data is demonstrated.

  7. Influences of flame-vortex interactions on formation of oxides of nitrogen in curved methane-air diffusion flamelets

    SciTech Connect

    Card, J.M.; Ryden, R.; Williams, F.A.

    1994-01-01

    To improve knowledge of production rates of nitrogen oxides in turbulent diffusion flames in reaction-sheet regimes, an analytical investigation is made of the structure of a parabolic flamelet. The mixture-fraction field, scalar dissipation rate and gas velocity relative to the flamelet in the vortex are related to flame curvature at the parabolic tip. Flame structure for major species and temperature is described by rate-ratio asymptotics based on two-step and three-step reduced chemical-kinetic mechanisms. Production rates by prompt, thermal and nitrous-oxide mechanisms are obtained from one-step reduced-chemistry approximations that employ steady states for all reaction intermediaries. For sufficiently large streamwise separation distances between isoscalar surfaces, it is found that equilibrium conditions are closely approached near the flame tip, and the thermal mechanism dominates there, but the prompt mechanism always dominates in the wings, away from the tip, where the highest rates of scalar dissipation occur. Increasing the tip curvature increases the Peclet number and the prompt contribution while decreasing the thermal contribution. At 1 atm and ambient temperatures of 300 K, the prompt mechanism always dominates the total production rate in the parabolic flamelet, and, perhaps surprisingly, the rate of the nitrous-oxide mechanism is faster than that of the thermal mechanism and varies with the tip curvature and with scalar dissipation in the same manner as that of the prompt mechanism, different from that of the thermal mechanism. Conclusion reached is that Zel`dovich NO is relatively insignificant in hydrocarbon-air mixtures in reaction-sheet regimes.

  8. Understanding the Role of Heat Recirculation in Enhancing the Speed of Premixed Laminar Flames in a Parallel Plate Micro-Combustor

    DTIC Science & Technology

    2009-01-01

    is a single valued function of the flame speed and independent of the velocity profile (Plug or Report Documentation Page Form ApprovedOMB No. 0704...0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing...Washington Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302

  9. Kinetic Effects of Non-Equilibrium Plasma-Assisted Methane Oxidation on Diffusion Flame Extinction Limits

    DTIC Science & Technology

    2011-01-01

    reactions (1)-(6)). The formed CH3, CH2 and CH were oxidized further to CH2O, HCO, CO and finally CO2 as shown in Fig. 7a. Among those reaction paths, a...pulsed discharge Plasma flame chemistry reactions Path flux analysis Counterflow extinction Partially premixed flames a b s t r a c t The kinetic...the kinetic model over-predicted the CO, H2O and H2 concentrations and under-predicted CO2 concentration. A path flux analysis showed that O generated

  10. Propagation and extinction of premixed C{sub 5}-C{sub 12}n-alkane flames

    SciTech Connect

    Ji, Chunsheng; Dames, Enoch; Wang, Yang L.; Wang, Hai; Egolfopoulos, Fokion N.

    2010-02-15

    Laminar flame speeds and extinction strain rates of premixed C{sub 5}-C{sub 12}n-alkane flames were determined at atmospheric pressure and elevated unburned mixture temperatures, over a wide range of equivalence ratios. Experiments were performed in the counterflow configuration and flow velocities were measured using Laser Doppler Velocimetry. The laminar flame speeds were obtained using a non-linear extrapolation technique utilizing numerical simulations of the counterflow experiments with detailed descriptions of chemical kinetics and molecular transport. Compared to linearly extrapolated values, the laminar flame speeds obtained using non-linear extrapolations were found to be 1-4 cm/s lower depending on the equivalence ratio. It was determined that the laminar flame speeds of all n-alkane/air mixtures considered in this investigation are similar to each other and sensitive largely to the H{sub 2}/CO and C{sub 1}-C{sub 4} hydrocarbon kinetics. Additionally, the resistance to extinction decreases as the fuel molecular weight increases. Simulations of the experiments were performed using the recently developed JetSurF 0.2 reaction model consisting of 194 species and 1459 reactions. The laminar flame speeds were predicted with good accuracy for all the n-alkane-air mixtures considered. The experimental extinction strain rates are well predicted by the model for fuel-lean mixtures. For stoichiometric and fuel-rich mixtures, the predicted extinction strain rates are approximately 10% lower than the experimental values. Insights into the physical and chemical processes that control the response of n-alkane flames are provided through detailed sensitivity analyses on both reaction rates and binary diffusion coefficients. (author)

  11. Lean and ultralean stretched propane-air counterflow flames

    SciTech Connect

    Cheng, Zhongxian; Pitz, Robert W.; Wehrmeyer, Joseph A.

    2006-06-15

    Stretched laminar flame structures for a wide range of C{sub 3}H{sub 8}-air mixtures vs hot products are investigated by laser-based diagnostics and numerical simulation. The hot products are produced by a lean H{sub 2}-air premixed flame. The effect of stretch rate and equivalence ratio on four groups of C{sub 3}H{sub 8}-air flame structures is studied in detail by Raman scattering measurements and by numerical calculations of the major species concentration and temperature profiles. The equivalence ratio, f, is varied from a near-stoichiometric condition (f=0.86) to the sublean limit (f=0.44) and the stretch rate varies from 90 s{sup -1} to near extinction. For most of these C{sub 3}H{sub 8}-air lean mixtures, hot products are needed to maintain the flame. The significant feature of these flames is the relatively low flame temperatures (1200-1800 K). For this temperature range, the predicted C{sub 3}H{sub 8}-air flame structure is sensitive to the specific chemical kinetic mechanism. Two types of flame structures (a lean self-propagating flame and a lean diffusion-controlled flame) are obtained based on the combined effect of stretch and equivalence ratio. Three different mechanisms, the M5 mechanism, the Optimized mechanism, and the San Diego mechanism, are chosen for the numerical simulations. None of the propane chemical mechanisms give good agreement with the data over the entire range of flame conditions. (author)

  12. Cellular structure of lean hydrogen flames in microgravity

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1990-01-01

    Detailed, time-dependent, two-dimensional numerical simulations of premixed laminar flames have been used to study the initiation and subsequent development of cellular structures in lean hydrogen-air flames. The model includes detailed hydrogen-oxygen combustion with 24 elementary reactions of eight reactive species and a nitrogen diluent, molecular diffusion of all species, thermal conduction, viscosity, and convection. This model has been used to study the nonlinear evolution of cellular flame structure and shows that cell splitting, as observed in experiments, can be predicted numerically for sufficiently reactive mixtures. The structures that evolved also resembled the cellular structures observed in experiments. The present study shows that the 'cell-split limit' postulated from experimental observations is an intrinsic property of the mixture and that external factors such as heat losses are not necessary to cause this limit.

  13. Piloted methane/air jet flames : transport effects and aspects of scalar structure.

    SciTech Connect

    Karpetis, Adionos N.; Chen, J. Y.; Barlow, Robert S.; Frank, Jonathan H.

    2005-02-01

    Previously unpublished results from multiscalar point measurements in the series of piloted CH{sub 4}/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there is an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations.

  14. Piloted methane/air jet flames: Transport effects and aspects of scalar structure

    SciTech Connect

    Barlow, R.S.; Frank, J.H.; Karpetis, A.N.; Chen, J.-Y.

    2005-12-01

    Previously unpublished results from multiscalar point measurements in the series of piloted CH{sub 4}/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there is an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations.

  15. Measurements and Modeling of Nitric Oxide Formation in Counterflow, Premixed CH4/O2/N2 Flames

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Douglas; Laurendeau, Normand M.

    2000-01-01

    Laser-induced fluorescence (LIF) measurements of NO concentration in a variety of CH4/O2/N2 flames are used to evaluate the chemical kinetics of NO formation. The analysis begins with previous measurements in flat, laminar, premixed CH4/O2/N2 flames stabilized on a water-cooled McKenna burner at pressures ranging from 1 to 14.6 atm, equivalence ratios from 0.5 to 1.6, and volumetric nitrogen/oxygen dilution ratios of 2.2, 3.1 and 3.76. These measured results are compared to predictions to determine the capabilities and limitations of the comprehensive kinetic mechanism developed by the Gas Research Institute (GRI), version 2.11. The model is shown to predict well the qualitative trends of NO formation in lean-premixed flames, while quantitatively underpredicting NO concentration by 30-50%. For rich flames, the model is unable to even qualitatively match the experimental results. These flames were found to be limited by low temperatures and an inability to separate the flame from the burner surface. In response to these limitations, a counterflow burner was designed for use in opposed premixed flame studies. A new LIF calibration technique was developed and applied to obtain quantitative measurements of NO concentration in laminar, counterflow premixed, CH4/O2/N2 flames at pressures ranging from 1 to 5.1 atm, equivalence ratios of 0.6 to 1.5, and an N2/O2 dilution ratio of 3.76. The counterflow premixed flame measurements are combined with measurements in burner-stabilized premixed flames and counterflow diffusion flames to build a comprehensive database for analysis of the GRI kinetic mechanism. Pathways, quantitative reaction path and sensitivity analyses are applied to the GRI mechanism for these flame conditions. The prompt NO mechanism is found to severely underpredict the amount of NO formed in rich premixed and nitrogen-diluted diffusion flames. This underprediction is traced to uncertainties in the CH kinetics as well as in the nitrogen oxidation chemistry

  16. Premixed conical flame stabilization

    NASA Astrophysics Data System (ADS)

    Krikunova, A. I.; Son, E. E.; Saveliev, A. S.

    2016-11-01

    In the current work, stabilization of premixed laminar and lean turbulent flames for wide range of flow rates and equivalence ratios was performed. Methane-air mixture was ignited after passing through premixed chamber with beads and grids, and conical nozzle (Bunsen-type burner). On the edge of the nozzle a stabilized body-ring was mounted. Ring geometry was varied to get the widest stable flame parameters. This work was performed as part of the project on experimental investigation of premixed flames under microgravity conditions.

  17. Diffusion of polyphosphates into (poly(allylamine)-montmorillonite) multilayer films: flame retardant-intumescent films with improved oxygen barrier.

    PubMed

    Laachachi, Abdelghani; Ball, Vincent; Apaydin, Kadir; Toniazzo, Valérie; Ruch, David

    2011-11-15

    The present paper relies on the original idea to design multifunctional coatings, and in particular highly efficient intumescent flame retardant coatings, based on the diffusion of polyphosphates (PSPs) in exponentially growing "layer-by-layer" films made from montmorillonite (MMT) and poly(allylamine) (PAH). Here, we used polyphosphates as an acid source, polyallylamine as both a carbon source and a swelling agent, and finally clays to reinforce the intumescent char strength and also for their oxygen barrier property. The coatings made from the alternated deposition of n = 60 layer pairs of PAH and MMT reach a considerable thickness of ∼18 μm with well-defined ordering of the MMT in the direction parallel to the substrate. Structural, morphological, mechanical, gas barrier, and fire resistance properties of these films have been studied. Excellent oxygen barrier properties and extraordinary fire resistance properties are demonstrated based on the basis of a strong increase of the time to ignition and on a decrease of the heat release rate of polylactide substrates during mass loss calorimeter tests. This new and innovative intumescent flame retardant system based on (PAH-MMT)(n)-PSP coatings is a promising universal treatment for current polymeric materials.

  18. Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels

    SciTech Connect

    Santamaria, Alexander; Mondragon, Fanor; Yang, Nancy; Eddings, Eric

    2010-01-15

    Knowledge of the chemical and physical structure of young soot and its precursors is very useful in understanding the paths leading to soot particle inception. This paper presents chemical and morphological characterization of the products generated in ethylene and benzene inverse diffusion flames (IDF) using different analytical techniques. The trend in the data indicates that the soot precursor material and soot particles generated in the benzene IDF have a higher degree of complexity than the samples obtained in the ethylene IDF, which is reflected by an increase in the aromaticity of the chloroform extracts observed by {sup 1}H NMR and FT-IR, and shape and size of soot particles obtained by TEM and HR-TEM. It is important to highlight that the soot precursor material obtained at the lower positions in the ethylene IDF has a significant contribution of aliphatic groups, which play an important role in the particle inception and mass growth processes during the early stages of soot formation. However, these groups progressively disappear in the samples taken at higher positions in the flame, due to thermal decomposition processes. (author)

  19. Effects of Lewis number, density ratio and gravity on burning velocity and conditional statistics in stagnating turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Kwon, Jaesung; Huh, Kang Y.

    2014-09-01

    DNS is performed to analyse the effects of Lewis number (Le), density ratio and gravity in stagnating turbulent premixed flames. The results show good agreement with those of Lee and Huh (Combustion and Flame, Vol. 159, 2012, pp. 1576-1591) with respect to the turbulent burning velocity, ST, in terms of turbulent diffusivity, flamelet thickness, mean curvature and displacement speed at the leading edge. In all four stagnating flames studied, a mean tangential strain rate resulting in a mean flamelet thickness smaller than the unstretched laminar flame thickness leads to an increase in ST. A flame cusp of positive curvature involves a superadiabatic burned gas temperature due to diffusive-thermal instability for an Le less than unity. Wrinkling tends to be suppressed at a larger density ratio, not enhanced by hydrodynamic instability, in the stagnating flow configuration. Turbulence is produced, resulting in highly anisotropic turbulence with heavier unburned gas accelerating through a flame brush by Rayleigh-Taylor instability. Results are also provided on brush thickness, flame surface density and conditional velocities in burned and unburned gas and on flame surfaces to represent the internal brush structures for all four test flames.

  20. EFFECT OF OXYGEN ADDITION ON POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN 1,3 BUTADIENE COUNTER-FLOW DIFFUSION FLAMES. (R828193)

    EPA Science Inventory

    The effect of 3% O2 addition to the fuel on detailed chemical structure of a 1,3 butadiene counter-flow diffusion flame has been investigated by using heated microprobe sampling and online gas chromatography mass spectrometry. Centerline gas temperature and species ...

  1. On the Influence of a Fuel Side Heat-Loss (Soot) Layer on a Planar Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1994-01-01

    A model of the response of a diffusion flame (DF) to an adjacent heat loss or 'soot' layer on the fuel side is investigated. The thermal influence of the 'soot' or heat-loss layer on the DF occurs through the enthalpy sink it creates. A sink distribution in mixture-fraction space is employed to examine possible DF extinction. It is found that (1) the enthalpy sink (or soot layer) must touch the DF for radiation-induced quenching to occur; and (2) for fuel-rich conditions extinction is pos