Microstructure and degradation behavior of forged Fe-Mn-Si alloys
NASA Astrophysics Data System (ADS)
Xu, Zhigang; Hodgson, Michael A.; Cao, Peng
2015-03-01
This work presents a comparative study of a series of Fe-Mn-Si alloys proposed as degradable biomaterials for medical applications. Five Fe-28wt.%Mn-xSi (where x = 0 to 8 wt.%) alloys were fabricated by an arc-melting method. All the as-cast alloys were subsequently subjected to homogenization treatment and hot forging. The microstructure and phase constituents were investigated. It is found that the grain size of the as-forged alloys ranged approximately from 30 to 50 μm. The as-forged Fe-Mn-Si alloys containing Si from 2 to 6 wt.% was comprised of duplex martensitic ɛ and austenitic γ phases; however, the Si-free and 8 wt.% Si alloys only consisted of a single γ phase. After 30 days of static immersion test in a simulated body fluid (SBF) medium, it is found that pitting and general corrosion occur on the sample surfaces. Potentiodynamic analysis reveals that the degradation rate of the Fe-Mn-Si alloys increased gradually with Si content up to 6 wt.%, beyond which the degradation slows down.
NASA Astrophysics Data System (ADS)
Drevet, Richard; Zhukova, Yulia; Malikova, Polina; Dubinskiy, Sergey; Korotitskiy, Andrey; Pustov, Yury; Prokoshkin, Sergey
2018-03-01
The Fe-Mn-Si alloys are promising materials for biodegradable metallic implants for temporary healing process in the human body. In this study, three different compositions are considered (Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si, all in wt pct). The phase composition analysis by XRD reveals ɛ-martensite, α-martensite, and γ-austenite in various proportions depending on the manganese amount. The DSC study shows that the starting temperature of the martensitic transformation ( M s) of the alloys decreases when the manganese content increases (416 K, 401 K, and 323 K (143 °C, 128 °C, and 50 °C) for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). Moreover, mechanical compression tests indicate that these alloys have a much lower Young's modulus ( E) than pure iron (220 GPa), i.e., 145, 133, and 118 GPa for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively. The corrosion behavior of the alloys is studied in Hank's solution at 310 K (37 °C) using electrochemical experiments and weight loss measurements. The corrosion kinetics of the Fe-Mn-Si increases with the manganese content (0.48, 0.59, and 0.80 mm/year for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). The alloy with the highest manganese content shows the most promising properties for biomedical applications as a biodegradable and biomechanically compatible implant material.
Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy
NASA Astrophysics Data System (ADS)
Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente
2016-06-01
The antiferromagnetic structures of a low Si-content FeMn(PSi) alloy were investigated by first principles calculations. One possible antiferromagnetic structure in supercell along the c-axis was revealed in FeMnP0.75Si0.25 alloy. It was found that atomic disorder occupation between Fe atom on 3f and Mn atoms on 3g sites is responsible for the formation of antiferromagnetic structures. Furthermore the magnetic competition and the coupling between possible AFM supercells along the c and a-axis can promote a non-collinear antiferromagnetic structure. These theoretical investigations help to deeply understand the magnetic order in FeMn(PSi) alloys and benefit to explore the potential magnetocaloric materials in Fe2P-type alloys.
Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant
NASA Astrophysics Data System (ADS)
Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.
2016-06-01
In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.
NASA Astrophysics Data System (ADS)
Que, Zhongping; Wang, Yun; Fan, Zhongyun
2018-06-01
Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.
Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena
2016-01-01
In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094
Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena
2016-11-30
In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.
NASA Astrophysics Data System (ADS)
Maji, Bikas C.; Krishnan, Madangopal; Sujata, M.; Gouthama; Ray, Ranjit K.
2013-01-01
The effect of Co addition has been studied in Fe-30Mn-6Si- xCo ( x = 0 to 9 wt pct) shape memory alloys in terms of their microstructure, martensitic transformation and shape recovery. Microstructural investigations reveal that in Fe-Mn-Si-Co alloys, the microstructure remains single-phase austenite (γ) up to 5 pct Co and beyond that becomes two-phase comprising γ and off-stoichiometric (Fe,Co)5Mn3Si2 intermetallic π-phases. The forward γ-ɛ martensite transformation start temperature ( M S) decreases with the addition of Co up to 5 pct, and alloys containing more than 5 pct Co, show slightly higher M S possibly on account of two-phase microstructure. Unlike M S, the ɛ-γ reverse transformation start temperature ( A S) has been found to remain almost unaltered by Co addition. In general, addition of Co to Fe-Mn-Si alloys deteriorates shape recovery due to decreasing resistance to plastic yielding concomitant with the formation of stress induced ɛ martensite. However, there is an improvement in shape recovery beyond 5 pct Co addition, possibly due to the strengthening effect arising from the presence of (Fe,Co)5Mn3Si2 precipitates within the two-phase microstructure and due to higher amount of stress induced ɛ martensite.
Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy
NASA Astrophysics Data System (ADS)
Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh
2018-05-01
The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.
Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy
NASA Astrophysics Data System (ADS)
Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar
2018-03-01
In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.
Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition
NASA Astrophysics Data System (ADS)
Jia, Xingjie; Li, Yanhui; Wu, Licheng; Zhang, Wei
2018-05-01
Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D) of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc) by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs) is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ˜17.5 nm, and exhibits a high Bs of ˜1.75 T and a low Hc of ˜5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.
NASA Astrophysics Data System (ADS)
Feng, Wang; Jishan, Zhang; Baiqing, Xiong; Yongan, Zhang
2011-02-01
It has been recognized generally that the spray-deposited process is an innovative technique of rapid solidification. In this paper, Al-20Si-5Fe-3Mn-3Cu-1Mg alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the spray-deposited alloy were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and tensile tests. It is observed that the microstructure of spray-deposited Al-20Si-5Fe-3Mn-3Cu-1Mg alloy is composed of the α-Al,Si and the particle-like Al15(FeMn)3Si2 compounds. The aging process of the alloy was investigated by microhardness measurement, differential scanning calorimetry analysis, and TEM observations. The results indicate that the two types of precipitates, S-Al2CuMg and σ-Al5Cu6Mg2 precipitate from matrix and improve the tensile strength of the alloy efficiently at both the ambient and elevated temperatures (300 °C).
Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys
NASA Astrophysics Data System (ADS)
Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.
2016-09-01
Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.
NASA Astrophysics Data System (ADS)
Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi
2018-04-01
The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.
Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing
NASA Astrophysics Data System (ADS)
Ju, Heng; Lin, Cheng-xin; Zhang, Jia-qi; Liu, Zhi-jie
2016-09-01
The stainless Fe-Mn-Si shape memory alloy (SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What's more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction (XRD) pattern shows ɛ-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That's the γ→ɛ martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.
Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek
2018-09-01
The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.
Tough cryogenic alloys from the Fe-Mn and Fe-Mn-Cr systems
NASA Technical Reports Server (NTRS)
Schanfein, M. J.; Zackay, V. F.; Morris, J. W., Jr.
1974-01-01
By adjusting composition, metastable gamma (austenite) and epsilon (hexagonal) martensite may be retained in Fe-Mn and Fe-Mn-Cr alloys and used to impact toughness through the TRIP mechanism. The resulting alloys have excellent toughness at cryogenic temperatures. The best alloys obtained to date are: Fe-20Mn, with sigma (sub y) = 79ksi and K sub IC = 275ksi square root of (in) at 77 K, and Fc-16Mn-8Cr, with sigma sub y = 85ksi and K sub IC = 72ksi square root of (in) at 77 K.
Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek
2018-03-01
We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.
Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys
NASA Astrophysics Data System (ADS)
La Roca, P.; Baruj, A.; Sade, M.
2017-03-01
Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.
Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, S.; Shimakura, H.; Tahara, S.
The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquidmore » Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.« less
NASA Astrophysics Data System (ADS)
Surour, Adel A.
2015-01-01
In the Jabal Samran area (western Saudi Arabia), secondary copper mineralization in a NE-trending shear zone in which the arc metavolcanic host rocks (dacite-rhyodacite) show conjugate fractures and extensive hydrothermal alteration and bleaching. The zones contain frequent Fe-Mn(III) oxyhydroxides (FeOH-MnOH) that resulted from oxidation of pyrite and Mn-bearing silicates. In the bleached part, the groundmass is represented by Fe-bearing interstratified illite-smectite with up to 4.02 wt% FeOt. FeOH-MnOH are pre-weathering phases formed by hydrothermal alteration in a submarine environment prior to uplifting. Five varieties of FeOH are distinguished, four of them are exclusively hydrothermal with ∼20 wt% H2O whereas the fifth contains ∼31-33 wt% H2O and might represent reworking of earlier hydrothermal FeOH phases by weathering. FeOH fills thin fractures in the form of veinlets and crenulated laminae or as a pseudomorph for pyrite, goethite and finally ferrihydrite, and this oxyhydroxide is characterized by positive correlation of Fe2O3 with SiO2 and Al2O3. On the other hand, MOH shows positive correlation between MnO2 and Al2O3 whereas it is negative between Fe2O3 and SiO2. Paratacamite is the most common secondary copper mineral that fills fractures and post-dates FeOH and MnOH. It is believed that Cl- in the structure of paratacamite represents inherited marine storage rather than from surfacial evaporates or meteoric water. The mineralogy of slags suggests a complicated mineral assemblage that includes native Cu prills, synthetic spinifixed Mn-rich amphiboles with 16.73 wt% MnO, brown glass and Ca-Mn-Fe phase close to the olivine structure. EMPA indicate that the some Cu prills have either grey discontinuous boarder zone of S-rich Mn-Cu alloy (with up to 21.95 wt% S and 19.45 wt% Mn) or grey Cu-Mn-Fe alloy (with up to 15.9 wt% Cu, 39. 12 wt% Mn and 61.64 wt% Fe). Mn in the Cu prills is expelled inward as Cu-Mn-Fe alloy inclusions whereas S is expelled
Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong
2016-01-01
Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %), intermetallic Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888
Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong
2016-01-29
Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al-5Mg-Mn alloy with low Fe content (<0.1 wt %), intermetallic Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Go, Anna, E-mail: annago@alpha.uwb.edu.pl
2014-11-15
Ab-initio electronic structure calculations are carried out for quinternary Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} alloys. When x=0 the alloy is half-metallic ferromagnet, with magnetic moment following the Slater–Pauling rule. Replacement of Mn by V, changes its electronic and magnetic structure. V-doped alloys exhibit half-metallic behavior for x≤0.25. However, even for higher V concentrations, electronic spin polarization is still very high, what makes the alloys interesting for spintronic applications. - Graphical abstract: Densities of states of Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} and magnetic moments of Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5}. - Highlights: • Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} is a half-metallicmore » ferromagnet with a minority band gap of 0.49 eV. • Half-metallic band gap is very stable against the change of the lattice parameter. • Half-metallic band gap is obtained for Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} for x≤0.25. • Electronic spin polarization is very high and equal to at least 95% for x≤0.625. • The main carrier of magnetism of the compound is manganese.« less
The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)
NASA Technical Reports Server (NTRS)
Schuon, S. R.
1982-01-01
The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.
NASA Astrophysics Data System (ADS)
Tagawa, S.; Ohta, K.; Hirose, K.
2014-12-01
The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.
NASA Astrophysics Data System (ADS)
Ju, Heng; Lin, Chengxin; Liu, Zhijie; Zhang, Jiaqi
2018-08-01
To reduce the residual stresses and improve the mechanical properties of laser weldments, produced with the restrained mixing uniform design method, a Fe-Mn-Si shape memory alloy (SMA) welding seam was formed inside the 304 stainless steel by laser welding with powder filling. The mass fraction, shape memory effect, and phase composition of the welding seam was measured by SEM-EDS (photometric analyser), bending recovery method, and XRD, respectively. An optical microscope was used to observe the microstructure of the Fe-Mn-Si SMA welding seam by solid solution and pre-deformation treatment. Meanwhile, the mechanical properties (residual stress distribution, tensile strength, microhardness and fatigue strength) of the laser welded specimen with an Fe-Mn-Si SMA welding seam (experimental material) and a 304 stainless steel welding seam (contrast material) were measured by a tensile testing machine hole drilling method and full cycle bending fatigue test. The results show that Fe15Mn5Si12Cr6Ni SMA welding seam was formed in situ with shape memory effect and stress-induced γ → ε martensite phase transformation characteristic. The residual stress of the experimental material is lower than that of the contrast material. The former has larger tensile strength, longer elongation and higher microhardness than the latter has. The experimental material and contrast material possess 249 and 136 bending fatigue cycles at the strain of 6%, respectively. The mechanisms by which mechanical properties of the experimental material are strengthened includes (1) release of the residual stress inside the Fe-Mn-Si SMA welding seam due to the stress-induced γ → ε martensite phase transformation and (2) energy absorption and plastic slip restraint due to the deformations in martensite and reverse phase transformation.
NASA Astrophysics Data System (ADS)
Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel
2018-02-01
The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.
Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
Hong, Daeho; Chou, Da-Tren; Velikokhatnyi, Oleg I; Roy, Abhijit; Lee, Boeun; Swink, Isaac; Issaev, Ilona; Kuhn, Howard A; Kumta, Prashant N
2016-11-01
3D printing of various biomaterials including titanium and stainless steel has been studied for treating patients with cranio-maxillofacial bone defect. The potential long term complications with use of inert biometals have opened the opportunities for use of biodegradable metals in the clinical arena. The authors previously reported that binder-jet 3D printing technique enhanced the degradation rates of biodegradable Fe-Mn alloy by creating engineered micropores rendering the system attractive as biodegradable implantable devices. In the present study, the authors employed CALPHAD modeling to systematically study and modify the Fe-Mn alloy composition to achieve enhanced degradation rates. Accordingly, Ca and Mg addition to Fe-35wt% Mn solid solution predicted increase in degradation rates. In order to validate the CALPHAD results, Fe - (35-y)wt% Mn - ywt% X (X=Ca, Mg, and y=0, 1, 2) were synthesized by using high energy mechanical alloying (HEMA). Sintered pellets of Fe-Mn-Ca and Fe-Mn-Mg were then subjected to potentiodynamic polarization (PDP) and live/dead cell viability tests. Sintered pellets of Fe-Mn, Fe-Mn-Ca, and Fe-Mn-Mg also exhibited MC3T3 murine pre-osteoblast cells viability in the live/dead assay results. Fe-Mn and Fe-Mn-1Ca were thus accordingly selected for 3D printing and the results further confirmed enhanced degradation of Ca addition to 3D printed constructs validating the theoretical and alloy development studies. Live/dead and MTT cell viability results also confirmed good cytocompatibility of the 3D-printed Fe-Mn and Fe-Mn-1Ca constructs. Bone grafting is widely used for the treatment of cranio-maxillofacial bone injuries. 3D printing of biodegradable Fe alloy is anticipated to be advantageous over current bone grafting techniques. 3D printing offers the fabrication of precise and tailored bone grafts to fit the patient specific bone defect needs. Biodegradable Fe alloy is a good candidate for 3D printing synthetic grafts to regenerate bone
A new Fe-Mn-Si alloplastic biomaterial as bone grafting material: In vivo study
NASA Astrophysics Data System (ADS)
Fântânariu, Mircea; Trincă, Lucia Carmen; Solcan, Carmen; Trofin, Alina; Strungaru, Ştefan; Şindilar, Eusebiu Viorel; Plăvan, Gabriel; Stanciu, Sergiu
2015-10-01
Designing substrates having suitable mechanical properties and targeted degradation behavior is the key's development of bio-materials for medical application. In orthopedics, graft material may be used to fill bony defects or to promote bone formation in osseous defects created by trauma or surgical intervention. Incorporation of Si may increase the bioactivity of implant locally, both by enhancing interactions at the graft-host interface and by having a potential endocrine like effect on osteoblasts. A Fe-Mn-Si alloy was obtained as alloplastic graft materials for bone implants that need long recovery time period. The surface morphology of the resulted specimens was investigated using scanning electrons microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffractions (X'Pert equipment) or X-ray dispersive energy analyze (Bruker EDS equipment). This study objective was to evaluate in vivo the mechanisms of degradation and the effects of its implantation over the main metabolic organs. Biochemical, histological, plain X radiography and computed tomography investigations showed good compatibility of the subcutaneous implants in the rat organism. The implantation of the Fe-Mn-Si alloy, in critical size bone (tibiae) defect rat model, did not induced adverse biological reactions and provided temporary mechanical support to the affected bone area. The biodegradation products were hydroxides layers which adhered to the substrate surface. Fe-Mn-Si alloy assured the mechanical integrity in rat tibiae defects during bone regeneration.
A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing
NASA Astrophysics Data System (ADS)
Qian, Bingnan; Peng, Huabei; Wen, Yuhua
2018-04-01
To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.
NASA Astrophysics Data System (ADS)
Fan, Xingdu; Li, Meng; Zhang, Tao; Yuan, Chenchen; Shen, Baolong
2018-05-01
The effect of transverse magnetic field annealing (TFA) on soft magnetic properties of Co71Fe2Si14-xB9+xMn4 amorphous alloys was investigated with the aim of reducing effective permeability (μe). It was revealed that the increasing B content improved thermal stability, increased saturation magnetic flux density (Bs) of as-quenched alloys, while the samples exhibited a slightly larger coercivity (Hc) when the atom percentages of Si and B were similar. Permeability decreased dramatically after TFA. The decrease of permeability mainly depended on annealing temperature and magnetic field intensity. Besides, flat hysteresis loops were obtained after TFA, Lorentz micrograph observation revealed the TFA sample exhibited denser magnetic domain walls, which confirmed it was more difficult to be saturated. The Co71Fe2Si9B14Mn4 alloy was successful prepared with low μe of 3020, low Hc of 1.7 A/m and high resistance to DC bias 6 times that of as-quenched alloy at the DC field of 300 A/m.
NASA Astrophysics Data System (ADS)
Kang, Youn-Bae; Jung, In-Ho
2017-06-01
A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe-Mn-Si-O system (MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 systems) are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25°C) to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Slag (molten oxide) was modeled using the modified quasichemical model in the pair approximation. Olivine (Fe2SiO4-Mn2SiO4) was modeled using two-sublattice model in the framework of the compound energy formalism (CEF), while rhodonite (MnSiO3-FeSiO3) and braunite (Mn7SiO_{12} with excess Mn2O3) were modeled as simple Henrian solutions. It is shown that the already developed models and databases of two spinel phases (cubic- and tetragonal-(Fe, Mn)3O4) using CEF [Kang and Jung, J. Phys. Chem. Solids (2016), vol. 98, pp. 237-246] can successfully be integrated into a larger thermodynamic database to be used in practically important higher order system such as silicate. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.
Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tocci, Marialaura, E-mail: m.tocci@unibs.it
In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affectedmore » by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.« less
Degradable and porous Fe-Mn-C alloy for biomaterials candidate
NASA Astrophysics Data System (ADS)
Pratesa, Yudha; Harjanto, Sri; Larasati, Almira; Suharno, Bambang; Ariati, Myrna
2018-02-01
Nowadays, degradable implants attract attention to be developed because it can improve the quality of life of patients. The degradable implant is expected to degrade easily in the body until the bone healing process already achieved. However, there is limited material that could be used as a degradable implant, polymer, magnesium, and iron. In the previous study, Fe-Mn-C alloys had succesfully produced austenitic phase. However, the weakness of the alloy is degradation rate of materials was considered below the expectation. This study aimed to produce porous Fe-Mn-C materials to improve degradation rate and reduce the density of alloy without losing it non-magnetic properties. Potassium carbonate (K2CO3) were chosen as filler material to produce foam structure by sintering and dissolution process. Multisteps sintering process under argon gas environment was performed to generate austenite phase. The product showed an increment of the degradation rate of the foamed Fe-Mn-C alloy compared with the solid Fe-Mn-C alloy without losing the Austenitic Structure
Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Jain, Vishal, E-mail: vivek.jain129@gmail.com; Lakshmi, N., E-mail: vivek.jain129@gmail.com
Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.
Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility
NASA Astrophysics Data System (ADS)
Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner
2015-03-01
Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.
Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Maji, Bikas C.; Krishnan, Madangopal; Verma, Amit; Basu, R.; Samajdar, I.; Ray, Ranjit K.
2015-02-01
The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ɛ martensitic transformation, i.e., ɛ → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ɛ martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining "pinned" ɛ martensite is unpinned by the decomposition of deformation-induced α' martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ɛ → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α' martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α' martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.
Internal Friction of Austenitic Fe-Mn-C-Al Alloys
NASA Astrophysics Data System (ADS)
Lee, Young-Kook; Jeong, Sohee; Kang, Jee-Hyun; Lee, Sang-Min
2017-12-01
The internal friction (IF) spectra of Fe-Mn-C-Al alloys with a face-centered-cubic (fcc) austenitic phase were measured at a wide range of temperature and frequency ( f) to understand the mechanisms of anelastic relaxations occurring particularly in Fe-Mn-C twinning-induced plasticity steels. Four IF peaks were observed at 346 K (73 °C) (P1), 389 K (116 °C) (P2), 511 K (238 °C) (P3), and 634 K (361 °C) (P4) when f was 0.1 Hz. However, when f increased to 100 Hz, whereas P1, P2, and P4 disappeared, only P3 remained without the change in peak height, but with the increased peak temperature. P3 matches well with the IF peak of Fe-high Mn-C alloys reported in the literature. The effects of chemical composition and vacancy (v) on the four IF peaks were also investigated using various alloys with different concentrations of C, Mn, Al, and vacancy. As a result, the defect pair responsible for each IF peak was found as follows: a v-v pair for P1, a C-v pair for P2, a C-C pair for P3, and a C-C-v complex (major effect) + a Mn-C pair (minor effect) for P4. These results showed that the IF peaks of Fe-Mn-C-Al alloys reported previously were caused by the reorientation of C in C-C pairs, not by the reorientation of C in Mn-C pairs.
NASA Astrophysics Data System (ADS)
Wendler, Marco; Hauser, Michael; Sandig, Eckhard Frank; Volkova, Olena
2018-04-01
The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.
Magnetic and conventional shape memory behavior of Mn-Ni-Sn and Mn-Ni-Sn(Fe) alloys
NASA Astrophysics Data System (ADS)
Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.
2016-05-01
Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius-Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.
NASA Astrophysics Data System (ADS)
Heo, N. H.; Yoon, G. G.
2010-04-01
The solubility of sulfur is calculated in 0.1 %Mn-added 3 %Si-Fe alloys. The segregation kinetics of sulfur is compared in the alloy containing 95 ppm sulfur, depending on the annealing atmosphere. The effects of pre-annealing and annealing atmosphere on final annealing texture are investigated. Segregation behaviors of sulfur at free surfaces and grain boundaries are compared and, during the selective growth, the importance of the grain boundary concentration of sulfur is emphasized. Finally, a correlation between the development of the annealing texture and segregation kinetics of sulfur in the alloy strip is discussed.
Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys
NASA Astrophysics Data System (ADS)
Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär
2014-09-01
Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.
Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl
NASA Astrophysics Data System (ADS)
Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.
2018-04-01
In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.
Compression of Fe-Si-H alloys to core pressures
NASA Astrophysics Data System (ADS)
Tagawa, Shoh; Ohta, Kenji; Hirose, Kei; Kato, Chie; Ohishi, Yasuo
2016-04-01
We examined the compression behavior of hexagonal-close-packed (hcp) (Fe0.88Si0.12)1H0.61 and (Fe0.88Si0.12)1H0.79 (in atomic ratio) alloys up to 138 GPa in a diamond anvil cell (DAC). While contradicting experimental results were previously reported on the compression curve of double-hcp (dhcp) FeHx (x ≈ 1), our data show that the compressibility of hcp Fe0.88Si0.12Hx alloys is very similar to those of hcp Fe and Fe0.88Si0.12, indicating that the incorporation of hydrogen into iron does not change its compression behavior remarkably. The present experiments suggest that the inner core may contain up to 0.47 wt % hydrogen (FeH0.26) if temperature is 5000 K. The calculated density profile of Fe0.88Si0.12H0.17 alloy containing 0.32 wt % hydrogen in addition to geochemically required 6.5 wt % silicon matches the seismological observations of the outer core, supporting that hydrogen is an important core light element.
Basak, C B; Babu, N Hari
2017-07-18
High iron impurity affects the castability and the tensile properties of the recycled Al-Si alloys due to the presence of the Fe containing intermetallic β-Al 9 Fe 2 Si 2 phase. To date only Mn addition is known to transform the β-Al 9 Fe 2 Si 2 phase in the Al-Si-Fe system. However, for the first time, as reported here, it is shown that β-phase transforms to the ω-Al 7 Cu 2 Fe phase in the presence of Cu, after solutionization at 793 K. The ω-phase decomposes below 673 K resulting into the formation of θ-Al 2 Cu phase. However, the present thermodynamic description of the Al-Si-Fe-Cu system needs finer tuning to accurately predict the stability of the ω-phase in these alloys. In the present study, an attempt was made to enhance the strength of Al-6wt%Si-2wt%Fe model recycled cast alloy with different amount of Cu addition. Microstructural and XRD analysis were carried out in detail to show the influence of Cu and the stability range of the ω-phase. Tensile properties and micro-hardness values are also reported for both as-cast and solutionized alloys with different amount of Cu without and with ageing treatment at 473 K. The increase in strength due to addition of Cu, in Fe-rich Al-Si alloys is promising from the alloy recyclability point of view.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Yang, Shufeng; Liu, Chengsong; Li, Jingshe; Hao, Weixing
2018-06-01
The effect of heat-treatment temperature on the interfacial reaction between MnO-SiO2-FeO oxide and Fe-Mn-Si alloy was investigated by the diffusion couple method in the temperature range of 1173-1573 K. The reaction at the interface between the alloy and oxide was not obvious during treatment at 1173 K, but, with increasing heat-treatment temperature, the interfacial reaction was strengthened and the proportion of the MnO·SiO2 phase in the oxide increased. The width of the particle-precipitation zone in the alloy increased with increasing temperature from 1173 K to 1473 K but decreased at 1573 K owing to coarsening of the precipitated particles. In addition, Mn2+ and Si4+ in the oxide significantly diffused into the alloy at 1573 K, resulting in an obvious increase of the Mn and Si contents in the alloy near the interface.
Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys
NASA Astrophysics Data System (ADS)
Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.
2016-08-01
Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.
First-principles study on the ferrimagnetic half-metallic Mn{sub 2}FeAs alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Santao; Zhang, Chuan-Hui, E-mail: zhangch@ustb.edu.cn; Chen, Bao
2015-05-15
Mn-based full-Heusler alloys are kinds of promising candidates for new half-metallic materials. Basing on first principles, the electronic structures and magnetic properties of the Mn{sub 2}FeAs full-Heusler alloy have been investigated in detail. The Hg{sub 2}CuTi-type Mn{sub 2}FeAs compound obeys the Slater-Pauling rule, while the anti-parallel alignment atomic magnetic moments of Mn locating at different sites indicate it a ferrimagnetic alloy. The calculated spin-down bands behave half-metallic character, exhibiting a direct gap of 0.46 eV with a 100% spin polarization at the Fermi level. More studies show the compound would maintain half-metallic nature in a large range of variational latticemore » constants. We expect that our calculated results may trigger Mn{sub 2}FeAs applying in the future spintronics field. - Graphical abstract: The d orbitals of Mn and Fe atoms split into multi-degenerated levels which create new bonding and nonbonding states. These exchange splitting shift the Fermi level to origin band gap.▪ - Highlights: • The electronic structure and magnetic properties of Mn{sub 2}FeAs full-Heusler alloy were studied. • A total magnetic moment of 3μ{sub B} was obtained for Mn{sub 2}FeAs alloy, following the SP rule M{sub t}=Z{sub t}−24. • The origin of ferrimagnetism and half-metallic character in Mn{sub 2}FeAs were discussed.« less
NASA Technical Reports Server (NTRS)
Hwang, S. K.; Morris, J. W., Jr.
1979-01-01
An investigation has been made to improve the low temperature mechanical properties of Fe-8Mn and Fe-12Mn-0.2 Ti alloy steels. A reversion annealing heat treatment in the two-phase (alpha + gamma) region following cold working has been identified as an effective treatment. In an Fe-12Mn-0.2Ti alloy a promising combination of low temperature (-196 C) fracture toughness and yield strength was obtained by this method. The improvement of properties was attributed to the refinement of grain size and to the introduction of a uniform distribution of retained austenite (gamma). It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated alpha-prime martensitic structure and absence of epsilon martensite. As a result, a significant reduction of ductile to brittle transition temperature was obtained.
NASA Astrophysics Data System (ADS)
Hadef, Fatma
2016-12-01
The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.
NASA Astrophysics Data System (ADS)
Asanuma, Hidetoshi; Ohtani, Eiji; Sakai, Takeshi; Terasaki, Hidenori; Kamada, Seiji; Hirao, Naohisa; Ohishi, Yasuo
2011-10-01
The pressure-volume equations of state of iron-nickel-silicon alloy Fe 0.83Ni 0.09Si 0.08 (Fe-9.8 wt.% Ni-4.0 wt.% Si) and iron-silicon alloy Fe 0.93Si 0.07 (Fe-3.4 wt.% Si) have been investigated up to 374 GPa and 252 GPa, respectively. The present compression data covered pressures of the Earth's core. We confirmed that both Fe 0.83Ni 0.09Si 0.08 and Fe 0.93Si 0.07 alloys remain in the hexagonal close packed structure at all pressures studied. We obtained the density of these alloys at the pressure of the inner core boundary (ICB), 330 GPa at 300 K by fitting the compression data to the third order Birch-Murnaghan equation of state. Using these density values combined with the previous data for hcp-Fe, hcp-Fe 0.8Ni 0.2, and hcp-Fe 0.84Si 0.16 alloys and comparing with the density of the PREM inner core, we estimated the Ni and Si contents of the inner core. The Si content of the inner core estimated here is slightly greater than that estimated previously based on the sound velocity measurement of the hcp-Fe-Ni-Si alloy at high pressure.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Chopkar, Manoj
2018-05-01
Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.
Diffusion Behavior of Mn and Si Between Liquid Oxide Inclusions and Solid Iron-Based Alloy at 1473 K
NASA Astrophysics Data System (ADS)
Kim, Sun-Joong; Tago, Hanae; Kim, Kyung-Ho; Kitamura, Shin-ya; Shibata, Hiroyuki
2018-06-01
In order to clarify the changes in the composition of oxide inclusions in steel, the effect of the metal and oxide composition on the reaction between solid Fe-based alloys and liquid multi-component oxides was investigated using the diffusion couple method at 1473 K. The measured concentration gradients of Mn and Si in the metal indicated that Mn diffused into the metal from the oxide, while the diffusion of Si occurred in the opposite direction. In addition, the MnO content in the oxide decreased with heat treatment time, while the SiO2 content increased. The compositional changes in both phases indicated that the Mn content in the metal near the interface increased with heat treatment with decreasing MnO content in the oxide. Assuming local equilibrium at the interface, the calculated [Mn]2/[Si] ratio at the interface in equilibrium with the oxide increased with increases in the MnO/SiO2 ratio in the oxide. The difference in the [Mn]2/[Si] ratios between the interface and the metal matrix increased, which caused the diffusion of Mn and Si between the multi-component oxide and metal. By measuring the diffusion lengths of Mn and Si in the metal, the chemical diffusion coefficients of Mn and Si were obtained to calculate the composition changes in Mn and Si in the metal. The calculated changes in Mn and Si in the metal agreed with the experimental results.
High-temperature oxidation of aluminum electroplated Fe-Mn alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernabai, U.; Felli, F.; Capuano, G.A.
1990-04-01
Austenitic Mn-Al alloys (20-32 W/O Mn, 7-10 Al, 2-3 Si, 1C) were found to have satisfactory oxidation resistance up to 950{degree}C under isothermal conditions in air. Surface enrichment of aluminum is a necessary condition for obtaining an almost pure alumina scale for uses at higher temperatures. Four different Mn-steels were Al-coated by the Capuano electroplating process. In all the steels there was an increase in the hot-oxidation resistance. The best results were obtained with steels containing both Al and Si, and this for temperatures up to 1,100{degree}C.
Development of Bioresorbable Fe-Mn Alloys for Orthopaedic Implantation
NASA Astrophysics Data System (ADS)
Heiden, Michael
Degradable, transient orthopaedic implants have been proposed for years, with the aim to replace permanent biomaterials that are left in the body indefinitely or that have to be removed via surgical procedures. Current resorbable implant designs either degrade too quickly, injuring surrounding tissue while losing necessary mechanical strength before full tissue reconstruction, or degrade too slowly, thereby acting like a permanent implant. Permanent fracture fixation devices in particular have the potential to lead to failures in the long-term, systemic tissue toxicity, and overall discomfort for the patients. The next generation of biomaterials that resorb away after supporting full tissue reconstruction are desired in order to mitigate these problems. In order to address past complications in design of clinically viable degradable orthopaedic implants, an extensive range of material selection and processing techniques are investigated. The degradation kinetics of Fe-Mn alloys are assessed using a combination of electrochemical polarization and in vitro mass loss experiments. Additionally, the mechanisms behind the surface morphological evolution while subject to prolonged immersion in simulated body fluid are investigated in detail. An unstable iron-rich oxide layer was observed to form immediately upon immersion, which diminishes further degradation. Microstructural and effective strain effects are explored using a severe plastic deformation technique called large-strain machining (LSM), along with cold-rolling, and annealing treatments. It was discovered that LSM of Fe-33Mn with a rake angle of 0° generated 16 microm thin, dendritic band-like structures, which contributed to a 140% increase in the degradation rate compared to cast structures of the same alloy. There was no major correlation between effective strain imparted into the material and the degradation rate, but decreasing grain size did increase corrosion susceptibility up to a point. Thus, it
Mechanical properties of Fe rich Fe-Si alloys: ab initio local bulk-modulus viewpoint
NASA Astrophysics Data System (ADS)
Bhattacharya, Somesh Kr; Kohyama, Masanori; Tanaka, Shingo; Shiihara, Yoshinori; Saengdeejing, Arkapol; Chen, Ying; Mohri, Tetsuo
2017-11-01
Fe-rich Fe-Si alloys show peculiar bulk-modulus changes depending on the Si concentration in the range of 0-15 at.%Si. In order to clarify the origin of this phenomenon, we have performed density-functional theory calculations of supercells of Fe-Si alloy models with various Si concentrations. We have applied our recent techniques of ab initio local energy and local stress, by which we can obtain a local bulk modulus of each atom or atomic group as a local constituent of the cell-averaged bulk modulus. A2-phase alloy models are constructed by introducing Si substitution into bcc Fe as uniformly as possible so as to prevent mutual neighboring, while higher Si concentrations over 6.25 at.%Si lead to contacts between SiFe8 cubic clusters via sharing corner Fe atoms. For 12.5 at.%Si, in addition to an A2 model, we deal with partial D03 models containing local D03-like layers consisting of edge-shared SiFe8 cubic clusters. For the cell-averaged bulk modulus, we have successfully reproduced the Si-concentration dependence as a monotonic decrease until 11.11 at.%Si and a recovery at 12.5 at.%Si. The analysis of local bulk moduli of SiFe8 cubic clusters and Fe regions is effective to understand the variations of the cell-averaged bulk modulus. The local bulk moduli of Fe regions become lower for increasing Si concentration, due to the suppression of bulk-like d-d bonding states in narrow Fe regions. For higher Si concentrations till 11.11 at.%Si, corner-shared contacts or 1D chains of SiFe8 clusters lead to remarkable reduction of local bulk moduli of the clusters. At 12 at.%Si, on the other hand, two- or three-dimensional arrangements of corner- or edge-shared SiFe8 cubic clusters show greatly enhanced local bulk moduli, due to quite different bonding nature with much stronger p-d hybridization. The relation among the local bulk moduli, local electronic and magnetic structures, and local configurations such as connectivity of SiFe8 clusters and Fe-region sizes has been
NASA Astrophysics Data System (ADS)
Erkişi, Aytaç
2018-06-01
The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.
The structure-property relationships of powder processed Fe-Al-Si alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prichard, Paul D.
1998-02-23
Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) processmore » to obtain a high fraction of metal injection molding (MIM) quality powder (D 84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO 3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.« less
Compression behavior of Fe-Si-H alloys
NASA Astrophysics Data System (ADS)
Tagawa, S.; Ohta, K.; Hirose, K.; Ohishi, Y.
2015-12-01
Although the light elements in the Earth's core are still enigmatic, hydrogen has recently been receiving much attention. Planetary formation theory suggested that a large amount of water, much more than is in the oceans, could have been brought to the Earth during its accretion. Hydrogen is a strong siderophile element and could be incorporated into the core as a consequence of a reaction between water and molten iron in a magma ocean [Okuchi, 1997 Science]. Nevertheless, the effect of hydrogen on the property of iron is not well known so far. Here, we have experimentally examined the compression behavior of hcp Fe0.88Si0.12Hx (6.5 wt.% Si) at two different hydrogen concentrations (x = 0.7 and 0.9). Fe0.88Si0.12 foil was loaded into a diamond-anvil cell, and then liquid hydrogen was introduced to a sample chamber below 20 K. Hydrogenation occurred upon thermal annealing below 1500 K at 25-62 GPa, and hcp Fe0.88Si0.12Hx was obtained as a single phase. Unlike the Fe-H alloy, hydrogen did not fully occupy the octahedral sites even under hydrogen-saturated conditions. Two compression curves, one from 25 to 136 GPa, and the other from 62 to 128 GPa, were obtained at room temperature. While the effect of hydrogen on the compressibility of iron has been controversial in earlier experimental studies [Hirao et al., 2004 GRL; Pépin et al., 2014 PRL], our data indicate that the compressibility of Fe0.88Si0.12Hx alloy does not change with changing hydrogen content from x = 0 to 0.9. Such compression behavior observed is consistent with the recent ab initio calculations for hcp Fe-H alloys by Caracas[2015 GRL]. The extrapolation of present data to the outer core pressure and temperature range, assuming thermal expansivity is the same as that for iron and there is no density difference between solid and liquid, shows that the density of Fe0.88Si0.12H0.3 matches the PREM in the whole outer core within 1%.
NASA Astrophysics Data System (ADS)
Hosseini, E.; Ghafoori, E.; Leinenbach, C.; Motavalli, M.; Holdsworth, S. R.
2018-02-01
The stress recovery and cyclic deformation behaviour of Fe-17Mn-5Si-10Cr-4Ni-1(V,C) shape memory alloy (Fe-SMA) strips, which are often used for pre-stressed strengthening of structural members, were studied. The evolution of recovery stress under different constraint conditions was studied. The results showed that the magnitude of the tensile stress in the Fe-SMA member during thermal activation can have a signification effect on the final recovery stress. The higher the tensile load in the Fe-SMA (e.g., caused by dead load or thermal expansion of parent structure during heating phase), the lower the final recovery stress. Furthermore, this study investigated the cyclic behaviour of the activated SMA followed by a second thermal activation. Although the magnitude of the recovery stress decreased during the cyclic loading, the second thermal activation could retrieve a significant part of the relaxed recovery stress. This observation suggests that the relaxation of recovery stress during cyclic loading is due to a reversible phase transformation-induced deformation (i.e., forward austenite-to-martensite transformation) rather than an irreversible dislocation-induced plasticity. Retrieval of the relaxed recovery stress by the reactivation process has important practical implications as the prestressing loss in pre-stressed civil structures can be simply recovered by reheating of the Fe-SMA elements.
Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys
NASA Astrophysics Data System (ADS)
Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio
Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.
Liu, Shi-Yuan; Li, Shu-Jin; Wu, Shun; Wang, Li-Jun; Chou, Kuo-Chih
2018-07-15
Vanadium slag is a by-product from steelmaking process of vanadium-titanium magnetite, which mainly contains FeO, MnO, V 2 O 3 , and Cr 2 O 3 , The elements Fe and Mn are major components of Mn-Zn ferrite. The elements V and Cr are major components of V-Cr alloy. In view of the potential application in these study, a Mn 0.8 Zn 0.2 Fe 2 O 4 of high saturation magnetization (Ms = 68.6 emu/g) and low coercivity (Hc = 3.3 Oe) was successfully synthesized from the leaching solutions of vanadium slag by adding appropriate chemical reagents, ZnCl 2 and MnCl 2 ·4H 2 O, via roasting at 1300 °C for 1 h. The minor components (CaO and SiO 2 ) in the leaching solution of vanadium slag segregated to the grain boundaries resulting in increasing the resistivity of ferrite. The value of DC resistivity of Mn 0.8 Zn 0.2 Fe 2 O 4 at 25 °C reached 1230.7Ω m. The residue containing Fe, V and Cr was chlorinated by AlCl 3 and the Fe 3+ , V 3+ , and Cr 3+ ions were released into the NaCl-KCl eutectic. The current-time curve for the electrolysis of molten salt was investigated. Alloy (Fe, V, and Cr) of granular shape was obtained. The residue can be used to produce the mulite. This process provided a new approach to utilize slag from steelmaking. Copyright © 2018 Elsevier B.V. All rights reserved.
Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2018-05-01
We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.; Devletian, J. H.
1981-01-01
Mechanical properties of weldments in two Fe-12Mn experimental alloys designed for cryogenic service were evaluated. Weldments were made using the GTA welding process. Tests to evaluate the weldments were conducted at -196 C and included: equivalent energy fracture toughness tests; autogenous transverse weld, notched transverse weld, and longitudinal weld tensile tests; and all-weld-metal tensile tests. The Fe-12Mn-0.2Ti and Fe-12Mn-1Mo-0.2Ti alloys proved weldable for cryogenic service, with weld metal and heat-affected zone properties comparable with those of the base metal. Optimum properties were achieved in the base alloys, weld metals, and heat-affected zones after a two-step heat treatment consisting of austenitizing at 900 C followed by tempering at 500 C. The Mo-containing alloy offered a marked improvement in cryogenic properties over those of the Mo-free alloy. Molybdenum increased the amount of retained austenite and reduced the amount of epsilon martensite observed in the microstructure of the two alloys.
Mn-Fe base and Mn-Cr-Fe base austenitic alloys
Brager, Howard R.; Garner, Francis A.
1987-09-01
Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.
Mn-Fe base and Mn-Cr-Fe base austenitic alloys
Brager, Howard R.; Garner, Francis A.
1987-01-01
Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.
Elasticity and magnetocaloric effect in MnFe 4Si 3
Herlitschke, Marcus; Klobes, B.; Sergueev, I.; ...
2016-03-16
The room temperature magnetocaloric material MnFe 4Si 3 was investigated with nuclear inelastic scattering (NIS) and resonant ultrasound spectroscopy (RUS) at different temperatures and applied magnetic fields in order to assess the infuence of the magnetic transition and the magnetocaloric effect on the lattice dynamics. The NIS data give access to phonons with energies above 3 meV, whereas RUS probes the elasticity of the material in the MHz frequency range and thus low energy, ~5 neV, phonon modes. A significant infuence of the magnetic transition on the lattice dynamics is observed only in the low energy region. Here, MnFe 4Simore » 3 and other compounds in the Mn 5-xFe xSi 3 series were also investigated with vibrating sample magnetometry, resistivity measurements and Moessbauer spectroscopy in order to study the magnetic transitions and to complement the obtained results on the lattice dynamics.« less
Naizabekov, A B; Andreyachshenko, V A; Kocich, Radim
2013-01-01
The presented article deals with the effects of equal channel angular pressing (ECAP) with a newly adjusted die geometry on the microstructure and mechanical properties of the Al-Si-Mn-Fe alloy. This alloy was subjected to two modes of heat treatment followed by the ECAP process, which led to partial back pressure (ECAP-PBP). Ultra-fine grained (UFG) structure formed through ECAP-PBP process has been studied by methods of optical as well as electron microscopy. The obtained results indicate that quenched alloys, in comparison to slowly cooled alloys, do not contain large brittle particles which subsequently initiate a premature creation of cracks. It was shown that the mechanical properties of these alloys after such processing depend first and foremost on the selected type of heat treatment and on the number of performed passes. The maximum of ultimate tensile strength (417 MPa) was obtained for quenched alloy after 3 passes. On the other hand, maximum ductility was found in slowly cooled alloy after second pass. Further passes reduced strength due to the brittle behavior of excluded particles. One of the partial findings is that there is only a small dependency of the resulting size of grains on previously applied thermal processing. The minimum grain sizes were obtained after 3 passages, where their size ranged between 0.4 and 0.8 μm. The application of quick cooling after heat processing due to the occurrence of finer precipitates in the matrix seems to produce better results. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tong, Yang; Jin, Ke; Bei, Hongbin; ...
2018-05-26
Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yang; Jin, Ke; Bei, Hongbin
Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.
McGuire, Michael A.; Parker, David S.
2015-10-22
Crystallographic and magnetic properties of Fe 5PB 2, Fe 4CoPB 2, Fe 4MnPB 2, Fe 5SiB 2, Fe 4CoSiB 2, and Fe 4MnSiB 2 are reported. All adopt the tetragonal Cr 5B 3 structure-type and are ferromagnetic at room temperature with easy axis of magnetization along the c-axis. The spin reorientation in Fe 5SiB 2 is observed as an anomaly in the magnetization near 170 K, and is suppressed by substitution of Co or Mn for Fe. The silicides are found to generally have larger magnetic moments than the phosphides, but the data suggests smaller magnetic anisotropy in the silicides.more » Cobalt substitution reduces the Curie temperatures by more than 100 K and ordered magnetic moments by 16-20%, while manganese substitution has a much smaller effect. This suggests Mn moments align ferromagnetically with the Fe and that Co does not have an ordered moment in these structures. Anisotropic thermal expansion is observed in Fe 5PB 2 and Fe 5SiB 2, with negative thermal expansion seen along the c-axis of Fe 5SiB 2. First principles calculations of the magnetic properties of Fe 5SiB 2 and Fe 4MnSiB 2 are reported. The results, including the magnetic moment and anisotropy, and are in good agreement with experiment.« less
Fabrication of Multilayer-Type Mn-Si Thermoelectric Device
NASA Astrophysics Data System (ADS)
Kajitani, T.; Ueno, T.; Miyazaki, Y.; Hayashi, K.; Fujiwara, T.; Ihara, R.; Nakamura, T.; Takakura, M.
2014-06-01
This research aims to develop a direct-contact manganese silicon p/ n multilayer-type thermoelectric power generation block. p-type MnSi1.74 and n-type Mn0.7Fe0.3Si1.68 ball-milled powders with diameter of about 10 μm or less were mixed with polyvinyl butyl alcohol diluted with methylbenzene at pigment volume concentration of approximately 70%. The doctor-blade method produced 45- μm-thick p- and n-type pigment plates. The insulator, i.e., powdered glass, was mixed with cellulose to form insulator slurry. Lamination of manganese silicide pigment layers and screen-printed insulator layers was carried out to fabricate multilayer direct-contact thermoelectric devices. Hot pressing and spark plasma sintering were carried out at 450°C and 900°C, respectively. Four to 30 thermoelectric (TE) p/ n pairs were fabricated in a 10 mm × 10 mm × 10 mm sintered TE block. The maximum output was 11.7 mW/cm2 at a temperature difference between 20°C and 700°C, which was about 1/85 of the ideal power generation estimated from the thermoelectric data of the bulk MnSi1.74 and Mn0.7Fe0.3Si1.68 materials. A power generation test using an engine test bench was also carried out.
Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M
2008-06-01
The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content
NASA Astrophysics Data System (ADS)
Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.
2017-02-01
Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
Li, Boyan; Zhang, Lei; Li, Chengliang; ...
2018-04-18
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Boyan; Zhang, Lei; Li, Chengliang
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
Fornell, Jordina; Soriano, Jorge; Guerrero, Miguel; Sirvent, Juan de Dios; Ferran-Marqués, Marta; Ibáñez, Elena; Barrios, Leonardo; Baró, Maria Dolors; Suriñach, Santiago; Nogués, Carme; Sort, Jordi; Pellicer, Eva
2017-01-01
Pure Fe and FeMnSi thin films were sputtered on macroporous polypropylene (PP) membranes with the aim to obtain biocompatible, biodegradable and, eventually, magnetically-steerable platforms. Room-temperature ferromagnetic response was observed in both Fe- and FeMnSi-coated membranes. Good cell viability was observed in both cases by means of cytotoxicity studies, though the FeMnSi-coated membranes showed higher biodegradability than the Fe-coated ones. Various strategies to functionalize the porous platforms with transferrin-Alexa Fluor 488 (Tf-AF488) molecules were tested to determine an optimal balance between the functionalization yield and the cargo release. The distribution of Tf-AF488 within the FeMnSi-coated PP membranes, as well as its release and uptake by cells, was studied by confocal laser scanning microscopy. A homogeneous distribution of the drug within the membrane skeleton and its sustained release was achieved after three consecutive impregnations followed by the addition of a layer made of gelatin and maltodextrin, which prevented exceedingly fast release. The here-prepared organic-inorganic macroporous membranes could find applications as fixed or magnetically-steerable drug delivery platforms. PMID:28672792
The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use
NASA Technical Reports Server (NTRS)
Hwang, S. K.; Morris, J. W., Jr.
1977-01-01
An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition.
Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping
Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei
2017-01-01
Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152
First principles investigations of Fe2CrSi Heusler alloys by substitution of Co at Fe site
NASA Astrophysics Data System (ADS)
Jain, Rakesh; Lakshmi, N.; Jain, Vivek Kumar; Chandra, Aarti R.
2018-04-01
Electronic structure and magnetic properties of Fe2-xCoxCrSi Heusler alloys have been investigated by varying Co concentration from x = 0 to 2. On increasing Co concentration, lattice constant and magnetic moment of Fe2-xCoxCrSi alloys increase. These alloys show true half metallic Ferromagnetic behavior with 100% spin polarization. Band gap of the alloys also increase from 0.54 eV to 0.85 eV on increasing Co concentration making these alloys promising materials for spintronics based device applications.
Crystallographic features of the approximant H (Mn7Si2V) phase in the Mn-Si-V alloy system
NASA Astrophysics Data System (ADS)
Nakayama, Kei; Komatsuzaki, Takumi; Koyama, Yasumasa
2018-07-01
The intermetallic compound H (Mn7Si2V) phase in the Mn-Si-V alloy system can be regarded as an approximant phase of the dodecagonal quasicrystal as one of the two-dimensional quasicrystals. To understand the features of the approximant H phase, in this study, the crystallographic features of both the H phase and the (σ → H) reaction in Mn-Si-V alloy samples were investigated, mainly by transmission electron microscopy. It was found that, in the H phase, there were characteristic structural disorders with respect to an array of a dodecagonal structural unit consisting of 19 dodecagonal atomic columns. Concretely, penetrated structural units consisting of two dodecagonal structural units were presumed to be typical of such disorders. An interesting feature of the (σ → H) reaction was that regions with a rectangular arrangement of penetrated structural units (RAPU) first appeared in the σ matrix as the initial state, and H regions were then nucleated in contact with RAPU regions. The subsequent conversion of RAPU regions into H regions eventually resulted in the formation of the approximant H state as the final state. Furthermore, atomic positions in both the H structure and the dodecagonal quasicrystal were examined using a simple plane-wave model with 12 plane waves.
Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys
NASA Astrophysics Data System (ADS)
Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.
2010-07-01
Novel amorphous Fe80(ZrxSi20-x-y)Cuy boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Mössbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Mössbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Mössbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.
NASA Astrophysics Data System (ADS)
Jain, Syadwad
In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the
The formation and structure of Fe-Mn-Ni-Si solute clusters and G-phase precipitates in steels
NASA Astrophysics Data System (ADS)
King, D. J. M.; Burr, P. A.; Middleburgh, S. C.; Whiting, T. M.; Burke, M. G.; Wenman, M. R.
2018-07-01
Solute clustering and G-phase precipitation cause hardening phenomena observed in some low alloy and stainless steels, respectively. Density functional theory was used to investigate the energetic driving force for the formation of these precipitates, capturing temperature effects through analysis of the system's configurational and magnetic entropies. It is shown that enrichment of Mn, Ni and Si is thermodynamically favourable compared to the dilute ferrite matrix of a typical A508 low alloy steel. We predict the ordered G-phase to form preferentially rather than a structure with B2-type ordering when the Fe content of the system falls below 10-18 at. %. The B2 → G-phase transformation is predicted to occur spontaneously when vacancies are introduced into the B2 structure in the absence of Fe.
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
Fratanduono, Dayne E.; Coppari, Federica; Newman, Matthew G.; Duffy, Thomas S.
2018-01-01
The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets. PMID:29707632
NASA Astrophysics Data System (ADS)
Alyaldin, Loay
In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a
High Curie temperature of Ce-Fe-Si compounds with ThMn12 structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, C; Pinkerton, FE; Herbst, JF
2015-01-15
We report the discovery of ternary CeFe(12-x)Si(x)compounds possessing the ThMn12 structure. The samples were prepared by melt spinning followed by annealing. In contrast to other known Ce Fe-based binary and ternary compounds, CeFe12-xSix compounds exhibit exceptionally high Curie temperatures whose values increase with added Si substitution. The highest T. = 583 K in CeFe10Si2 rivals that of the well-established Nd2Fe14B compound. We ascribe the T-c behavior to a combination of Si-induced 3d band structure changes and partial Ce3+ stabilization. (C) 2014 Published by Elsevier Ltd.
Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Jiandi
Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature.more » However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.« less
Kinetic Investigations of SiMn Slags From Different Mn Sources
NASA Astrophysics Data System (ADS)
Kim, Pyunghwa Peace; Tangstad, Merete
2018-06-01
The kinetics of MnO and SiO2 reduction were investigated for Silicomanganese (SiMn) slags using a Thermogravimetric analysis (TGA) between 1773 K and 1923 K (1500 °C and 1650 °C) under CO atmospheric pressure. The charge materials were based on Assmang ore and HC FeMn Slag. Rate models for MnO and SiO2 reduction were applied to describe the metal-producing rates, as shown by the following equations: r_{MnO} = k_{MnO} × A × ( {a_{MnO} - {a_{Mn} }/{K_{T }}} ) r_{{{SiO}2 }} = k_{SiO2} × A × ( {a_{{{SiO}2 }} - {a_{Si} }/{K_{T }}} ). The results show that the choice of raw materials in the charge considerably affected the reduction rate of MnO and SiO2. The highest reduction rate was found to be from charges using HC FeMn slag. The difference in the driving forces was insignificant among the SiMn slags, and the similar slag viscosities could not explain the different reduction rates. Instead, the difference is attributed to small amounts of sulfur and the amount of iron in the charge. In addition, the rate models were applicable to describe the reduction of MnO and SiO2 in SiMn slags.
NASA Astrophysics Data System (ADS)
Schwarz, B.; Rossi, P. J.; Straßberger, L.; Jörg, F.; Meka, S. R.; Bischoff, E.; Schacherl, R. E.; Mittemeijer, E. J.
2014-09-01
Specimens of iron-based binary Fe-Si alloy and ternary Fe-Me-Si alloys (with Me = Ti, Cr and V) were nitrided at 580 °C in a NH3/H2-gas mixture applying a nitriding potential of 0.1 atm-1/2 until nitrogen saturation in the specimens was attained. In contrast with recent observations in other Fe-Me1-Me2 alloys, no "mixed" (Me1, Me2) nitrides developed in Fe-Me-Si alloys upon nitriding: first, all Me precipitates as MeN; and thereafter, all Si precipitates as Si3N4. The MeN precipitates as crystalline, finely dispersed, nanosized platelets, obeying a Baker-Nutting orientation relationship (OR) with respect to the ferrite matrix. The Si3N4 precipitates as cubically, amorphous particles; the incoherent (part of the) MeN/α-Fe interface acts as heterogeneous nucleation site for Si3N4. The Si3N4-precipitation rate was found to be strongly dependent on the degree of coherency of the first precipitating MeN. The different, even opposite, kinetic effects observed for the various Fe-Me-Si alloys could be ascribed to the different time dependences of the coherent → incoherent transitions of the MeN particles in the different Fe-Me-Si alloys.
Enhancement of magnetocaloric effect in mischmetal doped La-Fe-Si alloys
NASA Astrophysics Data System (ADS)
Wang, Gaofeng; Zhao, Zengru; Zhang, Xuefeng; Ma, Qiang; Li, Yongfeng; Liu, Yanli; Mu, Lijuan; Zhang, Yan
2018-05-01
The influence of partial substitution of mischmetal on the structure, Curie temperature and magnetocaloric effect has been investigated in La1-xMxFe11.5Si1.5 alloys. X-ray diffraction patterns indicate the alloys crystallize mainly in NaZn13-type cubic structure and the amount of secondary α-Fe phase obviously reduces in the mischmetal doped alloys. As the content of mischmetal increases, the Curie temperature is reduced from 198.1 K for x = 0 to 184.2 K for x = 0.3 and the thermal hysteresis is enlarged from 3.5 K for x = 0 to 8.2 K for x = 0.3. Upon a field change from 0 to 3 T, the obtained maximum isothermal entropy change values are 17.2, 19.8, 37.8 and 47.9 J/kgK for x = 0, 0.1, 0.2 and 0.3, respectively. The entropy changes due to the latent heat of first-order transitions are estimated to be 11.3, 14.7, 18.5 and 23.4 J/kgK for x = 0, 0.1, 0.2 and 0.3, respectively. The enhancement of giant magnetocaloric MCE in La1-xMxFe11.5Si1.5 alloys originates from the strengthened itinerant electron metamagnetic transitions by adding the mischmetal. Our result suggests that the mischmetal doped NaZn13-type La-Fe-Si alloys are potential candidates of refrigerants for magnetic refrigeration.
Microstructural Influence on Dynamic Properties of Age Hardenable FeMnAl Alloys
2011-04-01
precipitated . In alloys without silicon, β-Mn nucleates within the ferrite . In alloys with silicon, a DO3 intermetallic phase precipitates ...Figure 7 compares the 2.24% Si alloy at 950°C and 1000°C. At 950°C the growth of ferrite and the precipitation of an intermetallic phase is apparent...whereas the alloy remains predominately austenite with 2 vol.% ferrite at 1000°C. The intermetallic phase appears as prism-rods precipitated
Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...
2018-02-23
Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laplanche, Guillaume; Gadaud, P.; Barsch, C.
Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less
UV Light-Driven Photodegradation of Methylene Blue by Using Mn0.5Zn0.5Fe2O4/SiO2 Nanocomposites
NASA Astrophysics Data System (ADS)
Indrayana, I. P. T.; Julian, T.; Suharyadi, E.
2018-04-01
The photodegradation activity of nanocomposites for 20 ppm methylene blue solution has been investigated in this work. Nanocomposites Mn0.5Zn0.5Fe2O4/SiO2 have been synthesized using coprecipitation method. The X-ray diffraction (XRD) pattern confirmed the formation of three phases in sample Mn0.5Zn0.5Fe2O4/SiO2 i.e., Mn0.5Zn0.5Fe2O4, Zn(OH)2, and SiO2. The appearance of SiO2 phase showed that the encapsulation process has been carried out. The calculated particles size of Mn0.5Zn0.5Fe2O4/SiO2 is greater than Mn0.5Zn0.5Fe2O4. Bonding analysis via vibrational spectra for Mn0.5Zn0.5Fe2O4/SiO2 confirmed the formation of bonds Me-O-Si stretching (2854.65 cm-1) and Si-O-Si asymmetric stretching (1026.13 cm-1). The optical gap energy of Mn0.5Zn0.5Fe2O4/SiO2 was smaller (2.70 eV) than Mn0.5Zn0.5Fe2O4 (3.04 eV) due to smaller lattice dislocation and microstrain that affect their electronic structure. The Mn0.5Zn0.5Fe2O4/SiO2 showed high photodegradation ability due to smaller optical gap energy and the appearance of SiO2 ligand that can easily attract dye molecules. The Mn0.5Zn0.5Fe2O4/SiO2 also showed high degradation activity even without UV light radiation. The result showed that photodegradation reaction doesn’t follow pseudo-first order kinetics.
Li, Na; Fu, Fenglian; Lu, Jianwei; Ding, Zecong; Tang, Bing; Pang, Jiabin
2017-01-01
Chromium-contaminated water is regarded as one of the biggest threats to human health. In this study, a novel magnetic mesoporous MnFe 2 O 4 @SiO 2 -CTAB composite was prepared by a facile one-step modification method and applied to remove Cr(VI). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and vibrating sample magnetometer were used to characterize MnFe 2 O 4 @SiO 2 -CTAB composites. The morphology analysis showed that the composites displayed a core-shell structure. The outer shell was mesoporous silica with CTAB and the core was MnFe 2 O 4 nanoparticles, which ensured the easy separation by an external magnetic field. The performance of MnFe 2 O 4 @SiO 2 -CTAB composites in Cr(VI) removal was far better than that of bare MnFe 2 O 4 nanoparticles. There were two reasons for the effective removal of Cr(VI) by MnFe 2 O 4 @SiO 2 -CTAB composites: (1) mesoporous silica shell with abundant CTA + significantly enhanced the Cr(VI) adsorption capacity of the composites; (2) a portion of Cr(VI) was reduced to less toxic Cr(III) by MnFe 2 O 4 , followed by Cr(III) immobilized on MnFe 2 O 4 @SiO 2 -CTAB composites, which had been demonstrated by X-ray photoelectron spectroscopy results. The adsorption of Cr(VI) onto MnFe 2 O 4 @SiO 2 -CTAB followed the Freundlich isotherm model and pseudo-second-order model. Tests on the regeneration and reuse of the composites were performed. The removal efficiency of Cr(VI) still retained 92.4% in the sixth cycle. MnFe 2 O 4 @SiO 2 -CTAB composites exhibited a great potential for the removal of Cr(VI) from water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating
NASA Astrophysics Data System (ADS)
Ye, Qingfeng; Feng, Kai; Li, Zhuguo; Lu, Fenggui; Li, Ruifeng; Huang, Jian; Wu, Yixiong
2017-02-01
Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower icorr than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted Rt value reaches its maximum at 24 h during a 48 h' immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H2SO4 reveals that corrosion starts from Cr-depleted interdendrites.
NASA Astrophysics Data System (ADS)
Marshall, Ryan
Samples of an Al-Fe-V-Si alloy with and without small Y additions were prepared by copper wedge-mold casting. Analysis of the microstructures developed at intermediate cooling rates revealed the formation of an atypical morphology of the cubic alpha-Al12(Fe/V)3Si phase (Im 3 space group with a = 1.26 nm) in the form of a microeutectic with alpha-Al that forms in relatively thick sections. This structure was determined to exhibit promising hardness and thermal stability when compared to the commercial rapidly solidified and processed Al-Fe-V-Si (RS8009) alloy. In addition, convergent beam electron diffraction (CBED) and selected area electron diffraction (SAD) were used to characterize a competing intermetallic phase, namely, a hexagonal phase identified as h-AlFeSi (P6/mmm space group with a = 2.45 nm c = 1.25 nm) with evidence of a structural relationship to the icosahedral quasicrystalline (QC) phase (it is a QC approximant) and a further relationship to the more desirable alpha-Al12(Fe/V) 3Si phase, which is also a QC approximant. The analysis confirmed the findings of earlier studies in this system, which suggested the same structural relationships using different methods. As will be shown, both phases form across a range of cooling rates and appear to have good thermal stabilities. Additions of Y to the alloy were also studied and found to cause the formation of primary YV2Al20 particles on the order of 1 microm in diameter distributed throughout the microstructure, which otherwise appeared essentially identical to that of the Y-free 8009 alloy. The implications of these results on the possible development of these structures will be discussed in some detail.
Exchange interactions and magnetocaloric effects of the Heusler alloys Ni-Mn-In-R (R = Fe, Co)
NASA Astrophysics Data System (ADS)
Li, Yan-Ru; Su, Hui-Ling; Sun, Ji-Bing; Li, Ying
2018-05-01
The magnetic interactions and magnetocaloric effects in Ni2Mn1.4In0.6‑xRx (x = 0-0.2) (R = Fe, Co) Heusler alloys are investigated by the first-principles and Monte Carlo method. The ab initio calculations provide a basic understanding of the competition of ferromagnetic and antiferromagnetic interactions due to the chemical disorder of the alloy compositions. The thermodynamic properties including magnetization, specific heat and magnetic entropy change are calculated by the finite-temperature Monte Carlo simulations using the exchange couplings and magnetic moments from ab initio calculation as input parameters. The results show that the Fe or Co doping in Ni2Mn1.4In0.6 leads to an increase of magnetic moment and magnetic entropy change but a decrease of magnetic transition temperature with the increase in the Fe or Co contents. This indicates that the transition temperature and magnetocaloric properties of Ni2Mn1.4In0.6 alloy can be tuned by substituting In atom by Fe or Co with different contents.
NASA Astrophysics Data System (ADS)
Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.
2016-04-01
This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaks, V. G.; Khromov, K. Yu., E-mail: khromov-ky@nrcki.ru; Pankratov, I. R.
2016-07-15
The statistical theory of diffusion in concentrated bcc and fcc alloys with arbitrary pairwise interatomic interactions based on the master equation approach is developed. Vacancy–atom correlations are described using both the second-shell-jump and the nearest-neighbor-jump approximations which are shown to be usually sufficiently accurate. General expressions for Onsager coefficients in terms of microscopic interatomic interactions and some statistical averages are given. Both the analytical kinetic mean-field and the Monte Carlo methods for finding these averages are described. The theory developed is used to describe sharp concentration dependencies of diffusion coefficients in several iron-based alloy systems. For the bcc alloys FeCu,more » FeMn, and FeNi, we predict the notable increase of the iron self-diffusion coefficient with solute concentration c, up to several times, even though values of c possible for these alloys do not exceed some percent. For the bcc alloys FeCr at high temperatures T ≳ 1400 K, we show that the very strong and peculiar concentration dependencies of both tracer and chemical diffusion coefficients observed in these alloys can be naturally explained by the theory, without invoking exotic models discussed earlier.« less
Wu, Z.; Bei, H.
2015-07-01
Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with amore » composition of FeNiMnCr 18 was successfully developed. This near-equiatomic FeNiMnCr 18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr 18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.« less
The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.
Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A
2010-03-01
This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.
Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys
NASA Astrophysics Data System (ADS)
Rizwan, M.; Afaq, A.; Aneeza, A.
2018-05-01
In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.; ...
2018-04-25
In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.
In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less
Effects of the addition of Co, Ni or Cr on the decolorization properties of Fe-Si-B amorphous alloys
NASA Astrophysics Data System (ADS)
Zhang, Changqin; Zhu, Zhengwang; Zhang, Haifeng
2017-11-01
Fe-based amorphous alloys show great potential in degrading azo dyes and other organic pollutants, and are widely investigated as a kind of environmental-friendly materials for wastewater remediation. In this paper, the effects of Co, Ni or Cr addition on the decolorization properties of Fe-Si-B amorphous alloys were studied, and the mechanism of their different effects was analyzed. Co addition could lower the activation energy of Fe-Si-B amorphous alloys in decolorizing azo dyes, and had no weakening effect on the decolorization capability of Fe-Si-B amorphous alloys. Ni addition led to partial crystallization of Fe-Si-B amorphous alloys, and the decolorization mechanism at low temperatures changed from chemical degradation to physical adsorption. Cr addition could enhance the corrosion resistance of Fe-Si-B amorphous alloys, but the amorphous alloys completely lost the decolorization capability no matter at lower or higher temperatures. The results of X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) indicated that the addition of Co, Ni or Cr could generate different surface structures that had significant influences on the decolorization process. Our work demonstrated that the effiecient decolorization of azo dyes by Fe-based alloys could be realized only when amorphous nature and incompact surface structure were simultaneously achieved for the alloys.
Weldability of a high entropy CrMnFeCoNi alloy
Wu, Zhenggang; David, Stan A.; Feng, Zhili; ...
2016-07-19
We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less
First-principles study of electronic properties of Si doped FeSe{sub 0.9} alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P.
2016-05-23
We have performed first-principles study of electronic and superconducting properties of FeSe{sub 0.9-x}Si{sub x} (x = 0.0, 0.05) alloys using Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). In our calculations, we used the local density approximation (LDA) for the exchange correlation potential. Our calculations show that these alloys are nonmagnetic in nature. We found that the substitution of Si at Se site into FeSe{sub 0.9} made subtle affects in the electronic structure with respect to the parent FeSe. The results have been analyzed in terms of changes in the density of states (DOS), band structures, Fermi surfacesmore » and the superconducting transition temperature of FeSe{sub 0.9} and FeSe{sub 0.85}Si{sub 0.05} alloys.« less
Structural γ-ε phase transition in Fe-Mn alloys from a CPA + DMFT approach.
Belozerov, A S; Poteryaev, A I; Skornyakov, S L; Anisimov, V I
2015-11-25
We present a computational scheme for total energy calculations of disordered alloys with strong electronic correlations. It employs the coherent potential approximation combined with the dynamical mean-field theory and allows one to study the structural transformations. The material-specific Hamiltonians in the Wannier function basis are obtained by density functional theory. The proposed computational scheme is applied to study the γ-ε structural transition in paramagnetic Fe-Mn alloys for Mn content from 10 to 20 at.%. The electronic correlations are found to play a crucial role in this transition. The calculated transition temperature decreases with increasing Mn content and is in good agreement with experiment. We demonstrate that in contrast to the α-γ transition in pure iron, the γ-ε transition in Fe-Mn alloys is driven by a combination of kinetic and Coulomb energies. The latter is found to be responsible for the decrease of the γ-ε transition temperature with Mn content.
Zuo, Tingting; Gao, Michael C.; Ouyang, Lizhi; ...
2017-03-07
Magnetic materials with excellent performances are desired for functional applications. Based on the high-entropy effect, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated. The dramatic change in phase structures from face-centered-cubic (FCC) to ordered body-centered-cubic (BCC) phases, caused by adding Al, Ga, and Sn in CoFeMnNiX alloys, originates from the potent short-range chemical order in the liquid state predicted by ab initio molecular dynamics (AIMD) simulations. This phase transition leads to the significant enhancement of the saturation magnetization (M s), e.g., the CoFeMnNiAl alloy has M s of 147.86 Am 2/kg.more » In conclusion, first-principles density functional theory (DFT) calculations on the electronic and magnetic structures reveal that the anti-ferromagnetism of Mn atoms in CoFeMnNi is suppressed especially in the CoFeMnNiAl HEA because Al changes the Fermi level and itinerant electron-spin coupling that lead to ferromagnetism.« less
Effect of Solutes on Grain Refinement of As-Cast Fe-4Si Alloy
NASA Astrophysics Data System (ADS)
Li, Ming; Li, Jian-Min; Zheng, Qing; Wang, Geoff; Zhang, Ming-Xing
2018-06-01
Grain size is one of the key microstructural factors that control the mechanical properties of steels. The present work aims to extend the theories of grain refinement which were established for cast light alloys to steel systems. Using a designed Fe-4 wt pct Si alloy (all-ferrite structure during whole solidification process), the solute effect on grain refinement/grain coarsening in ferritic systems was comprehensively investigated. Experimental results showed that boron (B), which is associated with the highest Q value (growth restriction factor) in ferrite, significantly refined the as-cast structure of the Fe-4 wt pct Si alloy. Cu and Mo with low Q values had no effect on grain refinement. However, although Y and Zr have relatively high Q values, addition of these two solutes led to grain coarsening in the Fe-4Si alloy. Understanding the results in regards to the growth restriction factor and the driving force for the solidification led to the conclusion that in addition to the grain growth restriction effect, the changes of thermodynamic driving force for solidification due to the solute addition also played a key role in grain refinement in ferritic alloys.
Effect of Solutes on Grain Refinement of As-Cast Fe-4Si Alloy
NASA Astrophysics Data System (ADS)
Li, Ming; Li, Jian-Min; Zheng, Qing; Wang, Geoff; Zhang, Ming-Xing
2018-03-01
Grain size is one of the key microstructural factors that control the mechanical properties of steels. The present work aims to extend the theories of grain refinement which were established for cast light alloys to steel systems. Using a designed Fe-4 wt pct Si alloy (all-ferrite structure during whole solidification process), the solute effect on grain refinement/grain coarsening in ferritic systems was comprehensively investigated. Experimental results showed that boron (B), which is associated with the highest Q value (growth restriction factor) in ferrite, significantly refined the as-cast structure of the Fe-4 wt pct Si alloy. Cu and Mo with low Q values had no effect on grain refinement. However, although Y and Zr have relatively high Q values, addition of these two solutes led to grain coarsening in the Fe-4Si alloy. Understanding the results in regards to the growth restriction factor and the driving force for the solidification led to the conclusion that in addition to the grain growth restriction effect, the changes of thermodynamic driving force for solidification due to the solute addition also played a key role in grain refinement in ferritic alloys.
NASA Astrophysics Data System (ADS)
Evard, Margarita E.; Volkov, Aleksandr E.; Belyaev, Fedor S.; Ignatova, Anna D.
2018-05-01
The choice of Gibbs' potential for microstructural modeling of FCC ↔ HCP martensitic transformation in FeMn-based shape memory alloys is discussed. Threefold symmetry of the HCP phase is taken into account on specifying internal variables characterizing volume fractions of martensite variants. Constraints imposed on model constants by thermodynamic equilibrium conditions are formulated.
Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger
2014-01-01
Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media. PMID:25225879
Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys
Wu, Zhenggang; Bei, Hongbin; Parish, Chad M
2015-06-14
Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less
NASA Astrophysics Data System (ADS)
Geng, Yunlong
L10-type (Space group P4/mmm) magnetic compounds, including FeNi and MnAl, possess promising technical magnetic properties of both high magnetization and large magnetocrystalline anisotropy energy, and thus offer potential in replacing rare earth permanent magnets in some applications. In equiatomic Fe-Ni, the disorder-order transformation from fcc structure to the L10 structure is a diffusional transformation, but is inhibited by the low ordering temperature. The transformation could be enhanced through the creation of vacancies. Thus, mechanical alloying was employed to generate more open-volume defects. A decrease in grain size and concomitant increase in grain boundary area resulted from the mechanical alloying, while an initial increase in internal strain (manifested through an increase in dislocation density) was followed by a subsequent decrease with further alloying. However, a decrease in the net defect concentration was determined by Doppler broadening positron annihilation spectroscopy, as open volume defects utilized dislocations and grain boundaries as sinks. An alloy, Fe32Ni52Zr3B13, formed an amorphous structure after rapid solidification, with a higher defect concentration than crystalline materials. Mechanical milling was utilized in an attempt to generate even more defects. However, it was observed that Fe32Ni52Zr3B13 underwent crystallization during the milling process, which appears to be related to enhanced vacancy-type defect concentrations allowing growth of pre-existing Fe(Ni) nuclei. The milling and enhanced vacancy concentration also de-stabilizes the glass, leading to decreased crystallization temperatures, and ultimately leading to complete crystallization. In Mn-Al, the L10 structure forms from the parent hcp phase. However, this phase is slightly hyperstoichiometric relative to Mn, and the excess Mn occupies Al sites and couples antiparallel to the other Mn atoms. In this study, the Zr substituted preferentially for the Mn atoms in the
NASA Astrophysics Data System (ADS)
Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming
2015-09-01
This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.
XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4
NASA Astrophysics Data System (ADS)
Grosvenor, A. P.; Bellhouse, E. M.; Korinek, A.; Bugnet, M.; McDermid, J. R.
2016-08-01
X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn2SiO4, MnSiO3 and MnAl2O4 were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn2SiO4, MnSiO3 and MnAl2O4 standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.
NASA Astrophysics Data System (ADS)
Paleu, V.; Gurău, G.; Comăneci, R. I.; Sampath, V.; Gurău, C.; Bujoreanu, L. G.
2018-07-01
A new application of Fe-Mn-Si based shape memory alloys (SMAs) was developed under the form of truncated cone-shaped module, for self-adaptive axial preload control in angular contact bearings. The modules were processed by high-speed high-pressure torsion (HS-HPT), from circular crowns cut from axially drilled ingots of Fe-28Mn-6Si-9Cr (mass%) SMA. The specimens were mechanically tested in the hot rolled state, prior to HS-HPT processing, demonstrating free-recovery shape memory effect (SME) and high values for ultimate tensile stress and strain as well as low cycle fatigue life. The HS-HPT modules were subjected to static loading–unloading compression, without/with lubrication at specimen-tool interface, both individually and in different coupling modes. Dry compression cycles revealed reproducible stress plateaus both during loading and unloading stages, being associated with hardness gradient, along cone generator, caused by HS-HPT processing. Constrained recovery tests, performed using compressed modules, emphasized the continuous generation of stress during heating, by one way SME, at a rate of ∼9.3 kPa/%. Dynamic compression tests demonstrated the capability of modules to develop closed stress–strain loops after 50 000 cycles, without visible signs of fatigue. HS-HPT caused the fragmentation of crystalline grains, while compression cycles enabled the formation of ε hexagonal close-packed stress-induced martensite (ε), which is characterized by a high density of stacking faults. Using an experimental setup, specifically designed and manufactured for this purpose, both feasibility and functionality tests were performed using HS-HPT modules. The feasibility tests proved the existence of a general tendency of both axial force and friction torque to increase in time, favoured by the increase of initial preloading force and the augmentation of rotation speed. Functionality tests, performed on two pairs of HS-HPT modules fastened in base-to-base coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, A., E-mail: takeuchi@imr.tohoku.ac.jp; Zhang, Y.; Takenaka, K.
2015-05-07
Fe-based Fe{sub 85}B{sub 15}, Fe{sub 84}B{sub 15}Cu{sub 1}, Fe{sub 82}Si{sub 2}B{sub 15}Cu{sub 1}, Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, and Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} (NANOMET{sup ®}) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (B{sub s}) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermicmore » enthalpies of the primary and secondary crystallizations (ΔH{sub x1} and ΔH{sub x2}) and their crystallization temperatures (T{sub x1} and T{sub x2}), respectively. The ratio ΔH{sub x1}/ΔH{sub x2} measured by DSC experimentally tended to be extremely high for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (V{sub f}) of α-Fe tends to increase from 0.56 for the Fe{sub 85}B{sub 15} to 0.75 for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (G{sub α-Fe} and G{sub amor}) shows that a relationship G{sub α-Fe} ∼ G{sub amor} holds for the Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, whereas G{sub α-Fe} < G{sub amor} for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy at T{sub x1} and that an extremely high V{sub f} = 0.75 was achieved for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe{sub 85}Si
Various physical properties of Mn_1-xFex alloy films
NASA Astrophysics Data System (ADS)
Kim, J. B.; Cho, K. H.; Nahm, T.-U.; Lee, Y. P.; Kim, K. W.; Kudryavtsev, Y. V.; Gontarz, R.; Szymanski, B.
2003-03-01
The structural dependences of the magneto-optical, the optical and the magnetic properties of Mn_1-xFex alloy films have been investigated. It was revealed that the EKE (equatorial Kerr effect) signal at 293 K for the Mn_1-xFex alloy films can be observed only for x > 0.50. All the EKE spectra have nearly the same spectral shape (Fe-like) and differ from each other only in the intensity. The observed experimental EKE spectra for the Fe-rich Mn_1-xFex alloy films can be nicely described by the simulated ones made in the framework of the effective medium approximation. The optical properties such as optical conductivity of all the investigated alloys can be separated into three groups which are related to the different crystalline structures of alloys: predominance of the α-Fe (0.8 < x < 0.97), the γ-Mn-Fe (0.2 < x < 0.6) and the α-Mn (0.02 < x < 0.23) phases, respectively.
NASA Astrophysics Data System (ADS)
Yu, Haiyuan; Bi, Xiaofang
2018-04-01
Realization of the effective Si penetration at a lower processing temperature is a challenge, but of significance in reducing the strict requirements for the equipment and realizing cost-cutting in production. In this work, we have modified the surface microstructure of Fe-3 wt%Si alloy by using surface mechanical attrition treatment. The modified surface microstructure is characteristic of nanocrystalline, which is found to significantly enhance the efficiency of subsequent Si penetration into the alloy, and successively leading to the decrease of penetration temperature up to 200 °C. As a consequence, the Si gradient distribution across thickness can be readily controlled by changing penetration time, and FeSi alloys with various gradients are prepared by chemical vapor deposition along with subsequent annealing process. The dependence of magnetic and mechanical properties on Si gradient for demonstrates that the increase of Si gradient reduces core losses, especially at higher frequencies, and meanwhile improves ductility of FeSi alloys as well. The mechanism underlying the effect of Si gradient is clarified by combining magnetostriction measurement and domain structure observations. This work provides a facile and effective way for achieving gradient FeSi alloys with good magnetic property and ductility.
CeLa enhanced corrosion resistance of Al-Cu-Mn-Mg-Fe alloy for lithium battery shell
NASA Astrophysics Data System (ADS)
Du, Jiandi; Ding, Dongyan; Zhang, Wenlong; Xu, Zhou; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong
2017-11-01
Effects of CeLa addition on the localized corrosion and electrochemical corrosion behavior of Al-Cu-Mn-Mg-Fe lithium battery shell alloy were investigated by immersion testing and electrochemical testing in 0.6 M NaCl solution at different temperatures. Experimental results indicated that CeLa addition resulted in the formation of AlCuCe/La (Al8Cu4Ce and Al6Cu6La) local cathodes and corrosion activity of the main intermetallic particles decreased in the order of Al2CuMg, AlCuCe/La, Al6(Mn, Fe). Corrosion potential shifted positively due to CeLa alloying. Corrosion current density of the CeLa-containing alloy was lower than that of the CeLa-free alloy at room temperature. At room temperature, there was no obvious surface passivation for both alloys. At 80 °C CeLa addition resulted in a wide passive region at the anode polarization region. Electrochemical impedance spectroscopy (EIS) analysis also indicated that corrosion resistance of the CeLa-containing alloy was much higher than that of the CeLa-free alloy.
Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy
NASA Astrophysics Data System (ADS)
Hasiak, Mariusz; Miglierini, Marcel; Łukiewski, Mirosław; Łaszcz, Amadeusz; Bujdoš, Marek
2018-05-01
DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.
Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi
NASA Astrophysics Data System (ADS)
Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.
2015-02-01
High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.
Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys
NASA Astrophysics Data System (ADS)
Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.
2016-08-01
The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.
Equations of state and anisotropy of Fe-Ni-Si alloys
NASA Astrophysics Data System (ADS)
Morrison, R. A.; Jackson, J. M.; Sturhahn, W.; Zhang, D.; Greenberg, E.
2017-12-01
Seismic observations provide constraints on the density, bulk sound speed, and bulk modulus of Earth's inner core, and x-ray diffraction (XRD) experiments can experimentally constrain such properties of iron alloys. The deviation of these seismically-inferred values from the properties of iron suggests the presence of light elements (e.g. Si, O, S, C, H) inside the core. While cosmochemical studies suggest Earth's core is composed primarily of iron alloyed with 5 wt% nickel, existing experimental XRD studies constraining pressure-density relations have predominantly focused on iron and iron alloyed with light elements, while neglecting the effect of nickel. In this study, we present high-precision equations of state for bcc- and hcp-structured Fe0.91Ni0.09 and Fe0.80Ni0.10Si0.10 using powder XRD at room temperature up to 167 GPa and 175 GPa, respectively. By using tungsten powder as a pressure calibrant and helium as a pressure transmitting medium, we minimize error due to pressure calibration and non-hydrostatic stresses. The results are high fidelity equations of state (EOS). By systematically comparing our findings to an established EOS of hcp-Fe [Dewaele et al. 2006], we constrain the effect of nickel and silicon on the density, bulk sound speed, and bulk modulus of iron alloys, which is a critical step towards constraining the inner core's composition. We find that for iron alloys, high quality ambient temperature EOSs can dramatically improve the extrapolated high temperature equations of state to inner core conditions. By combining seismic observations and their associated uncertainties with our data and existing Fe light-element-alloy EOSs, we estimate their densities, bulk moduli, and bulk sound speeds at inner core conditions and propose an experimentally and seismologically consistent range of inner core compositions. Additionally, we obtain an unprecedented constraint on the effect of nickel and silicon on the axial ratio of iron alloys. Nickel has a
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Tong, Yang; Jin, Ke
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...
2018-06-16
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Structure and magnetic properties of Sm1-xZrx Fe10Si2 (x=0.2-0.6) alloys
NASA Astrophysics Data System (ADS)
Gjoka, M.; Sarafidis, C.; Psycharis, V.; Devlin, E.; Niarchos, D.; Hadjipanayis, G.
2017-10-01
Structure and magnetic properties of Sm1-xZrxFe10Si2 (0.1 ≤ x ≤ 0.6) alloys have been characterized using X-ray diffraction, thermomagnetic analysis and Mössbauer spectroscopy. The formation of the tetragonal ThMn12 -type structure was been observed in all alloys, without further annealing. The Curie temperature decreases linearly with Zr substitution from 322 °C for x=0.1 to 395 °C for x=0.6. Mössbauer spectroscopy showed the iron hyperfine field values decrease with increasing Zr content, and also confirmed changes to the magnetic anisotropy with increasing Zr content observed by XRD on oriented samples.
Si-depleted outer core inferred from sound velocity measurements of liquid Fe-Si alloys
NASA Astrophysics Data System (ADS)
Nakajima, Y.; Imada, S.; Hirose, K.; Kuwayama, Y.; Sinmyo, R.; Tateno, S.; Ozawa, H.; Tsutsui, S.; Uchiyama, H.; Baron, A. Q. R.
2016-12-01
Recent core formation models [1,2] suggested that a large amount of Si could have been incorporated into the core forming metals in the early stage of the Earth. These studies gave estimates for the Si content in the core, from 2 to 9 wt.%. In order to constrain the Si content of the outer core, we have determined the sound wave velocity of liquid Fe-Si alloys under high pressures and high temperatures. Starting materials of Fe-Si alloys with 6.5 and 9 wt.% Si were melted in a laser-heated diamond-anvil cell. The longitudinal acoustic phonon excitation of a liquid metal was measured up to 52 GPa and 3200 K by using high resolution inelastic X-ray scattering spectroscopy at beamline BL35XU [3] of the SPring-8 synchrotron facility. Our results show that silicon significantly increases the P-wave velocity of liquid Fe. Seismological observation shows that the P-wave velocity in the outer core is 3-4% faster than in pure iron. Comparing the present results with seismological observations, the silicon content of the outer core should be limited to be <2 wt.%, significantly lower than previous estimates based on the element partitioning between core forming mental and silicate magma ocean during core formation processes. This indicates that the present-day core is depleted in Si relative to the ancient core just after core formation, which agrees with the recent proposal [4] that the Si content in the outer core has been diminished by SiO2 crystallization through the core cooling history. [1] Rubie et al. (2011) Earth Planet. Sci. Lett. 301, 31-42. [2] Siebert et al. (2013) Science 339, 1194-1197. [3] Baron et al. (2000) J. Phys. Chem. Solids 61, 461-465 [4] Hirose et al. (2015) Abstract presented at AGU Fall Meeting 2015.
Section 2: Phase transformation studies in mechanically alloyed Fe-Nz and Fe-Zn-Si intermetallics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, A.; Uwakweh, O.N.C.; Maziasz, P.J.
1997-04-01
The initial stage of this study, which was completed in FY 1995, entailed an extensive analysis characterizing the structural evolution of the Fe-Zn intermetallic system. The primary interest in these Fe-Zn phases stems from the fact that they form an excellent coating for the corrosion protection of steel (i.e., automobile body panels). The Fe-Zn coating generally forms up to four intermetallic phases depending on the particular industrial application used, (i.e., galvanization, galvannealing, etc.). Since the different coating applications are non-equilibrium in nature, it becomes necessary to employ a non-equilibrium method for producing homogeneous alloys in the solid-state to reflect themore » structural changes occurring in a true coating. This was accomplished through the use of a high energy/non-equilibrium technique known as ball-milling which allowed the authors to monitor the evolution process of the alloys as they transformed from a metastable to stable equilibrium state. In FY 1996, this study was expanded to evaluate the presence of Si in the Fe-Zn system and its influence in the overall coating. The addition of silicon in steel gives rise to an increased coating. However, the mechanisms leading to the coating anomaly are still not fully understood. For this reason, mechanical alloying through ball-milling of pure elemental powders was used to study the structural changes occurring in the sandelin region (i.e., 0.12 wt % Si). Through the identification of invariant reactions (i.e., eutectic, etc.) the authors were able to explore the sandelin phenomenon and also determine the various fields or boundaries associated with the Fe-Zn-Si ternary system.« less
NASA Astrophysics Data System (ADS)
Qiu, Jing; Wen, Yumei; Li, Ping; Chen, Hengjia
2016-05-01
In this paper, a high sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures consisting of FeCuNbSiB/Terfenol-D (Tb1-xDyxFe2)/PZT (Pb(Zr1-x,Tix)O3)/Terfenol-D/PZT/Ternol-D/FeCuNbSiB (FMPMPMF) is presented, whose ME coupling characteristics and sensing performances have been investigated. Compared to traditional Terfenol-D/PZT/Terfenol-D (MPM) and Terfenol-D/PZT/Terfenol-D/PZT/Terfenol-D (MPMPM) sensors, the zero-biased ME coupling characteristics of FMPMPMF sensor were significantly improved, owing to a build-in magnetic field in FeCuNbSiB/Terfenol-D layers. The optimum zero-biased resonant ME voltage coefficient of 3.02 V/Oe is achieved, which is 1.65 times as great as that of MPMPM and 2.51 times of MPM sensors. The mean value of low-frequency ME field coefficient of FMPMPMF reaches 122.53 mV/cm Oe, which is 2.39 times as great as that of MPMPM and 1.79 times of MPM sensors. Meanwhile, the induced zero-biased ME voltage of FMPMPMF sensor shows an excellent linear relationship to ac magnetic field both at the low frequency (1 kHz) and the resonant frequency (106.6 kHz). Remarkably, it indicates that the proposed zero-biased magnetic field sensor give the prospect of being able to applied to the field of highly sensitive ac magnetic field sensing.
Reduction of Chromite in Liquid Fe-Cr-C-Si Alloys
NASA Astrophysics Data System (ADS)
Demir, Orhan; Eric, R. Hurman
1994-08-01
The kinetics and the mechanism of the reduction of chromite in Fe-Cr-C-Si alloys were studied in the temperature range of 1534 °C to 1702 °C under an inert argon atmosphere. The rotating cylinder technique was used. The melt consisted of 10 and 20 wt Pct chromium, the carbon content varied from 2.8 wt Pct to saturation, and the silicon content varied from 0 to 2 wt Pct. The rotational speed of the chromite cylinder ranged from 100 to 1000 rpm. The initial chromium to iron ratios of the melts varied between 0.11 and 0.26. In Fe-C melts, the effect of rotational speed on the reduction of chromite was very limited. Carbon saturation (5.4 wt Pct) of the alloy caused the reduction to increase 1.5 times over the reduction observed in the unsaturated (4.87 wt Pct) alloy at a given rotational speed. The addition of chromium to the carbon-saturated Fe-C alloy increased the reduction rate. The addition of silicon to the liquid phase increased the reduction rate drastically. The reduction of chromite in Fe-Cr-C melts is hindered because of the formation of, approximately, a 1.5-mm-thick M7C3-type carbide layer around the chromite cylinders. This carbide layer did not form when silicon was present in the melt. It was found that the reduction rate is controlled by the liquid-state mass transfer of oxygen. The calculated apparent activation energies for diffusion were 102.9 and 92.9 kJ/mol of oxygen in the Si-O and C-O systems, respectively.
Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys
NASA Astrophysics Data System (ADS)
Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.
2018-03-01
The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.
Machine Casting of Ferrous Alloys
1975-10-01
casting from entrapped air. This fact, together with the lower amount of solidification shrinkage of semi-solid alloys , results in the now firmly...compositions and solidification ranges. Figures 5 and 6 illustrate -24- typical quenched microstructures obtained for several of the alloys investi...COBALT SUPERALLOY Cu - 10%Sn - 2%Zn Fe - 2.6%C - 3.2% Si Fe - 17%Cr - l% Si l%Mn - 1.1%C Fe - 17%Cr - USi l%Mn - 0.6%C Fe - 18.5%Cr - 9.5% Ni 0.08
Liu, B; Zheng, Y F
2011-03-01
Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a
NASA Astrophysics Data System (ADS)
Chen, Jian; Zhang, Weijie; Zhang, Min; Guo, Zhen; Wang, Haibao; He, Mengni; Xu, Pengping; Zhou, Jiajia; Liu, Zhenbang; Chen, Qianwang
2015-07-01
Artemisinin (ART) is a natural drug with potent anticancer activities related with Fe2+ mediated cleavage of the endoperoxide bridge in ART. Herein, we reported that Mn2+ could substitute for Fe2+ to react with ART and generate toxic products, inducing a much higher anticancer efficiency. On this basis, we prepared pH-responsive Fe3O4@MnSiO3-FA nanospheres which can efficiently deliver hydrophobic ART into tumors in mice models. Mn2+ was released in acidic tumor environments and intracellular lysosomes, interacting with ART to kill cancer cells. The ART-loaded nanocarriers could suppress tumor growth more efficiently than free ART, which could be further illustrated by magnetic resonance imaging (MRI). Histological analysis revealed that the drug delivery system had no obvious effect on the major organs of mice. ART has been reported to have lower toxicity than chemotherapeutics. The ART-loaded nanocarriers are promising to be used in improving the survival of chemotherapy patients, providing a novel method for clinical tumor therapy.Artemisinin (ART) is a natural drug with potent anticancer activities related with Fe2+ mediated cleavage of the endoperoxide bridge in ART. Herein, we reported that Mn2+ could substitute for Fe2+ to react with ART and generate toxic products, inducing a much higher anticancer efficiency. On this basis, we prepared pH-responsive Fe3O4@MnSiO3-FA nanospheres which can efficiently deliver hydrophobic ART into tumors in mice models. Mn2+ was released in acidic tumor environments and intracellular lysosomes, interacting with ART to kill cancer cells. The ART-loaded nanocarriers could suppress tumor growth more efficiently than free ART, which could be further illustrated by magnetic resonance imaging (MRI). Histological analysis revealed that the drug delivery system had no obvious effect on the major organs of mice. ART has been reported to have lower toxicity than chemotherapeutics. The ART-loaded nanocarriers are promising to be used in
One-step electrolytic preparation of Si-Fe alloys as anodes for lithium ion batteries
NASA Astrophysics Data System (ADS)
Wang, Hailong; Sun, Diankun; Song, Qiqi; Xie, Wenqi; Jiang, Xu; Zhang, Bo
2016-06-01
One-step electrolytic formation of uniform crystalline Si-Fe alloy particles was successfully demonstrated in direct electro-reduction of solid mixed oxides of SiO2 and Fe2O3 in molten CaCl2 at 900∘C. Upon constant voltage electrolysis of solid mixed oxides at 2.8V between solid oxide cathode and graphite anode for 5h, electrolytic Si-Fe with the same Si/Fe stoichimetry of the precursory oxides was generated. The firstly generated Fe could function as depolarizers to enhance reduction rate of SiO2, resulting in the enhanced reduction kinetics to the electrolysis of individual SiO2. When evaluated as anode for lithium ion batteries, the prepared SiFe electrode showed a reversible lithium storage capacity as high as 470mAh g-1 after 100 cycles at 200mA g-1, promising application in high-performance lithium ion batteries.
Reduction Behavior of Assmang and Comilog ore in the SiMn Process
NASA Astrophysics Data System (ADS)
Kim, Pyunghwa Peace; Holtan, Joakim; Tangstad, Merete
The reduction behavior of raw materials from Assmang and Comilog based charges were experimentally investigated with CO gas up to 1600 °C. Quartz, HC FeMn slag or limestone were added to Assmang or Comilog according to the SiMn production charge, and mass loss results were obtained by using a TGA furnace. The results showed that particle size, type of manganese ore and mixture have close relationship to the reduction behavior of raw materials during MnO and SiO2 reduction. The influence of particle size to mass loss was apparent when Assmang or Comilog was mixed with only coke (FeMn) while it became insignificant when quartz and HC FeMn slag (SiMn) were added. This implied that quartz and HC FeMn slag had favored the incipient slag formation regardless of particle size. This explained the similar mass loss tendencies of SiMn charge samples between 1200-1500 °C, contrary to FeMn charge samples where different particle sizes showed significant difference in mass loss. Also, while FeMn charge samples showed progressive mass loss, SiMn charge samples showed diminutive mass loss until 1500 °C. However, rapid mass losses were observed with SiMn charge samples in this study above 1500 °C, and they have occurred at different temperatures. This implied rapid reduction of MnO and SiO2 and the type of ore and addition of HC FeMn slag have significant influence determining these temperatures. The temperatures observed for the rapid mass loss were approximately 1503 °C (Quartz and HC FeMn slag addition in Assmang), 1543 °C (Quartz addition in Assmang) and 1580-1587 °C (Quartz and limestone addition in Comilog), respectively. These temperatures also showed indications of possible SiMn production at process temperatures lower than 1550 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, B D; Asoka-Kumar, P; Howell, R H
2001-01-01
Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs andmore » VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime ({approx}500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs.« less
NASA Astrophysics Data System (ADS)
Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.
2011-01-01
The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni2MnGa have been calculated. The formation energies of the cubic phase of Ni2XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni2MnGa to Ni2CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below EF. There are two bond types existing in Ni2XGa: one is between neighboring Ni atoms in Ni2MnGa; the other is between Ni and X atoms in Ni2FeGa and Ni2CoGa alloys.
Magnetic properties of the CrMnFeCoNi high-entropy alloy
Schneeweiss, Oldřich; Friák, Martin; Dudová, Marie; ...
2017-07-28
In this paper, we present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006more » ± 0.001 emu T. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μ B), while the local moments of Ni atoms effectively vanish. Finally, these results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.« less
Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints
NASA Astrophysics Data System (ADS)
Kajiwara, Setsuo; Baruj, Albert L.; Kikuchi, Takehiko; Shinya, Norio
2003-08-01
By addition of small amount of Nb and C to the conventional Fe-Mn-Si based shape memory alloys, shape memory properties are greatly improved in such an extent that the costly 'training' heat treatment is no more necessary. The key to this remarkable improvement of shape memory effect is to produce small NbC precipitates of about several nm in size in austenite. In order to generate such very small NbC particles, the sample is firstly rolled at 870 K and then aged at 1070 K. An example of Fe-28Mn-6Si-5Cr-0.53Nb-0.06C (mass %) alloy is shown; 95% shape recovery for initial strain of 4% is obtained and the shape recovery stress of about 300 MPa is attained for the sample pre-rolled 14%, which is well above the criterion for industry application of pipe jointing. A pipe jointing with this material is demonstrated.
Lattice sites of ion-implanted Mn, Fe and Ni in 6H-SiC
NASA Astrophysics Data System (ADS)
Costa, A. R. G.; Wahl, U.; Correia, J. G.; David-Bosne, E.; Amorim, L. M.; Augustyns, V.; Silva, D. J.; da Silva, M. R.; Pereira, L. M. C.
2018-01-01
Using radioactive isotopes produced at the CERN-ISOLDE facility, the lattice location of the implanted transition metal (TM) ions 56Mn, 59Fe and 65Ni in n-type single-crystalline hexagonal 6H-SiC was studied by means of the emission channeling technique. TM probes on carbon coordinated tetrahedral interstitial sites (T C) and on substitutional silicon sites (S Si,h+k ) were identified. We tested for but found no indication that the TM distribution on S Si sites deviates from the statistical mixture of 1/3 hexagonal and 2/3 cubic sites present in the 6H crystal. The TM atoms partially disappear from T C positions during annealing at temperatures between 500 °C and 700 °C which is accompanied by an increase on S Si and random sites. From the temperature associated with these site changes, interstitial migration energies of 1.7-2.7 eV for Mn and Ni, and 2.3-3.2 eV for Fe were estimated. TM lattice locations are compared to previous results obtained in 3C-SiC using the same technique.
GW study of the half-metallic Heusler compounds Co2MnSi and Co2FeSi
NASA Astrophysics Data System (ADS)
Meinert, Markus; Friedrich, Christoph; Reiss, Günter; Blügel, Stefan
2012-12-01
Quasiparticle spectra of potentially half-metallic Co2MnSi and Co2FeSi Heusler compounds have been calculated within the one-shot GW approximation in an all-electron framework without adjustable parameters. For Co2FeSi the many-body corrections are crucial: a pseudogap opens and good agreement of the magnetic moment with experiment is obtained. Otherwise, however, the changes with respect to the density-functional-theory starting point are moderate. For both cases we find that photoemission and x-ray absorption spectra are well described by the calculations. By comparison with the GW density of states, we conclude that the Kohn-Sham eigenvalue spectrum provides a reasonable approximation for the quasiparticle spectrum of the Heusler compounds considered in this work.
Design for Fe-high Mn alloy with an improved combination of strength and ductility.
Lee, Seung-Joon; Han, Jeongho; Lee, Sukjin; Kang, Seok-Hyeon; Lee, Sang-Min; Lee, Young-Kook
2017-06-15
Recently, Fe-Mn twinning-induced plasticity steels with an austenite phase have been the course of great interest due to their excellent combination of tensile strength and ductility, which carbon steels have never been able to attain. Nevertheless, twinning-induced plasticity steels also exhibit a trade-off between strength and ductility, a longstanding dilemma for physical metallurgists, when fabricated based on the two alloy design parameters of stacking fault energy and grain size. Therefore, we investigated the tensile properties of three Fe-Mn austenitic steels with similar stacking fault energy and grain size, but different carbon concentrations. Surprisingly, when carbon concentration increased, both strength and ductility significantly improved. This indicates that the addition of carbon resulted in a proportionality between strength and ductility, instead of a trade-off between those characteristics. This new design parameter, C concentration, should be considered as a design parameter to endow Fe-Mn twinning-induced plasticity steel with a better combination of strength and ductility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yu-Gang; Truong, Tu T.; Liu, Yu-Zi
2015-02-01
Microflowers made of interconnected MnO2 nanosheets have been successfully synthesized in a microwave reactor through a hydrothermal reduction of KMnO4 with aqueous HCl at elevated temperatures in the presence of superparamagnetic Fe3O4@SiO2 core-shell nanoparticles. Due to the chemical compatibility between SiO2 and MnO2, the heterogeneous reaction leads to the spontaneous encapsulation of the Fe3O4@SiO2 core-shell nanoparticles in the MnO2 microflowers. The resulting hybrid particles exhibit multiple properties including high surface area associated with the MnO2 nanosheets and superparamagnetism originated from the Fe3O4@SiO2 core-shell nanoparticles, which are beneficial for applications requiring both high surface area and magnetic separation. (C) 2014 Yu-Gangmore » Sun.« less
NASA Astrophysics Data System (ADS)
Fronczyk, Adam
2007-04-01
In this study, we report on a crystallization behavior of the Fe 95Si 5 metallic glasses using a differential scanning cabrimetry (DSC), and X-ray diffraction. The paper presents the results of experimental investigation of Fe 95Si 5 amorphous alloy, subjected to the crystallizing process by the isothermal annealing. The objective of the experiment was to determine changes in the structural parameters during crystallization process of the examined alloy. Crystalline diameter and the lattice constant of the crystallizing phase were used as parameters to evaluate structural changes in material.
NASA Astrophysics Data System (ADS)
Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan
2018-02-01
In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Bo; School of Mechanical Engineering, Gui Zhou University, Guiyang 550000; Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn
2015-06-15
The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Displaymore » Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.« less
Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy
NASA Astrophysics Data System (ADS)
Ferdian, Deni; Josse, Claudie; Nguyen, Patrick; Gey, Nathalie; Ratel-Ramond, Nicolas; de Parseval, Philippe; Thebault, Yannick; Malard, Benoit; Lacaze, Jacques; Salvo, Luc
2015-07-01
The microstructure of a high-purity Al-6.5Si-1Fe (wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Fe-bearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading.
Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys
NASA Astrophysics Data System (ADS)
Chen, Zongning; Wang, Tongmin; Zhao, Yufei; Zheng, Yuanping; Kang, Huijun
2015-05-01
NaBF4 + NaF were found to play three roles, i.e., Fe-eliminator, grain refiner, and eutectic modifier, in treating A356 alloy with a high Fe content. The joint effects led to significant improvement in both tensile and impact properties of thus treated alloy. The multiple reactions between the NaBF4 + NaF and Al-Si-Mg-Fe system are suggested to form Fe2B, AlB2, and Na in the melt, as per thermodynamic analysis. The three are responsible for Fe removal, grain refinement, and eutectic modification, respectively. When NaBF4 and NaF are mixed in weight ratio of 1:1, an optimum addition rate is in the range between 1.0 and 2.0 wt pct for treating AlSi7Mg0.3Fe0.65 alloy, based on the results of tensile and impact tests. Excessive addition of the salt may deteriorate the mechanical properties of the alloy, basically owing to overmodification of Si and contamination of salt inclusions.
Itinerant Antiferromagnetism in FeMnP 0.8Si 0.2
Sales, Brian C.; Susner, Michael A.; Conner, Benjamin S.; ...
2015-09-25
Compounds based on the Fe 2P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a noncentrosymmetric crystal structure, and because of the recent developments of these materials for magnetocaloric applications. We report the growth and characterization of millimeter-sized single crystals of FeMnP 0.8Si 0.2 with the Fe 2P structure. Single-crystal x-ray diffraction, magnetization, resistivity, and Hall and heat capacity data are reported. The crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. Themore » room-temperature resistivity is close to the Ioffe-Regel limit for a metal. Single-crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism were not changed after high-temperature anneals and a rapid quench to room temperature« less
Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application
Muralidharan, Govindarajan
2017-09-05
An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.
NASA Astrophysics Data System (ADS)
Kim, Cheol-Woo; Cho, Jae-Ik; Choi, Se-Weon; Kim, Young-Chan; Kang, Chang-Seog
Recently, demand of aluminum alloys for use in high thermal conductivity application is increases but the most aluminum die casting alloys exhibit very lower thermal properties because of their high concentrations of alloying elements. However, those alloying elements are essential to obtain sufficient fluidity and mechanical strength. Therefore, the purpose of this study is to analyze the effect of alloying elements in die casting alloys, Si, Cu, Mg, Fe and Mn, in thermal conductivity, die casting characteristics and mechanical properties and find out the appropriate amount of each alloying element for development of heat sink component. The results showed that Mn had the most deleterious effect in thermal conductivity and Si and Fe contents were important to improve strength and limit casting defects, such as hot tearing and die soldering. The alloy with 0.2 1.0wt%Cu, 0.3 0.6wt%Fe and 1.0 2.0wt%Si showed very good combination of high thermal conductivity and good casting characteristics.
The magnetic phase transition in Mn{sub 1.1}Fe{sub 0.9}P{sub 1−x}Ge{sub x} magnetocaloric alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X.; Ramanujan, R. V., E-mail: ramanujan@ntu.edu.sg
Mn-Fe-P-Ge alloys are promising, low cost, high performance candidates for magnetic cooling applications based on the magnetocaloric effect. These alloys undergo a magnetic phase transition which induces a large entropy change (ΔS). Experimental and modeling studies were conducted to study this transition for varying Ge content. Landau theory and the Bean-Rodbell model were applied to Mn{sub 1.1}Fe{sub 0.9}P{sub 1−x}Ge{sub x} (x = 0.26, 0.3, and 0.32) melt spun ribbons to model the phase transition and the associated entropy change. The critical behavior of these alloys was studied. The critical composition range at which the cross over from first order to second ordermore » magnetic transition occurs was determined. The calculated thermodynamic values and critical temperatures were in good agreement with our experimental results. A high maximum entropy change (ΔS) of ∼44.9 J kg{sup −1} K{sup −1} was observed in Mn{sub 1.1}Fe{sub 0.9}P{sub 0.74}Ge{sub 0.26} in a 5 T applied magnetic field. The results suggest that Mn-Fe-P-Ge alloys are very attractive materials for near room temperature magnetic cooling.« less
NASA Astrophysics Data System (ADS)
Apparao, K. Ch; Birru, Anil Kumar
2018-01-01
A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.
Fourfold symmetric anisotropic magnetoresistance in half-metallic Co2MnSi Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Oogane, Mikihiko; McFadden, Anthony P.; Kota, Yohei; Brown-Heft, Tobias L.; Tsunoda, Masakiyo; Ando, Yasuo; Palmstrøm, Chris J.
2018-06-01
In this study, we systematically investigated the anisotropic magnetoresistance (AMR) effect in half-metallic Co2MnSi Heusler alloy films epitaxially grown by molecular beam epitaxy. The fourfold symmetric AMR was observed in the temperature range of 25–275 K. In addition, the films exhibited a marked change in twofold symmetric AMR below 100 K. This specific temperature dependence of the AMR effect in Co2MnSi films can be caused by the tetragonal crystal field because of the distortion of the lattice at low temperatures. The influence of tetragonal distortion on both the AMR effect and half-metallicity is also discussed by first-principles calculations.
Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders
NASA Astrophysics Data System (ADS)
Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.
2018-03-01
In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.
NASA Astrophysics Data System (ADS)
Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Parveen, I. Mubeena; Ravichandran, K.
2018-05-01
Half-metallic ferromagnetic [HMF] nanoparticles are of considerable interest in spintronics applications due to their potential use as a highly spin polarized current source. HMF exhibits a semiconductor in one spin band at the Fermi level Ef and at the other spin band they poses strong metallic nature which shows 100 % spin polarization at Ef. Fe based full Heusler alloys are primary interest due to high Curie temperature. Fe2CrSi Heusler alloys are synthesized using metallic powders of Fe, Cr and Si by mechanical alloying method. X-Ray diffractions studies were performed to analyze the structural details of Fe2CrSi nanoparticles with High resolution scanning electron microscope (HRSEM) studies for the morphological details of nanoparticles and magnetic properties were studied using Vibrating sample magnetometer (VSM). XRD Data analysis conforms the Heusler alloy phase showing the existence of L21 structure. Magnetic properties are measured for synthesized samples exhibiting a soft magnetic property possessing low coercivity (HC = 60.5 Oe) and saturation magnetic moment of Fe2CrSi is 3.16 µB, which is significantly higher than the ideal value of 2 µB from the Slater-Pauling rule due to room temperature measurement. The change in magnetic properties are half-metallic nature of Fe2CrSi is due to the shift of the Fermi level with respect to the gap were can be used as spin sensors and spin injectors in magnetic random access memories and other spin dependent devices.
NASA Astrophysics Data System (ADS)
Huh, Joo-Youl; Hwang, Min-Je; Shim, Seung-Woo; Kim, Tae-Chul; Kim, Jong-Sang
2018-05-01
The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) SiO2-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at 460 °C and the variation in the contact angles (θc) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the a-SiO2-covered steel exhibited nonreactive, nonwetting (θc > 90°) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the a-SiO2 layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the a-SiO2 layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and SiO2, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.
NASA Astrophysics Data System (ADS)
Gao, Y. C.; Gao, X.
2015-05-01
Based on the first-principles calculations, quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In) including its phase stability, band gap, the electronic structures and magnetic properties has been studied systematically. We have found that, in terms of the equilibrium lattice constants, FeMnScZ (Z=Al, Ga, In) are half-metallic ferrimagnets, which can sustain the high spin polarization under a very large amount of lattice distortions. The half-metallic band gap in FeMnScZ (Z=Al, Ga, In) alloys originates from the t1u-t2g splitting instead of the eu-t1u splitting. The total magnetic moments are 3μB per unit cell for FeMnScZ (Z=Al, Ga, In) alloys following the Slater-Pauling rule with the total number of valence electrons minus 18 rather than 24. According to the study, the conclusion can be drawn that all of these compounds which have a negative formation energy are possible to be synthesized experimentally.
NASA Astrophysics Data System (ADS)
Rashid, Zahra; Soleimani, Masoud; Ghahremanzadeh, Ramin; Vossoughi, Manouchehr; Esmaeili, Elaheh
2017-12-01
The present study is aimed at the synthesis of MnFe2O4@SiO2@PMIDA in terms of highly efficient sensing platform for anti-prostate specific membrane antigen (PSMA) immobilization. Superparamagnetic manganese ferrite nanoparticles were synthesized following co-precipitation method and then SiO2 shell was coated on the magnetic core with tetraethyl orthosilicate (TEOS) through a silanization reaction to prevent oxidation, agglomeration and, increase the density of OH groups on the surface of MnFe2O4. Subsequently, MnFe2O4@SiO2@PMIDA obtained as a result of the reaction between N-(phosphonomethyl)iminodiacetic acid (PMIDA) and MnFe2O4@SiO2. The reactive carboxyl groups on the surface of magnetic nanoparticles can efficiently conjugate to a monoclonal antibody, specific to PSMA, which was confirmed by enzyme-linked immune sorbent assay (ELISA). Thus, this kind of functionalized magnetic nanoparticles is promising to be utilized in the improvement of ELISA-based biosensors and also will be effective in a variety of biomedical applications such as cell separation, diagnosis, and monitoring of human diseases.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj
2018-05-01
In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.
Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys
NASA Astrophysics Data System (ADS)
Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish
2018-01-01
Diffusion of Si atom and vacancy in the A2-phase of α-Fe-Si alloys in the ferromagnetic state, with and without magnetic order and in various temperature ranges, are studied using AKSOME, an on-lattice self-learning KMC code. Diffusion of the Si atom and the vacancy are studied in the dilute limit and up to 12 at.% Si, respectively, in the temperature range 350-700 K. Local Si neighborhood dependent activation energies for vacancy hops were calculated on-the-fly using a broken-bond model based on pairwise interaction. The migration barrier and prefactor for the Si diffusion in the dilute limit were obtained and found to agree with published data within the limits of uncertainty. Simulations results show that the prefactor and the migration barrier for the Si diffusion are approximately an order of magnitude higher, and a tenth of an electron-volt higher, respectively, in the magnetic disordered state than in the fully ordered state. However, the net result is that magnetic disorder does not have a significant effect on Si diffusivity within the range of parameters studied in this work. Nevertheless, with increasing temperature, the magnetic disorder increases and its effect on the Si diffusivity also increases. In the case of vacancy diffusion, with increasing Si concentration, its diffusion prefactor decreases while the migration barrier more or less remained constant and the effect of magnetic disorder increases with Si concentration. Important vacancy-Si/Fe atom exchange processes and their activation barriers were identified, and the effect of energetics on ordered phase formation in Fe-Si alloys are discussed.
Chen, Yan; Bei, Hongbin; Dela Cruz, Clarina R; ...
2016-05-07
Annealing plays an important role in modifying structures and properties of ferromagnetic shape memory alloys (FSMAs). The annealing effect on the structures and magnetic properties of off-stoichiometric Fe 45Mn 26Ga 29 FSMA has been investigated at different elevated temperatures. Rietveld refinements of neutron diffraction patterns display that the formation of the γ phase in Fe 45Mn 26Ga 29 annealed at 1073 K increases the martensitic transformation temperature and reduces the thermal hysteresis in comparison to the homogenized sample. The phase segregation of a Fe-rich cubic phase and a Ga-rich cubic phase occurs at the annealing temperature of 773 K. Themore » atomic occupancies of the alloys are determined thanks to the neutron's capability of differentiating transition metals. The annealing effects at different temperatures introduce a different magnetic characteristic that is associated with distinctive structural changes in the crystal.« less
Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties
NASA Astrophysics Data System (ADS)
Lollobrigida, V.; Basso, V.; Borgatti, F.; Torelli, P.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Tortora, L.; Stefani, G.; Panaccione, G.; Offi, F.
2014-05-01
We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.
Anti-site-induced diverse diluted magnetism in LiMgPdSb-type CoMnTiSi alloy
NASA Astrophysics Data System (ADS)
Lin, T. T.; Dai, X. F.; Guo, R. K.; Cheng, Z. X.; Wang, L. Y.; Wang, X. T.; Liu, G. D.
2017-02-01
The effect of three kinds of anti-site disorder to electronic structure and magnetic properties of the LiMgPdSb-type CoMnTiSi alloy are investigated. It was found the Mn-Ti anti-site disorder can induce the diluted magnetism in CoMnTiSi matrix. The magnetic structure has an oscillation between the ferromagnetic and antiferromagnetic states with the different degree of Mn-Ti anti-site disorder. Two novel characteristics: the diluted antiferromagnetic half-metallicity and the diluted zero-gap half-metallity are found in the different degree range of the Mn-Ti anti-site disorder. The Co-Mn and Co-Ti anti-site disorder have little effect on the magnetic properties. The width of energy gap and the intensity of DOS at the Fermi level can be adjusted by the degree of Co-Mn or Co-Ti anti-site disorder. The independent control to the carrier concentration and magnetization can be realized by introducing the different anti-site disorder.
High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi
NASA Astrophysics Data System (ADS)
Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.
2017-05-01
High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.
Effect of Copper on Corrosion of Forged AlSi1MgMn Automotive Suspension Components
NASA Astrophysics Data System (ADS)
Koktas, Serhan; Gokcil, Emre; Akdi, Seracettin; Birol, Yucel
2017-09-01
Recently, modifications in the alloy composition and the manufacturing process cycle were proposed to achieve a more uniform structure with no evidence of coarse grains across the section of the AlSi1MgMn alloys. Cu was added to the AlSi1MgMn alloy to improve its age hardening capacity without a separate solution heat treatment. However, Cu addition degrades the corrosion resistance of this alloy due to the formation of Al-Cu precipitates along the grain boundaries that are cathodic with respect to the aluminum matrix and thus encourage intergranular corrosion. The present work was undertaken to identify the impact of Cu addition on the corrosion properties of AlSi1MgMn alloys with different Cu contents. A series of AlSi1MgMn alloys with 0.06-0.89 wt.% Cu were tested in order to identify an optimum level of Cu addition.
NASA Astrophysics Data System (ADS)
Kurtan, U.; Amir, Md.; Yıldız, A.; Baykal, A.
2016-07-01
In this study, magnetically recycable MnFe2O4@SiO2@Ag nanocatalyst (MnFe2O4@SiO2@Ag MRCs) has been synthesized through co-precipition and chemical reduction method. XRD analysis confirmed the synthesis of single phase nanoproduct with crystallite size of 10 nm. VSM measurements showed the superparamagnetic property of the product. Catalytic studies showed that MnFe2O4@SiO2@Ag MRC could catalyze the reduction of the various azo compounds like methyl orange (MO), methylene blue (MB), eosin Y (EY), and rhodamine B (RhB) and also aromatic nitro compounds such as 4-nitrophenol (4-NP), 4-nitroaniline (4-NA) and 2-nitroaniline (2-NA). Moreover, the magnetic nanocatalyst showed an excellent reusability properties that remained unchanged after several cycles. Therefore, MnFe2O4@SiO2@Ag is the potential candidate for the application of organic pollutants for wastewater treatment.
Klimova, Margarita; Stepanov, Nikita; Shaysultanov, Dmitry; Chernichenko, Ruslan; Yurchenko, Nikita; Sanin, Vladimir; Zherebtsov, Sergey
2017-12-29
The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.
Ferrorhodonite, CaMn3Fe[Si5O15], a new mineral species from Broken Hill, New South Wales, Australia
NASA Astrophysics Data System (ADS)
Shchipalkina, Nadezhda V.; Chukanov, Nikita V.; Pekov, Igor V.; Aksenov, Sergey M.; McCammon, Catherine; Belakovskiy, Dmitry I.; Britvin, Sergey N.; Koshlyakova, Natalya N.; Schäfer, Christof; Scholz, Ricardo; Rastsvetaeva, Ramiza K.
2017-05-01
The new mineral ferrorhodonite, a Mn2+-Fe2+ ordered analogue of rhodonite with the idealized formula CaMn3Fe[Si5O15], was found in the manganese-rich metamorphic rocks of the Broken Hill Pb-Zn-Ag deposit, Yancowinna Co., New South Wales, Australia. Ferrorhodonite occurs as brownish red coarsely crystalline aggregates in association with galena, chalcopyrite, spessartine, and quartz. The mineral is brittle. Its Mohs hardness is 6. Cleavage is perfect on {201} and good on {021} and {210}. The measured and calculated values of density are 3.71 (2) and 3.701 g cm-3, respectively. Ferrorhodonite is optically biaxial positive, with α = 1.731 (4), β = 1.736 (4), γ = 1.745 (5) and 2 V (meas.) = 80 (10)°. The average chemical composition of ferrorhodonite is (electron-microprobe data, wt%): CaO 7.09, MgO 0.24, MnO 32.32, FeO 14.46, ZnO 0.36, SiO2 46.48, and total 100.95. The empirical formula calculated on 15 O apfu ( Z = 2) is Ca0.81Mn2.92Fe1.29Mg0.04Zn0.03Si4.96O15. The Mössbauer and IR spectra are reported. The strongest reflections in the powder X-ray diffraction pattern [( d, Å ( I, %) ( hkl)] are: 3.337 (32) (-1-13), 3.132 (54) (-210), 3.091 (41) (0-23), 2.968 (100) (-2-11), 2.770 (91) (022), 2.223 (34) (-204), 2.173 (30) (-310). Ferrorhodonite is isostructural with rhodonite. The crystal structure was solved based on single-crystal X-ray diffraction data and refined to R 1 = 4.02% [for 3114 reflections with I > 2 σ( I)]. The mineral is triclinic, space group P \\bar{1}, a = 6.6766 (5), b = 7.6754 (6), c = 11.803 (1) Å, α = 105.501 (1)°, β = 92.275 (1)°, γ = 93.919 (1)°; V = 580.44 (1). The crystal-chemical formula of ferrorhodonite inferred to be: M5(Ca0.81Mn0.19) M1-3(Mn2.52Fe0.48) M4(Fe 0.81 2+ Mn0.12Mg0.04Zn0.03) [Si5O15]..
Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys
NASA Astrophysics Data System (ADS)
Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji
Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.
Low-cost Fe--Ni--Cr alloys for high temperature valve applications
Muralidharan, Govindarajan
2017-03-28
An Fe--Ni--Cr alloy is composed essentially of, in terms of weight percent: 1 to 3.5 Al, up to 2 Co, 15 to 19.5 Cr, up to 2 Cu, 23 to 40 Fe, up to 0.3 Hf, up to 4 Mn, 0.15 to 2 Mo, up to 0.15 Si, up to 1.05 Ta, 2.8 to 4.3 Ti, up to 0.5 W, up to 0.06 Zr, 0.02 to 0.15 C, 0.0001 to 0.007 N, balance Ni, wherein, in terms of atomic percent: 6.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.10, 0.33.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.065, 4.ltoreq.(Fe+Cr)/(Al+Ti+Zr+Hf+Ta).ltoreq.10, the alloy being essentially free of Nb and V.
Chen, Bo-Ru; Yeh, An-Chou; Yeh, Jien-Wei
2016-01-01
In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy. PMID:26923713
Chen, Bo-Ru; Yeh, An-Chou; Yeh, Jien-Wei
2016-02-29
In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy.
Modeling of full-Heusler alloys within tight-binding approximation: Case study of Fe2MnAl
NASA Astrophysics Data System (ADS)
Azhar, A.; Majidi, M. A.; Nanto, D.
2017-07-01
Heusler alloys have been known for about a century, and predictions of magnetic moment values using Slater-Pauling rule have been successful for many such materials. However, such a simple counting rule has been found not to always work for all Heusler alloys. For instance, Fe2CuAl has been found to have magnetic moment of 3.30 µB per formula unit although the Slater-Pauling rule suggests the value of 2 µB. On the other hand, a recent experiment shows that a non-stoichiometric Heusler compound Fe2Mn0.5Cu0.5Al possesses magnetic moment of 4 µB, closer to the Slater-Pauling prediction for the stoichiometric compound. Such discrepancies signify that the theory to predict the magnetic moment of Heusler alloys in general is still far from being complete. Motivated by this issue, we propose to do a theoretical study on a full-Heusler alloy Fe2MnAl to understand the formation of magnetic moment microscopically. We model the system by constructing a density-functional-theory-based tight-binding Hamiltonian and incorporating Hubbard repulsive as well as spin-spin interactions for the electrons occupying the d-orbitals. Then, we solve the model using Green's function approach, and treat the interaction terms within the mean-field approximation. At this stage, we aim to formulate the computational algorithm for the overall calculation process. Our final goal is to compute the total magnetic moment per unit cell of this system and compare it with the experimental data.
Melting Experiments in the Fe-FeSi System at High Pressure
NASA Astrophysics Data System (ADS)
Ozawa, H.; Hirose, K.
2013-12-01
The principal light element in the Earth's core must reproduce the density jump at the inner core boundary (ICB). Silicon is thought to be a plausible light element in the core, and the melting phase relations in Fe-FeSi binary system at the ICB pressure are of great importance. Theoretical calculations on the Fe-FeSi binary system suggested that the difference in Si content between the outer core and the inner core would be too small to satisfy the observed density jump at the ICB [Alfè et al., 2002 EPSL], which requires other light elements in addition to silicon. Here we experimentally examined partitioning of silicon between liquid and solid iron up to 97 GPa. High pressure and temperature conditions were generated in a laser-heated diamond-anvil cell. Chemical compositions of co-existing quenched liquid and solid Fe-Si alloys were determined with a field-emission-type electron probe micro-analyzer. We used Fe-Si alloy containing 9 wt% Si as a starting material. Chemical analyses on the recovered samples from 39 and 49 GPa demonstrated the coexistence of quenched Si-depleted liquid and Si-enriched solid. In contrast, silicon partitions preferentially into liquid metal at 97 GPa, suggesting the starting composition (Fe-9wt% Si) lies on the iron-rich part of the eutectic. These results indicate the eutectic composition shifts toward FeSi between 49 and 97 GPa.
Magnetron Sputtering as a Fabrication Method for a Biodegradable Fe32Mn Alloy
Jurgeleit, Till; Quandt, Eckhard; Zamponi, Christiane
2017-01-01
Biodegradable metals are a topic of great interest and Fe-based materials are prominent examples. The research task is to find a suitable compromise between mechanical, corrosion, and magnetic properties. For this purpose, investigations regarding alternative fabrication processes are important. In the present study, magnetron sputtering technology in combination with UV-lithography was used in order to fabricate freestanding, microstructured Fe32Mn films. To adjust the microstructure and crystalline phase composition with respect to the requirements, the foils were post-deposition annealed under a reducing atmosphere. The microstructure and crystalline phase composition were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, for mechanical characterization, uniaxial tensile tests were performed. The in vitro corrosion rates were determined by electrochemical polarization measurements in pseudo-physiological solution. Additionally, the magnetic properties were measured via vibrating sample magnetometry. The foils showed a fine-grained structure and a tensile strength of 712 MPa, which is approximately a factor of two higher compared to the sputtered pure Fe reference material. The yield strength was observed to be even higher than values reported in literature for alloys with similar composition. Against expectations, the corrosion rates were found to be lower in comparison to pure Fe. Since the annealed foils exist in the austenitic, and antiferromagnetic γ-phase, an additional advantage of the FeMn foils is the low magnetic saturation polarization of 0.003 T, compared to Fe with 1.978 T. This value is even lower compared to the SS 316L steel acting as a gold standard for implants, and thus enhances the MRI compatibility of the material. The study demonstrates that magnetron sputtering in combination with UV-lithography is a new concept for the fabrication of already in situ geometrically
Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M
2013-06-19
The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.
New manufacturing method for Fe-Si magnetic powders using modified pack-cementation process
NASA Astrophysics Data System (ADS)
Byun, Ji Young; Kim, Jang Won; Han, Jeong Whan; Jang, Pyungwoo
2013-03-01
This paper describes a new method for making Fe-Si magnetic powders using a pack-cementation process. It was found that Fe-Si alloy powders were formed by a reaction of the pack mixture of Fe, Si, NaF, and Al2O3 powders at 900 °C for 24 h under a hydrogen atmosphere. Separation of the Fe-Si alloy powders was dependent on the particle size of the Fe powders in the pack. For small Fe powders, magnetic separation in a medium of strong alkali solution was recommended. But, for relatively larger Fe powders, the Fe-Si alloy powders were easily separated from Al2O3 powders using a magnet in air atmosphere. The Si content in the Fe-Si magnetic powders were easily controlled by changing the weight ratio of Si to (Si+Fe) in the pack.
Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Daniel R.; National High Magnetic Field Laboratory, Tallahassee, FL 32310; Han, Ke
2016-05-15
Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn{sub 0.8}Ga{sub 0.2} system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB)-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealedmore » Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.« less
Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core
NASA Astrophysics Data System (ADS)
Fischer, Rebecca A.; Campbell, Andrew J.; Caracas, Razvan; Reaman, Daniel M.; Dera, Przymyslaw; Prakapenka, Vitali B.
2012-12-01
The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure-temperature properties and behavior of an iron-silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe-16 wt%Si to 140 GPa, finding a conversion from the D03 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, if it consists solely of Fe-Si alloy, and that the eutectic composition in the Fe-Si system is less than 16 wt% silicon at core-mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe-Ni-Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core-mantle boundary. We have also performed first-principles calculations of the equations of state of Fe3Si with the D03 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.
Study on Composition, Microstructure and Wear Behavior of Fe-B-C Wear-Resistant Surfacing Alloys
NASA Astrophysics Data System (ADS)
Zhuang, Minghui; Li, Muqin; Wang, Jun; Ma, Zhen; Yuan, Shidan
2017-12-01
Fe-B-C alloy layers with various microstructures were welded on Q235 steel plates using welding powders/H08Mn2Si and welding wires composite surfacing technology. The relationship existing between the chemical composition, microstructure and wear resistance of the surfacing alloy layers was investigated by scanning electron microscopy, x-ray diffraction, electron backscatter diffraction and wear tests. The results demonstrated that the volume fractions and morphologies of the microstructures in the surfacing alloy layers could be controlled by adjusting the boron and carbon contents in the welding powders, which could further regulate the wear resistance of the surfacing alloy layers. The typical microstructures of the Fe-B-C surfacing alloy layers included dendritic Fe, rod-like Fe2B, fishbone-like Fe2B and daisy-like Fe3(C, B). The wear resistance of the alloy layers with various morphologies differed. The wear resistance order of the different microstructures was: rod-like Fe2B > fishbone-like Fe2B > daisy-like Fe3(C, B) > dendritic Fe. A large number of rod-like Fe2B with high microhardness could be obtained at the boron content of 5.70 5.90 wt.% and the carbon content of 0.50 0.60wt.%. The highest wear resistance of the Fe-B-C alloy layers reached the value of 24.1 g-1, which demonstrates the main microscopic cutting wear mechanism of the Fe-B-C alloy layers.
NASA Technical Reports Server (NTRS)
Lowell, C. E.
1973-01-01
Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.
2014-09-01
The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.
Decarburizing Annealing of Technical Alloy Fe - 3% Si
NASA Astrophysics Data System (ADS)
Lobanov, M. L.; Gomzikov, A. I.; Akulov, S. V.; Pyatygin, A. I.
2005-09-01
Results of a study illustrating the effect of temperature and moisture content in the atmosphere (5% H2 + 95% N2) on the removal of carbon and oxidation of the surface layer of technical alloy Fe - 3% Si (electrical anisotropic steel of the nitride-copper production variant) are presented. Variation of the concentration of silicon over the thickness of the surface layer is studied. The types of phases forming on the surface and their influence on the occurrence of the processes are determined. Annealing parameters (temperature and moisture content of the atmosphere) at which the processes of decarburization and oxidation are decelerated and even stopped are established.
NASA Astrophysics Data System (ADS)
Pakieła, Wojciech; Tanski, Tomasz; Pawlyta, Mirosława; Pakieła, Katarzyna; Brytan, Zbigniew; Sroka, Marek
2018-03-01
Laser surface treatment is successfully applied to increase hardness as well as corrosion and wear resistance in light alloys such as aluminum or magnesium. The laser surface remelting also can be used to repair superficial cracks, voids or porosity caused by the mechanical impact, metallurgical process as well as the corrosive environment on the surface of the aluminum alloy. The purpose of this paper was to investigate the influence of a fiber laser surface treatment on the structure and properties of the EN AC AlMg5Si2Mn alloy. The goal of this investigation was to increase the hardness and improve tribological properties of the aluminum alloy surface as a result of the conducted laser surface treatment. During laser processing, the top surface of the aluminum alloy was enriched with Cr and Ni particles. The grain size of the applied particles was approximately about 60-130 m. The Cr-Ni powder has been introduced in the molten pool using vacuum feeder at a constant rate of 4.5 g/min. For surface remelting we used square laser beam at a size 3 × 3 mm and with the power of 3.0 kW. The linear laser scan rate of the beam was set at 0.5 m/min. Argon was used to protect the liquid metal alloy during surface treatment. Application of the laser treatment on aluminum alloy has enabled to obtain much harder as well as better wear resistant material compared to the untreated EN AC AlMg5Si2Mn.
NASA Astrophysics Data System (ADS)
Lin, J.; Fei, Y.; Sturhahn, W.; Zhao, J.; Mao, H.; Hemley, R.
2004-05-01
Iron-nickel is the most abundant constituent of the Earth's core. The amount of Ni in the core is about 5.5 wt%. Geophysical and cosmochemical studies suggest that the Earth's outer core also contains approximately 10% of light element(s) and a certain amount of light element(s) may be present in the inner core. Si and S are believed to be alloying light elements in the iron-rich planetary cores such as the Earth and Mars. Therefore, understanding the alloying effects of Ni, Si, and S on the phase diagram and physical properties of Fe under core conditions is crucial for geophysical and geochemical models of planetary interiors. The addition of Ni and Si does not appreciably change the compressibility of hcp-Fe under high pressures. Studies of the phase relations of Fe and Fe-Ni alloys indicate that Fe with up to 10 wt% Ni is likely to be in the hcp structure under inner core conditions. On the other hand, adding Si into Fe strongly stabilizes the bcc structure to much higher pressures and temperatures (Lin et al., 2002). We have also studied the sound velocities and magnetic properties of Fe0.92Ni0.08, Fe0.85Si0.15, and Fe3S alloys with nuclear resonant inelastic x-ray scattering and nuclear forward scattering up to 106 GPa, 70 GPa, and 57 GPa, respectively. The sound velocities of the alloys are obtained from the measured partial phonon density of states for 57Fe incorporated in the alloys. Addition of Ni slightly decreases the VP and VS of Fe under high pressures (Lin et al., 2003). Si or S alloyed with Fe increases the VP and VS under high pressures, which provides a better match to seismological data of the Earth's core. We note that the increase in the VP and VS of Fe0.85Si0.15 and Fe3S is mainly contributed from the density decrease of adding Si and S in iron. Time spectra of the nuclear forward scattering reveal that the most iron rich sulfide, Fe3S, undergoes a magnetic to non-magnetic transition at approximately 18 GPa from a low-pressure magnetically
The electronic and magnetic properties of quaternary Heusler alloy CoFeMnGe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seema, K.
2016-05-23
We present study of quaternary Heusler alloy CoFeMnGe using density functional theory. The compound is half-metallic with half-metallic gap of 0.13 eV. The total magnetic moment of this compound is 3.96 μ{sub B} which is in close agreement with Slater-Pauling rule. The effect of lattice compression and expansion shows the robustness of half-metallicity. A large value of half-metallic gap and 100% spin-polarization makes this material interesting for spin dependent applications.
Jo, Y. H.; Jung, S.; Choi, W. M.; Sohn, S. S.; Kim, H. S.; Lee, B. J.; Kim, N. J.; Lee, S.
2017-01-01
The excellent cryogenic tensile properties of the CrMnFeCoNi alloy are generally caused by deformation twinning, which is difficult to achieve at room temperature because of insufficient stress for twinning. Here, we induced twinning at room temperature to improve the cryogenic tensile properties of the CrMnFeCoNi alloy. Considering grain size effects on the critical stress for twinning, twins were readily formed in the coarse microstructure by cold rolling without grain refinement by hot rolling. These twins were retained by partial recrystallization and played an important role in improving strength, allowing yield strengths approaching 1 GPa. The persistent elongation up to 46% as well as the tensile strength of 1.3 GPa are attributed to additional twinning in both recrystallized and non-recrystallization regions. Our results demonstrate that non-recrystallized grains, which are generally avoided in conventional alloys because of their deleterious effect on ductility, can be useful in achieving high-strength high-entropy alloys. PMID:28604656
Damping studies in Ni-Mn-Ga-Fe/PU polymer composites
NASA Astrophysics Data System (ADS)
Saranya, C.; Kumar, S. Vinodh; Seenithurai, S.; Pandyan, R. Kodi; Munieswaran, P.; Mahendran, M.
2015-06-01
Ni-Mn-Ga-Fe/PU polymer composite is prepared to investigate the damping behavior by using an indigenous experimental setup. The excellent damping properties of Ni-Mn-Ga-Fe alloys bonded with polymer matrix makes possible to develop new damping materials which are effective, less expensive and easier than bulk Ni-Mn-Ga. At low frequency, the stress amplitude increases and then smoothly decreases on increasing the frequency.
NASA Astrophysics Data System (ADS)
Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin
2013-12-01
Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Y. C., E-mail: gaoyc1963@126.com; Gao, X.
2015-05-15
Based on the first-principles calculations, quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In) including its phase stability, band gap, the electronic structures and magnetic properties has been studied systematically. We have found that, in terms of the equilibrium lattice constants, FeMnScZ (Z=Al, Ga, In) are half-metallic ferrimagnets, which can sustain the high spin polarization under a very large amount of lattice distortions. The half-metallic band gap in FeMnScZ (Z=Al, Ga, In) alloys originates from the t{sub 1u}-t{sub 2g} splitting instead of the e{sub u}-t{sub 1u} splitting. The total magnetic moments are 3μB per unit cell for FeMnScZ (Z=Al, Ga, In) alloysmore » following the Slater–Pauling rule with the total number of valence electrons minus 18 rather than 24. According to the study, the conclusion can be drawn that all of these compounds which have a negative formation energy are possible to be synthesized experimentally.« less
Phase relations in the Fe-FeSi system at high pressures and temperatures
NASA Astrophysics Data System (ADS)
Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.; Miller, Noah A.; Heinz, Dion L.; Dera, Przymyslaw; Prakapenka, Vitali B.
2013-07-01
The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe-FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe-9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure-temperature, temperature-composition, and pressure-composition space. We find the B2 crystal structure in Fe-9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe-Si outer core is 4380 K, based on the eutectic melting point of Fe-9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe-FeSi system. We predict that alloys containing more than ~4-8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron-silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.
A Study of Phase Composition and Structure of Alloys of the Al - Mg - Si - Fe System
NASA Astrophysics Data System (ADS)
Mailybaeva, A. D.; Zolotorevskii, V. S.; Smagulov, D. U.; Islamkulov, K. M.
2017-03-01
The Thermo-Calc software is used to compute the phase transformations occurring during cooling of alloys. Polythermal and isothermal sections of the phase diagram of the Al - Mg - Si - Fe system are plotted. The phase composition and the structure of aluminum alloys in cast condition and after a heat treatment are studied experimentally.
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Chun; Liu, Yi-Chia; Wang, Jia-Siang; Wu, Weite
2014-07-01
The aim of this study is to discuss the effect of microstructural development with different Ti contents in Fe-based hardfacing alloys. A series of Fe-Cr-C-Si-Mn-xTi alloy fillers was deposited on SS400 low carbon steel substrate using oscillating gas tungsten arc welding. The microstructure in the Fe-based hardfacing alloy without Ti content addition included: the primary γ, eutectic γ+(Fe,Cr)3C, eutectic γ+(Fe,Cr)2C and martensite. With increasing Ti contents, the microstructures showed the primary TiC carbide, γ phase and eutectic γ+(Fe,Cr,Ti)3C. The amount and size of TiC carbide in the hardfacing layers increased as the Ti content increased. However, the eutectic γ+(Fe,Cr,Ti)3C content decreased as the Ti content increased. According to the results of the hardness test, the lowest hardness value (HRC 54.93) was found with 0% wt% Ti and the highest hardness (HRC 60.29) was observed with 4.87 wt% Ti.
Pouponneau, Pierre; Savadogo, Oumarou; Napporn, Teko; Yahia, L'Hocine; Martel, Sylvain
2011-02-01
Once placed in a magnetic field, smart magnetic materials (SMM) change their shape, which could be use for the development of smaller minimally invasive surgery devices activated by magnetic field. However, the potential degradation and release of cytotoxic ions by SMM corrosion has to be determined. This paper evaluates the corrosion resistance of two SMM: a single crystal Ni-Mn-Ga alloy and Tb(0.27)Dy(0.73)Fe(1.95) alloy. Ni-Mn-Ga alloy displayed a corrosion potential (E (corr)) of -0.58 V/SCE and a corrosion current density (i (corr)) of 0.43 μA/cm(2). During the corrosion assay, Ni-Mn-Ga sample surface was partially protected; local pits were formed on 20% of the surface and nickel ions were mainly found in the electrolyte. Tb(0.27)Dy(0.73)Fe(1.95) alloy exhibited poor corrosion properties such as E (corr) of -0.87 V/SCE and i (corr) of 5.90 μA/cm(2). During the corrosion test, this alloy was continuously degraded, its surface was impaired by pits and cracks extensively and a high amount of iron ions was measured in the electrolyte. These alloys exhibited low corrosion parameters and a selective degradation in the electrolyte. They could only be used for medical applications if they are coated with high strain biocompatible materials or embedded in composites to prevent direct contact with physiological fluids.
High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi
Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; ...
2017-05-25
High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.
Exploring the origins of the Dzyaloshinskii-Moriya interaction in MnSi
Dhital, C.; DeBeer-Schmitt, L.; Zhang, Q.; ...
2017-12-19
By using magnetization and small-angle neutron scattering (SANS) measurements, we have investigated the magnetic behavior of the Mn 1-xIr xSi system to explore the effect of increased carrier density and spin-orbit interaction on the magnetic properties of MnSi. We determine estimates of the spin wave stiffness and the Dzyalloshinski-Moriya (DM) interaction strength and compare with Mn 1-xCo xSi and Mn 1-xFe xSi. Despite the large differences in atomic mass and size of the substituted elements, Mn 1-xCo xSi and Mn 1-xIr xSi show nearly identical variations in their magnetic properties with substitution. We find a systematic dependence of the transitionmore » temperature, the ordered moment, the helix period, and the DM interaction strength with electron count for Mn 1-xIr xSi, Mn 1-xCo xSi, and Mn 1-xFe xSi, indicating that the magnetic behavior is primarily dependent upon the additional carrier density, rather than on the mass or size of the substituting species. This indicates that the variation in magnetic properties, including the DM interaction strength, is primarily controlled by the electronic structure, as Co and Ir are isovalent. Our work suggests that although the rigid band model of electronic structure, along with Moriya’s model of weak itinerant magnetism, describes this system surprisingly well, phenomenological models for the DM interaction strength are not adequate to describe this system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Notonegoro, Hamdan Akbar; Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435; Kurniawan, Budhy
The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD)more » reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.« less
Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C
NASA Astrophysics Data System (ADS)
Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.
2017-03-01
This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.
NASA Astrophysics Data System (ADS)
Ramos, J.; Piamba, J. F.; Sánchez, H.; Alcazar, G. A. Pérez
2015-06-01
In present study Fe-29.0Mn-6Al-0.9C-1.8Mo-1.6Si-0.4Cu (%w) alloy was obtained after melted in an induction furnace, and then molded as an ingot. From the as cast ingot it were cut samples for the different characterization measurements. The microstructure of the as-cast sample is of dendritic type and its XRD pattern was refined with the lines of the austenite, with a big volumetric fraction, and the lines of the martensite, with small volumetric fraction. The Mössbauer spectrum of the sample was fitted with a broad singlet which corresponds to disordered austenite. After the tribology test, its XRD pattern was refined with the lines of two austenite phases, one similar to the previous one and other with bigger lattice parameter. The total volumetric fraction of the austenite is smaller than that obtained for sample without wear. It was added the lines of the martensite phase with bigger volumetric fraction than that of the previous sample. The Mössbauer spectrum of the weared sample was fitted with two paramagnetic sites which correspond to the two Fe austenite phases and a hyperfine magnetic field distribution which is associated to the disordered original martensite and the new one which appears in the surface as a consequence of the wear process. These results show that during wear process the original austenite phase is transformed in martensite and in a new austenite phase. The increases of the martensitic phase improves mechanical properties and wear behavior.
Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization
NASA Astrophysics Data System (ADS)
Li, Yanhui; Wang, Zhenmin; Zhang, Wei
2018-05-01
The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.
High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bainsla, Lakhan; Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047; Suresh, K. G., E-mail: suresh@phy.iitb.ac.in
2014-11-28
We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for themore » half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.« less
High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Butler, T. M.; Alfano, J. P.; Martens, R. L.; Weaver, M. L.
2015-01-01
High-entropy alloys (HEAs) are a class of alloys that are being considered for a number of applications. In the present study, the microstructures and 1050°C oxidation behaviors of two HEAs, Al10Cr22.5Co22.5Ni22.5Fe22.5 (at.%) and Al20Cr25Co25Ni25Si5 have been investigated along with Al15Cr10Co35Ni35Si5, which is a high-temperature shape-memory alloy. Oxide formation occurred via selective oxidation in a manner that was consistent with the oxide formation model devised by Giggins and Pettit for model Ni-Cr-Al alloys. The lower Al content alloy formed an external Cr2O3 scale and an internal subscale consisting of Al2O3 and AlN precipitates. The higher Al content alloys exhibited smaller mass gains and formed external Al2O3 scales without any internal oxidation of the alloys.
Synthesis Gas Conversion over Rh-Based Catalysts Promoted by Fe and Mn
Liu, Yifei; Göeltl, Florian; Ro, Insoo; ...
2017-06-13
Rh/SiO2 catalysts promoted with Fe and Mn are selective for synthesis gas conversion to oxygenates and light hydrocarbons at 523 K and 580 psi. Selective anchoring of Fe and Mn species on Rh nanoparticles was achieved by controlled surface reactions and was evidenced by ultraviolet–visible absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The interaction between Rh and Fe promotes the selective production of ethanol through hydrogenation of acetaldehyde and enhances the selectivity toward C2 oxygenates, which include ethanol and acetaldehyde. The interaction between Rh and Mn increases the overall reaction rate and the selectivitymore » toward C2+ hydrocarbons. The combination of Fe and Mn on Rh/SiO2 results in trimetallic Rh-Fe-Mn catalysts that surpass the performance of their bimetallic counterparts. The highest selectivities toward ethanol (36.9%) and C2 oxygenates (39.6%) were achieved over the Rh-Fe-Mn ternary system with a molar ratio of 1:0.15:0.10, as opposed to the selectivities obtained over Rh/SiO2, which were 3.5% and 20.4%, respectively. The production of value-added oxygenates and C2+ hydrocarbons over this trimetallic catalyst accounted for 55% of the total products. X-ray photoelectron spectroscopy measurements suggest that significant fractions of the Fe and Mn species exist as metallic iron and manganese oxides on the Rh surface upon reduction. These findings are rationalized by density functional theory (DFT) calculations, which reveal that the exact state of metals on the surfaces is condition-dependent, with Mn present as Mn(I) and Mn(II) oxide on the Rh (211) step edges and Fe present as Fe(I) oxide on the step edge and metallic subsurface iron on both Rh steps and terraces. CO Fourier transform infrared spectroscopy and DFT calculations suggest that the binding of CO to Rh (211) step edges modified by Fe and/or manganese oxide is altered in comparison to
Size dependence of vortex-type spin torque oscillation in a Co2Fe0.4Mn0.6Si Heusler alloy disk
NASA Astrophysics Data System (ADS)
Seki, T.; Kubota, T.; Yamamoto, T.; Takanashi, K.
2018-02-01
This paper reports the systematic investigation of vortex-type spin torque oscillation in circular disks of highly spin-polarized Co2Fe0.4Mn0.6Si (CFMS) Heusler alloys. We fabricated the current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with various disk diameters (D) using the layer stack of CFMS/Ag3Mg/CFMS. The gyrotropic motion of the vortex core was successfully excited for the CFMS circular disks with 0.2 µm ⩽ D ⩽ 0.3 µm. The CPP-GMR device with D = 0.2 µm exhibited the Q factor of more than 5000 and the large output power of 0.4 nW owing to the high coherency of vortex dynamics and the high spin-polarization of CFMS. However, the Q factor was remarkably decreased as D was reduced from 0.2 µm to 0.14 µm. The comparison with the calculated resonance frequencies suggested that this degradation of the Q factor was due to the transition of the oscillation mode from the vortex mode to other modes such as the low-coherent out-of-plane precession mode. The present experimental results also suggest that there exists an adequate disk size for the enhanced Q factor of the vortex-type spin torque oscillation.
Koufopoulou, Sofia; Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Pappa, Athina
2014-06-01
Long term fire retardant (LTR) application for forest fire prevention purposes as well as wildland fires can result in chemical leaching from forest soils. Large quantities of sodium (Na), aluminium (Al), iron (Fe), manganese (Mn), copper (Cu) and silicon (Si) in leachates, mainly due to ammonium (one of the major LTR components) soil deposition, could affect the groundwater quality. The leaching of Na, Al, Fe, Mn, Cu and Si due to nitrogen based LTR application (Fire Trol 931) was studied at laboratory scale. The concentrations of Na(+), Al(3+), Fe(3+)/Fe(2+), Mn(2+), Cu(2+) and Si(4+) were measured in the resulting leachates from pots with forest soil and pine trees alone and in combination with fire. The leaching of Na, Fe and Si from treated pots was significantly greater than that from control pots. The leaching of Al, Mn and Cu was extremely low.
NASA Astrophysics Data System (ADS)
Li, Xiangyu; Liu, Yuxi; Deng, Jiguang; Xie, Shaohua; Zhao, Xingtian; Zhang, Yang; Zhang, Kunfeng; Arandiyan, Hamidreza; Guo, Guangsheng; Dai, Hongxing
2017-05-01
Three-dimensionally ordered macroporous (3DOM) CoFe2O4, zMnOx/3DOM CoFe2O4 (z = 4.99-12.30 wt%), and yPd-Pt/6.70 wt% MnOx/3DOM CoFe2O4 (y = 0.44-1.81 wt%; Pd/Pt molar ratio = 2.1-2.2) have been prepared using the polymethyl methacrylate microspheres-templating, incipient wetness impregnation, and bubble-assisted polyvinyl alcohol-protected reduction strategies, respectively. All of the samples were characterized by means of various techniques. Catalytic performance of the samples was measured for methane combustion. It is shown that the as-prepared samples exhibited a high-quality 3DOM structure (103 ± 20 nm in pore size) and a surface area of 19-28 m2/g, and the noble metal or alloy nanoparticles (NPs) with a size of 2.2-3.0 nm were uniformly dispersed on the macropore wall surface of 3DOM CoFe2O4. The loading of MnOx on CoFe2O4 gave rise to a slight increase in activity, however, the dispersion of Pd-Pt NPs on 6.70MnOx/3DOM CoFe2O4 significantly enhanced the catalytic performance, with the 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 sample showing the highest activity (T10% = 255 °C, T50% = 301 °C, and T90% = 372 °C at a space velocity of 20,000 mL/(g h)). We believe that the excellent catalytic activity of 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 was related to its well-dispersed Pd-Pt alloy NPs, high adsorbed oxygen species concentration, good low-temperature reducibility, and strong interaction between MnOx or Pd-Pt NPs and 3DOM CoFe2O4.
NASA Astrophysics Data System (ADS)
Tejnecký, V.; Samonil, P.; Boruvka, L.; Nikodem, A.; Drabek, O.; Valtera, M.
2013-12-01
Tree uprooting dynamics plays an important role in the development of forest ecosystems. This process causes bioturbation of soils and creates new microenvironments which consist of pits and mounds. These microtopographical forms could persist for some thousands of years. Pits and mounds undergo different pedogenesis in comparison to adjacent undisturbed soils. The stage of pedogenesis can be assessed according to the results of fractionation of Fe and also partially Mn, Al and Si. The main aim of this contribution is to assess the fractionation of Fe, Mn, Al and Si for three different soil regions. Soil samples were collected at three localities occurred along hypothetical gradient of soil weathering and leaching processes: The first was a (spruce)-fir-beech natural forest in the Razula region. The second location is the same type of natural forest in Zofin; however it has contrasting lithology. Both these natural forests are located in the Czech Republic (CZ). The third forest was a northern hardwood forest in Upper Peninsula, Michigan, USA. The prevailing soil types - Haplic Cambisols have formed on flysch parent materials in the Razula reserve; Entic Podzols have developed on granite residuum at the Zofin reserve, and Albic Podzols occurred in outwash parent materials at the Michigan sites (Šamonil et al., in press). In total 790 soil samples were analysed. These samples were collected from 5 depths (0-10, 15, 30, 50 and 100 cm) within the pit, mound and control, currently undisturbed position. For each sample, content of Fe (and Mn, Al, Si) forms: exchangeable, crystalline, and amorphous together with organically complexed Fe were determined. We generally observed an increased content of Fe soil forms in the pits of studied treethrows. The content of Fe forms increased along depth gradient at the disturbed sites. However, exchangeable Fe was most abundant in the 0-10cm layer which corresponds to the A horizon. Naturally, if present, the E horizon exhibited
Spin wave propagation detected over 100 μm in half-metallic Heusler alloy Co2MnSi
NASA Astrophysics Data System (ADS)
Stückler, Tobias; Liu, Chuanpu; Yu, Haiming; Heimbach, Florian; Chen, Jilei; Hu, Junfeng; Tu, Sa; Alam, Md. Shah; Zhang, Jianyu; Zhang, Youguang; Farrell, Ian L.; Emeny, Chrissy; Granville, Simon; Liao, Zhi-Min; Yu, Dapeng; Zhao, Weisheng
2018-03-01
The field of magnon spintronics offers a charge current free way of information transportation by using spin waves (SWs). Compared to forward volume spin waves for example, Damon-Eshbach (DE) SWs need a relatively weak external magnetic field which is suitable for small spintronic devices. In this work we study DE SWs in Co2MnSi, a half-metallic Heusler alloy with significant potential for magnonics. Thin films have been produced by pulsed laser deposition. Integrated coplanar waveguide (CPW) antennas with different distances between emitter and detection antenna have been prepared on a Co2MnSi film. We used a vector network analyzer to measure spin wave reflection and transmission. We observe spin wave propagation up to 100 μm, a new record for half-metallic Heusler thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuadrado, R.; Catalan Institute of Nanoscience and Nanotechnology; Liu, Kai
2016-03-21
The random substitution of a non-magnetic species instead of Fe atoms in FePt-L1{sub 0} bulk alloy will permit to tune the magnetic anisotropy energy of this material. We have performed by means of first principles calculations a study of Fe{sub 1−y}Mn{sub y}Pt-L1{sub 0} (y = 0.0, 0.08, 0.12, 0.17, 0.22, and 0.25) bulk alloy for a fixed Pt concentration when the Mn species have ferro-/antiferromagnetic (FM,AFM) alignment at the same(different) atomic plane(s). This substitution will promote several in-plane lattice values for a fixed amount of Mn. Charge hybridization will change compared to the FePt-L1{sub 0} bulk due to this lattice variation leadingmore » to a site resolved magnetic moment modification. We demonstrate that this translates into a total magnetic anisotropy reduction for the AFM phase and an enhancement for the FM alignment. Several geometric configurations were taken into account for a fixed Mn concentration because of different possible Mn positions in the simulation cell.« less
Physical Properties of NiFeCrCo-based High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Zaddach, Alexander Joseph
Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated
Carrasco-Gil, Sandra; Rodríguez-Menéndez, Sara; Fernández, Beatriz; Pereiro, Rosario; de la Fuente, Vicenta; Hernandez-Apaolaza, Lourdes
2018-04-01
A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
The maximal cooling power of magnetic and thermoelectric refrigerators with La(FeCoSi)13 alloys
NASA Astrophysics Data System (ADS)
Skokov, K. P.; Karpenkov, A. Yu.; Karpenkov, D. Yu.; Gutfleisch, O.
2013-05-01
Using our data on magnetic entropy change ΔSm, adiabatic temperature change ΔTad and heat capacity CH for La(FeCoSi)13 alloys, the upper limit of heat Qc transferred per cycle, and the lowest limit of consumed work Wc were established for magnetic refrigerators operating in Δμ0H =1.9 T. In order to estimate the cooling power, attributable to thermoelectric refrigerators with La(FeCoSi)13, thermal conductivity λ, resistivity ρ, and Seebeck coefficient α were measured and the maximal cooling power QL, the input power Pi, and coefficient of performance have been calculated.
Superplasticity in a lean Fe-Mn-Al steel.
Han, Jeongho; Kang, Seok-Hyeon; Lee, Seung-Joon; Kawasaki, Megumi; Lee, Han-Joo; Ponge, Dirk; Raabe, Dierk; Lee, Young-Kook
2017-09-29
Superplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys.Research in new alloy compositions and treatments may allow the increased strength of mass-produced, intricately shaped parts. Here authors introduce a superplastic medium manganese steel which has an inexpensive lean chemical composition and which is suited for conventional manufacturing processes.
NASA Astrophysics Data System (ADS)
Bączek, Elżbieta; Konstanty, Janusz; Romański, Andrzej; Podsiadło, Marcin; Cyboroń, Jolanta
2018-03-01
In this work, Fe-Mn-Cu-Sn-C alloys were prepared by means of powder metallurgy (PM). Powder mixtures were ball-milled for 8, 30 and 120 h and densified to < 1% porosity using spark plasma sintering (SPS) at 900 °C and 35 MPa. After consolidation, all samples of the Fe alloys were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), hardness and flexural strength tests. Resistance to abrasive wear was evaluated in both three-body abrasion and two-body abrasion tests. The SEM observations revealed an evident dependence of grain size and microstructural homogeneity on milling time. The XRD analysis showed a marked increase in austenite content in the as-sintered specimens with milling time. Although the proportion of deformation-induced martensite was small, the strengthening effect of abrasion on the subsurface layer of the investigated alloys was clearly indicated by Knoop hardness measurements.
NASA Astrophysics Data System (ADS)
Asvini, V.; Saravanan, G.; Kalaiezhily, R. K.; Raja, M. Manivel; Ravichandran, K.
2018-04-01
Fe2CoSi based Heusler alloy thin films were deposited on Si (111) wafer (substrate) of varying thickness using ultra high vacuum DC magnetron sputtering. The structural behavior was observed and found to be hold the L21 structure. The deposited thin films were characterized magnetic properties using vibrating sample magnetometer; the result shows a very high saturated magnetization (Ms), lowest coercivity (Hc), high curie transition temperature (Tc) and low hysteresis loss. Thin film thickness of 75 nm Fe2CoSi sample maintained at substrate temperature 450°C shows the lowest coercivity (Hc=7 Oe). In general, Fe2CoSi Heusler alloys curie transition temperature is very high, due to strong exchange interaction between the Fe and Co atoms. The substrate temperature was kept constant at 450°C for varying thickness (e.g. 5, 20, 50, 75 and 100 nm) of thin film sample. The 75 nm thickness thin film sample shows well crystallanity and good magnetic properties, further squareness ratio in B-H loop increases with the increase in film thickness.
NASA Astrophysics Data System (ADS)
Lu, Jintao; Yang, Zhen; Zhao, Xinbao; Yan, Jingbo; Gu, Y.
A new kind of Ni-Fe-based superalloy is designed recently for 750 °C-class A-USC boiler tube. The oxidation behavior of the designed alloys with various combinations of anti-oxidation additions, Cr, Al and Si, was investigated at 750 °C and 850 °C, respectively. The results indicated that the oxidation rate of tested alloys decreased with the increase of the sum of additions. Cr addition may drop the relative constant of parabolic rate greatly when temperature is raised. But the oxide scale, mainly consisted of NiCr spinel at 750 °C and NiCrMn spinel at 850 °C, was similar while the Cr content is in a range of 20-25 wt.% at tested temperatures. Al addition, however, showed the best effective to reduce the oxidation rates. Internal Al-rich oxide was observed at the scale/metal interface for alloys added with high content of Al and was increased with Al content increase. Very tiny difference between the oxide scales of the Si-added alloys was identified when Si content varies among 0.02-0.05 wt.%. Basing on these results, this presentation discussed the optimum combination of anti-oxidation additions as well as oxidation mechanisms in the designed Ni-Fe-base superalloy.
NASA Astrophysics Data System (ADS)
Ohmori, H.; Shoji, M.; Kobayashi, T.; Yamamoto, T.; Sugiyama, Y.; Hayashi, K.; Hono, K.
1996-04-01
The Hf-added FeRuGaSi alloy film has an amorphous structure in the as-deposited state and becomes nanocrystalline after annealing. Due to this structure change from crystalline to amorphous by the addition of Hf, soft magnetic degradation of the film deposited on the slant grooved substrate, which is necessary for the sophisticated embedded thin film (ETF) head structure, is greatly suppressed and the undesirable film stress is relieved. The FeRuGaSi-Hf alloy film has higher resistivity and permeability at high frequencies than those of sendust film, and the read/write characteristics of this alloy film show better performance than sendust film.
The rolling performance of Fe-6.5 wt.% Si sheets edged with stainless steel
NASA Astrophysics Data System (ADS)
Zhang, B.; Ye, F.; Liang, Y. F.; Shi, X. J.; Lin, J. P.
2017-10-01
Compared with common electrical steel, high silicon electrical steel (Fe-6.5 wt.% Si alloy) exhibits excellent soft magnetic properties and a wide application prospect in high frequency electromagnetic fields. In the process of cold rolling Fe-6.5 wt.% Si alloy, edge-crack often occurs on the sheets due to the inadequate ductility and limited formability. It was found that the Fe-6.5 wt.% Si alloy sheet edged with 304 stainless steel by laser welding show an improved rolling performance. The composite sheet could be cold rolled to a thickness of 0.07 mm without observed edge cracks. The mechanical property of the edging material should be in an appropriate window in reference to that of the Fe-6.5 wt.% Si alloy.
NASA Astrophysics Data System (ADS)
Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.
2016-03-01
Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.
NASA Astrophysics Data System (ADS)
Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du
2016-02-01
We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).
NASA Astrophysics Data System (ADS)
Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao
2018-02-01
A series of Ni55-x Fe x Mn20Ga25 (0 ⩽ x ⩽ 5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x = 0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M → L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M → 5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5 × 105 J m-3) for the alloys with x > 3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x = 4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.
High temperature magnetism and microstructure of ferromagnetic alloy Si1-x Mn x
NASA Astrophysics Data System (ADS)
Aronzon, B. A.; Davydov, A. B.; Vasiliev, A. L.; Perov, N. S.; Novodvorsky, O. A.; Parshina, L. S.; Presniakov, M. Yu; Lahderanta, E.
2017-02-01
The results of a detailed study of magnetic properties and of the microstructure of SiMn films with a small deviation from stoichiometry are presented. The aim was to reveal the origin of the high temperature ferromagnetic ordering in such compounds. Unlike SiMn single crystals with the Curie temperature ~30 K, considered Si1-x Mn x compounds with x = 0.5 +Δx and Δx in the range of 0.01-0.02 demonstrate a ferromagnetic state above room temperature. Such a ferromagnetic state can be explained by the existence of highly defective B20 SiMn nanocrystallites. These defects are Si vacancies, which are suggested to possess magnetic moments. The nanocrystallites interact with each other through paramagnons (magnetic fluctuations) inside a weakly magnetic manganese silicide matrix giving rise to a long range ferromagnetic percolation cluster. The studied structures with a higher value of Δx ≈ 0.05 contained three different magnetic phases: (a)—the low temperature ferromagnetic phase related to SiMn; (b)—the above mentioned high temperature phase with Curie temperature in the range of 200-300 K depending on the growth history and (c)—superparamagnetic phase formed by separated noninteracting SiMn nanocrystallites.
Ke, Liqin; Harmon, Bruce N.; Kramer, Matthew J.
2017-03-20
In this study, the electronic structure and intrinsic magnetic properties of Fe 2AlB 2-related compounds and their alloys have been investigated using density functional theory. For Fe 2AlB 2, the crystallographic a axis is the easiest axis, which agrees with experiments. The magnetic ground state of Mn 2AlB 2 is found to be ferromagnetic in the basal ab plane, but antiferromagnetic along the c axis. All 3d dopings considered decrease the magnetization and Curie temperature in Fe 2AlB 2. Electron doping with Co or Ni has a stronger effect on the decreasing of Curie temperature in Fe 2AlB 2 thanmore » hole doping with Mn or Cr. However, a larger amount of Mn doping on Fe 2AlB 2 promotes the ferromagnetic to antiferromagnetic transition. A very anisotropic magnetoelastic effect is found in Fe 2AlB 2: the magnetization has a much stronger dependence on the lattice parameter c than on a or b, which is explained by electronic-structure features near the Fermi level. Dopings of other elements on B and Al sites are also discussed.« less
Fe-Ca-phosphate, Fe-silicate, and Mn-oxide minerals in concretions from the Monterey Formation
Medrano, M.D.; Piper, D.Z.
1997-01-01
Concentrically zoned phosphatic-enriched concretions were collected at three sites from the Monterey Formation. The following minerals were identified: vivianite, lipscombite, rockbridgeite, leucophosphite, mitridatite, carbonate fluorapatite, nontronite, todorokite, and barite. The mineralogy of the concretions was slightly different at each of the three collection sites. None of the concretions contains all of the minerals, but the spatial distribution of minerals in individual concretions, overlapping mineralogies between different concretions, and the geochemical properties of the separate minerals suggest a paragenesis represented by the above order. Eh increased from the precipitation of vivianite to that of rockbridgeite/lipscombite. The precipitation of leucophosphite, then mitridatite, carbonate fluorapatite and todorokite/Fe-oxide indicates increasing pH. Concretion growth culminated with the precipitation of todorokite, a Mn oxide, and minor amounts of barite along microfractures. Conspicuously absent are Fe-sulfide and Mn-phosphate minerals. The concretions are hosted by finely laminated diatomite. The laminations exhibit little to no deformation around the concretions, requiring that the concretions formed after compaction. We interpret this sediment feature and the paragenesis as recording the evolving pore-water chemistry as the formation was uplifted into the fresh-ground-water zone.
Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy
Nygren, K. E.; Bertsch, K. M.; Wang, S.; ...
2018-02-01
The influence of internal hydrogen on the tensile properties of an equi-molar FeNiCoCrMn alloy results in a significant reduction of ductility, which is accompanied by a change in the fracture mode from ductile microvoid coalescence to intergranular failure. The introduction of 146.9 mass ppm of hydrogen reduced the plastic strain to failure from 0.67 in the uncharged case to 0.34 and 0.51 in hydrogen-charged specimens. This reduction in ductility and the transition in failure mode are clear indications that this alloy exhibits the classic signs of being susceptible to hydrogen embrittlement. The results are discussed in terms of the hydrogen-enhancedmore » plasticity mechanism and its influence on hydrogen-induced intergranular failure. Furthermore, a new additional constraint that further promotes intergranular failure is introduced for the first time.« less
Metal insulator transition in nickel substituted FeSi
NASA Astrophysics Data System (ADS)
Krishnan, M.; Mishra, Ashish; Singh, Durgesh; Venkatesh, R.; Gangrade, Mohan; Ganesan, V.
2018-04-01
Resistivity of Fe1-xNixSi has been reported. Metal Insulator transition (MIT) is observed in Nickel (Ni) substituted FeSi for x in the range from 2 to 4 percentage. Two Band Model has been employed in order to calculate activation energy and to predict how band structure renormalized with substitution of nickel in FeSi. At sufficient level of nickel concentration an impurity band forms around Fermi level and contributes to the conduction heavily at low temperatures. Concentration around x = 0.04, displays metallic property below ˜ 70 K and is quantitatively similar to systems like Fe1-xTxSi (T = Co, Mn). Metallic component thus derived from Ni substituted FeSi seems to have an unconventional temperature dependence that may be attributed to the onset of departures from Fermi liquid picture.
Synthesis of SiO2-coated ZnMnFe2O4 nanospheres with improved magnetic properties.
Wang, Jun; Zhang, Kai; Zhu, Yuejin
2005-05-01
A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.
Eutectic equilibria in the quaternary system Fe-Cr-Mn-C
NASA Technical Reports Server (NTRS)
Nowotny, H.; Wayne, S.; Schuster, J. C.
1982-01-01
The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.
Dynamic Analysis of Recalescence Process and Interface Growth of Eutectic Fe82B17Si1 Alloy
NASA Astrophysics Data System (ADS)
Fan, Y.; Liu, A. M.; Chen, Z.; Li, P. Z.; Zhang, C. H.
2018-03-01
By employing the glass fluxing technique in combination with cyclical superheating, the microstructural evolution of the undercooled Fe82B17Si1 alloy in the obtained undercooling range was studied. With increase in undercooling, a transition of cooling curves was detected from one recalescence to two recalescences, followed by one recalescence. The two types of cooling curves were fitted by the break equation and the Johnson-Mehl-Avrami-Kolmogorov model. Based on the cooling curves at different undercoolings, the recalescence rate was calculated by the multi-logistic growth model and the Boettinger-Coriel-Trivedi model. Both the recalescence features and the interface growth kinetics of the eutectic Fe82B17Si1 alloy were explored. The fitting results that were obtained using TEM (SAED), SEM and XRD were consistent with the changing rule of microstructures. Finally, the relationship between the microstructure and hardness was also investigated.
Letter Report Documenting Progress of Second Generation ATF FeCrAl Alloy Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Y.; Yang, Y.; Field, K. G.
2014-06-10
Development of the 2nd generation ATF FeCrAl alloy has been initiated, and a candidate alloy was selected for trial tube fabrication through hot-extrusion and gun-drilling processes. Four alloys based on Fe-13Cr-4.5Al-0.15Y in weight percent were newly cast with minor alloying additions of Mo, Si, Nb, and C to promote solid-solution and second-phase precipitate strengthening. The alloy compositions were selected with guidance from computational thermodynamic tools. The lab-scale heats of ~ 600g were arc-melted and drop-cast, homogenized, hot-forged and -rolled, and then annealed producing plate shape samples. An alloy with Mo and Nb additions (C35MN) processed at 800°C exhibits very finemore » sub-grain structure with the sub-grain size of 1-3μm which exhibited more than 25% better yield and tensile strengths together with decent ductility compared to the other FeCrAl alloys at room temperature. It was found that the Nb addition was key to improving thermal stability of the fine sub-grain structure. Optimally, grains of less than 30 microns are desired, with grains up to and order of magnitude in desired produced through Nb addition. Scale-up effort of the C35MN alloy was made in collaboration with a commercial cast company who has a capability of vacuum induction melting. A 39lb columnar ingot with ~81mm diameter and ~305mm height (with hot-top) was commercially cast, homogenized, hot-extruded, and annealed providing 10mm-diameter bar-shape samples with the fine sub-grain structure. This commercial heat proved consistent with materials produced at ORNL at the lab-scale. Tubes and end caps were machined from the bar sample and provided to another work package for the ATF-1 irradiation campaign in the milestone M3FT-14OR0202251.« less
Ultra-soft magnetic Co-Fe-B-Si-Nb amorphous alloys for high frequency power applications
NASA Astrophysics Data System (ADS)
Ackland, Karl; Masood, Ansar; Kulkarni, Santosh; Stamenov, Plamen
2018-05-01
With the continuous shrinkage of the footprint of inductors and transformers in modern power supplies, higher flux, while still low-loss metallic replacements of traditional ferrite materials are becoming an intriguing alternative. One candidate replacement strategy is based on amorphous CoFeBSi soft-magnetic alloys, in their metallic glass form. Here the structural and magnetic properties of two different families of CoFeBSi-based soft magnetic alloys, prepared by arc-melting and subsequent melt spinning (rapid quenching) are presented, targeting potential applications at effective frequencies of 100 kHz and beyond. The nominal alloy compositions are Co67Fe4B11Si16Mo2 representing commercial Vitrovac and Co72-xFexB28-y (where B includes non-magnetic elements such as Boron, Silicon etc. x varies between 4 and 5 % and y is varied from 0 to 2 %) denoted Alloy #1 and prepared as a possible higher performance alternative, i.e. lower power loss and lower coercivity, to commercial Vitrovac. Room temperature magnetization measurements of the arc-melted alloys reveal that compared to Vitrovac, Alloy #1 already presents a ten-fold decrease in coercivity, with Hc ˜ 1.4 Am-1 and highest figure of merit of (Ms/Hc > 96). Upon melt-spinning the alloys into thin (< 30 μm) ribbons, the alloys are essentially amorphous when analyzed by XRD. Magnetization measurements of the melt-spun ribbons demonstrate that Alloy #1 possesses a coercivity of just 2 Am-1, which represents a significant improvement compared to melt-spun ribbons of Vitrovac (17 Am-1). A set of prototype transformers of approximately 10 turns of Alloy #1 ribbon exhibits systematically Hc < 10 Am-1 at 100 kHz, without a noticeable decrease in coupled flux and saturation.
He, Mo-Rigen; Wang, Shuai; Shi, Shi; ...
2016-12-31
Single-phase concentrated solid solution alloys have attracted wide interest due to their superior mechanical properties and enhanced radiation tolerance, which make them promising candidates for the structural applications in next-generation nuclear reactors. However, little has been understood about the intrinsic stability of their as-synthesized, high-entropy configurations against radiation damage. In this paper, we report the element segregation in CrFeCoNi, CrFeCoNiMn, and CrFeCoNiPd equiatomic alloys when subjected to 1250 kV electron irradiations at 400 °C up to a damage level of 1 displacement per atom. Cr/Fe/Mn/Pd can deplete and Co/Ni can accumulate at radiation-induced dislocation loops, while the actively segregating elementsmore » are alloy-specific. Moreover, electron-irradiated matrix of CrFeCoNiMn and CrFeCoNiPd shows L1 0 (NiMn)-type ordering decomposition and <001>-oriented spinodal decomposition between Co/Ni and Pd, respectively. Finally, these findings are rationalized based on the atomic size difference and enthalpy of mixing between the alloying elements, and identify a new important requirement to the design of radiation-tolerant alloys through modification of the composition.« less
Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop
2017-09-01
Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.
Phase relations in the Fe-FeSi system at high pressures and temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.
2016-07-29
The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe–FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe–9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure–temperature, temperature–composition,more » and pressure–composition space. We find the B2 crystal structure in Fe–9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe–Si outer core is 4380 K, based on the eutectic melting point of Fe–9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe–FeSi system. We predict that alloys containing more than ~4–8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron–silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.« less
NASA Technical Reports Server (NTRS)
Levine, S. R.; Grisaffe, S. J.
1972-01-01
Edge and surface modification of niobium alloys prior to coating with Si-20Cr-20Fe and slurry composition modification were investigated to improve performance in a 1370 C, ambient pressure, slow-cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe coated Cb-752 and FS-85 to 57 and 41 cycles, respectively (50 and 20 percent improvements in weight parity life, respectively).
Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy
NASA Astrophysics Data System (ADS)
Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan
2013-07-01
Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aireddy, H.; Das, A. K., E-mail: amal@phy.iitkgp.ernet.in
2016-05-06
Fe{sub 2.5}Mn{sub 0.5}O{sub 4}/p-Si heterojunction was fabricated using a pulsed laser deposition technique and investigated it’s structural and electrical transport properties. The high-resolution transmission electron microscopy results reveal the formation of a polycrystalline film on silicon substrate. The heterojunction shows good rectifying property and giant negative junction magnetoresistance especially in reverse bias condition at room temperature. The origin of this giant negative junction magnetoresistance may be attributing to the injection of electrons to the majority spin-up band of the Fe{sub 2.5}Mn{sub 0.5}O{sub 4} film.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, A. K.
1998-03-01
The deleterious effects of Fe-bearing constituent particles on the fracture toughness of wrought A1 alloys have been known. Recent studies have shown that the presence of Fe-bearing, constituent particles is also determental to the nature and growth of the hard anodic oxide coating formed on such materials. The present study, using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA), was made to examine the influence of the nature of the Fe-bearing particles on the hard anodizing behavior of AA 7075 extrusion products containing varying amounts of Si, Mn, and Fe impurities. It was found that, in the alloy containing 0.25 wt pct Si, 0.27 wt pct Mn, and 0.25 wt pct Fe, the Fe-bearing constituent particles are based on the Al12(FeMn)3Si phase (bcc with α=1.260 nm). These particles survive the hard anodizing treatment, add resistance to the electrical path, causing a rapid rise in the bath voltage with time, and cause a nonuniform growth of the anodic oxide film. In the materials containing 0.05 wt pct Si, 0.04 wt pct Mn, and 0.18 wt pct Fe, on the other hand, the formation of the Al12(FeMn)3Si-based phase is suppressed, and two different Fe-bearing phases, based on Al-Fe-Cu-Mn-based (simple cubic with a=1.265 nm) and Al7Cu2Fe, respectively form. Neither the Al-Fe-Cu-Mn-based phase nor the Al7Cu2Fe-based phase survive the hard anodizing treatment, and this results in a steady rise in the bath voltage with time and a relatively uniform growth of the anodic oxide film. Consideration of the size of the Fe-bearing, particles reveals that the smaller the particle, the more uniform the growth of the anodic oxide film.
NASA Astrophysics Data System (ADS)
Jo, Min-Gu; Kim, Han-Jin; Kang, Minjung; Madakashira, Phaniraj P.; Park, Eun Soo; Suh, Jin-Yoo; Kim, Dong-Ik; Hong, Sung-Tae; Han, Heung Nam
2018-01-01
The high entropy alloy CrMnFeCoNi has been shown to have promising structural properties. For a new alloy to be used in a structural application it should be weldable. In the present study, friction stir welding (FSW) and laser welding (LW) techniques were used to butt weld thin plates of CrMnFeCoNi. The microstructure, chemical homogeneity and mechanical behavior of the welds were characterized and compared with the base metal. The tensile stress-strain behavior of the welded specimens were reasonable when compared with that of the base metal. FSW refined the grain size in the weld region by a factor of ˜14 when compared with the base metal. High-angle annular dark field transmission electron microscopy in combination with energy dispersive X-ray spectroscopy showed chemical inhomogeneity between dendritic and interdendritic regions in the fusion zone of LW. Large fluctuations in composition (up to 15 at%) did not change the crystal structure in the fusion zone. Hardness measurements were carried out in the weld cross section and discussed in view of the grain size, low angle grain boundaries and twin boundaries in FSW specimens and the dendritic microstructure in LW specimens.
NASA Astrophysics Data System (ADS)
Gomi, Hitoshi; Hirose, Kei; Akai, Hisazumi; Fei, Yingwei
2016-10-01
The thermal conductivity of the Earth's core can be estimated from its electrical resistivity via the Wiedemann-Franz law. However, previously reported resistivity values are rather scattered, mainly due to the lack of knowledge with regard to resistivity saturation (violations of the Bloch-Grüneisen law and the Matthiessen's rule). Here we conducted high-pressure experiments and first-principles calculations in order to clarify the relationship between the resistivity saturation and the impurity resistivity of substitutional silicon in hexagonal-close-packed (hcp) iron. We measured the electrical resistivity of Fe-Si alloys (iron with 1, 2, 4, 6.5, and 9 wt.% silicon) using four-terminal method in a diamond-anvil cell up to 90 GPa at 300 K. We also computed the electronic band structure of substitutionally disordered hcp Fe-Si and Fe-Ni alloy systems by means of Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The electrical resistivity was then calculated from the Kubo-Greenwood formula. These experimental and theoretical results show excellent agreement with each other, and the first principles results show the saturation behavior at high silicon concentration. We further calculated the resistivity of Fe-Ni-Si ternary alloys and found the violation of the Matthiessen's rule as a consequence of the resistivity saturation. Such resistivity saturation has important implications for core dynamics. The saturation effect places the upper limit of the resistivity, resulting in that the total resistivity value has almost no temperature dependence. As a consequence, the core thermal conductivity has a lower bound and exhibits a linear temperature dependence. We predict the electrical resistivity at the top of the Earth's core to be 1.12 ×10-6 Ωm, which corresponds to the thermal conductivity of 87.1 W/m/K. Such high thermal conductivity suggests high isentropic heat flow, leading to young inner core age (<0.85 Gyr old) and high initial
Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K
NASA Astrophysics Data System (ADS)
Manghnani, M. H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.
2008-04-01
We report NiK -edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90° with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth’s core.
Stability of half-metallic behavior with lattice variation for Fe2-xCoxMnAl Heusler alloy
NASA Astrophysics Data System (ADS)
Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh
2018-04-01
The electronic structure and magnetic properties with variation of lattice constant for Fe2-xCoxMnAl Heusler alloys have been studied. Total magnetic moments predicted by the Slater Pauling rule is maintained over a wide range of lattice variation for the series. Half metallic ferromagnetic nature with 100% spin polarization is observed for a lattice range from 5.40-5.70 Å, 5.35-5.55 Å, 5.30-5.60 Å and 5.25-5.55 Å respectively for x = 0.5, 1.0 1.5, 2.0. Due to the stability of half metallic character for a wide range of lattice parameters, these alloys are promising, robust materials suitable for spintronics device applications.
Magnetism in La₂O₃(Fe₁₋ xMn x)₂Se₂ tuned by Fe/Mn ratio
Lei, Hechang; Bozin, Emil S.; Llobet, A.; ...
2012-09-17
We report the evolution of structural and magnetic properties in La₂O₃(Fe₁₋ xMn x)₂Se₂. Heat capacity and bulk magnetization indicate an increased ferromagnetic component of the long-range magnetic order and possible increased degree of frustration. Atomic disorder on Fe(Mn) sites suppresses the temperature of the long-range order whereas intermediate alloys show a rich magnetic phase diagram.
Enhancement of magnetocaloric effect by external hydrostatic pressure in MnNi0.75Fe0.25Ge alloy
NASA Astrophysics Data System (ADS)
Mandal, K.; Dutta, P.; Dasgupta, P.; Pramanick, S.; Chatterjee, S.
2018-06-01
A systematic investigation on the structural and magnetic properties of an Fe-doped MnNiGe alloy with nominal composition MnNi0.75Fe0.25Ge has been performed. Temperature dependent x-ray diffraction studies indicate a clear structural phase transition (martensitic type) from the high temperature hexagonal austenite phase (space group P63/mmc) to the low temperature orthorhombic martensite phase (space group Pnma). Interestingly, about 1.4% of the high temperature hexagonal phase has been observed at 15 K, which is well below the martensitic phase transition (MPT) temperature. The studied alloy is found to be ferromagnetic in nature at the lowest temperature of measurement and the saturation moment increases in the presence of external hydrostatic pressure (P). In addition, it shows a significantly large conventional (negative) magnetocaloric effect with an adiabatic entropy change () of about ‑16.2 J kg‑1 K‑1 around the MPT for a magnetic field changing from 0 → 5 T. The most interesting observation is the ∼40.1% increase in the peak value of on application of 6 kbar of external P. A considerable increment in the refrigeration capacity has also been noted with the applied P.
Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.
Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C
2014-05-09
We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.
Microstructure, hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys
NASA Astrophysics Data System (ADS)
Gungunes, H.
2016-12-01
Morphological and magnetic properties in Fe-25%Ni-5%Si-x%Co (x = 0, 10, 15) alloys are investigated. Scanning electron microscopy (SEM), Mössbauer spectroscopy and AC magnetic susceptibility measurements are used to determine the physical properties of alloys. The martensite morphology changed depending on the Co content. The Mössbauer study shows that the volume fraction and hyperfine field of martensite increases while isomer shift values decrease with increasing Co content. On the other hand; AC susceptibility results showed that; Co is an effective element which can be used to control both the magnetic transition and martensitic transformation temperatures.
Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Rebecca A; Campbell, Andrew J; Caracas, Razvan
2016-07-29
The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure–temperature properties and behavior of an iron–silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe–16 wt%Si to 140 GPa, finding a conversion from the D0 3 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, ifmore » it consists solely of Fe–Si alloy, and that the eutectic composition in the Fe–Si system is less than 16 wt% silicon at core–mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe–Ni–Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core–mantle boundary. We have also performed first-principles calculations of the equations of state of Fe 3Si with the D0 3 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.« less
Manganese Recovery by Silicothermic Reduction of MnO in BaO-MnO-MgO-CaF2 (-SiO2) Slags
NASA Astrophysics Data System (ADS)
Heo, Jung Ho; Park, Joo Hyun
2018-04-01
The effects of reducing agent, CaF2 content, and reaction temperature upon the silicothermic reduction of MnO in the BaO-MnO-MgO-CaF2 (-SiO2) slags were investigated. Mn recovery was proportional to Si activity in the molten alloy. Moreover, 90 pct yield of Mn recovery was obtained under 5 mass pct CaF2 content and 1873 K (1600 °C) reaction temperature. Increasing CaF2 content above 5 pct yielded little or no further increase in Mn recovery, because it was accompanied by increased slag viscosity owing to the precipitation of high melting point compounds such as Ba2SiO4.
Effect of Heat Treatment on Commercial AlSi12Cu1(Fe) and AlSi12(b) Aluminum Alloy Die Castings
NASA Astrophysics Data System (ADS)
Battaglia, E.; Bonollo, F.; Ferro, P.; Fabrizi, A.
2018-03-01
High-pressure die castings (HPDCs) cannot normally be heat-treated at a high temperature because of the presence of inner air/gas- or shrinkage-porosity that may lead to the formation of undesired surface blisters. In this paper, an unconventional heat treatment is proposed. Two secondary Al-Si alloys, AlSi12(b) and AlSi12Cu1(Fe), were stabilization heat-treated at 624 K (350 °C) with soaking times ranging from 1 to 8 hours. Enhancement of both static and dynamic mechanical properties was found to be related to the fragmentation of interconnected eutectic Si particles and the smoothing of coarser crystals. Increased ductility after heat treatment was correlated with a decrease in hardness and Si particle roundness. The formation of Si precipitates within the α-Al matrix was also observed.
Enamullah, .; Venkateswara, Y.; Gupta, Sachin; ...
2015-12-10
In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μ B, 866 K and 0.9 μ B, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L2 1 disordered structure. The antisitemore » disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less
Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.
Wang, Baowen; Gao, Chuchang; Wang, Weishu; Zhao, Haibo; Zheng, Chuguang
2014-05-01
Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFe2O4 OC was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn3O4 or Fe2O3, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe3O4 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.
2018-01-01
The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.
Magnetism of hexagonal Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuglsby, R.; Kharel, P., E-mail: parashu.kharel@sdstate.edu; Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588
2015-05-07
Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials in the hexagonal Ni{sub 2}In-type crystal structure have been prepared using arc-melting and melt spinning. All the rapidly quenched Mn{sub 1.5}X{sub 0.5}Sn alloys show moderate saturation magnetizations with the highest value of 458 emu/cm{sup 3} for Mn{sub 1.5}Fe{sub 0.5}Sn, but their Curie temperatures are less than 300 K. All samples except the Cr containing one show spin-glass-like behavior at low temperature. The magnetic anisotropy constants calculated from the high-field magnetization curves at 100 K are on the order of 1 Merg/cm{sup 3}. The vacuum annealing of the ribbons at 550 °C significantly improved theirmore » magnetic properties with the Curie temperature increasing from 206 K to 273 K for Mn{sub 1.5}Fe{sub 0.5}Sn.« less
Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties.
Kim, Hansoo; Suh, Dong-Woo; Kim, Nack J
2013-02-01
Adding a large amount of light elements such as aluminum to steels is not a new concept recalling that several Fe-Al-Mn-C alloys were patented in 1950s for replacement of nickel or chromium in corrosion resistance steels. However, the so-called lightweight steels or low-density steels were revisited recently, which is driven by demands from the industry where steel has served as a major structural material. Strengthening without loss of ductility has been a triumph in steel research, but lowering the density of steel by mixing with light elements will be another prospect that may support the competitiveness against emerging alternatives such as magnesium alloys. In this paper, we review recent studies on lightweight steels, emphasizing the concept of alloy design for microstructures and mechanical properties. The influence of alloying elements on the phase constituents, mechanical properties and the change of density is critically reviewed. Deformation mechanisms of various lightweight steels are discussed as well. This paper provides a reason why the success of lightweight steels is strongly dependent on scientific achievements even though alloy development is closely related to industrial applications. Finally, we summarize some of the main directions for future investigations necessary for vitalizing this field of interest.
Simulations of irradiated-enhanced segregation and phase separation in Fe-Cu-Mn alloys
NASA Astrophysics Data System (ADS)
Li, Boyan; Hu, Shenyang; Li, Chengliang; Li, Qiulin; Chen, Jun; Shu, Guogang; Henager, Chuck, Jr.; Weng, Yuqing; Xu, Ben; Liu, Wei
2017-09-01
For reactor pressure vessel steels, the addition of Cu, Mn, and Ni has a positive effect on their mechanical, corrosion and radiation resistance properties. However, experiments show that radiation-enhanced segregation and/or phase separation is one of the important material property degradation processes. In this work, we develop a model integrating rate theory and phase-field approaches to investigate the effect of irradiation on solute segregation and phase separation. The rate theory is used to describe the accumulation and clustering of radiation defects, while the phase-field approach describes the effect of radiation defects on phase stability and microstructure evolution. The Fe-Cu-Mn ternary alloy is taken as a model system. The free energies used in the phase-field model are from CALPHAD. Spatial dependent radiation damage from atomistic simulations is introduced into the simulation cell for a given radiation dose rate. The radiation effect on segregation and phase separation is taken into account through the defect concentration dependence of solute mobility. Using the model, the effect of temperature and radiation rates on Cu and Mn segregation and Cu-rich phase nucleation were systematically investigated. The segregation and nucleation mechanisms were analyzed. The simulations demonstrate that the nucleus of Cu precipitates has a core-shell composition profile, i.e. Cu-rich at the center and Mn-rich at the interface, in good agreement with theoretical calculations as well as experimental observations.
Stability of Fe-Cr alloy interconnects under CH 4-H 2O atmosphere for SOFCs
NASA Astrophysics Data System (ADS)
Horita, Teruhisa; Xiong, Yueping; Yamaji, Katsuhiko; Sakai, Natsuko; Yokokawa, Harumi
The chemical stability of Fe-Cr alloys (ZMG232 and SUS430) was examined under humidified CH 4 gases at 1073 K to simulate the real anode atmosphere in SOFC operation. Surface microstructure change and oxide scale layer formation were observed on the oxidized Fe-Cr alloy surfaces. The main reaction products were Mn-Cr-(Fe) spinels for both alloys. Secondary ion mass spectrometry (SIMS) was applied to measure the elemental distribution of minor and major elements around the oxide scale/alloy interface. A high concentration of Mn on the oxide scale surface suggested the fast diffusion of Mn in the oxide scale to form the spinels. Annealing in CH 4-H 2O made the oxide scale thicker with duration time on the alloy surface. The parabolic growth rates ( kp) of oxide scale layer were evaluated from the thickness of oxide scales by secondary ion mass spectrometry (SIMS) depth profiles, which were calculated to the following: kp=6.25×10 -6 μm 2/s for SUS430 and kp=4.42×10 -6 μm 2/s for ZMG232. The electrical conductivity of oxidized alloys showed the semi-conductor temperature dependence for both alloys. The electrical conductivity of oxidized ZMG232 alloy was higher than that of oxidized SUS430.
NASA Astrophysics Data System (ADS)
Devanathan, R.; Yuvarajan, D.; Christopher Selvam, D.; Venkatamuni, T.
2018-02-01
In this work, the effect of sub-zero treatment on the mechanical properties of an Al-Si-Mg-Mn alloy welded by GTAW (gas tungsten arc welding) leads to significant softening in the welded region. The latter is due to melting and resolidification in the welded region, which have resulted in decomposition of the strengthening precipitates. The experiments were performed on GTAW welded plates of 6 mm thickness by varying the heat inputs, namely, of 370, 317.1, 277.5, 246.4, and 222 J/mm, and sub-zero treatment time periods. The Sub-Zero treatment was performed at-45°C using dry ice; hardness and microstructure investigations were performed in the welded region of the Al‒Si-Mg-Mn alloy that was studied in two different conditions, namely, as-welded and in that formed after post weld sub-zero treatment with artificial aging. It was found that the post weld Sub-Zero treatment followed by artificial aging had led to realization of significantly higher hardness values in the welded region due to the recurrence of the precipitation sequence.
A concise approach for building the s-T diagram for Mn-Fe-P-Si hysteretic magnetocaloric material
NASA Astrophysics Data System (ADS)
Christiaanse, T. V.; Campbell, O.; Trevizoli, P. V.; Misra, S.; van Asten, D.; Zhang, L.; Govindappa, P.; Niknia, I.; Teyber, R.; Rowe, A.
2017-09-01
The use of first order magnetocaloric materials (FOM’s) in magnetic cycles is of interest for the development of efficient magnetic heat pumps. FOM’s present promising magnetocaloric properties; however, hysteresis reduces the reversible adiabatic temperature change (Δ Tad ) of these materials, and consequently, impacts performance. The present paper evaluates the reversible Δ Tad in a FOM. Six samples of the Mn-Fe-P-Si material with different transition temperatures are examined. The samples are measured for heat capacity, magnetization, and adiabatic temperature change using heating and cooling protocols to characterize hysteresis. After correcting demagnetizing fields, the entropy-temperature (s-T ) diagrams are constructed and used to calculate adiabatic temperature change using four different thermal paths. The post-calculated Δ Tad is compared with experimental data from direct Δ Tad measurements. Most of the samples of Mn-Fe-P-Si show that post-calculated Δ Tad resulting from the heating zero field and cooling in-field entropy curves align best with the Δ Tad measurements. The impact of the demagnetizing field is shown in terms of absolute variation to the post-calculated Δ Tad . A functional representation is used to explain observed data sensitivities in the post-calculated Δ Tad .
Geochemical Constraints on Core-Mantle Interaction from Fe/Mn Ratios
NASA Astrophysics Data System (ADS)
Humayun, M.; Qin, L.
2003-12-01
The greater density of liquid iron alloy, and its immiscibility with silicate, maintains the physical separation of the core from the mantle. There are no a priori reasons, however, why the Earth's mantle should be chemically isolated from the core. Osmium isotopic variations in mantle plumes have been interpreted in terms of interaction between outer core and the source regions of deep mantle plumes. If chemical transport occurs across the core-mantle boundary its mechanism remains to be established. The Os isotope evidence has also been interpreted as the signatures of subducted Mn-sediments, which are known to have relatively high Pt/Os. In the mantle, Fe occurs mainly as the divalent ferrous ion, and Mn occurs solely as a divalent ion, and both behave in a geochemically coherent manner because of similarity in ionic charge and radius. Thus, the Fe/Mn ratio is a planetary constant insensitive to processes of mantle differentiation by partial melting. Two processes may perturb the ambient mantle Fe/Mn of 60: a) the subduction of Mn-sediments should decrease the Fe/Mn ratio in plume sources, while b) chemical transport from the outer core may increase the Fe/Mn ratio. The differentiation of the liquid outer core to form the solid inner core may increase abundances of the light element constituents (FeS, FeO, etc.) to the point of exsolution from the core at the CMB. The exact rate of this process is determined by the rate of inner core growth. Two end-member models include 1) inner core formation mainly prior to 3.5 Ga with heat release dominated by radioactive sources, or 2) inner core formation occurring mainly in the last 1.5 Ga with heat release dominated by latent heat. This latter model would imply large fluxes of Fe into the sources of modern mantle plumes. Existing Fe/Mn data for Gorgona and Hawaiian samples place limits on both these processes. We describe a new procedure for the precise determination of the Fe/Mn ratio in magmatic rocks by ICP-MS. This
Interfacial exchange interactions and magnetism of Ni2MnAl /Fe bilayers
NASA Astrophysics Data System (ADS)
Yanes, R.; Simon, E.; Keller, S.; Nagyfalusi, B.; Khmelevsky, S.; Szunyogh, L.; Nowak, U.
2017-08-01
Based on multiscale calculations combining ab initio methods with spin dynamics simulations, we perform a detailed study of the magnetic behavior of Ni2MnAl /Fe bilayers. Our simulations show that such a bilayer exhibits a small exchange bias effect when the Ni2MnAl Heusler alloy is in a disordered B2 phase. Additionally, we present an effective way to control the magnetic structure of the Ni2MnAl antiferromagnet, in the pseudo-ordered B2-I as well as the disordered B2 phases, via a spin-flop coupling to the Fe layer.
Electrolytic hydriding of LaFe(13-x)Si(x) alloys for energy efficient magnetic cooling.
Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P; Cohen, Lesley F
2012-04-17
An effective, low-temperature and readily available electrochemical method for tuning the operation temperature of LaFe(13-x)Si(x)-type alloys is demonstrated. Electrolytically hydrided materials have the same high level magnetic properties as in high temperature gas-phase processed materials and offer an advantage of higher hydrogen absorption rate in the ferromagnetic state. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shigeta, Iduru; Kubota, Takahide; Sakuraba, Yuya; Kimura, Shojiro; Awaji, Satoshi; Takanashi, Koki; Hiroi, Masahiko
2018-05-01
Transport properties were investigated for epitaxial films of superconductor NbN and half-metallic Heusler alloy Co2MnSi under high magnetic fields up to 17 T. The superconducting transition temperature Tc of NbN/Co2MnSi/Au trilayer films was determined to be 16.1 K in the absence of magnetic field. Temperature dependence of the resistivity ρ (T) was measured in both magnetic fields parallel and perpendicular to the surface of NbN/Co2MnSi/Au trilayer films. The activation energy U0 (H) for vortex motion of the trilayer films in both magnetic fields was well fitted above 5 T by the similar model with the exponents in the field dependence of the pinning force density. From the resistivity ρ (T) measurements under high magnetic fields, the upper critical field Hc2 (0) at 0 K was also deduced to be μ0 Hc2 ∥ (0) = 23.2 T for the parallel magnetic filed and μ0 Hc2 ⊥ (0) = 15.8 T for the perpendicular magnetic field, respectively. The experimental results under magnetic fields revealed the superconductivity of the NbN layer was affected by the interplay between the superconducting NbN layer and the half-metallic Co2MnSi layer.
NASA Astrophysics Data System (ADS)
Mihara, Ryosuke; Gao, Xu; Kim, Sun-joong; Ueda, Shigeru; Shibata, Hiroyuki; Seok, Min Oh; Kitamura, Shin-ya
2018-02-01
Using a direct observation experimental method, the oxide formation behavior on the surface of Fe-Cr-5 mass pct C-Si alloy baths during decarburization by a top-blown Ar-O2 mixture was studied. The effects of the initial Si and Cr content of the alloy, temperature, and oxygen feed ratio on oxide formation were investigated. The results showed that, for alloys without Si, oxide particles, unstable oxide films, and stable oxide films formed sequentially. The presence of Si in the alloy changed the formation behavior of stable oxide film, and increased the crucial C content when stable oxide film started to form. Increasing the temperature, decreasing the initial Cr content, and increasing the ratio of the diluting gas decreased the critical C content at which a stable oxide film started to form. In addition, the P CO and a_{{{Cr}2 {O}3 }} values at which oxides started to form were estimated using Hilty's equation and the equilibrium relation to understand the formation conditions and the role of each parameter in oxide formation.
Influence of 10 % Cold Rolling Reduction on Ageing Behaviour of Hot Rolled Al-Cu-Si-Mn-Mg Alloy
NASA Astrophysics Data System (ADS)
Ghosh, S. K.
2014-10-01
In the current study, the effect of 10 % cold rolling on the different ageing phenomena of Al-Cu-Si-Mn-Mg alloy was investigated. Both hot rolled and cold rolled alloys were subjected to both natural and artificial ageing processes. Hardness was measured to understand the change in the mechanical property of the alloy before and after rolling and also during ageing processes. From microscopy, it was evident that the cold rolling and subsequent ageing provided the alloy with a structure in which CuAl2 precipitates were uniformly distributed. The alloy exhibited the peak hardness value of 92 VHN after 2 days of natural ageing, whereas the cold deformed (10 %) alloy exhibited the higher peak hardness value of 139 VHN after 3 days of natural ageing. Peak hardness of the alloy reached 94 VHN, when hot rolled alloy was subjected to ageing at 250 °C for 1 h, whereas 10 % cold rolling followed by ageing (100 °C, 15 min) demonstrated accelerated and elevated hardening. The ageing behaviours thus obtained permit the alloy to provide a range of desirable combinations of strength and ductility for high strength weight saving applications.
Fu, Ming; Xiong, Wei
2018-01-01
High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility–brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10−4 mm3·N−1·m−1, which makes it a promising coating for use in abrasive environments. PMID:29473872
Cold rolled Fe-6.5 wt. % Si alloy foils with high magnetic induction
NASA Astrophysics Data System (ADS)
Fang, X. S.; Liang, Y. F.; Ye, F.; Lin, J. P.
2012-05-01
Fe-6.5 wt. % Si alloy foils with 95 mm in width and 0.30 mm in thickness were successfully fabricated by cold rolling process. Excellent magnetic properties (Hc = 20.4 A/m, µm = 22 200, and Bs = 1.69 T) were obtained after annealing at the temperature of 1273 K for 1.5 h. This high magnetic induction is considered to be due to the formation of {hk0}<001> textures. Cut cores from this material have a very low iron loss at frequencies from 400 Hz to 10 kHz.
Park, A Reum; Kim, Jung Sub; Kim, Kwang Su; Zhang, Kan; Park, Juhyun; Park, Jong Hyeok; Lee, Joong Kee; Yoo, Pil J
2014-02-12
Although Si is a promising high-capacity anode material for Li-ion batteries (LIB), it suffers from capacity fading due to excessively large volumetric changes upon Li insertion. Nanocarbon materials have been used to enhance the cyclic stability of LIB anodes, but they have an inherently low specific capacity. To address these issues, we present a novel ternary nanocomposite of Si, Mn, and reduced graphene oxide (rGO) for LIB anodes, in which the Si-Mn alloy offers high capacity characteristics and embedded rGO nanosheets confer structural stability. Si-Mn/rGO ternary nanocomposites were synthesized by mechanical complexation and subsequent thermal reduction of mixtures of Si nanoparticles, MnO2 nanorods, and rGO nanosheets. Resulting ternary nanocomposite anodes displayed a specific capacity of 600 mAh/g with ∼90% capacity retention after 50 cycles at a current density of 100 mA/g. The enhanced performance is attributed to facilitated Li-ion reactions with the MnSi alloy phase and the formation of a structurally reinforced electroconductive matrix of rGO nanosheets. The ternary nanocomposite design paradigm presented in this study can be exploited for the development of high-capacity and long-life anode materials for versatile LIB applications.
Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co
NASA Astrophysics Data System (ADS)
Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.
2017-10-01
Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn
First principles study on Fe based ferromagnetic quaternary Heusler alloys
NASA Astrophysics Data System (ADS)
Amudhavalli, A.; Rajeswarapalanichamy, R.; Iyakutti, K.
2017-11-01
The study of stable half-metallic ferromagnetic materials is important from various fundamental and application points of view in condensed matter Physics. Structural phase stability, electronic structure, mechanical and magnetic properties of Fe-based quaternary Heusler alloys XX‧YZ (X = Co, Ni; X‧ = Fe; Y = Ti; Z = Si, Ge, As) for three different phases namely α, β and γ phases of LiMgPdSn crystal structure have been studied by density functional theory with generalized gradient approximation formulated by Perdew, Burke and Ernzerhof (GGA-PBE) and the Hubbard formalism (GGA-PBE + U). This work aims to identify the ferromagnetic and half-metallic properties of XX‧YZ (X = Co, Ni, X‧ = Fe; Y = Ti; Z = Si, Ge, As) quaternary Heusler alloys. The predicted phase stability shows that α-phase is found to be the lowest energy phase at ambient pressure. A pressure-induced structural phase transition is observed in CoFeTiSi, CoFeTiGe, CoFeTiAs, NiFeTiSi, NiFeTiGe and NiFeTiAs at the pressures of 151.6 GPa, 33.7 GPa, 76.4 GPa, 85.3 GPa, 87.7 GPa and 96.5 GPa respectively. The electronic structure reveals that these materials are half metals at normal pressure whereas metals at high pressure. The investigation of electronic structure and magnetic properties are performed to reveal the underlying mechanism of half metallicity. The spin polarized calculations concede that these quaternary Heusler compounds may exhibit the potential candidate in spintronics application. The magnetic moments for these quaternary Heusler alloys in all the three different phases (α, β and γ) are estimated.
Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy
NASA Astrophysics Data System (ADS)
Zhang, C.; Wu, G. F.; Dai, P. Q.
2015-05-01
An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into σ and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the σ phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the σ phase and the microstructure coarsening.
Anomalous magnetotransport behavior in Fe-doped MnNiGe alloys
NASA Astrophysics Data System (ADS)
Dutta, P.; Pramanick, S.; Singh, Vijay; Major, Dan Thomas; Das, D.; Chatterjee, S.
2016-04-01
The electrical dc transport properties of hexagonal magnetic equiatomic alloys of nominal composition Mn1 -xFexNiGe (x =0.2 and0.25 ) have been investigated experimentally as well as theoretically using first-principles electronic structure calculations. Thermal hysteresis in the magnetization data indicates that the alloys undergo a first-order martensitic transition. Both the alloys show unusual nonmetallic resistivity behavior and a noticeable amount of training effect in resistivity when thermally cycled through the first-order martensitic transition. We observe moderate negative magnetoresistance (˜-11.5 % for 150 kOe) at 5 K (well below the martensitic transition temperature) associated with clear virgin line effect for both the alloys. We have adapted different flavors of density functional theory approach to understand the experimentally observed nonmetallic transport behavior.
Microstructure design of low alloy transformation-induced plasticity assisted steels
NASA Astrophysics Data System (ADS)
Zhu, Ruixian
The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the
Gupta, Shiva; Zhao, Shuai; Wang, Xiao Xia; ...
2017-10-31
The intrinsic instability of carbon largely limits its use for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as a bifunctional catalyst in reversible fuel cells or water electrolyzers. In this paper, we discovered that Mn doping has a promotional role in stabilizing nanocarbon catalysts for the ORR/OER in alkaline media. Stable nanocarbon composites are derived from an inexpensive carbon/nitrogen precursor (i.e., dicyandiamide) and quaternary FeCoNiMn alloy via a template-free carbonization process. In addition to FeCoNiMn metal alloys/oxides, the carbon composites comprise substantial carbon tube forests growing on a thick and dense graphitic substrate. The dense carbon substratemore » with high degree of graphitization results from Mn doping, while active nitrogen-doped carbon tubes stem from FeCoNi. Catalyst structures and performance are greatly dependent on the doping content of Mn. Various accelerated stress tests (AST) and life tests verify the encouraging ORR/OER stability of the nanocarbon composite catalyst with optimal Mn doping. Extensive characterization before and after ASTs elucidates the mechanism of stability enhancement resulting from Mn doping, which is attributed to (i) hybrid carbon nanostructures with enhanced resistance to oxidation and (ii) the in situ formation of the β-MnO 2 and FeCoNi-based oxides capable of preventing carbon corrosion and promoting activity. Note that the improvement in stability due to Mn doping is accompanied by a slight activity loss due to a decrease in surface area. Finally, this work provides a strategy to stabilize carbon catalysts by appropriately integrating transition metals and engineering carbon structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Shiva; Zhao, Shuai; Wang, Xiao Xia
The intrinsic instability of carbon largely limits its use for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as a bifunctional catalyst in reversible fuel cells or water electrolyzers. In this paper, we discovered that Mn doping has a promotional role in stabilizing nanocarbon catalysts for the ORR/OER in alkaline media. Stable nanocarbon composites are derived from an inexpensive carbon/nitrogen precursor (i.e., dicyandiamide) and quaternary FeCoNiMn alloy via a template-free carbonization process. In addition to FeCoNiMn metal alloys/oxides, the carbon composites comprise substantial carbon tube forests growing on a thick and dense graphitic substrate. The dense carbon substratemore » with high degree of graphitization results from Mn doping, while active nitrogen-doped carbon tubes stem from FeCoNi. Catalyst structures and performance are greatly dependent on the doping content of Mn. Various accelerated stress tests (AST) and life tests verify the encouraging ORR/OER stability of the nanocarbon composite catalyst with optimal Mn doping. Extensive characterization before and after ASTs elucidates the mechanism of stability enhancement resulting from Mn doping, which is attributed to (i) hybrid carbon nanostructures with enhanced resistance to oxidation and (ii) the in situ formation of the β-MnO 2 and FeCoNi-based oxides capable of preventing carbon corrosion and promoting activity. Note that the improvement in stability due to Mn doping is accompanied by a slight activity loss due to a decrease in surface area. Finally, this work provides a strategy to stabilize carbon catalysts by appropriately integrating transition metals and engineering carbon structures.« less
NASA Astrophysics Data System (ADS)
Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.
2017-12-01
Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.
Copper modified austenitic stainless steel alloys with improved high temperature creep resistance
Swindeman, R.W.; Maziasz, P.J.
1987-04-28
An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.
Preparation of high-strength Al-Mg-Si-Cu-Fe alloy via heat treatment and rolling
NASA Astrophysics Data System (ADS)
Liu, Chong-yu; Yu, Peng-fei; Wang, Xiao-ying; Ma, Ming-zhen; Liu, Ri-ping
2014-07-01
An Al-Mg-Si-Cu-Fe alloy was solid-solution treated at 560°C for 3 h and then cooled by water quenching or furnace cooling. The alloy samples which underwent cooling by these two methods were rolled at different temperatures. The microstructure and mechanical properties of the rolled alloys were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and tensile testing. For the water-quenched alloys, the peak tensile strength and elongation occurred at a rolling temperature of 180°C. For the furnace-cooled alloys, the tensile strength decreased initially, until the rolling temperature of 420°C, and then increased; the elongation increased consistently with increasing rolling temperature. The effects of grain boundary hardening and dislocation hardening on the mechanical properties of these rolled alloys decreased with increases in rolling temperature. The mechanical properties of the 180°C rolling water-quenched alloy were also improved by the presence of β″ phase. Above 420°C, the effect of solid-solution hardening on the mechanical properties of the rolled alloys increased with increases in rolling temperature.
Ferrofluids based on Co-Fe-Si-B amorphous nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Tianqi; Bian, Xiufang; Yang, Chuncheng; Zhao, Shuchun; Yu, Mengchun
2017-03-01
Magnetic Co-Fe-Si-B amorphous nanoparticles were successfully synthesized by chemical reduction method. ICP, XRD, DSC, and TEM were used to investigate the composition, structure and morphology of Co-Fe-Si-B samples. The results show that the Co-Fe-Si-B samples are amorphous, which consist of nearly spherical nanoparticles with an average particle size about 23 nm. VSM results manifest that the saturation magnetization (Ms) of Co-Fe-Si-B samples ranges from 46.37 to 62.89 emu/g. Two kinds of ferrofluids (FFs) were prepared by dispersing Co-Fe-Si-B amorphous nanoparticles and CoFe2O4 nanoparticles in kerosene and silicone oil, respectively. The magnetic properties, stability and viscosity of the FFs were investigated. The FFs with Co-Fe-Si-B samples have a higher Ms and lower coercivity (Hc) than FFs with CoFe2O4 sample. Under magnetic field, the silicone oil-based FFs exhibit high stability. The viscosity of FFs under different applied magnetic fields was measured by a rotational viscometer, indicating that FFs with Co-Fe-Si-B particles present relative strong response to an external magnetic field. The metal-boride amorphous alloy nanoparticles have potential applications in the preparation of magnetic fluids with good stability and good magnetoviscous properties.
Doping effects on structural and magnetic properties of Heusler alloys Fe2Cr1-xCoxSi
NASA Astrophysics Data System (ADS)
Liu, Yifan; Ren, Lizhu; Zheng, Yuhong; He, Shikun; Liu, Yang; Yang, Ping; Yang, Hyunsoo; Teo, Kie Leong
2018-05-01
In this work, 30nm Fe2Cr1-xCoxSi (FCCS) magnetic films were deposited on Cr buffered MgO (100) substrates by sputtering. Fe2Cr0.5Co0.5Si exhibits the largest magnetization and optimal ordered L21 cubic structure at in-situ annealing temperature (Tia) of 450°C. The Co composition dependence of crystalline structures, surface morphology, defects, lattice distortions and their correlation with the magnetic properties are analyzed in detail. The Co-doped samples show in-plane M-H loops with magnetic squareness ratio of 1 and increasing anisotropy energy density with Co composition. Appropriate Co doping composition promotes L21 phase but higher Co composition converts L21 to B2 phase. Doping effect and lattice mismatch both are proved to increase the defect density. In addition, distortions of the FCCS lattice are found to be approximately linear with Co composition. The largest lattice distortion (c/a) is 0.969 for Fe2Cr0.25Co0.75Si and the smallest is 0.983 for Fe2CrSi. Our analyses suggest that these tetragonal distortions mainly induced by an elastic stress from Cr buffer account for the large in-plane anisotropy energy. This work paves the way for further tailoring the magnetic and structural properties of quaternary Heusler alloys.
NASA Astrophysics Data System (ADS)
Zhang, Yuanlei; He, Xijia; Li, Zhe; Xu, Kun; Liu, Changqin; Huang, Yinsheng; Jing, Chao
2018-04-01
The electrical transport properties at martensitic transformation (MT) in polycrystalline Ni43.7Fe5.3Mn35.4In15.6 have been intensively investigated under different hydrostatic pressures. For this alloy, the experimental results show that applying a higher hydrostatic pressure can convert its MT from the metamagnetic type into the paramagnetic type. It provides a unique opportunity to separate the relative contributions of electron-spin and electron-lattice scatterings across the metamagnetic MT based on the dynamical Clausius-Clapeyron equation, which delivers a deeper insight into the resistivity change of metamagnetic MT for the Mn-rich Ni-Mn based Heusler alloys. In addition, the studied alloy also reveals a giant positive baroresistance (BR) effect with a saturated value of 115% at 242 K. This performance originates from the combined effect of electron-spin and electron-lattice scatterings associated with a prominent hydrostatic pressure-induced MT, which contribute 46% and 69% to the overall BR ratio, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, M. R.; Nakatani, T. M., E-mail: nakatani.tomoya@nims.go.jp; Stewart, D. A.
2016-04-21
The properties of Co{sub 2}(Mn{sub 1−x}Fe{sub x})Ge (CMFG) (x = 0–0.4) Heusler alloy magnetic layers within polycrystalline current-perpendicular-to-the plane giant magnetoresistance (CPP-GMR) spin-valves are investigated. CMFG films annealed at 220–320 °C exhibit partly ordered B2 structure with an order parameter S{sub B2} = 0.3–0.4, and a lower S{sub B2} was found for a higher Fe content. Nevertheless, CPP-GMR spin-valve devices exhibit a relatively high magnetoresistance ratio of ∼13% and a magnetoresistance-area product (ΔRA) of ∼6 mΩ μm{sup 2} at room temperature, which is almost independent of the Fe content in the CMFG films. By contrast, at low temperatures, ΔRA clearly increases with higher Fe content,more » despite the lower B2 ordering for increasing the Fe content. Indeed, first-principles calculations reveal that the CMFG alloy with a partially disordered B2 structure has a greater density of d-state at the Fermi level in the minority band compared to the Fe-free (Co{sub 2}MnGe) alloy. This could explain the larger ΔRA measured on CMFG at low temperatures by assuming that s-d scattering mainly determines the spin asymmetry of resistivity as described in Mott's theory.« less
Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α -Fe–Si alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.
Diffusion in α-Fe-Si alloys is studied using AKSOME, an on-lattice self-learning KMC code, in the ferromagnetic state. Si diffusivity in the α-Fe matrix were obtained with and without the magnetic disorder in various temperature ranges. In addition we studied vacancy diffusivity in ferromagnetic α-Fe at various Si concentrations up to 12.5at.% in the temperature range of 350–550 K. The results were compared with available experimental and theoretical values in the literature. Local Si-atom dependent activation energies for vacancy hops were calculated using a broken-model and were stored in a database. The migration barrier and prefactors for Si-diffusivity were found tomore » be in reasonable agreement with available modeling results in the literature. Magnetic disorder has a larger effect on the prefactor than on the migration barrier. Prefactor was approximately an order of magnitude and the migration barrier a tenth of an electron-volt higher with magnetic disorder when compared to a fully ferromagnetic ordered state. In addition, the correlation between various have a larger effect on the Si-diffusivity extracted in various temperature range than the magnetic disorder. In the case of vacancy diffusivity, the migration barrier more or less remained constant while the prefactor decreased with increasing Si concentration in the disordered or A2-phase of Fe-Si alloy. Important vacancy-Si/Fe atom exchange processes and their activation barriers were also identified and discuss the effect of energetics on the formation of ordered phases in Fe-Si alloys.« less
Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi
Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; ...
2015-12-09
Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening andmore » ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.« less
Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi
Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.
2015-01-01
Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ∼1 GPa, excellent ductility (∼60–70%) and exceptional fracture toughness (KJIc>200 MPa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. We further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip. PMID:26647978
Magnetic Properties of Hard Magnetic Alloy Fe - 28% Cr - 13.4% Co - 2% Mo - 0.5% Si
NASA Astrophysics Data System (ADS)
Vompe, T. A.; Milyaev, I. M.; Yusupov, V. S.
2017-01-01
The method of regression analysis is used to obtain equations describing the dependences of magnetic hysteresis properties of magnetically hard powder alloy Fe - 28% Cr - 13.4% Co - 2% Mo - 0.5% Si on regimes of thermomagnetic treatment (the temperatures of the start of the treatment and the rates of cooling in magnetic field). The determined treatment modes make it possible to obtain in an alloy with a coercive force H c up to 40 kA/m, a residual induction B r up to 1.2 T, and a maximum energy product ( BH)max up to 25 kJ/m3. The alloy may find application in the production of rotors of synchronous hysteresis-reluctance motors.
Microstructure and Mechanical Properties of Cr-SiC Particles-Reinforced Fe-Based Alloy Coating
NASA Astrophysics Data System (ADS)
Wang, Fu-cheng; Du, Xiao-dong; Zhan, Ma-ji; Lang, Jing-wei; Zhou, Dan; Liu, Guang-fu; Shen, Jian
2015-12-01
In this study, SiC particles were first coated with Cr to form a layer that can protect the SiC particles from dissolution in the molten pool. Then, the Cr-SiC powder was injected into the tail of molten pool during plasma-transferred arc welding process (PTAW), where the temperature was relatively low, to prepare Cr-SiC particles reinforced Fe-based alloy coating. The microstructure and phase composition of the powder and surface coatings were analyzed, and the element distribution and hardness at the interfacial region were also evaluated. The protective layer consists of Cr3Si, Cr7C3, and Cr23C6, which play an important role in the microstructure and mechanical properties. The protective layer is dissolved in the molten pool forming a flocculent region and a transition region between the SiC particles and the matrix. The tribological performance of the coating was also assessed using a ring-block sliding wear tester with GGr15 grinding ring under 490 and 980 N load. Cr-SiC particles-reinforced coating has a lower wear rate than the unreinforced coating.
Plastic deformation of FeSi at high pressures: implications for planetary cores
NASA Astrophysics Data System (ADS)
Kupenko, Ilya; Merkel, Sébastien; Achorner, Melissa; Plückthun, Christian; Liermann, Hanns-Peter; Sanchez-Valle, Carmen
2017-04-01
The cores of terrestrial planets is mostly comprised of a Fe-Ni alloy, but it should additionally contain some light element(s) in order to explain the observed core density. Silicon has long been considered as a likely candidate because of geochemical and cosmochemical arguments: the Mg/Si and Fe/Si ratios of the Earth does not match those of the chondrites. Since silicon preferentially partition into iron-nickel metal, having 'missing' silicon in the core would solve this problem. Moreover, the evidence of present (e.g. Mercury) or ancient (e.g. Mars) magnetic fields on the terrestrial planets is a good indicator of (at least partially) liquid cores. The estimated temperature profiles of these planets, however, lay below iron melting curve. The addition of light elements in their metal cores could allow reducing their core-alloy melting temperature and, hence, the generation of a magnetic field. Although the effect of light elements on the stability and elasticity of Fe-Ni alloys has been widely investigated, their effect on the plasticity of core materials remains largely unknown. Yet, this information is crucial for understanding how planetary cores deform. Here we investigate the plastic deformation of ɛ-FeSi up to 50 GPa at room temperature employing a technique of radial x-ray diffraction in diamond anvil cells. Stoichiometric FeSi endmember is a good first-order approximation of the Fe-FeSi system and a good starting material to develop new experimental perspectives. In this work, we focused on the low-pressure polymorph of FeSi that would be the stable phase in the cores of small terrestrial planets. We will present the analysis of measured data and discuss their potential application to constrain plastic deformation in planetary cores.
NASA Astrophysics Data System (ADS)
Grikurov, G.; Antropov, N.; Baratashvili, I.; Skibina, L.; Chernik, M.; Yushchenko, K.
2004-06-01
The Fe-Cr-Mn system with 2 - 15 % Cr and 20 - 50 % Mn, ⩽ 0.03 % C, ⩽ 0.05 % N was investigated after quenching from 1273 K and after quenching and subsequent one-hour tempering at 973 K. Phase diagrams are plotted for the Fe-Cr-Mn alloys after cooling and deformation at 20 K. Also, the diagrams of their mechanical properties are constructed. A closed, earlier unknown region of concentrations has been revealed, where the alloys have extraordinarily high plasticity and impact strength at 20 K exceeding the corresponding room temperature values. The analysis of the diagrams shows that the high plasticity is due both to the martensitic transformation and to the pre-martensite state. To improve the anticorrosive effect in cryogenic and special engineering applications, it is reasonable to use alloys containing Cr up to 14 % and Mn up to 24 - 30 %. Such alloys have quite high plasticity and strength.
Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys
Ovshinsky, Stanford R.; Fetcenko, Michael A.
1996-01-01
An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.
NASA Astrophysics Data System (ADS)
Xing, Jia; Wei, Yinghui; Hou, Lifeng
2018-06-01
In this review, the influences of alloying elements on the phase constitution, density, and stacking fault energy of Fe-(15-35) Mn-(5-12) Al-(0.3-1.2) C lightweight steel are discussed. The mechanical properties of austenite single-phase and austenite-ferrite dual-phase Fe-Mn-Al-C steels processed by different procedures are also statistically analyzed. The austenite single-phase steel was found to possess superior strength and plasticity. Three reasonable explanations for the mechanism of plastic deformation are presented, namely, shear band-induced plasticity, microband-induced plasticity, and slip band refinement-induced plasticity.
NASA Astrophysics Data System (ADS)
Xing, Jia; Wei, Yinghui; Hou, Lifeng
2018-04-01
In this review, the influences of alloying elements on the phase constitution, density, and stacking fault energy of Fe-(15-35) Mn-(5-12) Al-(0.3-1.2) C lightweight steel are discussed. The mechanical properties of austenite single-phase and austenite-ferrite dual-phase Fe-Mn-Al-C steels processed by different procedures are also statistically analyzed. The austenite single-phase steel was found to possess superior strength and plasticity. Three reasonable explanations for the mechanism of plastic deformation are presented, namely, shear band-induced plasticity, microband-induced plasticity, and slip band refinement-induced plasticity.
NASA Astrophysics Data System (ADS)
Ramudu, M.; Satish Kumar, A.; Seshubai, V.; Rajasekharan, T.
2015-02-01
The martensitic transformation TM of the alloys of Ni-Mn-Ga and Ni-Mn-Al show a general trend of increase with electron per atom ratio (e/a) calculated from the total number of electrons outside the rare gas shell of the atoms. However prediction of TM fails among iron substituted Ni-Mn-Ga alloys and those with In doped for Ga, due to the absence of a useful trend. A scheme of computing modified electron concentration is presented considering only the non-bonding electrons per atom Ne/a of the compounds, based on Pauling's ideas on the electronic structure of metallic elements. Systematic variation of TM with Ne/a is reproduced for a large number of alloys of Ni-Mn-Ga and the anomaly observed for Fe containing alloys with e/a disappears. The non-bonding electron concentration is thus demonstrated to be effective in predicting TM of shape memory alloys of Ni-Mn-Ga-X system including the isoelectronic compounds of Ni-Mn-Ga-In.
Experimental studies on mechanical properties of T6 treated Al25Mg2Si2Cu4Fe alloy
NASA Astrophysics Data System (ADS)
Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra
2018-04-01
Effect of T6 treatment on the mechanical properties of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting mechanical tests on test pieces using universal testing machine. Increase in the mechanical properties such as ultimate tensile strength, hardness and % elongation was observed. Microstructure characterization revealed the modification in the size and shapes of the precipitates formed during the homogenization process. This modification increases the anisotropy of the microstructure and the stresses in the as cast structure. The increase in the hardness of T6 treated alloy is due to the partial recrystallization, fragmentation and redistribution of primary Mg2Si phase, precipitation of fine θ, Q phases. The high volume fractions of uniformly dispersed hard β-particles greatly increase the flow stress and provide an appreciable impediment to plastic deformation. Thus increasing the hardness of the alloy.
Ferromagnetic resonance investigation in as-prepared NiFe/FeMn/NiFe trilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, S. J.; Xu, K.; Yu, L. M.
2007-06-01
NiFe/FeMn/NiFe trilayer prepared by dc magnetron sputtering was systematically investigated by ferromagnetic resonance technique (FMR) at room temperature. For NiFe/FeMn/NiFe trilayer, there are two distinct resonance peaks both in in-plane and out-of-plane FMR spectra, which are attributed to the two NiFe layers, respectively. The isotropic in-plane resonance field shift is negative for the bottom NiFe layer, while positive for the top NiFe layer. And, such phenomena result from the negative interfacial perpendicular anisotropy at the bottom NiFe/FeMn interface and positive interfacial perpendicular anisotropy at the top FeMn/NiFe interface. The linewidth of the bottom NiFe layer is larger than that ofmore » the top NiFe layer, which might be related to the greater exchange coupling at the bottom NiFe/FeMn interface.« less
NASA Astrophysics Data System (ADS)
Pakieła, W.; Tański, T.; Brytan, Z.; Labisz, K.
2016-04-01
The goal of this paper was focused on investigation of microstructure and properties of surface layer produced during laser surface treatment of aluminium alloy by high-power fibre laser. The performed laser treatment involves remelting and feeding of Inconel 625 powder into the aluminium surface. As a base metal was used aluminium alloy AlMg5Si2Mn. The Inconel powder was injected into the melt pool and delivered by a vacuum feeder at a constant rate of 4.5 g/min. The size of Inconel alloying powder was in the range 60-130 µm. In order to remelt the aluminium alloy surface, the fibre laser of 3 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 m/min. Based on performed investigations, it was possible to obtain the layer consisting of heat-affected zone, transition zone and remelted zone, without cracks and defects having much higher hardness value compared to the non-alloyed material.
Commercial scale production of Fe-6.5 wt. % Si sheet and its magnetic properties
NASA Astrophysics Data System (ADS)
Takada, Y.; Abe, M.; Masuda, S.; Inagaki, J.
1988-11-01
Commercial scale production of a Fe-6.5 wt. % Si sheet has been successfully developed. Presently manufactured sheets are in coil form, whose thickness ranges from 0.1 to 0.5 mm with a maximum width of 400 mm. Magnetic properties of the manufactured sheet have been investigated. The permeability of Fe-6.5 wt. % Si sheet is about 10 times higher than the conventional nonoriented silicon steel sheet. The core losses are less than half the conventional, and even less than that of the grain-oriented silicon steel sheet at frequencies over 400 Hz. Superior soft magnetic properties are attributed to the low magnetostriction and high electric resistivity of this alloy. It is well known that the Fe-6.5 wt. % Si alloy has poor ductility in conventional mechanical work. But investigation of the forming conditions has enabled the stamping and bending of alloy sheets. Low core losses and high permeability make Fe-6.5 wt. % Si sheet adequate for motor cores, transformer cores operating at high frequencies, and magnetic shielding. Application to the micromotor core shows that Fe-6.5 wt. % Si sheet reduces the consumption of no-load electric current by 25% in comparison with the conventional silicon steel.
Formation of Fe-Mn crusts within a continental margin environment
Conrad, Tracey A.; Hein, James R.; Paytan, Adina; Clague, David A.
2017-01-01
This study examines Fe-Mn crusts that form on seamounts along the California continental-margin (CCM), within the United States 200 nautical mile exclusive economic zone. The study area extends from approximately 30° to 38° North latitudes and from 117° to 126° West longitudes. The area of study is a tectonically active northeast Pacific plate boundary region and is also part of the North Pacific Subtropical Gyre with currents dominated by the California Current System. Upwelling of nutrient-rich water results in high primary productivity that produces a pronounced oxygen minimum zone. Hydrogenetic Fe-Mn crusts forming along the CCM show distinct chemical and mineral compositions compared to open-ocean crusts. On average, CCM crusts contain more Fe relative to Mn than open-ocean Pacific crusts. The continental shelf and slope release both Fe and Mn under low-oxygen conditions. Silica is also enriched relative to Al compared to open-ocean crusts. This is due to the North Pacific silica plume and enrichment of Si along the path of deep-water circulation, resulting in Si enrichment in bottom and intermediate waters of the eastern Pacific.The CCM Fe-Mn crusts have a higher percentage of birnessite than open-ocean crusts, reflecting lower dissolved seawater oxygen that results from the intense coastal upwelling and proximity to zones of continental slope pore-water anoxia. Carbonate fluorapatite (CFA) is not present and CCM crusts do not show evidence of phosphatization, even in the older sections. The mineralogy indicates a suboxic environment under which birnessite forms, but in which pH is not high enough to facilitate CFA deposition. Growth rates of CCM crusts generally increase with increasing water depth, likely due to deep-water Fe sources mobilized from reduced shelf and slope sediments.Many elements of economic interest including Mn, Co, Ni, Cu, W, and Te have slightly or significantly lower concentrations in CCM crusts relative to crusts from the Pacific
NASA Astrophysics Data System (ADS)
Zhang, Youjun; Sekine, Toshimori; Lin, Jung-Fu; He, Hongliang; Liu, Fusheng; Zhang, Mingjian; Sato, Tomoko; Zhu, Wenjun; Yu, Yin
2018-02-01
Understanding the melting behavior and the thermal equation of state of Fe-Ni alloyed with candidate light elements at conditions of the Earth's core is critical for our knowledge of the region's thermal structure and chemical composition and the heat flow across the liquid outer core into the lowermost mantle. Here we studied the shock equation of state and melting curve of an Fe-8 wt% Ni-10 wt% Si alloy up to 250 GPa by hypervelocity impacts with direct velocity and reliable temperature measurements. Our results show that the addition of 10 wt% Si to Fe-8 wt% Ni alloy slightly depresses the melting temperature of iron by 200-300 (±200) K at the core-mantle boundary ( 136 GPa) and by 600-800 (±500) K at the inner core-outer core boundary ( 330 GPa), respectively. Our results indicate that Si has a relatively mild effect on the melting temperature of iron compared with S and O. Our thermodynamic modeling shows that Fe-5 wt% Ni alloyed with 6 wt% Si and 2 wt% S (which has a density-velocity profile that matches the outer core's seismic profile well) exhibits an adiabatic profile with temperatures of 3900 K and 5300 K at the top and bottom of the outer core, respectively. If Si is a major light element in the core, a geotherm modeled for the outer core indicates a thermal gradient of 5.8-6.8 (±1.6) K/km in the D″ region and a high heat flow of 13-19 TW across the core-mantle boundary.
NASA Technical Reports Server (NTRS)
Levine, S. R.; Grisaffe, S. J.
1972-01-01
Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.
Ab initio construction of magnetic phase diagrams in alloys: The case of Fe 1-xMn xPt
Pujari, B. S.; Larson, P.; Antropov, V. P.; ...
2015-07-28
A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. The application to the Fe 1–xMn xPt “magnetic chameleon” system yields the sequence of magnetic phases at T = 0 and the c-T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of themore » magnetic phase diagram is demonstrated.« less
NASA Astrophysics Data System (ADS)
Moon, Joonoh; Lee, Tae-Ho; Hong, Hyun-Uk
2015-04-01
Hot ductility behaviors in the weld heat-affected zone (HAZ) of nitrogen-alloyed Fe-18Cr-10Mn austenitic stainless steels with different nitrogen contents were evaluated through hot tension tests using Gleeble simulator. The results of Gleeble simulations indicated that hot ductility in the HAZs deteriorated due to the formation of δ-ferrite and intergranular Cr2N particles. In addition, the amount of hot ductility degradation was strongly affected by the fraction of δ-ferrite.
Edge-Cracking Behavior of CoCrFeMnNi High-Entropy Alloy During Hot Rolling
NASA Astrophysics Data System (ADS)
Won, Jong Woo; Kang, Minju; Kwon, Heoun-Jun; Lim, Ka Ram; Seo, Seong Moon; Na, Young Sang
2018-05-01
This work investigated edge-cracking behavior of equiatomic CoCrFeMnNi high-entropy alloy during hot rolling at rolling temperatures 500 ≤ T R ≤ 1000 °C. Edge cracks did not form in the material rolled at 500 °C, but widened and deepened into the inside of plate as T R increased from 500 °C. Edge cracks were most severe in the material rolled at 1000 °C. Mn-Cr-O type non-metallic inclusion and oxidation were identified as major factors that caused edge cracking. The inclusions near edge region acted as preferential sites for crack formation. Connection between inclusion cracks and surface cracks induced edge cracking. Rolling at T R ≥ 600 °C generated distinct inclusion cracks whereas they were not serious at T R = 500 °C, so noticeable edge cracks formed at T R ≥ 600 °C. At T R = 1000 °C, significant oxidation occurred at the crack surface. This accelerated edge crack penetration by embrittling the crack tip, so severe edge cracking occurred at T R = 1000 °C.
Protected Fe valence in quasi-two-dimensional α-FeSi2.
Miiller, W; Tomczak, J M; Simonson, J W; Smith, G; Kotliar, G; Aronson, M C
2015-05-08
We report the first comprehensive study of the high temperature form (α-phase) of iron disilicide. Measurements of the magnetic susceptibility, magnetization, heat capacity and resistivity were performed on well characterized single crystals. With a nominal iron d(6) configuration and a quasi-two-dimensional crystal structure that strongly resembles that of LiFeAs, α-FeSi2 is a potential candidate for unconventional superconductivity. Akin to LiFeAs, α-FeSi2 does not develop any magnetic order and we confirm its metallic state down to the lowest temperatures (T = 1.8 K). However, our experiments reveal that paramagnetism and electronic correlation effects in α-FeSi2 are considerably weaker than in the pnictides. Band theory calculations yield small Sommerfeld coefficients of the electronic specific heat γ = Ce/T that are in excellent agreement with experiment. Additionally, realistic many-body calculations further corroborate that quasi-particle mass enhancements are only modest in α-FeSi2. Remarkably, we find that the natural tendency to vacancy formation in the iron sublattice has little influence on the iron valence and the density of states at the Fermi level. Moreover, Mn doping does not significantly change the electronic state of the Fe ion. This suggests that the iron valence is protected against hole doping and indeed the substitution of Co for Fe causes a rigid-band like response of the electronic properties. As a key difference from the pnictides, we identify the smaller inter-iron layer spacing, which causes the active orbitals near the Fermi level to be of a different symmetry in α-FeSi2. This change in orbital character might be responsible for the lack of superconductivity in this system, providing constraints on pairing theories in the iron based pnictides and chalcogenides.
Tunable dimensional crossover and magnetocrystalline anisotropy in Fe 2 P -based alloys
Zhuravlev, I. A.; Antropov, V. P.; Vishina, A.; ...
2017-10-01
Electronic structure calculations are used to examine the magnetic properties of Fe 2P-based alloys and the mechanisms through which the Curie temperature and magnetocrystalline anisotropy can be optimized for specific applications. It is found that at elevated temperatures the magnetic interaction in pure Fe 2P develops a pronounced two-dimensional character due to the suppression of the magnetization in one of the sublattices, but the interlayer coupling is very sensitive to band filling and structural distortions. This feature suggests a natural explanation of the observed sharp enhancement of the Curie temperature by alloying with multiple elements, such as Co, Ni, Si,more » and B. The magnetocrystalline anisotropy is also tunable by electron doping, reaching a maximum near the electron count of pure Fe 2P. These findings enable the optimization of the alloy content, suggesting co-alloying of Fe 2P with Co (or Ni) and Si as a strategy for maximizing the magnetocrystalline anisotropy at and above room temperature.« less
NASA Astrophysics Data System (ADS)
Asadian Nozari, M.; Taghiabadi, R.; Karimzadeh, M.; Ghoncheh, M. H.
2018-03-01
The effect of oxide bifilms and Be modification (0.2 wt pct) on the tensile strength reliability of the as-cast and T6 heat-treated Al-9Si-0.35Mg-1.5Fe alloy was investigated using Weibull analysis. For this purpose, the density of oxide bifilms in the molten alloy was intentionally increased by surface agitation. According to the results, Be modifies the β-Al5FeSi particles to the less harmful α-Fe compounds and substantially decreases the bifilm density in the castings leading to improved tensile properties and higher reliability. Moreover, the beneficial effect of Be was found to be more in the samples containing higher amounts of bifilms. For instance, in the heat-treated condition, Be increased the Weibull modulus of the non-agitated and surface-agitated samples by 4 and 94 pct, respectively. This improvement can be attributed to the strengthening effect of Be on the young surface oxides so that they resist more against rupture when melt is subjected to the surface turbulence. The reduced pressure test and fractography investigations also confirmed the reduction of bifilm density and bifilm-related defects in Be-modified samples.
NASA Astrophysics Data System (ADS)
Asadian Nozari, M.; Taghiabadi, R.; Karimzadeh, M.; Ghoncheh, M. H.
2018-06-01
The effect of oxide bifilms and Be modification (0.2 wt pct) on the tensile strength reliability of the as-cast and T6 heat-treated Al-9Si-0.35Mg-1.5Fe alloy was investigated using Weibull analysis. For this purpose, the density of oxide bifilms in the molten alloy was intentionally increased by surface agitation. According to the results, Be modifies the β-Al5FeSi particles to the less harmful α-Fe compounds and substantially decreases the bifilm density in the castings leading to improved tensile properties and higher reliability. Moreover, the beneficial effect of Be was found to be more in the samples containing higher amounts of bifilms. For instance, in the heat-treated condition, Be increased the Weibull modulus of the non-agitated and surface-agitated samples by 4 and 94 pct, respectively. This improvement can be attributed to the strengthening effect of Be on the young surface oxides so that they resist more against rupture when melt is subjected to the surface turbulence. The reduced pressure test and fractography investigations also confirmed the reduction of bifilm density and bifilm-related defects in Be-modified samples.
Ferromagnetism of Fe 3Sn and alloys
Sales, Brian C.; Saparov, Bayrammurad; McGuire, Michael A.; ...
2014-11-12
Hexagonal Fe 3Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K 1 of 1.8 MJ/m 3. However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site hasmore » the potential to switch the easy axis direction. Transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe 3Sn is reported, as are some are magnetic and structural properties for the Fe 3Sn 2, and Fe 5Sn 3 compounds, which could be prepared as mm-sized single crystals.« less
Ibrahim, Mohamed F.; Elgallad, Emad M.; Valtierra, Salvador; Doty, Herbert W.; Samuel, Fawzy H.
2016-01-01
The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150–200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al4SrSi2, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode. PMID:28787877
Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel
2004-01-01
The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.
NASA Astrophysics Data System (ADS)
Inoue, Masaki; Hu, Bing; Moges, Kidist; Inubushi, Kazuumi; Nakada, Katsuyuki; Yamamoto, Masafumi; Uemura, Tetsuya
2017-08-01
The influence of off-stoichiometry of Co2MnSi (CMS) spin sources on giant magnetoresistance characteristics was investigated for CMS/Ag-based current-perpendicular-to-plane spin valves prepared with various Mn compositions α in Co2MnαSi0.82 electrodes. The magnetoresistance ratio of the prepared CMS/Co50Fe50 (CoFe) (1.1 nm)/Ag/CoFe (1.1)/CMS spin valves systematically increased with α from 11.4% for Mn-deficient α = 0.62 to 20.7% for Mn-rich α = 1.45 at 290 K. This result suggests that increasing α from a Mn-deficient to Mn-rich value increases the spin polarization by suppressing CoMn antisites harmful to the half-metallicity. Thus, our results demonstrate that appropriately controlling the film composition toward a Mn-rich one is highly effective for enhancing the half-metallicity of CMS in CMS-based spin valves, as it is in CMS-based magnetic tunnel junctions.
Liu, Jun; Gong, Yuanyuan; Xu, Guizhou; Peng, Guo; Shah, Ishfaq Ahmad; Ul Hassan, Najam; Xu, Feng
2016-03-16
The magnetostructural coupling between structural and magnetic transitions leads to magneto-multifunctionalities of phase-transition alloys. Due to the increasing demands of multifunctional applications, to search for the new materials with tunable magnetostructural transformations in a large operating temperature range is important. In this work, we demonstrate that by chemically alloying MnNiSi with CoNiGe, the structural transformation temperature of MnNiSi (1200 K) is remarkably decreased by almost 1000 K. A tunable magnetostructural transformation between the paramagnetic hexagonal and ferromagnetic orthorhombic phase over a wide temperature window from 425 to 125 K is realized in (MnNiSi)1-x(CoNiGe)x system. The magnetic-field-induced magnetostructural transformation is accompanied by the high-performance magnetocaloric effect, proving that MnNiSi-CoNiGe system is a promising candidate for magnetic cooling refrigerant.
Synthesis and characterization of laminated Si/SiC composites.
Naga, Salma M; Kenawy, Sayed H; Awaad, Mohamed; Abd El-Wahab, Hamada S; Greil, Peter; Abadir, Magdi F
2013-01-01
Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deka, Bhargab; Kundu, Ashis; Ghosh, Subhradip
2015-10-07
Crystallographic and magnetic properties of bulk Co{sub 2}Fe(Ge{sub 1−x}Si{sub x}) alloys with 0 ≤ x ≤ 1, synthesized by arc melting method, have been studied. Co{sub 2}FeSi alloy has been found to crystallize with L2{sub 1} structure, but the super-lattice peaks are absent in the X-ray diffraction patterns of alloys containing high Ge concentration. Unit cell volume of this series of alloys decreased from 185.2 to 178.5 Å{sup 3} as Si content was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (T{sub C}). T{sub C} showed a systematic variation with x. A comparison between the valuesmore » of saturation magnetization (M{sub s}) and effective moment per magnetic atom p{sub c} estimated from the temperature dependent susceptibility data above T{sub C}, shows that the alloys have half-metallic character. The alloy with x = 0 follows Slater-Pauling (S-P) rule with M{sub s} of 5.99μ{sub B}. However, M{sub s} for the alloy with x = 1.00 was found to be 5.42μ{sub B}, which is lower than the value of 6.0μ{sub B} predicted by S-P rule. Since atomic disorder is known to affect the M{sub s} and electronic structure of these alloys, ab initio calculations were carried out to explain the deviation in observed M{sub s} from S-P rule prediction and the half-metallic character of the alloys. Ab initio calculations reveal that alloys with L2{sub 1} structure have M{sub s} value as predicted by S-P rule. However, introduction of 12.5% DO{sub 3} disorder, which occurs due to swapping of Co and Fe atoms in the unit cell, decreases M{sub s} of alloys with x > 0 from the S-P prediction to values obtained experimentally. The results analyzed from the view point of electronic structure of the alloys in different ordered states bring out the influence of disorder on the observed magnetic properties of these technologically important alloys.« less
Thermal-history dependent magnetoelastic transition in (Mn,Fe){sub 2}(P,Si)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, X. F., E-mail: x.f.miao@tudelft.nl; Dijk, N. H. van; Brück, E.
The thermal-history dependence of the magnetoelastic transition in (Mn,Fe){sub 2}(P,Si) compounds has been investigated using high-resolution neutron diffraction. As-prepared samples display a large difference in paramagnetic-ferromagnetic (PM-FM) transition temperature compared to cycled samples. The initial metastable state transforms into a lower-energy stable state when the as-prepared sample crosses the PM-FM transition for the first time. This additional transformation is irreversible around the transition temperature and increases the energy barrier which needs to be overcome through the PM-FM transition. Consequently, the transition temperature on first cooling is found to be lower than on subsequent cycles characterizing the so-called “virgin effect.” High-temperaturemore » annealing can restore the cycled sample to the high-temperature metastable state, which leads to the recovery of the virgin effect. A model is proposed to interpret the formation and recovery of the virgin effect.« less
NASA Astrophysics Data System (ADS)
Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali
2017-06-01
The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.
Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys
NASA Astrophysics Data System (ADS)
Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin
2013-08-01
tendency and Gibbs free energy of C in Alloy 690 is higher than in 304 SS, due to the higher bulk C concentration and the site competition of P atoms which segregate at grain boundary [29,30]. It is imply that the segregation tendency is influenced by the bulk concentration of the segregates. Si atoms slightly segregate at grain boundaries in Alloy 690, but do not segregate at grain boundaries in 304 SS. N and P atoms segregate at grain boundary in 304 SS, and their segregation Gibbs free energy are similar. N atoms may be exhausted by the TiN precipitated in the matrix and can not be observed in the grain boundary of Alloy 690 [19]. Mn atoms deplete at grain boundary in 304 SS. This phenomenon is similar to that of proton irradiation induced segregation in 304 SS [32]. B, C, N, P segregation Gibbs energies are similar both in 304 SS and Alloy 690. B and C atoms segregate at grain boundary both in Alloy 690 and 304 SS, P and N segregate at grain boundary in 304 SS. Si atoms segregate at grain boundary in Alloy 690, but do not segregate at grain boundary in 304 SS. Cr enriches at grain boundary both in Alloy 690 and 304 SS, although carbide does not nucleate. Ni and Fe may segregate, deplete or homogeneously distribute at grain boundary in Alloy 690, but they deplete at grain boundary in 304 SS. C and Cr atoms co-segregate at grain boundaries before carbide nucleation in Alloy 690 and 304 SS. Combination with other results in literatures, the evolution of Cr concentration at grain boundary should be enrichment at grain boundary before carbide nucleation, depletion at grain boundary after carbide precipitation, and healing after obvious growth of carbide. After aging treatment at 500 °C for 0.5 h, the total reduction of grain boundary free energy due to segregation is 27.489 kJ/mol for Alloy 690 and 45.207 kJ/mol for 304.
Physical and electrical properties of melt-spun Fe-Si (3–8 wt%) soft magnetic ribbons
Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.; ...
2017-12-13
Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability tomore » manipulate {001} texture development. In conclusion, electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.« less
Physical and electrical properties of melt-spun Fe-Si (3–8 wt.%) soft magnetic ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.
Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability tomore » manipulate {001} texture development. Electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.« less
Physical and electrical properties of melt-spun Fe-Si (3–8 wt%) soft magnetic ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.
Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability tomore » manipulate {001} texture development. In conclusion, electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.« less
NASA Astrophysics Data System (ADS)
Ozawa, Haruka; Hirose, Kei; Yonemitsu, Kyoko; Ohishi, Yasuo
2016-12-01
We carried out melting experiments on Fe-Si alloys to 127 GPa in a laser-heated diamond-anvil cell (DAC). On the basis of textural and chemical characterizations of samples recovered from a DAC, a change in eutectic liquid composition in the Fe-FeSi binary system was examined with increasing pressure. The chemical compositions of coexisting liquid and solid phases were quantitatively determined with field-emission-type electron microprobes. The results demonstrate that silicon content in the eutectic liquid decreases with increasing pressure to less than 1.5 ± 0.1 wt.% Si at 127 GPa. If silicon is a single light element in the core, 4.5 to 12 wt.% Si is required in the outer core in order to account for its density deficit from pure iron. However, such a liquid core, whose composition is on the Si-rich side of the eutectic point, crystallizes less dense solid, CsCl (B2)-type phase at the inner core boundary (ICB). Our data also show that the difference in silicon concentration between coexisting solid and liquid is too small to account for the observed density contrast across the ICB. These indicate that silicon cannot be the sole light element in the core. Previous geochemical and cosmochemical arguments, however, strongly require ∼6 wt.% Si in the core. It is possible that the Earth's core originally included ∼6 wt.% Si but then became depleted in silicon by crystallizing SiO2 or MgSiO3.
NASA Astrophysics Data System (ADS)
Romanov, I. Yu.; Gushchina, N. V.; Ovchinnikov, V. V.; Makhinko, F. F.; Stepanov, A. V.; Medvedev, A. I.; Starodubtsev, Yu. N.; Belozerov, V. Ya.; Loginov, B. A.
2018-02-01
Using the methods of X-ray diffraction and atomic force microscopy, the process of crystallization of an amorphous Fe72.5Cu1Nb2Mo1.5Si14B9 alloy irradiated with accelerated Ar+ ions is investigated. It is found out that an irradiation by the Ar+ ions with the energy 30 keV at the ion current density 300 μA/cm2 (fluence 3.75·1015 cm-2, irradiation time 2 s, ion-beam short-duration heating up to 350°C, which is 150°C lower than the thermal crystallization threshold) results in a complete crystallization of this amorphous alloy (throughout the bulk of a 25 μm ribbon) followed by precipitation of solid solution crystals of α-Fe(Si), close in its composition to Fe80Si20, stable phase of Fe3Si, and metastable hexagonal phases. By the methods of atomic force and scanning tunneling microscopy it is shown that nanocrystallization caused by ion irradiation is accompanied by surface relief changes both on the irradiated and unirradiated sides of the Fe72.5Cu1Nb2Mo1.5Si14B9 alloy ribbon at the depth exceeding by a factor of 103 that of the physical ion penetration for this material. The data obtained, taking into account a significant temperature decrease and multiple acceleration of the crystallization process, serve an evidence of the radiation-dynamic influence of accelerated ions on the metastable amorphous medium.
Magnetic anisotropy of Fe{sub 1−y}X{sub y}Pt-L1{sub 0} [X = Cr, Mn, Co, Ni, Cu] bulk alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuadrado, R.; Chantrell, R. W.; Klemmer, Timothy J.
2014-10-13
We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni, or Cu in FePt-L1{sub 0} bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusting the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content while those of Pt and Xmore » are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L1{sub 0} alloys.« less
Effect of Y addition on crystallization behavior and soft-magnetic properties of Fe78Si9B13 ribbons
NASA Astrophysics Data System (ADS)
Zhanwei, Liu; Dunbo, Yu; Kuoshe, Li; Yang, Luo; Chao, Yuan; Zilong, Wang; Liang, Sun; Kuo, Men
2017-08-01
A series of amorphous Fe-Si-B ribbons with various Y addition were prepared by melt-spinning. The effect of Y addition on crystallization behavior, thermal and magnetic properties was systematically investigated. With the increase of Y content, the initial crystallization temperature shifted to a higher temperature, indicating that the thermal stability of amorphous state in Fe-Si-B-Y ribbon is enhanced compared to that of Fe-Si-B alloy. Meanwhile, compared to the two exothermic peaks in the samples with lower Y content, a new exothermic peak was found in the ribbons with Y content higher than 1 at%, which corresponded to the decomposition of metastable Fe3B phase. Among all the alloys, Fe76.5Si9B13Y1.5 alloy exhibits optimized magnetic properties, with high saturation magnetization Ms of 187 emu/g and low coercivity HcJ of 7.6 A/m.
Ibrahim, Mohamed F; Elgallad, Emad M; Valtierra, Salvador; Doty, Herbert W; Samuel, Fawzy H
2016-01-27
The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150-200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al₄SrSi₂, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.
Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy
Dong, Zhenbiao; Ning, Congqin
2017-01-01
Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti2Ni phase region, and Ti5Si3 phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm2 at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys. PMID:29088083
Synthesis and characterization of laminated Si/SiC composites
Naga, Salma M.; Kenawy, Sayed H.; Awaad, Mohamed; Abd El-Wahab, Hamada S.; Greil, Peter; Abadir, Magdi F.
2012-01-01
Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results. PMID:25685404
Structural Transformation in Fe73.5Nb3Cu1Si15.5B7 Amorphous Alloy Induced by Laser Heating
NASA Astrophysics Data System (ADS)
Nykyruy, Yu. S.; Mudry, S. I.; Kulyk, Yu. O.; Zhovneruk, S. V.
2018-03-01
The effect of continuous laser irradiation (λ = 1.06 μm) with laser power of 45 W on the structure of Fe73.5Nb3Cu1Si15.5B7 amorphous alloy has been studied using X-ray diffraction and SEM methods. The sample of the ribbon has been placed at a distance from the focal plane of the lens, so a laser beam has been defocused and the diameter of laser spot on the ribbon surface has been about 10 mm. An exposure time τ varied within interval 0.25-0.70 s. Under such conditions structural transformation processes, which depend on the exposure time, have occurred in an irradiated zone. Crystallization process has started at τ = 0.35 s with the formation of α-Fe(Si) nanocrystalline phase, while complete crystallization has occurred at τ = 0.55 s with formation of two nanocrystalline phases: α-Fe(Si) and a hexagonal H-phase.
Phase relations of Fe-Si-Ni alloys at core conditions: Implications for the Earth inner core
NASA Astrophysics Data System (ADS)
Fiquet, G.; Boulard, E.; Auzende, A.; Antonangeli, D.; Badro, J.; Morard, G.; Siebert, J.; Perrillat, J.; Mezouar, M.
2008-12-01
The Earth core consists of a liquid outer core and a solid inner core, which are believed to be made predominantly of iron (Fe). Among all crystallographic structures proposed, a consensus has more or less emerged with the hexagonal closed packed structure -hcp- for iron. The question of the structure of this alloy at core conditions, in particular in vicinity of the melting line is however still largely debated. Among others, a possible thermal and chemical stabilization of body-centered cubic iron in the Earth's core has indeed been proposed with the theoretical calculations of Vocadlo et al. [Nature, 424, 536, 2003]. Recent X-ray experiments have shown the existence of such a bcc structure above 220 GPa at high-temperature for iron- nickel alloys [Dubrovinsky et al., Science, 316, 1880, 2007]. It is also known from density systematics that the Earth's core is made of iron alloyed with light elements [see Poirier, Phys. Earth Planet. Int., 85, 319, 1994]. We recently proposed a compositional model for the Earth's inner core from a systematic study of the effect of light elements on sound velocities at high pressure. Our preferred core model is an inner core which contains 2.3 wt % silicon and traces of oxygen [see Badro et al., Earth Planet. Sci. Lett., 254, 233, 2007 for more details]. Recent studies, however, suggest that small amount of silicon or nickel can substantially affect the phase relations and thermodynamic properties of iron alloys. We present results from an X-ray diffraction carried out at ESRF at high-pressure and high-temperature, using a state-of-the-art double sided laser heating system. We address the question of the structure of this alloy at core conditions. Two different alloys have been synthesized for this experiment, with Fe : 92.4, Si : 3.7, Ni 3.9 and Fe: 88.4, Si: 7.3, Ni: 4.3 in wt %, so as to satisfy the core preferred compositional model described in Badro et al. [2007]. The samples were loaded in a diamond anvil cell with neon as
NASA Astrophysics Data System (ADS)
Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.
2016-05-01
Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.
Magnetization Processes in Ribbons of Soft Magnetic Amorphous Alloys
NASA Astrophysics Data System (ADS)
Skulkina, N. A.; Ivanov, O. A.; Mazeeva, A. K.; Kuznetsov, P. A.; Stepanova, E. A.; Blinova, O. V.; Mikhalitsyna, E. A.
2018-02-01
Using iron-based (Fe-B-Si-C; Fe-Ni-Si-B) and cobalt-based (Co-Fe-Ni-Cr-Mn-Si-B) soft magnetic alloys as examples, we have studied the dependences of the remanence measured using minor hysteresis loops on the maximum induction. The different degrees of stabilization of the 180° and 90° domain walls allows these dependences to be used to analyze the magnetization processes that occur in the rapidly quenched soft magnetic alloys. It has been established from the B r( B m) dependences that, in the ribbons of soft magnetic amorphous alloys, the processes of the rotation of the magnetization oriented perpendicular to the ribbon plane start before the end of the processes of the displacement of the walls of domains with planar magnetization. After the end of the magnetization rotation processes, the magnetization processes can be interpreted as the displacement of the domain walls with a planar magnetization accompanied by a decrease in their number and a transition to a bistable state.
NASA Astrophysics Data System (ADS)
Badía-Romano, L.; Rubín, J.; Magén, C.; Bürgler, D. E.; Bartolomé, J.
2014-07-01
The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe layer of a (Fe/Si)3 multilayer have been determined by means of conversion electron Mössbauer spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the CEMS measurements, each layer was selected by depositing the Mössbauer active 57Fe isotope with 95% enrichment. Samples with Fe layers of nominal thickness dFe = 2.6 nm and Si spacers of dSi = 1.5 nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si and Si/Fe interfaces a paramagnetic c-Fe1-xSi phase is formed, which contains 16% of the nominal Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also contains α-Fe and an Fe1-xSix alloy that cannot be attributed to a single phase. In contrast, the other two layers only comprise an Fe1-xSix alloy with a Si concentration of ≃0.15, but no α-Fe.
Fe/Mn in olivine of carbonaceous meteorites
NASA Technical Reports Server (NTRS)
Steele, Ian M.
1993-01-01
Olivines in primitive meteorites show a range of Fe/Mn both within one grain and among grains suggesting that they have recorded changing conditions during or after growth. Because olivine should be an early forming phase, Fe/Mn is used here to infer these earliest conditions. Initial Fe/Mn in cores of isolated, euhedral forsterite in both C2 and C3 meteorites ranges from 25 to 35 but differs at grain edge. Murchison (C2) forsterites show Fe/Mn approaching 1.0 at the grain edge while Ornans Fe/Mn is near 60 at grain edge. These values are lower than the matrix Fe/Mn for both meteorites and the distinct difference in zoning profile indicates different processes operating during and after grain growth. The Fe/Mn of bulk samples from a particular source such as the Moon is nearly constant. Individual samples show variation suggesting that there is some fractionation of Mn from Fe. Minerals have their individual ranges of Fe/Mn which has been used to recognize different types of olivine within one meteorite. Extreme values of Fe/Mn below 1.0 occur in forsterite from some IDP's, UOC matrix, and C1 meteorites. There are apparently no detailed studies of Fe/Mn variation within single olivine grains. Forsterite grains in C2 and C3 carbonaceous chondrites show complex zoning, and the nearly pure forsterites (Fo greater than approximately 99.5) have high levels of some minor elements including Ti, Al, V, and Sc. There is disagreement on the original source of these grains and both chondrule and vapor growth have been proposed. In addition, there is clear evidence that diffusion has affected the outer margins but in some cases the whole grain. Within the cores, the FeO range is limited, and if growing under constant conditions, the Fe/Mn should be near constant as there is little fractionation of Mn from Fe by forsterite. Additionally, there are apparently no co-crystallizing phases as evidenced by a lack of common inclusions in the forsterites. These observations are now
Sherman, David M.
1990-01-01
Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates.
Effect of Copper and Zirconium Addition on Properties of Fe-Co-Si-B-Nb Bulk Metallic Glasses
NASA Astrophysics Data System (ADS)
Ikram, Haris; Khalid, Fazal Ahmad; Akmal, Muhammad; Abbas, Zameer
2017-07-01
In this research work, iron-based bulk metallic glasses (BMGs) have been fabricated, characterized and compared with Fe-Si alloy. BMG alloys of composition ((Fe0.6Co0.4)0.75B0.20Si0.05)96Nb4) were synthesized by suction casting technique using chilled copper die. Effect of copper and zirconium addition on magnetic, mechanical, thermal and electrochemical behavior of ((Fe0.6Co0.4)0.75B0.20Si0.05)96Nb4 BMGs was investigated. Furthermore, effect of annealing on nano-crystallization and subsequently on magnetic and mechanical behavior was also analyzed. Amorphousness of structure was evidenced by XRD analysis and microscopic visualization, whereas nano-crystallization behavior was identified by peak broadening of XRD patterns. Magnetic properties, measured by vibrating sample magnetometer, were found to be improved for as-cast BMG alloys by copper addition and further enhanced by nano-crystallization after annealing. Mechanical properties were observed to be increased by zirconium addition while slightly declined by copper addition. Potentiodynamic polarization analysis manifested the positive role of zirconium in enhancing corrosion resistance of BMGs in acidic, basic and brine mediums. Moreover, mechanical properties and corrosion analysis results affirmed the superiority of BMG alloys over Fe-Si alloy.
Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression
NASA Astrophysics Data System (ADS)
Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.
2017-06-01
The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.
The thermal expansion of (Fe1-y Ni y )Si.
Hunt, Simon A; Wann, Elizabeth T H; Dobson, David P; Vočadlo, Lindunka; Wood, Ian G
2017-08-23
We have measured the thermal expansion of (Fe 1-y Ni y )Si for y = 0, 0.1 and 0.2, between 40 and 1273 K. Above ~700 K the unit-cell volumes of the samples decrease approximately linearly with increasing Ni content. Below ~200 K the unit-cell volume of FeSi falls to a value between that of (Fe 0.9 Ni 0.1 )Si and (Fe 0.8 Ni 0.2 )Si. We attribute this extra contraction of the FeSi, which is a narrow band-gap semiconductor, to the depopulation of the conduction band at low temperatures; in the two alloys the additional electrons introduced by the substitution of Ni lead to the conduction band always being populated. We have fit the unit-cell volume data with a Debye internal energy model of thermal expansion and an additional volume term, above 800 K, to take account of the volumetric changes associated with changes in the composition of the sample. Using the thermophysical parameters of the fit we have estimated the band gap in FeSi to be 21(1) meV and the unit-cell volume change in FeSi associated with the depopulation of the conduction band to be 0.066(35) Å 3 /unit-cell.
Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.
Li, Ting; Ding, Dongyan; Dong, Zhenbiao; Ning, Congqin
2017-10-31
Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti₂Ni phase region, and Ti₅Si₃ phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm² at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Aksenov, S. M.; Rastsvetaeva, R. K.; Van, K. V.; Belakovskiy, D. I.; Pekov, I. V.; Gurzhiy, V. V.; Schüller, W.; Ternes, B.
2015-12-01
A new mineral, mendigite (IMA no. 2014-007), isostructural with bustamite, has been found in the In den Dellen pumice quarry near Mendig, Laacher Lake area, Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. Associated minerals are sanidine, nosean, rhodonite, tephroite, magnetite, and a pyrochlore-group mineral. Mendigite occurs as clusters of long-prismatic crystals (up to 0.1 × 0.2 × 2.5 mm in size) in cavities within sanidinite. The color is dark brown with a brown streak. Perfect cleavage is parallel to (001). D calc = 3.56 g/cm3. The IR spectrum shows the absence of H2O and OH groups. Mendigite is biaxial (-), α = 1.722 (calc), β = 1.782(5), γ = 1.796(5), 2 V meas = 50(10)°. The chemical composition (electron microprobe, mean of 4 point analyses, the Mn2+/Mn3+ ratio determined from structural data and charge-balance constraints) is as follows (wt %): 0.36 MgO, 10.78 CaO, 37.47 MnO, 2.91 Mn2O3, 4.42 Fe2O3, 1.08 Al2O3, 43.80 SiO2, total 100.82. The empirical formula is Mn2.00(Mn1.33Ca0.67) (Mn0.50 2+ Mn0.28 3+ Fe0.15 3+ Mg0.07)(Ca0.80 (Mn0.20 2+)(Si5.57 Fe0.27 3+ Al0.16O18). The idealized formula is Mn2Mn2MnCa(Si3O9)2. The crystal structure has been refined for a single crystal. Mendigite is triclinic, space group Pbar 1; the unit-cell parameters are a = 7.0993(4), b = 7.6370(5), c = 7.7037(4) Å, α = 79.58(1)°, β = 62.62(1)°, γ = 76.47(1)°; V = 359.29(4) Å3, Z = 1. The strongest reflections on the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 3.72 (32) (020), 3.40 (20) (002, 021), 3.199 (25) (012), 3.000 (26), (01bar 2, 1bar 20), 2.885 (100) (221, 2bar 11, 1bar 21), 2.691 (21) (222, 2bar 10), 2.397 (21) (02bar 2, 21bar 1, 203, 031), 1.774 (37) (412, 3bar 21). The type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4420/1.
NASA Astrophysics Data System (ADS)
Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.
2017-07-01
The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .
NASA Astrophysics Data System (ADS)
Miura, Seiji; Hatabata, Toru; Okawa, Takuya; Mohri, Tetsuo
2014-03-01
To find a new route for microstructure control and to find additive elements beneficial for improving high-temperature strength, a systematic investigation is performed on hypoeutectic Nb-15 at. pct Si-X ternary alloys containing a transition element, Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. Information on phase equilibrium is classified in terms of phase stability of silicide phases, α Nb5Si3, Nb4SiX, and Nb3Si, and the relationship between microstructure and mechanical properties both at room temperature and high temperature is investigated. All the additive elements are found to stabilize either α Nb5Si3 or Nb4SiX but destabilize Nb3Si. A microstructure of Nbss/α Nb5Si3 alloy composed of spheroidized α Nb5Si3 phase embedded in the Nbss matrix is effective for toughening, regardless of the initial as-cast microstructure. Also the plastic deformation of Nbss dendrites may effectively suppress the propagation of longer cracks. High-temperature strength of alloys is governed by the deformation of Nbss phase and increases with higher melting point additives.
High performance 1.2 Ah Si-alloy/Graphite|LiNi0.5Mn0.3Co0.2O2 prototype Li-ion battery
NASA Astrophysics Data System (ADS)
Marinaro, Mario; Yoon, Dong-hwan; Gabrielli, Giulio; Stegmaier, Petra; Figgemeier, Egbert; Spurk, Paul C.; Nelis, Daniël; Schmidt, Gregory; Chauveau, Jerome; Axmann, Peter; Wohlfahrt-Mehrens, Margret
2017-07-01
The study reports on realization and electrochemical testing of prototype Si-alloy/Graphite|LiNi0.5Mn0.3Co0.2O2 batteries. Water soluble polyacrylic acid (PAA), used as the only binder at the anode side, demonstrates excellent dispersant and binding properties. Sedimentation tests and rheological measurements show remarkable stability and mostly a thinning behavior of the non-Newtonian type of slurry. The cathode is processed in N-Methylpyrrolidone based slurry using polyvinylidene fluoride (PVDF) as the binding agent. The electronic conductivities of the manufactured Si-alloy/Graphite and LiNi0.5Mn0.3Co0.2O2 electrodes are evaluated. Furthermore, the cathode and anode electrochemical behavior is initially studied in half-cells, and subsequently in full Li-ion stacked prototype soft pouch-cells (1.22 Ah). It is demonstrated that the manufactured prototype cells can sustain about 290 charge/discharge galvanostatic cycles before the retained capacity drops below 80%. Cell aging is monitored using Electrochemical Impedance Spectroscopy (EIS), whereas post-mortem SEM analysis of electrodes cross-section is used to shed light on the causes of performance degradation of the cells.
NASA Astrophysics Data System (ADS)
Cao, C. C.; Zhu, L.; Meng, Y.; Zhai, X. B.; Wang, Y. G.
2018-06-01
The evolution of local structure and defects in the Fe81Si4B10P4Cu1 amorphous alloy during the structural relaxation has been investigated by Mössbauer spectroscopy, positron annihilation lifetime spectroscopy and transmission electron microscopy to explore their effects on magnetic properties of the nanocrystalline. The atomic rearrangements at the early stage of the structural relaxation cause the density increase of the amorphous matrix, but the subsequent atomic rearrangements contribute to the transformation of Fe3B-like atomic arrangements to FeB-like ones with the temperature increasing. As the structural relaxation processes, the released Fe atoms both from Fe3B- and Fe3P-like atomic arrangements result in the formation of new Fe clusters and the increase of Fe-Fe coordination number in the existing Fe clusters and the nucleation sites for α-Fe gradually increase, both of which promote the crystallization. However, the homogeneity of amorphous matrix will be finally destroyed under excessive relaxation temperature, which coarsens nanograins during the crystallization instead. Therefore, soft magnetic properties of the Fe81Si4B10P4Cu1 nanocrystalline alloy can be improved by pre-annealing the amorphous precursor at an appropriate temperature due to the atomic level structural optimization.
NASA Astrophysics Data System (ADS)
Guoxing, Ren; Songwen, Xiao; Meiqiu, Xie; Bing, Pan; Youqi, Fan; Fenggang, Wang; Xing, Xia
Plenty of valuable metals, such as cobalt, nickel, copper, manganese and lithium, are present in spent lithium-ion batteries. A novel smelting reduction process based on MnO-SiO2-Al2O3 slag system for spent lithium ion batteries is developed, using pyrolusite ore as the major flux. And Co-Ni-Cu-Fe alloy and manganese-rich slag contained lithium are obtained. The results show that it is reasonable to control MnO/SiO2 ratio in the range of 2.05-3.23 (w/w) and Al2O3 content in 19.23-26.32wt.%, while the MnO and Li2O contents in the manganese-rich slag can reach 47.03 wt.% and 2.63 wt.%, respectively. In the following leaching experiments of the manganese-rich slag by sulphuric acid solution, the recovery efficiency of manganese and lithium can reach up to 79.86% and 94.85%, respectively. Compared with the conventional hydro-pyrometallurgical process of spent lithium-ion batteries, the present can preferably recover Mn and Li besides Co, Ni and Cu.
Interdiffusion behavior of U3Si2 with FeCrAl via diffusion couple studies
NASA Astrophysics Data System (ADS)
Hoggan, Rita E.; He, Lingfeng; Harp, Jason M.
2018-04-01
Uranium silicide (U3Si2) is a candidate to replace uranium oxide (UO2) as light water reactor (LWR) fuel because of its higher thermal conductivity and higher fissile density relative to the current standard, UO2. A class of Fe, Cr, Al alloys collectively known as FeCrAl alloys that have superior mechanical and oxidation resistance are being considered as an alternative to the standard Zirconium based LWR cladding. The interdiffusion behavior between FeCrAl and U3Si2 is investigated in this study. Commercially available FeCrAl, along with U3Si2 pellets were placed in diffusion couples. Individual tests were ran at temperatures ranging from 500 °C to 1000 °C for 30 h and 100 h. The interdiffusion was analyzed with an optical microscope, scanning electron microscope, and transmission electron microscope. Uniform and planar interdiffusion layers along the material interface were illustrated with backscatter electron micrographs and energy-dispersive X-ray spectroscopy. Electron diffraction was used to validate phases present in the system, including distinct U2Fe3Si/UFe2 and UFeSi layers at the material interface. U and Fe diffused far into the FeCrAl and U3Si2 matrix, respectively, in the higher temperature tests. No interaction was observed at 500 °C for 30 h.
Effect of nitrogen on iron-manganese-based shape memory alloys
NASA Astrophysics Data System (ADS)
Ariapour, Azita
Shape memory effect is due to a reversible martensitic transformation. The major drawback in case of Fe-Mn-based shape memory alloys is their inferior shape memory effect compared to Ni-Ti and Cu-based shape memory alloys and their low strength and corrosion resistance compared to steel alloys. It is known that by increasing the alloy strength the shape memory effect can be improved. Nitrogen in solid solution can increase the strength of steels to a greater extent than other major alloying elements. However, its effect on shape memory effect of Fe-Mn-based alloys is ambiguous. In this work first we investigated the effect of nitrogen addition in solid solution on both shape memory effect (SME) and strength of a Fe-Mn-Cr-Ni-Si shape memory alloy (SMA). It was found that interstitial nitrogen suppressed the shape memory effect in these alloys. As an example addition of 0.24 wt % nitrogen in solid solution to the alloy system suppressed the SME by ˜80% and increased the strength by 20%. A reduction of martensitic phase formation was found to be the dominant factor in suppression of the SME. This was related, experimentally and theoretically to stacking fault energy of the alloy as well as the driving force and friction force during the transformation. The second approach was doping the alloy with both 0.36 wt% of nitrogen and 0.36 wt% of niobium. Niobium has great affinity for nitrogen and thus NbN dispersed particles can be produced in the alloy following hot rolling. Then particles prevent growth of the alloy and increase the strength of the alloy due to reduced grain size, and precipitation hardening. The improvement of SME in this alloy compared to the interstitial containing alloys was due to the large removal of the nitrogen from solid solution. In case of all the alloys studied in this work, the presence of nitrogen in solid solution improved the corrosion resistance of the alloy. This suggests that nitrogen can replace nickel in the alloy. One of the
NASA Astrophysics Data System (ADS)
Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki
2018-05-01
Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.
The Evolution of Second-Phase Particles in 6111 Aluminum Alloy Processed by Hot and Cold Rolling
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Wang, Yihan; Ni, Song; Chen, Gang; Li, Kai; Du, Yong; Song, Min
2018-03-01
The evolution of coarse Al9.9Fe2.65Ni1.45 phase, spherical Al12(Mn,Fe)3Si phase and rod-like Q phase in a 6111 aluminum alloy during hot and cold rolling deformation processes was systematically investigated in this work. The results showed that the coarse Al9.9Fe2.65Ni1.45 particles are mainly distributed at the grain boundaries, accompanied by the co-formation of Al12(Fe,Mn)3Si phase and Mg2Si phase, while the spherical Al12(Mn,Fe)3Si particles are mainly distributed in the grain interiors. Hot rolling has little effects on the size and distribution of both phases, but cold deformation can severely decrease the size of the particles by breaking the particles into small pieces. In addition, the temperature of 450 °C is not high enough for the dissolution of Q phase in the Al matrix, but the Q particles can be broken into small pieces due to the stress concentration during both hot and cold rolling deformation. In addition, the influences of phase evolution, dislocations and recrystallization on the mechanical properties evolution were also discussed.
Simultaneous plate forming and hydriding of La(Fe, Si)13 magnetocaloric powders
NASA Astrophysics Data System (ADS)
Yang, Nannan; You, Caiyin; Tian, Na; Zhang, Yue; Leng, Haiyan; He, Jun
2018-04-01
In this work, we propose a way to simultaneously realize the plate forming and hydriding of La(Fe, Si)13 powders by mixing hydride MgNiYHx and solder powders Sn3.0Ag0.5Cu. Under the annealing of the green compact, the hydriding of La(Fe, Si)13 was realized through absorbing the released hydrogen from the metallic hydride MgNiYHx. The Curie temperature of La(Fe, Si)13 alloy increased from 213 K to 333 K and hysteresis reduced from 3.3 J/kg·K to 1.33 J/kg·K. Due to the bonding of Sn3.0Ag0.5Cu powders, the mechanical strength of the composite compact was highly improved in comparison to the compact of La(Fe, Si)13 powders alone.
NASA Astrophysics Data System (ADS)
Tazaki, Kazue; Morii, Issei
Environmental changes recorded in the shell nacre of Sinohyliopsis schlegeli were observed with elemental factors of characteristic water and nutrition for eight months in a cultivated drainage pond at Kanazawa University, Ishikawa Prefecture, Japan. Tetracycline as an indicator was injected into the shell nacre once every month from May to November in 2007. Water qualities such as the pH, redox potential, electrical conductivity, dissolved oxygen concentration, and water temperature were measured periodically, and the suspended solids in the water were removed by filtration for optical microscopy, X-ray fluorescence analysis, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) observations. X-ray fluorescence chemical analysis of shell nacre indicated layers with strong tetracycline accumulation corresponding to high concentrations of Si, Mn, Fe, and Sr ions. The redox potential and dissolved oxygen concentration measurements supported the existence of layers in the nacre. The suspended materials in the drainage pond water comprised mainly of Si, Mn, and Fe elements, which were the same elements involved in microbial immobilization in the shell nacre during the summer of 2007. SEM-EDX analyses confirmed that the ions originated from diatoms, Siderocapsa sp. and Gallionella ferruginea in the stomach. There was little microbial immobilization of the ions in winter. The results suggested elemental immobilization in the layered shell nacre and indicated that Sinohyliopsis schlegeli fed on the ions, to grow the nacre during summer. Sinohyliopsis schlegeli with these biogenic oxides might contribute to the scavenging of heavy metals in natural water.
Melting of Fe-Si-O alloys: the Fate of Coexisting Si and O in the Core
NASA Astrophysics Data System (ADS)
Arveson, S. M.; Lee, K. K. M.
2017-12-01
The light element budget of Earth's core plays an integral role in sustaining outer core convection, which powers the geodynamo. Many experiments have been performed on binary iron compounds, but the results do not robustly agree with seismological observations and geochemical constraints. Earth's core is almost certainly made up of multiple light elements, so the future of core composition studies lies in ternary (or higher order) systems in order to examine interactions between light elements. We perform melting experiments on Fe-Si-O alloys in a laser-heated diamond-anvil cell to 80 GPa and 4000 K. Using 2D multi- wavelength imaging radiometry together with textural and chemical analysis of quenched samples, we measure the high-pressure melting curves and determine partitioning of light elements between the melt and the coexisting solid. Quenched samples are analyzed both in map view and in cross section using scanning electron microscopy (SEM) and electron microprobe analysis (EPMA) to examine the 3D melt structure and composition. Partitioning of light elements between molten and solid alloys dictates (1) the density contrast at the ICB, which drives compositional convection in the outer core and (2) the temperature of the CMB, an integral parameter for understanding the deep Earth. Our experiments suggest silicon and oxygen do not simply coexist in the melt and instead show complex solubility based on temperature. Additionally, we do not find evidence of crystallization of SiO2 at low oxygen content as was recently reported.11 Hirose, K., et al., Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature, 2017. 543(7643): p. 99-102.
Complex, Precision Cast Columbium Alloy Gas Turbine Engine Nozzles Coated to Resist Oxidation.
1980-04-01
Microstructures of Sprayed Specimens 64 Table 19 NS-4 Coated C129Y Alloy Specimens Weight Bisque Weight Sintered Weight Silicided Weight Pre-Oxidized...choice of another alloy , while perhaps assisting in the foundry process , would not have yielded a mechanical property data base with advantage over...Mo 250 ppm max; Fe 30 ppm max; Al , Ca, C, Si, Cr, Ni, Cu , Mn, Mg and Sn 10 ppm max each). Molybdenum វim powder (02 2000 ppm max; W 250 ppm max; Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Dean T.; Coughlin, D. R.; Clarke, Kester D.
Here, the influence of Cr and Ni additions and quench and partition (Q&P) processing parameters on the microstructural development, including carbide formation and austenite retention during Q&P, was studied in two steels with a base composition of 0.2C-1.5Mn-1.3Si wt.% and additions of 1.5 wt.% Cr (1.5Cr) or Ni (1.5Ni). Additions of 1.5 wt.% Cr significantly slowed the kinetics of austenite decomposition relative to the 1.5Ni alloy at all partitioning temperatures, promoting greater austenite retention, lower retained austenite carbon (C) contents, and reduced sensitivity of the retained austenite amounts to processing variables. In the 1.5Cr alloy after partitioning at 400 °Cmore » for 300 s, η-carbides were identified by transmission electron microscopy (TEM) and atom probe tomography (APT) revealed no significant enrichment of substitutional elements in the carbides. In the 1.5Ni alloy after partitioning at 450 °C for 300 s, both plate-like and globular carbides were observed by TEM. APT analysis of the globular carbides clearly revealed significant Si rejection and Mn enrichment. Mössbauer effect spectroscopy was used to quantify the amount of carbides after Q&P. In general, carbide amounts below ~0.3% of Fe were measured in both alloys after partitioning for short times (10 s), irrespective of quench or partitioning temperature, which corresponds to a relatively small portion of the bulk C. With increasing partitioning time, carbide amounts remained approximately constant or increased, depending on the alloy, quench temperature, and/or partitioning temperature.« less
Pierce, Dean T.; Coughlin, D. R.; Clarke, Kester D.; ...
2018-03-08
Here, the influence of Cr and Ni additions and quench and partition (Q&P) processing parameters on the microstructural development, including carbide formation and austenite retention during Q&P, was studied in two steels with a base composition of 0.2C-1.5Mn-1.3Si wt.% and additions of 1.5 wt.% Cr (1.5Cr) or Ni (1.5Ni). Additions of 1.5 wt.% Cr significantly slowed the kinetics of austenite decomposition relative to the 1.5Ni alloy at all partitioning temperatures, promoting greater austenite retention, lower retained austenite carbon (C) contents, and reduced sensitivity of the retained austenite amounts to processing variables. In the 1.5Cr alloy after partitioning at 400 °Cmore » for 300 s, η-carbides were identified by transmission electron microscopy (TEM) and atom probe tomography (APT) revealed no significant enrichment of substitutional elements in the carbides. In the 1.5Ni alloy after partitioning at 450 °C for 300 s, both plate-like and globular carbides were observed by TEM. APT analysis of the globular carbides clearly revealed significant Si rejection and Mn enrichment. Mössbauer effect spectroscopy was used to quantify the amount of carbides after Q&P. In general, carbide amounts below ~0.3% of Fe were measured in both alloys after partitioning for short times (10 s), irrespective of quench or partitioning temperature, which corresponds to a relatively small portion of the bulk C. With increasing partitioning time, carbide amounts remained approximately constant or increased, depending on the alloy, quench temperature, and/or partitioning temperature.« less
NASA Astrophysics Data System (ADS)
Ibrahim, Mohamed Fawzy
The present work was carried out on a series of heat-treatable aluminum-based aeronautical alloys containing various amounts of magnesium (Mg), iron (Fe), strontium (Sr) and beryllium (Be). Tensile test bars (dendrite arm spacing ~ 24mum) were solutionized for either 5 or 12 hours at 540°C, followed by quenching in warm water (60°C). Subsequently, these quenched samples were aged at 160°C for times up to 12 hours. Microstructural assessment was performed. All heat-treated samples were pulled to fracture at room temperature using a servo-hydraulic tensile testing machine. The results show that Be causes partial modification of the eutectic silicon (Si) particles similar to that reported for Mg addition. Addition of 0.8 wt.% Mg reduced the eutectic temperature by ~10°C. During solidification of alloys containing high levels of Fe and Mg, without Sr, a peak corresponding to the formation of a Be-Fe phase (Al8Fe2BeSi) was detected at 611°C. The Be-Fe phase precipitates in a script-like morphology. A new quinary eutectic-like reaction was observed to take place near the end of solidification of high Mg, high Fe, Be-containing alloys. This new reaction is composed mainly of fine particles of Si, Mg2Si, pi-Al 8Mg3FeSi6 and (Be-Fe) phases. The volume fraction of this reaction decreased with the addition of Sr. The addition of Be has a noticeable effect on decreasing the beta-phase length, or volume fraction, this effect may be limited by adding Sr. Beryllium addition also results in the precipitation of the beta-phase in a nodular form, which reduces the harmful effects of these intermetallics on the alloy mechanical properties. Increasing both Mg and Fe levels led to an increase in the amount of the pi-phase; increasing the iron content led to an increase in the volume fraction of the partially soluble beta- and pi-phases, while Mg2Si particles were completely dissolved. The beta-phase platelets were observed to undergo changes in their morphology due to the
Origin and tuning of the magnetic anisotropy in Fe2P-based alloys
NASA Astrophysics Data System (ADS)
Zhuravlev, Ivan; Antropov, V. P.; Belashchenko, K. D.
Fe2P-based alloys have been studied for years due to their potential magnetocaloric applications. In addition, Fe2P demonstrates record-high magnetocrystalline anisotropy (MCA) for systems with no heavy elements. While the Curie temperature TC in pure Fe2P is too low for applications, this system appears to be highly tunable, and its TC can be greatly increased by alloying with many other d and p elements. Here we present the electronic structure analysis of magnetic properties of these alloys, searching for systems with higher TC while preserving high MCA. The microscopic origin of the dominant contribution to MCA and its concentration dependence is revealed. We further find that co-alloying with Co or Ni and Si is a promising strategy for achieving high Curie temperature and MCA, which is more favorable compared to individual alloying by Co/Ni or Si due to the compensation of their effects on the band occupation. Work at UNL supported by NSF Grants DMR-1308751 and DMR-1609776. Work at Ames Lab was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the US DOE.
Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers
NASA Astrophysics Data System (ADS)
Franklin, Michael Ray
Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.
NASA Astrophysics Data System (ADS)
Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.
2016-03-01
Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.
Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; ...
2016-05-13
In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less
Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys.
Dunand, David C; Müllner, Peter
2011-01-11
The off-stoichiometric Ni(2)MnGa Heusler alloy is a magnetic shape-memory alloy capable of reversible magnetic-field-induced strains (MFIS). These are generated by twin boundaries moving under the influence of an internal stress produced by a magnetic field through the magnetocrystalline anisotropy. While MFIS are very large (up to 10%) for monocrystalline Ni-Mn-Ga, they are near zero (<0.01%) in fine-grained polycrystals due to incompatibilities during twinning of neighboring grains and the resulting internal geometrical constraints. By growing the grains and/or shrinking the sample, the grain size becomes comparable to one or more characteristic sample sizes (film thickness, wire or strut diameter, ribbon width, particle diameter, etc), and the grains become surrounded by free space. This reduces the incompatibilities between neighboring grains and can favor twinning and thus increase the MFIS. This approach was validated recently with very large MFIS (0.2-8%) measured in Ni-Mn-Ga fibers and foams with bamboo grains with dimensions similar to the fiber or strut diameters and in thin plates where grain diameters are comparable to plate thickness. Here, we review processing, micro- and macrostructure, and magneto-mechanical properties of (i) Ni-Mn-Ga powders, fibers, ribbons and films with one or more small dimension, which are amenable to the growth of bamboo grains leading to large MFIS, and (ii) "constructs" from these structural elements (e.g., mats, laminates, textiles, foams and composites). Various strategies are proposed to accentuate this geometric effect which enables large MFIS in polycrystalline Ni-Mn-Ga by matching grain and sample sizes.
Fe-based bulk amorphous alloys with iron contents as high as 82 at%
NASA Astrophysics Data System (ADS)
Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu; Yao, Ke-Fu
2015-07-01
Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe81P8.5C5.5B2Si3 BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe82Mo1P6.5C5.5B2Si3 BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications.
Synthesis of hard magnetic Mn3Ga micro-islands by e-beam evaporation
NASA Astrophysics Data System (ADS)
Akdogan, O.
2018-05-01
The permanent magnet industry heavily depends on Nd-Fe-B and Sm-Co alloys because of their high-energy product and high room temperature coercivity. Main ingredient for having such superior magnetic properties compared to other known ferromagnetic materials is rare earth elements (Nd, Sm, Dy…). However recent worldwide reserve and export limitation problem of rare earths, shifted researchers' focus to rare earth free permanent magnets. Among many alternatives (FePt, Zr2Co11, FeNi …), Mn-based alloys are the most suitable due to abundance of the forming elements and trivial formation of the necessary hard phases. In this study, Mn3Ga micro islands have been prepared. Mn3Ga owes its hard magnetic properties to tetragonal D022 phase with magnetic anisotropy energy of 2 MJ/m3. Thin films and islands of Cr/MnGa/Cr layers have been deposited on Si/SiO2 wafers using combination of e-beam and thermal evaporation techniques. Cr has been used as buffer and cover layer to protect the sample from the substrate and prevent oxidation during annealing. Annealing under Ar/H2 forming gas has been performed at 350oC for 10 min. Nano thick islands of 25, 50 and 100 μm lateral size have been produced by photolithography technique. Room temperature coercivity of 7.5 kOe has been achieved on 100 μm micro islands of Mn3Ga. Produced micro islands could be a rare earth free alternative for magnetic memory and MEMS applications.
NASA Astrophysics Data System (ADS)
Choi, Won-Mi; Jo, Yong Hee; Sohn, Seok Su; Lee, Sunghak; Lee, Byeong-Joo
2018-01-01
Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs.
NASA Astrophysics Data System (ADS)
Antonangeli, Daniele; Siebert, Julien; Badro, James; Farber, Daniel L.; Fiquet, Guillaume; Morard, Guillaume; Ryerson, Frederick J.
2010-06-01
We performed room-temperature sound velocity and density measurements on a polycrystalline alloy, Fe0.89Ni0.04Si0.07, in the hexagonal close-packed (hcp) phase up to 108 GPa. Over the investigated pressure range the aggregate compressional sound velocity is ∼ 9% higher than in pure iron at the same density. The measured aggregate compressional (VP) and shear (VS) sound velocities, extrapolated to core densities and corrected for anharmonic temperature effects, are compared with seismic profiles. Our results provide constraints on the silicon abundance in the core, suggesting a model that simultaneously matches the primary seismic observables, density, P-wave and S-wave velocities, for an inner core containing 4 to 5 wt.% of Ni and 1 to 2 wt.% of Si.
Effect of sputtering condition and heat treatment in Co/Cu/Co/FeMn spin valve
NASA Astrophysics Data System (ADS)
Kim, Hong Jin; Bae, Jun Soo; Lee, Taek Dong; Lee, Hyuck Mo
2002-03-01
The exchange field of Cu(50 Å)/FeMn(50 Å)/Co(50 Å) sputtered on Si substrate was studied in terms of surface roughness and phase formation of γ-FeMn under a variety of Ar pressures and powers in sputtering. It was found that the exchange field is stronger when the surface is smoother and the FeMn layer forms better. The exchange bias field increased by more than three times after heat treatment. The effect of heat treament on magnetoresistance (MR) and resistance of the top spin valve, substrate/Co(30 Å)/Cu(30 Å)/Co(30 Å)/FeMn(150 Å), was studied. It was observed that the MR started to increase with annealing temperature and the effect was significant at 150°C. The heat treatment led to the disappearance of the intermixed layer between Co and Cu, and the concentration profile of Cu became flat and smooth at this temperature.
Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yuan, Yong; Gong, Yuan-Xun; Zhen, Liang
2017-07-05
Ferromagnetic metal/alloy nanoparticles have attracted extensive interest for electromagnetic wave-absorbing applications. However, ferromagnetic nanoparticles are prone to oxidization and producing eddy currents, leading to the deterioration of electromagnetic properties. In this work, a simple and scalable liquid-phase reduction method was employed to synthesize uniform Co 7 Fe 3 nanospheres with diameters ranging from 350 to 650 nm for high-performance microwave absorption application. Co 7 Fe 3 @SiO 2 core-shell nanospheres with SiO 2 shell thicknesses of 30 nm were then fabricated via a modified Stöber method. When tested as microwave absorbers, bare Co 7 Fe 3 nanospheres with a diameter of 350 nm have a maximum reflection loss (RL) of 78.4 dB and an effective absorption with RL > 10 dB from 10 to 16.7 GHz at a small thickness of 1.59 mm. Co 7 Fe 3 @SiO 2 nanospheres showed a significantly enhanced microwave absorption capability for an effective absorption bandwidth and a shift toward a lower frequency, which is ascribed to the protection of the SiO 2 shell from direct contact among Co 7 Fe 3 nanospheres, as well as improved crystallinity and decreased defects upon annealing. This work illustrates a simple and effective method to fabricate Co 7 Fe 3 and Co 7 Fe 3 @SiO 2 nanospheres as promising microwave absorbers, and the design concept can also be extended to other ferromagnetic alloy particles.
NASA Astrophysics Data System (ADS)
Li, Xi; Du, Dafan; Gagnoud, Annie; Ren, Zhongming; Fautrelle, Yves; Moreau, Rene
2014-11-01
The influence of a transverse magnetic field ( B < 1 T) on the solidification structure in directionally solidified Al-Si alloys was investigated. Experimental results indicate that the magnetic field caused macrosegregation, dendrite refinement, and a decrease in the length of the mushy zone in both Al-7 wt pct Si alloy and Al-7 wt pct Si-1 wt pct Fe alloys. Moreover, the application of the magnetic field is capable of separating the Fe-rich intermetallic phases from Al-7 wt pct Si-1 wt pct Fe alloy. Thermoelectric magnetic convection (TEMC) was numerically simulated during the directional solidification of Al-Si alloys. The results reveal that the TEMC increases to a maximum () when the magnetic field reaches a critical magnetic field strength (), and then decreases as the magnetic field strength increases further. The TEMC exhibits the multi-scales effects: the and values are different at various scales, with decreasing and increasing as the scale decreases. The modification of the solidification structure under the magnetic field should be attributed to the TEMC on the sample and dendrite scales.
Dissimilatory Fe(III) and Mn(IV) reduction.
Lovley, D R
1991-01-01
The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process. PMID:1886521
First principles study of the ground state properties of Si, Ga, and Ge doped Fe50Al50
NASA Astrophysics Data System (ADS)
Pérez, Carlos Ariel Samudio; dos Santos, Antonio Vanderlei
2018-06-01
The first principles calculation of the structural, electronic and associated properties of the Fe50Al50 alloy (B2 phase) doped by s-p elements (Im = Si, Ga, and Ge) are performed as a function of the atomic concentration on the basis of the Full Potential Linear Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k code. The Al substitution by Im (Si and Ge) atoms (principally at a concentration of 6.25 at%) induces a pronounced redistribution of the electronic charge leading to a strong Fe-Im interaction with covalent bonding character. At the same time, decrease the lattice volume (V) while increase the bulk modulus (B). For the alloys containing Ga, the Fe-Ga interaction is also observed but the V and B of the alloy are very near to that of pure Fe-Al alloy. The magnetic moment and hyperfine parameters observed at the lattice sites of studied alloys also show variations, they increase or decrease in relation to that in Fe50Al50 according to the Im that substitutes Al.
A polarized neutron study of the magnetization distribution in Co₂FeSi.
Brown, P J; Kainuma, R; Kanomata, T; Neumann, K-U; Okubo, A; Umetsu, R Y; Ziebeck, K R A
2013-05-22
The magnetization distribution in Co2FeSi which has the largest moment per formula unit ∼6 μB of all Heusler alloys, has been determined using polarized neutron diffraction. The experimentally determined magnetization has been integrated over spheres centred on the three sites of the L12 structure giving μ Fe = 3.10(3) μB and μ Co = 1.43(2) μB, results which are slightly lower than the moments in atomic spheres of similar radii obtained in recent LDA + U band structure calculations (Li et al 2010 Chin. Phys. B 19 097102). Approximately 50% of the magnetic carriers at the Fe sites were found to be in orbitals with eg symmetry. This was higher, ≃65%, at the Co sites. Both Fe and Co were found to have orbital moments that are larger than those predicted. Comparison with similar results obtained for related alloys suggests that there must be a finite density of states in both spin bands at the Fermi energy indicating that Co2FeSi is not a perfect half-metallic ferromagnet.
NASA Astrophysics Data System (ADS)
Belov, Nikolay A.; Naumova, Evgeniya A.; Akopyan, Torgom K.; Doroshenko, Vitaliy V.
2018-05-01
The phase composition of aluminum alloys in the Al-Ca-Fe-Si system, including the distribution of phases in the solid state and solidification reactions, has been studied. It is shown that the addition of iron and silicon to Al-Ca alloys leads to the formation of ternary Al2CaSi2 and Al10CaFe2 compounds. The equilibrium between these compounds implies the occurrence of the quaternary L → Al + Al4Ca + Al2CaSi2 + Al10CaFe2 eutectic reaction. The alloys near this eutectic have the best structure, which is typical of aluminum matrix composites. It is shown that Al-Ca alloys can have high manufacturability during both shape casting and rolling. This is due to the combination of a narrow temperature range of solidification and a favorable morphology for the eutectic, which has a fine structure. The combination of the mechanical and physical properties of the Al-Ca eutectic-based alloys significantly exceed those of branded alloys based on aluminum-silicon eutectics.
NASA Astrophysics Data System (ADS)
Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu
2014-07-01
By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramudu, M., E-mail: macrams2@gmail.com; Raja, M. Manivel; Kamat, S. V.
2016-05-23
The partial substitution of Si with B on the structural and magnetic properties of Co{sub 2}FeSi{sub 1-x}Bx (x = 0-0.5) alloys was systematically investigated. X-ray and microstructural investigations show the presence of second phase at the grain boundaries which increases with increasing boron content. From thermal analysis studies, it was observed that L2{sub 1}-B2 ordering temperature remain constant whereas the melting point decreases with increase in boron addition and merges with ordering temperature at x = 0.5. The increase in T{sub C} for the alloys x ≥ 0.25 was attributed to the increase in second phase due to boron.
NASA Astrophysics Data System (ADS)
Pedro, S. S.; Caraballo Vivas, R. J.; Andrade, V. M.; Cruz, C.; Paixão, L. S.; Contreras, C.; Costa-Soares, T.; Caldeira, L.; Coelho, A. A.; Carvalho, A. Magnus G.; Rocco, D. L.; Reis, M. S.
2015-01-01
The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe2MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system, but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.
1986-08-28
beneath the Cr 0 layer. ’ 2~ 2 3 Nickel and cobalt based alloys were also tested with additions of Si N. . IN 3 4 particles and were found to behave in a...additions of Si ION, a high temperature compound found in the P*~~ 4 f°.-0 Si"Ali-O-N system, to cobalt - chromium alloys4 The particular SiAlON used in...a chromium spinel appeared as a product aLong with CrO0 Fe0. and Fe0 . At higher chromium concentrations Fe 0 was eliminat das a- detectable product
NASA Astrophysics Data System (ADS)
Mitra, A.; Kim, H.-Y.; Louzguine, D. V.; Nishiyama, N.; Shen, B.; Inoue, A.
2004-07-01
Crystallisation behaviour and magnetic properties of as-spun and annealed Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy have been studied. The annealing was performed at 873 K for 15 min. XRD and TEM studies shows the formation of nanocrystalline α-(Fe,Co)(SiAl) particles with 7.5±2 nm in diameter dispersed in an amorphous matrix. The Curie temperature of the as-spun amorphous ribbon is 736 K. Saturation magnetisation of the annealed sample decreases at a rate of 0.5 emu/g/K in the measured temperature range of 300-1000 K. Excellent room temperature AC magnetic properties are achieved for the nanocrystalline sample. The low value of the imaginary part of the permeability and the high cut-off frequency (20 kHz) suggest that the eddy current contribution in the annealed materials is low. The coercivity of the annealed sample remains almost constant at 95 A/m up to the frequency of 20 kHz. High saturation magnetisation, high Curie temperature and excellent soft magnetic properties in the nanocrystalline state suggests that Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy is a strong candidate for high temperature magnetic application.
NASA Astrophysics Data System (ADS)
Bannenberg, L. J.; Kakurai, K.; Falus, P.; Lelièvre-Berna, E.; Dalgliesh, R.; Dewhurst, C. D.; Qian, F.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.
2017-04-01
We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of the structural and dynamical aspects of the helimagnetic transition in Fe1 -xCoxSi with x =0.30 . In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1 -xCoxSi is gradual, and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1 -xCoxSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.
Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.
Lee, Chung-Hyo
2018-02-01
We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.
Magnetic interactions in BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices
NASA Astrophysics Data System (ADS)
Xu, Qingyu; Sheng, Yan; Khalid, M.; Cao, Yanqiang; Wang, Yutian; Qiu, Xiangbiao; Zhang, Wen; He, Maocheng; Wang, Shuangbao; Zhou, Shengqiang; Li, Qi; Wu, Di; Zhai, Ya; Liu, Wenqing; Wang, Peng; Xu, Y. B.; Du, Jun
2015-03-01
The clear understanding of exchange interactions between magnetic ions in substituted BiFeO3 is the prerequisite for the comprehensive studies on magnetic properties. BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices have been fabricated by pulsed laser deposition on (001) SrTiO3 substrates. Using piezoresponse force microscopy (PFM), the ferroelectricity at room temperature has been inferred from the observation of PFM hysteresis loops and electrical writing of ferroelectric domains for both samples. Spin glass behavior has been observed in both samples by temperature dependent magnetization curves and decay of thermo-remnant magnetization with time. The magnetic ordering has been studied by X-ray magnetic circular dichroism measurements, and Fe-O-Mn interaction has been confirmed to be antiferromagnetic (AF). The observed spin glass in BiFe0.5Mn0.5O3 films has been attributed to cluster spin glass due to Mn-rich ferromagnetic (FM) clusters in AF matrix, while spin glass in BiFeO3/BiMnO3 superlattices is due to competition between AF Fe-O-Fe, AF Fe-O-Mn and FM Mn-O-Mn interactions in the well ordered square lattice with two Fe ions in BiFeO3 layer and two Mn ions in BiMnO3 layer at interfaces.
Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites
NASA Technical Reports Server (NTRS)
Rhatt, R. T.; Phillips, R. E.
1988-01-01
The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.
Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Phillips, Ronald E.
1990-01-01
The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2) sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.
NASA Astrophysics Data System (ADS)
Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng
2018-03-01
This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.
NASA Astrophysics Data System (ADS)
Liu, Bingbing; Zhang, Yuanbo; Wang, Juan; Wang, Jia; Su, Zijian; Li, Guanghui; Jiang, Tao
2018-06-01
Magnetic reduction roasting followed by magnetic separation process is reported as a simple route to realize separation of Mn and Fe from ferruginous manganese ores (Fe-Mn ores). However, the separation and recovery of Mn and Fe oxides are not very effective. This work clarified the underlying reason for the poor separation and also proposed some suggestions for the magnetic reduction process. In this work, the effect of temperature on the magnetic reduction roasting - magnetic separation of Fe-Mn ore was investigated firstly. Then the reduction behaviors of MnO2-Fe2O3 system and MnO2-Fe2O3-10 wt.%SiO2 system under 10 vol.% CO-90 vol.% CO2 at 600-1000 °C were investigated by XRD, XPS, SEM-EDS, VSM, DSC and thermodynamics analyses. Reduction and separation tests showed that higher reduction temperature was beneficial to the recovery of iron while it's not in favor of the recovery of manganese when the temperature was over 800 °C. The formation of composite oxide MnxFe3-xO4 with strong magnetism between the interface of the MnO2 and Fe2O3 particles leaded to the poor separation of iron and manganese. In addition, the formation mechanism of MnxFe3-xO4 from MnO2 and Fe2O3 as well as the interface reaction reduced under 10 vol.% CO was discussed in this study. Finally, some suggestions were recommended for the magnetic reduction roasting for utilizing the Fe-Mn ores effectively.
NASA Astrophysics Data System (ADS)
Decolvenaere, Elizabeth; Gordon, Michael; Seshadri, Ram; Van der Ven, Anton
2017-10-01
Many Heusler compounds possess magnetic properties well suited for applications as spintronic materials. The pseudobinary Mn0.5Fe0.5Ru2Sn , formed as a solid solution of two full Heuslers, has recently been shown to exhibit exchange hardening suggestive of two magnetic phases, despite existing as a single chemical phase. We have performed a first-principles study of the chemical and magnetic degrees of freedom in the Mn1 -xFexRu2Sn pseudobinary to determine the origin of the unique magnetic behavior responsible for exchange hardening within a single phase. We find a transition from antiferromagnetic (AFM) to ferromagnetic (FM) behavior upon replacement of Mn with Fe, consistent with experimental results. The lowest energy orderings in Mn1 -xFexRu2Sn consist of chemically and magnetically uniform (111) planes, with Fe-rich regions preferring FM ordering and Mn-rich regions preferring AFM ordering, independent of the overall composition. Analysis of the electronic structure suggests that the magnetic behavior of this alloy arises from a competition between AFM-favoring Sn-mediated superexchange and FM-favoring RKKY exchange mediated by spin-polarized conduction electrons. Changes in valency upon replacement of Mn with Fe shifts the balance from superexchange-dominated interactions to RKKY-dominated interactions.
Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying
NASA Astrophysics Data System (ADS)
Omuro, Keisuke; Miura, Harumatsu
1991-05-01
Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.
Yang, Haibo; Zhang, Jintao; Lin, Ying; Wang, Tong
2017-01-01
Laminated magnetoelectric composites of Li0.058(Na0.535K0.48)0.942NbO3 (LKNN)/Co0.6Zn0.4Fe1.7Mn0.3O4 (CZFM) prepared by the conventional solid-state sintering method were investigated for their dielectric, magnetic, and magnetoelectric properties. The microstructure of the laminated composites indicates that the LKNN phase and CZFM phase can coexist in the composites. Compared with the particulate magnetoelectric composites, the laminated composites have better piezoelectric and magnetoelectric properties due to their higher resistances and lower leakage currents. The magnetoelectric behaviors lie on the relative mass ratio of LKNN phase and CZFM phase. The laminated composites possess a high Curie temperature (TC) of 463 °C, and the largest ME coefficient of 285 mV/cm Oe, which is the highest value for the lead-free bulk ceramic magnetoelectric composites so far. PMID:28338006
Tempering of Mn and Mn-Si-V dual-phase steels
NASA Astrophysics Data System (ADS)
Speich, G. R.; Schwoeble, A. J.; Huffman, G. P.
1983-06-01
Changes in the yield behavior, strength, and ductility of a Mn and a Mn-Si-V d11Al-phase (ferrite-martensite) steel were investigated after tempering one hour at 200 to 600 °C. The change in yield behavior was complex in both steels with the yield strength first increasing and then decreasing as the tempering temperature was increased. This complex behavior is attributed to a combination of factors including carbon segregation to dislocations, a return of discontinuous yielding, and the relief of resid11Al stresses. In contrast, the tensile strength decreased continuously as the tempering temperature was increased in a manner that could be predicted from the change in hardness of the martensite phase using a simple composite strengthening model. The initial tensile ductility (total elongation) of the Mn-Si-V steel was much greater than that of the Mn steel. However, upon tempering up to 400 °C, the ductility of the Mn-Si-V decreased whereas that of the Mn steel increased. As a result, both steels had similar ductilities after tempering at 400 °C or higher temperatures. These results are attributed to the larger amounts of retained austenite in the Mn-Si-V steel (9 pct) compared to the Mn steel (3 pct) and its contribution to tensile ductility by transforming to martensite during plastic straining. Upon tempering at 400 °C, the retained austenite decomposes to bainite and its contribution to tensile ductility is eliminated.
Negative Thermal Expansion over a Wide Temperature Range in Fe-doped MnNiGe Composites
NASA Astrophysics Data System (ADS)
Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong
2018-02-01
Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23×10-6 K-1 (192-305 K) and -1167.09×10-6 K-1 (246-305 K) have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from -64.92×10-6 K-1 (125-274 K) to -4.73×10-6 K-1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Blass, G.; Pekov, I. V.; Belakovskiy, D. I.; Van, K. V.; Rastsvetaeva, R. K.; Aksenov, S. M.
2012-12-01
Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2 V meas = 50(10)°, 2 V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe{0.53/2+}Mn0.38Mg0.08)Σ0.99(Ti2.44Fe{0.80/3+}Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/ a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [ d, Å ( I, %) ( hkl)]: 5.19 (40) (110), 3.53 (40) (overline 3 11), 2.96 (100) (overline 3 13, 311), 2.80 (50) (020), 2.14 (50) (overline 4 22, overline 3 15, 313), 1.947 (50) (024, 223), 1.657 (40) (overline 4 07, overline 4 33, 331). The holotype specimen of perrierite-(La) is
Wang, Zhangwei; Wu, Margaret; Cai, Zhonghou; ...
2016-06-13
The microstructure and mechanical properties studies of a series of two-phase f.c.c./B2 (ordered b.c.c.) lamellar-structured, high entropy alloys (HEA) Fe 36Ni 18Mn 33Al 13Ti x with x up to 6 at. % Ti have been investigated. X-ray microanalysis in a TEM showed that the Ti resided mostly in the B2 phase. The lamellar spacing decreased significantly with increasing Ti content from 1.56 μm for the undoped alloy to 155 nm with an addition of 4 at. % Ti, leading to a sharp increase in room-temperature yield strength,σ y, from 270 MPa to 953 MPa, but with a concomitant decrease inmore » ductility from 22% elongation to 2.3%. Annealing at 1173 K for 20 h greatly increased the lamellar spacing of Fe 36Ni 18Mn 33Al 13Ti 4 to 577 nm, producing a corresponding decrease in σy to 511 MPa. The yield strengths of all the doped alloys decreased significantly when tensile tested at 973 K with a concomitant increase in ductility due to softening of the B2 phase. The fracture mode changed from cleavage at room temperature to a ductile dimple-type rupture at 973 K. Lastly, the results are discussed in terms of the Hall-Petch-type relationship.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhangwei; Wu, Margaret; Cai, Zhonghou
The microstructure and mechanical properties studies of a series of two-phase f.c.c./B2 (ordered b.c.c.) lamellar-structured, high entropy alloys (HEA) Fe 36Ni 18Mn 33Al 13Ti x with x up to 6 at. % Ti have been investigated. X-ray microanalysis in a TEM showed that the Ti resided mostly in the B2 phase. The lamellar spacing decreased significantly with increasing Ti content from 1.56 μm for the undoped alloy to 155 nm with an addition of 4 at. % Ti, leading to a sharp increase in room-temperature yield strength,σ y, from 270 MPa to 953 MPa, but with a concomitant decrease inmore » ductility from 22% elongation to 2.3%. Annealing at 1173 K for 20 h greatly increased the lamellar spacing of Fe 36Ni 18Mn 33Al 13Ti 4 to 577 nm, producing a corresponding decrease in σy to 511 MPa. The yield strengths of all the doped alloys decreased significantly when tensile tested at 973 K with a concomitant increase in ductility due to softening of the B2 phase. The fracture mode changed from cleavage at room temperature to a ductile dimple-type rupture at 973 K. Lastly, the results are discussed in terms of the Hall-Petch-type relationship.« less
Enhanced Azo-Dyes Degradation Performance of Fe-Si-B-P Nanoporous Architecture
Weng, Nan; Wang, Feng; Qin, Fengxiang; Tang, Wanying; Dan, Zhenhua
2017-01-01
Nanoporous structures were fabricated from Fe76Si9B10P5 amorphous alloy annealed at 773 K by dealloying in 0.05 M H2SO4 solution, as a result of preferential dissolution of α-Fe grains in form of the micro-coupling cells between α-Fe and cathodic residual phases. Nanoporous Fe-Si-B-P powders exhibit much better degradation performance to methyl orange and direct blue azo dyes compared with gas-atomized Fe76Si9B10P5 amorphous powders and commercial Fe powders. The degradation reaction rate constants of nanoporous powders are almost one order higher than those of the amorphous counterpart powders and Fe powders, accompanying with lower activation energies of 19.5 and 26.8 kJ mol−1 for the degradation reactions of methyl orange and direct blue azo dyes, respectively. The large surface area of the nanoporous structure, and the existence of metalloids as well as residual amorphous phase with high catalytic activity are responsible for the enhanced azo-dyes degradation performance of the nanoporous Fe-Si-B-P powders. PMID:28846622
NASA Astrophysics Data System (ADS)
Yao, Atsushi; Inoue, Masaki; Tsukada, Kouhei; Fujisaki, Keisuke
2018-05-01
This paper focuses on an evaluation of core losses in laminated magnetic block cores assembled with a high Bs nanocrystalline alloy in high magnetic flux density region. To discuss the soft magnetic properties of the high Bs block cores, the comparison with amorphous (SA1) block cores is also performed. In the high Bs block core, both low core losses and high saturation flux densities Bs are satisfied in the low frequency region. Furthermore, in the laminated block core made of the high Bs alloy, the rate of increase of iron losses as a function of the magnetic flux density remains small up to around 1.6 T, which cannot be realized in conventional laminated block cores based on amorphous alloy. The block core made of the high Bs alloy exhibits comparable core loss with that of amorphous alloy core in the high-frequency region. Thus, it is expected that this laminated high Bs block core can achieve low core losses and high saturation flux densities in the high-frequency region.
Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels
NASA Astrophysics Data System (ADS)
Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor
2013-06-01
Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.
Magnetic and electrical properties of several Mn-based amorphous alloys
NASA Astrophysics Data System (ADS)
Obi, Y.; Morita, H.; Fujimori, H.
1987-03-01
Magnetic and electrical properties of amorphous Mn-Y, Mn-Zr, and Mn-Nb alloys have been investigated. All these alloys have a temperature-dependent susceptibility which is well fitted by a Curie-Weiss law. This implies the existence of localized magnetic moments associated with the Mn atoms. In addition, amorphous Mn-Y alloys exhibit spin-glass characteristics at low temperature. The experimental results of the electrical resistivity show that the temperature coefficient of resistivity (TCR) of both Mn-Y and Mn-Zr are negative, while Mn-Nb has a positive TCR. On the other hand, the resistivity-temperature curves of Mn-Zr and Mn-Nb have nearly the same tendency but are different from that of Mn-Y.
NASA Astrophysics Data System (ADS)
Park, Jae-Hyung; Han, Dong-Suk; Kim, Kyoung-Deok; Park, Jong-Wan
2018-02-01
This study investigated the effect of plasma pretreatment on the process of a self-forming Cu-Mn alloy barrier on porous low-k dielectrics. To study the effects of plasma on the performance of a self-formed Mn-based barrier, low-k dielectrics were pretreated with H2 plasma or NH3 plasma. Cu-Mn alloy materials on low-k substrates that were subject to pretreatment with H2 plasma exhibited lower electrical resistivity values and the formation of thicker Mn-based interlayers than those on low-k substrates that were subject to pretreatment with NH3 plasma. Transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS), and thermal stability analyses demonstrated the exceptional performance of the Mn-based interlayer on plasma-pretreated low-k substrates with regard to thickness, chemical composition, and reliability. Plasma treating with H2 gas formed hydrophilic Si-OH bonds on the surface of the low-k layer, resulting in Mn-based interlayers with greater thickness after annealing. However, additional moisture uptake was induced on the surface of the low-k dielectric, degrading electrical reliability. By contrast, plasma treating with NH3 gas was less effective with regard to forming a Mn-based interlayer, but produced a Si-N/C-N layer on the low-k surface, yielding improved barrier characteristics.
Fluxing purification and its effect on magnetic properties of high-Bs FeBPSiC amorphous alloy
NASA Astrophysics Data System (ADS)
Pang, Jing; Wang, Anding; Yue, Shiqiang; Kong, Fengyu; Qiu, Keqiang; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan
2017-07-01
A high-Bs amorphous alloy with the base composition Fe83B11P3Si2C1 was used to study the effects of fluxing purification on amorphous forming ability and magnetic properties of the alloy prepared with raw materials in industrialization. By using fluxing purification, the surface crystallization was suppressed and fully amorphous Fe83B11P3Si2C1 ribbons with a maximum thickness of 48 μm were successfully achieved by using an industrial process and materials. The amorphous ribbons made with industrial-purified alloys exhibit excellent magnetic properties, containing high-Bs of 1.65 T, low Hc of 2.0 A/m, and high μe of 9.7 × 103 at 1 kHz. Impurities in the melting alloys exist in three forms and have different effluences on magnetic properties. The surface crystallization was triggered by the impurities which exist as high melting point inclusions serving as nuclei. Thus, fluxing purification is a feasible way for industrialization of high-Bs FeBPSiC amorphous alloys.
Zhang, Yujie; Chen, Junhong; Fan, Huili; Chou, Kuo-Chih; Hou, Xinmei
2015-12-14
In this research, we demonstrate a simple route for preparing SiC@SiO2 core-shell nanocables and furthermore obtain SiC@SiO2 nanocables/MnO2 as hybrid electrodes for supercapacitors using various modified methods. The modified procedure consists of mild modifications using sodium hydroxide as well as UV light irradiation and deposition of MnO2. The morphology and microstructural characteristics of the composites are investigated using XRD, XPS, FE-SEM with EDS and TEM. The results indicate that the surfaces of modified SiC@SiO2 nanocables are uniformly coated with a MnO2 thin layer. The electrochemical behaviors of the hybrid electrodes are systematically measured in a three-electrode system using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The resultant electrode presents a superb charge storage characteristic with a large specific capacitance of 276.3 F g(-1) at the current density of 0.2 A g(-1). Moreover, the hybrid electrode also displays a long cycle life with a good capacitance retention (∼92.0%) after 1000 CV cycles, exhibiting a promising potential for supercapacitors.
Magneto Caloric Effect in Ni-Mn-Ga alloys: First Principles and Experimental studies
NASA Astrophysics Data System (ADS)
Odbadrakh, Khorgolkhuu; Nicholson, Don; Brown, Gregory; Rusanu, Aurelian; Rios, Orlando; Hodges, Jason; Safa-Sefat, Athena; Ludtka, Gerard; Eisenbach, Markus; Evans, Boyd
2012-02-01
Understanding the Magneto-Caloric Effect (MCE) in alloys with real technological potential is important to the development of viable MCE based products. We report results of computational and experimental investigation of a candidate MCE materials Ni-Mn-Ga alloys. The Wang-Landau statistical method is used in tandem with Locally Self-consistent Multiple Scattering (LSMS) method to explore magnetic states of the system. A classical Heisenberg Hamiltonian is parametrized based on these states and used in obtaining the density of magnetic states. The Currie temperature, isothermal entropy change, and adiabatic temperature change are then calculated from the density of states. Experiments to observe the structural and magnetic phase transformations were performed at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Fe-Ni-Mn-Ga-Cu. Data from the observations are discussed in comparison with the computational studies. This work was sponsored by the Laboratory Directed Research and Development Program (ORNL), by the Mathematical, Information, and Computational Sciences Division; Office of Advanced Scientific Computing Research (US DOE), and by the Materials Sciences and Engineering Division; Office of Basic Energy Sciences (US DOE).
Advanced nickel base alloys for high strength, corrosion applications
Flinn, John E.
1998-01-01
Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.
NASA Astrophysics Data System (ADS)
Osetkovsky, I. V.; Kozyrev, N. A.; Kryukov, R. E.; Usoltsev, A. A.; Gusev, A. I.
2017-09-01
The effect of introduction of cobalt in the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system operating under abrasive and abrasive-shock loads is studied. In the laboratory conditions samples of flux cored wires were made, deposition was performed, the effect of cobalt on the hardness and the degree of wear was evaluated, metallographic studies were carried out. The influence of cobalt introduced into the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system on the structure, nature of nonmetallic inclusions, hardness and wear resistance of the weld metal was studied. In the laboratory conditions samples flux cored wire were made using appropriate powdered materials. As a carbon-fluorine-containing material dust from gas cleaning units of aluminum production was used. In the course of the study the chemical composition of the weld metal was determined, metallographic analysis was performed, mechanical properties were determined. As a result of the metallographic analysis the size of the former austenite grain, martensite dispersion in the structure of the weld metal, the level of contamination with its nonmetallic inclusions were established.
Reaction of amorphous/crystalline SiOC/Fe interfaces by thermal annealing
Su, Qing; Zhernenkov, Mikhail; Ding, Hepeng; ...
2017-06-12
The development of revolutionary new alloys and composites is crucial to meeting materials requirements for next generation nuclear reactors. The newly developed amorphous silicon oxycarbide (SiOC) and crystalline Fe composite system has shown radiation tolerance over a wide range of temperatures. To advance understanding of this new composite, we investigate the structure and thermal stability of the interface between amorphous SiOC and crystalline Fe by combining various experimental techniques and simulation methods. We show that the SiOC/Fe interface is thermally stable up to at least 400 °C. When the annealing temperature reaches 600 °C, an intermixed region forms at thismore » interface. This region appears to be a crystalline phase that forms an incoherent interface with the Fe layer. Density functional theory (DFT) Molecular dynamics (MD) is performed on the homogeneous SiFeOC phase to study the early stages of 2 formation of the intermixed layer. Both experimental and simulation results suggest this phase has the fayalite crystal structure. As a result, the physical processes involved in the formation of the intermixed region are discussed.« less
NASA Astrophysics Data System (ADS)
Xu, Yi; Nagaumi, Hiromi; Han, Yi; Zhang, Gongwang; Zhai, Tongguang
2017-03-01
Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s-1 after casting and subsequent homogenization heat treatment. The true stress-true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.
NASA Astrophysics Data System (ADS)
Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.
2018-05-01
High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.
NASA Astrophysics Data System (ADS)
Faisal, M.; Mazni, Noor; Prasada Rao, A. K.
2018-03-01
Reported work focusses on the effect of 1.0% Ni addition on the microstructure, high- temperature impression creep and thereby the hardness of recycled Al-alloy containing >2wt% Fe, obtained from automotive scrap. Present studies have shown that the addition of 1.0% Ni have supress the formation of α-phase (Al5FeSi) by supressing the peritectic transformation of β-phase (Al8Fe2Si). Such suppression is found to improve the hardness and high-temperature impression creep of the recycled aluminium alloy.
Electronic transport properties of nanostructured MnSi-films
NASA Astrophysics Data System (ADS)
Schroeter, D.; Steinki, N.; Scarioni, A. Fernández; Schumacher, H. W.; Süllow, S.; Menzel, D.
2018-05-01
MnSi, which crystallizes in the cubic B20 structure, shows intriguing magnetic properties involving the existence of skyrmions in the magnetic phase diagram. Bulk MnSi has been intensively investigated and thoroughly characterized, in contrast to MnSi thin film, which exhibits widely varying properties in particular with respect to electronic transport. In this situation, we have set out to reinvestigate the transport properties in MnSi thin films by means of studying nanostructure samples. In particular, Hall geometry nanostructures were produced to determine the intrinsic transport properties.
NASA Astrophysics Data System (ADS)
Galdun, L.; Ryba, T.; Prida, V. M.; Zhukova, V.; Zhukov, A.; Diko, P.; Kavečanský, V.; Vargova, Z.; Varga, R.
2018-05-01
Large scale production of single crystalline phase of Heusler Co2FeSi alloy microwire is reported. The long microwire (∼1 km) with the metallic nucleus diameter of about 2 μm is characterized by well oriented monocrystalline structure (B2 phase, with the lattice parameter a = 5.615 Å). Moreover, the crystallographic direction [1 0 1] is parallel to the wire's axis along the entire length. Additionally, the wire is characterized by exhibiting a high Curie temperature (Tc > 800 K) and well-defined magnetic anisotropy mainly governed by shape. Electrical resistivity measurement reveals the exponential suppression of the electron-magnon scattering which provides strong evidence on the half-metallic behaviour of this material in the low temperature range.
The Development of the Low-Cost Titanium Alloy Containing Cr and Mn Alloying Elements
NASA Astrophysics Data System (ADS)
Zhu, Kailiang; Gui, Na; Jiang, Tao; Zhu, Ming; Lu, Xionggang; Zhang, Jieyu; Li, Chonghe
2014-04-01
The α + β-type Ti-4.5Al-6.9Cr-2.3Mn alloy has been theoretically designed on the basis of assessment of the Ti-Al-Cr-Mn thermodynamic system and the relationship between the molybdenum equivalent and mechanical properties of titanium alloys. The alloy is successfully prepared by the split water-cooled copper crucible, and its microstructures and mechanical properties at room temperature are investigated using the OM, SEM, and the universal testing machine. The results show that the Ti-4.5Al-6.9Cr-2.3Mn alloy is an α + β-type alloy which is consistent with the expectation, and its fracture strength, yield strength, and elongation reach 1191.3, 928.4 MPa, and 10.7 pct, respectively. Although there is no strong segregation of alloying elements under the condition of as-cast, the segregation of Cr and Mn is obvious at the grain boundary after thermomechanical treatment.
Revisiting Mn and Fe removal in humic rich estuaries
NASA Astrophysics Data System (ADS)
Oldham, Véronique E.; Miller, Megan T.; Jensen, Laramie T.; Luther, George W.
2017-07-01
Metal removal by estuarine mixing has been studied for several decades, but few studies emphasize dissolved metal speciation and organic ligand complexation. Findings from the last decade indicate that metal-humic complexation can be significant for dissolved metals including Cu(II), Al(III) and Fe(III), but little consideration is given to the precipitation of these complexes with humic material at pH < 2. Given that total soluble metal analysis involves an acidification step for sample preservation, we show that Mn and other metal concentrations may have been underestimated in estuaries, especially when humic substance concentrations are high. A competitive ligand assay of selected samples from our study site, a coastal waterway bordered by wetlands (Broadkill River, DE), showed that Mn(III)-humic complexation is significant, and that some Mn(III)-L complexes precipitate during acidification. In the oxygenated surface waters of the Broadkill River, total dissolved Mn (dMnT) was up to 100% complexed to ambient ligands as Mn(III)-L, and we present evidence for humic-type Mn(III)-L complexes. The Mn(III) complexes were kinetically stabilized against Fe(II) reduction, even when [Fe(II)] was 17 times higher than [dMnT]. Unlike typical oceanic surface waters, [Fe(II)] > [Fe(III)-L] in surface waters, which may be attributed to high rates of photoreduction of Fe(III)-L complexes. Total [Mn(III)-L] ranged from 0.22 to 8.4 μM, in excess of solid MnOx (below 0.28 μM in all samples). Filtration of samples through 0.02 μm filters indicated that all Mn(III)-L complexes pass through the filters and were not colloidal species in contrast to dissolved Fe. Incubation experiments indicated that the reductive dissolution of solid MnOx by ambient ligands may be responsible for Mn(III) formation in this system. Unlike previous studies of estuarine mixing, which demonstrated metal removal during mixing, we show significant export of dMn and dissolved Fe (dFe) in the summer and fall
Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites
Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong
2018-01-01
Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of −285.23 × 10−6 K−1 (192–305 K) and −1167.09 × 10−6 K−1 (246–305 K) have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from −64.92 × 10−6 K−1 (125–274 K) to −4.73 × 10−6 K−1 (173–229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment. PMID:29468152
Schuh, B.; Mendez-Martin, F.; Völker, B.; ...
2015-06-24
An equiatomic CoCrFeMnNi high-entropy alloy (HEA), produced by arc melting and drop casting, was subjected to severe plastic deformation (SPD) using high-pressure torsion. This process induced substantial grain refinement in the coarse-grained casting leading to a grain size of approximately 50 nm. As a result, strength increased significantly to 1950 MPa, and hardness to similar to 520 MV. Analyses using transmission electron microscopy (TEM) and 3-dimensional atom probe tomography (3D-APT) showed that, after SPD, the alloy remained a true single-phase solid solution down to the atomic scale. Subsequent investigations characterized the evolution of mechanical properties and microstructure of this nanocrystallinemore » HEA upon annealing. Isochronal (for 1 h) and isothermal heat treatments were performed followed by microhardness and tensile tests. The isochronal anneals led to a marked hardness increase with a maximum hardness of similar to 630 HV at about 450 degrees C before softening set in at higher temperatures. The isothermal anneals, performed at this peak hardness temperature, revealed an additional hardness rise to a maximum of about 910 MV after 100 h. To clarify this unexpected annealing response, comprehensive microstructural analyses were performed using TEM and 3D-APT. New nano-scale phases were observed to form in the originally single-phase HEA. After times as short as 5 min at 450 degrees C, a NiMn phase and Cr-rich phase formed. With increasing annealing time, their volume fractions increased and a third phase, FeCo, also formed. It appears that the surfeit of grain boundaries in the nanocrystalline HEA offer many fast diffusion pathways and nucleation sites to facilitate this phase decomposition. The hardness increase, especially for the longer annealing times, can be attributed to these nano-scaled phases embedded in the HEA matrix. The present results give new valuable insights into the phase stability of single-phase high-entropy alloys as
Effects of Fragmented Fe Intermetallic Compounds on Ductility in Al-Si-Mg Alloys.
Kim, JaeHwang; Kim, DaeHwan
2018-03-01
Fe is intentionally added in order to form the Fe intermetallic compounds (Fe-IMCs) during casting. Field emission scanning electron microscope with energy dispersive spectrometer (EDS) was conducted to understand microstructural changes and chemical composition analyses. The needlelike Fe-IMCs based on two dimensional observation with hundreds of micro size are modified to fragmented particles with the minimum size of 300 nm through clod rolling with 80% thickness reduction. The ratio of Fe:Si on the fragmented Fe-IMCs after 80% reduction is close to 1:1, representing the β-Al5FeSi. The yield and tensile strengths are increased with increasing reduction rate. On the other hand, the elongation is decreased with the 40% reduction, but slightly increased with the 60% reduction. The elongation is dramatically increased over two times for the specimen of 80% reduction compared with that of the as-cast. Fracture behavior is strongly affected by the morphology and size of Fe-IMCs. The fracture mode is changed from brittle to ductile with the microstructure modification of Fe-IMCs.
Zhang, Gaosheng; Liu, Huijuan; Qu, Jiuhui; Jefferson, William
2012-01-15
Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater. Copyright © 2011 Elsevier Inc. All rights reserved.
Evolution of Constitution, Structure, and Morphology in FeCo-Based Multicomponent Alloys
NASA Astrophysics Data System (ADS)
Li, R.; Stoica, M.; Liu, G.; Eckert, J.
2010-07-01
Constituent phases, melting behaviors, and microstructure of multicomponent (Fe0.5Co0.5) x (Mo0.1C0.2B0.5Si0.2)100- x alloys ( x = 95, 90, 85, 80, and 70) produced by copper mold casting were evaluated by various analysis techniques, i.e., X-ray diffractometry, scanning electronic microscopy with energy dispersive X-ray spectrometry, and differential scanning calorimetry. Metastable Fe3C- and Cr23C6-type phases were identified in the chill-cast alloys. A schematic illustration was proposed to explain the evolution of constituent phases and microstructure for the alloys with x = 95, 90, and 85 during the solidification process, which could be applicable to controlling microstructural formation of other multicomponent alloys with similar microstructures by artificially adjusting the composition.
1981-09-01
OF A BRAZING ALLOY FOR THE MECHANICALLY ALLOYED HIGH TEMPERATURE SHEET MATERIAL INCOLOY ALLOY MA 956 W. E. Morgan and Dr. P. J. Bridges N. Wiggin...PERIOD COVERED DEVELOPMENT OF A BRAZING ALLOY FOR THE Final Report MECHANICALLY ALLOYED HIGH TEMPERATURE Dec 1978 - March 1981 SHEET MATERIAL INCOLOY...block nomber) High temperature ODS alloys, Braze development, Braze alloys, INCOLOY MA 956, Ni-Cr-Pd, Fe-Cr-Pd, Ni-Cr-Ge, Fe-Cr-Ge, Fe-Cr-B, Fe-Cr-Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T. K.; Wu, Z.; Stoica, A. D.
The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less
Liu, T. K.; Wu, Z.; Stoica, A. D.; ...
2017-06-17
The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less
Advanced nickel base alloys for high strength, corrosion applications
Flinn, J.E.
1998-11-03
Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel.
Li, Fangjie; Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-10-19
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as "pre-alloying", has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7-4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3-5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards.
NASA Astrophysics Data System (ADS)
Pradines, B.; Arras, R.; Calmels, L.
2017-10-01
The full-Heusler alloy Co2MnSi is a promising highly spin-polarized magnetic metal for spintronic applications. However, significant differences have been reported between the computed properties of the ideal material and the properties of real samples measured in experiments. In this paper, we study the influence of atom vacancies on the electronic structure and on the magnetic properties of Co2MnSi, as these defects could explain the disagreement between the expected and measured behavior of this alloy. The effects of atom vacancies have been calculated from first principles, using the fully relativistic Korringa-Kohn-Rostoker (KKR) method in conjunction with the coherent potential approximation (CPA) and the linear response formalism.
Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Peng, Huabei; Huang, Pan; Zhou, Tiannan; Wang, Shanling; Wen, Yuhua
2017-05-01
In this study, we investigated the shape memory behavior and phase transformations of solution-treated Fe43.61Mn34.74Al13.38Ni8.27 alloy between room temperature and 1173 K (900 °C). This alloy exhibits the reverse shape memory effect resulting from the phase transformation of α (bcc) → γ (fcc) between 673 K and 1073 K (400 °C and 800 °C) in addition to the shape memory effect resulting from the martensitic reverse transformation of γ' (fcc) → α (bcc) below 673 K (400 °C). There is a high density of hairpin-shaped dislocations in the α phase undergoing the martensitic reverse transformation of γ' → α. The lath γ phase, which preferentially nucleates and grows in the reversed α phase, has the same crystal orientation with the reverse-transformed γ' martensite. However, the vermiculate γ phase, which is precipitated in the α phase between lath γ phase, has different crystal orientations. The lath γ phase is beneficial to attaining better reverse shape memory effect than the vermiculate γ phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedro, S. S., E-mail: sandrapedro@uerj.br; Caraballo Vivas, R. J.; Andrade, V. M.
2015-01-07
The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe{sub 2}MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system,more » but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.« less
Drynda, Andreas; Hassel, Thomas; Bach, Friedrich Wilhelm; Peuster, Matthias
2015-04-01
The principle of biodegradation for the production of temporary implant materials (e.g. stents) plays an important role in the treatment of congenital heart defects. In the last decade several attempts have been made with different alloy materials-mainly based on iron and magnesium. None of the currently available materials in this field have demonstrated satisfying results and have therefore not found entry into broad clinical practice. While magnesium or magnesium alloy systems corrode too fast, the corrosion rate of pure iron-stents is too slow for cardiovascular applications. In the last years FeMn alloy systems were developed with the idea that galvanic effects, caused by different electrochemical properties of Fe and Mn, would increase the corrosion rate. In vitro tests with alloys containing up to 30% Mn showed promising results in terms of biocompatibility. This study deals with the development of new FeMn alloy systems with lower Mn concentrations (FeMn 0.5 wt %, FeMn 2.7 wt %, FeMn 6.9 wt %) to avoid Mn toxicity. Our results show, that these alloys exhibit good mechanical features as well as suitable in vitro biocompatibility and corrosion properties. In contrast, the evaluation of these alloys in a mouse model led to unexpected results-even after 9 months no significant corrosion was detectable. Preliminary SEM investigations showed that passivation layers (FeMn phosphates) might be the reason for corrosion resistance. If this can be proved in further experiments, strategies to prevent or dissolve those layers need to be developed to expedite the in vivo corrosion of FeMn alloys. © 2014 Wiley Periodicals, Inc.
CONSTITUTIVE BEHAVIOR OF AS-QUENCHED Al-Cu-Mn ALLOY
NASA Astrophysics Data System (ADS)
Yang, Xia-Wei; Zhu, Jing-Chuan; Nong, Zhi-Sheng; Ye, Mao; Lai, Zhong-Hong; Liu, Yong
2013-07-01
The hot flow stress of as-quenched Al-Cu-Mn alloy was modeled using the constitutive equations. The as-quenched Al-Cu-Mn alloy were treated with isothermal hot compression tests in the temperature range of 350-500°C, the strain rate range of 0.001-1 s-1. The hyperbolic sine equation was found to be appropriate for flow stress modeling and prediction. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched Al-Cu-Mn alloy was determined to be 251.314 kJ/mol. Parameters of constitutive equation of as-quenched Al-Cu-Mn alloy were calculated at different small strains (≤ 0.01). The calculated flow stresses from the constitutive equation are in good agreement with the experimental results. Therefore, this constitutive equation can be used as an accurate temperature-stress model to solve the problems of quench distortion of Al-Cu-Mn alloy parts.
On the Formation of Sludge Intermetallic Particles in Secondary Aluminum Alloys
NASA Astrophysics Data System (ADS)
Ferraro, Stefano; Bjurenstedt, Anton; Seifeddine, Salem
2015-08-01
The primary precipitation of Fe-rich intermetallics in AlSi9Cu3(Fe) type alloys is studied for different Fe, Mn, and Cr contents and cooling rates. Differential scanning calorimetry, thermal analysis, and interrupted solidification with a rapid quenching technique were used in combination in order to assess the nucleation temperature of sludge particles, as well as to follow their evolution. The results revealed that the sludge nucleation temperature and the release of latent heat during sludge formation are functions of Fe, Mn, and Cr levels in the molten alloy ( i.e., the sludge factor, SF) and cooling rate. Moreover, it can be concluded that sensitivity to sludge formation is not affected by cooling rate; i.e., a decrease in the SF will reduce sludge nucleation temperature to the same extent for a higher cooling rate as for a lower cooling rate. The sludge formation temperature detected will assist foundries in setting the optimal molten metal temperature for preventing sludge formation in holding furnaces and plunger systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laplanche, Guillaume; Bonneville, J.; Varvenne, C.
To reveal the operating mechanisms of plastic deformation in an FCC high-entropy alloy, the activation volumes in CrMnFeCoNi have been measured as a function of plastic strain and temperature between 77 K and 423 K using repeated load relaxation experiments. At the yield stress, σ y, the activation volume varies from ~60 b3 at 77 K to ~360 b 3 at 293 K and scales inversely with yield stress. With increasing plastic strain, the activation volume decreases and the trends follow the Cottrell-Stokes law, according to which the inverse activation volume should increase linearly with σ - σ y (Haasenmore » plot). This is consistent with the notion that hardening due to an increase in the density of forest dislocations is naturally associated with a decrease in the activation volume because the spacing between dislocations decreases. The values and trends in activation volume agree with theoretical predictions that treat the HEA as a high-concentration solid-solution-strengthened alloy. Lastly, these results demonstrate that this HEA deforms by the mechanisms typical of solute strengthening in FCC alloys, and thus indicate that the high compositional/structural complexity does not introduce any new intrinsic deformation mechanisms.« less
Laplanche, Guillaume; Bonneville, J.; Varvenne, C.; ...
2017-10-06
To reveal the operating mechanisms of plastic deformation in an FCC high-entropy alloy, the activation volumes in CrMnFeCoNi have been measured as a function of plastic strain and temperature between 77 K and 423 K using repeated load relaxation experiments. At the yield stress, σ y, the activation volume varies from ~60 b3 at 77 K to ~360 b 3 at 293 K and scales inversely with yield stress. With increasing plastic strain, the activation volume decreases and the trends follow the Cottrell-Stokes law, according to which the inverse activation volume should increase linearly with σ - σ y (Haasenmore » plot). This is consistent with the notion that hardening due to an increase in the density of forest dislocations is naturally associated with a decrease in the activation volume because the spacing between dislocations decreases. The values and trends in activation volume agree with theoretical predictions that treat the HEA as a high-concentration solid-solution-strengthened alloy. Lastly, these results demonstrate that this HEA deforms by the mechanisms typical of solute strengthening in FCC alloys, and thus indicate that the high compositional/structural complexity does not introduce any new intrinsic deformation mechanisms.« less
NASA Astrophysics Data System (ADS)
Kume, T.; Yamato, T.; Kato, T.; Tsunashima, S.; Iwata, S.
2007-03-01
Antiferromagnetic layer thickness dependences of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11 ( tAF nm)/Ni 80Fe 20 (5 nm) and Mn 80Ir 20 ( tAF nm)/Ni 80Fe 20 (5 nm) were investigated. For Mn 89Pt 11/NiFe, the exchange bias field appeared at tAF⩾5 nm. This critical thickness was found to be thicker than that of Mn 80Ir 20/NiFe ( tAF=3 nm). The thickness dependence of exchange bias field agreed well with that of 1-fold Fourier amplitude estimated from in-plane torque curves. The large coercivity of about 100 Oe was found for Mn 89Pt 11/NiFe at tAF=30 nm compared to that of Mn 80Ir 20/NiFe. The large coercivity in Mn 89Pt 11/NiFe bilayers seems to result from the large 4-fold anisotropy in their torque curve.
Desiliconization and decarburization behavior of molten Fe-C-Si(-S) alloy with CO2 and O2
NASA Astrophysics Data System (ADS)
Taguchi, Kenji; Ono-Nakazato, Hideki; Usui, Tateo; Marukawa, Katsukiyo
2003-12-01
One of the most important problems in the steelmaking process is an increase of the disposal slag mainly discharged from the dephosphorization process. In order to reduce the quantity of the disposal slag, the complete removal of silicon from molten pig iron is considered very effective before the dephosphorization in the pretreatment process. From this point of view, the desiliconization and the decarburization behavior of Fe-C-Si alloy with CO2 and O2 has been investigated in the present work. It is thermodynamically calculated that silicon should be oxidized in preference to carbon over 0.60 mass pct Si under the condition of sSiO2=a C=1 at 1573 K and is experimentally confirmed that silicon is only oxidized under the condition in actual. Even under the competitive region of desiliconizing and decarbonizing, under 0.60 mass pct Si, silicon is found to be oxidized down to about 0.1 mass pct Si in preference. The overall rate constants for the desiliconization and the decarburization are derived, and the value for the desiliconization is one order of magnitude larger than that for the decarburization. The influence of sulfur is also examined, and the retarding effect is not observed on the oxidation reactions.
Impact of Ion Bombardment on the Structure and Magnetic Properties of Fe78Si13B9 Amorphous Alloy
NASA Astrophysics Data System (ADS)
Wu, Yingwei; Peng, Kun
2018-06-01
Amorphous Fe78Si13B9 alloy ribbons were bombarded by ion beams with different incident angles ( θ ). The evolution of the microstructure and magnetic properties of ribbons caused by ion beam bombardment was investigated by x-ray diffraction, transmission electron microscope and vibrating sample magnetometer analysis. Low-incident-angle bombardment led to atomic migration in the short range, and high-incident-angle bombardment resulted in the crystallization of amorphous alloys. Ion bombardment induces magnetic anisotropy and affects magnetic properties. The effective magnetic anisotropy was determined by applying the law of approach to saturation, and it increased with the increase of the ion bombardment angle. The introduction of effective magnetic anisotropy will reduce the permeability and increase the relaxation frequency. Excellent high-frequency magnetic properties can be obtained by selecting suitable ion bombardment parameters.
NASA Astrophysics Data System (ADS)
Sakairi, Takanori; Ohtani, Eiji; Kamada, Seiji; Sakai, Takeshi; Sakamaki, Tatsuya; Hirao, Naohisa
2017-12-01
The phase and melting relations in the Fe-S-Si system were determined up to 60 GPa by using a double-sided laser-heated diamond anvil cell combined with X-ray diffraction. On the basis of the X-ray diffraction patterns, we confirmed that hcp/fcc Fe-Si alloys and Fe3S are stable phases under subsolidus conditions in the Fe-S-Si system. Both solidus and liquidus temperatures are significantly lower than the melting temperature of pure Fe and both increase with pressure. The slopes of the Fe-S-Si liquidus and solidus curves determined here are smaller than the adiabatic temperature gradients of the liquid cores of Mercury and Mars. Thus, crystallization of their cores started at the core-mantle boundary region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca
2013-12-15
The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less
NASA Astrophysics Data System (ADS)
Zhang, Yan; Sharma, Parmanand; Makino, Akihiro
2014-05-01
Fabrication of bulk cores of nano-crystalline Fe84.3Si4B8P3Cu0.7 alloy with a lamellar type of microstructure is reported. Amorphous ribbon flakes of size ˜1.0-2.0 mm were compacted in the bulk form by spark plasma sintering technique at different sintering temperatures. High density (˜96.4%) cores with a uniform nano-granular structure made from α-Fe (˜31 nm) were obtained. These cores show excellent mechanical and soft magnetic properties. The lamellar micro-structure is shown to be important in achieving significantly lower magnetic core loss than the non-oriented silicon steel sheets, commercial powder cores and even the core made of the same alloy with finer and randomly oriented powder particles.
High-Performance MnBi Alloy Prepared Using Profiled Heat Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Van V.; Poudyal, Narayan; Liu, Xubo
2014-12-01
The profiled heat treatment (PHT) method has been used to synthesize MnBi alloys with high-purity low-temperature phase (LTP). In the PHT method, the arc-melted MnBi alloy was remelted then slowly cooled by a pseudo-equilibrium solidification process to promote the formation of LTP phase. The PHT-treated MnBi alloys had an LTP phase up to 94 wt.% and a magnetization of 73 emu/g under a field of 9 T. Scanning electron microscopy showed that there exist some micrometer-sized Mn-rich inclusions in the LTP matrix of the PHT MnBi alloy. The PHT MnBi alloys were crushed into powders with an average size ofmore » ~3 μm by low-energy ball milling. These MnBi powders were aligned in an 18 kOe field and warm compacted into a bulk magnet at 300 °C for 30 min. The magnet had a density of 8.2 g/cm3 and magnetic properties of Ms = 6.7 kG, Mr = 5.3 kGs, i Hc = 5 kOe, and (BH)max = 6.1 MGOe« less
Magnetic and electrical properties of FeSi/FeSi-ZrO 2 multilayers prepared by EB-PVD
NASA Astrophysics Data System (ADS)
Bi, Xiaofang; Lan, Weihua; Ou, Shengquan; Gong, Shengkai; Xu, Huibin
2003-04-01
FeSi/FeSi-ZrO 2 and FeSi/ZrO 2 multilayer materials were prepared by electron beam physical vapor deposition with the FeSi-ZrO 2 layer thickness about 0.6 μm, and their magnetic and electrical properties were studied as a function of FeSi layer thickness. With increasing FeSi layer thickness from 0.3 to 3 μm, the coercivity decreased from 0.92 to 0.31 kA/m and the saturation magnetization changed from 164 to 186 emu/g. The effect of the layer number on the magnetic properties was discussed in terms of interfacial mixing and oxidation. It was also discovered that the magnetic properties of the multilayer materials were affected by the spacer material, exhibiting higher saturation magnetization and lower coercivity for the FeSi/FeSi-ZrO 2 than those for the FeSi/ZrO 2 with the same individual layer thicknesses. This behavior could be explained by the weaker magnetic interaction between FeSi layers separated by the non-magnetic ZrO 2 layer. Furthermore, the electrical resistivity changed from 1850 to 1250 μΩ cm for the multilayer materials for the FeSi thickness increasing from 0.30 to 3 μm.
First-principles investigations of iron-based alloys and their properties
NASA Astrophysics Data System (ADS)
Limmer, Krista Renee
Fundamental understanding of the complex interactions governing structure-property relationships in iron-based alloys is necessary to advance ferrous metallurgy. Two key components of alloy design are carbide formation and stabilization and controlling the active deformation mechanism. Following a first-principles methodology, understanding on the electronic level of these components has been gained for predictive modeling of alloys. Transition metal carbides have long played an important role in alloy design, though the complexity of their interactions with the ferrous matrix is not well understood. Bulk, surface, and interface properties of vanadium carbide, VCx, were calculated to provide insight for the carbide formation and stability. Carbon vacancy defects are shown to stabilize the bulk carbide due to increased V-V bonding in addition to localized increased V-C bond strength. The VCx (100) surface energy is minimized when carbon vacancies are at least two layers from the surface. Further, the Fe/VC interface is stabilized through maintaining stoichiometry at the Fe/VC interface. Intrinsic and unstable stacking fault energy, gammaisf and gamma usf respectively, were explicitly calculated in nonmagnetic fcc Fe-X systems for X = Al, Si, P, S, and the 3d and 4d transition elements. A parabolic relationship is observed in gamma isf across the transition metals with minimums observed for Mn and Tc in the 3d and 4d periods, respectively. Mn is the only alloying addition that was shown to decrease gamma isf in fcc Fe at the given concentration. The effect of alloying on gammausf also has a parabolic relationship, with all additions decreasing gammaisf yielding maximums for Fe and Rh.
Critical exponents and universal magnetic behavior of noncentrosymmetric Fe0.6Co0.4Si
NASA Astrophysics Data System (ADS)
Shanmukharao Samatham, S.; Suresh, K. G.
2018-05-01
The critical magnetic properties of a non-centrosymmetric B20 cubic helimagnet Fe0.6Co0.4Si are investigated using magnetization isotherms. It belongs to the 3D-Heisenberg universality class with short range magnetic coupling as inferred from the self-consistent critical exponents , , and in combination with exchange interaction . Itinerant magnetic nature of the compound is realized by the Rhodes–Wholfarth analysis. Field-induced weak first (parahelical) to second (parafield-polarized) order transition is reported to occur at low critical field due to the weak spin–orbit coupling arising from the weak Dzyaloshinksii–Moriya interactions. Our study suggests the distinct phenomenological magnetic structures for Fe-based cubic magnets (Fe1‑x Co x Si and FeGe) and MnSi which cause contrasting physical properties.
NASA Astrophysics Data System (ADS)
Rodríguez, V. A. Peña; Medina, J. Medina; Marcatoma, J. Quispe; Ayala, Ch. Rojas; Landauro, C. V.; Baggio-Saitovitch, E. M.; Passamani, E. C.
2011-11-01
Nanocrystalline Fe/Zr alloys have been prepared after milling for 9 h the mixture of elemental Fe and Zr powders or the arc-melting produced Fe2Zr alloy by using mechanical alloying and mechanical milling techniques, respectively. X-ray and Mössbauer results of the Fe and Zr powders, mechanically alloyed, suggest that amorphous Fe2Zr phase and \\upalpha-Fe(Zr) nanograins have been produced with relative concentrations of 91% and 9%, respectively. Conversely, the results of the mechanically milled Fe2Zr alloy indicate that nanograins of the Fe2Zr alloy have been formed, surrounded by a magnetic inter-granular phase that are simultaneously dispersed in a paramagnetic amorphous phase.
Thermal stability of spin valves based on a synthetic antiferromagnet and Fe50Mn50 alloy
NASA Astrophysics Data System (ADS)
Milyaev, M. A.; Naumova, L. I.; Proglyado, V. V.; Chernyshova, T. A.; Blagodatkov, D. V.; Kamenskii, I. Yu.; Ustinov, V. V.
2015-11-01
Magnetron sputtering was used to prepare spin valves with the Ta/Ni80Fe20/Co90Fe10/Cu/Co90Fe10/Ru/Co90Fe10/Fe50Mn50/Ta composition. Changes in the functional characteristics of the spin valves were studied in a temperature range of-180 to +160°C. The maximum temperature at which the functional characteristics of spin valve remain unchanged was shown to depend on the relationship of thicknesses of Co90Fe10 layers separated by the Ru interlayer.
NiO and Fe/Mn in Fo-rich olivines from OIB, MORB, and mantle peridotites
NASA Astrophysics Data System (ADS)
Li, H.; Baker, M.; Hofmann, A. E.; Clague, D.; Stolper, E.
2006-12-01
regular trend from MORB/Iceland, to Baffin Isl, to mantle peridotites/Juan Fernandez, to Reunion/Hawaii. This array can't be explained by simple crystallization (all have similar Fo) or by variable degrees of partial melting of a single source. The NiO-Fe/Mn correlation can be modeled by quantitative addition of 1-2% oxidized core to depleted mantle and thus is consistent with the core-addition hypothesis. However, more complex core-mantle interactions/fractionations would still be required to explain trace siderophile and chalcophile elements and isotopes. Moreover, other hypotheses to explain the observed trend (including addition of silicic melts to peridotite) cannot be ruled out. (2) The Hawaiian data, although clearly defining with Reunion the upper end of the overall NiO-Fe/Mn array, are more complex. For example, a single Mauna Kea sample has ~Fo90 phenocrysts with NiO from 0.30 to 0.54%, all with Fe/Mn=72-80, and North Arch and Loihi olivines have relatively low NiO at Fe/Mn ratios comparable to other Hawaiian olivines. Although Loihi and North Arch lavas are low in SiO2, in detail the NiO of Hawaiian olivines are not well predicted by SiO2 contents of the host lavas. (3) The Gorgona Isl komatiites fall off the overall trend, extending to NiO >0.5 wt% at Fe/Mn ~62, perhaps reflecting different sources, processes, or anomalous degrees of melting. [1] Kelemen et al (1998) EPSL 164, 387-406 [2] Sobolev et al (2005) Nature 434, 590-597 [3] Ryabchikov (2003) Doklady Earth Sci. 389A, 437-439 [4] Humayun et al (2004) Science 306, 91-94
Edmondson, P. D.; Parish, C. M.; Nanstad, R. K.
2017-05-29
Nano-scale Ni-Mn-Si-rich precipitates formed in a reactor pressure vessel steel under high neutron fluence have been characterized using highly complimentary atom probe tomography (APT) and scanning transmission electron microscopy with energy dispersive spectroscopy (STEM-EDS) combined with STEM-EDS modeling. Using these techniques in a synergistic manner to overcome the well-known trajectory aberrations in APT data, the average upper limit Fe concentration within the precipitates was found to be ~6 at.%. Using this knowledge, accurate compositions of the precipitates was determined and it was found that the spread of precipitate compositions was large, but mostly centered around the Γ2-and G-phases. The usemore » of STEM-EDS also allowed for larger areas to be examined, and segregation of minor solutes was observed to occur on grain boundaries, along with Ni-Mn-Si-rich precipitates that were smaller in size than those in the matrix. Solute segregation at the grain boundaries is proposed to occur through a radiation induced segregation or radiation enhanced diffusion mechanism due to the presence of a denuded zone about the grain boundary. It is also proposed that the reduced precipitate size at the grain boundaries is due to the structure of the grain boundary. The lack of Ni-Mn-Si precipitates observed in larger Mo-rich precipitates is also discussed, and the absence of the minor solutes required to form the Ni-Mn-Si precipitates results in the lack of nucleation. This is in contrast to cementite phases in which Ni-Mn-Si precipitates have been seen to be formed. It was also determined through this work that the exclusion of all the Fe ions during atom probe analysis is a reasonable approximation.« less
Rectifying magnetic tunnel diode like behavior in Co2MnSi/ZnO/p-Si heterostructure
NASA Astrophysics Data System (ADS)
Maji, Nilay; Nath, T. K.
2018-04-01
The rectifying magnetic tunnel diode like behavior has been observed in Co2MnSi/ZnO/p-Si heterostructure. At first an ultra thin layer of ZnO has been deposited on p-Si (100) substrate with the help of pulsed laser deposition (PLD). After that a highly spin-polarized Heusler alloy Co2MnSi (CMS) film (250 nm) has been grown on ZnO/p-Si using electron beam physical vapor deposition technique. The phase purity of the sample has been confirmed through high resolution X-Ray diffraction technique. The electrical transport properties have been investigated at various isothermal conditions in the temperature range of 77-300 K. The current-voltage characteristics exhibit an excellent rectifying tunnel diode like behavior throughout the temperature regime. The current (I) across the junction has been found to decrease with the application of an external magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. The magnetic field dependent JMR behavior of our heterostructure has been investigated in the same temperature range. Our heterostructure clearly demonstrates a giant positive JMR at 78 K (˜264%) and it starts decreasing with increasing temperature. If we compare our results with earlier reported results on other heterostructures, it can be seen that the JMR value for our heterojunction saturates at a much lower external magnetic field, thus creating it a better alternative for spin tunnel diodes in upcoming spintronics device applications.
A broadband permeability measurement of FeTaN lamination stack by the shorted microstrip line method
NASA Astrophysics Data System (ADS)
Chen, Xin; Ma, Yungui; Xu, Feng; Wang, Peng; Ong, C. K.
2009-01-01
In this paper, the microwave characteristics of a FeTaN lamination stack are studied with a shorted microstrip line method. The FeTaN lamination stack was fabricated by gluing 54 layers of FeTaN units with epoxy together. The FeTaN units were deposited on both sides of an 8 μm polyethylene terephthate (Mylar) film as the substrate by rf magnetron sputtering. On each side of the Mylar substrate, three 100-nm FeTaN layers are laminated with two 8 nm Al2O3 layers. The complex permeability of FeTaN lamination stack is calculated by the scattering parameters using the shorted load transmission line model based on the quasi-transverse-electromagnetic approximation. A full wave analysis combined with an optimization process is employed to determine the accurate effective permeability values. The optimized complex permeability data can be used for the microwave filter design.
NiMnGa/Si Shape Memory Bimorph Nanoactuation
NASA Astrophysics Data System (ADS)
Lambrecht, Franziska; Lay, Christian; Aseguinolaza, Iván R.; Chernenko, Volodymyr; Kohl, Manfred
2016-12-01
The size dependences of thermal bimorph and shape memory effect of nanoscale shape memory alloy (SMA)/Si bimorph actuators are investigated in situ in a scanning electron microscope and by finite element simulations. By combining silicon nanomachining and magnetron sputtering, freestanding NiMnGa/Si bimorph cantilever structures with film/substrate thickness of 200/250 nm and decreasing lateral dimensions are fabricated. Electrical resistance and mechanical beam bending tests upon direct Joule heating demonstrate martensitic phase transformation and reversible thermal bimorph effect, respectively. Corresponding characteristics are strongly affected by the large temperature gradient in the order of 50 K/µm forming along the nano bimorph cantilever upon electro-thermal actuation, which, in addition, depends on the size-dependent heat conductivity in the Si nano layer. Furthermore, the martensitic transformation temperatures show a size-dependent decrease by about 40 K for decreasing lateral dimensions down to 200 nm. The effects of heating temperature and stress distribution on the nanoactuation performance are analyzed by finite element simulations revealing thickness ratio of SMA/Si of 90/250 nm to achieve an optimum SME. Differential thermal expansion and thermo-elastic effects are discriminated by comparative measurements and simulations on Ni/Si bimorph reference actuators.
NASA Technical Reports Server (NTRS)
Zhukova, V. M.; Fadin, V. P.
1981-01-01
The changes in electronic structure related to transport processes occurring during the alloying of he alloy Ni3Mn with iron and cobalt, and the ordering of the ternary alloys thus formed are presented. The Hall effect, the absolute thermal emf, the internal saturation induction, the Nernst-Ettingshausen constant, and the electrical resistivity were measured. Results show a decrease in the contribution of hole sections of the Fermi surface to the transport process occurs together with a considerable increase in the contribution of electron sections. In this case, the mobility of 3 dimensional holes decreases and the mobility of 4s electrons increases considerably.
The Mn-Fe negative correlation in olivines in ALHA 77257 ureilite
NASA Technical Reports Server (NTRS)
Miyamoto, M.; Furuta, T.; Fujii, N.; Mckay, D. S.; Lofgren, G. E.; Duke, M. B.
1993-01-01
An electron probe microanalyzer is used to measure the Mn, Fe, and oxygen zoning profiles of olivines in the ALHA 77257 ureilite. This is done to study the effects of reduction on the Mn-Fe value, as ureilite olivines exhibit thin reduced rims. Since the Mn content gradually increases toward the rim of ureilite olivines, while the Fa (= 100 x Fe/(Mg + Fe), mol percent) component decreases, the Mn-Fe content of olivine is likely related to redox conditions. The results of melting experiments suggest that the Mn-Fe positive correlation is related to temperature and that the negative correlation of Mn-Fe in olivine and low-Ca pyroxene is related to reduction.
NASA Astrophysics Data System (ADS)
Felez, Marissol R.; Coelho, Adelino A.; Gama, Sergio
2017-12-01
Mn3-xFexSn system (0.00 ≤ x ≤ 3.00 with Δx = 0.25) alloys present the Curie temperature (TC) or transition temperature (TT) tuneable by the Fe content. A piece-wise linear profile for TC,T as a function of x is observed in a two wide temperature ranges, between 155 K up to 759 K and 259 K up to 155 K. Their equations are TC,T = (59 ± 15) + (240 ± 7)·x and TC,T = (257 ± 1) - (206 ± 4)·x, respectively. The alloys are low cost and easy manufacturing, rare earth free, with second order magnetic transition (SOMT), and have good magnetic properties. These features suggest an immediate application of the material in cascade thermomagnetic motors that operate with a large temperature range between hot and cold sources. Furthermore, SOMT Mn-Fe-Sn system materials are also reported with advantages that could make alloys of the Mn3-xFexSn system, (0.88 ≤ x ≤ 1.20), promising candidate for magnetic refrigeration. The typical ferromagnetic behaviour is achieved only by samples with x ≥ 1. The samples with x between 0.00 and 0.75 do not show the saturation magnetization even using fields up to 13 T.
Effect of T6 treatment on the coefficient of friction of Al25Mg2Si2Cu4Fe alloy
NASA Astrophysics Data System (ADS)
Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra
2018-04-01
Effect of T6 treatment on the coefficient of friction of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting wear test on pin on disc wear testing machine. Wear test parameters such as the load and the speed were varied by keeping one constant and varying the other respectively. It was observed that the coefficient of friction is high for as cast condition due to the brittle microstructure. After T6 heat treatment the precipitates formed such as the Chinese scripts and the Mg2Si blocks got modified that lead to improvement in the hardness and the wear resistance. This reduces the coefficient of friction.
Magnetic properties of mechanically alloyed Mn-Al-C powders
NASA Astrophysics Data System (ADS)
Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.
2011-01-01
We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.
The Use of Atomic-Force Microscopy for Studying the Crystallization Process of Amorphous Alloys
NASA Astrophysics Data System (ADS)
Elmanov, G. N.; Ivanitskaya, E. A.; Dzhumaev, P. S.; Skrytniy, V. I.
The crystallization process of amorphous alloys is accompanied by the volume changes as a result of structural phase transitions. This leads to changes in the surface topography, which was studied by atomic force microscopy (AFM). The changes of the surface topography, structure and phase composition during multistage crystallization process of the metallic glasses with composition Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 (AWS BNi2) has been investigated. The obtained results on changing of the surface topography in crystallization process are in good agreement with the data of X-ray diffraction analysis (XRD). The nature of redistribution of some alloy components in the crystallization process has been suggested.
NASA Astrophysics Data System (ADS)
Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng
2013-11-01
This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhgalin, V. V.; Lad’yanov, V. I.
2015-08-17
The influence of the melt heat treatment on the structure and crystallization process of the rapidly quenched amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloys have been investigated by means of x-ray diffraction, DSC and TEM. Amorphous phase separation has been observed in the alloys quenched after the preliminary high temperature heat treatment of the liquid alloy (heating above 1400°C). Comparative analysis of the pair distribution functions demonstrates that this phase separation accompanied by a changes in the local atomic arrangement. It has been found that crystallization process at heating is strongly dependent on the initial amorphous phase structure - homogeneousmore » or phase separated. In the last case crystallization goes through the formation of a new metastable hexagonal phase [a=12.2849(9) Ǻ, c=7.6657(8) Ǻ]. At the same time the activation energy for crystallization (Ea) reduces from 555 to 475 kJ mole{sup −1}.« less
NASA Astrophysics Data System (ADS)
Ning, Kaijie; Bai, Xianming; Lu, Kathy
2018-07-01
Silicon carbide-nanostructured ferritic alloy (SiC-NFA) materials are expected to have the beneficial properties of each component for advanced nuclear claddings. Fabrication of pure NFA (0 vol% SiC-100 vol% NFA) and SiC-NFAs (2.5 vol% SiC-97.5 vol% NFA, 5 vol% SiC-95 vol% NFA) has been reported in our previous work. This paper is focused on the study of radiation damage in these materials under 5 MeV Fe++ ion irradiation with a dose up to ∼264 dpa. It is found that the material surfaces are damaged to high roughness with irregularly shaped ripples, which can be explained by the Bradley-Harper (B-H) model. The NFA matrix shows ion irradiation induced defect clusters and small dislocation loops, while the crystalline structure is maintained. Reaction products of Fe3Si and Cr23C6 are identified in the SiC-NFA materials, with the former having a partially crystalline structure but the latter having a fully amorphous structure upon irradiation. The different radiation damage behaviors of NFA, Fe3Si, and Cr23C6 are explained using the defect reaction rate theory.
Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2.
Zhao, Junfeng; Wang, Qun; Fu, Yongsheng; Peng, Bo; Zhou, Gaofeng
2018-06-01
In this study, the effect of Fe 3+ , Fe 2+ , and Mn 2+ dose, solution pH, reaction temperature, background water matrix (i.e., inorganic anions, cations, and natural organic matters (NOM)), and the kinetics and mechanism for the reaction system of Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ were investigated systematically. Traces of Fe 3+ , Fe 2+ , and Mn 2+ promoted the DCF removal by Fe(VI) significantly. The pseudo-first-order rate constant (k obs ) of DCF increased with decreasing pH (9-6) and increasing temperature (10-30 °C) due to the gradually reduced stability and enhanced reactivity of Fe(VI). Cu 2+ and Zn 2+ ions evidently improved the DCF removal, while CO 3 2- restrained it. Besides, SO 4 2- , Cl - , NO 3 - , Mg 2+ , and Ca 2+ almost had no influence on the degradation of DCF by Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ within the tested concentration. The addition of 5 or 20 mg L -1 NOM decreased the removal efficiency of DCF. Moreover, Fe 2 O 3 and Fe(OH) 3 , the by-products of Fe(VI), slightly inhibited the DCF removal, while α-FeOOH, another by-product of Fe(VI), showed no influence at pH 7. In addition, MnO 2 and MnO 4 - , the by-products of Mn 2+ , enhanced the DCF degradation due to catalysis and superposition of oxidation capacity, respectively. This study indicates that Fe 3+ and Fe 2+ promoted the DCF removal mainly via the self-catalysis for Fe(VI), and meanwhile, the catalysis of Mn 2+ and the effect of its by-products (i.e., MnO 2 and MnO 4 - ) contributed synchronously for DCF degradation. Graphical abstract ᅟ.
Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; ...
2015-09-07
The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore » magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less
Thermoelectric Properties of the Quasi-Binary MnSi1.73-FeSi2 System
NASA Astrophysics Data System (ADS)
Sadia, Yatir; Madar, Naor; Kaler, Ilan; Gelbstein, Yaniv
2015-06-01
The higher manganese silicides (HMS) are regarded as very attractive p-type thermoelectric materials for direct conversion of heat to electricity. To compete with other thermodynamic engines (e.g. the Stirling and Rankine cycles), however, the thermoelectric figure of merit of such silicides must be improved. HMS follow a complicated solidification reaction on cooling from the melt, which leads to formation of undesired secondary phases. Furthermore, the electronic carrier concentration of HMS is much higher than the optimum for thermoelectric applications and should be compensated by introduction of doping agents. In this research, the electronic donor action associated with substitution of HMS by FeSi2 was investigated. The effects of excess Si on phase distribution and thermoelectric properties are also discussed in detail.
Fabrication and ferromagnetism of Si-SiGe/MnGe core-shell nanopillars.
Wang, Liming; Liu, Tao; Wang, Shuguang; Zhong, Zhenyang; Jia, Quanjie; Jiang, Zuimin
2016-10-07
Si-Si0.5Ge0.5/Mn0.08Ge0.92 core-shell nanopillar samples were fabricated on ordered Si nanopillar patterned substrates by molecular beam epitaxy at low temperatures. The magnetic properties of the samples are found to depend heavily on the growth temperature of the MnGe layer. The sample grown at a moderate temperature of 300 °C has the highest Curie temperature of 240 K as well as the strongest ferromagnetic signals. On the basis of the microstructural results, the ferromagnetic properties of the samples are believed to come from the intrinsic Mn-doped amorphous or crystalline Ge ferromagnetic phase rather than any intermetallic ferromagnetic compounds of Mn and Ge. After being annealed at a temperature of 500 °C, all the samples exhibit the same Curie temperature of 220 K, which is in sharp contrast to the different Curie temperature for the as-grown samples, and the ferromagnetism for the annealed samples comes from Mn5GeSi2 compounds which are formed during the annealing.
Wettability of MnxSiyOz by Liquid Zn-Al Alloys
NASA Astrophysics Data System (ADS)
Kim, Yunkyum; Shin, Minsoo; Tang, Chengying; Lee, Joonho
2010-08-01
The wettability of MnxSiyOz by liquid Zn-Al alloys was investigated to obtain basic information on the coating properties of high-strength steels with surface oxides in the hot-dip galvanizing process. In this study, the contact angles of liquid Zn-Al alloys (Al concentrations were 0.12 and 0.23 wt pct) on four different MnxSiyOz oxides, namely MnO, MnSiO3, Mn2SiO4, and SiO2, were measured with the dispensed drop method. The contact angle did not change across time. With an increasing Al concentration, the contact angle was slightly decreased for MnO and Mn2SiO4, but there was no change for MnSiO3 and SiO2. With an increasing SiO2 content, the contact angle gradually increased by 54 wt pct to form MnSiO3, and for pure SiO2 substrate, the contact angle decreased again. Consequently, the MnSiO3 substrate showed the worst wettability among the four tested oxide substrates.
Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1 -xFexSi
NASA Astrophysics Data System (ADS)
Grigoriev, S. V.; Altynbaev, E. V.; Siegfried, S.-A.; Pschenichnyi, K. A.; Menzel, D.; Heinemann, A.; Chaboussant, G.
2018-01-01
The small-angle neutron scattering is used to measure the spin-wave stiffness in the field-polarized state of the Dzyaloshinskii-Moriya helimagnets Mn1 -xFexSi with x =0.03 , 0.06, 0.09, and 0.10. The Mn1 -xFexSi compounds are helically ordered below Tc and show a helical fluctuation regime above Tc in a wide range up to TDM. The critical temperatures Tc and TDM decrease with x and tend to 0 at x =0.11 and 0.17, respectively. We have found that the spin-wave stiffness A change weakly with temperature for each individual Fe-doped compound. On the other hand, the spin-wave stiffness A decreases with x duplicating the TDM dependence on x , rather than Tc(x ) . These findings classify the thermal phase transition in all Mn1 -xFexSi compounds as an abrupt change in the spin state caused, most probably, by the features of an electronic band structure. Moreover, the criticality in these compounds is not related to the value of the ferromagnetic interaction but demonstrates the remarkable role of the Dzyaloshinskii-Moriya interaction as a factor destabilizing the magnetic order.
Fe-based long range ordered alloys
Liu, Chain T; Inouye, Henry; Schaffhauser, Anthony C.
1980-01-01
Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Co,Fe).sub.3 and V(Co,Fe,Ni).sub.3 system having the composition comprising by weight 22-23% V, 35-50% Fe, 0-22% Co and 19-40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22-23% V, 35-45% Fe, 0-10% Co, 25-35% Ni; 22-23% V, 28-33% Ni and the remainder Fe; and 22-23% V, 19-22% Ni, 19-22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel
Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-01-01
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as “pre-alloying”, has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7–4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3–5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards. PMID:29048379
NASA Astrophysics Data System (ADS)
Wu, T.; Liu, J.; Sun, L.; Cong, L.; Xie, H.; Abdel-Ghany, A.; Mauger, A.; Julien, C. M.
2018-04-01
Insertion of 3% vanadium in LiMn1-yFeyPO4 has been investigated, with y = 0.2 corresponding to the highest manganese concentration before the stress/strain field degrades the electrochemical performance. V substitutes for Fe2+ in the trivalent state V3+. This substitution is accompanied with the formation of Fe vacancies while Mn remains in the Mn2+ valence state, leading to a composition LiMn0.8Fe0.2-0.045V0.03□0.015PO4 where □ is a Fe vacancy. The comparison between electrochemical properties of a pristine sample and a sample with 3 mol.% vanadium made of particles with the same morphology (spherical particles with the same dispersion 100-150 nm in size) and same carbon coating (same conductivity of the carbon layer) is reported. Although the vanadium is in the V3+ state at open circuit voltage (2.6 V) before cycling, a reversible V3+/V2+ is observed when the potential of the half-cell is lowered below the redox potential of 1.8 V vs Li+/Li, due to Li-vacancies. The V-insertion improves the electrochemical properties, due to a synergetic effect of an increase of the lithium diffusion coefficient by a factor two and an increase of the electric conductivity at any Li-concentration during the cycling process, in contradiction with prior claims that attributed the increase of conductivity to V-based impurities.
Structure and magnetic properties of ScFe 10Si 2
NASA Astrophysics Data System (ADS)
Bodak, O. I.; Stȩpień-Damm, J.; Drulis, H.; Kotur, B.; Suski, W.; Vagizov, F. G.; Wochowski, K.; Mydlarz, T.
1995-02-01
ScFe 10Si 2 crystallizes in the ThMn 12-type tetragonal structure with the space group I4/mmm and the lattice parameters: a = 0.8280 (1) nm, c = 0.4706 (1) nm and c/ a = 0.57. In the refinement performed for 317 independent reflections and 10 variable parameters, a final discrepancy factor R = 4.69% has been reached. The compound is ferromagnetic below 506 K ( 57Fe ME) and 560 K (magnetic). The distribution of the Fe atoms in the 8( i), 8( j) and 8( f) positions corresponds to 40, 31 and 29%, respectively. The Debye temperature determined from the temperature dependence of the isomer shift is 340 K.
The thermal evolution of Mercury's Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurriën Sebastiaan; van Westrenen, Wim
2018-01-01
We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.
Influence of Homogenization on Microstructural Response and Mechanical Property of Al-Cu-Mn Alloy.
Wang, Jian; Lu, Yalin; Zhou, Dongshuai; Sun, Lingyan; Li, Renxing; Xu, Wenting
2018-05-29
The evolution of the microstructures and properties of large direct chill (DC)-cast Al-Cu-Mn alloy ingots during homogenization was investigated. The results revealed that the Al-Cu-Mn alloy ingots had severe microsegregation and the main secondary phase was Al₂Cu, with minimal Al₇Cu₂Fe phase. Numerous primary eutectic phases existed in the grain boundary and the main elements were segregated at the interfaces along the interdendritic region. The grain boundaries became discontinuous, residual phases were effectively dissolved into the matrix, and the segregation degree of all elements was reduced dramatically during homogenization. In addition, the homogenized alloys exhibited improved microstructures with finer grain size, higher number density of dislocation networks, higher density of uniformly distributed θ' or θ phase (Al₂Cu), and higher volume fraction of high-angle grain boundaries compared to the nonhomogenized samples. After the optimal homogenization scheme treated at 535 °C for 10 h, the tensile strength and elongation% were about 24 MPa, 20.5 MPa, and 1.3% higher than those of the specimen without homogenization treatment.
Zarpellon, J; Jurca, H F; Mattoso, N; Klein, J J; Schreiner, W H; Ardisson, J D; Macedo, W A A; Mosca, D H
2007-12-15
In this work we describe the fabrication of FeCo alloy (less than 10 at% Co) thin films from aqueous ammonium sulfate solutions onto n-type Si(111) substrates using potentiostatic electrodeposition at room temperature. The incorporation of Co into the deposits tends to inhibit Fe silicide formation and to protect deposits against oxidation under air exposure. As the incorporation of Co was progressively increased, the sizes of nuclei consisting of FeCo alloy increased, leading to films with a highly oriented body-centered cubic structure with crystalline texture, where (110) planes remain preferentially oriented parallel to the film surface.
MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications
NASA Astrophysics Data System (ADS)
Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.
2018-04-01
In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang
2015-09-30
The present report summarizes and discusses the recent results on developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability. The alloys used for these investigations are modern FeCrAl alloys based on a Fe-13Cr-5Al-2Mo-0.2Si-0.05Y alloy (in wt.%, designated C35M). Development efforts have focused on assessing the influence of chemistry and microstructure on the fabricability and performance of these newly developed alloys. Specific focus was made to assess the weldability, thermal stability, and radiation tolerance.
Fe-based long range ordered alloys
Liu, C.T.
Malleable long range ordered alloys with high critical ordering temperatures exist in the V(Co,Fe)/sub 3/ and V(Co,Fe,Ni)/sub 3/ system. The composition comprising by weight 22 to 23% V, 35 to 50% Fe, 0 to 22% Co and 19 to 40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22 to 23% V, 35 to 45% Fe, 0 to 10% Co, 25 to 35% Ni; 22 to 23% V, 28 to 33% Ni and the remainder Fe; and 22 to 23% V, 19 to 22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.
2014-01-01
Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.
Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys
NASA Astrophysics Data System (ADS)
Liu, K.; Ma, H.; Chen, X. Grant
2018-05-01
In the present work, two-step heat treatments with preheating at different temperatures (175 °C, 250 °C, and 330 °C) as the first step followed by the peak precipitation treatment (375 °C/48 h) as the second step were performed in Al-Mn-Mg 3004 alloys to study their effects on the formation of dispersoids and the evolution of the elevated-temperature strength and creep resistance. During the two-step heat treatments, the microhardness is gradually increased with increasing time to a plateau after 24 hours when first treated at 250 °C and 330 °C, while there is a minor decrease with time when first treated at 175 °C. Results show that both the yield strength (YS) and creep resistance at 300 °C reach the peak values after the two-step treatment of 250 °C/24 h + 375 °C/48 h. The formation of dispersoids is greatly related to the type and size of pre-existing Mg2Si precipitated during the preheating treatments. It was found that coarse rodlike β ' -Mg2Si strongly promotes the nucleation of dispersoids, while fine needle like β ″-Mg2Si has less influence. Under optimized two-step heat treatment and modified alloying elements, the YS at 300 °C can reach as high as 97 MPa with the minimum creep rate of 2.2 × 10-9 s-1 at 300 °C in Al-Mn-Mg 3004 alloys, enabling them as one of the most promising candidates in lightweight aluminum alloys for elevated-temperature applications.
Critical exponents and universal magnetic behavior of noncentrosymmetric Fe0.6Co0.4Si.
Samatham, S Shanmukharao; Suresh, K G
2018-05-31
The critical magnetic properties of a non-centrosymmetric B20 cubic helimagnet Fe 0.6 Co 0.4 Si are investigated using magnetization isotherms. It belongs to the 3D-Heisenberg universality class with short range magnetic coupling as inferred from the self-consistent critical exponents [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] in combination with exchange interaction [Formula: see text]. Itinerant magnetic nature of the compound is realized by the Rhodes-Wholfarth analysis. Field-induced weak first (para[Formula: see text]helical) to second (para[Formula: see text]field-polarized) order transition is reported to occur at low critical field due to the weak spin-orbit coupling arising from the weak Dzyaloshinksii-Moriya interactions. Our study suggests the distinct phenomenological magnetic structures for Fe-based cubic magnets (Fe 1-x Co x Si and FeGe) and MnSi which cause contrasting physical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, L.H., E-mail: l2liao@uwaterloo.ca; Jin, H.; Gallerneault, M.
2015-03-15
The through-thickness annealing behavior of a laminated AA3xxx–AA6xxx alloy system at 300 °C has been studied by scanning electron microscopy, electron backscatter diffraction analysis, electron probe micro-analysis, differential scanning calorimetry, and hardness measurement. Results show that the recrystallization process starts at the interface region between the AA3xxx (clad) and AA6xxx (core) layers. Subsequently, the recrystallization process front progresses into the core layer, while the clad layer is the last region to recrystallize. It is also found that precipitation precedes recrystallization in the entire laminate at the investigated temperature. The preferential onset of recrystallization at the interface region is attributed tomore » the net driving pressure being the highest in this region. The factors that lead to such enhanced net driving pressure are (a) deformation incompatibility between the two alloy layers, (b) lower solute content of the interface, which also leads to lower volume fraction of precipitates, and (c) an accelerated rate of precipitate coarsening due to the presence of a higher density of dislocations. The gradual progress of recrystallization from the interface towards the core layer is dictated by precipitate coarsening and the dependence of its rate on the density of deformation-induced dislocations. The lower driving pressure due to lower work hardening capacity, high solute drag pressure due to Mn, and additional Zener drag from precipitates that form due to solute redistribution during annealing explain the late initiation of recrystallization in the clad layer. - Highlights: • The through-thickness recrystallization of a laminated system is investigated. • The early onset of recrystallization at the interface is discussed. • The effects of precipitation and coarsening on recrystallization are analyzed.« less
Delamination properity of 2060 aluminium lithium alloy laminate
NASA Astrophysics Data System (ADS)
Guo, Xiang; Huang, Yi; Tong, Dihua; Ma, Shaojun
2018-03-01
Delamination is an significant property of aluminium lithium alloy laminate for damage tolerance design. Double Crack Lap Shear specimens of "2/1" structure are used for testing delamination properity. Experiments of 2 stress ratio conditions R=0.06, 0.5 are conducted, and 5 stress levels for each stress ratio. Delamination growth data b-N are obtained from 4 crack tips’ locations. The energy release rate, Gd, of the "2/1" structure laminate are calculated. Alderliesten modelis used for describing delamination growth db/dN and energy release rate Gd. Parameters Cd and nd in Alderliesten model are determined for R=0.06 and R=0.5 by linear fitting. An analysis is made by comparing the results of different stress ratio conditons.
High Mn austenitic stainless steel
Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN
2010-07-13
An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.
NASA Astrophysics Data System (ADS)
Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wei, D. H.; Zhao, J. H.
2018-01-01
We report on the spontaneous perpendicular exchange bias effect in as-grown L10-MnGa/FeMn bilayers. An FeMn layer with different thicknesses is introduced as an antiferromagnetic layer to couple with single-crystalline ferromagnetic L10-MnGa, which is epitaxially grown on a GaAs (001) substrate by molecular-beam epitaxy. The perpendicular exchange bias shows a strong dependence on both the thickness of the FeMn layer and the measurement temperature. A large spontaneous perpendicular exchange bias up to 8.9 kOe is achieved in L10-MnGa/FeMn bilayers at 5 K without any external magnetic treatment. The corresponding effective interfacial exchange energy Jeff is estimated to be 1.4 mJ/m2. The spontaneous perpendicular exchange bias effect in the (001) textured L10-MnGa/FeMn bilayers paves the way for spintronic devices based on exchange biased perpendicularly magnetized materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeGeorge, V., E-mail: vdegeorge@cmu.edu; Zoghlin, E.; Keylin, V.
2015-05-07
Secondary crystallization is the subject of much investigation in magnetic amorphous and nanocomposites (MANCs) as it limits the long term and thermal stability of their operation in device applications, including power electronics, sensors, and electric motors. Secondary crystal products [Blazquez et al., Philos. Mag. Lett. 82(7), 409–417 (2002); Ohodnicki et al., Phys. Rev. B 78, 144414 (2008); Willard et al., Metall. Mater. Trans. A 38, 725 (2007)], nanostructure and crystallization kinetics [Hsiao et al., IEEE Trans. Magn. 38(5), 3039 (2002); McHenry et al., Scr. Mater. 48(7), 881 (2003)], and onset temperatures and activation energies [Ohodnicki et al., Acta. Mater. 57,more » 87 (2009); Long et al., J. Appl. Phys. 101, 09N114 (2007)] at constant heating have been reported for similar alloys. However, a time-temperature-transformation (TTT) diagram for isothermal crystallization, more typical of application environments, has not been reported in literature. Here, a TTT diagram for the Co based, Co-Fe-Si-Nb-B-Mn MANC system is presented, along with a method for determining such. The method accounts for the presence of primary crystal phases and yields crystal fraction of secondary phase(s) by using a novel four stage heating profile. The diagram, affirmed by Kissinger activation energy analysis, reports thermal stability of the MANC for millennia at conventional device operating temperatures, and stability limits less than a minute at elevated temperatures. Both extremes are necessary to be able to avoid secondary crystalline products and establish operating limits for this mechanically attractive, high induction soft magnetic nanocomposite.« less
Metal elution from Ni- and Fe-based alloy reactors under hydrothermal conditions.
Faisal, Muhammad; Quitain, Armando T; Urano, Shin-Ya; Daimon, Hiroyuki; Fujie, Koichi
2004-05-20
Elution of metals from Ni- and Fe-based alloy (i.e. Inconel 625 and SUS 316) under hydrothermal conditions was investigated. Results showed that metals could be eluted even in a short contact time. At subcritical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo, and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. Several factors including temperature and contact time were found to affect elution behavior. The presence of air in the fluid even promoted elution under subcritical conditions.
NASA Astrophysics Data System (ADS)
Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.
2016-02-01
Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space
Hysteresis properties of the amorphous high permeability Co66Fe3Cr3Si15B13 alloy
NASA Astrophysics Data System (ADS)
Tsepelev, V. S.; Starodubtsev, Yu. N.; Tsepeleva, N. P.
2018-04-01
The scaling law of minor loops was studied on an amorphous alloy Co66Fe3Cr3Si15B13 with a very high initial permeability (more than 150000) and low coercivity (about 0.1 A/m). An analytical expression for the coercive force in the Rayleigh region was derived. The coercive force is connected with the maximal magnetic field Hmax via the reversibility coefficient μi/ηHmax. Reversibility coefficient shows the relationship between reversible and irreversible magnetization processes. A universal dependence of magnetic losses for hysteresis Wh on the remanence Br with a power factor of 1.35 is confirmed for a wide range of magnetic fields strengths.
Origins of giant biquadratic coupling in CoFe/Mn/CoFe sandwich structures (abstract)
NASA Astrophysics Data System (ADS)
Koon, Norman C.
1996-04-01
Recently Filipkowski et al. reported extremely strong, near 90 degree coupling of 2.5 erg/cm2 for epitaxial sandwiches of CoFe/Mn/CoFe, where the CoFe composition was chosen to be a good lattice match to Mn. Both CoFe and Mn have the bcc structure, but Mn is antiferromagnetic while CoFe is ferromagnetic. It was found that the data were very well described by a simple model due to Slonczewski, in which the interlayer coupling is given by Fc=C+(φ1-φ2)2+C-(φ1-φ2-π)2. While this model describes the data much better than the usual biquadratic form, it still does not connect directly to the microscopic origins of the effect. In the present work we seek to explain the results in terms of normal bilinear exchange and magnetocrystalline anisotropy, together with reasonable assumptions about the structure of the interfaces. We obtain excellent agreement with both the experimental results and the Slonczewski model under the assumptions that at least one of the two CoFe/Mn interfaces is smooth (i.e., atomically flat) on a length scale comparable to or greater than the thickness of the Mn layer and at least one interface is rough on a scale less than approximately a domain wall thickness.
NASA Astrophysics Data System (ADS)
Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox
2018-05-01
The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.
Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster.
Ngan, Vu Thi; Pierloot, Kristine; Nguyen, Minh Tho
2013-04-21
The electronic structure of Mn@Si14(+) is determined using DFT and CASPT2/CASSCF(14,15) computations with large basis sets. The endohedrally Mn-doped Si cationic cluster has a D3h fullerene-like structure featuring a closed-shell singlet ground state with a singlet-triplet gap of ~1 eV. A strong stabilizing interaction occurs between the 3d(Mn) and the 2D-shell(Si14) orbitals, and a large amount of charge is transferred from the Si14 cage to the Mn dopant. The 3d(Mn) orbitals are filled by encapsulation, and the magnetic moment of Mn is completely quenched. Full occupation of [2S, 2P, 2D] shell orbitals by 18 delocalized electrons confers the doped Mn@Si14(+) cluster a spherically aromatic character.
Magnetic and mechanical properties of Ni-Mn-Ga/Fe-Ga ferromagnetic shape memory composite
NASA Astrophysics Data System (ADS)
Tan, Chang-Long; Zhang, Kun; Tian, Xiao-Hua; Cai, Wei
2015-05-01
A ferromagnetic shape memory composite of Ni-Mn-Ga and Fe-Ga was fabricated by using spark plasma sintering method. The magnetic and mechanical properties of the composite were investigated. Compared to the Ni-Mn-Ga alloy, the threshold field for magnetic-field-induced strain in the composite is clearly reduced owing to the assistance of internal stress generated from Fe-Ga. Meanwhile, the ductility has been significantly improved in the composite. A fracture strain of 26% and a compressive strength of 1600 MPa were achieved. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51271065 and 51301054), the Program for New Century Excellent Talents in Heilongjiang Provincial Education Department, China (Grant No. 1253-NCET-009), the Youth Academic Backbone in Heilongjiang Provincial Education Department, China (Grant No. 1251G022), the Projects of Heilongjiang, China, and China Postdoctoral Science Foundation.
Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Huibin; Wells, Peter; Edmondson, Philip D.
Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less
Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels
Ke, Huibin; Wells, Peter; Edmondson, Philip D.; ...
2017-07-12
Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less
NASA Astrophysics Data System (ADS)
Oh, Eun Jee; Heo, Nam Hoe; Koo, Yang Mo
2017-11-01
The correlation between final thickness reduction and development of Goss texture has been investigated in a C- and Al-free Fe-3%Si electrical steel. During final annealing, the annealing texture is transited from {110}⊥ND to {100}⊥ND texture with increasing final thickness reduction. This is due to the decrease in primary grain size after pre-annealing with increasing final thickness reduction which accelerates the selective growth rate of the {100} grains at the expense of the other {hkl} grains. At an optimal final thickness reduction of 75.8%, the high magnetic induction of 1.95 Tesla, which arises from the sharp {110}<001> Goss texture and is comparable to that of conventional grain-oriented electrical steels, is obtained from the C- and Al-free Fe-3%Si-0.1%Mn electrical steel. Such a high magnetic property is produced through the surface-energy-induced selective grain growth of the Goss grains under the lower surface-segregated condition of sulfur which makes the surface energy of the {110} plane lowest among the {hkl} planes.
NASA Astrophysics Data System (ADS)
Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Shirazi, H.
2010-07-01
Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was epsilon ~7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.
Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl
2016-08-24
of the Fe doped half-Heusler and Heusler compounds CoFexCrAl and Co2-xFexCrAl (x = 0, 0.25, 0.5, 0.75, 1.0), respectively, have been studied both...Oogane, A. Hirohata, and V. K. Lazarov, “The Effect of Cobalt -Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys,” Materials 7
Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System
NASA Astrophysics Data System (ADS)
Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.
2017-01-01
The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.
The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting
Yang, Youwen; Wu, Ping; Wang, Qiyuan; Wu, Hong; Liu, Yong; Deng, Youwen; Zhou, Yuanzhuo; Shuai, Cijun
2016-01-01
Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt %) alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt %) and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance. PMID:28773342
CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand
NASA Astrophysics Data System (ADS)
Srisittipokakun, N.; Ruangtaweep, Y.; Rachniyom, W.; Boonin, K.; Kaewkhao, J.
In this research, glass productions from rice husk ash (RHA) and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g) due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration) in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm) and Fe2+ (1050 nm) ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction.
Engineering helimagnetism in MnSi thin films
NASA Astrophysics Data System (ADS)
Zhang, S. L.; Chalasani, R.; Baker, A. A.; Steinke, N.-J.; Figueroa, A. I.; Kohn, A.; van der Laan, G.; Hesjedal, T.
2016-01-01
Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ˜18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.