Altering lamina assembly reveals lamina-dependent and -independent functions for A-type lamins.
Zwerger, Monika; Roschitzki-Voser, Heidi; Zbinden, Reto; Denais, Celine; Herrmann, Harald; Lammerding, Jan; Grütter, Markus G; Medalia, Ohad
2015-10-01
Lamins are intermediate filament proteins that form a fibrous meshwork, called the nuclear lamina, between the inner nuclear membrane and peripheral heterochromatin of metazoan cells. The assembly and incorporation of lamin A/C into the lamina, as well as their various functions, are still not well understood. Here, we employed designed ankyrin repeat proteins (DARPins) as new experimental tools for lamin research. We screened for DARPins that specifically bound to lamin A/C, and interfered with lamin assembly in vitro and with incorporation of lamin A/C into the native lamina in living cells. The selected DARPins inhibited lamin assembly and delocalized A-type lamins to the nucleoplasm without modifying lamin expression levels or the amino acid sequence. Using these lamin binders, we demonstrate the importance of proper integration of lamin A/C into the lamina for nuclear mechanical properties and nuclear envelope integrity. Finally, our study provides evidence for cell-type-specific differences in lamin functions. © 2015. Published by The Company of Biologists Ltd.
Altering lamina assembly reveals lamina-dependent and -independent functions for A-type lamins
Zwerger, Monika; Roschitzki-Voser, Heidi; Zbinden, Reto; Denais, Celine; Herrmann, Harald; Lammerding, Jan; Grütter, Markus G.; Medalia, Ohad
2015-01-01
ABSTRACT Lamins are intermediate filament proteins that form a fibrous meshwork, called the nuclear lamina, between the inner nuclear membrane and peripheral heterochromatin of metazoan cells. The assembly and incorporation of lamin A/C into the lamina, as well as their various functions, are still not well understood. Here, we employed designed ankyrin repeat proteins (DARPins) as new experimental tools for lamin research. We screened for DARPins that specifically bound to lamin A/C, and interfered with lamin assembly in vitro and with incorporation of lamin A/C into the native lamina in living cells. The selected DARPins inhibited lamin assembly and delocalized A-type lamins to the nucleoplasm without modifying lamin expression levels or the amino acid sequence. Using these lamin binders, we demonstrate the importance of proper integration of lamin A/C into the lamina for nuclear mechanical properties and nuclear envelope integrity. Finally, our study provides evidence for cell-type-specific differences in lamin functions. PMID:26275827
Evolutionary changes in lamin expression in the vertebrate lineage
Stick, Reimer; Peter, Annette
2017-01-01
ABSTRACT The nuclear lamina is involved in fundamental nuclear functions and provides mechanical stability to the nucleus. Lamin filaments form a meshwork closely apposed to the inner nuclear membrane and a small fraction of lamins exist in the nuclear interior. Mutations in lamin genes cause severe hereditary diseases, the laminopathies. During vertebrate evolution the lamin protein family has expanded. While most vertebrate genomes contain 4 lamin genes, encoding the lamins A, B1, B2, and LIII, the majority of non-vertebrate genomes harbor only a single lamin gene. We have collected lamin gene and cDNA sequence information for representatives of the major vertebrate lineages. With the help of RNA-seq data we have determined relative lamin expression levels for representative tissues for species of 9 different gnathostome lineages. Here we report that the level of lamin A expression is low in cartilaginous fishes and ancient fishes and increases toward the mammals. Lamin B1 expression shows an inverse tendency to that of lamin A. Possible implications for the change in the lamin A to B ratio is discussed in the light of its role in nuclear mechanics. PMID:28430006
Analysis of interlaminar stresses in thick composite laminates with and without edge delamination
NASA Technical Reports Server (NTRS)
Whitcomb, J. D.; Raju, I. S.
1984-01-01
The effect of laminate thickness on the interlaminar stresses in rectangular quasi-isotropic laminates under uniform axial strain was studied. Laminates from 8-ply to infinitely thick were analyzed. Thick laminates were synthesized by stacking (45/0/-45/90) ply groups, rather than grouping like plies. Laminates with and without delaminations were studied. In laminates without delaminations, the free-edge interlaminar normal stress distribution in the outer ply groups was insensitive to total laminate thickness. The interlaminar normal stress distribution for the interior ply groups was nearly the same as for an infinitely thick laminate. In contrast, the free-edge inter-laminar shear stress distribution was nearly the same for inner and outer ply groups and was insensitive to laminate thickness. In laminates with delaminations those delaminations near the top and bottom surfaces of a thick laminate have much larger total strain-energy-release rates (G sub t) and mode I-to-total (G sub t/G sub t) ratios than delaminations deep in the interior. Therefore, delaminations can be expected to grow more easily near the surfaces of a laminate than in the interior.
Energy Saving Glass Lamination via Selective Radio Frequency Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, Shawn M; Baranova, Inessa; Poley, Joseph
2012-02-27
This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates overmore » the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120°C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.« less
Energy Saving Glass Lamination via Selective Radio Frequency Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, Shawn M.
2012-02-27
This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates overmore » the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for prototyping were developed, which allowed Ceralink to obtain commitment to begin curved tooling development. The project significantly helped to advance RF lamination past the feasibility and novelty stage and into the realm of commercial acceptance as a viable alternative to autoclaves. The demonstration of autoclave-quality autoglass produced in just 1 minute with RF lamination, with validation by Pilkington, has fueled industry motivation to seriously consider RF lamination. The industry and other contacts and outreach made in the study of laminate markets (including 3 technical publications and 5 conference presentations), has resulted in a recent surge in RF lamination activity.« less
Catherine M. Marx; Russell C. Moody
1981-01-01
A total of 180 small Douglas FirâLarch (DF-L) or Southern Pine (SP) glued-laminated beams were evaluated to determine the tension lamination quality necessary to obtain desired design stresses. The test beams had either the regular laminating grades of L1 DF-L/No. 1D SP or the special 302-24 laminating grade as tension laminations. Because an initial set of SP beams...
Rippel, Wally E.; Kobayashi, Daryl M.
2005-10-11
An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.
Residual stresses in angleplied laminates and their effects on laminate behavior
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
Evidence of the presence of lamination residual stresses in angleplied laminates were transply cracks and warpage of unsymmetric laminates which occur prior to application of any mechanical load. Lamination residual strains were measured using the embedded strain gage technique. These strains result from the temperature differences between cure and room temperature and vary linearly within this temperature range. Lamination residual stresses were usually present in angleplied fiber composites laminates; they were also present in unidirectional hybrids and superhybrids. For specific applications, the magnitudes of lamination residual stresses were determined and evaluated relative to the anticipated applied stresses. Particular attention was given to cyclic thermal loadings in applications where the thermal cycling takes place over a wide temperature range.
Schilf, Paul; Peter, Annette; Hurek, Thomas; Stick, Reimer
2014-07-01
Lamin proteins are found in all metazoans. Most non-vertebrate genomes including those of the closest relatives of vertebrates, the cephalochordates and tunicates, encode only a single lamin. In teleosts and tetrapods the number of lamin genes has quadrupled. They can be divided into four sub-types, lmnb1, lmnb2, LIII, and lmna, each characterized by particular features and functional differentiations. Little is known when during vertebrate evolution these features have emerged. Lampreys belong to the Agnatha, the sister group of the Gnathostomata. They split off first within the vertebrate lineage. Analysis of the sea lamprey (Petromyzon marinus) lamin complement presented here, identified three functional lamin genes, one encoding a lamin LIII, indicating that the characteristic gene structure of this subtype had been established prior to the agnathan/gnathostome split. Two other genes encode lamins for which orthology to gnathostome lamins cannot be designated. Search for lamin gene sequences in all vertebrate taxa for which sufficient sequence data are available reveals the evolutionary time frame in which specific features of the vertebrate lamins were established. Structural features characteristic for A-type lamins are not found in the lamprey genome. In contrast, lmna genes are present in all gnathostome lineages suggesting that this gene evolved with the emergence of the gnathostomes. The analysis of lamin gene neighborhoods reveals noticeable similarities between the different vertebrate lamin genes supporting the hypothesis that they emerged due to two rounds of whole genome duplication and makes clear that an orthologous relationship between a particular vertebrate paralog and lamins outside the vertebrate lineage cannot be established. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Technical Reports Server (NTRS)
Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.
1985-01-01
Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.
Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio
2016-01-01
AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. PMID:27512140
Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof
Reddy, Patel Bhageerath; EL-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang; Alexander, James Pellegrino
2016-03-15
An internal permanent magnet machine includes a rotor assembly having a shaft comprising a plurality of protrusions extending radially outward from a main shaft body and being formed circumferentially about the main shaft body and along an axial length of the main shaft body. A plurality of stacks of laminations are arranged circumferentially about the shaft to receive the plurality of protrusions therein, with each stack of laminations including a plurality of lamination groups arranged axially along a length of the shaft and with permanent magnets being disposed between the stacks of laminations. Each of the laminations includes a shaft protrusion cut formed therein to receive a respective shaft protrusion and, for each of the stacks of laminations, the shaft protrusion cuts formed in the laminations of a respective lamination group are angularly offset from the shaft protrusion cuts formed in the laminations in an adjacent lamination group.
Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Jianbin; Xu, Chao; Bian, Chuanbing
2012-07-18
We present here the crystal structures of human lamin B1 globular tail domain and coiled 2B domain, which adopt similar folds to Ig-like domain and coiled-coil domain of lamin A, respectively. Despite the overall similarity, we found an extra intermolecular disulfide bond in the lamin B1 coil 2B domain, which does not exist in lamin A/C. In addition, the structural analysis indicates that interactions at the lamin B1 homodimer interface are quite different from those of lamin A/C. Thus our research not only reveals the diversely formed homodimers among lamin family members, but also sheds light on understanding the importantmore » roles of lamin B1 in forming the nuclear lamina matrix.« less
Scharner, J; Figeac, N; Ellis, J A; Zammit, P S
2015-06-01
Exon skipping, as a therapy to restore a reading frame or switch protein isoforms, is under clinical trial. We hypothesised that removing an in-frame exon containing a mutation could also improve pathogenic phenotypes. Our model is laminopathies: incurable tissue-specific degenerative diseases associated with LMNA mutations. LMNA encodes A-type lamins, that together with B-type lamins, form the nuclear lamina. Lamins contain an alpha-helical central rod domain composed of multiple heptad repeats. Eliminating LMNA exon 3 or 5 removes six heptad repeats, so shortens, but should not otherwise significantly alter, the alpha-helix. Human Lamin A or Lamin C with a deletion corresponding to amino acids encoded by exon 5 (Lamin A/C-Δ5) localised normally in murine lmna-null cells, rescuing both nuclear shape and endogenous Lamin B1/emerin distribution. However, Lamin A carrying pathogenic mutations in exon 3 or 5, or Lamin A/C-Δ3, did not. Furthermore, Lamin A/C-Δ5 was not deleterious to wild-type cells, unlike the other Lamin A mutants including Lamin A/C-Δ3. Thus Lamin A/C-Δ5 function as effectively as wild-type Lamin A/C and better than mutant versions. Antisense oligonucleotides skipped LMNA exon 5 in human cells, demonstrating the possibility of treating certain laminopathies with this approach. This proof-of-concept is the first to report the therapeutic potential of exon skipping for diseases arising from missense mutations.
Buckling and weight optimization for non-coupled antisymmetric laminates
NASA Astrophysics Data System (ADS)
Bhatnagar, Aditi
This research work describes the application of genetic algorithms to weight minimization and buckling load maximization of the non-coupled antisymmetric composite laminated plates. Previous studies of composite tailoring were limited to symmetric and balanced laminates. With the availability of many methodologies for composite tailoring, genetic algorithm is preferably used because of its ability to handle discrete design variable and attain multiple near optimum design solutions. A comparative study is made between optimum symmetric-balanced laminate designs and optimum non-coupled antisymmetric laminate designs, both of which are subjected to biaxial in-plane compressive loads. With the implementation of various genetic algorithm operators such as selection, crossover and mutation, critical buckling load factors are obtained for the optimum stacking sequence for both types of laminates. The mechanical properties for non-coupled antisymmetric laminates is independent of all types of coupling effects such as bending-twisting coupling, bending-extension coupling, and shear-extension coupling, thus giving the laminate a non-coupling behavior. This is in contrast to that of symmetric-balanced laminates where finite bending-twisting coupling terms are present. Optimized laminate layups satisfying the constraints of balance, buckling and adjoining were obtained for two types of graphite epoxy rectangular composite laminated plates. The current research augments the laminate thickness minimization designs with both odd and even number of layers, and the optimum buckling load maximization designs by the introduction of non-coupled antisymmetric laminates.
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sullivan, T. L.
1974-01-01
An approximate computational procedure is described for the analysis of angleplied laminates with residual nonlinear strains. The procedure consists of a combination of linear composite mechanics and incremental linear laminate theory. The procedure accounts for initial nonlinear strains, unloading, and in-situ matrix orthotropic nonlinear behavior. The results obtained in applying the procedure to boron/aluminum angleplied laminates show that this is a convenient means to accurately predict the initial tangent properties of angleplied laminates in which the matrix has been strained nonlinearly by the lamination residual stresses. The procedure predicted initial tangent properties results which were in good agreement with measured data obtained from boron/aluminum angleplied laminates.
Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio; Saggio, Isabella
2016-08-01
AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. © 2016 The Authors.
Hussey, John H.; Rose, John Scott; Meystrik, Jeffrey J.; White, Kent Lee
2001-01-23
A laminated rotor for an induction motor has a plurality of ferro-magnetic laminations mounted axially on a rotor shaft. Each of the plurality of laminations has a central aperture in the shape of a polygon with sides of equal length. The laminations are alternatingly rotated 180.degree. from one another so that the straight sides of the polygon shaped apertures are misaligned. As a circular rotor shaft is press fit into a stack of laminations, the point of maximum interference occurs at the midpoints of the sides of the polygon (i.e., at the smallest radius of the central apertures of the laminations). Because the laminates are alternatingly rotated, the laminate material at the points of maximum interference yields relatively easily into the vertices (i.e., the greatest radius of the central aperture) of the polygonal central aperture of the next lamination as the shaft is inserted into the stack of laminations. Because of this yielding process, the amount of force required to insert the shaft is reduced, and a tighter fit is achieved.
Structural feasibility of parallel-laminated veneer crossarms
John Youngquist; Frank Brey; Joseph Jung
1977-01-01
Experimentally and commercially produced laminated M-19 crossarms were tested by standard Rural Electrification Administration (REA) crossarm tests. The laminated crossarms, produced by laminating veneer and by laminating solid-sawn dimension stock, generally performed satisfactorily according to REA specified standards. Materials tested are described and results on...
Lamination cooling system formation method
Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA
2012-06-19
An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.
Lamination cooling system formation method
Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA
2009-05-12
An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.
Analysis and experiments for composite laminates with holes and subjected to 4-point bending
NASA Technical Reports Server (NTRS)
Shuart, M. J.; Prasad, C. B.
1990-01-01
Analytical and experimental results are presented for composite laminates with a hole and subjected to four-point bending. A finite-plate analysis is used to predict moment and strain distributions for six-layer quasi-isotropic laminates and transverse-ply laminates. Experimental data are compared with the analytical results. Experimental and analytical strain results show good agreement for the quasi-isotropic laminates. Failure of the two types of composite laminates is described, and failure strain results are presented as a function of normalized hole diameter. The failure results suggest that the initial failure mechanism for laminates subjected to four-point bending are similar to the initial failure mechanisms for corresponding laminates subjected to uniaxial inplane loadings.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1990-01-01
The multilayer theory of anisotropic elasticity and a finite element method were used to analyze the open-mode delamination stress concentrations in horseshoe and elliptic laminated composite curved bars. Two types of laminations, solid laminations and sandwich laminations, were analyzed. It was found that the open-mode delamination stress concentration could be greatly increased in these two types of curved bars by decreasing their aspect ratios. The open-mode delamination stress concentration generated in the solid laminations was found to be far more severe than that generated in the sandwich laminations. The horseshoe curved bar may be used to determine both the open-mode delamination strength of solidly laminated composites and the open-mode debonding strength of sandwiched laminated composites. However, the elliptic curved bar is only good for determining the open-mode delamination strength of solidly laminated composites.
NASA Technical Reports Server (NTRS)
Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.
2005-01-01
A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.
An extended view of nuclear lamin structure, function, and dynamics.
Paddy, M R; Agard, D A; Sedat, J W
1992-08-01
Molecularly-based studies of nuclear lamins have progressed at a rapid rate in the last decade. However, we still have no answer to the most important question: what are the functions of lamins? In this review we describe recent experiments which challenge traditional views of lamin function and structure. These surprising results indicate that much lamin functionality remains to be discovered, and that more global approaches to lamin structure and function are especially appropriate at this time.
Honeycomb-laminate composite structure
NASA Technical Reports Server (NTRS)
Gilwee, W. J., Jr.; Parker, J. A. (Inventor)
1977-01-01
A honeycomb-laminate composite structure was comprised of: (1) a cellular core of a polyquinoxaline foam in a honeycomb structure, and (2) a layer of a noncombustible fibrous material impregnated with a polyimide resin laminated on the cellular core. A process for producing the honeycomb-laminate composite structure and articles containing the honeycomb-laminate composite structure is described.
Uchino, Ryo; Nonaka, Yu-Ki; Horigome, Tuneyoshi; Sugiyama, Shin; Furukawa, Kazuhiro
2013-01-01
Lamins are the major components of nuclear envelope architecture, being required for both the structural and informational roles of the nuclei. Mutations of lamins cause a spectrum of diseases in humans, including muscular dystrophy. We report here that the loss of the A-type lamin gene, lamin C in Drosophila resulted in pupal metamorphic lethality caused by tendon defects, matching the characteristics of human A-type lamin revealed by Emery-Dreifuss muscular dystrophy (EDMD). In tendon cells lacking lamin C activity, overall cell morphology was affected and organization of the spectraplakin family cytoskeletal protein Shortstop which is prominently expressed in tendon cells gradually disintegrated, notably around the nucleus and in a manner correlating well with the degradation of musculature. Furthermore, lamin C null mutants were efficiently rescued by restoring lamin C expression to shortstop-expressing cells, which include tendon cells but exclude skeletal muscle cells. Thus the critical function of A-type lamin C proteins in Drosophila musculature is to maintain proper function and morphology of tendon cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Novel Remanufacturing Process of Recycled Polytetrafluoroethylene(PTFE)/GF Laminate
NASA Astrophysics Data System (ADS)
Xi, Z.; Ghita, O. R.; Johnston, P.; Evans, K. E.
2011-01-01
Currently, the PTFE/GF laminate and PTFE PCB manufacturers are under considerable pressure to address the recycling issues due to Waste Electrical and Electronic Equipment (WEEE) Directive, shortage of landfill capacity and cost of disposal. This study is proposing a novel manufacture method for reuse of the mechanical ground PTFE/Glass fibre (GF) laminate and production of the first reconstitute PTFE/GF laminate. The reconstitute PTFE/GF laminate proposed here consists of a layer of recycled sub-sheet, additional layers of PTFE and PTFE coated glass cloth, also covered by copper foils. The reconstitute PTFE/GF laminate showed good dielectric properties. Therefore, there is potential to use the mechanical ground PTFE/GF laminate powder to produce reconstitute PTFE/GF laminate, for use in high frequencies PCB applications.
Pollard, D; Wylie, C E; Verheyen, K L P; Newton, J R
2017-11-01
Use of owner-reported data could further epidemiological knowledge of equine laminitis. However, owner recognition of laminitis has not previously been assessed. The primary objective was to establish whether cases of owner-suspected laminitis would be confirmed as laminitis by the attending veterinary surgeon. Secondary objectives were to compare owner- and veterinary-reported information from veterinary-confirmed cases of equine laminitis. Cross-sectional study. Twenty-five British veterinary practices were invited to submit laminitis reporting forms (LRFs) for active laminitis cases attended between January 2014 and October 2015; detailing 27 clinical signs, 5 underlying conditions and 7 risk factors associated with laminitis. Owners were invited to independently complete a modified LRF if reason for the veterinary visit was suspicion of laminitis. Differences between paired veterinary and owner LRFs, and between cases where owners did and did not recognise laminitis, were assessed using McNemar's and Fisher's Exact tests, respectively. Veterinary LRFs were received for 93 veterinary-diagnosed laminitis cases. All 51 owner-suspected cases were confirmed by veterinary diagnosis, with the remaining 42 (45.2%) not recognised as laminitis by owners. Undefined lameness, foot abscesses, colic and stiffness were common reasons for owner-requested veterinary visits in owner-unrecognised cases. 'Divergent growth rings' (prevalence difference: +27.3%, P = 0.01) and 'breed type' (prevalence difference: +21.2%, P = 0.04) were more commonly reported by veterinary surgeons in owner-recognised compared to owner-unrecognised cases. 'Difficulty turning', 'shifting weight' and risk factor 'body condition' were more frequently reported by veterinary surgeons whilst 'increased hoof temperature' was reported more frequently by owners. The limited clinical data restricted statistical inferences regarding the secondary objectives. All owner-suspected laminitis cases were confirmed upon veterinary examination, showing validity for the inclusion of owner-reported cases in future epidemiological studies. However, failure of laminitis recognition by owners highlights further need for evidence-based education to ensure early disease detection. © 2017 EVJ Ltd.
Method of manufacturing a large-area segmented photovoltaic module
Lenox, Carl
2013-11-05
One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.
Fracture behavior of thick, laminated graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Harris, C. E.; Morris, D. H.
1984-01-01
The effect of laminate thickness on the fracture behavior of laminated graphite epoxy (T300/5208) composites was studied. The predominantly experimental research program included the study of the 0/+ or - 45/90 sub ns and 0/90 sub ns laminates with thickness of 8, 32, 64, 96 and 120 plies and the 0/+ or - 45 sub ns laminate with thickness of 6, 30, 60, 90 and 120 plies. The research concentrated on the measurement of fracture toughness utilizing the center-cracked tension, compact tension and three point bend specimen configurations. The development of subcritical damage at the crack tip was studied nondestructively using enhanced X-ray radiography and destructively using the laminate deply technique. The test results showed fracture toughness to be a function of laminate thickness. The fracture toughness of the 0 + or - 45/90 sub ns and 0/90 sub ns laminates decreased with increasing thickness and asymptotically approached lower bound values of 30 ksi square root of in. (1043 MPa square root of mm and 25 ksi square root of in (869 MPa square root of mm respectively. In contrast to the other two laminates, the fracture toughness of the 0/+ or - 45 sub ns laminate increased sharply with increasing thickness but reached an upper plateau value of 40 ksi square root of in (1390 MPa square root of mm) at 30 plies. Fracture toughness was independent of crack size for both thin and thick laminates for all three laminate types except for the 0/90 sub 2s laminate which spilt extensively. The center cracked tension, three point bend and compact tension specimens gave comparable results.
Al Saedi, Ahmed; Gunawardene, Piumali; Bermeo, Sandra; Vogrin, Sara; Boersma, Derek; Phu, Steven; Singh, Lakshman; Suriyaarachchi, Pushpa; Duque, Gustavo
2018-02-01
Lamin A is a protein of the nuclear lamina. Low levels of lamin A expression are associated with osteosarcopenia in mice. In this study, we hypothesized that low lamin A expression is also associated with frailty in humans. We aimed to develop a non-invasive method to quantify lamin A expression in epithelial and circulating osteoprogenitor (COP) cells, and to determine the relationship between lamin A expression and frailty in older individuals. COP cells and buccal swabs were obtained from 66 subjects (median age 74; 60% female; 26 non-frail, 23 pre-frail, and 17 frail) participating at the Nepean Osteoporosis and Frailty (NOF) Study. We quantified physical performance and disability, and stratified frailty in this population. Lamin A expression in epithelial and COP cells was quantified by flow cytometry. Linear regression models estimated the relationship between lamin A expression in buccal and COP cells, and prevalent disability and frailty. Lamin A expression in buccal cells showed no association with either disability or frailty. Low lamin A expression values in COP cells were associated with frailty. Frail individuals showed 60% lower levels of lamin A compared to non-frail (95% CI -36 to -74%, p<0.001) and 62% lower levels compared to pre-frail (95%CI -40 to -76%, p<0.001). In summary, we have identified lamin A expression in COP cells as a strong indicator of frailty. Further work is needed to understand lamin A expression as a risk stratifier, biomarker, or therapeutic target in frail older persons. Copyright © 2017 Elsevier Inc. All rights reserved.
Flammability screening tests of resins
NASA Technical Reports Server (NTRS)
Arhart, R. W.; Farrar, D. G.; Hughes, B. M.
1979-01-01
Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.
2013-07-01
epithelial cells; MDA-MB-231 metastatic breast cancer cells) with systematic alterations in the expression of lamins A, B1, B2, C, and lamin B receptor...LBR). We then evaluated the effect of altered lamin expression on nuclear stiffness in these cell lines. While increased expression of lamin A...caused stiffer, less deformable nuclei, reduction of lamins A/C expression by shRNA reduced nuclear stiffness. The effect of alterations in other lamins
The structural response of unsymmetrically laminated composite cylinders
NASA Technical Reports Server (NTRS)
Butler, T. A.; Hyer, M. W.
1989-01-01
The responses of an unsymmetrically laminated fiber-reinforced composite cylinder to an axial compressive load, a torsional load, and the temperature change associated with cooling from the processing temperature to the service temperature are investigated. These problems are considered axisymmetric and the response is studied in the context of linear elastic material behavior and geometrically linear kinematics. Four different laminates are studied: a general unsymmetric laminate; two unsymmetric but more conventional laminates; and a conventional quasi-isotropic symmetric laminate. The responses based on closed-form solutions for different boundary conditions are computed and studied in detail. Particular emphasis is directed at understanding the influence of elastic couplings in the laminates. The influence of coupling decreased from a large effect in the general unsymmetric laminate, to practically no effect in the quasi-isotropic laminate. For example, the torsional loading of the general unsymmetric laminate resulted in a radial displacement. The temperature change also caused a significant radial displacement to occur near the ends of the cylinder. On the other hand, the more conventional unsymmetric laminate and the quasi-isotropic cylinder did not deform radially when subjected to a torsional load. From the results obtained, it is clear the degree of elastic coupling can be controlled and indeed designed into a cylinder, the degree and character of the coupling being dictated by the application.
Effect of shallow angles on compressive strength of biaxial and triaxial laminates.
Jia, Hongli; Yang, Hyun-Ik
2016-01-01
Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle <45°) might be utilized for reducing mass and/or improving performance. The compressive properties of shallow-angled BX and TX laminates are critical considering their locations in a wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.
LamLum : a tool for evaluating the financial feasibility of laminated lumber plants
E.M. (Ted) Bilek; John F. Hunt
2006-01-01
A spreadsheet-based computer program called LamLum was created to analyze the economics of value- added laminated lumber manufacturing facilities. Such facilities manufacture laminations, typically from lower grades of structural lumber, then glue these laminations together to make various types of higher value laminated lumber products. This report provides the...
21 CFR 177.1390 - Laminate structures for use at temperatures of 250 °F and above.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Laminate structures for use at temperatures of 250 °F and above. (a) The high-temperature laminates... of layers. These layers may be laminated, extruded, coextruded, or fused. (b) When containers subject... produced from high-temperature laminates may be safely used to package all food types except those...
Field performance of stress-laminated highway bridges constructed with glued laminated timber
J.P. Wacker
2004-01-01
This paper summarizes the field performance of three stress-laminated deck timber bridges located in Wisconsin, New York, and Arizona. The deck superstructures of these single-span highway bridges is comprised of full-span glued laminated timber (glulam) beam laminations manufactured with southern pine, hem fir/red maple combination, and/or Douglas fir lumber species....
Tensile stress-strain behavior of boron/aluminum laminates
NASA Technical Reports Server (NTRS)
Sova, J. A.; Poe, C. C., Jr.
1978-01-01
The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.
A continuum model for damage evolution in laminated composites
NASA Technical Reports Server (NTRS)
Lo, D. C.; Allen, D. H.; Harris, C. E.
1991-01-01
The accumulation of matrix cracking is examined using continuum damage mechanics lamination theory. A phenomenologically based damage evolutionary relationship is proposed for matrix cracking in continuous fiber reinforced laminated composites. The use of material dependent properties and damage dependent laminate averaged ply stresses in this evolutionary relationship permits its application independently of the laminate stacking sequence. Several load histories are applied to crossply laminates using this model, and the results are compared to published experimental data. The stress redistribution among the plies during the accumulation of matrix damage is also examined. It is concluded that characteristics of the stress redistribution process could assist in the analysis of the progressive failure process in laminated composites.
Improved damage tolerance of titanium by adhesive lamination
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1982-01-01
Basic damage tolerance properties of Ti-6A1-4V titanium plate can be improved by laminating thin sheets of titanium with adhesives. Compact tension and center cracked tension specimens made from thick plate, thin sheet, and laminated plate (six plies of thin sheet) were tested. The fracture toughness of the laminated plate was 39 percent higher than the monolithic plate. The laminated plate's through the thickness crack growth rate was about 20 percent less than that of the monolithic plate. The damage tolerance life of the surface cracked laminate was 6 to over 15 times the life of a monolithic specimen. A simple method of predicting crack growth in a crack ply of a laminate is presented.
Bending strength of shallow glued-laminated beams of a uniform grade
Catherine M. Marx; Russell C. Moody
1981-01-01
Ninety glued-laminated Douglas-fir or southern pine beams of a uniform grade with 2-, 4-, or 6-laminations were evaluated in static bending tests. No specially graded tension laminations or end joints were used. The purpose of the tests was to determine which of three present design criteria best predict near minimum bending strength values for shallow glued-laminated...
R. C. Moody; Billy Bohannan
1970-01-01
To establish the effect of using modulus elasticity in addition to visual grade as criteria for the positioning of laminations in laminated beams, an experimental study on southern pine members was conducted. The beams were manufactured in accordance with current specifications for glued-laminated southern pine timber, except that (a) minimum-quality tension...
Lamins at the crossroads of mechanosignaling
Osmanagic-Myers, Selma; Dechat, Thomas
2015-01-01
The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues. PMID:25644599
A limiting analysis for edge effects in angle-ply laminates
NASA Technical Reports Server (NTRS)
Hsu, P. W.; Herakovich, C. T.
1976-01-01
A zeroth order solution for edge effects in angle ply composite laminates using perturbation techniques and a limiting free body approach was developed. The general method of solution for laminates is developed and then applied to the special case of a graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness to width ratio h/b and compared to existing numerical results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress for two laminates, and provides mathematical evidence for singular interlaminar shear stresses.
A Micromechanics-Based Damage Model for [+/- Theta/90n]s Composite Laminates
NASA Technical Reports Server (NTRS)
Mayugo, Joan-Andreu; Camanho, Pedro P.; Maimi, Pere; Davila, Carlos G.
2006-01-01
A new damage model based on a micromechanical analysis of cracked [+/- Theta/90n]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.
Three dimensional thermal stresses in angle-ply composite laminates
NASA Technical Reports Server (NTRS)
Griffin, O. Hayden, Jr.
1988-01-01
The room temperature stress distributions and shapes of a family of angle ply graphite/epoxy laminates have been obtained using a three-dimensional linear finite element analysis. The sensitivity of the corners to fiber angle variations is examined, in addition to the errors introduced by assuming planes of symmetry which do not exist in angle-ply laminates. The results show that angle ply laminates with 'clustered' plies will tend to delaminate at diagonally opposite corners, and that matrix cracks in this family of laminates will be initiated in the laminate interior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulauskas, F.L.
The objective of this work was to investigate the beneficial effect of the variable frequency microwave (VFM) technology to cure thermosetting prepreg laminates. Further, it was to investigate the interrelationship and effect on the curing process of frequency, band width, and curing time with different types of laminates. Previous studies of microwave-assisted curing of neat resins (epoxy) and unidirectional glass and carbon fiber laminates with a fixed frequency of 2.45 GHz, have shown that a substantial reduction in the curing time was obtained. Results of this earlier work indicate that the microwave-assisted curing of multidirectional glass fiber laminates also showmore » a substantial reduction of the required curing time. This may be explained by the penetration of microwave energy directly and throughout the laminate with enhancement of the kinetics of the chemical reaction. The fixed frequency microwave radiation of 2.45 GHz has been demonstrated to be a partially acceptable method to cure unidirectional carbon fiber laminates. Multidirectional carbon fiber/epoxy laminates demonstrate a lack of coupling during the curing process. A direct curing of these laminates was not possible by microwave radiation with the experimental approach used in agreement with previous work. In addition to this short coming, the unidirectional laminate samples cured with the fixed frequency are visually nonuniform. Localized areas of darker colors (burn, hot spots, overheating) are attributed to the formation of standing waves within the microwave cavity. For this reason, the laminates are subject to proper rotation while curing through fixed frequency. The present research indicates that variable frequency microwave technology is a sound and acceptable processing method to effectively cure uni-, bi- or multi-directional thermosetting glass fiber laminates. Also, this methodology will effectively cure unidirectional thermosetting carbon fiber laminates. For all these cases, this technology yielded a substantial reduction in the required cure time of these laminates. Multidirectional carbon fiber laminates demonstrated a lack of coupling of VFM energy during the curing process.« less
NASA Technical Reports Server (NTRS)
Shuart, M. J.
1985-01-01
The short-wavelength buckling (or the microbuckling) and the interlaminar and inplane shear failures of multi-directional composite laminates loaded in uniaxial compression are investigated. A laminate model is presented that idealizes each lamina. The fibers in the lamina are modeled as a plate, and the matrix in the lamina is modeled as an elastic foundation. The out-of-plane w displacement for each plate is expressed as a trigonometric series in the half-wavelength of the mode shape for laminate short-wavelength buckling. Nonlinear strain-displacement relations are used. The model is applied to symmetric laminates having linear material behavior. The laminates are loaded in uniform end shortening and are simply supported. A linear analysis is used to determine the laminate stress, strain, and mode shape when short-wavelength buckling occurs. The equations for the laminate compressive stress at short-wavelength buckling are dominated by matrix contributions.
Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation
Swift, Joe; Ivanovska, Irena L.; Buxboim, Amnon; Harada, Takamasa; Dingal, P. C. Dave P.; Pinter, Joel; Pajerowski, J. David; Spinler, Kyle R.; Shin, Jae-Won; Tewari, Manorama; Rehfeldt, Florian; Speicher, David W.; Discher, Dennis E.
2014-01-01
Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination. PMID:23990565
Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells*
Jevtić, Predrag; Edens, Lisa J.; Li, Xiaoyang; Nguyen, Thang; Chen, Pan; Levy, Daniel L.
2015-01-01
A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size. One structural component implicated in the regulation of nuclear morphology is the nuclear lamina, a meshwork of intermediate lamin filaments that lines the inner nuclear membrane. However, there has not been a systematic investigation of how the level and type of lamin expression influences nuclear size, in part due to difficulties in precisely controlling lamin expression levels in vivo. In this study, we circumvent this limitation by studying nuclei in Xenopus laevis egg and embryo extracts, open biochemical systems that allow for precise manipulation of lamin levels by the addition of recombinant proteins. We find that nuclear growth and size are sensitive to the levels of nuclear lamins, with low and high concentrations increasing and decreasing nuclear size, respectively. Interestingly, each type of lamin that we tested (lamins B1, B2, B3, and A) similarly affected nuclear size whether added alone or in combination, suggesting that total lamin concentration, and not lamin type, is more critical to determining nuclear size. Furthermore, we show that altering lamin levels in vivo, both in Xenopus embryos and mammalian tissue culture cells, also impacts nuclear size. These results have implications for normal development and carcinogenesis where both nuclear size and lamin expression levels change. PMID:26429910
Thermo-mechanical response predictions for metal matrix composite laminates
NASA Technical Reports Server (NTRS)
Aboudi, J.; Hidde, J. S.; Herakovich, C. T.
1991-01-01
An analytical micromechanical model is employed for prediction of the stress-strain response of metal matrix composite laminates subjected to thermomechanical loading. The predicted behavior of laminates is based upon knowledge of the thermomechanical response of the transversely isotropic, elastic fibers and the elastic-viscoplastic, work-hardening matrix. The method is applied to study the behavior of silicon carbide/titanium metal matrix composite laminates. The response of laminates is compared with that of unidirectional lamina. The results demonstrate the effect of cooling from a stress-free temperature and the mismatch of thermal and mechanical properties of the constituent phases on the laminate's subsequent mechanical response. Typical results are presented for a variety of laminates subjected to monotonic tension, monotonic shear and cyclic tensile/compressive loadings.
Multi-layer laminate structure and manufacturing method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenihan, James R; Cleereman, Robert J; Eurich, Gerald
2012-04-24
The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.
Multi-layer laminate structure and manufacturing method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald
2013-01-29
The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.
NASA Technical Reports Server (NTRS)
Sobel, Larry; Buttitta, Claudio; Suarez, James
1993-01-01
Probabilistic predictions based on the Integrated Probabilistic Assessment of Composite Structures (IPACS) code are presented for the material and structural response of unnotched and notched, 1M6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply, and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is deficient because IPACS did not yet have a progressive failure capability. The paper also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.
Self-heating forecasting for thick laminate specimens in fatigue
NASA Astrophysics Data System (ADS)
Lahuerta, F.; Westphal, T.; Nijssen, R. P. L.
2014-12-01
Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations, which include experiments on thick laminate coupons. Due to the poor thermal conductivity properties of composites and the material self-heating that occurs during the fatigue loading, high temperature gradients may appear through the laminate thickness. In the case of thick laminates in high load regimes, the core temperature might influence the mechanical properties, leading to premature failures. In the present work a method to forecast the self-heating of thick laminates in fatigue loading is presented. The mechanical loading is related with the laminate self-heating, via the cyclic strain energy and the energy loss ratio. Based on this internal volumetric heat load a thermal model is built and solved to obtain the temperature distribution in the transient state. Based on experimental measurements of the energy loss factor for 10mm thick coupons, the method is described and the resulting predictions are compared with experimental surface temperature measurements on 10 and 30mm UD thick laminate specimens.
A theory for predicting composite laminate warpage resulting from fabrication
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1974-01-01
Linear laminate theory is used with the moment-curvature relationship to derive equations for predicting end deflections due to warpage without solving the coupled fourth-order partial differential equations of the plate. Composite micro- and macrohyphenmechanics are used with laminate theory to assess the contribution of factors such as ply misorientation, fiber migration, and fiber and/or void volume ratio nonuniformity on the laminate warpage. Using these equations, it was found that a 1 deg error in the orientation angle of one ply was sufficient to produce warpage end deflection equal to two laminate thicknesses in a 10 inch by 10 inch laminate made from 8 ply Mod-I/epoxy. Using a sensitivity analysis on the governing parameters, it was found that a 3 deg fiber migration or a void volume ratio of three percent in some plies is sufficient to produce laminate warpage corner deflection equal to several laminate thicknesses. Tabular and graphical data are presented which can be used to identify possible errors contributing to laminate warpage and/or to obtain an a priori assessment when unavoidable errors during fabrication are anticipated.
A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate
NASA Astrophysics Data System (ADS)
Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.
2017-08-01
The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.
Fracture Mechanics of Transverse Cracks and Edge Delamination in Graphite-Epoxy Composite Laminates.
1982-03-01
Fracture failure in multi-layer epoxy-based composite laminates seldom begins with breaking of the load-carrying reinforcing fibers. Rather, smeall...often observed sub-laminate fracture mudes in, e.g., glass-epoxy and graph- ite-epoxy composite laminates. Although these matrix-dominated crackings...the uicrostructures of any given fibrous composite , fracture analysis of sub-laminate cracks based on micro leanie [I Is almost Impossible If not
Preliminary investigation of crack arrest in composite laminates containing buffer strips
NASA Technical Reports Server (NTRS)
Goree, J. G.
1978-01-01
The mechanical properties of some hybrid buffer strip laminates and the crack arrest potential of laminates containing buffer strips were determined. The hybrid laminates consisted of graphite with either S-glass, E-glass, or Kevlar. Unnotched tensile coupons and center-cracked fracture coupons were tested. Elastic properties, complete stress/strain curves, and critical stress intensity values are given. The measured elastic properties compare well with those calculated by classical lamination theory for laminates with linear stress/strain behavior. The glass hybrids had more delamination and higher fracture toughness than the all-graphite or the Kevlar hybrid.
Composite laminates with negative through-the-thickness Poisson's ratios
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1984-01-01
A simple analysis using two dimensional lamination theory combined with the appropriate three dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates.
Composite laminates with negative through-the-thickness Poisson's ratios
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1984-01-01
A simple analysis using two-dimensional lamination theory combined with the appropriate three-dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates.
Fatigue damage development of various CFRP-laminates
NASA Technical Reports Server (NTRS)
Schulte, K.; Baron, CH.
1988-01-01
The chronic strength and fatigue behavior of a woven carbon-fiber reinforced laminate in a balanced eight-shaft satin weave style was compared to nonwoven laminates with an equivalent cross-ply layup. Half the fibers were arranged in the direction of the load and the other half perpendicular to it. Two types of nonwoven laminates consisting of continuous fibers and aligned discontinuous fibers, both produced from carbon fiber prepregs, were studied. The cross-ply laminate with continuous fiber showed the best characteristics with regard to both static strength and fatigue. The similarities and differences in damage mechanisms in the laminates are described.
Edge effects in angle-ply composite laminates
NASA Technical Reports Server (NTRS)
Hsu, P. W.; Herakovich, C. T.
1977-01-01
This paper presents the results of a zeroth-order solution for edge effects in angle-ply composite laminates obtained using perturbation techniques and a limiting free body approach. The general solution for edge effects in laminates of arbitrary angle ply is applied to the special case of a (+ or - 45)s graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness-to-width ratio and compared to finite difference results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress and provides mathematical evidence for singular interlaminar shear stresses in (+ or - 45) graphite/epoxy laminates.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Morel, M. R.; Chamis, C. C.
1991-01-01
A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Saaidi, Rasha; Rasmussen, Torsten B.; Palmfeldt, Johan
2013-11-15
Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representativemore » LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that heterozygosity for the nonsense mutation causes NMD degradation of the mutant transcripts blocking expression of the truncated mutant protein and an additional trans effect on lamin A protein levels expressed from the wild type allele. We discuss the possibility that skewing of the lamin A to lamin C ratio may contribute to ensuing processes that destabilize cardiomyocytes and trigger cardiomyopathy - Highlights: • We study disease mechanisms in DCM patients carrying PTC mutations in the LMNA gene. • The mutant transcript is degraded by the nonsense mediated mRNA decay system. • Skewed lamin A to lamin C protein ratio expressed from the wild type allele. • We suggest a combined pathomechanism: haploinsuffiency plus lamin A/C imbalance.« less
Cho, Sangkyun; Abbas, Amal; Ivanovska, Irena L.; Xia, Yuntao; Tewari, Manu; Discher, Dennis E.
2018-01-01
ABSTRACT Interphase phosphorylation of lamin-A,C depends dynamically on a cell's microenvironment, including the stiffness of extracellular matrix. However, phosphorylation dynamics is poorly understood for diseased forms such as progerin, a permanently farnesylated mutant of LMNA that accelerates aging of stiff and mechanically stressed tissues. Here, fine-excision alignment mass spectrometry (FEA-MS) is developed to quantify progerin and its phosphorylation levels in patient iPS cells differentiated to mesenchymal stem cells (MSCs). The stoichiometry of total A-type lamins (including progerin) versus B-type lamins measured for Progeria iPS-MSCs prove similar to that of normal MSCs, with total A-type lamins more abundant than B-type lamins. However, progerin behaves more like farnesylated B-type lamins in mechanically-induced segregation from nuclear blebs. Phosphorylation of progerin at multiple sites in iPS-MSCs cultured on rigid plastic is also lower than that of normal lamin-A and C. Reduction of nuclear tension upon i) cell rounding/detachment from plastic, ii) culture on soft gels, and iii) inhibition of actomyosin stress increases phosphorylation and degradation of lamin-C > lamin-A > progerin. Such mechano-sensitivity diminishes, however, with passage as progerin and DNA damage accumulate. Lastly, transcription-regulating retinoids exert equal effects on both diseased and normal A-type lamins, suggesting a differential mechano-responsiveness might best explain the stiff tissue defects in Progeria. PMID:29619860
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1996-01-01
Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.
Predictions of Poisson's ratio in cross-ply laminates containing matrix cracks and delaminations
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.; Nottorf, Eric W.
1989-01-01
A damage-dependent constitutive model for laminated composites has been developed for the combined damage modes of matrix cracks and delaminations. The model is based on the concept of continuum damage mechanics and uses second-order tensor valued internal state variables to represent each mode of damage. The internal state variables are defined as the local volume average of the relative crack face displacements. Since the local volume for delaminations is specified at the laminate level, the constitutive model takes the form of laminate analysis equations modified by the internal state variables. Model implementation is demonstrated for the laminate engineering modulus E(x) and Poisson's ratio nu(xy) of quasi-isotropic and cross-ply laminates. The model predictions are in close agreement to experimental results obtained for graphite/epoxy laminates.
Potter, S J; Bamford, N J; Harris, P A; Bailey, S R
2017-10-01
The aims of this study were to (1) report the incidence of laminitis among a population of horses and ponies attending Pony Clubs in Victoria, Australia, and (2) describe the dietary and management practices of the sample population. Researchers visited 10 Pony Clubs over a 10-month period. Horse and pony owners completed a questionnaire to provide information on management relating to diet and exercise. Owners were also asked to report their animal's history of laminitis, if any. From a survey population of 233 horses and ponies, 15.0% of animals (35 individuals) were reported to have suffered from at least one episode of laminitis. Of the animals that had suffered from laminitis, more than half had experienced multiple episodes. The majority of previously laminitic horses and ponies (71.4%) had not experienced an episode of laminitis within the past 12 months; however, 14.2% had experienced an incident within the past month. The proportion of ponies affected by laminitis (31/142; 21.8%) was significantly higher (P < 0.001) than the proportion of horses affected by laminitis (4/91; 4.4%). The incidence of laminitis within the pony group sampled was 6.5 cases per 100 pony years, while the incidence in horses was 0.55 cases per 100 horse years. This study provided information on the incidence of laminitis in the general population of pleasure horses and ponies in south-eastern Australia. It also provided an overview of dietary and management practices. Given the high incidence of animals that had been affected by laminitis (and the associated welfare implications), this study highlights the importance of owner education regarding appropriate feeding and management strategies to reduce the risk of laminitis. © 2017 Australian Veterinary Association.
Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites
NASA Technical Reports Server (NTRS)
Rhatt, R. T.; Phillips, R. E.
1988-01-01
The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.
Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Phillips, Ronald E.
1990-01-01
The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2) sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.
Glucocorticoids and laminitis in the horse.
Johnson, Philip J; Slight, Simon H; Ganjam, Venkataseshu K; Kreeger, John M
2002-08-01
The administration of exogenously administered GCs and syndromes associated with GC excess are both attended by increased risk for the development of laminitis in adult horses. However, there exists substantial controversy as to whether excess GCs cause laminitis de novo. If true, the pathogenesis of laminitis arising from the effects of GC excess is probably different from that associated with diseases of the gastrointestinal tract and endotoxemia. Although a satisfactory explanation for the development of laminitis as a consequence of GC action is currently lacking, numerous possible and plausible theoretical mechanisms do exist. Veterinarians must exert caution with respect to the use of GCs in adult horses. The extent to which individual horses are predisposed to laminitis as a result of GC effect cannot be predicted based on current information. However, the administration of systemic GCs to horses that have been previously affected by laminitis should be used only with extreme caution, and should be accompanied by careful monitoring for further signs of laminitis. The risk of laminitis appears to be greater during treatment using some GCs (especially dexamethasone and triamcinalone) compared with others (prednisone and prednisolone). Whenever possible, to reduce the risk of laminitis, GCs should be administered locally. For example, the risk of GC-associated laminitis is evidently considerably reduced in horses affected with chronic obstructive pulmonary disease (COPD) if GC treatment is administered via inhalation. We have hypothesized that structural changes in the equine hoof that resemble laminitis may arise as a consequence of excess GC effect. Although these changes are not painful per se, and are not associated with inflammation, they could likely predispose affected horses to the development of bona fide laminitis for other reasons. Moreover, the gross morphological appearance of the chronically GC-affected hoof resembles that of a chronically foundered hoof in some respects. Further investigation into the effect of GC on the hoof lamellar interface is clearly needed.
OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A.
Simon, Dan N; Wriston, Amanda; Fan, Qiong; Shabanowitz, Jeffrey; Florwick, Alyssa; Dharmaraj, Tejas; Peterson, Sherket B; Gruenbaum, Yosef; Carlson, Cathrine R; Grønning-Wang, Line M; Hunt, Donald F; Wilson, Katherine L
2018-05-17
The LMNA gene encodes lamins A and C with key roles in nuclear structure, signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases ('laminopathies'). Lamins A and C are identical for their first 566 residues. However, they form separate filaments in vivo, with apparently distinct roles. We report that lamin A is β- O -linked N -acetylglucosamine- (O -GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver. In vitro assays with purified O -GlcNAc transferase (OGT) enzyme showed robust O -GlcNAcylation of recombinant mature lamin A tails (residues 385⁻646), with no detectable modification of lamin B1, lamin C, or 'progerin' (Δ50) tails. Using mass spectrometry, we identified 11 O -GlcNAc sites in a 'sweet spot' unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O -GlcNAc-modified at seven sites. By contrast, O -GlcNAcylation was undetectable on tails bearing deletion Δ50, which causes Hutchinson⁻Gilford progeria syndrome, and greatly reduced by deletion Δ35. We conclude that residues deleted in progeria are required for substrate recognition and/or modification by OGT in vitro. Interestingly, deletion Δ35, which does not remove the majority of identified O -GlcNAc sites, does remove potential OGT-association motifs (lamin A residues 622⁻625 and 639⁻645) homologous to that in mouse Tet1. These biochemical results are significant because they identify a novel molecular pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might cause OGT to misregulate wildtype lamin A.
Laminitis and the equine metabolic syndrome.
Johnson, Philip J; Wiedmeyer, Charles E; LaCarrubba, Alison; Ganjam, V K Seshu; Messer, Nat T
2010-08-01
Although much has been written about laminitis in the context of its association with inflammatory processes, recognition is growing that most cases of laminitis examined by veterinarians in private practice are those associated with pasture grazing, obesity, and insulin resistance (IR). The term 'endocrinopathic laminitis' has been adopted to classify the instances of laminitis in which the origin seems to be more strongly associated with an underlying endocrinopathy, such as either IR or the influence of corticosteroids. Results of a recent study suggest that obesity and IR represent the most common metabolic and endocrinopathic predispositions for laminitis in horses. IR also plays an important role in the pathogenesis of laminitis that develops when some horses or ponies are allowed to graze pastures at certain times of the year. The term equine metabolic syndrome (EMS) has been proposed as a label for horses whose clinical examination results (including both physical examination and laboratory testing) suggest heightened risk for developing laminitis as a result of underlying IR. Copyright (c) 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Coats, Timothy W.; Harris, Charles E.
1995-01-01
The durability and damage tolerance of laminated composites are critical design considerations for airframe composite structures. Therefore, the ability to model damage initiation and growth and predict the life of laminated composites is necessary to achieve structurally efficient and economical designs. The purpose of this research is to experimentally verify the application of a continuum damage model to predict progressive damage development in a toughened material system. Damage due to monotonic and tension-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables to predict stiffness loss in unnotched laminates. A damage dependent finite element code predicted the stiffness loss for notched laminates with good agreement to experimental data. It was concluded that the continuum damage model can adequately predict matrix damage progression in notched and unnotched laminates as a function of loading history and laminate stacking sequence.
Mechanics of damping for fiber composite laminates including hygro-thermal effects
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, C. C.
1989-01-01
An integrated mechanics theory has been developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.
Mechanics of damping for fiber composite laminates including hygro-thermal effects
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, Christos C.
1989-01-01
An integrated mechanics theory was developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.
An experimental investigation on the three-point bending behavior of composite laminate
NASA Astrophysics Data System (ADS)
A, Azzam; W, Li
2014-08-01
The response of composite laminate structure to three-point bending load was investigated by subjecting two types of stacking sequences of composite laminate structure by using electronic universal tester (Type: WDW-20) machine. Optical microscope was selected in order to characterize bending damage, delamination, and damage shapes in composite laminate structures. The results showed that the [0/90/-45/45]2s exhibits a brittle behavior, while other laminates exhibit a progressive failure mode consisting of fiber failure, debonding (splitting), and delamination. The [45/45/90/0]2s laminate has a highly nonlinear load- displacement curve due to compressive yielding.
Nonlinear laminate analysis for metal matrix fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1981-01-01
A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angleplied laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis (NLA) is based on linear composite mechanics and a piece wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron fiber/aluminum matrix angleplied laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.
Progressive delamination in polymer matrix composite laminates: A new approach
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.
1992-01-01
A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.
The formation and effect of outer-ply microcracks in cross-ply laminates - A variational approach
NASA Technical Reports Server (NTRS)
Nairn, John A.; Hu, Shoufeng
1992-01-01
The paper presents a variational mechanics analysis of the stresses and energy release rate in a (90m/0n)s laminate, with account taken of the observed existence of staggered microcracks. It is found that the load required to initiate microcracks is significantly lower for (90m/0n)s laminates than for (0n/90m)s laminates. It is also found that (90m/0n)s laminates are characterized by a lower saturation crack density and that no bending effects tend to promote mode I delamination in (90m/0n)s laminates.
Thermal expansion behavior of graphite/glass and graphite/magnesium
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Ard, K. E.; Sharp, G. Richard
1986-01-01
The thermal expansion behavior of n (+/- 8)s graphite fiber reinforced magnesium laminate and four graphite reinforced glass-matrix laminates (a unidirectional laminate, a quasi-isotropic laminate, a symmetric low angle-ply laminate, and a random chopped-fiber mat laminate) was determined, and was found, in all cases, to not be significantly affected by thermal cycling. Specimens were cycled up to 100 times between -200 F and 100 F, and the thermal expansion coefficients determined for each material as a function of temperature were found to be low. Some dimensional changes as a function of thermal cycling, and some thermal-strain hysteresis, were observed.
Analysis of local delaminations and their influence on composite laminate behavior
NASA Technical Reports Server (NTRS)
Obrien, T. K.
1985-01-01
An equation was derived for the strain energy release rate, G, associated with local delamination growth from a matrix ply crack. The critical GC for edge delamination onset in 25/902s graphite epoxy laminates was measured and used in this equation to predict local delamination onset strains in 25/90ns, n = 4, 6, 8 laminates. A simple technique for predicting strain concentrations in the primary load bearing plies near local delaminations was developed. These strain concentrations were responsible for reduced laminate nominal failure strains in laminates containing local delaminations. The influence of edge delamination and matrix crack tip delamination on laminate stiffness and strength was compared.
Analysis of local delaminations and their influence on composite laminate behavior
NASA Technical Reports Server (NTRS)
Obrien, T. K.
1984-01-01
An equation was derived for the strain energy release rate, G, associated with local delamination growth from a matrix ply crack. The critical GC for edge delamination onset in 25/902s graphite epoxy laminates was measured and used in this equation to predict local delamination onset strains in 25/90ns, n = 4, 6, 8 laminates. A simple technique for predicting strain concentrations in the primary load bearing plies near local delaminations was developed. These strain concentrations were responsible for reduced laminate nominal failure strains in laminates containing local delaminations. The influence of edge delamination and matrix crack tip delamination on laminate stiffness and strength was compared.
Compression response of thick layer composite laminates with through-the-thickness reinforcement
NASA Technical Reports Server (NTRS)
Farley, Gary L.; Smith, Barry T.; Maiden, Janice
1992-01-01
Compression and compression-after-impact (CAI) tests were conducted on seven different AS4-3501-6 (0/90) 0.64-cm thick composite laminates. Four of the seven laminates had through-the-thickness (TTT) reinforcement fibers. Two TTT reinforcement methods, stitching and integral weaving, and two reinforcement fibers, Kevlar and carbon, were used. The remaining three laminates were made without TTT reinforcements and were tested to establish a baseline for comparison with the laminates having TTT reinforcement. Six of the seven laminates consisted of nine thick layers whereas the seventh material was composed of 46 thin plies. The use of thick-layer material has the potential for reducing structural part cost because of the reduced part count (layers of material). The compression strengths of the TTT reinforced laminates were approximately one half those of the materials without TTT reinforcements. However, the CAI strengths of the TTT reinforced materials were approximately twice those of materials without TTT reinforcements. The improvement in CAI strength is due to an increase in interlaminar strength produced by the TTT reinforcement. Stitched laminates had slightly higher compression and CAI strengths than the integrally woven laminates.
Lamins in the nuclear interior - life outside the lamina.
Naetar, Nana; Ferraioli, Simona; Foisner, Roland
2017-07-01
Nuclear lamins are components of the peripheral lamina that define the mechanical properties of nuclei and tether heterochromatin to the periphery. A-type lamins localize also to the nuclear interior, but the regulation and specific functions of this nucleoplasmic lamin pool are poorly understood. In this Commentary, we summarize known pathways that are potentially involved in the localization and dynamic behavior of intranuclear lamins, including their post-translational modifications and interactions with nucleoplasmic proteins, such as lamina-associated polypeptide 2α (LAP2α; encoded by TMPO ). In addition, new data suggest that lamins in the nuclear interior have an important role in chromatin regulation and gene expression through dynamic binding to both hetero- and euchromatic genomic regions and promoter subdomains, thereby affecting epigenetic pathways and chromatin accessibility. Nucleoplasmic lamins also have a role in spatial chromatin organization and may be involved in mechanosignaling. In view of this newly emerging concept, we propose that the previously reported cellular phenotypes in lamin-linked diseases are, at least in part, rooted in an impaired regulation and/or function of the nucleoplasmic lamin A/C pool. © 2017. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjerke, Susan L.; Roller, Richard J.
2006-04-10
Cells infected with wild type HSV-1 showed significant lamin A/C and lamin B rearrangement, while U{sub L}34-null virus-infected cells exhibited few changes in lamin localization, indicating that U{sub L}34 is necessary for lamin disruption. During HSV infection, U{sub S}3 limited the development of disruptions in the lamina, since cells infected with a U{sub S}3-null virus developed large perforations in the lamin layer. U{sub S}3 regulation of lamin disruption does not correlate with the induction of apoptosis. Expression of either U{sub L}34 or U{sub S}3 proteins alone disrupted lamin A/C and lamin B localization. Expression of U{sub L}34 and U{sub S}3more » together had little effect on lamin A/C localization, suggesting a regulatory interaction between the two proteins. The data presented in this paper argue for crucial roles for both U{sub L}34 and U{sub S}3 in regulating the state of the nuclear lamina during viral infection.« less
The effect of lamination-induced stresses on fatigue damage development at internal flaws
NASA Technical Reports Server (NTRS)
Reifsnider, K. L.
1981-01-01
The effects of stresses induced by the lamination of off-axis plies to O-deg lamina on the development of damage during the fatigue loading of the O-deg plies are discussed. The transverse normal stresses in the plane of the laminae and the laminate created by the laminating constraints when an axial force is applied to the laminate are calculated in terms of a differential Poisson ratio between the ply in question in the unconstrained and constrained states, and significant differences in the constraint environments of an unnotched specimen joined to plies of 45 and 90 deg inclination are noted which correspond to an increase in longitudinal splitting in the 90 deg case and a marked decrease in longitudinal splitting in the 45 deg case. If a notch is present, shear and crack-opening damage is found to be very effectively suppressed in 45-deg laminates, and less so in the 90-deg case. It is pointed out that whereas the 45-deg laminate represents the least damage situation, it does not have the greatest notched strength. It is concluded that an understanding and prediction of damage development in laminates requires knowledge of the stress fields caused by the lamination constraints.
Normalization of Impact Energy by Laminate Thickness for Compression After Impact Testing
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Hromisin, S. M.
2013-01-01
The amount of impact energy used to damage a composite laminate is a critical parameter when assessing residual strength properties. The compression after impact (CAI) strength of impacted laminates is dependent upon how thick the laminate is and this has traditionally been accounted for by normalizing (dividing) the impact energy by the laminate's thickness. However, when comparing CAI strength values for a given lay-up sequence and fiber/resin system, dividing the impact energy by the specimen thickness has been noted by the author to give higher CAI strength values for thicker laminates. A study was thus undertaken to assess the comparability of CAI strength data by normalizing the impact energy by the specimen thickness raised to a power to account for the higher strength of thicker laminates. One set of data from the literature and two generated in this study were analyzed by dividing the impact energy by the specimen thickness to the 1, 1.5, 2, and 2.5 powers. Results show that as laminate thickness and damage severity decreased, the value which the laminate thickness needs to be raised to in order to yield more comparable CAI data increases.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... INTERNATIONAL TRADE COMMISSION [Docket No. 2940] Products Having Laminated Packaging, Laminated... Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Products Having...
Laminate armor and related methods
Chu, Henry S; Lillo, Thomas M; Zagula, Thomas M
2013-02-26
Laminate armor and methods of manufacturing laminate armor. Specifically, laminate armor plates comprising a commercially pure titanium layer and a titanium alloy layer bonded to the commercially pure titanium outer layer are disclosed, wherein an average thickness of the titanium alloy inner layer is about four times an average thickness of the commercially pure titanium outer layer. In use, the titanium alloy layer is positioned facing an area to be protected. Additionally, roll-bonding methods for manufacturing laminate armor plates are disclosed.
Small Laminated Axial Turbine Design and Test Program.
1980-12-01
ILLUSTRATIONS Figure No. Title Page 1 Typical Test Results from TFE731 -3 Hot-Rig Testing. 5 2 Laminated Blade Chordwise Flow Patterns 8 3 Laminated Blade Cooling...Flow Parameter Versus Pressure Ratio 36 24 Blade Flow Distribution 37 25 TFE731 Turbofan Engine 38 26 Laminated Turbine Wheel 40 27 Selected Blade...facility, which was specifically developed to permit evaluation of cooled compo- nents for gas turbine engines. Four TFE731 -3 Laminated Turbine Wheels
An Elastic Model of Blebbing in Nuclear Lamin Meshworks
NASA Astrophysics Data System (ADS)
Funkhouser, Chloe; Sknepnek, Rastko; Shimi, Takeshi; Goldman, Anne; Goldman, Robert; Olvera de La Cruz, Monica
2013-03-01
A two-component continuum elastic model is introduced to analyze a nuclear lamin meshwork, a structural element of the lamina of the nuclear envelope. The main component of the lamina is a meshwork of lamin protein filaments providing mechanical support to the nucleus and also playing a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford progeria syndrome, and are often characterized by protruding structures termed nuclear blebs. Nuclear blebs are rich in A-type lamins and may be related to pathological gene expression. We apply the two-dimensional elastic shell model to determine which characteristics of the meshwork could be responsible for blebbing, including heterogeneities in the meshwork thickness and mesh size. We find that if one component of the lamin meshwork, rich in A-type lamins, has a tendency to form a larger mesh size than that rich in B-type lamins, this is sufficient to cause segregation of the lamin components and also to form blebs rich in A-type lamins. The model produces structures with comparable morphologies and mesh size distributions as the lamin meshworks of real, pathological nuclei. Funded by US DoE Award DEFG02-08ER46539 and by the DDR&E and AFOSR under Award FA9550-10-1-0167; simulations performed on NU Quest cluster
Impact performance of two bamboo-based laminated composites
Huanrong Liu; Zehui Jiang; Zhengjun Sun; Yan Yan; Zhiyong Cai; Xiubiao Zhang
2017-01-01
The present work aims to determine the impact performance of two bamboo-based laminated composites [bamboo/poplar laminated composite (BPLC) and bamboo/ glass fiber laminated composite (BGFLC)] using lowvelocity impact tests by a drop tower. In addition, fracture characteristics were evaluated using computed tomography (CT). Results showed that BPLC presented better...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-659] Certain Prepregs, Laminates, and Finished..., and the sale within the United States after importation of certain prepregs, laminates, and finished... for sale, and selling for importation into the United States prepregs and laminates that are the...
Geometrically nonlinear analysis of laminated elastic structures
NASA Technical Reports Server (NTRS)
Reddy, J. N.
1984-01-01
Laminated composite plates and shells that can be used to model automobile bodies, aircraft wings and fuselages, and pressure vessels among many other were analyzed. The finite element method, a numerical technique for engineering analysis of structures, is used to model the geometry and approximate the solution. Various alternative formulations for analyzing laminated plates and shells are developed and their finite element models are tested for accuracy and economy in computation. These include the shear deformation laminate theory and degenerated 3-D elasticity theory for laminates.
Wettability of graphene-laminated micropillar structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun, E-mail: jrahn@skku.edu, E-mail: shju@kgu.ac.kr
2014-12-21
The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.
Free vibration of fully functionally graded carbon nanotube reinforced graphite/epoxy laminates
NASA Astrophysics Data System (ADS)
Kuo, Shih-Yao
2018-03-01
This study provides the first-known vibration analysis of fully functionally graded carbon nanotube reinforced hybrid composite (FFG-CNTRHC) laminates. CNTs are non-uniformly distributed to reinforce the graphite/epoxy laminates. Some CNT distribution functions in the plane and thickness directions are proposed to more efficiently increase the stiffening effect. The rule of mixtures is modified by considering the non-homogeneous material properties of FFG-CNTRHC laminates. The formulation of the location dependent stiffness matrix and mass matrix is derived. The effects of CNT volume fraction and distribution on the natural frequencies of FFG-CNTRHC laminates are discussed. The results reveal that the FFG layout may significantly increase the natural frequencies of FFG-CNTRHC laminate.
Robin, Jérôme D.; Magdinier, Frédérique
2016-01-01
Lamins are intermediate filaments that form a complex meshwork at the inner nuclear membrane. Mammalian cells express two types of Lamins, Lamins A/C and Lamins B, encoded by three different genes, LMNA, LMNB1, and LMNB2. Mutations in the LMNA gene are associated with a group of phenotypically diverse diseases referred to as laminopathies. Lamins interact with a large number of binding partners including proteins of the nuclear envelope but also chromatin-associated factors. Lamins not only constitute a scaffold for nuclear shape, rigidity and resistance to stress but also contribute to the organization of chromatin and chromosomal domains. We will discuss here the impact of A-type Lamins loss on alterations of chromatin organization and formation of chromatin domains and how disorganization of the lamina contributes to the patho-physiology of premature aging syndromes. PMID:27602048
High expression of A-type lamin in the leading front is required for Drosophila thorax closure.
Kosakamoto, Hina; Fujisawa, Yuya; Obata, Fumiaki; Miura, Masayuki
2018-05-05
Tissue closure involves the coordinated unidirectional movement of a group of cells without loss of cell-cell contact. However, the molecular mechanisms controlling the tissue closure are not fully understood. Here, we demonstrate that Lamin C, the sole A-type lamin in Drosophila, contributes to the process of thorax closure in pupa. High expression of Lamin C was observed at the leading front of the migrating wing imaginal discs. Live imaging analysis revealed that knockdown of Lamin C in the thorax region affected the coordinated movement of the leading front, resulting in incomplete tissue fusion required for formation of the adult thorax. The closure defect due to knockdown of Lamin C correlated with insufficient accumulation of F-actin at the front. Our study indicates a link between A-type lamin and the cell migration behavior during tissue closure. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Howard, W. E.; Gossard, Terry, Jr.; Jones, Robert M.
1989-01-01
The present generalized plane-strain FEM analysis for the prediction of interlaminar normal stress reduction when a U-shaped cap is bonded to the edge of a composite laminate gives attention to the highly variable transverse stresses near the free edge, cap length and thickness, and a gap under the cap due to the manufacturing process. The load-transfer mechanism between cap and laminate is found to be strain-compatibility, rather than shear lag. In the second part of this work, the three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge-cap designs; symmetric 11-layer graphite-epoxy laminates with a one-layer cap of kevlar-epoxy are shown to carry 130-140 percent greater loading than uncapped laminates, under static tensile and tension-tension fatigue loading.
Laminated beams: deflection and stress as a function of epoxy shear modulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialek, J.
1976-01-01
The large toroidal field coil deflections observed during the PLT power test are due to the poor shear behavior of the insulation material used between layers of copper. Standard techniques for analyzing such laminated structures do not account for this effect. This paper presents an analysis of laminated beams that corrects this deficiency. The analysis explicitly models the mechanical behavior of each layer in a laminated beam and hence avoids the pitfalls involved in any averaging technique. In particular, the shear modulus of the epoxy in a laminated beam (consisting of alternate layers of metal and epoxy) may span themore » entire range of values from zero to classical. Solution of the governing differential equations defines the stress, strain, and deflection for any point within a laminated beam. The paper summarizes these governing equations and also includes a parametric study of a simple laminated beam.« less
A theory for predicting composite laminate warpage resulting from fabrication
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1975-01-01
Linear laminate theory is used in conjunction with the moment-curvature relationship to derive equations for predicting end deflections due to warpage without solving the coupled fourth-order partial differential equations of the plate. Using these equations, it is found that a 1 deg error in the orientation angle of one ply is sufficient to produce warpage end deflection equal to two laminate thicknesses in a 10 inch by 10 inch laminate made from 8-ply Mod-I/epoxy. From a sensitivity analysis on the governing parameters, it is found that a 3 deg fiber migration or a void volume ratio of three percent in some plies is sufficient to produce laminate warpage corner deflection equal to several laminate thicknesses. Tabular and graphical data are presented which can be used to identify possible errors contributing to laminate warpage and/or to obtain an a priori assessment when unavoidable errors during fabrication are anticipated.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1989-01-01
Results of a series of tests to determine the effects of adhesive interleaving and discontinuous plies (plies with end-to-end gaps) on the displacements, failure loads and failure modes of graphite-epoxy laminates subjected to transverse normal loads are presented. Adhesive interleaving can be used to contain local damage within a group of plies, i.e., to arrest crack propagation on the interlaminate level, and it can increase the amount of normal displacement the laminate can withstand before failure. However, the addition of adhesive interleaving to a laminate does not significantly increase its load carrying capability. A few discontinuous plies in a laminate can reduce the normal displacement and load at failure by 10 to 40 percent compared to a laminate with no discontinuous plies, but the presence of the ply discontinuities does not generally change the failure location or the failure mode of the laminate.
NASA Astrophysics Data System (ADS)
Feng, Bo; Ribeiro, Artur Lopes; Ramos, Helena Geirinhas
2018-04-01
This paper presents a study of the characteristics of Lamb wave (S0 mode) testing signals in carbon fiber composite laminates containing delaminations. The study was implemented by using commercial finite element simulation software - ANSYS. The delamination signal is proven to be the superposition of the two waves travelling from upper and lower sub-laminates. Dispersion curves for the two sub-laminates were calculated to show the difference between phase velocities of the waves in the sub-laminates. Two models are specifically designed to get the phase difference between the waves that travel in each of the two sub-laminates. From the simulation results, it was found that the phase difference increases with the delamination length. Furthermore, the amplitude of delamination signal decreases first, then it starts to increase after reaching the minimum value. The minimum is reached when the waves from the two sub-laminates are 180° out of phase.
A historical perspective of laminitis.
Heymering, Henry W
2010-04-01
The causes of laminitis are many-often interrelated, sometimes direct opposites. The history of laminitis has been a search for the cause or causes of laminitis and for effective treatment. Going in and out of fashion, many treatments have lasted for centuries, some for millennia, but very few have been proven. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Mathison, Steven R.; Herakovich, Carl T.; Pindera, Marek-Jerzy; Shuart, Mark J.
1987-01-01
The objective was to determine the effect of nonlinear material behavior on the response and failure of unnotched and notched angle-ply laminates under uniaxial compressive loading. The endochronic theory was chosen as the constitutive theory to model the AS4/3502 graphite-epoxy material system. Three-dimensional finite element analysis incorporating the endochronic theory was used to determine the stresses and strains in the laminates. An incremental/iterative initial strain algorithm was used in the finite element program. To increase computational efficiency, a 180 deg rotational symmetry relationship was utilized and the finite element program was vectorized to run on a supercomputer. Laminate response was compared to experimentation revealing excellent agreement for both the unnotched and notched angle-ply laminates. Predicted stresses in the region of the hole were examined and are presented, comparing linear elastic analysis to the inelastic endochronic theory analysis. A failure analysis of the unnotched and notched laminates was performed using the quadratic tensor polynomial. Predicted fracture loads compared well with experimentation for the unnotched laminates, but were very conservative in comparison with experiments for the notched laminates.
Novel composites for wing and fuselage applications
NASA Technical Reports Server (NTRS)
Sobel, L. H.; Buttitta, C.; Suarez, J. A.
1995-01-01
Probabilistic predictions based on the IPACS code are presented for the material and structural response of unnotched and notched, IM6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is judged poor because IPACS did not have a progressive failure capability at the time this work was performed. The report also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.
Reinforcement of composite laminate free edges with U-shaped caps
NASA Technical Reports Server (NTRS)
Howard, W. E.; Gossard, T., Jr.; Jones, R. M.
1986-01-01
Generalized plane strain finite element analysis is used to predict reduction of interlaminar normal stresses when a U-shaped cap is bonded to the edge of a laminate. Three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge cap designs. In an experimental program, symmetric 11-layer graphite-epoxy laminates with a one-layer cap of Kevlar-epoxy cloth are shown to be 130 to 140 percent stronger than uncapped laminates under static tensile and tension-tension fatigue loading. In addition, the coefficient of variation of the static tensile failure load decreases from 24 to 8 percent when edge caps are added. The predicted failure load calculated with the finite element results is 10 percent lower than the actual failure load. For both capped and uncapped laminates, actual failure loads are much lower than those predicted using classical lamination theory stresses and a two-dimensional failure criterion. Possible applications of the free edge reinforcement concept are described, and future research is suggested.
Herpes simplex virus 2 UL13 protein kinase disrupts nuclear lamins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano-Monreal, Gina L.; Wylie, Kristine M.; Cao, Feng
2009-09-15
Herpesviruses must cross the inner nuclear membrane and underlying lamina to exit the nucleus. HSV-1 US3 and PKC can phosphorylate lamins and induce their dispersion but do not elicit all of the phosphorylated lamin species produced during infection. UL13 is a serine threonine protein kinase conserved among many herpesviruses. HSV-1 UL13 phosphorylates US3 and thereby controls UL31 and UL34 nuclear rim localization, indicating a role in nuclear egress. Here, we report that HSV-2 UL13 alone induced conformational changes in lamins A and C and redistributed lamin B1 from the nuclear rim to intranuclear granular structures. HSV-2 UL13 directly phosphorylated laminsmore » A, C, and B1 in vitro, and the lamin A1 tail domain. HSV-2 infection recapitulated the lamin alterations seen upon expression of UL13 alone, and other alterations were also observed, indicating that additional viral and/or cellular proteins cooperate with UL13 to alter lamins during HSV-2 infection to allow nuclear egress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulauskas, F.L.; Meek, T.T.
Studies of microwave-assisted curing of neat resins (epoxy) and unidirectional glass and carbon fiber laminates have shown that a substantial reduction in the curing time was obtained. This may be explained by the penetration of microwave energy directly and throughout the laminate with enhancement of the kinetics of the chemical reaction. Results of this work indicate that the microwave assisted curing of glass fiber laminates also shows a substantial reduction of the required curing time. Microwave radiation of 2.45 GHz has been demonstrated to be an acceptable method to cure unidirectional carbon fiber laminates. Also, effective curing of crossply (0/90)more » laminates through this method was observed when proper rotation of the parts accompanied the curing process. This is in accordance with previous work. Multidirectional carbon fiber/epoxy laminates demonstrate a lack of coupling during the curing process. A direct curing of these laminates was not possible by microwave radiation with the experimental approach used, in agreement with previous work. Nevertheless, a moderate reduction in the curing time of these thin laminates was observed due to hybrid curing.« less
Modeling of Nonlinear Mechanical Response in CFRP Angle-Ply Laminates
NASA Astrophysics Data System (ADS)
Ogihara, Shinji
2014-03-01
It is known that the failure process in angle-ply laminate involves matrix cracking and delamination and that they exhibit nonlinear stress-strain relation. There may be a significant effect of the constituent blocked ply thickness on the mechanical behavior of angle-ply laminates. These days, thin prepregs whose thickness is, for example 50 micron, are developed and commercially available. Therefore, we can design wide variety of laminates with various constituent ply thicknesses. In this study, effects of constituent ply thickness on the nonlinear mechanical behavior and the damage behavior of CFRP angle-ply laminates are investigated experimentally. Based on the experimental results, the mechanical response in CFRP angle-ply laminates is modeled by using the finite strain viscoplasticity model. We evaluated the mechanical behavior and damage behavior in CFRP angle-ply laminates with different constituent ply thickness under tensile loading experimentally. It was found that as the constituent ply thickness decreases, the strength and failure strain increases. We also observed difference in damage behavior. The preliminary results of finite strain viscoplasticity model considering the damage effect for laminated composites are shown. A qualitative agreement is obtained.
Lamina-independent lamins in the nuclear interior serve important functions.
Dechat, T; Gesson, K; Foisner, R
2010-01-01
Nuclear lamins were originally described as the main constituents of the nuclear lamina, a filamentous meshwork closely associated with the inner nuclear membrane. However, within recent years, it has become increasingly evident that a fraction of lamins also resides throughout the nuclear interior. As intermediate-filament-type proteins, lamins have been suggested to fulfill mainly structural functions such as providing shape and mechanical stability to the nucleus. But recent findings show that both peripheral and nucleoplasmic lamins also have important roles in essential cellular processes such as transcription, DNA replication, cell cycle progression, and chromatin organization. Furthermore, more than 300 mutations in the gene encoding A-type lamins have been associated with several human diseases now generally termed laminopathies and comprising muscular dystrophies, lipodystrophies, cardiomyopathies, and premature aging diseases. This review focuses on the lamina-independent pool of lamins in the nuclear interior, which surprisingly has not been studied in much detail so far. We discuss the properties and regulation of nucleoplasmic lamins during the cell cycle, their interaction partners, and their potential involvement in cellular processes and the development of laminopathies.
NASA Technical Reports Server (NTRS)
Chan, Wen S.
1989-01-01
An integrated two-dimensional finite element was developed to calculate interlaminar stresses and strain energy release rates for the study of delamination in composite laminates subjected to uniaxial tension, bending, and torsion loads. Addressed are the formulation, implementation, and verification of the model. Parametric studies were conducted on the effect of Poisson's ratio mismatch between plies and the stacking sequence on interlaminar stress, and on the effect of delamination opening height and delamination length, due to bending, on strain energy release rate for various laminates. A comparison of strain energy release rates in all-graphite and graphite/glass hybrid laminates is included. The preliminary results of laminates subjected to torsion are also included. Fatigue tension tests were conducted on Mode 1 and mixed mode edge-delamination coupons to establish the relationship between fatigue load vs. onset of delamination cycle. The effect on the fatigue delamination onset of different frequencies (1 and 5 Hz) was investigated for glass, graphite,and their hybrid laminates. Although a 20 percent increase in the static onset-of-delamination strength and a 10 percent increase in ultimate strength resulted from hybridizing the all-graphite laminate with a 90 deg glass ply, the fatigue onset is lower in the hybrid laminate than in the all-graphite laminate.
Baculovirus infection induces disruption of the nuclear lamina.
Zhang, Xiaomei; Xu, Kaiyan; Wei, Denghui; Wu, Wenbi; Yang, Kai; Yuan, Meijin
2017-08-10
Baculovirus nucleocapsids egress from the nucleus primarily via budding at the nuclear membrane. The nuclear lamina underlying the nuclear membrane represents a substantial barrier to nuclear egress. Whether the nuclear lamina undergoes disruption during baculovirus infection remains unknown. In this report, we generated a clonal cell line, Sf9-L, that stably expresses GFP-tagged Drosophila lamin B. GFP autofluorescence colocalized with immunofluorescent anti-lamin B at the nuclear rim of Sf9-L cells, indicating GFP-lamin B was incorporated into the nuclear lamina. Meanwhile, virus was able to replicate normally in Sf9-L cells. Next, we investigated alterations to the nuclear lamina during baculovirus infection in Sf9-L cells. A portion of GFP-lamin B localized diffusely at the nuclear rim, and some GFP-lamin B was redistributed within the nucleus during the late phase of infection, suggesting the nuclear lamina was partially disrupted. Immunoelectron microscopy revealed associations between GFP-lamin B and the edges of the electron-dense stromal mattes of the virogenic stroma, intranuclear microvesicles, and ODV envelopes and nucleocapsids within the nucleus, indicating the release of some GFP-lamin B from the nuclear lamina. Additionally, GFP-lamin B phosphorylation increased upon infection. Based on these data, baculovirus infection induced lamin B phosphorylation and disruption of the nuclear lamina.
NASA Astrophysics Data System (ADS)
Panorchan, Porntula; Wirtz, Denis; Tseng, Yiider
2004-10-01
Lamin B1 filaments organize into a thin dense meshwork underlying the nucleoplasmic side of the nuclear envelope. Recent experiments in vivo suggest that lamin B1 plays a key structural role in the nuclear envelope, but the intrinsic mechanical properties of lamin B1 networks remain unknown. To assess the potential mechanical contribution of lamin B1 in maintaining the integrity and providing structural support to the nucleus, we measured the micromechanical properties and examined the ultrastructural distribution of lamin B1 networks in vitro using particle tracking methods and differential interference contrast (DIC) microscopy. We exploit various surface chemistries of the probe microspheres (carboxylated, polyethylene glycol-coated, and amine-modified) to differentiate lamin-rich from lamin-poor regions and to rigorously extract local viscoelastic moduli from the mean-squared displacements of noninteracting particles. Our results show that human lamin B1 can, even in the absence of auxiliary proteins, form stiff and yet extremely porous networks that are well suited to provide structural strength to the nuclear lamina. Combining DIC microscopy and particle tracking allows us to relate directly the local organization of a material to its local mechanical properties, a general methodology that can be extended to living cells.
Effect of laminate edge conditions on the formation of microvoids in composite laminates
NASA Astrophysics Data System (ADS)
Anderson, J. P.; Altan, M. C.
2015-05-01
Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Paraska, P. J.
1990-01-01
The study focuses on the axisymmetric deformation response of unsymmetrically laminate cylinders loaded in axial compression by known loads. A geometrically nonlinear analysis is used. Though buckling is not studied, the deformations can be considered to be the prebuckling response. Attention is directed at three 16 layer laminates: a (90 sub 8/0 sub 8) sub T; a (0 sub 8/90 sub 8) sub T and a (0/90) sub 4s. The symmetric laminate is used as a basis for comparison, while the two unsymmetric laminates were chosen because they have equal but opposite bending-stretching effects. Particular attention is given to the influence of the thermally-induced preloading deformations that accompany the cool-down of any unsymmetric laminate from the consolidation temperature. Simple support and clamped boundary conditions are considered. It is concluded that: (1) The radial deformations of an unsymmetric laminate are significantly larger than the radial deformations of a symmetric laminate, although for both symmetric and unsymmetric laminates the large deformations are confined to a boundary layer near the ends of the cylinder; (2) For this nonlinear problem the length of the boundary layer is a function of the applied load; (3) The sign of the radial deformations near the supported end of the cylinder depends strongly on the sense (sign) of the laminate asymmetry; (4) For unsymmetric laminates, ignoring the thermally-induced preloading deformations that accompany cool-down results in load-induced deformations that are under predicted; and (5) The support conditions strongly influence the response but the influence of the sense of asymmetry and the influence of the thermally-induced preloading deformations are independent of the support conditions.
Yamaguchi, Akihiko; Iwatani, Miho; Ogawa, Mariko; Kitano, Hajime; Matsuyama, Michiya
2013-01-01
The nuclear envelopes surrounding the oocyte germinal vesicles of lower vertebrates (fish and frog) are supported by the lamina, which consists of the protein lamin B3 encoded by a gene found also in birds but lost in the lineage leading to mammals. Like other members of the lamin family, goldfish lamin B3 (gfLB3) contains two putative consensus phosphoacceptor p34cdc2 sites (Ser-28 and Ser-398) for the M-phase kinase to regulate lamin polymerization on the N- and C-terminal regions flanking a central rod domain. Partial phosphorylation of gfLB3 occurs on Ser-28 in the N-terminal head domain in immature oocytes prior to germinal vesicle breakdown, which suggests continual rearrangement of lamins by a novel lamin kinase in fish oocytes. We applied the expression-screening method to isolate lamin kinases by using phosphorylation site Ser-28-specific monoclonal antibody and a vector encoding substrate peptides from a goldfish ovarian cDNA library. As a result, SRPK1 was screened as a prominent lamin kinase candidate. The gfLB3 has a short stretch of the RS repeats (9-SRASTVRSSRRS-20) upstream of the Ser-28, within the N-terminal head. This stretch of repeats is conserved among fish lamin B3 but is not found in other lamins. In vitro phosphorylation studies and GST-pull down assay revealed that SRPK1 bound to the region of sequential RS repeats (9–20) with affinity and recruited serine into the active site by a grab-and-pull manner. These results indicate SRPK1 may phosphorylate the p34cdc2 site in the N-terminal head of GV-lamin B3 at the RS motifs, which have the general property of aggregation. PMID:23772390
Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya
Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomesmore » during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. - Highlights: • Lamin A interacts with SUMO2 via a SUMO-interacting motif (SIM) in the Ig domain. • SIM3 of lamin A is responsible for chromosomal accumulation during telophase. • A 156-aa region spanning the Ig domain is sufficient for chromosomal accumulation. • Accumulation of lamin A is required for timely dephosphorylation on chromosomes. • A putative SUMO2-modified protein may mediate chromosomal accumulation of lamin A.« less
Meier, A D; de Laat, M A; Reiche, D B; Pollitt, C C; Walsh, D M; McGree, J M; Sillence, M N
2018-04-01
The aim of this study was to investigate the relationship between laminitis development in ponies and insulin/glucose concentrations in response to the oral glucose test (OGT) and a dietary challenge high in nonstructural carbohydrates (NSCs). After undergoing an OGT (1 g dextrose/kg BW in feed), 37 ponies with 2-h serum insulin concentrations ranging from 22 to 1,133 μIU/mL were subjected to a diet challenge period (DCP), consuming 12 g NSC/kg BW/d for up to 18 d. Insulin and glucose responses were measured on day 2 of the DCP. Clinical laminitis was diagnosed by blinded experts and confirmed radiographically. Basal ACTH levels and clinical signs were assessed to investigate concurrent putative pituitary pars intermedia dysfunction (PPID). The diet induced Obel grade 1 or 2 laminitis in 14 ponies (38%). The ponies that developed laminitis had higher maximum concentrations of blood glucose (P = 0.04) and serum insulin (P = 0.02) in response to the diet. The geometric mean (95% CI) blood glucose concentration for laminitis cases was 14.9 (12.9-17.2) mM, compared to 10.7 (9.2-12.5) mM for ponies who did not develop laminitis. Similarly, the geometric mean (95% CI) for serum insulin was 396 (301-520) μIU/mL for laminitis cases, compared to 216 (148-316) μIU/mL for ponies who did not develop laminitis. Laminitis incidence was likewise associated with insulin concentrations measured during the OGT. Laminitis occurred at frequencies of 0% (0/7) if postdextrose insulin (μIU/mL) was <50; 35% (8/23) if insulin was 50 to 195; and 86% (6/7) if insulin was >195 μIU/mL. Basal ACTH concentrations were above seasonally accepted reference ranges in 16/37 ponies, and 8 of these animals (50%) developed laminitis. This included all 5 ponies in the study that had clinical signs of PPID (100%). In contrast, hyperinsulinemia and laminitis occurred in only 3/11 ponies (27%) with elevated ACTH concentrations and no clinical signs of PPID (P = 0.009). Thus, laminitis occurrence was associated with higher glucose and insulin responses to both the OGT and challenge diet, and the frequency of laminitis can be predicted based on insulin and glucose hyperresponsiveness to these oral carbohydrate challenges. Copyright © 2017 Elsevier Inc. All rights reserved.
NITRILE ELASTOMER-NYLON LAMINATES INCLUDING BARRIER FILMS.
ADHESIVES, *NYLON, *NITRILE RUBBER , LAMINATES, LAMINATES, FILMS, TEXTILES, RUBBER COATINGS, BUTADIENES, ACRYLONITRILE POLYMERS, BONDING, ADHESION... DEGRADATION , MOISTUREPROOFING, PHENOLIC PLASTICS, HALOGENATED HYDROCARBONS, ISOCYANATES, CURING AGENTS, ELASTOMERS.
Basic mechanics of laminated composite plates
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
1994-01-01
The mechanics of laminated composite materials is presented in a clear manner with only essential derivations included. The constitutive equations in all of their forms are developed and then summarized in a separate section. The effects of hygrothermal effects are included. The prediction of the engineering constants for a laminate are derived. Strength of laminated composites is not covered.
Peridynamic Modeling of Fracture and Failure of Materials
2013-08-02
is demonstrated through comparisons with classical laminate theory ( CLT ) and FEM analysis by considering laminates with complex layup under in-plane...is a symmetric cross-ply laminate with a layup of [0 / 90 ]S . For symmetric laminates, CLT predicts that there is no coupling between bending and...analytical results from the CLT in Figs. 5 and 6. 16 (a
Thermal Cycling of Thin and Thick Ply Composites
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Shen, James Y.; Lavoie, Andre J.
1994-01-01
An experimental study was conducted to determine the effects of ply thickness in composite laminates on thermally induced cracking and changes in the coefficient of thermal expansion (CTE). After a few thermal cycles, laminates with thick-plies cracked, resulting in large changes in CTE. CTE's of the thin-ply laminates were unaffected by microcracking during the first 500 thermal cycles, whereas, the CTE's of the thick-ply laminates changed significantly. After about 1500 cycles, microdamage had also reduced the CTE of the thin-ply laminates to a value of about half of their initial value.
Microcomponent sheet architecture
Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.
1997-01-01
The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.
NASA Technical Reports Server (NTRS)
Porter, T. R.
1979-01-01
The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.
A transparent, solvent-free laminated top electrode for perovskite solar cells.
Makha, Mohammed; Fernandes, Silvia Letícia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, Jürg; Tisserant, Jean-Nicolas; Véron, Anna C; Hany, Roland
2016-01-01
A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per milliliter PEDOT:PSS dispersion, and using a pre-annealing temperature of 120°C for 10 min before lamination. Thereby, perovskite solar cells with stabilized power conversion efficiencies of (7.6 ± 1.0)% were obtained which corresponds to 80% of the reference devices with reflective opaque gold electrodes.
NASA Technical Reports Server (NTRS)
Mayugo, J A.; Camanho, P. P.; Maimi, P.; Davila, C. G.
2010-01-01
An analytical model based on the analysis of a cracked unit cell of a composite laminate subjected to multiaxial loads is proposed to predict the onset and accumulation of transverse matrix cracks in the 90(sub n) plies of uniformly stressed [plus or minus Theta/90(sub n)](sub s) laminates. The model predicts the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate, and it accounts for the effect of the ply thickness on the ply strength. Several examples describing the predictions of laminate response, from damage onset up to final failure under both uniaxial and multiaxial loads, are presented.
Tailored metal matrix composites for high-temperature performance
NASA Technical Reports Server (NTRS)
Morel, M. R.; Saravanos, D. A.; Chamis, C. C.
1992-01-01
A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate.
A transparent, solvent-free laminated top electrode for perovskite solar cells
NASA Astrophysics Data System (ADS)
Makha, Mohammed; Fernandes, Silvia Letícia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, Jürg; Tisserant, Jean-Nicolas; Véron, Anna C.; Hany, Roland
2016-01-01
A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of 30 wt% per milliliter PEDOT:PSS dispersion, and using a pre-annealing temperature of 120°C for 10 min before lamination. Thereby, perovskite solar cells with stabilized power conversion efficiencies of (7.6 ± 1.0)% were obtained which corresponds to 80% of the reference devices with reflective opaque gold electrodes.
Matrix cracking in laminated composites under monotonic and cyclic loadings
NASA Technical Reports Server (NTRS)
Allen, David H.; Lee, Jong-Won
1991-01-01
An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.
The mechanical behavior of GLARE laminates for aircraft structures
NASA Astrophysics Data System (ADS)
Wu, Guocai; Yang, J.-M.
2005-01-01
GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.
NASA Technical Reports Server (NTRS)
Sharma, Suresh K.; Sankar, Bhavani V.
1995-01-01
This study investigated the effects of through-the-thickness stitching on impact damage resistance, impact damage tolerance, and mode I and mode II fracture toughness of textile graphite/epoxy laminates. Uniweave resin-transfer-molded 48 ply graphite/epoxy (AS4/3501-6) laminates were stitched with Kevlar and glass yarns of different linear densities and stitch spacings. Delaminations were implanted during processing to simulate impact damage. Sublaminate buckling tests were performed to determine the effects of stitching on the compressive strength. The results showed outstanding improvements of up to 400 percent in the compression strength over the unstitched laminates. In impact and static indentation tests the onset of damage occurred at the same level, but the extent of damage was less in stitched laminates. Mode I fracture toughness of 24 ply Uniweave unidirectional (AS4/3501-6) stitched laminates was measured by conducting double-cantilever-beam tests. The critical strain energy release rate (G(sub Ic)) was found to be up to 30 times higher than the unstitched laminates. Mode II fracture toughness of the Uniweave laminates was measured by performing end-notched-flexure tests. Two new methods to compute the apparent G(sub IIc) are presented. The apparent G(sub IIc) was found to be at least 5-15 times higher for the stitched laminates.
Nonlinear thermal dynamic analysis of graphit/aluminum composite plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenneti, R.; Chandrashekhara, K.
1994-09-01
Because of the increased application of composite materials in high-temperature environments, the thermoelastic analysis of laminated composite structures is important. Many researchers have applied the classical lamination theory to analyze laminated plates under thermomechanical loading, which neglects shear deformation effects. The transverse shear deformation effects are not negligible as the ratios of inplane elastic modulus to transverse shear modulus are relatively large for fiber-reinforced composite laminates. The application of first-order shear deformation theory for the thermoelastic analysis of laminated plates has been reported by only a few investigators. Reddy and Hsu have considered the thermal bending of laminated plates. Themore » analytical and finite element solutions for the thermal bucking of laminated plates have been reported by Tauchert and Chandrashekara, respectively. However, the first-order shear deformation theory, based on the assumption of constant distribution of transverse shear through the thickness, requires a shear correction factor to account for the parabolic shear strain distribution. Higher order theories have been proposed which eliminate the need for a shear correction factor. In the present work, nonlinear dynamic analysis of laminated plates subjected to rapid heating is investigated using a higher order shear deformation theory. A C(sup 0) finite element model with seven degrees of freedom per node is implmented and numerical results are presented for laminated graphite/aluminum plates.« less
NASA Astrophysics Data System (ADS)
Gockeln, Michael; Pokhrel, Suman; Meierhofer, Florian; Glenneberg, Jens; Schowalter, Marco; Rosenauer, Andreas; Fritsching, Udo; Busse, Matthias; Mädler, Lutz; Kun, Robert
2018-01-01
Reduction of lithium-ion battery (LIB) production costs is inevitable to make the use of LIB technology more viable for applications such as electric vehicles or stationary storage. To meet the requirements in today's LIB cost efficiency, our current research focuses on an alternative electrode fabrication method, characterized by a combination of double flame spray pyrolysis and lamination technique (DFSP/lamination). In-situ carbon coated nano-Li4Ti5O12 (LTO/C) was synthesized using versatile DFSP. The as-prepared composite powder was then directly laminated onto a conductive substrate avoiding the use of any solvent or binder for electrode preparation. The influence of lamination pressures on the microstructure and electrochemical performance of the electrodes was also investigated. Enhancements in intrinsic electrical conductivity were found for higher lamination pressures. Capacity retention of highest pressurized DFSP/lamination-prepared electrode was 87.4% after 200 dis-/charge cycles at 1C (vs. Li). In addition, LTO/C material prepared from the double flame spray pyrolysis was also used for fabricating electrodes via doctor blading technique. Laminated electrodes obtained higher specific discharge capacities compared to calendered and non-calendered blade-casted electrodes due to superior microstructural properties. Such a fast and industrially compelling integrative DFSP/lamination tool could be a prosperous, next generation technology for low-cost LIB electrode fabrication.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Continuous Lamination Lines and Continuous Casting Lines Complying With a Lbs/Ton Organic HAP Emissions Limit... Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying With a Lbs... with a lbs/ton organic HAP emissions limit for continuous lamination lines and continuous casting lines...
NASA Astrophysics Data System (ADS)
Iwahori, Yutaka; Ishikawa, Takashi; Watanabe, Naoyuki; Hayashi, Yoichi; Ito, Akira
Experimental investigations have been made on the mode I interlaminar fracture toughness (GIC) of stitched CFRP (carbon fiber reinforced plastic) laminates. The GIC of stitched CFRP laminates fabricated by resin transfer molding (RTM) and stitching with five kinds of stitch thread thicknesses, 400d (denier), 600d, 800d, 1000d, and 1200d were experimentally obtained by double cantilever beam (DCB) tests. Interlaminar tension tests for stitched CFRP laminates for a specimen containing only one stitch thread were also carried out. The consumption energy of the single stitched CFRP laminates (Wt) and stitch threads broken modes were obtained by such interlaminar tension tests. DCB test results show that the GIC of stitched CFRP laminates of several stitch thread thicknesses are governed by stitch density (SD). It is found that the relationship between ΔGIC/ΔSD and Wt are linear function. In other words, the GIC of Kevlar® stitched CFRP laminates is not only governed by SD but also Wt obtained from the interlaminar tension tests. It is also suggested that the interlaminar tension test results exhibit the potential for GIC estimation on the Kevlar® stitched CFRP laminates instead of conducting the DCB tests.
Autophagy mediates degradation of nuclear lamina.
Dou, Zhixun; Xu, Caiyue; Donahue, Greg; Shimi, Takeshi; Pan, Ji-An; Zhu, Jiajun; Ivanov, Andrejs; Capell, Brian C; Drake, Adam M; Shah, Parisha P; Catanzaro, Joseph M; Ricketts, M Daniel; Lamark, Trond; Adam, Stephen A; Marmorstein, Ronen; Zong, Wei-Xing; Johansen, Terje; Goldman, Robert D; Adams, Peter D; Berger, Shelley L
2015-11-05
Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.
Effects of ply thickness on thermal cycle induced damage and thermal strain
NASA Astrophysics Data System (ADS)
Tompkins, Stephen S.
1994-07-01
An experimental study was conducted to determine the effects of ply thickness in composite laminates on thermally induced cracking and changes in the coefficient of thermal expansion, CTE. A graphite-epoxy composite material, P75/ERL 1962, in thin (1 mil) and thick (5 mils) prepregs was used to make cross-ply laminates, ((0/90)(sub n))s, with equal total thickness (n=2, n=10) and cross-ply laminates with the same total number of plies (n=2). Specimens of each laminate configuration were cycled up to 1500 times between -250 and 250 F. Thermally induced microdamage was assessed as a function of the number of cycles as was the change in CTE. The results showed that laminates fabricated with thin-plies microcracked at significantly different rates and reached significantly different equilibrium crack densities than the laminate fabricated with thick-ply and n=2. The CTE of thin-ply laminates was less affected by thermal cycling and damage than the CTE of thick-ply laminates. These differences are attributed primarily to differences in interply constraints. Observed effects of ply thickness on crack density was qualitatively predicted by a combined shear-lag stress/energy method.
Effects of ply thickness on thermal cycle induced damage and thermal strain
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.
1994-01-01
An experimental study was conducted to determine the effects of ply thickness in composite laminates on thermally induced cracking and changes in the coefficient of thermal expansion, CTE. A graphite-epoxy composite material, P75/ERL 1962, in thin (1 mil) and thick (5 mils) prepregs was used to make cross-ply laminates, ((0/90)(sub n))s, with equal total thickness (n=2, n=10) and cross-ply laminates with the same total number of plies (n=2). Specimens of each laminate configuration were cycled up to 1500 times between -250 and 250 F. Thermally induced microdamage was assessed as a function of the number of cycles as was the change in CTE. The results showed that laminates fabricated with thin-plies microcracked at significantly different rates and reached significantly different equilibrium crack densities than the laminate fabricated with thick-ply and n=2. The CTE of thin-ply laminates was less affected by thermal cycling and damage than the CTE of thick-ply laminates. These differences are attributed primarily to differences in interply constraints. Observed effects of ply thickness on crack density was qualitatively predicted by a combined shear-lag stress/energy method.
Combined tension and bending testing of tapered composite laminates
NASA Astrophysics Data System (ADS)
O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles
1994-11-01
A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.
Effect of Laminating Pressure on Polymeric Multilayer Nanofibrous Membranes for Liquid Filtration.
Yalcinkaya, Fatma; Hruza, Jakub
2018-04-24
In the new century, electrospun nanofibrous webs are widely employed in various applications due to their specific surface area and porous structure with narrow pore size. The mechanical properties have a major influence on the applications of nanofiber webs. Lamination technology is an important method for improving the mechanical strength of nanofiber webs. In this study, the influence of laminating pressure on the properties of polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) nanofibers/laminate was investigated. Heat-press lamination was carried out at three different pressures, and the surface morphologies of the multilayer nanofibrous membranes were observed under an optical microscope. In addition, air permeability, water filtration, and contact angle experiments were performed to examine the effect of laminating pressure on the breathability, water permeability and surface wettability of multilayer nanofibrous membranes. A bursting strength test was developed and applied to measure the maximum bursting pressure of the nanofibers from the laminated surface. A water filtration test was performed using a cross-flow unit. Based on the results of the tests, the optimum laminating pressure was determined for both PAN and PVDF multilayer nanofibrous membranes to prepare suitable microfilters for liquid filtration.
Fracture mechanics of matrix cracking and delamination in glass/epoxy laminates
NASA Technical Reports Server (NTRS)
Caslini, M.; Zanotti, C.; Obrien, T. K.
1986-01-01
This study focused on characterizing matrix cracking and delamination behavior in multidirectional laminates. Static tension and tension-tension fatigue tests were conducted on two different layups. Damage onset, accumulation, and residual properties were measured. Matrix cracking was shown to have a considerable influence on residual stiffness of glass epoxy laminates, and could be predicted reasonably well for cracks in 90 deg piles using a simple shear lag analysis. A fracture mechanics analysis for the strain energy release rate associated with 90 deg ply-matrix crack formation was developed and was shown to correlate the onset of 90 deg ply cracks in different laminates. The linear degradation of laminate modulus with delamination area, previously observed for graphite epoxy laminates, was predicted for glass epoxy laminates using a simple rule of mixtures analysis. The strain energy release rate associated with edge delamination formation under static and cyclic loading was difficult to analyze because of the presence of several contemporary damage phenomena.
Deflection of cross-ply composite laminates induced by piezoelectric actuators.
Her, Shiuh-Chuan; Lin, Chi-Sheng
2010-01-01
The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications as sensors and actuators. In this investigation, two piezoelectric actuators are symmetrically surface bonded on a cross-ply composite laminate. Electric voltages with the same amplitude and opposite sign are applied to the two symmetric piezoelectric actuators, resulting in the bending effect on the laminated plate. The bending moment is derived by using the classical laminate theory and piezoelectricity. The analytical solution of the flexural displacement of the simply supported composite plate subjected to the bending moment is solved by using the plate theory. The analytical solution is compared with the finite element solution to show the validation of present approach. The effects of the size and location of the piezoelectric actuators on the response of the composite laminate are presented through a parametric study. A simple model incorporating the classical laminate theory and plate theory is presented to predict the deformed shape of the simply supported laminate plate.
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Sova, J. A.
1980-01-01
The fracture toughness of boron/aluminum laminates was measured on sheet specimens containing central slits of various lengths that represent cracks. The specimens were loaded axially and had various widths. The sheets were made with five laminate orientation. Fracture toughness was calculated for each laminate orientation. Specimens began failing at the ends of the slit with what appeared to be tensile failures of fibers in the primary load carrying laminae. A general fracture toughness parameter independent of laminate orientation was derived on the basis of fiber failure in the principal load carrying laminae. The value of this parameter was proportional to the critical value of the stress intensity factor. The constant of proportionality depended only on the elastic constants of the laminates.
NASA Astrophysics Data System (ADS)
Lepedat, Karin; Wagner, Robert; Lang, Jürgen
The use of phenolic resin for the impregnation of a carrier material such as paper or fabric based on either organic or inorganic fibers was and still is one of the most important application areas for liquid phenolic resins. Substrates like paper, cotton, or glass fabric impregnated with phenolic resins are used as core layers for decorative and technical laminates and for many other different industrial applications. Nowadays, phenolic resins for decorative laminates used for furniture, flooring, or in the construction and transportation industry have gained significant market share. The Laminates chapter mainly describes the manufacture of decorative laminates especially the impregnation and pressing process with special emphasis to new technological developments and recent trends. Moreover, the different types of laminates are introduced, combined with some brief comments as they relate to the market for decorative surfaces.
Roles of Poly(propylene Glycol) During Solvent-Based Lamination of Ceramic Green Tapes
NASA Technical Reports Server (NTRS)
Suppakarn, Nitinat; Ishida, Hatsuo; Cawley, James D.; Levine, Stanley R. (Technical Monitor)
2000-01-01
Solvent lamination for alumina green tapes is readily accomplished using a mixture of ethanol, toluene and poly(propylene glycol). After lamination, the PPG is clearly present as a discrete film at the interface between the laminated tapes. This condition, however, does not generate delamination during firing. Systematic sets of experiments are undertaken to determine the role of PPG in the lamination process and, specifically, the mechanism by which it is redistributed during subsequent processing. PPG slowly diffuses through the organic binder film at room temperature. The PPG diffusion rapidly increases as temperature is increased to 80 C. The key to the efficiency of adhesives during green-tape lamination is mutual solubility of the nonvolatile component of the glue and the base polymeric binder.
Simulating Progressive Damage of Notched Composite Laminates with Various Lamination Schemes
NASA Astrophysics Data System (ADS)
Mandal, B.; Chakrabarti, A.
2017-05-01
A three dimensional finite element based progressive damage model has been developed for the failure analysis of notched composite laminates. The material constitutive relations and the progressive damage algorithms are implemented into finite element code ABAQUS using user-defined subroutine UMAT. The existing failure criteria for the composite laminates are modified by including the failure criteria for fiber/matrix shear damage and delamination effects. The proposed numerical model is quite efficient and simple compared to other progressive damage models available in the literature. The efficiency of the present constitutive model and the computational scheme is verified by comparing the simulated results with the results available in the literature. A parametric study has been carried out to investigate the effect of change in lamination scheme on the failure behaviour of notched composite laminates.
Stationary turbine component with laminated skin
James, Allister W [Orlando, FL
2012-08-14
A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.
Analysis of interlaminar stresses in symmetric and unsymmetric laminates under various loadings
NASA Astrophysics Data System (ADS)
Leger, C. A.; Chan, W. S.
1993-04-01
A quasi-three-dimensional finite-element model is developed to investigate the interlaminar stresses in a composite laminate under combined loadings. An isoparametric quadrilateral element with eight nodes and three degrees of freedom per node is the finite element used in this study. The element is used to model a composite laminate cross section loaded by tension, torsion, transverse shear, and both beam and chord bending which are representative of loading in a helicopter rotor system. Symmetric and unsymmetric laminates are examined with comparisons made between the interlaminar stress distributions and magnitudes for each laminate. Unsymmetric results are compared favorably to limited results found in literature. The unsymmetric interlaminar normal stress distribution in a symmetric laminate containing a free edge delamination is also examined.
A new experimental method for the accelerated characterization of composite materials
NASA Technical Reports Server (NTRS)
Brinson, H. F.; Morris, D. H.; Yeow, Y. T.
1978-01-01
A method which permits the prediction of long-term properties of graphite/epoxy laminates on the basis of short-term (15 min) laboratory tests is described. Demonstration of delayed viscoelastic fracture in one laminate configuration, and data on the time and temperature response of a matrix-dominated unidirectional laminate contributed to a characterization of the viscoelastic process in the graphite/epoxy composites. Master curves from short-term tests of certain laminate configurations can be employed to generate long-term master curves. In addition, analytical predictions from short-term results can be used to predict long-term (25-hour) laminate properties.
Moment distributions around holes in symmetric composite laminates subjected to bending moments
NASA Technical Reports Server (NTRS)
Prasad, C. B.; Shuart, M. J.
1989-01-01
An analytical investigation of the effects of holes on the moment distribution of symmetric composite laminates subjected to bending moments is described. A general, closed-form solution for the moment distribution of an infinite anisotropic plate is derived, and this solution is used to determine stress distributions both on the hole boundary and throughout the plate. Results are presented for several composite laminates that have holes and are subjected to either pure bending or cylindrical bending. Laminates with a circular hole or with an elliptical hole are studied. Laminate moment distributions are discussed, and ply stresses are described.
Thermal Cycling of Thin and Thick Ply Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tompkins, S.S.; Shen, J.Y.; Lavoie, A.J.
1994-01-01
An experimental study was conducted to determine the effects of ply thickness in composite laminates on thermally induced cracking and changes in the coefficient of thermal expansion (CTE). After a few thermal cycles, laminates with thick-plies cracked, resulting in large changes in CTE. CTE`s of the thin-ply laminates were unaffected by microcracking during the first 500 thermal cycles, whereas, the CTE`s of the thick-ply laminates changed significantly. After about 1500 cycles, microdamage had also reduced the CTE of the thin-ply laminates to a value of about half of their initial value.
The initiation, propagation, and effect of matrix microcracks in cross-ply and related laminates
NASA Technical Reports Server (NTRS)
Nairn, John A.; Hu, Shoufeng; Liu, Siulie; Bark, Jong
1991-01-01
Recently, a variational mechanics approach was used to determine the thermoelastic stress state in cracked laminates. Described here is a generalization of the variational mechanics techniques to handle other cross-ply laminates, related laminates, and to account for delaminations emanating from microcrack tips. Microcracking experiments on Hercules 3501-6/AS4 carbon fiber/epoxy laminates show a staggered cracking pattern. These results can be explained by the variational mechanics analysis. The analysis of delaminations emanating from microcrack tips has resulted in predictions about the structural and material variables controlling competition between microcracking and delamination failure modes.
Microcomponent chemical process sheet architecture
Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele
1998-01-01
The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.
Microcomponent sheet architecture
Wegeng, R.S.; Drost, M.K..; McDonald, C.E.
1997-03-18
The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.
Microcomponent chemical process sheet architecture
Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.
1998-09-22
The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.
Interlaminar stress singularities at a straight free edge in composite laminates
NASA Technical Reports Server (NTRS)
Raju, I. S.; Crews, J. H., Jr.
1981-01-01
A quasi-three-dimensional finite-element analysis was used to analyze the edge-stress problem in four-ply, composite laminates. The seven laminates that were considered belong to the laminate family where the outer ply angle is between 0 and 90 deg. Systematic convergence studies were made to explore the existence of stress singularities near the free edge. The present analysis appears to confirm the existence of stress singularities at the intersection of the interface and the free edge. The power of the stress singularity was the same for all seven laminates considered.
NASA Astrophysics Data System (ADS)
Liu, Guoxi; Zhang, Chunli; Chen, Weiqiu; Dong, Shuxiang
2013-07-01
An analytical model of resonant magnetoelectric (ME) coupling in magnetostrictive (MS)-piezoelectric (PE) laminated composites in consideration of eddy-current effect in MS layer using equivalent circuit method is presented. Numerical calculations show that: (1) the eddy-current has a strong effect on ME coupling in MS-PE laminated composites at resonant frequency; and (2) the resonant ME coupling is then significantly dependent on the sizes of ME laminated composites, which were neglected in most previous theoretical analyses. The achieved results provide a theoretical guidance for the practice engineering design, manufacture, and application of ME laminated composites and devices.
Clinical Research Abstracts of the British Equine Veterinary Association Congress 2015.
Hammersley, E; Duz, M; Marshall, J F
2015-09-01
Triamcinolone is commonly used in equine practice for the treatment of orthopaedic conditions. A serious potential adverse effect of triamcinolone is laminitis. However, evidence for the risk of laminitis associated with triamcinolone use is limited. To determine the risk of laminitis within 90 days of triamcinolone administration and compare with the risk of laminitis in a veterinary-attended horse population. Retrospective study of clinical records. Text mining and data extraction was performed using content analysis software (SimStat-WordStat v.6) on a database of anonymous digital clinical records from a convenience sample of North American equine practices (n = 9). Medical records were retrieved using a dictionary of keywords for 3 groups of horses: 1) treated with triamcinolone, 2) age and practice matched control population (no triamcinolone) and 3) all laminitic horses. Records of horses within Groups 1 and 2 were mined for evidence of laminitis within a 90-day period of treatment or a random date respectively. Data manipulation and analysis was performed using R v3.0.0 (R Development Core Team). The prevalence of laminitis within all groups was determined and relative risk of developing laminitis determined by single logistic regression. The clinical records of 225,777 horses were examined. Overall prevalence of laminitis within the database was 1.1% (n = 2533). Triamcinolone was administered to 12.4% (n = 27,898) horses and 0.07% of treated horses (n = 20) developed laminitis. In the control population (n = 56,695), 0.2% of horses (n = 134) developed laminitis. The risk of developing laminitis was significantly lower in the triamcinolone treatment group than the control population (OR 0.3 95%CI, 0.18-0.48 P<0.001). Triamcinolone treatment does not increase the overall risk of a horse developing laminitis. However, further investigation of risk factors for laminitis in the 20 horses identified by this preliminary study is warranted to aid development of evidence-based treatment guidelines. Ethical animal research: This study was approved by the Ethics and Welfare Committee of the School of Veterinary Medicine at the University of Glasgow. Owners gave informed consent for their horses' inclusion in the study. Sources of funding: John Crawford Endowment Fund, University of Glasgow. Competing interests: None declared. © 2015 The Author(s). Equine Veterinary Journal © 2015 EVJ Ltd.
Assessment and maintenance of a 15 year old stress-laminated timber bridge
T. Russell Gentry; Karl N. Brohammer; John Wells; James P. Wacker
2006-01-01
A timber bridge consisting of three 6.7 meter spans with a stress laminated deck was constructed in 1991 in the Spirit Creek State Forest near August, Georgia, USA. The stress laminated bridge uses a series of post-tensioning bars to hold the laminations together. The bridge remained in service until 2001 with no maintenance, at which time the bridge was inspected,...
Symmetric Composite Laminate Stress Analysis
NASA Technical Reports Server (NTRS)
Wang, T.; Smolinski, K. F.; Gellin, S.
1985-01-01
It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example.
Methods for Preparing Nanoparticle-Containing Thermoplastic Composite Laminates
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Gruber, Mark B. (Inventor)
2016-01-01
High quality thermoplastic composites and composite laminates containing nanoparticles and/or nanofibers, and methods of producing such composites and laminates are disclosed. The composites comprise a thermoplastic polymer and a plurality of nanoparticles, and may include a fibrous structural reinforcement. The composite laminates are formed from a plurality of nanoparticle-containing composite layers and may be fused to one another via an automated process.
Field performance of stress-laminated timber bridges on low-volume roads
M. A. Ritter; J. P. Wacker; S. R. Duwadi
1995-01-01
Stress-laminated timber bridges were first introduced in the United States in the late 1980s. Since that time, the concept of stress-laminating has received a great deal of attention and hundreds of bridges have been built. Most of these bridges are located on rural low-volume roads. To evaluate the performance of stress-laminated bridges, the United States Department...
Field performance of timber bridges. 13, Mohawk Canal stress-laminated bridge
P. D. Hilbrich Lee; X. Lauderdale
The Mohawk Canal bridge was constructed in August 1994, just outside Roll, Arizona. It is a simple-span, double-lane, stress-laminated deck superstructure, approximately 6.4 m (21 ft) long and 10.4 m (34 ft) wide and constructed with Combination 16F-V3 Douglas Fir glued-laminated timber beam laminations. The performance of the bridge was monitored continuously for 2...
NASA Astrophysics Data System (ADS)
Wu, Guocai
This study systematically explores the mechanical behavior, damage tolerance and durability of fiber metal laminates, a promising candidate materials system for next generation aerospace structures. The experimental results indicated that GLARE laminates exhibited a bilinear deformation behavior under static in-plane loading. Both an analytical constitutive model based on a modified classical lamination theory which incorporates the elasto-plastic behavior of aluminum alloy and a numerical simulation based on finite element modeling are used to predict the nonlinear stress-strain response and deformation behavior of GLARE laminates. The blunt notched strength of GLARE laminates increased with decreasing specimen width and decreasing hole diameter. The notched strength of GLARE laminates was evaluated based on a modified point stress criterion. A computer simulation based on finite element method was performed to study stress concentration and distribution around the notch and verify the analytical and experimental results of notched strength. Good agreement is obtained between the model predictions and experimental results. Experimental results also indicate that GLARE laminates exhibited superior impact properties to those of monolithic 2024-T3 aluminum alloy at low velocity impact loading. The GLARE 5-2/1 laminate with 0°/90°/90°/0° fiber configuration exhibits a better impact resistance than the GLARE 4-3/2 laminate with 0°/90°/0° fiber orientation. The characteristic impact energies, the damage area, and the permanent deflection of laminates are used to evaluate the impact damage resistance. The post-impact residual tensile strength under various damage states ranging from the plastic dent, barely visible impact damage (BVID), clearly visible impact damage (CVID) up to the complete perforation was also measured and compared. The post-impact fatigue behavior under various stress levels and impact damage states was extensively explored. The damage initiation and progression, failure modes and crack propagation under different loading conditions were investigated and identified with microscopy, SEM, X-ray radiography, and by chemically removing outer aluminum layers.
Lamin A/C might be involved in the EMT signalling pathway.
Zuo, Lingkun; Zhao, Huanying; Yang, Ronghui; Wang, Liyong; Ma, Hui; Xu, Xiaoxue; Zhou, Ping; Kong, Lu
2018-07-15
We have previously reported a heterogeneous expression pattern of the nuclear membrane protein lamin A/C in low- and high-Gleason score (GS) prostate cancer (PC) tissues, and we have now found that this change is not associated with LMNA mutations. This expression pattern appears to be similar to the process of epithelial to mesenchymal transition (EMT) or to that of mesenchymal to epithelial transition (MET). The role of lamin A/C in EMT or MET in PC remains unclear. Therefore, we first investigated the expression levels of and the associations between lamin A/C and several common EMT markers, such as E-cadherin, N-cadherin, β-catenin, snail, slug and vimentin in PC tissues with different GS values and in different cell lines with varying invasion abilities. Our results suggest that lamin A/C might constitute a type of epithelial marker that better signifies EMT and MET in PC tissue, since a decrease in lamin A/C expression in GS 4 + 5 cases is likely associated with the EMT process, while the re-expression of lamin A/C in GS 5 + 4 cases is likely linked with MET. The detailed GS better exhibited the changes in lamin A/C and the EMT markers examined. Lamin A/C overexpression or knockdown had an impact on EMT biomarkers in a cell model by direct regulation of β-catenin. Hence, we suggest that lamin A/C might serve as a reliable epithelial biomarker for the distinction of PC cell differentiation and might also be a fundamental factor in the occurrence of EMT or MET in PC. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Nasir, M. N. M.; Seman, M. A.; Mezeix, L.; Aminanda, Y.; Rivai, A.; Ali, K. M.
2017-03-01
The residual stresses that develop within fibre-reinforced laminate composites during autoclave processing lead to dimensional warpage known as spring-back deformation. A number of experiments have been conducted on flat laminate composites with unidirectional fibre orientation to examine the effects of both the intrinsic and extrinsic parameters on the warpage. This paper extends the study on to the symmetrical layup effect on spring-back for flat laminate composites. Plies stacked at various symmetrical sequences were fabricated to observe the severity of the resulting warpage. Essentially, the experimental results demonstrated that the symmetrical layups reduce the laminate stiffness in its principal direction compared to the unidirectional laminate thus, raising the spring-back warpage with the exception of the [45/-45]S layup due to its quasi-isotropic property.
NASA Astrophysics Data System (ADS)
Sun, Zhi; Hu, Xiaozhi; Shi, Shanshan; Guo, Xu; Zhang, Yupeng; Chen, Haoran
2016-10-01
Edge delamination is frequently observed in carbon fiber reinforced plastic (CFRP) laminates after machining, due to the low fracture toughness of the resin interfaces between carbon fiber plies. In this study, the effects of incorporating tough aramid fibers into the brittle CFRP system are quantified by measuring the residual properties of bolted CFRP. By adding short-aramid-fiber interleaves in CFRP laminates, the residual tensile strength have been substantially increased by 14 % for twill-weave laminates and 45 % for unidirectional laminates respectively. Moreover, tensile failure was observed as the major mode of toughened laminates, in contrast to shear failure of plain laminates. The qualitative FEM results agreed well with the experimental results that edge delamination would cause relatively higher shear stress and therefore alter the failure mode from tensile failure to shear failure.
Photovoltaic module and module arrays
Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt
2013-08-27
A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.
Photovoltaic module and module arrays
Botkin, Jonathan [El Cerrito, CA; Graves, Simon [Berkeley, CA; Lenox, Carl J. S. [Oakland, CA; Culligan, Matthew [Berkeley, CA; Danning, Matt [Oakland, CA
2012-07-17
A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.
NASA Technical Reports Server (NTRS)
Webster, J. D.
1981-01-01
The compressive behavior of T300/5208 graphite-epoxy laminates containing circular delaminations was studied to determine the flaw criticality of two types of implanted defect, Kapton bag and Teflon film, on several laminate configurations. Defect size was varied. Results, presented in the form of residual strength curves, indicate that the Teflon film defect reduced strength more than the Kapton bad defect in 12-ply samples, but that two laminates (+ or - 45) sub 2s and (90/+ or - 45) sub s were insensitive to any implanted defect. A clear thickness effect was shown to exist for the (o/+ pr 45) sub ns laminate and was attributed to failure mode transition. The analytically predicted buckling loads show excellent agreement with experimental results and are useful in predicting failure mode transition.
An experimental study of permeability within an out-of-autoclave vacuum-bag-only CFRP laminate
NASA Astrophysics Data System (ADS)
Wallace, Landon F.
The out-of-autoclave vacuum-bag-only (OOA-VBO) manufacturing process is a process that eliminates an autoclave when manufacturing aerospace quality carbon fiber reinforced plastics (CFRP). OOA-VBO pre-impregnated resin tow systems rely on air channel networks that guide unwanted voids out of the laminate. The air path networks can be characterized by measuring the permeability of a pre-cured laminate. Permeability results were successfully obtained for a laminate with a compaction similar to that found in a typical vacuum bagging setup. A study was done to find the relationship between compaction of the laminate and permeability. Permeability was measured as the laminate cured, using a constant temperature ramp rate. An experimental nodal analysis was performed to find the permeability at the midpoint of the in-plane direction.
Polymer Composites Corrosive Degradation: A Computational Simulation
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2007-01-01
A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.
Enhancement of Gas Barrier Properties of CFRP Laminates Fabricated Using Thin-Ply Prepregs
NASA Astrophysics Data System (ADS)
横関, 智弘; 高木, 智宏; 吉村, 彰記; Ogasawara, Toshio; 荻原, 慎二
Composite laminates manufactured using thin-ply prepregs are expected to have superior resistance properties against microcracking compared to those using standard prepregs. In this study, comparative investigations are presented on the microcrack accumulation and gas leakage characteristics of CFRP laminates fabricated using standard and thin-ply prepregs, consisting of high-performance carbon fiber and toughened epoxy, as a fundamental research on the cryogenic composite tanks for future space vehicles. It was shown that laminates using thin-ply prepregs exhibited much higher strain at microcrack initiation compared to those using standard prepregs at room and cryogenic temperatures. In addition, helium gas leak tests using CFRP laminated tubular specimens subjected to quasi-static tension loadings were performed. It was demonstrated that CFRP laminates using thin-ply prepregs have higher gas barrier properties than those using standard prepregs.
Peridynamic Applications for Orthotropic Materials
2012-09-26
test and a vibration excitation of a laminated beam. An SEN (single edge notch) test of a 0° laminated plate was simulated by peridynamics and the...computational results matched very well with published experimental results. Fracture initiation and crack path of laminated plates with different fiber...Dwivedi [1] modeled the propagation of single-edge notch (SEN) in 0° laminated plate using cohesizve zone method. Xu [2] and Hu [3] proposed a two
Field performance of timber bridges. 9, Big Erick`s stress-laminated deck bridge
J. A. Kainz; J. P. Wacker; M. Nelson
The Big Erickas bridge was constructed during September 1992 in Baraga County, Michigan. The bridge is 72 ft long, 16 ft wide, and consists of three simple spans: two stress-laminated deck approach spans and a stress-laminated box center span. The bridge is unique in that it is one of the first known stress-laminated timber bridge applications to use Eastern Hemlock...
Processing Science of Epoxy Resin Composites
1984-01-15
3 2.2 LAMINATE FABRICATION 30 2.2.1 Baseline Laminate Fabrication 30 2.2.2 Large Laminate Fabrication 36 2.3 DIFFUSIVITY AND SOLUBILITY...Thick Laminate 42 28 Baseline Cure Cycle With Specimen Advancement Levels 45 29 Composite Panel Fabrication 47 30 Composite Panel Fabrication 48 31...first change was the elimination of the different 1 resin formulations and concentration on the normal or baseline 5208/T300 prepreg as produced by
Time Domain Reflectometry for Damage Detection of Laminated CFRP plate
2011-08-18
Final Report PROJECT ID: AOARD-10-4112 Title: Time Domain Reflectometry for damage detection of laminated CFRP plate Researcher: Professor Akira...From July/2010 To July/2011 Abstract Recently, high toughness Carbon Fiber Reinforced Polymer (CFRP) laminates are used to primary structures. The...large laminated CFRP structures. In the previous study, Time Domain Reflectometry (TDR) method is adopted for the detection of the fiber breakages of
Interphase Thermomechanical Reliability and Optimization for High-Performance Ti Metal Laminates
2011-12-19
Thermomechanical Reliability and Optimization for High-Performance Ti FA9550-08-l-0015 Metal Laminates Sb. GRANT NUMBER Program Manager: Dr Joycelyn Harrison...OSR-VA-TR-2012-0202 12. DISTRIBUTION/AVAILABILITY STATEMENT A 13. SUPPLEMENTARY NOTES 14. ABSTRACT Hybrid laminated composites such as titanium...graphite (TiGr) laminates are an emerging class of structural materials with the potential to enable a new generation of efficient, high-performance
Retortable Laminate/Polymeric Food Tubes for Specialized Feeding
2012-06-01
on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are all...on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are...available materials and not be uniquely military. We surveyed the market for laminated retortable tubes and were not able to find any application
A-Type Lamins Maintain the Positional Stability of DNA Damage Repair Foci in Mammalian Nuclei
Mahen, Robert; Hattori, Hiroyoshi; Lee, Miyoung; Sharma, Pooja; Jeyasekharan, Anand D.; Venkitaraman, Ashok R.
2013-01-01
A-type lamins encoded by LMNA form a structural fibrillar meshwork within the mammalian nucleus. How this nuclear organization may influence the execution of biological processes involving DNA transactions remains unclear. Here, we characterize changes in the dynamics and biochemical interactions of lamin A/C after DNA damage. We find that DNA breakage reduces the mobility of nucleoplasmic GFP-lamin A throughout the nucleus as measured by dynamic fluorescence imaging and spectroscopy in living cells, suggestive of incorporation into stable macromolecular complexes, but does not induce the focal accumulation of GFP-lamin A at damage sites. Using a proximity ligation assay and biochemical analyses, we show that lamin A engages chromatin via histone H2AX and its phosphorylated form (γH2AX) induced by DNA damage, and that these interactions are enhanced after DNA damage. Finally, we use three-dimensional time-lapse imaging to show that LMNA inactivation significantly reduces the positional stability of DNA repair foci in living cells. This defect is partially rescued by the stable expression of GFP-lamin A. Thus collectively, our findings suggest that the dynamic structural meshwork formed by A-type lamins anchors sites of DNA repair in mammalian nuclei, providing fresh insight into the control of DNA transactions by nuclear structural organization. PMID:23658700
Shimi, Takeshi; Pfleghaar, Katrin; Kojima, Shin-ichiro; Pack, Chan-Gi; Solovei, Irina; Goldman, Anne E.; Adam, Stephen A.; Shumaker, Dale K.; Kinjo, Masataka; Cremer, Thomas; Goldman, Robert D.
2008-01-01
The nuclear lamins function in the regulation of replication, transcription, and epigenetic modifications of chromatin. However, the mechanisms responsible for these lamin functions are poorly understood. We demonstrate that A- and B-type lamins form separate, but interacting, stable meshworks in the lamina and have different mobilities in the nucleoplasm as determined by fluorescence correlation spectroscopy (FCS). Silencing lamin B1 (LB1) expression dramatically increases the lamina meshwork size and the mobility of nucleoplasmic lamin A (LA). The changes in lamina mesh size are coupled to the formation of LA/C-rich nuclear envelope blebs deficient in LB2. Comparative genomic hybridization (CGH) analyses of microdissected blebs, fluorescence in situ hybridization (FISH), and immunofluorescence localization of modified histones demonstrate that gene-rich euchromatin associates with the LA/C blebs. Enrichment of hyperphosphorylated RNA polymerase II (Pol II) and histone marks for active transcription suggest that blebs are transcriptionally active. However, in vivo labeling of RNA indicates that transcription is decreased, suggesting that the LA/C-rich microenvironment induces promoter proximal stalling of Pol II. We propose that different lamins are organized into separate, but interacting, microdomains and that LB1 is essential for their organization. Our evidence suggests that the organization and regulation of chromatin are influenced by interconnections between these lamin microdomains. PMID:19141474
Internal Stresses in Laminated Construction
NASA Technical Reports Server (NTRS)
Heim, A L; Knauss, A C; Seutter, Louis
1923-01-01
This report reviews the procedure employed in an investigation of the sources and influence of internal stresses in laminated construction, and discusses the influence of shrinkage and swelling stresses caused by atmospheric conditions upon the tensile strength across grain in laminated construction with special reference to airplane propellers. The investigation covered three sources of internal stress, namely, the combination of plain-sawed and quarter-sawed material in the same construction, the gluing together of laminations of different moisture contents, and the gluing together of laminations of different densities. Glued specimens and free specimens, made up under various manufacturing conditions, were subjected to various climatic changes inducing internal stresses and then were tested.
Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads
NASA Technical Reports Server (NTRS)
Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.
1985-01-01
The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.
Failure modes for compression loaded angle-ply plates with holes
NASA Technical Reports Server (NTRS)
Burns, S. W.; Herakovich, C. T.; Williams, J. G.
1987-01-01
A combined theoretical-experimental investigation of failure in notched, graphite-epoxy, angle-ply laminates subjected to far-field compression loading indicates that failure generally initiates on the hole boundary and propagates along a line parallel to the fiber orientation of the laminate. The strength of notched laminates with specimen width-to-hole diameter ratios of 5 and 10 are compared to the strength of unnotched laminates. The experimental results are complemented by a three-dimensional finite element stress analysis that includes interlaminar stresses around holes in (+/- theta)s laminates. The finite element predictions indicate that failure is initiated by shear stresses at the hole boundary.
Free edge effects in laminated composites
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1989-01-01
The fundamental mechanics of free-edge effects in laminated fiber-reinforced composites is examined, reviewing the results of recent experimental and analytical investigations. The derivation of the governing equations for the basic problem is outlined, including the equilibrium and mismatch conditions and the elasticity formulation, and experimental data on axial displacement and shear strain in angle-ply laminates are summarized. Numerical predictions of free-edge deformation and interlaminar and through-thickness stress distributions are presented for cross-ply, angle-ply, and quasi-isotropic laminates, and the mechanisms of edge damage and failure in angle-ply laminates are briefly characterized. Extensive diagrams, drawings, graphs, and photographs are provided.
40 CFR 426.70 - Applicability; description of the automotive glass laminating subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... resulting from the processes which laminate a plastic sheet between two layers of glass, and which prepare the glass for lamination such as cutting, bending and washing, to produce automobile windshields. ...
40 CFR 426.70 - Applicability; description of the automotive glass laminating subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... resulting from the processes which laminate a plastic sheet between two layers of glass, and which prepare the glass for lamination such as cutting, bending and washing, to produce automobile windshields. ...
40 CFR 426.70 - Applicability; description of the automotive glass laminating subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... resulting from the processes which laminate a plastic sheet between two layers of glass, and which prepare the glass for lamination such as cutting, bending and washing, to produce automobile windshields. ...
Morgan, R.; Keen, J.; McGowan, C.
2015-01-01
Laminitis is one of the most common and frustrating clinical presentations in equine practice. While the principles of treatment for laminitis have not changed for several decades, there have been some important paradigm shifts in our understanding of laminitis. Most importantly, it is essential to consider laminitis as a clinical sign of disease and not as a disease in its own right. Once this shift in thinking has occurred, it is logical to then question what disease caused the laminitis. More than 90 per cent of horses presented with laminitis as their primary clinical sign will have developed it as a consequence of endocrine disease; most commonly equine metabolic syndrome (EMS). Given the fact that many horses will have painful protracted and/or chronic recurrent disease, a good understanding of the predisposing factors and how to diagnose and manage them is crucial. Current evidence suggests that early diagnosis and effective management of EMS should be a key aim for practising veterinary surgeons to prevent the devastating consequences of laminitis. This review will focus on EMS, its diagnosis and management. PMID:26273009
Long-term strength and damage accumulation in laminates
NASA Astrophysics Data System (ADS)
Dzenis, Yuris A.; Joshi, Shiv P.
1993-04-01
A modified version of the probabilistic model developed by authors for damage evolution analysis of laminates subjected to random loading is utilized to predict long-term strength of laminates. The model assumes that each ply in a laminate consists of a large number of mesovolumes. Probabilistic variation functions for mesovolumes stiffnesses as well as strengths are used in the analysis. Stochastic strains are calculated using the lamination theory and random function theory. Deterioration of ply stiffnesses is calculated on the basis of the probabilities of mesovolumes failures using the theory of excursions of random process beyond the limits. Long-term strength and damage accumulation in a Kevlar/epoxy laminate under tension and complex in-plane loading are investigated. Effects of the mean level and stochastic deviation of loading on damage evolution and time-to-failure of laminate are discussed. Long-term cumulative damage at the time of the final failure at low loading levels is more than at high loading levels. The effect of the deviation in loading is more pronounced at lower mean loading levels.
Response of automated tow placed laminates to stress concentrations
NASA Technical Reports Server (NTRS)
Cairns, Douglas S.; Ilcewicz, Larry B.; Walker, Tom
1993-01-01
In this study, the response of laminates with stress concentrations is explored. Automated Tow Placed (ATP, also known as Fiber Placement) laminates are compared to conventional tape layup manufacturing. Previous tensile fracture tests on fiber placed laminates show an improvement in tensile fracture of large notches over 20 percent compared to tape layup laminates. A hierarchial modeling scheme is presented. In this scheme, a global model is developed for laminates with notches. A local model is developed to study the influence of inhomogeneities at the notch tip, which are a consequence of the fiber placement manufacturing technique. In addition, a stacked membrane model was developed to study delaminations and splitting on a ply-by-ply basis. The results indicate that some benefit with respect to tensile fracture (up to 11 percent) can be gained from inhomogeneity alone, but that the most improvement may be obtained with splitting and delaminations which are more severe in the case of fiber placement compared to tape layup. Improvements up to 36 percent were found from the model for fiber placed laminates with damage at the notch tip compared to conventional tape layup.
Fracture and crack growth in orthotropic laminates
NASA Technical Reports Server (NTRS)
Goree, James G.; Kaw, Autar K.
1985-01-01
A mathematical model based on the classical shear-lag assumptions is used to study the residual strength and fracture behavior of composite laminates with symmetrically placed buffer strips. The laminate is loaded by a uniform remote longitudinal tensile strain and has initial damage in the form of a transverse crack in the parent laminate between buffer strips. The crack growth behavior as a function of material properties, number of buffer-strip plies, spacing, width of buffer strips, longitudinal matrix splitting, and debonding at the interface is studied. Buffer-strip laminates are shown to arrest fracture and increase the residual strengths significantly over those of one material laminates, with S-glass being a more effective buffer strip material than Kevlar in increasing the damage tolerance of graphite/epoxy panels. For a typical graphite/epoxy laminate with S-glass buffer-strips, the residual strength is about 2.4 times the residual strength of an all graphite/epoxy panel with the same crack length. Approximately 50% of this increase is due to the S-glass/epoxy buffer-strips, 40% due to longitudinal splitting of the buffer strip interface and 10% due to bonding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xianjun; Leng, Ting; Zhang, Xiao
In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10{sup 4 }S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. Amore » dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.« less
NASA Astrophysics Data System (ADS)
Lu, S. F.; Zhang, W.; Song, X. J.
2017-09-01
Using Reddy's high-order shear theory for laminated plates and Hamilton's principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom (DOF) nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics, including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.
Temperature dependence of elastic and strength properties of T300/5208 graphite-epoxy
NASA Technical Reports Server (NTRS)
Milkovich, S. M.; Herakovich, C. T.
1984-01-01
Experimental results are presented for the elastic and strength properties of T300/5208 graphite-epoxy at room temperature, 116K (-250 F), and 394K (+250 F). Results are presented for unidirectional 0, 90, and 45 degree laminates, and + or - 30, + or - 45, and + or - 60 degree angle-ply laminates. The stress-strain behavior of the 0 and 90 degree laminates is essentially linear for all three temperatures and that the stress-strain behavior of all other laminates is linear at 116K. A second-order curve provides the best fit for the temperature is linear at 116K. A second-order curve provides the best fit for the temperature dependence of the elastic modulus of all laminates and for the principal shear modulus. Poisson's ratio appears to vary linearly with temperature. all moduli decrease with increasing temperature except for E (sub 1) which exhibits a small increase. The strength temperature dependence is also quadratic for all laminates except the 0 degree - laminate which exhibits linear temperature dependence. In many cases the temperature dependence of properties is nearly linear.
NASA Astrophysics Data System (ADS)
Nallayan, W. Andrew; Vijayakumar, K. R.; Rasheed, Usama Tariq
2017-05-01
High performance polymer composite laminates that are used in Aerospace and Electronics industries requires laminates that are structurally rigid besides exhibiting high stiffness and good di electrical properties. They are required to be transparent to EM waves in order to transmit the signal with almost zero transmission loss. Response of the laminates under different loadings could hence establish a potent material combination with high structural strengths that could be used in sectors dealing with Signal transmissions. The results thus acquired can be used as a database for choosing relatively better materials for Radome and their advanced versions in the coming decades. To augment this, thin laminates with 4 plies with simple stacking configurations of 0/90/0/90 degrees as applicable to a cross plied laminates were fabricated with cyanate ester modified epoxy resin and 1200GSM E glass unidirectional fiber. Flexural and Impact strength were the properties identified for the accessing the structural responses of the Laminate as against room and oven curing conditions. FESEM images were applied to validate the experimental findings.
NASA Technical Reports Server (NTRS)
Shuart, M. J.; Williams, J. G.
1984-01-01
The response and failure of a + or - 45s class laminate was studied by transparent fiberglass epoxy composite birefringent material. The birefringency property allows the laminate stress distribution to be observed during the test and also after the test if permanent residual stresses occur. The location of initial laminate failure and of the subsequent failure propagation are observed through its transparency characteristics. Experimental results are presented.
2012-01-30
CFRP LAMINATES FOR MARINE USE Sa. CONTRACT NUMBER 5b. GRANT NUMBER N00014-06-1-1139 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Miyano, Yasushi...prediction of CFRP laminates proposed and confirmed experimentally in the previous ONR project of Grant # N000140110949 was verified theoretically and refined...DURABILITY OF CFRP LAMINATES FOR MARINE USE Principal Investigator Yasushi Miyano Co-principal Investigator Isao Kimpara Materials System
Residual stresses and their effects in composite laminates
NASA Technical Reports Server (NTRS)
Hahn, H. T.; Hwang, D. G.
1983-01-01
Residual stresses in composite laminates are caused by the anisotropy in expansional properties of constituent unidirectional plies. The effect of these residual stresses on dimensional stability is studied through the warping of unsymmetric (0 sub 4/90 sub 4)sub T graphite/epoxy laminates while their effect on ply failure is analyzed for (0/90)sub 2s Kevlar 49/epoxy laminate. The classical laminated plate theory is used to predict the warping of small and large panels. The change of warping does not indicate a noticeable stress relaxation at 75 C while it is very sensitive to moisture content and hence to environment. A prolonged gellation at the initial cure temperature reduces residual stresses while postcure does not. The matrix/interface cracking in dry (0/90)sub 2s Kevlar 49/epoxy laminate is shown to be the result of the residual stress exceeding the transverse strength.
NASA Technical Reports Server (NTRS)
Hashin, Z. (Editor); Herakovich, C. T. (Editor)
1983-01-01
The present conference on the mechanics of composites discusses microstructure's influence on particulate and short fiber composites' thermoelastic and transport properties, the elastoplastic deformation of composites, constitutive equations for viscoplastic composites, the plasticity and fatigue of metal matrix composites, laminate damping mechanisms, the micromechanical modeling of Kevlar/epoxy composites' time-dependent failure, the variational characterization of waves in composites, and computational methods for eigenvalue problems in composite design. Also discussed are the elastic response of laminates, elastic coupling nonlinear effects in unsymmetrical laminates, elasticity solutions for laminate problems having stress singularities, the mechanics of bimodular composite structures, the optimization of laminated plates and shells, NDE for laminates, the role of matrix cracking in the continuum constitutive behavior of a damaged composite ply, and the energy release rates of various microcracks in short fiber composites.
NASA Astrophysics Data System (ADS)
Yokozeki, Tomohiro; Iwahori, Yutaka; Ishiwata, Shin
This study investigated the thermo-elastic properties and microscopic ply cracking behaviors in carbon fiber reinforced nanotube-dispersed epoxy laminates. The nanocomposite laminates used in this study consisted of traditional carbon fibers and epoxy resin filled with cup-stacked carbon nanotubes (CSCNTs). Thermo-mechanical properties of unidirectional nanocomposite laminates were evaluated, and quasi-static and fatigue tension tests of cross-ply laminates were carried out in order to observe the damage accumulation behaviors of matrix cracks. Clear retardation of matrix crack onset and accumulation was found in composite laminates with CSCNT compared to those without CSCNT. Fracture toughness associated with matrix cracking was evaluated based on the analytical model using the experimental results. It was concluded that the dispersion of CSCNT resulted in fracture toughness improvement and residual thermal strain decrease, and specifically, the former was the main contribution to the retardation of matrix crack formation.
Characteristics of thermally-induced transverse cracks in graphite epoxy composite laminates
NASA Technical Reports Server (NTRS)
Adams, D. S.; Bowles, D. E.; Herakovich, C. T.
1983-01-01
The characteristics of thermally induced transverse cracks in T300/5208 graphite-epoxy cross-ply and quasi-isotropic laminates were investigated both experimentally and analytically. The formation of transverse cracks and the subsequent crack spacing present during cool down to -250 F (116K) and thermal cycling between 250 and -250 F (116 and 394K) was investigated. The state of stress in the vicinity of a transverse crack and the influence of transverse cracking on the laminate coefficient of thermal expansion (CTE) was predicted using a generalized plane strain finite element analysis and a modified shear lag analysis. A majority of the cross-ply laminates experienced transverse cracking during the initial cool down to -250 F whereas the quasi-isotropic laminates remained uncracked. The in situ transverse strength of the 90 degree layers was more than 1.9 times greater than the transverse strength of the unidirectional 90 degree material for all laminates investigated.
Structural Composites Corrosive Management by Computational Simulation
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2006-01-01
A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.
Modeling the magnetoelectric effect in laminated composites using Hamilton’s principle
NASA Astrophysics Data System (ADS)
Zhang, Shengyao; Zhang, Ru; Jiang, Jiqing
2018-01-01
Mathematical modeling of the magnetoelectric (ME) effect has been established for some rectangular and disk laminate structures. However, these methods are difficult in other cases, particularly for complex structures. In this work, a new method for the analysis of the ME effect is proposed using a generalized Hamilton’s principle, which is conveniently applicable to various laminate structures. As an example, the performance of the rectangular ME laminated composite is analyzed and the equivalent circuit model for the laminate is obtained directly from the analysis. The experimental data is also obtained to compare with the theoretical calculations and to validate the new method. Compared with Dong’s method, the new method is more accurate and convenient. In particular, the equivalent circuit for the rectangular laminated composite can be obtained more easily by the proposed method as it does not require the complex treatment used in Dong’s method.
Xie, Wei; Burke, Brian
2017-07-04
Nuclear lamins are intermediate filament proteins that represent important structural components of metazoan nuclear envelopes (NEs). By combining proteomics and superresolution microscopy, we recently reported that both A- and B-type nuclear lamins form spatially distinct filament networks at the nuclear periphery of mouse fibroblasts. In particular, A-type lamins exhibit differential association with nuclear pore complexes (NPCs). Our studies reveal that the nuclear lamina network in mammalian somatic cells is less ordered and more complex than that of amphibian oocytes, the only other system in which the lamina has been visualized at high resolution. In addition, the NPC component Tpr likely links NPCs to the A-type lamin network, an association that appears to be regulated by C-terminal modification of various A-type lamin isoforms. Many questions remain, however, concerning the structure and assembly of lamin filaments, as well as with their mode of association with other nuclear components such as peripheral chromatin.
NASA Astrophysics Data System (ADS)
Yokozeki, Tomohiro; Aoki, Yuichiro; Ogasawara, Toshio
It has been recognized that damage resistance and strength properties of CFRP laminates can be improved by using thin-ply prepregs. This study investigates the damage behaviors and compressive strength of CFRP laminates using thin-ply and standard prepregs subjected to out-of-plane impact loadings. CFRP laminates used for the evaluation are prepared using the standard prepregs, thin-ply prepregs, and combinations of the both. Weight-drop impact test and post-impact compression test of quasi-isotropic laminates are performed. It is shown that the damage behaviors are different between the thin-ply and the standard laminates, and the compression-after-impact strength is improved by using thin-ply prepregs. Effects of the use of thin-ply prepregs and the layout of thin-ply layers on the damage behaviors and compression-after-impact properties are discussed based on the experimental results.
NASA Astrophysics Data System (ADS)
Houmat, A.
2018-02-01
The optimal lay-up design for the maximum fundamental frequency of variable stiffness laminated composite plates is investigated using a layer-wise optimization technique. The design variables are two fibre orientation angles per ply. Thin plate theory is used in conjunction with a p-element to calculate the fundamental frequencies of symmetrically and antisymmetrically laminated composite plates. Comparisons with existing optimal solutions for constant stiffness symmetrically laminated composite plates show excellent agreement. It is observed that the maximum fundamental frequency can be increased considerably using variable stiffness design as compared to constant stiffness design. In addition, optimal lay-ups for the maximum fundamental frequency of variable stiffness symmetrically and antisymmetrically laminated composite plates with different aspect ratios and various combinations of free, simply supported and clamped edge conditions are presented. These should prove a useful benchmark for optimal lay-ups of variable stiffness laminated composite plates.
Mechanisms of nuclear lamina growth in interphase.
Zhironkina, Oxana A; Kurchashova, Svetlana Yu; Pozharskaia, Vasilisa A; Cherepanynets, Varvara D; Strelkova, Olga S; Hozak, Pavel; Kireev, Igor I
2016-04-01
The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.
Lamin A/C Depletion Enhances DNA Damage-Induced Stalled Replication Fork Arrest
Singh, Mayank; Hunt, Clayton R.; Pandita, Raj K.; Kumar, Rakesh; Yang, Chin-Rang; Horikoshi, Nobuo; Bachoo, Robert; Serag, Sara; Story, Michael D.; Shay, Jerry W.; Powell, Simon N.; Gupta, Arun; Jeffery, Jessie; Pandita, Shruti; Chen, Benjamin P. C.; Deckbar, Dorothee; Löbrich, Markus; Yang, Qin; Khanna, Kum Kum; Worman, Howard J.
2013-01-01
The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair. PMID:23319047
Adhesives for laminating polyimide insulated flat conductor cable
NASA Technical Reports Server (NTRS)
Montermoso, J. C.; Saxton, T. R.; Taylor, R. L.
1967-01-01
Polymer adhesive laminates polyimide-film flat conductor cable. It is obtained by reacting an appropriate diamine with a dianhydride. The adhesive has also been used in the lamination of copper to copper for the preparation of multilayer circuit boards.
Reliability analysis of composite laminates with load sharing
NASA Technical Reports Server (NTRS)
Wetherhold, Robert C.; Thomas, David J.
1991-01-01
By viewing a composite lamina as a homogeneous solid whose directional strengths are random variables, lamina reliability under multiaxial stresses may be determined using either an interactive or a noninteractive criterion. From the reliability values for the individual laminae comprising a given laminate, Thomas and Wetherhold (1991) have proposed a method for determining bounds for the overall laminate reliability. In this paper, simple physically plausible phenomenological rules are proposed for redistribution of load after a lamina has failed within the confines of a laminate. These rules are illustrated by application to (0/ +/-15)s and (90/ +/-45/0)s graphite/epoxy laminates, and the results are compared to the previously proposed bounds.
Temperature Effect of Low Velocity Impact Resistance of Glass/epoxy Laminates
NASA Astrophysics Data System (ADS)
Kang, Ki-Weon; Kim, Heung-Seob; Chung, Tae-Jin; Koh, Seung-Kee
This paper aims to evaluate the effect of temperature on impact damage resistance of glass/epoxy laminates. A series of impact tests were performed using an instrumented impact-testing machine at temperature ranging from -40°C to +80°C. The resulting impact damage was measured using back light method. The impact resistance parameters were employed to understand the damage resistance. It was observed that temperature has a little effect on the impact responses of composite laminates. The damage resistance of glass/epoxy laminates is somewhat deteriorated at two opposite extremes of the studied temperature range and this behavior is likely due to the property change of glass/epoxy laminates under extreme temperatures
Hierarchic models for laminated plates
NASA Technical Reports Server (NTRS)
Szabo, Barna A.; Actis, Ricardo L.
1991-01-01
The research conducted in the formulation of hierarchic models for laminated plates is described. The work is an extension of the work done for laminated strips. The use of a single parameter, beta, is investigated that represents the degree to which the equilibrium equations of three dimensional elasticity are satisfied. The powers of beta identify members in the hierarchic sequence. Numerical examples that were analyzed with the proposed sequence of models are included. The results obtained for square plates with uniform loading and homogeneous boundary conditions are very encouraging. Several cross-ply and angle-ply laminates were evaluated and the results compared with those of the fully three dimensional model, computed using MSC/PROBE, and with previously reported work on laminated strips.
Analysis of a unidirectional, symmetric buffer strip laminate with damage
NASA Technical Reports Server (NTRS)
Dharani, L. R.; Goree, J. G.
1984-01-01
A method for predicting the fracture behavior of hybrid buffer strip laminates is presented in which the classical shear-lag model is used to represent the shear stress distribution between adjacent fibers. The method is demonstrated by applying it to a notched graphite/epoxy laminate, and the results show clearly the manner in which the most efficient combination of buffer strip properties can be selected in order to arrest the crack. The ultimate failure stress of the laminate is plotted vs the buffer strip width. It is shown that in the case of graphite-epoxy and S-glass epoxy laminates, the optimum buffer strip spacing to width ratio should be about four to one.
Insight into the functional organization of nuclear lamins in health and disease.
Tatli, Meltem; Medalia, Ohad
2018-05-22
Lamins are the main component of the nuclear lamina, a protein meshwork at the inner nuclear membrane which primarily provide mechanical stability to the nucleus. Lamins, type V intermediate filament proteins, are also involved in many nuclear activities. Structural analysis of nuclei revealed that lamins form 3.5nm thick filaments often interact with nuclear pore complexes. Mutations in the LMNA gene, encoding A-type lamins, have been associated with at least 15 distinct diseases collectively termed laminopathies, including muscle, metabolic and neurological disorders, and premature aging syndrome. It is unclear how laminopathic mutations lead to such a wide array of diseases, essentially affecting almost all tissues. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lightweight, Fire-Resistant Graphite Composites
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; MING-TA-HSU
1986-01-01
Aircraft safety improved with interior paneling made of new laminate with good thermophysical properties. Featuring lightweight graphite composite, laminate more heat-and flame-resistant and produces much less smoke in fire than commonly used epoxy-resin-containing laminates. New laminate prepared without epoxy resin. Graphite unidirectional cloth preimpregnated with blend of vinyl polystyrylpyridine and bismaleimide (VPSP-BMI). Either of two types of VPSP-BMI blend used, depending on method of preparation of chemicals and technique used to fabricate panel.
1992-11-13
AD-A269 879 Damage-Survivable j and Damage-Tolerant Laminated Composites .4.. with Optimally placed Piezoelectric Layers Final Report No. 1 S. P...Damage Surviable and Damage-Tolerant Laminated Composites With Optimally Placed Piezoelectric Layers 12. PERSONAL AUTHOR(S) S.P. Joshi, W.S. Chan ൕa...block number) The main objective of the research is to assure that the embedded sensors/actuators in a smart laminated composite structure are damage
2012-01-01
REINFORCEMENTS AND HYBRIDIZATION ON DAMAGE RESISTANCE AND TOLERANCE OF COMPOSITE LAMINATES It was shown that the damage resistance and tolerance of... laminated composites can be enhanced by the employment of translaminar reinforcements (TLR) such as stitching, z-pinning and 3D weaving and also by hybrid...Park, NC 27709-2211 Composite Laminates Resistance REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM
2011-11-01
ply unidirectional carbon/epoxy laminates [0]12 were fabricated from the prepreg tape of P3252-20 (TORAY). They were laid up by hand and cured in...Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature Takafumi Suzuki 1 and...Development of an engineering model for predicting the off-axis ratcheting behavior of a unidirectional CFRP laminate has been attempted. For this purpose
Non-linear behavior of fiber composite laminates
NASA Technical Reports Server (NTRS)
Hashin, Z.; Bagchi, D.; Rosen, B. W.
1974-01-01
The non-linear behavior of fiber composite laminates which results from lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.
Solar cell module lamination process
Carey, Paul G.; Thompson, Jesse B.; Aceves, Randy C.
2002-01-01
A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.
Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Herakovich, E. T.; Tenney, D. R.
1977-01-01
The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing.
NASA Technical Reports Server (NTRS)
Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.
1993-01-01
The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.
Multimaterial lamination as a means of retarding penetration and spallation failures in plates
NASA Technical Reports Server (NTRS)
Dibattista, J. D.; Humes, D. H.
1972-01-01
Experimental data are presented which show that hypervelocity impact spallation and penetration failures of a single solid aluminum plate and of a solid aluminum plate spaced a distance behind a Whipple meteor bumper may be retarded by replacing the solid aluminum plate with a laminated plate. Four sets of experiments were conducted. The first set of experiments was conducted with projectile mass and velocity held constant and with polycarbonate cylinders impacted into single plates of different construction. The second set of experiments was done with single plates of various construction and aluminum spherical projectiles of similar mass but different velocities. These two experiments showed that a laminated plate of aluminum and polycarbonate or aluminum and methyl methacrylate could prevent spallation and penetration failures with a lower areal density than either an all-aluminum laminated plate or a solid aluminum plate. The aluminum laminated plate was in turn superior to the solid aluminum plate in resisting spallation and penetration failures. In addition, through an example of 6061-T6 aluminum and methyl methacrylate, it is shown that a laminated structure ballistically superior to its parent materials may be built. The last two sets of experiments were conducted using bumper-protected main walls of solid aluminum and of laminated aluminum and polycarbonate. Again, under hypervelocity impact conditions, the laminated main walls were superior to the solid aluminum main walls in retarding spallation and penetration failures.
Lamin A/C Haploinsufficiency Modulates the Differentiation Potential of Mouse Embryonic Stem Cells
Sehgal, Poonam; Chaturvedi, Pankaj; Kumaran, R. Ileng; Kumar, Satish; Parnaik, Veena K.
2013-01-01
Background Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways. Methodology and Principal Findings We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells. Conclusions We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development. PMID:23451281
Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa
Moreno Díaz de la Espina, Susana
2013-01-01
The nucleoskeleton of plants contains a peripheral lamina (also called plamina) and, even though lamins are absent in plants, their roles are still fulfilled in plant nuclei. One of the most intriguing topics in plant biology concerns the identity of lamin protein analogues in plants. Good candidates to play lamin functions in plants are the members of the NMCP (nuclear matrix constituent protein) family, which exhibit the typical tripartite structure of lamins. This paper describes a bioinformatics analysis and classification of the NMCP family based on phylogenetic relationships, sequence similarity and the distribution of conserved regions in 76 homologues. In addition, NMCP1 in the monocot Allium cepa characterized by its sequence and structure, biochemical properties, and subnuclear distribution and alterations in its expression throughout the root were identified. The results demonstrate that these proteins exhibit many similarities to lamins (structural organization, conserved regions, subnuclear distribution, and solubility) and that they may fulfil the functions of lamins in plants. These findings significantly advance understanding of the structural proteins of the plant lamina and nucleoskeleton and provide a basis for further investigation of the protein networks forming these structures. PMID:23378381
Modeling fatigue crack growth in cross ply titanium matrix composites
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1993-01-01
In this study, the fatigue crack growth behavior of fiber bridging matrix cracks in cross-ply SCS-6/Ti-15-3 and SCS-6/Timetal-21S laminates containing center holes was investigated. Experimental observations revealed that matrix cracking was far more extensive and wide spread in the SCS-6/Ti-15-3 laminates compared to that in the SCS-6/Timetal-21S laminates. In addition, the fatigue life of the SCS-6/Ti-15-3 laminates was significantly longer than that of the SCS-6/Timetal-21S laminates. The matrix cracking observed in both material systems was analyzed using a fiber bridging (FB) model which was formulated using the boundary correction factors and weight functions for center hole specimen configurations. A frictional shear stress is assumed in the FB model and was used as a curve fitting parameter to model matrix crack growth data. The higher frictional shear stresses calculated in the SCS-6/Timetal-21S laminates resulted in lower stress intensity factors in the matrix and higher axial stresses in the fibers compared to those in the SCS-6/Ti-15-3 laminates at the same applied stress levels.
Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa.
Ciska, Malgorzata; Masuda, Kiyoshi; Moreno Díaz de la Espina, Susana
2013-04-01
The nucleoskeleton of plants contains a peripheral lamina (also called plamina) and, even though lamins are absent in plants, their roles are still fulfilled in plant nuclei. One of the most intriguing topics in plant biology concerns the identity of lamin protein analogues in plants. Good candidates to play lamin functions in plants are the members of the NMCP (nuclear matrix constituent protein) family, which exhibit the typical tripartite structure of lamins. This paper describes a bioinformatics analysis and classification of the NMCP family based on phylogenetic relationships, sequence similarity and the distribution of conserved regions in 76 homologues. In addition, NMCP1 in the monocot Allium cepa characterized by its sequence and structure, biochemical properties, and subnuclear distribution and alterations in its expression throughout the root were identified. The results demonstrate that these proteins exhibit many similarities to lamins (structural organization, conserved regions, subnuclear distribution, and solubility) and that they may fulfil the functions of lamins in plants. These findings significantly advance understanding of the structural proteins of the plant lamina and nucleoskeleton and provide a basis for further investigation of the protein networks forming these structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbero, E.J.
1989-01-01
In this study, a computational model for accurate analysis of composite laminates and laminates with including delaminated interfaces is developed. An accurate prediction of stress distributions, including interlaminar stresses, is obtained by using the Generalized Laminate Plate Theory of Reddy in which layer-wise linear approximation of the displacements through the thickness is used. Analytical as well as finite-element solutions of the theory are developed for bending and vibrations of laminated composite plates for the linear theory. Geometrical nonlinearity, including buckling and postbuckling are included and used to perform stress analysis of laminated plates. A general two dimensional theory of laminatedmore » cylindrical shells is also developed in this study. Geometrical nonlinearity and transverse compressibility are included. Delaminations between layers of composite plates are modelled by jump discontinuity conditions at the interfaces. The theory includes multiple delaminations through the thickness. Geometric nonlinearity is included to capture layer buckling. The strain energy release rate distribution along the boundary of delaminations is computed by a novel algorithm. The computational models presented herein are accurate for global behavior and particularly appropriate for the study of local effects.« less
NASA Astrophysics Data System (ADS)
Bak, Roman; Matyja, Tomasz
An algorithm and a computer program have been developed for calculating the strength of pressure vessels made of laminated composites. Numerical results for pressure vessels of Kevlar 49 laminates are compared with experimental data in the literature.
40 CFR 426.70 - Applicability; description of the automotive glass laminating subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... automotive glass laminating subcategory. 426.70 Section 426.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Laminating Subcategory § 426.70 Applicability; description of the automotive glass...
40 CFR 426.70 - Applicability; description of the automotive glass laminating subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... automotive glass laminating subcategory. 426.70 Section 426.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Laminating Subcategory § 426.70 Applicability; description of the automotive glass...
Fire Resistant, Moisture Barrier Membrane
NASA Technical Reports Server (NTRS)
St.Clair, Terry L. (Inventor)
2000-01-01
A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.
Fire Resistant, Moisture Barrier Membrane
NASA Technical Reports Server (NTRS)
St.Clair, Terry L. (Inventor)
1998-01-01
A waterproof and breathable, fire-resistant laminate is provided for use in tents, garments, shoes, and covers, especially in industrial, military and emergency situations. The laminate permits water vapor evaporation while simultaneously preventing liquid water penetration. Further, the laminate is fire-resistant and significantly reduces the danger of toxic compound production when exposed to flame or other high heat source. The laminate may be applied to a variety of substrates and is comprised of a silicone rubber and plurality of fire-resistant, inherently thermally-stable polyimide particles.
NASA Technical Reports Server (NTRS)
Davidson, M. E.
1985-01-01
Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.
Wave propagation in graphite/epoxy laminates due to impact
NASA Technical Reports Server (NTRS)
Tan, T. M.; Sun, C. T.
1982-01-01
The low velocity impact response of graphite-epoxy laminates is investigated theoretically and experimentally. A nine-node isoparametric finite element in conjunction with an empirical contact law was used for the theoretical investigation. Flat laminates subjected to pendulum impact were used for the experimental investigation. Theoretical results are in good agreement with strain gage experimental data. The collective results of the investigation indicate that the theoretical procedure describes the impact response of the laminate up to about 150 in/sec. impact velocity.
2007-08-01
designs and operates numerous passenger airships. The envelope structure consists of a laminated fabric envelope. This envelope is a large bag...Layered Aerostat Fabric This multi-layered laminate is designed to withstand the sun’s UV rays, acid rain and other environmental concerns. It is...a tough laminate , which inhibits gas loss while providing a high strength-to-weight ratio. The CL75 envelope used a laminate material woven with
NASA Astrophysics Data System (ADS)
Khan, Z. M.; Adams, D. O.; Anas, S.
2016-01-01
As advanced composite materials having superior physical and mechanical properties are being developed, the optimization of their processing techniques is eagerly sought. One of the most common defects arising during processing of structural composites is layer waviness. The layer waviness is more pronounced in thick-section flat and cylindrical laminates, which are extensively used in large wind turbine blades, submersibles, and space platforms. The layer waviness undulates the entire layer of a multidirectional laminate in the throughthe-thickness direction, leading to a gross deterioration of its compressive strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0° layers were fabricated in an IM/8551-7 carbon-epoxy composite laminate on a steel mold by using a single-step fabrication procedure. The test laminates were cured on a heated press according to the specific curing cycle of epoxy. Their static compression testing was performed using a NASA short block compression fixture on an MTS servohydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of the composite laminate. The experimental and analytical results obtained revealed that the reduction in the compression strength of composite laminate was constant after the fraction of the wavy 0° layers exceeded 35%. This analysis indicated that the percentage of the 0° wavy layer may be used to estimate the reduction in the compression strength of a double nested wave formation in a composite laminate.
NASA Astrophysics Data System (ADS)
Black, A. E.; Baranow, N.; Amdur, S.; Cook, M. S.
2017-12-01
Ocean circulation and biological productivity play an important role in the climate system through their contribution to global heat transport and air-sea exchange of CO2. Oceanic oxygen concentration provides insight to ocean circulation and biological productivity. Sediment laminations provide a valuable proxy for local oceanic oxygen concentration. Many sediment cores from the Pacific Ocean are laminated from the last deglaciation, but previous studies have not provided an in-depth examination of laminations over many glacial and interglacial (G/IG) cycles. Typically, studies to date that consider bioturbation as a proxy for oxygen concentration have only considered one sediment core from a site, leaving ambiguity as to whether laminations faithfully record local oxygen levels. With sediment cores from three different holes (A, C, D) on the northern Bering Slope from IODP site U1345 (1008m), we investigate how faithfully laminations record oxygen concentration. We assign a bioturbation index from 1 to 4 for 1-cm intervals for the cores from each of the three holes and align the holes based on physical properties data. We find that the bioturbation is relatively consistent (within one bioturbation unit) between holes, suggesting that laminations may be a faithful, if not perfect, proxy for local oxygen concentration. After examining laminations from a complete hole, representing over 500,000 years, there seems to be no consistent pattern of laminations during the past five glacial cycles, suggesting there is no consistent pattern to oxygen concentration during glacial periods in the northern Bering Slope. Thus, hypotheses on ocean circulation and productivity in the northern Bering Sea from the last deglaciation may not apply to previous G/IG cycles.
Tensile stress-strain behavior of hybrid composite laminates
NASA Technical Reports Server (NTRS)
Kennedy, J. M.
1983-01-01
A study was made of the stress-strain response of several hybrid laminates, and the damage was correlated with nonlinear stress-strain response and ultimate strength. The fibers used in the laminates were graphite, S-glass, and Kevlar. Some laminates with graphite fibers had perforated Mylar film between plies, which lowered the interlaminar bond strength. The laminate configurations were chosen to be like those of buffer strips in large panels and fracture coupons. Longitudinal and transverse specimens were loaded in tension to failure. Some specimens were radiographed to reveal damage due to edge effects. Stress-strain response is discussed in terms of damage shown by the radiographs. Ultimate strengths are compared with simple failure criteria, one of which account for damage.
On various refined theories in the bending analysis of angle-ply laminates
NASA Astrophysics Data System (ADS)
Savithri, S.; Varadan, T. K.
1992-05-01
The accuracies of six shear-deformation theories are compared by analyzing the bending of angle-ply laminates and studying the results in the light of exact solutions. The shear-deformation theories used are those by: Ren (1986), Savithri and Varadan (1990), Bhaskar and Varadan (1991), Murakami (1986), and Pandya and Kant (1988), and combinations of these. The analytical methods are similar in that the number of unknown variables in the displacement field is independent of the number of layers in the laminate. The model by Ren is based on a parabolic distribution of transverse shear stresses in each laminate layer. This model is shown to give good predictions of deflections and stresses in two-layer antisymmetric and three-layer symmetric angle-ply laminates.
Exact solution of conductive heat transfer in cylindrical composite laminate
NASA Astrophysics Data System (ADS)
Kayhani, M. H.; Shariati, M.; Nourozi, M.; Karimi Demneh, M.
2009-11-01
This paper presents an exact solution for steady-state conduction heat transfer in cylindrical composite laminates. This laminate is cylindrical shape and in each lamina, fibers have been wound around the cylinder. In this article heat transfer in composite laminates is being investigated, by using separation of variables method and an analytical relation for temperature distribution in these laminates has been obtained under specific boundary conditions. Also Fourier coefficients in each layer obtain by solving set of equations that related to thermal boundary layer conditions at inside and outside of the cylinder also thermal continuity and heat flux continuity between each layer is considered. In this research LU factorization method has been used to solve the set of equations.
Method for fabricating laminated uranium composites
Chapman, L.R.
1983-08-03
The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.
Nuclear lamins during gametogenesis, fertilization and early development
NASA Technical Reports Server (NTRS)
Maul, G. G.; Schatten, G.
1986-01-01
The distribution of lamins (described by Gerace, 1978, as major proteins of nuclear envelope) during gametogenesis, fertilization, and early development was investigated in germ cells of a mouse (Mus musculus), an echinoderm (Lytechinus variegatus), and the surf clam (Spisula solidissima) was investigated in order to determine whether the differences detected could be correlated with differences in the function of cells in these stages of the germ cells. In order to monitor the behavior of lamins, the gametes and embryos were labeled with antibodies to lamins A, C, and B extracted from autoimmune sera of patients with scleroderma and Lupus erythematosus. Results indicated that lamin B could be identified in nuclear envelopes on only those nuclei where chromatin is attached and where RNA synthesis takes place.
NASA Astrophysics Data System (ADS)
Dumansky, Alexander M.; Tairova, Lyudmila P.
2008-09-01
A method for the construction of hereditary constitutive equation is proposed for the laminate on the basis of hereditary constitutive equations of a layer. The method is developed from the assumption that in the directions of axes of orthotropy the layer follows elastic behavior, and obeys hereditary constitutive equations under shear. The constitutive equations of the laminate are constructed on the basis of classical laminate theory and algebra of resolvent operators. Effective matrix algorithm and relationships of operator algebra are used to derive visco-elastic stiffness and compliance of the laminate. The example of construction of hereditary constitutive equations of cross-ply carbon fiber-reinforced plastic is presented.
78 FR 23591 - Certain Prepregs, Laminates, and Finished Circuit Boards
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-659 (Enforcement)] Certain Prepregs... United States after importation of certain prepregs, laminates, and finished circuit boards that infringe... prepregs and laminates that are the subject of the investigation or that otherwise infringe, induce, and/or...
Elasticity solutions for a class of composite laminate problems with stress singularities
NASA Technical Reports Server (NTRS)
Wang, S. S.
1983-01-01
A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
Lamination residual stresses in fiber composites
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1975-01-01
An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.
A computational analysis of the ballistic performance of light-weight hybrid composite armors
NASA Astrophysics Data System (ADS)
Grujicic, M.; Pandurangan, B.; Koudela, K. L.; Cheeseman, B. A.
2006-11-01
The ability of hybrid light-weight fiber-reinforced polymer-matrix composite laminate armor to withstand the impact of a fragment simulating projectile (FSP) is investigated using a non-linear dynamics transient computational analysis. The hybrid armor is constructed using various combinations and stacking sequences of a high-strength/high-stiffness carbon fiber-reinforced epoxy (CFRE) and a high-ductility/high-toughness Kevlar fiber-reinforced epoxy (KFRE) composite laminates of different thicknesses. The results obtained indicate that at a fixed thickness of the armor both the stacking sequence and the number of CFRE/KFRE laminates substantially affect the ballistic performance of the armor. Specifically, it is found that the armor consisting of one layer of KFRE and one layer of CFRE, with KFRE laminate constituting the outer surface of the armor, possesses the maximum resistance towards the projectile-induced damage and failure. The results obtained are rationalized using an analysis of the elastic wave reflection and transmission behavior at the inter-laminate and laminate/air interfaces.
Flutter of Hybrid Laminated Flat Panels with Simply Supported Edges in Supersonic Flow
NASA Astrophysics Data System (ADS)
Barai, A.; Durvasula, S.
1994-01-01
Flutter of hybrid laminated flat panels in supersonic flow is studied by using first order shear deformation theory in conjunction with the assumed mode method. Both the quasi-static approximation and piston theory are used for aerodynamic force calculations at supersonic speeds. The flutter stability boundaries are determined by using the frequency coalescence criterion with the quasi-static approximation and Movchan-Krumhaar's criterion with the piston theory aerodynamics. Numerical calculations are presented for hybrid laminates consisting of graphite, Kevlar and glass fibres in an epoxy matrix. The effects of hybridization, shear deformation, ply orientation and aspect ratio are studied. The critical dynamic pressure parameter of a hybrid laminate lies between the values for laminates made with all plies of higher stiffness and with all plies of lower stiffness, respectively. The role of aerodynamic damping is found to be particularly important in determining the aeroelastic stability boundaries of laminated composite panels. Shear flexibility reduces the critical dynamic pressure parameter, but the reduction is insignificant for thin panels.
Fracture behavior of unidirectional boron/aluminum composite laminates
NASA Technical Reports Server (NTRS)
Goree, J. G.; Jones, W. F.
1983-01-01
An experiment was conducted to verify the results of mathematical models which predict the stresses and displacements of fibers and the amount of damage growth in a center-notched lamina as a function of the applied remote stress and the matrix and fiber material properties. A brittle lacquer coating was used to detect the yielding in the matrix while X-ray techniques were used to determine the number of broken fibers in the laminate. The notched strengths and the amounts of damage found in the specimens agree well with those predicted by the mathematical model. It is shown that the amount of damage and the crack opening displacement does not depend strongly on the number of plies in the laminate for a given notch width. By heat-treating certain laminates to increase the yield stress of the alumina matrix, the effect of different matrix properties on the fracture behavior was investigated. The stronger matrix is shown to weaken the notched laminate by decreasing the amount of matrix damage, thereby making the laminate more notch sensitive.
NASA Astrophysics Data System (ADS)
Liu, Shichen; Lang, Lihui; Guan, Shiwei; Alexandrov, Seigei; Zeng, Yipan
2018-04-01
Fiber-metal laminates (FMLs) such as Kevlar reinforced aluminum laminate (ARALL), Carbon reinforced aluminum laminate (CARALL), and Glass reinforced aluminum laminate (GLARE) offer great potential for weight reduction applications in automobile and aerospace construction. In order to investigate the feasibility for utilizing such materials in the form of laminates, sheet hydroforming technology are studied under the condition of uniform blank holder force for three-layered aluminum and aluminum-composite laminates using orthogonal carbon and Kevlar as well as glass fiber in the middle. The experimental results validate the finite element results and they exhibited that the forming limit of glass fiber in the middle is the highest among the studied materials, while carbon fiber material performs the worst. Furthermore, the crack modes are different for the three kinds of fiber materials investigated in the research. This study provides fundamental guidance for the selection of multi-layer sheet materials in the future manufacturing field.
A critical evaluation of theories for predicting microcracking in composite laminates
NASA Technical Reports Server (NTRS)
Nairn, John A.; Hu, Shoufeng; Bark, Jong S.
1993-01-01
We present experimental results on 21 different layups of Hercules AS4 carbon fiber/3501-6 epoxy laminates. All laminates had 90 deg plies; some had them in the middle, while some had them on a free surface. During tensile loading, the first form of damage in all laminates was microcracking of the 90 deg plies. For each laminate, we recorded both the crack density and the complete distribution of crack spacings as a function of the applied load. By rearranging various microcracking theories, we developed a master-curve approach that permitted plotting the results from all laminates on a single plot. By comparing master-curve plots for different theories, it was possible to critically evaluate the quality of those theories. We found that a critical-energy-release-rate criterion calculated using a 2D variational stress analysis gave the best results. All microcracking theories based on a strength-failure criteria gave poor results. All microcracking theories using 1D stress analyses, regardless of the failure criterion, also gave poor results.
Tungsten foil laminate for structural divertor applications - Joining of tungsten foils
NASA Astrophysics Data System (ADS)
Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou
2013-05-01
This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.
Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate
NASA Astrophysics Data System (ADS)
Xue, Jia; Wang, Wen-Xue; Zhang, Jia-Zhen; Wu, Su-Jun; Li, Hang
2015-10-01
A new fibre metal laminate fabricated with aluminium sheets and unidirectionally arrayed chopped strand (UACS) plies is proposed. The UACS ply is made by cutting parallel slits into a unidirectional carbon fibre prepreg. The UACS/Al laminate may be viewed as aluminium laminate reinforced by highly aligned, discontinuous carbon fibres. The tensile behaviour of UACS/Al laminate, including thermal residual stress and failure progression, is investigated through experiments and numerical simulation. Finite element analysis was used to simulate the onset and propagation of intra-laminar fractures occurring within slits of the UACS plies and delamination along the interfaces. The finite element models feature intra-laminar cohesive elements inserted into the slits and inter-laminar cohesive elements inserted at the interfaces. Good agreement are obtained between experimental results and finite element analysis, and certain limitations of the finite element models are observed and discussed. The combined experimental and numerical studies provide a detailed understanding of the tensile behaviour of UACS/Al laminates.
NASA Astrophysics Data System (ADS)
Rodríguez-González, J. A.; Rubio-González, C.; Jiménez-Mora, M.; Ramos-Galicia, L.; Velasco-Santos, C.
2017-10-01
An effective strategy to improve the mode I and mode II interlaminar fracture toughness (G IC and G IIC ) of unidirectional carbon fiber/epoxy (CF/E) laminates using a hybrid combination of multiwalled carbon nanotubes (MWCNTs) and graphene oxide (GO) is reported. Double cantilever beam (DCB) and end notched flexure (ENF) tests were conducted to evaluate the G IC and G IIC of the CF/E laminates fabricated with sprayed MWCNTs, GO and MWCNTs/GO hybrid. Scanning electron microscopy was employed to observe the fracture surfaces of tested DCB and ENF specimens. Experimental results showed the positive effect on the G IC and G IIC by 17% and 14% improvements on CF/E laminates with 0.25 wt.% MWCNTs/GO hybrid content compared to the neat CF/E. Also, the interlaminar shear strength value was increased for MWCNTs/GO-CF/E laminates. A synergetic effect between MWCNTs and GO resulted in improved interlaminar mechanical properties of CF/E laminates made by prepregs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, Kyle K.; Hermann, Thomas M.; Locke, James
2005-11-01
Anisotropic carbon/glass hybrid composite laminates have been fabricated, tested, and analyzed. The laminates have been fabricated using vacuum-assisted resin transfer molding (VARTM). Five fiber complexes and a two-part epoxy resin system have been used in the study to fabricate panels of twenty different laminate constructions. These panels have been subjected to physical testing to measure density, fiber volume fraction, and void fraction. Coupons machined from these panels have also been subjected to mechanical testing to measure elastic properties and strength of the laminates using tensile, compressive, transverse tensile, and in-plane shear tests. Interlaminar shear strength has also been measured. Out-of-planemore » displacement, axial strain, transverse strain, and inplane shear strain have also been measured using photogrammetry data obtained during edgewise compression tests. The test data have been reduced to characterize the elastic properties and strength of the laminates. Constraints imposed by test fixtures might be expected to affect measurements of the moduli of anisotropic materials; classical lamination theory has been used to assess the magnitude of such effects and correct the experimental data for the same. The tensile moduli generally correlate well with experiment without correction and indicate that factors other than end constraints dominate. The results suggest that shear moduli of the anisotropic materials are affected by end constraints. Classical lamination theory has also been used to characterize the level of extension-shear coupling in the anisotropic laminates. Three factors affecting the coupling have been examined: the volume fraction of unbalanced off-axis layers, the angle of the off-axis layers, and the composition of the fibers (i.e., carbon or glass) used as the axial reinforcement. The results indicate that extension/shear coupling is maximized with the least loss in axial tensile stiffness by using carbon fibers oriented 15{sup o} from the long axis for approximately two-thirds of the laminate volume (discounting skin layers), with reinforcing carbon fibers oriented axially comprising the remaining one-third of the volume. Finite element analysis of each laminate has been performed to examine first ply failure. Three failure criteria--maximum stress, maximum strain, and Tsai-Wu--have been compared. Failure predicted by all three criteria proves generally conservative, with the stress-based criteria the most conservative. For laminates that respond nonlinearly to loading, large error is observed in the prediction of failure using maximum strain as the criterion. This report documents the methods and results in two volumes. Volume 1 contains descriptions of the laminates, their fabrication and testing, the methods of analysis, the results, and the conclusions and recommendations. Volume 2 contains a comprehensive summary of the individual test results for all laminates.« less
NASA Technical Reports Server (NTRS)
Charette, R. F.; Hyer, M. W.
1990-01-01
The influence is investigated of a curvilinear fiber format on load carrying capacity of a layered fiber reinforced plate with a centrally located hole. A curvilinear fiber format is descriptive of layers in a laminate having fibers which are aligned with the principal stress directions in those layers. Laminates of five curvilinear fiber format designs and four straightline fiber format designs are considered. A quasi-isotropic laminate having a straightline fiber format is used to define a baseline design for comparison with the other laminate designs. Four different plate geometries are considered and differentiated by two values of hole diameter/plate width equal to 1/6 and 1/3, and two values of plate length/plate width equal to 2 and 1. With the plates under uniaxial tensile loading on two opposing edges, alignment of fibers in the curvilinear layers with the principal stress directions is determined analytically by an iteration procedure. In-plane tensile load capacity is computed for all of the laminate designs using a finite element analysis method. A maximum strain failure criterion and the Tsai-Wu failure criterion are applied to determine failure loads and failure modes. Resistance to buckling of the laminate designs to uniaxial compressive loading is analyzed using the commercial code Engineering Analysis Language. Results indicate that the curvilinear fiber format laminates have higher in-plane tensile load capacity and comparable buckling resistance relative to the straightline fiber format laminates.
Investigation of low-velocity impact damage in fibre-metal-laminates
NASA Astrophysics Data System (ADS)
Laliberte, Jeremy F.
2002-04-01
Fibre-metal-laminates (FMLs) represent a significant evolution in airframe material technology. This new family of materials combines low density, high strength and excellent damage tolerance through the use of metal layers strengthened with fibre-reinforced polymer layers. When subjected to low-velocity impact these laminates like traditional composites, develop internal delamination damage, matrix cracks and limited fibre fractures. Also, as in traditional composites, this damage is hidden within the laminate. A method for predicting the amount of internal damage would reduce the experimental testing requirements for the certification of new laminates. This thesis describes the development of a modelling methodology that makes use of a new material subroutine based on continuum damage mechanics in the explicit finite-element code LS-DYNA. This subroutine was verified using the experimental data from low-velocity impact tests of various types of GLARE (GLAss REinforced) aluminum laminates, a common type of commercially available fibre-metal-laminate. Static characterization tests were also conducted on GLARE coupons to provide basic property data for the development of the model. These included static tensile tests and double cantilever beam delamination tests. The modelling methodology was used to improve simulations of low-velocity impact on GLARE laminates. The simulations demonstrated that intralaminar damage has a greater effect on the impact response of the panels than interlaminar damage. Parts of this thesis were components of a multi-year collaborative FML Durability Project between Carleton University, Bombardier Aerospace and the National Research Council Canada.
Tension fracture of laminates for transport fuselage. Part 1: Material screening
NASA Technical Reports Server (NTRS)
Walker, T. H.; Avery, W. B.; Ilcewicz, L. B.; Poe, C. C., Jr.; Harris, C. E.
1992-01-01
Transport fuselage structures are designed to contain pressure following a large penetrating damage event. Applications of composites to fuselage structures require a database and supporting analysis on tension damage tolerance. Tests with 430 fracture specimens were used to accomplish the following: (1) identify critical material and laminate variables affecting notch sensitivity; (2) evaluate composite failure criteria; and (3) recommend a screening test method. Variables studied included fiber type, matrix toughness, lamination manufacturing process, and intraply hybridization. The laminates found to have the lowest notch sensitivity were manufactured using automated tow placement. This suggests a possible relationship between the stress distribution and repeatable levels of material inhomogeneity that are larger than found in traditional tape laminates. Laminates with the highest notch sensitivity consisted of toughened matrix materials that were resistant to a splitting phenomena that reduces stress concentrations in major load bearing plies. Parameters for conventional fracture criteria were found to increase with crack length for the smallest notch sizes studied. Most material and laminate combinations followed less than a square root singularity for the largest crack sizes studied. Specimen geometry, notch type, and notch size were evaluated in developing a screening test procedure. Traitional methods of correcting for specimen finite width were found to be lacking. Results indicate that a range of notch sizes must be tested to determine notch sensitivity. Data for a single small notch size (0.25 in. diameter) was found to give no indication of the sensitivity of a particular material and laminate layup to larger notch sizes.
Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1994-01-01
Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.
Better Thermal Insulation in Solar-Array Laminators
NASA Technical Reports Server (NTRS)
Burger, D. R.; Knox, J. F.
1984-01-01
Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.
Ductilisation of tungsten (W): Tungsten laminated composites
Reiser, Jens; Garrison, Lauren M.; Greuner, Henri; ...
2017-08-02
Here we elucidate the mechanisms of plastic deformation and fracture of tungsten laminated composites. Furthermore our results suggest that the mechanical response of the laminates is governed by the plastic deformation of the tungsten plies. In most cases, the impact of the interlayer is of secondary importance.
Charles B. Vick
1987-01-01
Composite framing msde from yellow-poplar and sweetgum parallel-laminated veneer and oriented flakeboard was effectively laminated with an emulsion polymer/isocyanate adhesive and radio-frequency curing at an assumed but typical range of material surface characteristics and factory assembly conditions.
The report gives results of a screening evaluation of volatile organic emissions from printed circuit board laminates and potential pollution prevention alternatives. In the evaluation, printed circuit board laminates, without circuitry, commonly found in personal computer (PC) m...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-874] Certain Products Having Laminated... States Code AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on February 20, 2013, under...
1979-08-28
11 EXPERIMENTAL PROGRAM .......................................*16 SHEAR TESTS ON THICK DISBONDED LAMINATES .... ....... 16 COMPRESSIVE BUCKLING OF...DISBONDED LAMINATES ...... .. 17 MECHANICAL CHARACTERIZATION FOR MOISTURE CONDITIONING EFFECTS .................................. 19 ULTRASONIC WAVE...SHEAR OF THICK LAMINATED BEAMS . . . ....... 24 PROPAGATION OF DISBOND IN FATIGUE ..... ............ .. 26 BUCKLING OF DISBONDED COMPRESSION SKIN
NASA Technical Reports Server (NTRS)
Ropars, M.; Bloch, B.; Malassine, B.
1979-01-01
A class of easy-to-prepare heterocyclic-aromatic polymers which can be used for matrices in reinforced laminates is described. These polymers can be cured after B-staging with very little evolution of volatile materials, and they retain a low melt-viscosity which leads to low-void laminates. Resins are stable at temperatures below 150 C. Properties of composites with various reinforcements, in particular carbon-fiber unidirectional laminates, are described, and the fire behavior of PSP-glass laminates is reported.
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
1994-01-01
Delaminations in laminated composite materials can degrade the compressive strength of these materials. Delaminations can form as a result of impact damage or processing flaws. In order to better understand the effects of these delaminations on the compressive behavior of laminated composite plates, programs have been conducted to assess the criticality of prescribed delaminations of known size, shape, and location on the compression strength of laminated composites. A review of these programs is presented along with highlights of pertinent findings from each.
Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.
1997-01-01
A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.
Numerical investigation of the effect of delaminations on fracture characteristics of glare
NASA Astrophysics Data System (ADS)
Bhat, Sunil; Narayanan, S.
2013-10-01
A finite element examination of the effect of delaminations on fracture characteristics of fibre metal laminate (Glare), by comparing energy release rates of normal cracks in laminates with and without delaminations, is presented in the paper. Glare comprising thin cracked 2024-T3 aerospace aluminum alloy layers alternately bonded with E-glass fibre based composite prepregs is considered for the analysis. Delaminations are modeled with interface cohesive elements. Energy release rates of normal cracks in laminates with delaminations are found to be higher than those in the laminates without delaminations.
Sudden bending of cracked laminates
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1980-01-01
A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.
Experimental studies of graphite-epoxy and boron-epoxy angle ply laminates in compression
NASA Technical Reports Server (NTRS)
Weller, T.
1977-01-01
A test program aimed at studying the nonlinear/inelastic response under axial compression across a wide range of angle ply was graphite-epoxy and boron-epoxy laminates was presented and described. The strength allowables corresponding to the various laminate configurations were defined and the failure mechanisms which dictate their mode of failure were detected. The program involved two types of specimens for each laminate configuration: compression sandwich coupons and compression tubes. The test results indicate that the coupons perform better than the tubes displaying considerably high stress-strain allowables and mechanical properties relative to the tubes. Also, it is observed that depending on their dimensions the coupons are susceptible to very pronounced edge effects. This sensitivity results in assigning to the laminate conservative mechanical properties rather than the actual ones.
Strain-energy release rate analysis of a laminate with a postbuckled delamination
NASA Technical Reports Server (NTRS)
Whitcomb, John D.; Shivakumar, K. N.
1987-01-01
The objectives are to present the derivation of the new virtual crack closure technique, evaluate the accuracy of the technique, and finally to present the results of a limited parametric study of laminates with a postbuckled delamination. Although the new virtual crack closure technique is general, only homogeneous, isotropic laminates were analyzed. This was to eliminate the variation of flexural stiffness with orientation, which occurs even for quasi-isotropic laminates. This made it easier to identify the effect of geometrical parameters on G. The new virtual crack closure technique is derived. Then the specimen configurations are described. Next, the stress analyses is discussed. Finally, the virtual crack closure technique is evaluated and then used to calculate the distribution of G along the delamination front of several laminates with a postbuckled delamination.
Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg
NASA Technical Reports Server (NTRS)
Ginty, C. A.; Chamis, C. C.
1985-01-01
A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.
Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg
NASA Technical Reports Server (NTRS)
Ginty, Carol A.; Chamis, Christos C.
1987-01-01
A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.
Design, fabrication, testing and delivery of a feasibility model laminated ferrite memory
NASA Technical Reports Server (NTRS)
Heckler, H. C.
1973-01-01
The effect of using multiword addressing with laminated ferrite arrays was made. Both a reduction in the number of components, and a reduction in power consumption was obtained for memory capacities between one million bits and one million words. An investigation into the effect of variations in the processing steps resulted in a number of process modifications that improved the quality of the arrays. A feasibility model laminated ferrite memory system was constructed by modifying a commercial plated wire memory system to operate with laminated ferrite arrays. To provide flexibility for the testing of the laminated ferrite memory, an exerciser has been constructed to automatically control the loading and recirculation of arbitrary size checkerboard patterns of one's and zero's and to display the patterns of stored information on a CRT screen.
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Mclaughlin, P. V., Jr.
1978-01-01
An engineering approach is proposed for predicting unnotched/notched laminate fatigue behavior from basic lamina fatigue data. The fatigue analysis procedure was used to determine the laminate property (strength/stiffness) degradation as a function of fatigue cycles in uniaxial tension and in plane shear. These properties were then introduced into the failure model for a notched laminate to obtain damage growth, residual strength, and failure mode. The approach is thus essentially a combination of the cumulative damage accumulation (akin to the Miner-Palmgren hypothesis and its derivatives) and the damage growth rate (similar to the fracture mechanics approach) philosophies. An analysis/experiment correlation appears to confirm the basic postulates of material wearout and the predictability of laminate fatigue properties from lamina fatigue data.
A mechanics framework for a progressive failure methodology for laminated composites
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.; Lo, David C.
1989-01-01
A laminate strength and life prediction methodology has been postulated for laminated composites which accounts for the progressive development of microstructural damage to structural failure. A damage dependent constitutive model predicts the stress redistribution in an average sense that accompanies damage development in laminates. Each mode of microstructural damage is represented by a second-order tensor valued internal state variable which is a strain like quantity. The mechanics framework together with the global-local strategy for predicting laminate strength and life is presented in the paper. The kinematic effects of damage are represented by effective engineering moduli in the global analysis and the results of the global analysis provide the boundary conditions for the local ply level stress analysis. Damage evolution laws are based on experimental results.
Laser displacement sensor to monitor the layup process of composite laminate production
NASA Astrophysics Data System (ADS)
Miesen, Nick; Groves, Roger M.; Sinke, Jos; Benedictus, Rinze
2013-04-01
Several types of flaw can occur during the layup process of prepreg composite laminates. Quality control after the production process checks the end product by testing the specimens for flaws which are included during the layup process or curing process, however by then these flaws are already irreversibly embedded in the laminate. This paper demonstrates the use of a laser displacement sensor technique applied during the layup process of prepreg laminates for in-situ flaw detection, for typical flaws that can occur during the composite production process. An incorrect number of layers and fibre wrinkling are dominant flaws during the process of layup. These and other dominant flaws have been modeled to determine the requirements for an in-situ monitoring during the layup process of prepreg laminates.
Calculation of the room-temperature shapes of unsymmetric laminates
NASA Technical Reports Server (NTRS)
Hyer, M. W.
1981-01-01
A theory explaining the characteristics of the cured shapes of unsymmetric laminates is presented. The theory is based on an extension of classical lamination theory which accounts for geometric nonlinearities. A Rayleigh-Ritz approach to minimizing the total potential energy is used to obtain quantitative information regarding the room temperature shapes of square T300/5208 (0(2)/90(2))T and (0(4)/90(4))T graphite-epoxy laminates. It is shown that, depending on the thickness of the laminate and the length of the side the square, the saddle shape configuration is actually unstable. For values of length and thickness that render the saddle shape unstable, it is shown that two stable cylindrical shapes exist. The predictions of the theory are compared with existing experimental data.
Luo, Ting; Chen, Xinchun; Li, Peisheng; Wang, Ping; Li, Cuncheng; Cao, Bingqiang; Luo, Jianbin; Yang, Shikuan
2018-06-29
Engineering lubricant additives that have extraordinary friction reduction and anti-wear performance is critical to almost any modern mechanical machines. Here, we demonstrate the fabrication of laminated lubricant additives that can combine the advantages of zero-dimensional nanospheres and two-dimensional nanosheets. A simple in situ laser irradiation method is developed to prepare the laminated composite structure composed of ideally ultrasmooth MoS 2 sub-microspheres embedded within multiple layers of graphene. These ultrasmooth MoS 2 spheres within the laminated structure can change sliding friction into rolling friction under strong shear force created by moving contact surfaces to significantly reduce the friction. Meantime, the graphene layers can behave as 'protection pads' to efficiently avoid the formation of scars on the metal-to-metal contact surfaces. Overall, the laminated composites as lubricant additives synergistically improve the friction reduction and anti-wear properties. Additionally, due to the unique loosely packed laminated structure, the composites can stably disperse in the lubricant for more than 15 d and work under high temperatures without being oxidized. Such constructed laminated composites with outstanding tribological properties by an in situ laser irradiation method supply a new concept in designing lubricant additives that can combine the advantages of 0D and 2D structures.
Xu, Wei; Cao, Maosen; Ding, Keqin; Radzieński, Maciej; Ostachowicz, Wiesław
2017-01-01
Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates. PMID:28773016
Tracer Lamination in the Stratosphere: A Global Climatology
NASA Technical Reports Server (NTRS)
Appenzeller, Christof; Holton, James R.
1997-01-01
Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.
NASA Astrophysics Data System (ADS)
Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie
2018-06-01
The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.
Tension fracture of laminates for transport fuselage. Part 1: Material screening
NASA Technical Reports Server (NTRS)
Walker, T. H.; Avery, W. B.; Ilcewicz, L. B.; Poe, C. C., Jr.; Harris, C. E.
1992-01-01
Transport fuselage structures are designed to contain pressure following a large penetrating damage event. Application of composites to fuselage structures requires a data base and supporting analysis on tension damage tolerance. Tests with 430 fracture specimens were used to accomplish the following: (1) identify critical material and laminate variables affecting notch sensitivity, (2) evaluate composite failure criteria, and (3) recommend a screening test method. Variables studied included fiber type, matrix toughness, lamination manufacturing process, and intraply hybridization. The laminates found to have the lowest notch sensitivity were manufactured using automated tow placement. This suggests a possible relationship between the stress distribution and repeatable levels of material inhomogeneity that are larger than found in traditional tape laminates. Laminates with the highest notch sensitivity consisted of toughened matrix materials that were resistant to a splitting phenomena that reduces stress concentrations in load bearing plies. Parameters for conventional fracture criteria were found to increase with the crack length of the smallest notch sizes studied. Most materials and laminate combinations followed less than a square root singularity for the largest crack sizes studied. Specimen geometry, notch type, and notch size were evaluated in developing a screening test procedure. Results indicate that a range of notch sizes must be tested to determine notch sensitivity.
NASA Astrophysics Data System (ADS)
Souza, Christiane S. R.; Cândido, Geraldo M.; Alves, Wellington; Marlet, José Maria F.; Rezende, Mirabel C.
2017-10-01
This study aims to contribute to sustainability by proposing the reuse of composite prepreg scrap as an added value from discards. The research evaluates the microstructure and mechanical properties of laminates processed by the reuse of uncured carbon fibre/F155-epoxy resin prepreg scraps, waste from the ply cutting area of an aeronautical industry. The composite scraps were used as collected and were randomly positioned to produce laminates to be cured at an autoclave. The mechanical characterization shows a decrease of 39% for the compression property due to the discontinuous fibres in the laminate and an increase of 34% for the interlaminar shear strength, when compared to continuous fibre laminates. This increase is attributed to the higher crosslink density of the epoxy resin, as a result of the cure temperature used in autoclave (60 °C higher than suggested by supplier) and also to the randomly positioned scraps. Microscopic analyses confirm the consolidation of laminates, although show resin rich areas with different sizes and shapes attributed to the overlapping of the scraps with different sizes and shapes. These resin rich areas may contribute to decrease the mechanical properties of laminates. The correlation between mechanical and morphological results shows potential to be used on non-critical structural application, as composite jigs, contributing to sustainability.
NASA Astrophysics Data System (ADS)
Luo, Ting; Chen, Xinchun; Li, Peisheng; Wang, Ping; Li, Cuncheng; Cao, Bingqiang; Luo, Jianbin; Yang, Shikuan
2018-06-01
Engineering lubricant additives that have extraordinary friction reduction and anti-wear performance is critical to almost any modern mechanical machines. Here, we demonstrate the fabrication of laminated lubricant additives that can combine the advantages of zero-dimensional nanospheres and two-dimensional nanosheets. A simple in situ laser irradiation method is developed to prepare the laminated composite structure composed of ideally ultrasmooth MoS2 sub-microspheres embedded within multiple layers of graphene. These ultrasmooth MoS2 spheres within the laminated structure can change sliding friction into rolling friction under strong shear force created by moving contact surfaces to significantly reduce the friction. Meantime, the graphene layers can behave as ‘protection pads’ to efficiently avoid the formation of scars on the metal-to-metal contact surfaces. Overall, the laminated composites as lubricant additives synergistically improve the friction reduction and anti-wear properties. Additionally, due to the unique loosely packed laminated structure, the composites can stably disperse in the lubricant for more than 15 d and work under high temperatures without being oxidized. Such constructed laminated composites with outstanding tribological properties by an in situ laser irradiation method supply a new concept in designing lubricant additives that can combine the advantages of 0D and 2D structures.
NASA Astrophysics Data System (ADS)
Zhuang, Weimin; Ao, Wenhong
2018-03-01
Damage propagation induced failure is a predominant damage mechanism. This study is aimed at assessing the damage state and damage propagation induced failure with different stacking angles, of woven carbon fiber/epoxy laminates subjected to quasi-static tensile and bending load. Different stages of damage processing and damage behavior under the bending load are investigated by Scanning Electron Microscopy (SEM). The woven carbon fiber/epoxy laminates which are stacked at six different angles (0°, 15°, 30°, 45°, 60°, 75°) with eight plies have been analyzed: [0]8, [15]8, [30]8, [45]8, [60]8, [75]8. Three-point bending test and quasi-static tensile test are used in validating the woven carbon fiber/epoxy laminates’ mechanical properties. Furthermore, the damage propagation and failure modes observed under flexural loading is correlated with flexural force and load-displacement behaviour respectively for the laminates. The experimental results have indicated that [45]8 laminate exhibits the best flexural performance in terms of energy absorption duo to its pseudo-ductile behaviour but the tensile strength and flexural strength drastically decreased compared to [0]8 laminate. Finally, SEM micrographs of specimens and fracture surfaces are used to reveal the different types of damage of the laminates with different stacking angles.
Effect of angle-ply orientation on compression strength of composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeTeresa, S J; Hoppel, C P
1999-03-01
An experimental program was initiated to investigate the effect of angle-ply orientations on the compressive strength (X{sub 1C}) of 0{degree} plies in fiber reinforced composite laminates. Graphite fiber-reinforced epoxy test coupons with the generic architecture [0{sub 2}/{+-}{theta}] (where {theta} varied between 0{degree} and 90{degree}) and for the quasi-isotropic architecture were evaluated. The effective compressive strength of the 0{degree} plies varied considerably. The results were related to the Poisson's ratios of the laminates with high Poisson's ratios leading to high transverse tensile strains in the test coupons and lower than expected strengths. Specimens with the [O{sub 2}/{+-}30] architecture had both themore » highest Poisson's ratio and the lowest calculated ply-level compression strength for the 0{degree} plies. This work has implications in the selection of composite failure criterion for compression performance, design of test coupons for acceptance testing, and the selection of laminate architectures for optimum combinations of compressive and shear behavior. Two commonly used composite failure criteria, the maximum stress and the Tsai-Wu, predict significantly different laminate strengths depending on the Poisson's ratio of the laminate. This implies that the biaxial stress state in the laminate needs to be carefully considered before backing out unidirectional properties.« less
Schmidt, M; Grossmann, U; Krohne, G
1995-07-01
In the protozoon Amoeba proteus, a complex and highly organized structure with the morphology of a honeycomb is associated with the nucleoplasmic surface of the nuclear membrane. We have tested whether this structure exhibits similarity to the nuclear lamina of metazoic organisms. First, we have shown that the honeycomb layer is composed of 3 to 5 nm thick protein fibrils resistant to treatment with detergent, high salt, and digestion with nucleases, thus possessing properties typical for karyoskeletal elements. However, in contrast to the meshwork of lamin filaments in somatic cells of metazoic organisms, the honeycomb layer is not tightly anchored to the nucleoplasmic side of pore complexes, or to the inner nuclear membrane. Second, in microinjection experiments we investigated whether fluorescently labeled lamins of Xenopus laevis (lamins A and LI) and Drosophila melanogaster (lamin Dmo) were able to associate in vivo with the Amoeba proteus honeycomb structure. In microinjected amoeba these three lamins were efficiently transported into the nucleus, but did not associate with the nuclear envelope. Our results suggest that the Amoeba proteus nuclear envelope, including the honeycomb layer, does not contain proteins exhibiting high homologies to lamins of metazoan species thus preventing the localized assembly of microinjected lamins along the nuclear periphery.
Estimation of adhesive bond strength in laminated safety glass using guided mechanical waves
NASA Astrophysics Data System (ADS)
Huo, Shihong
Laminated safety glass is used in the automobile industry and in architectural applications. Laminated safety glass consists of a plastic interlayer, such as a layer of poly vinyl butyral (PVB) or Butacite, surrounded by two adjacent glass plates. The glass can be float glass, plate glass, tempered glass, or sheet glass, and the plastic interlayer is made of a viscoelastic material with relatively high damping. The level of adhesive bond strength between the plastic interlayer and the two adjacent glass plates has a significant role in the penetration resistance against flying objects and is a critical parameter towards ensuring the proper performance of safety glass. Therefore, estimation and control of adhesive bond levels in laminated safety glass is a critical issue. There are several destructive testing procedures used to quantify the adhesion level in laminated safety glass. These tests include the tension test, the peel test, the impact test, and the pummel test. All these tests have drawbacks including the pummel test method, which has been the most widely used in industry for over 80 years. The primary drawbacks of the pummel test method are that it is destructive and subjective (i.e., involves individual human judgment), which precludes this method for use as an on-line test method for quality control. Consequently, a quantitative nondestructive testing method to evaluate adhesion levels would be an asset to the laminated safety glass industry. In this study, adhesion levels in laminated safety glass samples, i.e., windshields, have been assessed using the guided mechanical wave method. To study the adhesive bond strength analytically, the imperfect interfaces between the plastic interlayer and the two adjacent glass plates in laminated safety glass are modeled using a bed of longitudinal and shear springs, and their stiffness characteristics are estimated using fracture mechanics and atomic force microscopy (AFM) surface measurements. The atomic force microscopy measurements are used to estimate the contact area at the imperfect interfaces between the plastic interlayer and the two adjacent glass plates for each of the laminates. The spring layers are then embedded in the global matrix method, which is used to predict the guided wave dispersion behavior of the laminated system. Based upon the guided wave energy velocity predictions for each of the laminates with different levels of adhesion, the S0 mode was selected as the most promising for use in nondestructively estimating adhesion levels in laminated safety glass. The predicted energy velocities (obtained using this multilayered model) were validated using guided wave energy velocity experimental measurements. The experimentally obtained velocity measurements are in good agreement with the predicted values. Guided wave attenuation in laminated safety glass is primarily due to the viscoelastic material properties of the PVB plastic interlayer. The attenuation properties of S1 mode were also explored to estimate the adhesive bond strength between the plastic interlayer and the two adjacent glass plates. Results show that the combination of both the energy velocity and attenuation methods has promise towards replacing the pummel test method to estimate the adhesion level in laminated safety glass.
Design, fabrication, and characterization of laminated hydroxyapatite-polysulfone composites
NASA Astrophysics Data System (ADS)
Wilson, Clifford Adams, II
There exists a need to develop devices that can be used to replace hard tissues, such as bone, in load-bearing areas of the body. An ideal hard tissue replacement device is one that stimulates growth of natural tissues, and is slowly resorbed by the body. The implant is also required to have elastic modulus, strength, and toughness values similar to the tissues being replaced. Hydroxyapatite (HA) is the primary mineral phase of bone and has the potential for use in biomedical applications because it stimulates cell growth and is resorbable. Unfortunately, HA is a relatively low strength, low toughness material, which limits its application to only low load-bearing regions of the body. In order to apply HA to greater load-bearing areas of the body, strength and toughness must be improved through the formation of a composite structure. The goal of this study to show that a composite structure formed from HA and a biocompatible polymer can be fabricated with strength and toughness values that are within the range necessary for load-bearing biomedical applications. Therefore, Polysulfone-HA composites were developed and tested. Polysulfone (PSu) is a hard, glassy polymer that has been shown to be biocompatible. Composites were fabricated through a combination of tape casting, solvent casting, and lamination. Monolithic HA and laminate specimens were tested in biaxial flexure. A unique laminate theory solution was developed to characterize stress distributions for laminates. Failure loads, failure stress, work of fracture, and apparent toughness were compared for the laminates against monolithic HA specimens. Initial testing results showed that laminates had a failure stress of 60 +/- 10, which is a 170% improvement over the 22 +/- 2 MPa failure stress for monolithic HA. The work of fracture was improved by 5500% from 11 +/- 2 for the monolithic HA to 612 +/- 240 for the laminates. Work of fracture values gave the laminates an apparent fracture toughness of 7.2 MPa•m1/2 compared to 0.6 MPa•m1/2 for the monolithic HA. Laminates with different geometries were built and tested in an attempt to optimize the strength and toughness of the composites. Laminate behavior was characterized as a function of initial flaw size, HA layer thickness, PSu layer thickness, and stressing rate. The failure stress of the laminates was maximized at a value of 108 +/- 14 MPa, which is a 400% improvement over monolithic HA, and close to the 12-160 MPa range reported for bone. The work of fracture of laminates was maximized at 724 +/- 206 J/m2, which is a 6400% improvement over monolithic HA, and yields an apparent fracture toughness value of 7.5 MPa•m1/2. This apparent toughness value is within the 2-12 MPa•m1/2 range for bone, and an 1100% improvement over the fracture toughness of monolithic HA.
Chapter 2: Manufacturing Cross-laminated timber manufacturing
Borjen Yeh; Dave Kretschmann; Brad (Jianhe) Wang
2013-01-01
Cross-laminated timber ( CLT) is defined as a prefabricated solid engineered wood product made of at least three orthogonally bonded layers of solid-sawn lumber or structural composite lumber (SCL) that are laminated by gluing oflongitudinal and transverse layers with structural adhesives to form a solid rectangular-shaped, straight, and plane timber intended for roof...
Advanced Fatigue Damage Development in Graphite Epoxy Laminates.
1982-12-01
8217essary and identify by block number) Composite Materials Stiffness Changes Nondestructive Graphite/Epoxy Laminates Delamination Evaluation (NDE...30 3. Specimen in the Testing Machine with Extensometer Mounted ................................................. 32 4. Initial...for Micocrack Formation in [0,±45]. Laminat •s....115 43. Typical Stiffness Reduction Curve for a [0,90,±45]sLaminate
Fiberglass Lamination Program. Course of Instruction for Adult and Post-Secondary Classes.
ERIC Educational Resources Information Center
Tuin, Dean
Seven courses of instruction are provided for a fiberglass lamination program for adult and postsecondary classes. The courses cover these areas: (1) mold preparation, (2) gelcoating, (3) fiberglass lamination, (4) stiffening, (5) popping, (6) grinding, and (7) mold making. Information provided at the beginning of each course consists of the…
NASA Technical Reports Server (NTRS)
Keller, Michael W. (Inventor); White, Scott R. (Inventor); Beiermann, Brett A. (Inventor); Sottos, Nancy R. (Inventor)
2016-01-01
A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.
Maleated polypropylene film and wood fiber handsheet laminates
Sangyeob Lee; Todd F. Shupe; Leslie H. Groom; Chung Y. Hse
2008-01-01
The grafting effect of maleic anhydride (MA) as an interfacial bonding agent and its influence on the tensile strength properties of thermomechanical pulp handsheet-isotactic polypropylene (iPP) film laminates was studied. For the MA treated with benzoyl peroxide (BPO) as an initiator, tensile strength properties increased 76% with PP film over untreated laminates. The...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... the People's Republic of China: Final Results of Second Antidumping Duty Administrative Review AGENCY... from the People's Republic of China (``PRC''). See Laminated Woven Sacks From the People's Republic of... to these reviews are addressed in the ``Laminated Woven Sacks from the People's Republic of China...
Performance of stress-laminated timber highway bridges in cold climates
James P. Wacker
2009-01-01
This paper summarizes recent laboratory and field data studies on thermal performance of stress-laminated timber highway bridges. Concerns about the reliability of stress-laminated deck bridges when exposed to sub-freezing temperatures triggered several investigations. Two laboratory studies were conducted to study the effects of wood species, preservative, moisture...
NASA Technical Reports Server (NTRS)
Dickerson, G. E. (Inventor)
1977-01-01
A process was developed for preparing relatively thick composite laminate structure wherein thin layers of prepreg tapes are assembled, these thin layers are cut into strips that are partially cured, and stacked into the desired thickness with uncured prepreg disposed between each layer of strips. The formed laminate is finally cured and thereafter machined to the desired final dimensions.
Lamination effects on a 3D model of the magnetic core of power transformers
NASA Astrophysics Data System (ADS)
Poveda-Lerma, Antonio; Serrano-Callergues, Guillermo; Riera-Guasp, Martin; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Perez-Cruz, Juan
2017-12-01
In this paper the lamination effect on the model of a power transformer's core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.
NASA Technical Reports Server (NTRS)
Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.
1991-01-01
Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.
NASA Technical Reports Server (NTRS)
Dexter, H. B.; Funk, J. G.
1986-01-01
Five through-the-thickness stitch configurations are analyzed to determine the effect of impact resistance and interlaminar fracture toughness on T3000/3501-6 graphite/epoxy. The test specimens were stitched with either polyester or Kevlar yarns and with various stitch parameters. Tension and compression mechanical, impact and compression-after-impact, and double cantilever beam tests were conducted. It is observed that the stitched laminates have tension and compression strengths 20-25 percent lower than the strengths of unstitched laminates, the tension strength of stitched laminates is reduced with increasing number of stitches, and the compression strength increases as the number of stitches are increased. The impact data reveal that the Kevlar stitched laminates have less damage than unstitched laminates; the most effective configuration for suppressing impact damage and improving interlaminar fracture toughness consists of Kevlar yarns 1/4 inch apart with eight stitches per inch. The mode 1 critical strain energy release rate for the 1/4 inch Kevlar eight stitch laminate was calculated as 30 times higher than that of the unstitched.
Evaluation of Behaviours of Laminated Glass
NASA Astrophysics Data System (ADS)
Sable, L.; Japins, G.; Kalnins, K.
2015-11-01
Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.
2007-01-01
The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate based on laminated beam theory. The method does not consider the solution of a particular boundary value problem, rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.
Free Vibration of Fiber Composite Thin Shells in a Hot Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1995-01-01
Results are presented of parametric studies to assess the effects of various parameters on the free vibration behavior (natural frequencies) of (plus or minus theta)2, angle-ply fiber composite thin shells in a hot environment. These results were obtained by using a three-dimensional finite element structural analysis computer code. The fiber composite shell is assumed to be cylindrical and made from T-300 graphite fibers embedded in an intermediate-modulus high-strength matrix (IMHS). The residual stresses induced into the laminated structure during curing are taken into account. The following parameters are investigated: the length and the thickness of the shell, the fiber orientations, the fiber volume fraction, the temperature profile through the thickness of the laminate and the different ply thicknesses. Results obtained indicate that: the fiber orientations and the length of the laminated shell had significant effect on the natural frequencies. The fiber volume fraction, the laminate thickness and the temperature profile through the shell thickness had a weak effect on the natural frequencies. Finally, the laminates with different ply thicknesses had insignificant influence on the behavior of the vibrated laminated shell.
Koziol, Mateusz; Figlus, Tomasz
2015-12-14
The work aimed to assess the failure progress in a glass fiber-reinforced polymer laminate with a 3D-woven and (as a comparison) plain-woven reinforcement, during static bending, using acoustic emission signals. The innovative method of the separation of the signal coming from the fiber fracture and the one coming from the matrix fracture with the use of the acoustic event's energy as a criterion was applied. The failure progress during static bending was alternatively analyzed by evaluation of the vibration signal. It gave a possibility to validate the results of the acoustic emission. Acoustic emission, as well as vibration signal analysis proved to be good and effective tools for the registration of failure effects in composite laminates. Vibration analysis is more complicated methodologically, yet it is more precise. The failure progress of the 3D laminate is "safer" and more beneficial than that of the plain-woven laminate. It exhibits less rapid load capacity drops and a higher fiber effort contribution at the moment of the main laminate failure.
Modeling the kinematics of multi-axial composite laminates as a stacking of 2D TIF plies
NASA Astrophysics Data System (ADS)
Ibañez, Ruben; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Huerta, Antonio
2016-10-01
Thermoplastic composites are widely considered in structural parts. In this paper attention is paid to sheet forming of continuous fiber laminates. In the case of unidirectional prepregs, the ply constitutive equation is modeled as a transversally isotropic fluid, that must satisfy both the fiber inextensibility as well as the fluid incompressibility. When the stacking sequence involves plies with different orientations the kinematics of each ply during the laminate deformation varies significantly through the composite thickness. In our former works we considered two different approaches when simulating the squeeze flow induced by the laminate compression, the first based on a penalty formulation and the second one based on the use of Lagrange multipliers. In the present work we propose an alternative approach that consists in modeling each ply involved in the laminate as a transversally isotropic fluid - TIF - that becomes 2D as soon as incompressibility constraint and plane stress assumption are taken into account. Thus, composites laminates can be analyzed as a stacking of 2D TIF models that could eventually interact by using adequate friction laws at the inter-ply interfaces.
Mechanical Behavior of Fabric-Film Laminates
NASA Technical Reports Server (NTRS)
Said, Magdi S.
1999-01-01
Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of materials made of laminating thin homogenous films to lightweight fabrics are being considered us structura1 gas envelops. The emerging composite materials are a result of recent advances in the manufacturing cf 1ightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barrier film results in wide range of materials suitable for various loading and environmental conditions. Polyester - based woven fabrics laminated to thin homogeneus film of polyester (Maylar) is an example of this class. This fabric/ film laminate is being considered for the development a material suitable for building large gas envelopes for use in the NASA Ultra Long Duration Balloon Program (ULDB). Compared to commercial homogeneus films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation. The purpose of this papers is to introduce the mechanical behavior of this class of multi-layers composite and to highlight some of the concerns observed during the characterization of these laminate composites.
de la Horra, Ana E.; Steffolani, María Eugenia; Barrera, Gabriela N.; Ribotta, Pablo D.
2015-01-01
Summary The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products. PMID:27904379
Veidt, Martin; Ng, Ching-Tai
2011-03-01
This paper investigates the scattering characteristics of the fundamental anti-symmetric (A(0)) Lamb wave at through holes in composite laminates. Three-dimensional (3D) finite element (FE) simulations and experimental measurements are used to study the physical phenomenon. Unidirectional, bidirectional, and quasi-isotropic composite laminates are considered in the study. The influence of different hole diameter to wavelength aspect ratios and different stacking sequences on wave scattering characteristics are investigated. The results show that amplitudes and directivity distribution of the scattered Lamb wave depend on these parameters. In the case of quasi-isotropic composite laminates, the scattering directivity patterns are dominated by the fiber orientation of the outer layers and are quite different for composite laminates with the same number of laminae but different stacking sequence. The study provides improved physical insight into the scattering phenomena at through holes in composite laminates, which is essential to develop, validate, and optimize guided wave damage detection and characterization techniques. © 2011 Acoustical Society of America
A parametric study of fracture toughness of fibrous composite materials
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1987-01-01
Impacts to fibrous composite laminates by objects with low velocities can break fibers giving crack-like damage. The damage may not extend completely through a thick laminate. The tension strength of these damage laminates is reduced much like that of cracked metals. The fracture toughness depends on fiber and matrix properties, fiber orientations, and stacking sequence. Accordingly, a parametric study was made to determine how fiber and matrix properties and fiber orientations affect fracture toughness and notch sensitivity. The values of fracture toughness were predicted from the elastic constants of the laminate and the failing strain of the fibers using a general fracture toughness parameter developed previously. For a variety of laminates, values of fracture toughness from tests of center-cracked specimens and values of residual strength from tests of thick laminates with surface cracks were compared to the predictions to give credibility to the study. In contrast to the usual behavior of metals, it is shown that both ultimate tensile strength and fracture toughness of composites can be increased without increasing notch sensitivity.
de la Horra, Ana E; Steffolani, María Eugenia; Barrera, Gabriela N; Ribotta, Pablo D; León, Alberto E
2015-12-01
The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.
Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates
NASA Astrophysics Data System (ADS)
Liu, Yanxiong; Liaw, Benjamin
2010-02-01
Impact responses and damage of various fiber-metal laminates were studied using a drop-weight instrument with the post-impact damage characteristics being evaluated through ultrasonic and mechanical sectioning techniques. The first severe failure induced by the low-velocity drop-weight impact occurred as delamination between the aluminum and fiber-epoxy layers at the non-impact side. It was followed by a visible shear crack in the outer aluminum layer on the non-impact face. Through-thickness shear cracks in the aluminum sheets and severe damage in the fiber laminated layers (including delamination between adjacent fiber-epoxy laminae with different fiber orientations) developed under higher energy impacts. The impact properties of fiber-metal laminates varied with different constituent materials and fiber orientations. Since it was punched through easily, the aramid-fiber reinforced fiber-metal laminates (ARALL) offered poorer impact resistance than the glass-fiber reinforced fiber-metal laminates (GLARE). Tougher and more ductile aluminum alloys improved the impact resistance. GLARE made of cross-ply prepregs provided better impact resistance than GLARE with unidirectional plies.
Selecting Magnet Laminations Recipes Using the Meth-od of Sim-u-la-ted Annealing
NASA Astrophysics Data System (ADS)
Russell, A. D.; Baiod, R.; Brown, B. C.; Harding, D. J.; Martin, P. S.
1997-05-01
The Fermilab Main Injector project is building 344 dipoles using more than 7000 tons of steel. Budget and logistical constraints required that steel production, lamination stamping and magnet fabrication proceed in parallel. There were significant run-to-run variations in the magnetic properties of the steel (Martin, P.S., et al., Variations in the Steel Properties and the Excitation Characteristics of FMI Dipoles, this conference). The large lamination size (>0.5 m coil opening) resulted in variations of gap height due to differences in stress relief in the steel after stamping. To minimize magnet-to-magnet strength and field shape variations the laminations were shuffled based on the available magnetic and mechanical data and assigned to magnets using a computer program based on the method of simulated annealing. The lamination sets selected by the program have produced magnets which easily satisfy the design requirements. Variations of the average magnet gap are an order of magnitude smaller than the variations in lamination gaps. This paper discusses observed gap variations, the program structure and the strength uniformity results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, T.M.; Lewandowski, J.J.
Recently, laminate structures have been investigated as a method for enhancing the fracture resistance of discontinuously reinforced aluminum (DRA) materials. Laminated DRA materials have been constructed which contain alternating layers of DRA material and monolithic aluminum. Initiation in these laminates has been found to preferentially occur in the DRA layers. After initiation, stable crack growth is produced in the DRA material via a crack bridging mechanism in which the ductile aluminum ligaments in the crack wake serve to reduce the driving force for propagation in the DRA layer. In a manner similar to that of Kaufman and Goolsby, it wasmore » proposed that the initiation toughness of the DRA laminates may be improved if the thickness of the DRA layers was reduced. The goal of this study was to investigate the influence of thickness on the toughness of a DRA material based upon a transition from plane strain to plane stress conditions and how this transition may affect the fracture resistance of laminated DRA materials. The following sections document initial attempts to determine the influence of DRA thickness on toughness both in conventional DRA materials and laminated DRA materials.« less
Xie, Xiaojun; Tabuchi, Masashi; Brown, Matthew P; Mitchell, Sarah P; Wu, Mark N; Kolodkin, Alex L
2017-01-01
The ellipsoid body (EB) in the Drosophila brain is a central complex (CX) substructure that harbors circumferentially laminated ring (R) neuron axons and mediates multifaceted sensory integration and motor coordination functions. However, what regulates R axon lamination and how lamination affects R neuron function remain unknown. We show here that the EB is sequentially innervated by small-field and large-field neurons and that early developing EB neurons play an important regulatory role in EB laminae formation. The transmembrane proteins semaphorin-1a (Sema-1a) and plexin A function together to regulate R axon lamination. R neurons recruit both GABA and GABA-A receptors to their axon terminals in the EB, and optogenetic stimulation coupled with electrophysiological recordings show that Sema-1a-dependent R axon lamination is required for preventing the spread of synaptic inhibition between adjacent EB lamina. These results provide direct evidence that EB lamination is critical for local pre-synaptic inhibitory circuit organization. DOI: http://dx.doi.org/10.7554/eLife.25328.001 PMID:28632130
Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory
NASA Astrophysics Data System (ADS)
Yazdani Sarvestani, H.; Naghashpour, A.; Heidari-Rarani, M.
2015-12-01
In this study, the analytical solution of interlaminar stresses near the free edges of a general (symmetric and unsymmetric layups) cross-ply composite laminate subjected to pure bending loading is presented based on Reddy's layerwise theory (LWT) for the first time. First, the reduced form of displacement field is obtained for a general cross-ply composite laminate subjected to a bending moment by elasticity theory. Then, first-order shear deformation theory of plates and LWT is utilized to determine the global and local deformation parameters appearing in the displacement fields, respectively. One of the main advantages of the developed solution based on the LWT is exact prediction of interlaminar stresses at the boundary layer regions. To show the accuracy of this solution, three-dimensional elasticity bending problem of a laminated composite is solved for special set of boundary conditions as well. Finally, LWT results are presented for edge-effect problems of several symmetric and unsymmetric cross-ply laminates under the bending moment. The obtained results indicate high stress gradients of interlaminar stresses near the edges of laminates.
Fatigue of notched fiber composite laminates. Part 1: Analytical model
NASA Technical Reports Server (NTRS)
Mclaughlin, P. V., Jr.; Kulkarni, S. V.; Huang, S. N.; Rosen, B. W.
1975-01-01
A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given.
Fatigue of notched fiber composite laminates. Part 2: Analytical and experimental evaluation
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Mclaughlin, P. V., Jr.; Pipes, R. B.
1976-01-01
The analytical/experimental correlation study was performed to develop an understanding of the behavior of notched Boron/epoxy laminates subjected to tension/tension fatigue loading. It is postulated that the fatigue induced property changes (stiffness as well as strength) of the laminate can be obtained from the lamina fatigue properties. To that end, the Boron/epoxy lamina static and fatigue data (lifetime, residual stiffness and strength) were obtained initially. The longitudinal and transverse tension data were determined from the (0) and (90) laminate tests while the in-plane shear data were obtained from the (+ or - 45) sub s laminates. The static tests obtained the notched strength and mode of failure while the fatigue tests determined lifetime, damage propagation and residual strength. The failure in static tension occurred in a transverse crack propagation mode.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Mikulas, Martin M., Jr.
2009-01-01
Simple formulas for the buckling stress of homogeneous, specially orthotropic, laminated-composite cylinders are presented. The formulas are obtained by using nondimensional parameters and equations that facilitate general validation, and are validated against the exact solution for a wide range of cylinder geometries and laminate constructions. Results are presented that establish the ranges of the nondimensional parameters and coefficients used. General results, given in terms of the nondimensional parameters, are presented that encompass a wide range of geometries and laminate constructions. These general results also illustrate a wide spectrum of behavioral trends. Design-oriented results are also presented that provide a simple, clear indication of laminate composition on critical stress, critical strain, and axial stiffness. An example is provided to demonstrate the application of these results to thin-walled column designs.
A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer
Ji, Yi; Huang, Bin; Rao, Pinggen
2017-01-01
A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply. PMID:28773006
Integrated mechanics for the passive damping of polymer-matrix composites and composite structures
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, Christos C.
1991-01-01
Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).
Behaviour of Mechanically Laminated CLT Members
NASA Astrophysics Data System (ADS)
Kuklík, P.; Velebil, L.
2015-11-01
Cross laminated timber (CLT) is one of the structural building systems based on the lamination of multiple layers, where each layer is oriented perpendicularly to each other. Recent requirements are placed to develop an alternative process based on the mechanical lamination of the layers, which is of particular interest to our research group at the University Centre for Energy Efficient Buildings. The goal is to develop and verify the behaviour of mechanically laminated CLT wall panels exposed to shear stresses in the plane. The shear resistance of mechanically jointed CLT is ensured by connecting the layers by screws. The paper deals with the experimental analysis focused on the determination of the torsional stiffness and the slip modulus of crossing areas for different numbers of orthogonally connected layers. The results of the experiments were compared with the current analytical model.
Characterization of delamination onset and growth in a composite laminate
NASA Technical Reports Server (NTRS)
Obrien, T. K.
1981-01-01
The onset and growth of delaminations in unnotched (+ or - 30/+ or - 30/90/90 bar) sub S graphite epoxy laminates is described quantitatively. These laminates, designed to delaminate at the edges under tensile loads, were tested and analyzed. Delamination growth and stiffness loss were monitored nondestructively. Laminate stiffness decreased linearly with delamination size. The strain energy release rate, G, associated with delamination growth, was calculated from two analyses. A critical G for delamination onset was determined, and then was used to predict the onset of delaminations in (+45 sub n/-45 sub n/o sub n/90 sub n) sub s (n=1,2,3) laminates. A delamination resistance curve (R curve) was developed to characterize the observed stable delamination growth under quasi static loading. A power law correlation between G and delamination growth rates in fatigue was established.
Modelling of thick composites using a layerwise laminate theory
NASA Technical Reports Server (NTRS)
Robbins, D. H., Jr.; Reddy, J. N.
1993-01-01
The layerwise laminate theory of Reddy (1987) is used to develop a layerwise, two-dimensional, displacement-based, finite element model of laminated composite plates that assumes a piecewise continuous distribution of the tranverse strains through the laminate thickness. The resulting layerwise finite element model is capable of computing interlaminar stresses and other localized effects with the same level of accuracy as a conventional 3D finite element model. Although the total number of degrees of freedom are comparable in both models, the layerwise model maintains a 2D-type data structure that provides several advantages over a conventional 3D finite element model, e.g. simplified input data, ease of mesh alteration, and faster element stiffness matrix formulation. Two sample problems are provided to illustrate the accuracy of the present model in computing interlaminar stresses for laminates in bending and extension.
Stiffness reductions during tensile fatigue testing of graphite/epoxy angle-ply laminates
NASA Technical Reports Server (NTRS)
Odom, E. M.; Adams, D. F.
1982-01-01
Tensile fatigue data was generated under carefully controlled test conditions. A computerized data acquisition system was used to permit the measurement of dynamic modulus without interrupting the fatigue cycling. Two different 8-ply laminate configurations, viz, + or - 45 (2s) and + or - 67.5 (2s), of a T300/5208 graphite/epoxy composite were tested. The + or - 45 (2s) laminate did exhibit some modulus decay, although there was no well-defined correlation with applied stress level or number of cycles. The + or - 67.5 (2s) laminate did not exhibit any measurable modulus decay. Secondary effects observed included a small but distinct difference between modulus as measured statically and dynamically, a slight recovery of the modulus decay after a test interruption, and a significant viscoelastic (creep) response of the + or - 45 (2s) laminate during fatigue testing.
Investigation of composite materials property requirements for sonic fatigue research
NASA Technical Reports Server (NTRS)
Patrick, H. V. L.
1985-01-01
Experimental techniques for determining the extensional and bending stiffness characteristics for symmetric laminates are presented. Vibrational test techniques for determining the dynamic modulus and material damping are also discussed. Partial extensional stiffness results intially indicate that the laminate theory used for predicting stiffness is accurate. It is clearly shown that the laminate theory can only be as accurate as the physical characteristics describing the lamina, which may vary significantly. It is recommended that all of the stiffness characteristics in both extension and bending be experimentally determined to fully verify the laminate theory. Dynamic modulus should be experimentally evaluated to determine if static data adequately predicts dynamic behavior. Material damping should also be ascertained because laminate damping is an order of magnitude greater than found in common metals and can significantly effect the displacement response of composite panels.
A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer.
Ji, Yi; Huang, Bin; Rao, Pinggen
2017-06-12
A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply.
Frequency of Apical and Laminal /s/ in Normal and Postglossectomy Patients
Stone, Maureen; Rizk, Susan; Woo, Jonghye; Murano, Emi Z.; Chen, Hegang; Prince, Jerry L.
2015-01-01
American English can be produced with two types of /s/: apical or laminal. These productions differ in that the apical gesture requires independent tongue tip elevation, and the laminal does not. Postglossectomy speakers, who have lost a unilateral portion of the tongue body along the outer edge, lose innervation to the tongue tip. We hypothesize that postglossectomy patients, even those with a preserved tongue tip, will be more likely to use laminal tongue shapes because of reduced control of the tongue tip. This study examines /s/ type, palate height, and related parameters in 24 control participants and 13 patients with lateral resections using cine-MRI and dental casts. Results of this dataset show that palate height affects choice of /s/ in control participants, but not in patients. Patients tend to use laminal /s/. PMID:26157329
Failure analysis of single-bolted joint for lightweight composite laminates and metal plate
NASA Astrophysics Data System (ADS)
Li, Linjie; Qu, Junli; Liu, Xiangdong
2018-01-01
A three-dimensional progressive damage model was developed in ANSYS to predict the damage accumulation of single bolted joint in composite laminates under in-plane tensile loading. First, we describe the formulation and algorithm of this model. Second, we calculate the failure loads of the joint in fibre reinforced epoxy laminated composite plates and compare it with the experiment results, which validates that our model can appropriately simulate the ultimate tensile strength of the joints and the whole process of failure of structure. Finally, this model is applied to study the failure process of the light-weight composite material (USN125). The study also has a great potential to provide a strong basis for bolted joints design in composite Laminates as well as a simple tool for comparing different laminate geometries and bolt arrangements.
NASA Technical Reports Server (NTRS)
Jordan, Kelvin; Clinton, Raymond; Jeelani, Shaik
1989-01-01
The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between the carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials are presented. Four flat panel laminates were fabricated using the C/P and G/P materials. Of the four laminates, one panel was fabricated in which the C/P and G/P materials were cured simultaneously. It was identified as the cocure. The remaining laminates were processed with an initial simultaneous cure of the three C/P billets. Two surface finishes, one on each half, were applied to the top surface. Prior to the application and cure of the G/P material to the machined surface of the three C/P panels, each was subjected to the specific environmental conditioning. Types of conditioning included: (1) nominal fabrication environment, (2) a prescribed drying cycle, and (3) a total immersion in water at 160 F. Physical property tests were performed on specimens removed from the C/P materials of each laminate for determination of the specific gravity, residual volatiles and and resin content. Comparisons of results with shuttle solid rocket motor (SRM) nozzle material specifications verified that the materials used in fabricating the laminates met acceptance criteria and were representative of SRM nozzle materials. Mechanical property tests were performed at room temperature on specimens removed from the G/P, the C/P and the interface between the two materials for each laminate. The double-notched shear strength test was used to determine the ultimate interlaminar shear strength. Results indicate no appreciable difference in the C/P material of the four laminates with the exception of the cocure laminate, where 20 percent reduction in the strength was observed. The most significant effect and the ultimate strength was significantly reduced in the wet material. No appreciable variation was noted between the surface finishes in the wet laminate.
Influence of Fibre Architecture on Impact Damage Tolerance in 3D Woven Composites
NASA Astrophysics Data System (ADS)
Potluri, P.; Hogg, P.; Arshad, M.; Jetavat, D.; Jamshidi, P.
2012-10-01
3D woven composites, due to the presence of through-thickness fibre-bridging, have the potential to improve damage tolerance and at the same time to reduce the manufacturing costs. However, ability to withstand damage depends on weave topology as well as geometry of individual tows. There is an extensive literature on damage tolerance of 2D prepreg laminates but limited work is reported on the damage tolerance of 3D weaves. In view of the recent interest in 3D woven composites from aerospace as well as non-aerospace sectors, this paper aims to provide an understanding of the impact damage resistance as well as damage tolerance of 3D woven composites. Four different 3D woven architectures, orthogonal, angle interlocked, layer-to-layer and modified layer-to-layer structures, have been produced under identical weaving conditions. Two additional structures, Unidirectional (UD) cross-ply and 2D plain weave, have been developed for comparison with 3D weaves. All the four 3D woven laminates have similar order of magnitude of damage area and damage width, but significantly lower than UD and 2D woven laminates. Damage Resistance, calculated as impact energy per unit damage area, has been shown to be significantly higher for 3D woven laminates. Rate of change of CAI strength with impact energy appears to be similar for all four 3D woven laminates as well as UD laminate; 2D woven laminate has higher rate of degradation with respect to impact energy. Undamaged compression strength has been shown to be a function of average tow waviness angle. Additionally, 3D weaves exhibit a critical damage size; below this size there is no appreciable reduction in compression strength. 3D woven laminates have also exhibited a degree of plasticity during compression whereas UD laminates fail instantly. The experimental work reported in this paper forms a foundation for systematic development of computational models for 3D woven architectures for damage tolerance.
Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate
NASA Technical Reports Server (NTRS)
Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)
2009-01-01
A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.
Heat resistant composite structure for shuttle applications (Ryton-B)
NASA Technical Reports Server (NTRS)
1972-01-01
A program was undertaken to characterize Ryton-B resin, develop graphite filament prepregs, undirectional laminates and determine the strength and heat resistance of the composite system. Through the use of a water soluble resin binder, high quality prepreg tape, three inches wide with 4 tows of HM-S were produced. The tape laminated to 0.00175 inch per ply. A wide range of properties in the cured resin and laminate were found using different curing conditions. The thermal stability and strength of molded laminates appears to be very dependent upon the cure cycle used for polymerization.
Vibration and damping of laminated, composite-material plates including thickness-shear effects
NASA Technical Reports Server (NTRS)
Bert, C. W.; Siu, C. C.
1972-01-01
An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.
NASA Technical Reports Server (NTRS)
Ishai, O.; Garg, A.; Nelson, H. G.
1986-01-01
The critical load levels and associated cracking beyond which a multidirectional laminate can be considered as structurally failed has been determined by loading graphite fiber-reinforced epoxy laminates to different strain levels up to ultimate failure. Transverse matrix cracking was monitored by acoustic and optical methods. The residual stiffness and strength parallel and perpendicular to the cracks were determined and related to the environmental/loading history. Within the range of experimental conditions studied, it is concluded that the transverse cracking process does not have a crucial effect on the structural performance of multidirectional composite laminates.
On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites
NASA Technical Reports Server (NTRS)
Herakovich, C. T.; Shuart, M. J.
1978-01-01
The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.
Preparing polymeric matrix composites using an aqueous slurry technique
NASA Technical Reports Server (NTRS)
Johnston, Norman J. (Inventor); Towell, Timothy W. (Inventor)
1993-01-01
An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.
Interlaminar stresses in composite laminates: A perturbation analysis
NASA Technical Reports Server (NTRS)
Hsu, P. W.; Herakovich, C. T.
1976-01-01
A general method of solution for an elastic balanced symmetric composite laminate subject to a uniaxial extension was developed based upon a perturbation analysis of a limiting free body containing an interfacial plane. The solution satisfies more physical requirements and boundary conditions than previous investigations, and predicts smooth continuous interlaminar stresses with no instabilities. It determines the finite maximum intensity for the interlaminar normal stress in all laminates, provides mathematical evidences for the singular stresses in angle-ply laminates, suggests the need for the experimental determination of an important problem parameter, and introduces a viable means for solving related problems of practical interest.
Fatigue of cord-rubber composites for tires
NASA Astrophysics Data System (ADS)
Song, Jaehoon
Fatigue behaviors of cord-rubber composite materials forming the belt region of radial pneumatic tires have been characterized to assess their dependence on stress, strain and temperature history as well as materials composition and construction . Using actual tires, it was found that interply shear strain is one of the crucial parameters for damage assessment from the result that higher levels of interply shear strain of actual tires reduce the fatigue lifetime. Estimated at various levels of load amplitude were the fatigue life, the extent and rate of resultant strain increase ("dynamic creep"), cyclic strains at failure, and specimen temperature. The interply shear strain of 2-ply 'tire belt' composite laminate under circumferential tension was affected by twisting of specimen due to tension-bending coupling. However, a critical level of interply shear strain, which governs the gross failure of composite laminate due to the delamination, appeared to be independent of different lay-up of 2-ply vs. symmetric 4-ply configuration. Reflecting their matrix-dominated failure modes such as cord-matrix debonding and delamination, composite laminates with different cord reinforcements showed the same S-N relationship as long as they were constructed with the same rubber matrix, the same cord angle, similar cord volume, and the same ply lay-up. Because of much lower values of single cycle strength (in terms of gross fracture load per unit width), the composite laminates with larger cord angle and the 2-ply laminates exhibited exponentially shorter fatigue lifetime, at a given stress amplitude, than the composite laminates with smaller cord angle and 4-ply symmetric laminates, respectively. The increase of interply rubber thickness lengthens their fatigue lifetime at an intermediate level of stress amplitude. However, the increase in the fatigue lifetime of the composite laminate becomes less noticeable at very low stress amplitude. Even with small compressive cyclic stresses, the fatigue life of belt composites is predominantly influenced by the magnitude of maximum stress. Maximum cyclic strain of composite laminates at failure, which measures the total strain accumulation for gross failure, was independent of stress amplitude and close to the level of static failure strain. For all composite laminates under study, a linear correlation could be established between the temperature rise rate and dynamic creep rate which was, in turn, inversely proportional to the fatigue lifetime. Using the acoustic emission (AE) initiation stress value, better prediction of fatigue life was available for the fiber-reinforced composites having fatigue limit. The accumulation rate of AE activities during cyclic loading was linearly proportional to the maximum applied load and to the inverse of the fatigue life of cord-rubber composite laminates. Finally, a modified fatigue modulus model based on combination of power-law and logarithmic relation was proposed to predict the fatigue lifetime profile of cord-rubber composite laminates.
Hamirally, Sofia; Kamil, Jeremy P; Ndassa-Colday, Yasmine M; Lin, Alison J; Jahng, Wan Jin; Baek, Moon-Chang; Noton, Sarah; Silva, Laurie A; Simpson-Holley, Martha; Knipe, David M; Golan, David E; Marto, Jarrod A; Coen, Donald M
2009-01-01
The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser(22)). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser(22) is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.
1993-01-01
The development of novel composite mechanics for the analysis of damping in composite laminates and structures and the more significant results of this effort are summarized. Laminate mechanics based on piecewise continuous in-plane displacement fields are described that can represent both intralaminar stresses and interlaminar shear stresses and the associated effects on the stiffness and damping characteristics of a composite laminate. Among other features, the mechanics can accurately model the static and damped dynamic response of either thin or thick composite laminates, as well as, specialty laminates with embedded compliant damping layers. The discrete laminate damping theory is further incorporated into structural analysis methods. In this context, an exact semi-analytical method for the simulation of the damped dynamic response of composite plates was developed. A finite element based method and a specialty four-node plate element were also developed for the analysis of composite structures of variable shape and boundary conditions. Numerous evaluations and applications demonstrate the quality and superiority of the mechanics in predicting the damped dynamic characteristics of composite structures. Finally, additional development was focused on the development of optimal tailoring methods for the design of thick composite structures based on the developed analytical capability. Applications on composite plates illustrated the influence of composite mechanics in the optimal design of composites and the potential for significant deviations in the resultant designs when more simplified (classical) laminate theories are used.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.
Large Deformation Dynamic Bending of Composite Beams
NASA Technical Reports Server (NTRS)
Derian, E. J.; Hyer, M. W.
1986-01-01
Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.
The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation
Mancone, Carmine; Regazzo, Giulia; Spagnuolo, Manuela; Alonzi, Tonino; Carlomosti, Fabrizio; Lucia, Maria Dell’Anna; Dell, Giulia 'Omo; Picardo, Mauro; Ciana, Paolo; Capogrossi, Maurizio C; Tripodi, Marco; Magenta, Alessandra; Giulia, Maria Rizzo; Gurtner, Aymone; Piaggio, Giulia
2017-01-01
Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y–dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation. PMID:27793050
NASA Technical Reports Server (NTRS)
Hou, T. H.
1985-01-01
High quality long fiber reinforced composites, such as those used in aerospace and industrial applications, are commonly processed in autoclaves. An adequate resin flow model for the entire system (laminate/bleeder/breather), which provides a description of the time-dependent laminate consolidation process, is useful in predicting the loss of resin, heat transfer characteristics, fiber volume fraction and part dimension, etc., under a specified set of processing conditions. This could be accomplished by properly analyzing the flow patterns and pressure profiles inside the laminate during processing. A newly formulated resin flow model for composite prepreg lamination process is reported. This model considers viscous resin flows in both directions perpendicular and parallel to the composite plane. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction, a poiseuille type pressure flow through porous media is assumed. Proper force and mass balances have been made and solved for the whole system. The effects of fiber-fiber interactions during lamination are included as well. The unique features of this analysis are: (1) the pressure gradient inside the laminate is assumed to be generated from squeezing action between two adjacent approaching fiber layers, and (2) the behavior of fiber bundles is simulated by a Finitely Extendable Nonlinear Elastic (FENE) spring.
Optimum design of a composite structure with ply-interleaving constraints
NASA Technical Reports Server (NTRS)
Wang, Bo Ping; Costin, Daniel P.
1990-01-01
The application of composite materials to aircraft construction has provided the designer with increased flexibility. The orientation of plies can be tailored to provide additional aeroelastic performance unobtainable with an isotropic material. A tailored laminate is made up of plies of several orientations, usually 0 deg, 45 deg, -45 deg, and 90 deg. The direction of the 0 deg plies, does not need to be oriented with the leading edge, but can be varied to obtain a wide variety of structural properties. Also, the number of plies of each orientation varies from one zone to another on the planform. Thus, a thick laminate with mainly 0 deg plies may form the root zone, and a thinner laminate with mainly +45 deg plies may form the leading edge zone. Tailored laminates were designed using complicated optimization programs. Unfortunately, many tailored designs must be modified before they are manufactured. The modification adds weight and decreases performance. One type of modification is ply interleaving, an overlap of plies between zones on the laminate. These interleaves are added to ensure that zones with varying ply percentages can be connected without loss of strength. In this paper, the constraints needed to eliminate interleaves in the laminate optimization process will be described and implemented in a structural optimization problem. The method used has the potential to prevent changes to composite laminates late in the design cycle.
Structural Performance of the Second Oldest Glued-Laminated Structure in the United States
Douglas R. Rammer; Jorge de Melo Moura; Robert J. Ross
2014-01-01
The second glued-laminated structure built in the United States was constructed at the USDA Forest Products Laboratory (FPL) in 1934 to demonstrate the performance of wooden arch buildings. After 75 years of use the structure was decommissioned in 2010. Shortly after construction, researchers structurally evaluated the glued-laminated arch structure for uniform loading...
Structural Evaluation of the Second Oldest Glued-Laminated Structure in the United States
Douglas R. Rammer; Jorge de Melo Moura
2013-01-01
The second glued-laminated structure built in the United States was constructed at the USDA Forest Products Laboratory (FPL) in 1934 to demonstrate the performance of wooden arch buildings. After decades of use the structure was decommissioned in 2010. Shortly after construction, researchers structurally evaluated the glued-laminated arch structure for uniform loading...
Laminated lumber may be more profitable than sawn lumber
P. Koch
1976-01-01
By laminating 1/4-in. rotary-cut veneer into structural lumber, manufacturers can expand lumber output by at least 30% without increasing volume logged. The idea merits intensive study. Manufacturing plus raw material costs should total about $142/Mbf; sales price for desirable widths and lengths of the strong laminated product should approach or exceed $200/Mbf.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... merchandise anti-circumvention inquiry to determine whether laminated woven sacks printed with two colors in... Circumvention (Printed Ink Colors) dated March 25, 2011. \\5\\ See Laminated Woven Sacks From the People's... to an exterior ply of paper that is suitable for high quality print graphics; \\6\\ printed with three...
Strength validation and fire endurance of glued-laminated timber beams
E. L. Schaffer; C. M. Marx; D. A. Bender; F. E. Woeste
A previous paper presented a reliability-based model to predict the strength of glued-laminated timber beams at both room temperature and during fire exposure. This Monte Carlo simulation procedure generates strength and fire endurance (time-to-failure, TTF) data for glued- laminated beams that allow assessment of mean strength and TTF as well as their variability....
Reliability formulation for the strength and fire endurance of glued-laminated beams
D. A. Bender
A model was developed for predicting the statistical distribution of glued-laminated beam strength and stiffness under normal temperature conditions using available long span modulus of elasticity data, end joint tension test data, and tensile strength data for laminating-grade lumber. The beam strength model predictions compared favorably with test data for glued-...
The North American Product Standard for Cross-Laminated Timber
Borjen Yeh; Sylvain Gagnon; Tom Williamson; Ciprian Pirvu; Conroy Lum; Dave Kretschmann
2012-01-01
Cross-laminated timber (CLT) is a prefabricated solid engineered wood product made of at least three orthogonally bonded layers of solid-sawn lumber or structural composite lumber that are laminated by gluing of longitudinal and transverse layers with structural adhesives to form a solid rectangular-shaped, straight, and plane timber intended for roof, floor, or wall...
Mechanical performance of cellulose nanofibril film-wood flake laminate
Jen-Chieh Liu; Robert J. Moon; Alan Rudie; Jeffrey P. Youngblood
2014-01-01
Homogeneous and transparent CNF films, fabricated from the (2,2,6,6- tetramethylpiperidin-1-yl) oxyl (TEMPO)-modified CNF suspension, were laminated onto wood flakes (WF) based on phenol-formaldehyde (PF) resin and the reinforcement potential of the material has been investigated. The focus was on the influence of CNF film lamination, relative humidity (RH), heat...
The strength of Norwegian glued laminated beams
Kjell Solli; Erik Aasheim; Robert H. Falk
1992-01-01
This paper focuses on the characterization and the performance of glued laminated (glulam) timber beams manufactured from machine stress graded Norwegian spruce in comparison to developing CEN standards. Material property testing indicated that the supplied laminating timber can be represented by two CEN strength classes, C37-14E and C30-12E, with about 50% yield in...
Evaluating the warping of laminated particleboard panels
Zhiyong Cai
2004-01-01
Laminated wood composites have been used widely in the secondary manufacturing processes in the wood panel industries. Warping, which is defined as the out-of-plane deformation of an initially flat panel, is a longstanding problem associated with the use of laminated wood composites. The mechanism of warping is still not fully understood. A new two- dimensional warping...
Design Equations and Criteria of Orthotropic Composite Panels
2013-05-01
33 Appendix A Classical Laminate Theory ( CLT ): ....................................................................... A–1 Appendix...Science London , 1990. NSWCCD-65-TR–2004/16A A–1 Appendix A Classical Laminate Theory ( CLT ): In Section 6 of this report, preliminary design...determined using: Classical Laminate Theory, CLT , to Predict Equivalent Stiffness Characteristics, First- Ply Strength Note: CLT is valid for
NASA Astrophysics Data System (ADS)
Herrmann, Kelsey M.
Research to date indicates that traditional composite material failure analysis methods are not appropriate for thin laminates in flexure. Thin composite structures subjected to large bending deformations often attain significantly higher strain-to-failure than previously anticipated tensile and compression coupon test data and linear material model assumption predict. At NASA Langley Research Center, a new bend test method is being developed for High Strain Composite (HSC) structures. This method provides an adequate approximation of a pure moment, large deformation bend test for thin-ply, high strain composites to analyze the large strain flexure response of the laminates. The objective of this research was to further develop this new test method to measure the true bending stiffness and strain-to-failure of high strain composite materials. Of primary importance is the ability to characterize composite laminates that are of interest for current NASA deployable structures in both materials and layups. Two separate testing campaigns were performed for the development of the testing procedure. Initially six laminates were bend tested in three different fiber orientations. These laminates were some combination of unidirectional intermediate modulus (IM) carbon, high tenacity (HT) carbon plain weave, and astroquartz plain weave composite materials. The second test campaign was performed as a more detailed look into the simplest composite laminates at thicknesses that better represented deployable boom structures. The second campaign tested three basic, thinner laminates, again in three different fiber orientations. All testing was monotonic loading to failure. The thickness of the laminates tested ranged from 0.166mm (campaign 2) to 0.45mm (campaign 1). The measured strains at failure for the unidirectional material were approximately 2.1% and 1.4% at the compression and tension sides, respectively, failing as fiber tensile fracture. Both of these values differ from what would be expected from considering much thicker coupons tested under pure compression and tension, that show a strain-to-failure of 1.0-1.1% and 1.6-1.7%, respectively. The significant differences in strain values obtained at the outer surfaces of the coupon is thought to be related to the shift in neutral axis that the specimen experiences during the large deformation bending test as a result of fiber material nonlinearities at higher strains. The vertical test nature of the CBT when compared to other test methods proves to be helpful for visually capturing with Digital Image Correlation the distinct behavior of the flexure on both the compressive and tensile sides. It was found that the thinner the laminate tested, the more confirmation of a nonlinear response of this classification of composites. The moment versus curvature curves were predominantly nonlinear resulting in a near linear bending stiffness versus curvature response. At these large strains, carbon fibers are highly nonlinear resulting in the laminate flexure modulus increasing by up to 5x. The theoretical bending stiffness values calculated using Classical Lamination Theory analysis are within small differences with respect to the experimentally measured values: errors of approximately 5-10% for both D11 and D22. The error between the finite element model computed strain response and the experimental values was on average around 22%, with 35% of the laminates and orientation having errors less than 7%. Comparison between CLT, FEA, and experimentation show that the Column Bend Test appears to be a promising candidate for characterization of large deformation bending behavior of thin-ply high strain composite laminates.
Dalla Costa, Emanuela; Stucke, Diana; Dai, Francesca; Minero, Michela; Leach, Matthew C.; Lebelt, Dirk
2016-01-01
Simple Summary Acute laminitis is a common equine disease characterized by intense foot pain. This work aimed to investigate whether the Horse Grimace Scale (HGS), a facial-expression-based pain coding system, can be usefully applied to assess pain associated with acute laminitis in horses at rest. Ten horses, referred as acute laminitis cases with no prior treatment, were assessed at the admission and at seven days after the initial evaluation and treatment. The authors found that the Horse Grimace Scale is a potentially effective method to assess pain associated with acute laminitis in horses at rest, as horses showing high HGS scores also exhibited higher Obel scores, and veterinarians classified them in a more severe painful state. Abstract Acute laminitis is a common equine disease characterized by intense foot pain, both acutely and chronically. The Obel grading system is the most widely accepted method for describing the severity of laminitis by equine practitioners, however this method requires movement (walk and trot) of the horse, causing further intense pain. The recently developed Horse Grimace Scale (HGS), a facial-expression-based pain coding system, may offer a more effective means of assessing the pain associated with acute laminitis. The aims of this study were: to investigate whether HGS can be usefully applied to assess pain associated with acute laminitis in horses at rest, and to examine if scoring HGS using videos produced similar results as those obtained from still images. Ten horses, referred as acute laminitis cases with no prior treatment, were included in the study. Each horse was assessed using the Obel and HGS (from images and videos) scales: at the admission (before any treatment) and at seven days after the initial evaluation and treatment. The results of this study suggest that HGS is a potentially effective method to assess pain associated with acute laminitis in horses at rest, as horses showing high HGS scores also exhibited higher Obel scores and veterinarians classified them in a more severe painful state. Furthermore, the inter-observer reliability of the HGS total score was good for both still images and video evaluation. There was no significant difference in HGS total scores between the still images and videos, suggesting that there is a possibility of applying the HGS in clinical practice, by observing the horse for a short time. However, further validation studies are needed prior to applying the HGS in a clinical setting. PMID:27527224
Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass
NASA Technical Reports Server (NTRS)
Robinson, David; Rodini, Benjamin
2012-01-01
The International X-ray Observatory project seeks to make an X-ray telescope assembly with 14,000 flexible glass segments. The glass used is commercially available SCHOTT D263 glass. Thermal expansion causes the mirror to distort out of alignment. A housing material is needed that has a matching coefficient of thermal expansion (CTE) so that when temperatures change in the X-ray mirror assembly, the glass and housing pieces expand equally, thus reducing or eliminating distortion. Desirable characteristics of this material include a high stiffness/weight ratio, and low density. Some metal alloys show promise in matching the CTE of D263 glass, but their density is high compared to aluminum, and their stiffness/weight ratio is not favorable. A laminate made from carbon fiber reinforced plastic (CFRP) should provide more favorable characteristics, but there has not been any made with the CTE matching D263 Glass. It is common to create CFRP laminates of various CTEs by stacking layers of prepreg material at various angles. However, the CTE of D263 glass is 6.3 ppm/ C at 20 C, which is quite high, and actually unachievable solely with carbon fiber and resin. A composite laminate has been developed that has a coefficient of thermal expansion identical to that of SCHOTT D263 glass. The laminate is made of a combination of T300 carbon fiber, Eglass, and RS3C resin. The laminate has 50% uni-T300 plies and 50% uni-E-glass plies, with each fiber-layer type laid up in a quasi-isotropic laminate for a total of 16 plies. The fiber volume (percent of fiber compared to the resin) controls the CTE to a great extent. Tests have confirmed that a fiber volume around 48% gives a CTE of 6.3 ppm/ C. This is a fairly simple composite laminate, following well established industry procedures. The unique feature of this laminate is a somewhat unusual combination of carbon fiber with E-glass (fiberglass). The advantage is that the resulting CTE comes out to 6.3 ppm/ C at 20 C, which matches D263 glass. The trick with this laminate is to establish the proper fiber volume to get the desired CTE. Laminates were made with several different fiber volumes and coupons were tested to establish the relationship between fiber volume and CTE. Testing proved that fiber volume should be about 48%.
On the preservation of laminated sediments along the western margin of North America
VanGeen, A.; Zheng, Yen; Bernhard, J.M.; Cannariato, K.G.; Carriquiry, J.; Dean, W.E.; Eakins, B.W.; Ortiz, J.D.; Pike, J.
2003-01-01
Piston, gravity, and multicores as well as hydrographic data were collected along the Pacific margin of Baja California to reconstruct past variations in the intensity of the oxygen-minimum zone (OMZ). Gravity cores collected from within the OMZ north of 24??N did not contain laminated surface sediments even though bottom water oxygen (BWO) concentrations were close to 5 ??mol/kg. However, many of the cores collected south of 24??N did contain millimeter- to centimeter-scale, brown to black laminations in Holocene and older sediments but not in sediments deposited during the Last Glacial Maximum. In addition to the dark laminations, Holocene sediments in Soledad Basin, silled at 290 m, also contain white coccolith laminae that probably represent individual blooms. Two open margin cores from 430 and 700 m depth that were selected for detailed radiocarbon dating show distinct transitions from bioturbated glacial sediment to laminated Holocene sediment occurring at 12.9 and 11.5 ka, respectively. The transition is delayed and more gradual (11.3-10.0 ka) in another dated core from Soledad Basin. The observations indicate that bottom-water oxygen concentrations dropped below a threshold for the preservation of laminations at different times or that a synchronous hydrographic change left an asynchronous sedimentary imprint due to local factors. With the caveat that laminated sections should therefore not be correlated without independent age control, the pattern of older sequences of laminations along the North American western margin reported by this and previous studies suggests that multiple patterns of regional productivity and ventilation prevailed over the past 60 kyr. Copyright 2003 by the American Geophysical Union.
Kim, In-Hah; Song, Ah Young; Han, Jaejoon; Park, Ki Hwan; Min, Sea C
2014-10-01
Insect-resistant laminate films containing microencapsulated cinnamon oil (CO) were developed to protect food products from the Indian meal moth (Plodia interpunctella). CO microencapsulated with polyvinyl alcohol was incorporated with a printing ink and the ink mixture was applied to a low-density polyethylene (LDPE) film as an ink coating. The coated LDPE surface was laminated with a polypropylene film. The laminate film impeded the invasion of moth larvae and repelled the larvae. The periods of time during which cinnamaldehyde level in the film remained above a minimum repelling concentration, predicted from the concentration profile, were 21, 21, and 10 d for cookies, chocolate, and caramel, respectively. Coating with microencapsulated ink did not alter the tensile or barrier properties of the laminate film. Microencapsulation effectively prevented volatilization of CO. The laminate film can be produced by modern film manufacturing lines and applied to protect food from Indian meal moth damage. The LDPE-PP laminate film developed using microencapsulated cinnamon oil was effective to protect the model foods from the invasion of Indian meal moth larvae. The microencapsulated ink coating did not significantly change the tensile and barrier properties of the LDPE-PP laminate film, implying that replacement of the uncoated with coated laminate would not be an issue with current packaging equipment. The films showed the potential to be produced in commercial film production lines that usually involve high temperatures because of the improved thermal stability of cinnamon oil due to microencapsulation. The microencapsulated system may be extended to other food-packaging films for which the same ink-printing platform is used. © 2014 Institute of Food Technologists®
Briand, Nolwenn; Guénantin, Anne-Claire; Jeziorowska, Dorota; Shah, Akshay; Mantecon, Matthieu; Capel, Emilie; Garcia, Marie; Oldenburg, Anja; Paulsen, Jonas; Hulot, Jean-Sebastien; Vigouroux, Corinne; Collas, Philippe
2018-04-15
The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.
Efficiency loss of thin film Cu(InxGa1-x)Se(S) solar panels by lamination process
NASA Astrophysics Data System (ADS)
Xu, Li
2017-04-01
Efficiency loss of thin film Cu(InxGa1-x)Se(S) (CIGS) solar panels by lamination process has been compromising the final output power in commercial products of solar modules, but few reports have been published on such issue, as the majority of the investigation is focused on the efficiency at the circuit level, i.e., before lamination process. In this paper, we studied the effect of lamination process to the efficiency loss of thin film CIGS solar panels. It was observed that the fill factor degradation dominated the efficiency loss with the small change of Voc and Jsc. Experiments showed that neither the temperature nor the pressure, nor the two combined in the lamination process is the root cause of the efficiency loss; instead, the ethylene vinyl acetate (EVA) layer as the encapsulation material which directly contacts the solar cell devices was the major factor responsible for the efficiency loss. It was found that the gel content of the cured EVA film after lamination was highly correlated to the efficiency loss. The higher the gel content, the higher the efficiency loss. The mismatch of coefficient of thermal expansion between the EVA film and the CIGS thin film resulted in compressive stress in the device layer after lamination process. The compressive stress is speculated to affect the lattice defects, but need to be confirmed with the measurement of capacitance voltage (CV) and drive level capacitance profiling (DLCP). Three-day sun soak was then carried out and it was observed that the fill factor recovered significantly and so did the efficiency. Experiments also showed that there was no impact of chemical erosion on the front electrode of transparent conductive oxide (TCO) films by chemicals released from the EVA films during lamination.
Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators
Her, Shiuh-Chuan; Lin, Chi-Sheng
2013-01-01
Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121
Study on the repeatability of manufacturing nano-silica (SiO2) reinforced composite laminates
NASA Astrophysics Data System (ADS)
Prince Jeya Lal, L.; Ramesh, S.; Natarajan, Elango
2018-04-01
Repeatability to manufacture nano-silica reinforced composite laminates with consistent mechanical properties is studied. In this study, composite laminates are manufactured by hand layup and there after mechanical properties of the laminates are evaluated under tensile and flexural loading conditions. Composite laminates are fabricated and tested under equivalent conditions. Plain weave E-Glass fabric and epoxy LY556 are used as reinforcement and matrix. Nano-silica of size 17nm is used as filler. To enhance the reliability of composite characterization, utmost care is taken to avoid defects like voids, surface defects and under-saturations. Homogeneous distribution of nano silica in matrix is analyzed using TEM study. Inconsistencies in mechanical properties are quantified by coefficient of variation. In this study, the coefficient of variation is estimated in terms of break load for tensile test is 4.45 and for flexural test is 2.27 and is well within the limits.
High strain rate properties of off-axis composite laminates, part 2
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1991-01-01
Unidirectional off-axis graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens were loaded by internal pressure with the tensile stress at 22.5, 30, and 45 degrees relative to the fiber direction. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all three laminates of both materials the modulus and strength increase sharply with strain rate, reaching values roughly 100, 150, and 200 percent higher than corresponding static values for the 22.5(sub 8), 30(sub 8), and 45(sub 8) degree laminates, respectively. In the case of ultimate strain no definite trends could be established, but the maximum deviation from the average of any value for any strain rate was less than 18 percent.
A study of tensile residual strength of composite laminates under different patch-repaired series
NASA Astrophysics Data System (ADS)
Ding, M. H.; zhan, S.; Tang, Y. H.; Wang, L.; Ma, D. Q.; Wang, R. G.
2017-09-01
The tensile behavior of composite laminate structures repaired by bonding external patches was studied in the paper. Two different types of patches including wedge patches and inverted wedge patches were used and failure mechanisms, failure load and strength predictions were studied. A convenient and fast method of building 2-D finite element modeling (FEM) of laminate structure repaired was proposed and the strength of repaired laminate structures was calculated by FEM. The results showed that more than 80% tensile strength of the undamaged laminate could be recovered by bonding patch repairs. Moreover, the results indicated that the strength of inverted wedge patches repair were higher than that of wedge patches repair. FEM simulation results indicated that high stress concentration was found along the edges of invert patches and the most weakness part located in the adhesive bondline. FEM analysis results showed that the strength predicted matched well with the test strength.
Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite
NASA Astrophysics Data System (ADS)
Lasheras, A.; Gutiérrez, J.; Reis, S.; Sousa, D.; Silva, M.; Martins, P.; Lanceros-Mendez, S.; Barandiarán, J. M.; Shishkin, D. A.; Potapov, A. P.
2015-06-01
A flexible, low-cost energy-harvesting device based on the magnetoelectric (ME) effect was designed using Fe64Co17Si7B12 as amorphous magnetostrictive ribbons and polyvinylidene fluoride (PVDF) as the piezoelectric element. A 3 cm-long sandwich-type laminated composite was fabricated by gluing the ribbons to the PVDF with an epoxy resin. A voltage multiplier circuit was designed to produce enough voltage to charge a battery. The power output and power density obtained were 6.4 μW and 1.5 mW cm-3, respectively, at optimum load resistance and measured at the magnetomechanical resonance of the laminate. The effect of the length of the ME laminate on power output was also studied: the power output exhibited decays proportionally with the length of the ME laminate. Nevertheless, good performance was obtained for a 0.5 cm-long device working at 337 KHz within the low radio frequency (LRF) range.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2000-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.
Prediction of Composite Laminate Strength Properties Using a Refined Zigzag Plate Element
NASA Technical Reports Server (NTRS)
Barut, Atila; Madenci, Erdogan; Tessler, Alexander
2013-01-01
This study presents an approach that uses the refined zigzag element, RZE(exp2,2) in conjunction with progressive failure criteria to predict the ultimate strength of composite laminates based on only ply-level strength properties. The methodology involves four major steps: (1) Determination of accurate stress and strain fields under complex loading conditions using RZE(exp2,2)-based finite element analysis, (2) Determination of failure locations and failure modes using the commonly accepted Hashin's failure criteria, (3) Recursive degradation of the material stiffness, and (4) Non-linear incremental finite element analysis to obtain stress redistribution until global failure. The validity of this approach is established by considering the published test data and predictions for (1) strength of laminates under various off-axis loading, (2) strength of laminates with a hole under compression, and (3) strength of laminates with a hole under tension.
NASA Astrophysics Data System (ADS)
Kelb, Christian; Rother, Raimund; Schuler, Anne-Katrin; Hinkelmann, Moritz; Rahlves, Maik; Prucker, Oswald; Müller, Claas; Rühe, Jürgen; Reithmeier, Eduard; Roth, Bernhard
2016-03-01
We demonstrate the manufacturing of embedded multimode optical waveguides through linking of polymethylmethacrylate (PMMA) foils and cyclic olefin polymer (COP) filaments based on a lamination process. Since the two polymeric materials cannot be fused together through interdiffusion of polymer chains, we utilize a reactive lamination agent based on PMMA copolymers containing photoreactive 2-acryloyloxyanthraquinone units, which allows the creation of monolithic PMMA-COP substrates through C-H insertion reactions across the interface between the two materials. We elucidate the lamination process and evaluate the chemical link between filament and foils by carrying out extraction tests with a custom-built tensile testing machine. We also show attenuation measurements of the manufactured waveguides for different manufacturing parameters. The lamination process is in particular suited for large-scale and low-cost fabrication of board-level devices with optical waveguides or other micro-optical structures, e.g., optofluidic devices.
Application study on aircraft structures of CFRP laminates with embedded SMA foils
NASA Astrophysics Data System (ADS)
Ogisu, Toshimichi; Nomura, Masato; Ando, Norio; Takaki, Junji; Takeda, Nobuo
2002-07-01
This paper reports some research results for the application study of the smart materials an structural using Shape Memory Alloy (SMA) foils. First, the authors acquired the recovery strain of CFRP laminates generated by the recovery stress of the pre-strained SMA foils. Then, the quasi-static load-unload tests were conducted using several kinds of quasi-isotropic CFRP laminates with embedded SMA foils. Micro-mechanics of damage behavior due to the effects of the recovery strain and the first transverse crack strain were discussed. The improvement of maximum 40 percent for the onset strain of the transverse cracks and maximum 60 percent for the onset strain of delamination were achieved for CFRP laminates with embedded pre-strained SMA foils compared with standard CFRP laminates. Furthermore, the authors conducted the structural element test for application to actual structures. Testing technique and the manufacturing technique of the structural element specimen were established.
Fatigue damage mechanics of notched graphite-epoxy laminates
NASA Astrophysics Data System (ADS)
Spearing, Mark; Beaumont, Peter W. R.; Ashby, Michael F.
A modeling approach is presented that recognizes that the residual properties of composite laminates after any form of loading depend on the damage state. Therefore, in the case of cyclic loading, it is necessary to first derive a damage growth law and then relate the residual properties to the accumulated damage. The propagation of fatigue damage in notched laminates is investigated. A power law relationship between damage growth and the strain energy release rate is developed. The material constants used in the model have been determined in independent experiments and are invariant for all the layups investigated. The strain energy release rates are calculated using a simple finite element representation of the damaged specimen. The model is used to predict the effect of tension-tension cyclic loading on laminates of the T300/914C carbon-fiber epoxy system. The extent of damage propagation is successfully predicted in a number of cross-ply laminates.
Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.
1999-01-01
A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.
Design, fabrication and test of graphite/epoxy metering truss structure components, phase 3
NASA Technical Reports Server (NTRS)
1974-01-01
The design, materials, tooling, manufacturing processes, quality control, test procedures, and results associated with the fabrication and test of graphite/epoxy metering truss structure components exhibiting a near zero coefficient of thermal expansion are described. Analytical methods were utilized, with the aid of a computer program, to define the most efficient laminate configurations in terms of thermal behavior and structural requirements. This was followed by an extensive material characterization and selection program, conducted for several graphite/graphite/hybrid laminate systems to obtain experimental data in support of the analytical predictions. Mechanical property tests as well as the coefficient of thermal expansion tests were run on each laminate under study, the results of which were used as the selection criteria for the single most promising laminate. Further coefficient of thermal expansion measurement was successfully performed on three subcomponent tubes utilizing the selected laminate.
Li, Weibin; Xu, Chunguang; Cho, Younho
2016-02-19
Laminate composites which are widely used in the aeronautical industry, are usually subjected to frequency variation of environmental temperature and excessive humidity in the in-service environment. The thermal fatigue and moisture absorption in composites may induce material degradation. There is a demand to investigate the coupling damages mechanism and characterize the degradation evolution of composite laminates for the particular application. In this paper, the degradation evolution in unidirectional carbon/epoxy composite laminates subjected to thermal fatigue and moisture absorption is characterized by Lamb waves. The decrease rate of Lamb wave velocity is used to track the degradation evolution in the specimens. The results show that there are two stages for the progressive degradation of composites under the coupling effect of thermal cyclic loading and moisture diffusion. The present work provides an alternative to monitoring the degradation evolution of in-service aircraft composite Laminates.
Analysis of spring-in in U-shaped composite laminates: Numerical and experimental results
NASA Astrophysics Data System (ADS)
Bellini, Costanzo; Sorrentino, Luca; Polini, Wilma; Parodo, Gianluca
2018-05-01
The phenomena that happen during the cure process of a composite material laminate are responsible for the rise of residual stresses and, consequently, for the deformation at the end of the manufacturing process. The most analyzed deformation is the spring-in, that represent the flange-to-flange angle deviance from the theoretical value. In this work, the influence of some parameters, such as the laminate thickness, the stacking sequence and the mold radius, on the spring-in angle of a U-shaped laminate was studied exploring a full factorial plan through numerical simulations. First of all, a numerical model proper for cure simulation was introduced and its suitability to simulate the deformation behavior was demonstrated. As a result, only the stacking sequence influenced the spring-in value, while the effect of the tool radius and laminate thickness was minimal.
Laminated rare earth structure and method of making
Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA
2002-07-30
A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.
A Higher-Order Bending Theory for Laminated Composite and Sandwich Beams
NASA Technical Reports Server (NTRS)
Cook, Geoffrey M.
1997-01-01
A higher-order bending theory is derived for laminated composite and sandwich beams. This is accomplished by assuming a special form for the axial and transverse displacement expansions. An independent expansion is also assumed for the transverse normal stress. Appropriate shear correction factors based on energy considerations are used to adjust the shear stiffness. A set of transverse normal correction factors is introduced, leading to significant improvements in the transverse normal strain and stress for laminated composite and sandwich beams. A closed-form solution to the cylindrical elasticity solutions for a wide range of beam aspect ratios and commonly used material systems. Accurate shear stresses for a wide range of laminates, including the challenging unsymmetric composite and sandwich laminates, are obtained using an original corrected integration scheme. For application of the theory to a wider range of problems, guidelines for finite element approximations are presented.
NASA Technical Reports Server (NTRS)
Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.; Vidussoni, Marco A.
1990-01-01
A practical example of applying two- to three-dimensional (2- to 3-D) global/local finite element analysis to laminated composites is presented. Cross-ply graphite/epoxy laminates of 0.1-in. (0.254-cm) thickness with central circular holes ranging from 1 to 6 in. (2.54 to 15.2 cm) in diameter, subjected to in-plane compression were analyzed. Guidelines for full three-dimensional finite element analysis and two- to three-dimensional global/local analysis of interlaminar stresses at straight free edges of laminated composites are included. The larger holes were found to reduce substantially the interlaminar stresses at the straight free-edge in proximity to the hole. Three-dimensional stress results were obtained for thin laminates which require prohibitive computer resources for full three-dimensional analyses of comparative accuracy.
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Bigelow, C. A.; Bahei-El-din, Y. A.
1983-01-01
Experimental results for five laminate orientations of boron/aluminum composites containing either circular holes or crack-like slits are presented. Specimen stress-strain behavior, stress at first fiber failure, and ultimate strength were determined. Radiographs were used to monitor the fracture process. The specimens were analyzed with a three-dimensional elastic-elastic finite-element model. The first fiber failures in notched specimens with laminate orientation occurred at or very near the specimen ultimate strength. For notched unidirectional specimens, the first fiber failure occurred at approximately one-half of the specimen ultimate strength. Acoustic emission events correlated with fiber breaks in unidirectional composites, but did not for other laminates. Circular holes and crack-like slits of the same characteristic length were found to produce approximately the same strength reduction. The predicted stress-strain responses and stress at first fiber failure compared very well with test data for laminates containing 0 deg fibers.
Recovery behaviour of shape memory polyurethane based laminates after thermoforming
NASA Astrophysics Data System (ADS)
Wu, Shuiliang; Xu, Wensen; Prasath Balamurugan, G.; Thompson, Michael R.; Nielsen, Kent E.; Brandys, Frank A.
2017-11-01
Shape memory polymers (SMPs) can be used to produce a new class of decorative films capable of improved formability and shape recovery in polymer laminates, which are increasingly being used for automotive, aerospace, construction and commercial applications. As a relatively new field there is little knowledge on the shape recovery behaviour of laminates with a SMP film and few methods of quantify that behaviour. The influences of different variables that affect the recovery behaviour of thermoplastic shape memory polyurethanes based laminates including ambient temperature (45 °C and 65 °C), material modulus, and adhesive strength were investigated after thermoforming, through both experimental and modelling methods. The empirical model assisted in identifying the contributions of the adhesive to transfer stresses, which dampened the recovery of the laminate with lower shear strength adhesives. Increasing ambient temperature and the film modulus increased both the final angle recovery ratios and recovery rates.
Efficient utilization of red maple lumber in glued-laminated timber beams
J. J. Janowiak; H. B. Manbeck; R. Hernandez; R. C. Moody; P. R. Blankenhorn; P. Labosky
The feasibility of utilizing cant-sawn hardwood lumber, which would not usually be desired for furniture manufacture, was studied for the manufacture of structural glued-laminated (glulam) timber. Two red maple beam combinations were evaluated: (1) a glulam combination designed with E-rated lumber in 25 percent of the outer laminations (top and bottom) and No. 3 grade...
Lateral testing of glued laminated timber tudor arch
Douglas R. Rammer; Philip Line
2016-01-01
Glued laminated timber Tudor arches have been in wide use in the United States since the 1930s, but detailed knowledge related to seismic design in modern U.S. building codes is lacking. FEMA P-695 (P-695) is a methodology to determine seismic performance factors for a seismic force resisting system. A limited P-695 study for glued laminated timber arch structures...
Post-Crazing Stress Analysis of Glass-Epoxy Laminates.
1979-05-01
element Stress concentrations Thick-shell element b. Identiflers/Open-Ended Terms Thick-plate element Glass-epoxy Laminates Composite materials Failure...number) / Glass-Epoxy Angle Plys Finite Elements’ Laminates Shear Testing Isoparametric.,lement Composite Materials Compression Testing Doubly-Curved...with light weight. This favorable strength- weight ratio makes the material attractive for some flight structures as well as other machines and
2011-08-01
Kevlar KM2® Style 705 PVB phenolic woven aramid composite was included. A developmental unidirectional thermoplastic aramid fiber, Honeywell...Examining the Relationship Between Ballistic and Structural Properties of Lightweight Thermoplastic Unidirectional Composite Laminates by...Unidirectional Composite Laminates Lionel R. Vargas-Gonzalez, Shawn M. Walsh, and James C. Gurganus Weapons and Materials Research Directorate, ARL
Cochlear Hair Cell Electrochemistry: Mechanisms for Bidirectional Transduction.
1988-06-30
cytoplasm in the cell’s laminated cisternal system. More specifically, we postulate that intracochlear potential gradients associated with acoustic...transduction drive intracellular fluids through an electo-osmotic "pump" formed by the plasma membrane and the morphologically unique laminated cisternal ...laminated cisternal system in the hearing loss measured with brainstem evoked response. The highly polycationic nature of the polyamines suggest their
Laminated electromagnetic pump stator core
Fanning, Alan W.
1995-01-01
A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference.
2011-12-01
kind of base fiber used Fab-ric uni, stitched, weave, woven roving, textile form, tape, prepreg Laminate Schedu le [0]10 [0]14 [0]36 Manufacturing...roving, textile form, tape, prepreg Laminate Schedule [0]10 [0]14 [0]36 Manufacturing Date 2006 Test Facility/Date 2007 Program of Record AHM&ST...9 Laminate Schedule .......................................................................................................10 Cure
Improving the fatigue resistance of adhesive joints in laminated wood structures
NASA Technical Reports Server (NTRS)
Laufenberg, Theodore L.; River, Bryan H.; Murmanis, Lidija L.; Christiansen, Alfred W.
1988-01-01
The premature fatigue failure of a laminated wood/epoxy test beam containing a cross section finger joint was the subject of a multi-disciplinary investigation. The primary objectives were to identify the failure mechanisms which occurred during the finger joint test and to provide avenues for general improvements in the design and fabrication of adhesive joints in laminated wood structures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations Pt. 63, Subpt. MMMMM, Table 3... use chlorinated fire retardants in the laminated foam a. Method 26A in appendix A to part 60 of this... chlorinated fire retardants in the laminated foam a. A method approved by the Administrator i. Conduct the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations Pt. 63, Subpt. MMMMM, Table 3... use chlorinated fire retardants in the laminated foam a. Method 26A in appendix A to part 60 of this... chlorinated fire retardants in the laminated foam a. A method approved by the Administrator i. Conduct the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations Pt. 63, Subpt. MMMMM, Table 3... use chlorinated fire retardants in the laminated foam a. Method 26A in appendix A to part 60 of this... chlorinated fire retardants in the laminated foam a. A method approved by the Administrator i. Conduct the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations Pt. 63, Subpt. MMMMM, Table 3... use chlorinated fire retardants in the laminated foam a. Method 26A in appendix A to part 60 of this... chlorinated fire retardants in the laminated foam a. A method approved by the Administrator i. Conduct the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hazardous Air Pollutants: Flexible Polyurethane Foam Fabrication Operations Pt. 63, Subpt. MMMMM, Table 3... use chlorinated fire retardants in the laminated foam a. Method 26A in appendix A to part 60 of this... chlorinated fire retardants in the laminated foam a. A method approved by the Administrator i. Conduct the...
Field performance of timber bridges. 6, Hoffman Run stress-laminated deck bridge
M. A. Ritter; P. D. Hilbrich Lee; G. J. Porter
The Hoffman Run bridge, located just outside Dahoga, Pennsylvania, was constructed in October 1990. The bridge is a simple-span, single-lane, stress-laminated deck superstructure that is approximately 26 ft long and 16 ft wide. It is the second stress-laminated timber bridge to be constructed of hardwood lumber in Pennsylvania. The performance of the bridge was...
X-ray method shows fibers fail during fatigue of boron-epoxy laminates
NASA Technical Reports Server (NTRS)
Roderick, G. L.; Whitcomb, J. D.
1975-01-01
A method proposed for studying progressive fiber fracture in boron-epoxy laminates during fatigue tests is described. It is based on the intensity of X-ray absorption of the tungsten core in the boron filaments as contrasted with that of the boron and epoxy matrix. When the laminate is X-rayed, the image of the tungsten in the born filaments is recorded on a photographic plate. Breaks in the boron laminates can be easily identified by magnifying the photographic plates. The method is suitable for studying broken boron filaments in most matrix materials, and may supply key information for developing realistic fatigue and fracture models.
Computational simulation of composite structures with and without damage. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Wilt, Thomas F.
1994-01-01
A methodology is described which uses finite element analysis of various laminates to computationally simulate the effects of delamination damage initiation and growth on the structural behavior of laminated composite structures. The delamination area is expanded according to a set pattern. As the delamination area increases, how the structural response of the laminate changes with respect to buckling and strain energy release rate are investigated. Rules are presented for laminates of different configurations, materials and thickness. These results demonstrate that computational simulation methods can provide alternate methods to investigate the complex delamination damage mechanisms found in composite structures.
Dechat, Thomas; Adam, Stephen A.; Taimen, Pekka; Shimi, Takeshi; Goldman, Robert D.
2010-01-01
The nuclear lamins are type V intermediate filament proteins that are critically important for the structural properties of the nucleus. In addition, they are involved in the regulation of numerous nuclear processes, including DNA replication, transcription and chromatin organization. The developmentally regulated expression of lamins suggests that they are involved in cellular differentiation. Their assembly dynamic properties throughout the cell cycle, particularly in mitosis, are influenced by posttranslational modifications. Lamins may regulate nuclear functions by direct interactions with chromatin and determining the spatial organization of chromosomes within the nuclear space. They may also regulate chromatin functions by interacting with factors that epigenetically modify the chromatin or directly regulate replication or transcription. PMID:20826548
Prediction of microcracking in composite laminates under thermomechanical loading
NASA Technical Reports Server (NTRS)
Maddocks, Jason R.; Mcmanus, Hugh L.
1995-01-01
Composite laminates used in space structures are exposed to both thermal and mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. An analytical methodology is developed to predict microcrack density in a general laminate exposed to an arbitrary thermomechanical load history. The analysis uses a shear lag stress solution in conjunction with an energy-based cracking criterion. Experimental investigation was used to verify the analysis. Correlation between analysis and experiment is generally excellent. The analysis does not capture machining-induced cracking, or observed delayed crack initiation in a few ply groups, but these errors do not prevent the model from being a useful preliminary design tool.
NOLIN: A nonlinear laminate analysis program
NASA Technical Reports Server (NTRS)
Kibler, J. J.
1975-01-01
A nonlinear, plane-stress, laminate analysis program, NOLIN, was developed which accounts for laminae nonlinearity under inplane shear and transverse extensional stress. The program determines the nonlinear stress-strain behavior of symmetric laminates subjected to any combination of inplane shear and biaxial extensional loadings. The program has the ability to treat different stress-strain behavior in tension and compression, and predicts laminate failure using any or all of maximum stress, maximum strain, and quadratic interaction failure criteria. A brief description of the program is presented including discussion of the flow of information and details of the input required. Sample problems and a complete listing of the program is also provided.
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Sumpter, Rod
1999-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
NASA Technical Reports Server (NTRS)
Martin, Mikulas M., Jr.; Sumpter, Rod
2000-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Sumpter, Rod
1997-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, Rumi; En, Atsuki; Ukekawa, Ryo
2016-05-13
5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.
Analysis of a hybrid, unidirectional buffer strip laminate
NASA Technical Reports Server (NTRS)
Dharani, L. R.; Goree, J. G.
1983-01-01
A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after crack arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing-to-width ratio of about four to one is the most efficient.
Amendola, Mario; van Steensel, Bas
2015-05-01
In mammals, the nuclear lamina interacts with hundreds of large genomic regions, termed lamina-associated domains (LADs) that are generally in a transcriptionally repressed state. Lamins form the major structural component of the lamina and have been reported to bind DNA and chromatin. Here, we systematically evaluate whether lamins are necessary for the LAD organization in murine embryonic stem cells. Surprisingly, removal of essentially all lamins does not have any detectable effect on the genome-wide interaction pattern of chromatin with emerin, a marker of the inner nuclear membrane. This suggests that other components of the lamina mediate these interactions. © 2015 The Authors.
Modeling delamination of FRP laminates under low velocity impact
NASA Astrophysics Data System (ADS)
Jiang, Z.; Wen, H. M.; Ren, S. L.
2017-09-01
Fiber reinforced plastic laminates (FRP) have been increasingly used in various engineering such as aeronautics, astronautics, transportation, naval architecture and their impact response and failure are a major concern in academic community. A new numerical model is suggested for fiber reinforced plastic composites. The model considers that FRP laminates has been constituted by unidirectional laminated plates with adhesive layers. A modified adhesive layer damage model that considering strain rate effects is incorporated into the ABAQUS / EXPLICIT finite element program by the user-defined material subroutine VUMAT. It transpires that the present model predicted delamination is in good agreement with the experimental results for low velocity impact.
NASA Technical Reports Server (NTRS)
Weller, T.
1977-01-01
The applicability and adequacy of several computer techniques in predicting satisfactorily the nonlinear/inelastic response of angle ply laminates were evaluated. The analytical predictions were correlated with the results of a test program on the inelastic response under axial compression of a large variety of graphite-epoxy and boron-epoxy angle ply laminates. These comparison studies indicate that neither of the abovementioned analyses can satisfactorily predict either the mode of response or the ultimate stress value corresponding to a particular angle ply laminate configuration. Consequently, also the simple failure mechanisms assumed in the analytical models were not verified.
NASA Astrophysics Data System (ADS)
Chiang, C. K.; Xue, David Y.; Mei, Chuh
1993-04-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.
NASA Technical Reports Server (NTRS)
Chiang, C. K.; Xue, David Y.; Mei, Chuh
1993-01-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1993-01-01
The behavior of thin laminated flat and curved panels subjected to transverse pressure and inplane loads is considered. The effects of panel geometry, boundary conditions and laminate stacking sequence on the response of panels subjected to transverse pressure loads up to 12.4 N/sq cm is presented. The response of thin laminated panels is evaluated analytically and selected results are compared with test data. A parametric study of the deformation and strain responses of panels with radius of curvature ranging from 20 to 305 cm is presented. The combination of inplane tensile and pressure loads is also considered.
Delamination and debonding of materials
NASA Technical Reports Server (NTRS)
Johnson, W. S. (Editor)
1985-01-01
The general topics consist of stress analysis, mechanical behavior, and fractography/NDI of composite laminates. Papers are presented on a dynamic hybrid finite-element analysis for interfacial cracks in composites, energy release rate during delamination crack growth in composite laminates, matrix deformation and fracture in graphite-reinforced epoxies, and the role of delamination and damage development on the strength of thick notched laminates. In addition, consideration is given to a new ply model for interlaminar stress analysis, a fracture mechanics approach for designing adhesively bonded joints, the analysis of local delaminations and their influence on composite laminate behavior, and moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy.
Analysis of a hybrid-undirectional buffer strip laminate
NASA Technical Reports Server (NTRS)
Dharani, L. R.; Goree, J. G.
1983-01-01
A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. As an example, for a damaged graphite/epoxy laminate, the results demonstrate the manner in which to select the most efficient combination of buffer strip properties necessary to inhibit crack growth. Ultimate failure of the laminate after the arrest can occur under increasing load either by continued crack extension through the buffer strips or the crack can jump the buffer strips. For some typical hybrid materials it is found that a buffer strip spacing to width ratio of about four to one is the most efficient.
On thermal edge effects in composite laminates
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1976-01-01
Results are presented for a finite-element investigation of the combined influence of edge effects due to mechanical and thermal mismatch in composite laminates with free edges. Laminates of unidirectional boron/epoxy symmetrically bonded to sheets of aluminum and titanium were studied. It is shown that interlaminar thermal stresses may be more significant than the interlaminar stresses due to loading only. In addition, the stresses due to thermal mismatch may be of the same sign as those due to Poisson's mismatch or they may be of opposite sign depending upon material properties, stacking sequence, and direction of loading. The paper concludes with a brief discussion of thermal stresses in all-composite laminates.
Human Lamin B Contains a Farnesylated Cysteine Residue*
Farnsworth, Christopher C.; Wolda, Sharon L.; Gelb, Michael H.; Glomset, John A.
2012-01-01
We recently showed that HeLa cell lamin B is modified by a mevalonic acid derivative. Here we identified the modified amino acid, determined its mode of link-age to the mevalonic acid derivative, and established the derivative’s structure. A cysteine residue is modified because experiments with lamin B that had been biosynthetically labeled with [3H] mevalonic acid or [35S] cysteine and then extensively digested with proteases yielded 3H- or 35S-labeled products that co-chromatographed in five successive systems. A thioether linkage rather than a thioester linkage is involved because the mevalonic acid derivative could be released from the 3H-labeled products in a pentane-extractable form by treatment with Raney nickel but not with methanolic KOH. The derivative is a farnesyl moiety because the Raney nickel-released material was identified as 2,6,10-trimethyl-2,6,10-dodecatriene by a combination of gas chromatography and mass spectrometry. The thioether-modified cysteine residue appears to be located near the carboxyl end of lamin B because treatment of 3H-labeled lamin B with cyanogen bromide yielded a single labeled polypeptide that mapped toward this end of the cDNA-inferred sequence of human lamin B. PMID:2684976
Gurel, Galip; Morimoto, Susana; Calamita, Marcelo A; Coachman, Christian; Sesma, Newton
2012-12-01
This article evaluates the long-term clinical performance of porcelain laminate veneers bonded to teeth prepared with the use of an additive mock-up and aesthetic pre-evaluative temporary (APT) technique over a 12-year period. Sixty-six patients were restored with 580 porcelain laminate veneers. The technique, used for diagnosis, esthetic design, tooth preparation, and provisional restoration fabrication, was based on the APT protocol. The influence of several factors on the durability of veneers was analyzed according to pre- and postoperative parameters. With utilization of the APT restoration, over 80% of tooth preparations were confined to the dental enamel. Over 12 years, 42 laminate veneers failed, but when the preparations were limited to the enamel, the failure rate resulting from debonding and microleakage decreased to 0%. Porcelain laminate veneers presented a successful clinical performance in terms of marginal adaptation, discoloration, gingival recession, secondary caries, postoperative sensitivity, and satisfaction with restoration shade at the end of 12 years. The APT technique facilitated diagnosis, communication, and preparation, providing predictability for the restorative treatment. Limiting the preparation depth to the enamel surface significantly increases the performance of porcelain laminate veneers.
Fracture behavior of hybrid composite laminates
NASA Technical Reports Server (NTRS)
Kennedy, J. M.
1983-01-01
The tensile fracture behavior of 15 center-notched hybrid laminates was studied. Three basic laminate groups were tested: (1) a baseline group with graphite/epoxy plies, (2) a group with the same stacking sequence but where the zero-deg plies were one or two plies of S-glass or Kevlar, and (3) a group with graphite plies but where the zero-deg plies were sandwiched between layers of perforated Mylar. Specimens were loaded linearly with time; load, far field strain, and crack opening displacement (COD) were monitored. The loading was stopped periodically and the notched region was radiographed to reveal the extent and type of damage (failure progression). Results of the tests showed that the hybrid laminates had higher fracture toughnesses than comparable all-graphite laminates. The higher fracture toughness was due primarily to the larger damage region at the ends of the slit; delamination and splitting lowered the stress concentration in the primary load-carrying plies. A linear elastic fracture analysis, which ignored delamination and splitting, underestimated the fracture toughness. For almost all of the laminates, the tests showed that the fracture toughness increased with crack length. The size of the damage region at the ends of the slit and COD measurements also increased with crack length.
NASA Astrophysics Data System (ADS)
Ben Elbahri, M.; Kahouli, A.; Mercey, B.; Lebedev, O.; Donner, W.; Lüders, U.
2018-02-01
Dielectrics based on amorphous sub-nanometric laminates of TiO2 and Al2O3 are subject to elevated dielectric losses and leakage currents, in large parts due to the extremely thin individual layer thickness chosen for the creation of the Maxwell-Wagner relaxation and therefore the high apparent dielectric constants. The optimization of performances of the laminate itself being strongly limited by this contradiction concerning its internal structure, we will show in this study that modifications of the dielectric stack of capacitors based on these sub-nanometric laminates can positively influence the dielectric losses and the leakage, as for example the nature of the electrodes, the introduction of thick insulating layers at the laminate/electrode interfaces and the modification of the total laminate thickness. The optimization of the dielectric stack leads to the demonstration of a capacitor with an apparent dielectric constant of 90, combined with low dielectric loss (tan δ) of 7 · 10-2 and with leakage currents smaller than 1 × 10-6 A cm-2 at 10 MV m-1.
Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives.
Illeperuma, Widusha R K; Rothemund, Philipp; Suo, Zhigang; Vlassak, Joost J
2016-01-27
There is a large demand for fabrics that can survive high-temperature fires for an extended period of time, and protect the skin from burn injuries. Even though fire-resistant polymer fabrics are commercially available, many of these fabrics are expensive, decompose rapidly, and/or become very hot when exposed to high temperatures. We have developed a new class of fire-retarding materials by laminating a hydrogel and a fabric. The hydrogel contains around 90% water, which has a large heat capacity and enthalpy of vaporization. When the laminate is exposed to fire, a large amount of energy is absorbed as water heats up and evaporates. The temperature of the hydrogel cannot exceed 100 °C until it is fully dehydrated. The fabric has a low thermal conductivity and maintains the temperature gradient between the hydrogel and the skin. The laminates are fabricated using a recently developed tough hydrogel to ensure integrity of the laminate during processing and use. A thermal model predicts the performance of the laminates and shows that they have excellent heat resistance in good agreement with experiments, making them viable candidates in life saving applications such as fire-resistant blankets or apparel.
Electron microscopy of lamin and the nuclear lamina in Caenorhabditis elegans.
Cohen, Merav; Santarella, Rachel; Wiesel, Naama; Mattaj, Iain; Gruenbaum, Yosef
2008-01-01
The nuclear lamina is found between the inner nuclear membrane and the peripheral chromatin. Lamins are the main components of the nuclear lamina, where they form protein complexes with integral proteins of the inner nuclear membrane, transcriptional regulators, histones and chromatin modifiers. Lamins are required for mechanical stability, chromatin organization, Pol II transcription, DNA replication, nuclear assembly, and nuclear positioning. Mutations in human lamins cause at least 13 distinct human diseases, collectively termed laminopathies, affecting muscle, adipose, bone, nerve and skin cells, and range from muscular dystrophies to accelerated aging. Caenorhabditis elegans has unique advantages in studying lamins and nuclear lamina genes including low complexity of lamina genes and the unique ability of bacterially expressed C. elegans lamin protein to form stable 10 nm fibers. In addition, transgenic techniques, simple application of RNA interference, sophisticated genetic analyses, and the production of a large collection of mutant lines, all make C. elegans especially attractive for studying the functions of its nuclear lamina genes. In this chapter we will include a short review of our current knowledge of nuclear lamina in C. elegans and will describe electron microscopy techniques used for their analyses.
Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter
2015-03-27
The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.
Special Considerations in Selection of Fabric Film Laminates for Use in Inflatable Structures
NASA Technical Reports Server (NTRS)
Said, Magdi A.
1999-01-01
Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of fabric/film laminates is being considered for use as a structural gas envelope. The emerging composite materials are a result of recent advances in the manufacturing of lightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barriers results in a wide range of materials suitable for various loading and environmental conditions. Polyester-based woven fabrics laminated to thin homogenous film of polyester are an example of this class. This fabric/film laminate is being considered for the development of a material suitable for building large gas envelopes for use in the NASA ultra long duration balloon program (ULDB). Compared to commercial homogenous films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation, The mechanical, creep and viscoelastic properties of these fabric film laminates have been studied to form a material model. Preliminary analysis indicates that the material is highly viscoelastic. The mechanical properties of this class of materials will be discussed in some details.
Argonaute2 and LaminB modulate gene expression by controlling chromatin topology
Nazer, Ezequiel; Dale, Ryan K.; Chinen, Madoka; Radmanesh, Behram
2018-01-01
Drosophila Argonaute2 (AGO2) has been shown to regulate expression of certain loci in an RNA interference (RNAi)-independent manner, but its genome-wide function on chromatin remains unknown. Here, we identified the nuclear scaffolding protein LaminB as a novel interactor of AGO2. When either AGO2 or LaminB are depleted in Kc cells, similar transcription changes are observed genome-wide. In particular, changes in expression occur mainly in active or potentially active chromatin, both inside and outside LaminB-associated domains (LADs). Furthermore, we identified a somatic target of AGO2 transcriptional repression, no hitter (nht), which is immersed in a LAD located within a repressive topologically-associated domain (TAD). Null mutation but not catalytic inactivation of AGO2 leads to ectopic expression of nht and downstream spermatogenesis genes. Depletion of either AGO2 or LaminB results in reduced looping interactions within the nht TAD as well as ectopic inter-TAD interactions, as detected by 4C-seq analysis. Overall, our findings reveal coordination of AGO2 and LaminB function to dictate genome architecture and thereby regulate gene expression. PMID:29529026
Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins
Stephens, Andrew D.; Liu, Patrick Z.; Banigan, Edward J.; Almassalha, Luay M.; Backman, Vadim; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.
2018-01-01
Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed “blebs” are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson–Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity. PMID:29142071
Pin stripe lamination: A distinctive feature of modern and ancient eolian sediments
Fryberger, S.G.; Schenk, C.J.
1988-01-01
Pin stripe laminations are a distinctive feature of modern and ancient eolian sediments. In sets of eolian ripple (or translatent) strata they represent deposition of silt and very fine sand in the troughs of the advancing wind ripples. In sets of avalanche strata they probably result from the downward settling of fine sand and silt within the moving avalanche to the interface of moving and unmoving sands. Wind tunnel experiments suggest that pin stripe laminations can also form in grainfall deposits. The textural segregation associated with deposition of the fine layers in most cases leads to early cementation along and near the finest sand and silt comprising the pin stripe lamination. The pin stripe effect seen in outcrops is usually due to resistance to weathering along such cemented zones. The cementation of the pin stripe laminations can occur early in the history of diagenesis and thus may provide clues to the post-depositional history of the rock. Pin stripe laminations in many instances represent the sequestering of the small population of ultrafine sediment present in most eolian depositional systems. They may prove useful in the recognition of ancient eolian sediments. ?? 1988.
Behaviour study of thick laminated composites: Experimentation and finite element analyses
NASA Astrophysics Data System (ADS)
Duchaine, Francois
In today's industries, it is common practice to utilize composite materials in very large and thick structures like bridge decks, high pressure vessels, wind turbine blades and aircraft parts to mention a few. Composite materials are highly favoured due to their physical characteristics: low weight, low cost, adaptable mechanical properties, high specific strength and stiffness. The use of composite materials for large structures has however raised several concerns in the prediction of the behaviour of thick laminated composite parts. A lack of knowledge and experience in the use of composite materials during the design, sizing and manufacturing of thick composite parts can lead to catastrophic events. In this thesis, it was supposed that the elastic material properties may vary with the laminate thickness. In order to measure the influence of the thickness on nine orthotropic elastic material properties (E1, E2, E3, nu12, nu 13, nu23, G12, G13 and G23), three categories of thickness have been defined using a comparison between the classical lamination theory (CLT), different beam theories and a numerical 3D solid finite element analysis (FEA) model. The defined categories are: thin laminates for thicknesses below 6 mm (0.236"), moderately thick laminates for thicknesses up to 16 mm (0.630") and thick laminates for thicknesses above 16 mm (0.630"). For three different thicknesses (thin -- 1.5 mm, moderately thick -- 10 mm and thick -- 20 mm), the influence of the thickness on the orthotropic elastic material properties of unidirectional (UD) fibreglass/epoxy laminates has been measured. A torsion test on rectangular bar is also proposed to measure the influence of the thickness on G13 and G23. The nine elastic material properties, in function of the thickness, have been used in CLT and 3D solid FEA model in order to predict the axial Young's modulus and Poisson's ratios of cross-ply and quasi-isotropic laminates. Experimental results have also been obtained for those laminates. The analysis of test results with CLT and FEA showed that the variation of elastic material properties with the thickness is not significant for in-plane problems. On the other hand, a substantial influence has been highlighted on UD elastic material properties driven by the matrix like E 2, E3, nu13 and G12. .
The intriguing plant nuclear lamina.
Ciska, Malgorzata; Moreno Díaz de la Espina, Susana
2014-01-01
The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.
Ancient Eukaryotic Origin and Evolutionary Plasticity of Nuclear Lamina
Field, Mark C.
2016-01-01
Abstract The emergence of the nucleus was a major event of eukaryogenesis. How the nuclear envelope (NE) arose and acquired functions governing chromatin organization and epigenetic control has direct bearing on origins of developmental/stage-specific expression programs. The configuration of the NE and the associated lamina in the last eukaryotic common ancestor (LECA) is of major significance and can provide insight into activities within the LECA nucleus. Subsequent lamina evolution, alterations, and adaptations inform on the variation and selection of distinct mechanisms that subtend gene expression in distinct taxa. Understanding lamina evolution has been difficult due to the diversity and limited taxonomic distributions of the three currently known highly distinct nuclear lamina. We rigorously searched available sequence data for an expanded view of the distribution of known lamina and lamina-associated proteins. While the lamina proteins of plants and trypanosomes are indeed taxonomically restricted, homologs of metazoan lamins and key lamin-binding proteins have significantly broader distributions, and a lamin gene tree supports vertical evolution from the LECA. Two protist lamins from highly divergent taxa target the nucleus in mammalian cells and polymerize into filamentous structures, suggesting functional conservation of distant lamin homologs. Significantly, a high level of divergence of lamin homologs within certain eukaryotic groups and the apparent absence of lamins and/or the presence of seemingly different lamina proteins in many eukaryotes suggests great evolutionary plasticity in structures at the NE, and hence mechanisms of chromatin tethering and epigenetic gene control. PMID:27189989
NASA Technical Reports Server (NTRS)
Lee, H. H.; Hyer, M. W.
1992-01-01
The postbuckling failure of square composite plates with central holes is analyzed numerically and experimentally. The particular plates studies have stacking sequences of: (+ and - 45/0/90)(sub 2S); (+ and - 45/0(sub 2))(sub 2S); (+ and - 45/0(sub 6))(sub S); and (+ and - 45)(sub 4S). A simple plate geometry, one with a hole diameter to plate width ratio of 0.3 is compared. Failure load, failure mode, and failure location are predicted numerically by using the finite element method. Predictions are compared with experimental results. In numerical failure analysis the interlaminar shear stresses, as well as the inplane stresses are taken into account. An issue addressed in this study is the possible mode shape change of the plate during loading. It is predicted that the first three laminates fail due to excessive stresses in the fiber direction, and more importantly, that the load level is independent of whether the laminate is deformed in a one-half or two-half wave configuration. It is predicted that the fourth laminate fails due to excessive inplane shear stress. Interlaminar shear failure is not predicted for any laminates. For the first two laminates the experimental observations correlated well with the predictions. Experimentally, the third laminate failed along the side support due to interlaminar shear strength S(sub 23). The fourth experimental laminate failed due to inplane shear in the location predicted, however material softening resulted in a different failure load from predictions.
Paci, Marine; Elkhatib, Razan; Longepied, Guy; Hennebicq, Sylviane; Bessonat, Julien; Courbière, Blandine; Bourgeois, Patrice; Levy, Nicolas; Mitchell, Michael J; Metzler-Guillemain, Catherine
2017-11-01
The aim of this study was to characterize the nuclear lamina (NL) and lamin chromatin-partners in spermatozoa from four DPY19L2-deleted globozoospermic patients. We tested for spermatid transcripts encoding lamins and their chromatin-partners emerin, LAP2α, BAF and BAF-L, by reverse transcriptase-PCR using spermatozoa RNA. We also determined the localization of lamin B1, BAF and BAF-L by immunofluorescent analysis of spermatozoa from all patients. In RNA from globozoospermic and control spermatozoa we detected transcripts encoding lamin B1, lamin B3, emerin, LAP2α and BAF-L, but not A-type lamins. In contrast, BAF transcripts were detected in globozoospermic but not control spermatozoa. The NL was immature in human globozoospermic spermatozoa: lamin B1 signal was detected in the nuclei of globozoospermic spermatozoa in significantly higher proportions than the control (P < 0.05; 56-91% versus 40%) and was predominantly observed at the whole nuclear periphery, not polarized as in control spermatozoa. Conversely, BAF and BAF-L were detected in control, but not globozoospermic spermatozoa. Our results strongly emphasize the importance of the NL and associated proteins during human spermiogenesis. In globozoospermia, the lack of maturation of the NL, and the modifications in expression and location of chromatin-partners, could explain the chromatin defects observed in this rare phenotype. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
A summary of modulus of elasticity and knot size surveys for laminating grades of lumber
R. W. Wolfe; R. C. Moody
1981-01-01
A summary of modulus of elasticity (MOE) and knot data is presented for grades of lumber commonly used to manufacture glued-laminated (glulam) timber by the laminating Industry. Tabulated values represent 30 different studies covering a time span of over 16 years. Statistical estimates of average and near-maximum knot sizes as well as mean and coefficient of variation...
Electrostatic Discharge Training Manual
1980-09-01
CAN BE MOLDED INTO FORMED SHAPES. FIBERBOARD, MELAMINE LAMINATES AND OTHER MATERIALS (LAMINATED OR HOMOGENEOUS) CAN BE CONSTRUCTED INTO BOXES AND...COVERED WITH, ESD PROTECTIVE MATERIALS SUCH AS METAL, MIL-B-81705 TYPE II, MIL-P- 82646 (REFERENCES 17, 16), MELAMINE LAMINATES OR OTHER ESD PROTECTIVE...CONDUCTANCE IN AVALANCHE MICROWAVE OSCILLATORS", IEEE TRANSACTIONS ON ELECTRON DEVICES, ED-i5, JUNE 1968. 32. HOLM, R., ELECTRIC CONTACTS HANDBOOK, BERLIN
NASA Technical Reports Server (NTRS)
Hu, Shoufeng; Nairn, John A.
1992-01-01
An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.
Field performance of timber bridges. 5, Little Salmon Creek stress-laminated deck bridge
M. A. Ritter; J. A. Kainz; G. J. Porter
The Little Salmon Creek bridge was constructed in November 1988 on the Allegheny National Forest in Pennsylvania. The bridge is a simple span, single-lane, stress-laminated deck superstructure that is approximately 26-ft long and 16-ft wide. The bridge is unique in that it is the first known stress-laminated timber bridge to be constructed of hardwood lumber. The...
Field performance of timber bridges. 7, Connell Lake stress-laminated deck bridge
L. E. Hislop; M. A. Ritter
The Connell Lake bridge was constructed in early 1991 on the Tongass National Forest, Alaska, as a demonstration bridge under the Timber Bridge Initiative. The bridge is a stress-laminated deck structure with an approximate 36-ft length and 18-ft width and is the first known stress-laminated timber bridge constructed in Alaska. Performance of the bridge was monitored...
Bending analyses for 3D engineered structural panels made from laminated paper and carbon fabric
Jinghao Li; John F. Hunt; Zhiyong Cai; Xianyan Zhou
2013-01-01
This paper presents analysis of a 3-dimensional engineered structural panel (3DESP) having a tri-axial core structure made from phenolic impregnated laminated-paper composites with and without high strength composite carbon-fiber fabric laminated to the outside of both faces. Both I-beam equations and finite element method were used to analyze four-point bending of the...
Potential impact of subterranean termites on cross-laminated timber (CLT) in the Southeastern U.S
C. Elizabeth Stokes; Rubin Shmulsky; Juliet D. Tang
2017-01-01
Cross-laminated timber (CLT) is an emerging product in the North American mass timber market. Intended to compete with pre-cast concrete panels for modular construction, these laminated wall and floor-sized panels have been successfully used in European construction markets for the past 20 years. However, introduction of this material to areas of North America that...
Study of Graphite/Epoxy Composites for Material Flaw Criticality.
1980-11-01
criticality of disbonds with two-dimensional planforms located in laminated graphite/epoxy composites has been examined. Linear elastic fracture...mechanics approach, semi-empirical growth laws and methods of stress analysis based on a modified laminated plate theory have been studied for assessing...growth rates of disbonds in a transverse shear environ- ment. Elastic stability analysis has been utilized for laminates with disbonds subjected to in
Structural lumber laminated from 1/4 -inch rotary-peeled southern pine veneer
P. Koch
1973-01-01
By the lamination process evaluated, 60 percent of total log volume ended as kiln-dry, end-trimmed, sized, salable 2 by 4's-approximately 50 percent more than that achieved by conventional bandsawing of matched lop. Moreover, modulus of elasticity of the laminated 2 by 4's (adjusted to 12 percent moisture content) averaged 1,950,-000 psi compared to 1,790,...
Structural lumber laminated from 1/4-inch rotary-peeled southern pine veneer
Peter Koch
1972-01-01
By the lamination process evaluated, 60 percent of total log volume ended as kiln-dry, end-trimmed, sized, salable 2 by 4's - approximately 50 percent more than that acheived by conventional bandsawing of matched logs. Moreover, modulus of elasticity of the laminated 2 by 4's (adjusted to 12 percent moisture content) averaged 1,950,000 psi compared to 1,790,...
Edge effects and delamination failures
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1989-01-01
The fundamental relationship between the morphology of a composite laminate and the resulting free edge effects is explored and related to delamination failures. Cross-ply, angle-ply, and quasi-isotropic laminates are discussed in detail. It is shown that the local mismatch in elastic properties of adjacent layers and the global stacking sequence of a laminate both have a significant influence on the interlaminar stresses and delamination failures.
Peterson, Kenneth A [Albuquerque, NM
2009-02-24
A method of using sacrificial materials for fabricating internal cavities and channels in laminated dielectric structures, which can be used as dielectric substrates and package mounts for microelectronic and microfluidic devices. A sacrificial mandrel is placed in-between two or more sheets of a deformable dielectric material (e.g., unfired LTCC glass/ceramic dielectric), wherein the sacrificial mandrel is not inserted into a cutout made in any of the sheets. The stack of sheets is laminated together, which deforms the sheet or sheets around the sacrificial mandrel. After lamination, the mandrel is removed, (e.g., during LTCC burnout), thereby creating a hollow internal cavity in the monolithic ceramic structure.
Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Kwon, Young S.; Sankar, Bhavani V.
1992-01-01
Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modak, Partha; Hossain, M. Jamil, E-mail: jamil917@gmail.com; Ahmed, S. Reaz
An accurate stress analysis has been carried out to investigate the suitability of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners. Three different balanced laminates composed of dissimilar ply material as well as fiber orientations are considered for a thick beam on simple supports with stiffened lateral ends. A displacement potential based elasticity approach is used to obtain the numerical solution of the corresponding elastic fields. The overall laminate stresses as well as individual ply stresses are analysed mainly in the perspective of laminate hybridization. Both the fiber material and ply angle ofmore » individual laminas are found to play dominant roles in defining the design stresses of the present composite beam.« less
Lamination residual strains and stresses in hybrid laminates
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1977-01-01
An investigation is conducted of the effects of hybridization on the magnitude of lamination residual stresses. Eight-ply graphite/Kevlar 49/epoxy and graphite/S-glass/epoxy laminates were studied. The same matrix resin was selected for all basic materials to ensure compatibility and uniform curing of the various plies. The specimens, with inserted strain gages and thermocouples, were subjected to curing and postcuring cycles in an autoclave. Subsequently, the specimens were subjected to a thermal cycle from room temperature to 444 K and down to room temperature. It was found that hydridizing reduces apparently residual strains and stresses in the graphite plies. However, these strains were not affected much by the type and degree of hybridization.
The combined effect of glass buffer strips and stitching on the damage tolerance of composites
NASA Technical Reports Server (NTRS)
Kullerd, Susan M.
1993-01-01
Recent research has demonstrated that through-the-thickness stitching provides major improvements in the damage tolerance of composite laminates loaded in compression. However, the brittle nature of polymer matrix composites makes them susceptible to damage propagation, requiring special material applications and designs to limit damage growth. Glass buffer strips, embedded within laminates, have shown the potential for improving the damage tolerance of unstitched composite laminates loaded in tension. The glass buffer strips, less stiff than the surrounding carbon fibers, arrest crack growth in composites under tensile loads. The present study investigates the damage tolerance characteristics of laminates that contain both stitching and glass buffer strips.
NASA Technical Reports Server (NTRS)
Krempl, Erhard; Hong, Bor Zen
1989-01-01
A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.
Feasibility study on the development of tough, moisture-resistant laminating resins
NASA Technical Reports Server (NTRS)
Brand, R. A.; Harrison, E. S.
1979-01-01
The potential of cyanate resins as replacement for epoxy resins in composites with graphite fiber reinforcement was investigated in an effort to provide improved moisture resistance and toughness in laminating systems at a projected cost, handleability, and processing requirements equivalent to 400 K (260 F) curing epoxies. Monomer synthesis, formulation, blending, resin preparation, catalysis studies, prepreg preparation, laminate fabrication, and testing are discussed. A graphite fiber reinforced laminate was developed with 95 percent retention of the original 363 K (180 F) flexural strength and 70 percent retention of the 363 K (180 F) short beam shear strength after 500 hour exposure to 95 + 7 relative humidity at 324 K (120 F).
Detecting barely visible impact damages of honeycomb and laminate CFRP using digital shearography
NASA Astrophysics Data System (ADS)
Burkov, Mikhail; Lyubutin, Pavel; Byakov, Anton; Panin, Sergey
2017-12-01
The paper deals with testing of the developed shearographic device and signal processing software applied for nondestructive testing/evaluation (NDT/E) of carbon fiber reinforced polymers (CFRP). There were 4 types of test specimens: laminate CFRP, honeycomb CFRP, laminate CFRP with the channel stiffener, and laminate CFRP bolted with the aluminum plate. All the specimens were subjected to impact loading using the drop weight technique according to the ASTM D7136 standard in order to produce barely visible impact damages (BVID). The obtained shearograms easily reveal BVIDs as nonuniformities in strain fields. The results are analyzed and discussed in view of the sensitivity of shearography to delamination and debonding.
Solventless LARC-160 Polyimide Matrix Resin. [applied for use in aerospace engineering
NASA Technical Reports Server (NTRS)
Stclair, T. L.; Jewell, R. A.
1978-01-01
The addition polyimide, LARC-160, which was originally synthesized from low cost liquid monomers as a laminating resin in ethanol, was prepared as a solventless, high viscosity, neat liquid resin. The resin was processed by hot-melt coating techniques into graphite prepreg with excellent tack and drape. Comparable data on graphite reinforced laminates made from solvent-coated and various hot-melt coated prepreg were generated. LARC-160, because of its liquid nature, can be easily autoclave processed to produce low void laminates. Liquid chromatographic fingerprints indicate good reaction control on resin scale ups. Minor changes in monomer ratios were also made to improve the thermal aging performance of graphite laminates.
Development of a realistic stress analysis for fatigue analysis of notched composite laminates
NASA Technical Reports Server (NTRS)
Humphreys, E. A.; Rosen, B. W.
1979-01-01
A finite element stress analysis which consists of a membrane and interlaminar shear spring analysis was developed. This approach was utilized in order to model physically realistic failure mechanisms while maintaining a high degree of computational economy. The accuracy of the stress analysis predictions is verified through comparisons with other solutions to the composite laminate edge effect problem. The stress analysis model was incorporated into an existing fatigue analysis methodology and the entire procedure computerized. A fatigue analysis is performed upon a square laminated composite plate with a circular central hole. A complete description and users guide for the computer code FLAC (Fatigue of Laminated Composites) is included as an appendix.
Structural reliability analysis of laminated CMC components
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Palko, Joseph L.; Gyekenyesi, John P.
1991-01-01
For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution.
Graphite-polyimide composite for application to aircraft engines
NASA Technical Reports Server (NTRS)
Hanson, M. P.; Chamis, C. C.
1974-01-01
A combined experimental and theoretical investigation was performed in order to (1) demonstrate that high quality angleplied laminates can be made from HT-S/PMR-RI (PMR in situ polymerization of monomeric reactants), (2) characterize the PMR-PI material and to determine the HT-S unidirectional composite properties required for composite micro and macromechanics and laminate analyses, and (3) select HT-S/PMR-PI laminate configurations to meet the general design requirements for high-tip-speed compressor blades. The results of the investigation showed that HT-S/PMR laminate configurations can be fabricated which satisfy the high-tip-speed compressor blade design requirements when operating within the temperature capability of the polymide matrix.
NASA Technical Reports Server (NTRS)
Hanson, M. P.; Chamis, C. C.
1973-01-01
Investigations were performed in order to: (1) demonstrate that high quality angleplied laminates can be made from HT-S/PMR-PI (PMR in situ polymerization of monomeric reactants), (2) characterize the PMR-PI material and to determine the HT-S unidirectional composite properties required for composite micro and macromechanics and laminate analyses, and (3) select HT-S/PMR laminate configurations to meet the general design requirements for high-tip-speed compressor blades. The results of the investigation show that HT-S/PMR laminate configurations can be fabricated which satisfy the high-tip-speed compressor blade design requirements when operating within the temperature capability of the polyimide matrix.
The upper bounds of reduced axial and shear moduli in cross-ply laminates with matrix cracks
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, D. H.; Harris, C. E.
1991-01-01
The present study proposes a mathematical model utilizing the internal state variable concept for predicting the upper bounds of the reduced axial and shear stiffnesses in cross-ply laminates with matrix cracks. The displacement components at the matrix crack surfaces are explicitly expressed in terms of the observable axial and shear strains and the undamaged material properties. The reduced axial and shear stiffnesses are predicted for glass/epoxy and graphite/epoxy laminates. Comparison of the model with other theoretical and experimental studies is also presented to confirm direct applicability of the model to angle-ply laminates with matrix cracks subjected to general in-plane loading.
Probabilistic sizing of laminates with uncertainties
NASA Technical Reports Server (NTRS)
Shah, A. R.; Liaw, D. G.; Chamis, C. C.
1993-01-01
A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.
Experimental Investigation of Thermal Properties in Glass Fiber Reinforced with Aluminium
NASA Astrophysics Data System (ADS)
Irudaya raja, S. Joseph; Vinod Kumar, T.; Sridhar, R.; Vivek, P.
2017-03-01
A test method of a Guarded heat flow meter are used to measure the thermal conductivity of glass fiber and filled with a aluminum powder epoxy composites using an instrument in accordance with ASTM. This experimental study reveals that the incorporation of aluminum and glass fiber reinforced results in enhancement of thermal conductivity of epoxy resin and thereby improves its heat transfer capability. Fiber metal laminates are good candidates for advanced automobile structural applications due to their high categorical mechanical and thermal properties. The most consequential factor in manufacturing of these laminates is the adhesive bonding between aluminum and FRP layers. Here several glass-fiber reinforced aluminum were laminates with different proportion of bonding adhesion were been manufactured. It was observed that the damage size is more preponderant in laminates with poor interfacial adhesion compared to that of laminates with vigorous adhesion between aluminum and glass layers numerically calculated ones and it is found that the values obtained for various composite models using experimental testing method.
NASA Technical Reports Server (NTRS)
Sharma, A. V.
1980-01-01
The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.
Impact-initiated damage thresholds in composites
NASA Technical Reports Server (NTRS)
Sharma, A. V.
1980-01-01
An experimental investigation was conducted to study the effect of low velocity projectile impact on the sandwich-type structural components. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failures in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension- and compression-loaded laminates. The specific-strengths and -moduli for the various laminates tested are also given.
'Laminopathies': A wide spectrum of human diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worman, Howard J.; Bonne, Gisele; Universite Pierre et Marie Curie-Paris 6, Faculte de medecine, Paris F-75013
2007-06-10
Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called 'laminopathies.' Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasiamore » and Pelger-Huet anomaly. While mutations and clinical phenotypes of 'laminopathies' have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new 'laminopathies' and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.« less
A broadband permeability measurement of FeTaN lamination stack by the shorted microstrip line method
NASA Astrophysics Data System (ADS)
Chen, Xin; Ma, Yungui; Xu, Feng; Wang, Peng; Ong, C. K.
2009-01-01
In this paper, the microwave characteristics of a FeTaN lamination stack are studied with a shorted microstrip line method. The FeTaN lamination stack was fabricated by gluing 54 layers of FeTaN units with epoxy together. The FeTaN units were deposited on both sides of an 8 μm polyethylene terephthate (Mylar) film as the substrate by rf magnetron sputtering. On each side of the Mylar substrate, three 100-nm FeTaN layers are laminated with two 8 nm Al2O3 layers. The complex permeability of FeTaN lamination stack is calculated by the scattering parameters using the shorted load transmission line model based on the quasi-transverse-electromagnetic approximation. A full wave analysis combined with an optimization process is employed to determine the accurate effective permeability values. The optimized complex permeability data can be used for the microwave filter design.
Tensile and compressive behavior of Borsic/aluminum
NASA Technical Reports Server (NTRS)
Herakovich, C. T.; Davis, J. G., Jr.; Viswanathan, C. N.
1977-01-01
The results of an experimental investigation of the mechanical behavior of Borsic/aluminum are presented. Composite laminates were tested in tension and compression for monotonically increasing load and also for variable loading cycles in which the maximum load was increased in each successive cycle. It is shown that significant strain-hardening, and corresponding increase in yield stress, is exhibited by the metal matrix laminates. For matrix dominated laminates, the current yield stress is essentially identical to the previous maximum stress, and unloading is essentially linear with large permanent strains after unloading. For laminates with fiber dominated behavior, the yield stress increases with increase in the previous maximum stress, but the increase in yield stress does not keep pace with the previous maximum stress. These fiber dominated laminates exhibit smaller nonlinear strains, reversed nonlinear behavior during unloading, and smaller permanent strains after unloading. Compression results from sandwich beams and flat coupons are shown to differ considerably. Results from beam specimens tend to exhibit higher values for modulus, yield stress, and strength.
Ihalainen, Teemu O; Aires, Lina; Herzog, Florian A; Schwartlander, Ruth; Moeller, Jens; Vogel, Viola
2015-12-01
Nuclear lamins play central roles at the intersection between cytoplasmic signalling and nuclear events. Here, we show that at least two N- and C-terminal lamin epitopes are not accessible at the basal side of the nuclear envelope under environmental conditions known to upregulate cell contractility. The conformational epitope on the Ig-domain of A-type lamins is more buried in the basal than apical nuclear envelope of human mesenchymal stem cells undergoing osteogenesis (but not adipogenesis), and in fibroblasts adhering to rigid (but not soft) polyacrylamide hydrogels. This structural polarization of the lamina is promoted by compressive forces, emerges during cell spreading, and requires lamin A/C multimerization, intact nucleoskeleton-cytoskeleton linkages (LINC), and apical-actin stress-fibre assembly. Notably, the identified Ig-epitope overlaps with emerin, DNA and histone binding sites, and comprises various laminopathy mutation sites. Our findings should help decipher how the physical properties of cellular microenvironments regulate nuclear events.
Non-senescent Hydra tolerates severe disturbances in the nuclear lamina.
Klimovich, Alexander; Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo; Bosch, Thomas C G
2018-05-10
The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra . We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra , the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra . A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans.
NASA Astrophysics Data System (ADS)
Ihalainen, Teemu O.; Aires, Lina; Herzog, Florian A.; Schwartlander, Ruth; Moeller, Jens; Vogel, Viola
2015-12-01
Nuclear lamins play central roles at the intersection between cytoplasmic signalling and nuclear events. Here, we show that at least two N- and C-terminal lamin epitopes are not accessible at the basal side of the nuclear envelope under environmental conditions known to upregulate cell contractility. The conformational epitope on the Ig-domain of A-type lamins is more buried in the basal than apical nuclear envelope of human mesenchymal stem cells undergoing osteogenesis (but not adipogenesis), and in fibroblasts adhering to rigid (but not soft) polyacrylamide hydrogels. This structural polarization of the lamina is promoted by compressive forces, emerges during cell spreading, and requires lamin A/C multimerization, intact nucleoskeleton-cytoskeleton linkages (LINC), and apical-actin stress-fibre assembly. Notably, the identified Ig-epitope overlaps with emerin, DNA and histone binding sites, and comprises various laminopathy mutation sites. Our findings should help decipher how the physical properties of cellular microenvironments regulate nuclear events.
Free-edge stress analysis of glass-epoxy laminates with matrix cracks
NASA Technical Reports Server (NTRS)
Fish, John C.; O'Brien, T. K.
1992-01-01
The effect of matrix cracks on the composite delamination and interlaminar stresses is investigated in (+15/90n/-15)s glass-epoxy laminates (with values of n equal to 0, 1, 2, or 3) subjected to monotonically increasing tension loads. Three-dimensional (3D) and quasi-3D (Q3D) finite-element analyses are used to model the free-edge stress states in the laminates with and without a matrix crack, respectively. The Q3D results show that in-plane transverse tensile stresses exist in the +15 deg plies near the free edges of all of the laminates used and that only the interlaminar shear stress is high at the +15/theta interface. The results of 3D analysis indicate that large tensile interlaminar normal as well as shear stresses develop at the intersection of the matrix crack and the free edge. This suggests that the interlaminar normal stress plays a significant role in the failure of these laminates.
NASA Astrophysics Data System (ADS)
Schwarz, J. M.; Zhang, Tao
2015-03-01
The actin cytoskeleton provides the cell with structural integrity and allows it to change shape to crawl along a surface, for example. The actin cytoskeleton can be modeled as a semiflexible biopolymer network that modifies its morphology in response to both external and internal stimuli. Just inside the inner nuclear membrane of a cell exists a network of filamentous lamin that presumably protects the heart of the cell nucleus--the DNA. Lamins are intermediate filaments that can also be modeled as semiflexible biopolymers. It turns out that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins that bridge the outer and inner nuclear membranes. We, therefore, probe the consequences of such a coupling via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the cytoskeletal network. Such study could have implications for mechanical mechanisms of the regulation of transcription, since DNA--yet another semiflexible polymer--contains lamin-binding domains, and, thus, widen the field of epigenetics.
NASA Technical Reports Server (NTRS)
Kriz, R. D.; Stinchcomb, W. W.; Tenney, D. R.
1980-01-01
Classical laminate theory and a finite element model were used to predict stress states prior to the first formation of damage in laminates fabricated from T/300/5208. Crack patterns characteristic of the laminate in a wet or dry condition were also predicted using a shear lag model. Development of edge damage was recorded and observed during the test by transferring an image of the damage from the edge surface on to a thin acetate sheet such that the damage imprinted could be immediately viewed on a microfiche card reader. Moisture was shown to significantly alter the interior and edge dry stress states due to swelling and a reduction of elastic properties and to reduce the transverse strength in 90 deg plies. A model was developed in order to predict changes in first ply failure laminate loads due to differences in stacking sequence together with a wet or dry environmental condition.
Delamination initiated by a defect
NASA Astrophysics Data System (ADS)
Biel, A.; Toftegaard, H.
2016-07-01
Composite materials in wind turbines are mainly joined with adhesives. Adhesive joining is preferable since it distributes the stresses over a larger area. This study shows how a defect can influence the fracture behaviour of adhesively joined composite. Repeated experiments are performed using double cantilever beam specimens loaded with bending moments. The specimens consist of two 8 mm thick GFRP-laminates which are joined by a 3 mm thick epoxy adhesive. A thin foil close to one of the laminates is used to start the crack. For some of the specimens a defect is created by an initial load-unload operation. During this operation, a clamp is used in order to prevent crack propagation in the main direction. For the specimens without defect, the crack propagates in the middle of the adhesive layer. For the specimens with defect, the crack directly deviates into the laminate. After about 25 mm propagation in the laminate, the crack returns to the adhesive. Compared to the adhesive the fracture energy for the laminate is significantly higher.
NASA Astrophysics Data System (ADS)
Diveyev, Bohdan; Konyk, Solomija; Crocker, Malcolm J.
2018-01-01
The main aim of this study is to predict the elastic and damping properties of composite laminated plates. This problem has an exact elasticity solution for simple uniform bending and transverse loading conditions. This paper presents a new stress analysis method for the accurate determination of the detailed stress distributions in laminated plates subjected to cylindrical bending. Some approximate methods for the stress state predictions for laminated plates are presented here. The present method is adaptive and does not rely on strong assumptions about the model of the plate. The theoretical model described here incorporates deformations of each sheet of the lamina, which account for the effects of transverse shear deformation, transverse normal strain-stress and nonlinear variation of displacements with respect to the thickness coordinate. Predictions of the dynamic and damping values of laminated plates for various geometrical, mechanical and fastening properties are presented. Comparison with the Timoshenko beam theory is systematically made for analytical and approximation variants.
NASA Astrophysics Data System (ADS)
Singh, K. K.; Rawat, Prashant
2018-05-01
This paper investigates the mechanical response of three phased (glass/MWCNTs/epoxy) composite laminate under three different loadings. Flexural strength, short beam strength and low-velocity impact (LVI) testing are performed to find an optimum doping percentage value for maximum enhancement in mechanical properties. In this work, MWCNTs were used as secondary reinforcement for three-phased composite plate. MWCNT doping was done in a range of 0–4 wt% of the thermosetting matrix system. Symmetrical design eight layered glass/epoxy laminate with zero bending extension coupling laminate was fabricated using a hybrid method i.e. hand lay-up technique followed by vacuum bagging method. Ranging analysis of MWCNT mixing highlighted the enhancement in flexural, short beam strength and improvement in damage tolerance under LVI loading. While at higher doping wt%, agglomeration of MWCNTs are observed. Results of mechanical testing proposed an optimized doping value for maximum strength and damage resistance of the laminate.
Dynamic delamination crack propagation in a graphite/epoxy laminate
NASA Technical Reports Server (NTRS)
Grady, J. E.; Sun, C. T.
1991-01-01
Dynamic delamination crack propagation in a (90/0) 5s Graphite/Epoxy laminate with an embedded interfacial crack was investigated experimentally using high speed photography. The dynamic motion was produced by impacting the beamlike laminate specimen with a silicon rubber ball. The threshold impact velocities required to initiate dynamic crack propagation in laminates with varying initial crack positions were determined. The crack propagation speeds were estimated from the photographs. Results show that the through the thickness position of the embedded crack can significantly affect the dominant mechanism and the threshold impact velocity for the onset of crack movement. If the initial delamination is placed near the top of bottom surface of the laminate, local buckling of the delaminated plies may cause instability of the crack. If the initial delamination lies on the midplane, local buckling does not occur and the initiation of crack propagation appears to be dominated by Mode II fracture. The crack propagation and arrest observed was seen to be affected by wave motion within the delamination region.
Non-senescent Hydra tolerates severe disturbances in the nuclear lamina
Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo
2018-01-01
The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra. We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra, the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra. A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans. PMID:29754147
NASA Technical Reports Server (NTRS)
Carper, D. M.; Johnson, E. R.; Hyer, M. W.
1983-01-01
Equations are developed which govern the deflection response of long cylindrical panels subjected to a line load. The line load is directed toward the center of curvature of the panel, is located at an arbitrary point along the arc length of the panel, and is included at an arbitrary angle relative to the radial direction. Only the geometrically linear problem is considered and the spatial dependence in the problem is reduced to one independent variable, specifically, the arc length along the panel. The problem is thus solvable in closed form. Both symmetrically laminated and the less common unsymmetrically laminated simply supported panels are studied. The unsymmetrically laminated case was considered because the natural shape of an unsymmetric laminate is cylindrical. Results are presented which show the influence of the location and inclination of the line load on panel deflection. Shallow and deep panels are considered. Both the symmetric and unsymmetric panels exhibit similar behavior, the unsymmetric configurations being less stiff. Limited experimental results are presented.
NASA Astrophysics Data System (ADS)
Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon
2014-07-01
Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.
Link, Jana; Paouneskou, Dimitra; Velkova, Maria; Daryabeigi, Anahita; Laos, Triin; Labella, Sara; Barroso, Consuelo; Pacheco Piñol, Sarai; Montoya, Alex; Kramer, Holger; Woglar, Alexander; Baudrimont, Antoine; Markert, Sebastian Mathias; Stigloher, Christian; Martinez-Perez, Enrique; Dammermann, Alexander; Alsheimer, Manfred; Zetka, Monique; Jantsch, Verena
2018-04-23
Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear. We show that chromosome movement correlates with reduced lamin association with the nuclear rim, which requires lamin phosphorylation at sites analogous to those that open lamina network crosslinks in mitosis. Failure to remodel the lamina results in delayed meiotic entry, altered chromatin organization, unpaired or interlocked chromosomes, and slowed chromosome movement. The remodeling kinases are delivered to lamins via chromosome ends coupled to the nuclear envelope, potentially enabling crosstalk between the lamina and chromosomal events. Thus, opening the lamina network plays a role in modulating contacts between chromosomes and the nuclear periphery during meiosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Detection of layup errors in prepreg laminates using shear ultrasonic waves
NASA Astrophysics Data System (ADS)
Hsu, David K.; Fischer, Brent A.
1996-11-01
The highly anisotropic elastic properties of the plies in a composite laminate manufactured from unidirectional prepregs interact strongly with the polarization direction of shear ultrasonic waves propagating through its thickness. The received signals in a 'crossed polarizer' transmission configuration are particularly sensitive to ply orientation and layup sequence in a laminate. Such measurements can therefore serve as an NDE tool for detecting layup errors. For example, it was shown experimentally recently that the sensitivity for detecting the presence of misoriented plies is better than one ply out of a 48-ply laminate of graphite epoxy. A physical model based on the decomposition and recombination of the shear polarization vector has been constructed and used in the interpretation and prediction of test results. Since errors should be detected early in the manufacturing process, this work also addresses the inspection of 'green' composite laminates using electromagnetic acoustic transducers (EMAT). Preliminary results for ply error detection obtained with EMAT probes are described.
Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus
Stephens, Andrew D.; Banigan, Edward J.; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.
2017-01-01
The cell nucleus must continually resist and respond to intercellular and intracellular mechanical forces to transduce mechanical signals and maintain proper genome organization and expression. Altered nuclear mechanics is associated with many human diseases, including heart disease, progeria, and cancer. Chromatin and nuclear envelope A-type lamin proteins are known to be key nuclear mechanical components perturbed in these diseases, but their distinct mechanical contributions are not known. Here we directly establish the separate roles of chromatin and lamin A/C and show that they determine two distinct mechanical regimes via micromanipulation of single isolated nuclei. Chromatin governs response to small extensions (<3 μm), and euchromatin/heterochromatin levels modulate the stiffness. In contrast, lamin A/C levels control nuclear strain stiffening at large extensions. These results can be understood through simulations of a polymeric shell and cross-linked polymer interior. Our results provide a framework for understanding the differential effects of chromatin and lamin A/C in cell nuclear mechanics and their alterations in disease. PMID:28057760
Kam, Chee Zhou; Kueh, Ahmad Beng Hong
2013-01-01
A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Takenori
1995-11-01
This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method ismore » confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.« less
Effects of lamination and coating with drying oils on tensile and barrier properties of zein films.
Rakotonirainy, A M; Padua, G W
2001-06-01
Zein films plasticized with oleic acid have been considered potentially useful for biodegradable packaging applications. However, moisture was found to affect their tensile and gas barrier properties. We investigated the effects of two converting processes, fusion lamination and coating with drying oils, on tensile properties and gas permeability of zein films. Zein films were laminated to 4-ply sheets in a Carver press and coated with tung oil, linseed oil, or a mixture of tung and soybean oils. Tensile properties and permeability to water vapor, oxygen, and carbon dioxide were measured according to ASTM methods. Laminated films were clearer, tougher, and more flexible, and had a smoother finish than nontreated sheets. Lamination decreased O(2) and CO(2) permeability by filling in voids and pinholes in the film structure. Coating increased tensile strength and elongation and decreased water vapor permeability. Coatings acted as a composite layer preventing crack propagation and increasing film strength. They also formed a highly hydrophobic surface that prevented film wetting.
Field performance of timber bridges. 4, Graves Crossing stress-laminated deck bridge
J. P. Wacker; M. A. Ritter
The Graves Crossing bridge was constructed October 1991 in Antrim County, Michigan, as part of the demonstration timber bridge program sponsored by the USDA Forest Service. The bridge is a two-span continuous, stress-laminated deck superstructure and it is 36-ft long and 26-ft wide. The bridge is one of the first stress-laminated deck bridges to be built of sawn lumber...
Field performance of timber bridges. 8, Lynches Woods Park stress-laminated deck bridge
J. P. Wacker; M. A. Ritter; D. Conger
The Lynches Woods Park bridge was constructed during the summer of 1990 in Newberry, South Carolina. It is a single-span, single-lane, stress-laminated deck superstructure that measures approximately 30 ft long, 16 ft wide, and 14 in. deep. The bridge is unique in that is one of the first known stress-laminated deck bridges to be constructed of Southern Pine lumber...
Determination of the technical constants of laminates in oblique directions
NASA Technical Reports Server (NTRS)
Vidouse, F.
1979-01-01
An off-axis tensile test theory based on Hooke's Law is applied to glass fiber reinforced laminates. A corrective parameter dependent on the characteristics of the strain gauge used is introduced by testing machines set up for isotropic materials. Theoretical results for a variety of strain gauges are compared with those obtained by a finite element method and with experimental results obtained on laminates reinforced with glass.
Meteoroid and Debris Impact Features Documented on the Long Duration Exposure Facility
1990-08-01
surfaces was very different from the hole production (penetration) mechanism in true thin films; the laminated structure was never actually penetrated...16 METEOROID & DEBRIS SPECIAL INVESTIGATION GROUP Impacts into laminated polymeric films, such as the Kapton test specimens on experiment A0138...several layers of carbon, glass, and/or Kevlar woven fiber cloth laminated together with resin binders. Impact features in these materials were
Carbon Nanotube Reinforced Flexible Windows for Blast Protection
2010-07-01
transparent plastic composite for use as a material for window or as a laminate layer in the blast-resistant glazed window. This program focused...materials for window or as a laminate layer in the blast-resistant glazed window. It is obvious that further increasing the mechanical properties of...Dr. Ben Wang led the effort for design/fabrication of windows from the nanotube assembly and lamination experiments. 6 3. RESULTS AND
Steel skin - SMC laminate structures for lightweight automotive manufacturing
NASA Astrophysics Data System (ADS)
Quagliato, Luca; Jang, Changsoon; Murugesan, Mohanraj; Kim, Naksoo
2017-09-01
In the present research work an innovative material, made of steel skin and sheet molding compound core, is presented and is aimed to be utilized for the production of automotive body frames. For a precise description of the laminate structure, the material properties of all the components, including the adhesive utilized as an interlayer, have been carried out, along with the simple tension test of the composite material. The result have shown that the proposed laminate structure has a specific yield strength 114% higher than 6061 T6 aluminum, 34% higher than 7075 T6 aluminum, 186% higher than AISI 304 stainless steel (30HRC) and 42% than SK5 high-strength steel (52HRC), showing its reliability and convenience for the realization of automotive components. After calibrating the material properties of the laminate structure, and utilizing as reference the simple tension results of the laminate structure, the derived material properties have been utilized for the simulation of the mechanical behavior of an automotive B-pillar. The results have been compared with those of a standard B-pillar made of steel, showing that the MS-SMC laminate structure manifests load and impact carry capacity comparable with those of high strength steel, while granting, at least, an 11% weight reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng
An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the firstmore » exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.« less